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 Chapter 1

 

INTRODUCTION 

 

Climate change is currently occurring at an unprecedented rate and is having profound effects on 

organisms across the globe (e.g., Gellesch et al., 2013). Past and current changes have been 

documented as alterations of diversity, abundance, dietary niches, speciation, and extinction (e.g. 

Barnosky et al., 2004; Koch and Barnosky, 2006; DeSantis et al., 2009; Blois et al, 2010;  

Figueirido et al., 2012). However, it is particularly challenging to predict how organisms will 

respond to climatic changes (e.g. Brown et al., 1997; Araujo and Rahbek, 2006; Schloss et al., 

2012).  

To better understand how future climatic changes may influence mammals and their floral and 

faunal communities, paleoenvironmental and paleoecological research often looks back to 

periods of geologically rapid warming such as the Paleocene Eocene Thermal Maximum (e.g. 

Gingerich, 2003; McInerney and Wing, 2011; Secord et al., 2012) or to periods of cyclic change 

like the Pleistocene glacial and interglacial periods (e.g. Barnosky, 2005; Lister and Stuart, 2008; 

DeSantis et al., 2009). Although Pleistocene communities are non-analogous when compared to 

modern ecosystems and communities, most Pleistocene taxa belong to families with modern 

descendants. While these modern taxa are often not found in the same regions as their 

Pleistocene ancestors, Pleistocene fossil assemblages are invaluable to the understanding of 

mammalian responses to climate change. Further, glacial and interglacial periods also provide 

the opportunity to investigate the consistency of mammalian adaptations to changing climates or 

environments (Koch et al., 1998; DeSantis et al., 2009). 
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1.1. Stable isotopes as a tool for inferring past environments and climates 

A variety of mammalian tissues, including hair, bone, and teeth, have been used for modern, 

archeological, and paleontological reconstructions (e.g. Ayliffe and Chivas, 1990; O’Connell et 

al., 2001; Kohn and Cerling, 2002; Crawford et al., 2008). Specifically, mammalian tooth enamel 

allows for paleoecological reconstructions of diet, climate, and relative aridity during the 

Pleistocene. Mammalian tooth enamel is often used to reconstruct the environment and the 

climate of Pleistocene fossil sites as the crystals are larger, more densely packed, and contain 

less organic matter, as compared to tissues such as bone and dentin which are more prone to 

diagenetic alteration (e.g. Ayliffe et al., 1994, Bryant et al., 1994; Fricke et al., 1996). 

Additionally, enamel represents discrete intervals of growth and can be used to infer average 

dietary and climate information or seasonal variability. Typically, two sampling strategies are 

used, bulk and serial sampling (Figure 1). Bulk samples are taken parallel to the growth axis and 

provide an average value for the whole tooth. Serial samples are taken perpendicular to the 

growth axis and provide values for distinct periods during the mineralization of the tooth. The 

inclusion of multiple samples per tooth allows investigations into changes in climate and diet 

over the time it takes a tooth to mineralize. Depending on the taxon sampled, one tooth can 

represent a few months to a year or more of time. The incorporation of both bulk and serial 

samples allow for investigations into the diet, ecology, and seasonality of the sites being 

sampled. 

1.1.1.  Stable Carbon isotopes 

Stable carbon isotope (δ
13

C) values from mammalian tooth enamel can be used to clarify our 

understanding of past environments as δ
13

C values reflect the photosynthetic pathway of 
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vegetation consumed (e.g. DeNiro and Epstein, 1978; Krueger, 1991; Lee-Thorp and van der 

Merwe, 1991; Cerling et al., 1997; Cerling and Harris, 1999). C4 vegetation includes warm 

season grasses and some shrubs, like saltbush, with δ
13

C values ranging from -20‰ to -10‰ 

(Bender, 1971). C3 vegetation includes cool season grasses, trees, and most shrubs with δ
13

C 

values that range from -33‰ to -22‰, and denser forests have more negative values (e.g. 

Bender, 1971; van der Merwe and Medina, 1991). Tooth enamel δ
13

C values record the relative 

proportion of C3 and C4 vegetation in an animal’s diet, but there is also enrichment between an 

animal’s diet and the tooth enamel values (e.g. DeNiro and Epstein, 1978; Cerling and Harris, 

1999). Tooth enamel values of medium to large bodied ungulates are enriched by ~14.1‰, as 

compared to dietary δ
13

C values, which means that tooth δ
13

C values of about -2‰ to +4‰ 

indicate a diet dominated by C4 vegetation and -19‰ to -8‰ indicate a diet dominated by C3 

vegetation (Cerling and Harris, 1999). Incorporation of both C3 and C4 vegetation will result in 

tooth enamel values between -8‰ and -2‰ (Cerling et al., 1997).  

The abundances of C3 and C4 grasses in modern environments are based on growing season 

temperatures and precipitation (Teeri and Stowe, 1976; Connin et al., 1998; Holmgren, 2007). In 

the United States, C3 grasses dominate the west coast and much of the mid and northern part of 

the country (Teeri and Stowe, 1976). Exceptions include a dominance of C4 grass in the Sonoran 

and Chihuahuan deserts, the Gulf Coast region, and Florida, where they make up 80%+ of the 

grasses present (Long and Lakela, 1971; Teeri and Stowe, 1976; Woodward, 2008). Typically, 

trees and shrubs utilize the C3 photosynthetic pathway, but in the western United States C4 

shrubs, like Atriplex (saltbush), can also play a substantial role in the diet of herbivores (Vetter, 

2007; USDA, NRCA, 2014).  
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1.1.2. Stable oxygen 

Stable oxygen (δ
18

O) isotope values from mammalian tooth enamel reflect water consumption, 

be it through active drinking or through the consumption of plant water (Longinelli, 1984; Luz et 

al., 1984; Bryant and Froelich, 1995; Kohn, 1996). Additionally, δ
18

O values are influenced by 

geographic and climatic variables, including elevation, continentality, temperature, and 

precipitation (e.g. Dansgaard, 1964; Ayliffe and Chivas, 1990). Increasing elevation decreases 

δ
18

O values by 2.0±1.0‰ per kilometer and increasing latitude decreases δ
18

O values by 

0.002±0.001‰ per kilometer (Dansgaard, 1964; Criss, 1999; Poage and Chamberlain, 2001). 

Decreases in δ
18

O values also occur as you move inland, while the effect is more variable, the 

average is 0.002±0.002‰ per kilometer (Criss, 1999). Stable oxygen isotope values also vary 

due to changes in ambient temperature and interactions between temperature and precipitation 

known as the “amount effect” (Dansgaard, 1964). In regions that typically experience 

temperatures below 20ºC, temperature has the greatest influence on δ
18

O values, causing a 0.7‰ 

increase per degree centigrade of temperature increase (Dansgaard, 1964). At lower latitudes 

with temperatures above 20ºC, δ
18

O values are influenced by the amount of precipitation 

(“amount effect”), with higher humidity and rainfall contributing to lower δ
18

O values 

(Dansgaard, 1964; Higgins and MacFadden, 2004). The original source of water also influences 

δ
18

O values as different water sources are subjected to differing amounts of precipitation and 

evaporation (Dansgaard, 1964).   

The influence of evaporation can also be seen in the water found in leafy vegetation, with greater 

evaporation leading to more positive δ
18

O values (e.g. Ayliffe and Chivas, 1990; Kohn et al., 

1996; Levin et al., 2006). These evaporative increases are then transferred to the organisms 

eating the vegetation, and therefore can be used to better understand the aridity of a site or region 
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(Levin et al., 2006). An aridity index can be used to separate the influences of temperature and 

aridity/precipitation on δ
18

O values (Levin et al., 2006).  

1.2. The Importance and Evolution of Camelidae 

Camelidae, the family containing modern Bactrian camels, dromedary camels, vicunas, 

guanacos, lamas, and alpacas, provides an interesting opportunity to investigate successful 

adaptations to arid environments. Wild members of Camelidae are found in some of the driest 

and harshest environments including the Gobi Desert of China and Mongolia and high elevation 

environments in the Andes Mountains in Argentina, Bolivia, Chile, and Peru (e.g. Baldi et al., 

2008; Hare, 2008; Lichtenstein et al., 2008). While modern wild camels are restricted to South 

America and Asia, the unique ability of all extant camelids to adapt to harsh conditions may have 

significant evolutionary and conservation implications (e.g. Aranguren, 1930; Cabrera, 1932; 

Webb, 1965, 1974; Harrison, 1979, 1985). Camelidae, as a family, originated in North America 

during the middle Eocene where it remained until the late Miocene when true camels (Camelus) 

immigrated to Eurasia, and eventually to Africa (Pickford et al., 1993, 1995). The family further 

migrated into South America during the late Pliocene or early Pleistocene (Webb, 1974; 

Marshall et al., 1982). Interestingly, North American members of Camelidae went extinct with 

many other large bodied mammals at the end of the Pleistocene while modern representatives are 

found in South America and Asia (Webb, 1974). 

Modern members of Camelidae only represent one subfamily, Camelinae (Miocene-Present), but 

past subfamilies also included Stenomylinae (Oligocene-Miocene), Floridatragulinae (Eocene-

Miocene), Miolabinae (Miocene), and Protolabinae (Miocene; Honey et al., 1998). Camelinae 

can be further subdivided to separate modern old world camels from modern new world camelids 
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(Honey et al., 1998). Dromedary and Bactrian camels belong to the tribe (taxonomic unit 

between family and genus) Camelini, which is represented by Camelus during the Pleistocene 

(Honey et al., 1998). South American taxa are referred to as camelids and belong to the tribe 

Lamini. Pleistocene Lamini camelids include Blancocamelus, Camelops, Hemiauchenia, and 

Palaeolama (Honey et al., 1998). One phylogenetic tree created using cranial, dental, and 

postcranial characters, illustrates the relationship of the modern genera (Camelus, Lama, 

Vicugna) to Pleistocene genera (Camelus, Camelops, Hemiauchenia, Palaeolama; Figure 2; 

Scherer, 2013). Other trees, based on similar characteristics, show a similar relationship, but also 

include Blancocamelus (Honey et al., 1998). Regardless of differences in the phylogenetic 

relationships within Lamini camelids, this work can provide insight into the diet and ecology of 

this tribe of camelids. This dissertation focuses on the well-represented Pleistocene genera, 

including Camelops, Hemiauchenia, and Palaeolama, to better understand the paleoecological 

history of the ancestors of modern South American camelids.  

Modern camelids, including wild vicunas and guanacos, have evolved the ability to live in harsh 

environments of the arid, high elevation Andes Mountains through modifications to their use of 

body water, the ability to acquire the majority of their water from the food they eat, and their 

reliance on low quality forage (Kay and Maloiy, 1989; San Martin and Bryant, 1987; Bas and 

Bonacic, 2003; Gonzalez et al., 2006; Borgnia et al., 2010). Members of Camelidae are able to 

concentrate their waste products more efficiently than other medium- to large-bodied mammals 

(Kay and Maloiy, 1989). Another adaptation that allows camelids to live in harsh environments 

is their ability to use plant water to fulfill their water requirements, which allows them to go 

much longer without actively drinking (Borgnia et al., 2008). While camelids are opportunistic 

feeders that will consume high quality vegetation when available, their ability to utilize low 
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quality vegetation allows them to survive in areas where many other large animals cannot (Bas 

and Bonacic, 2003; Gonzalez et al., 2006; Borgnia et al., 2010). It is also suggested that more 

efficient digestion means that camelids can consume less vegetation than other animals of similar 

size (San Martin and Bryant, 1987). While the diet and environment of modern camelids is well 

understood, it is not clear how the Pleistocene ancestors transitioned from more hospitable 

environments in North America to the high elevation deserts of South America.  

1.3. Objectives and Research Questions 

While previous studies have looked at the diet of individual camelids, little work has focused on 

the dietary modifications of the Pleistocene camelids in response to changing climates and 

environments (exceptions include Feranec, 2003; DeSantis et al., 2009). This dissertation 

provides a better understanding of the isotopic ecology of Lamini camelids and their 

modifications and responses to past climates and environments by addressing the following 

questions: 

 Are camelids sensitive to changes in climatic conditions?  

 Can camelids document changing climatic regimes in paleontological records?  

 How are dietary niches of camelids and other co-occurring mammals impacted by 

increasing evaporative conditions and competition?  

 How is the dietary breadth of Pleistocene camelids impacted by coexisting camelids and 

sympatric taxa?  

 Can the suite of taxa at a given site be used to predict the presence of camelids?  
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 How has the feeding ecology of Pleistocene camelids potentially played a role in the 

modern distribution of Lamini camelids? 

Previous work has suggested that camelids may be sensitive to environmental change, but this 

has not been directly tested. Thus, chapter 2 aims to assess if members of Camelidae, specifically 

Lamini camelids, are sensitive to changing environmental and climatic conditions. Subsequently, 

this method was also applied to all sites examined in chapters 3 and 4. Chapter 2 uses previously 

published stable oxygen isotope values to further develop an aridity index for North American 

Pleistocene taxa. This work identifies Pleistocene taxa that track changing environmental 

conditions, which are then used to quantify the regional environmental and climatic conditions 

for the southwestern and southeastern United States. The second chapter also investigates the 

influences of a taxon’s diet on their sensitivity to changing environmental conditions. The focus 

of chapter 3 is to explore the influences of increasing evaporative conditions and changing 

environments on the diet of Pleistocene camelids and their fossil communities in Florida. Stable 

carbon and oxygen isotope values are used to characterize two Pleistocene community sites, 

including comparing the paleoenvironmental conditions and relative aridity to two previously 

published Florida sites. Collectively, the examination of four fossil localities in Florida can 

provide insights regarding camelid ecology, especially throughout the Pleistocene and when 

occurring during potentially different climatic regimes. Chapter 4 aims to clarify the isotope 

ecology of the three most common Pleistocene Lamini camelids, while investigating how the 

presence of a second camelid influences a camelid’s dietary strategy. Using data from the 

Paleobiology Database, chapter 4 also aims to investigate which taxa co-occur with each 

camelid; this may identify a suite of taxa that are indicative of the preferred environmental 

conditions of each of the camelids. 
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As a whole, this dissertation aims to improve understandings of Pleistocene Lamini camelid 

ecology, while potentially providing insight into the influences of their paleoecology on 

distributions of modern taxa. Using stable carbon and oxygen isotopes, this work aims to 

determine the influences of climate, environmental change, and sympatric taxa on the diet and 

dietary modifications of Camelops, Hemiauchenia, and Palaeolama. Additionally, this work 

develops a method to identify changes in relative aridity through time in North America, and 

globally. Collectively, the integration of geochemical tools from Pleistocene sites aims to 

provide a better understanding of the ancestors of modern South American camelids and of 

changing climates during the Pleistocene. 
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Figure 1.1. Examples of sampling techniques on a modern camelid, Lama guanacoe. A. serial 

samples; B and C. bulk samples. 
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Figure 1.2. Relationships of Camelidae based on cranial, dental, and postcranial characteristics. 

Modified from Scherer, 2012. Modern Lamini camelids are outlined in cool colors (blue) and 

Pleistocene taxa included in this study are in warm colors (orange, yellow). 
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 Chapter 2

 

THE APPLICATION OF AN OXYGEN ISOTOPE ARIDITY INDEX TO TERRESTRIAL 

PALEOENVIRONMENTAL RECONSTRUCTIONS IN PLEISTOCENE NORTH AMERICA 

 

2.1. Introduction 

Global climates during the Pleistocene were generally colder than in all previous Cenozoic 

epochs and were characterized by the presence of cyclical climatic regimes and permanent ice 

sheets in both the Northern and Southern Hemispheres (Zachos et al. 2001). Antarctic ice cores 

record cyclical glacial and interglacial periods over the past 800,000 years (Lambert et al. 2008); 

however, these conditions have likely been occurring since the onset of the Pleistocene ~2.6 Myr 

ago (Zachos et al. 2001; Walker and Geissman 2009). The presence of both boreal vegetation 

and mammals in the southeastern United States during the Pleistocene suggests cooler periods, 

especially during the Last Glacial Maximum (Voorhies 1974; Graham 1976; Delcourt 2002). 

During other periods in the Pleistocene (i.e., early to mid-Wisconsin, prior to 22 Ka) the 

vegetation and vertebrate remains from the Southeast indicate a temperate climate (e.g., Russell 

et al. 2009), possibly even warmer than today (e.g., Holman 1980). Precipitation estimates for 

the Pleistocene also vary throughout North America and suggest both wetter and drier 

precipitation regimes, relative to today (e.g., Leigh and Feeney 1995; DeSantis et al. 2009; 

LaMoreaux et al. 2009). In the southwestern United States, soil data suggest drier yet monsoonal 

climates during the early Pleistocene (Smith et al. 1993). Southwestern climates were cooler than 

today, possibly typified by cooler summers and milder winters (Van Devender and Spaulding 

1979; Zachos et al. 2001) with highly variable precipitation (e.g., Metcalfe et al. 2002). Given 

the stark contrasts with modern regional climates and environments, a detailed understanding of 
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biotic responses to past climate changes requires a comprehensive understanding of regional 

climates through time.   

Although little is known about the variability of Pleistocene regional climates or the consequent 

effects on biotic communities, quantifying relative climatic and environmental differences 

between the southeastern and southwestern United States can clarify driving mechanisms for 

floral and faunal abundances. Stable carbon and oxygen isotope values from mammalian tooth 

enamel carbonate can be used to investigate regional paleoclimates and paleoenvironments. 

When reconstructing paleoenvironments from mammalian tooth enamel we are interested in 

relative abundances of plants that use the C4 photosynthetic pathway (i.e., warm-season grasses) 

and those that use the C3 photosynthetic pathway (i.e., cool-season grasses, shrubs, and trees) 

which can be interpreted from δ
13

Cenamel values. Modern C4 vegetation is typified by δ
13

C values 

that range from −22‰ to −33‰ (Bender 1971). Carbon isotope values of modern C3 vegetation 

instead range from −10‰ to −20‰ (Bender 1971), with more negative values often indicative of 

closed forest environments (e.g., van der Merwe and Medina 1991). In a given environment, 

there is typically a difference of 12–14‰ between plants photosynthesizing via the two different 

pathways (Bender 1971).   

The distribution of C3 and C4 plants is often linked to atmospheric carbon dioxide levels, 

temperature, aridity, or season of precipitation (e.g., Kemp 1983; Paruelo and Lauenroth 1996; 

Connin et al. 1998; Holmgren 2007). C4 grasses today are typically abundant in warmer and/or 

drier climates. However, it is unclear whether aridity, temperature, or season of precipitation was 

a greater driver of C4 abundance during the Pleistocene. Lower pCO2 levels during glacial 

periods have been suggested to promote increased C4 abundance in Texas (Koch et al. 2004), but 
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it has also been suggested that C4 abundance in the western United States was likely influenced 

by warm-season precipitation (Connin et al. 1998; Holmgren 2007).   

A study of temperate shrubs and grasslands in North America (Paruelo and Lauenroth 1996) 

indicates that there is a positive correlation between the distribution of C4 grasses and mean 

annual precipitation, the percent of summer season precipitation, and mean annual temperature, 

which explains 66% of the variability. Of the 66%, mean annual temperature contributes 25% of 

the total variability and mean annual precipitation plus season of precipitation contributes 75% 

of the total variability (Paruelo and Lauenroth 1996). Thus, both the amount and season of 

precipitation may play a significant role in C4 abundance. 

The same trend is seen in the Chihuahuan desert, which experiences distinct summer (June to 

September, 61%) and winter (October to March, 34%) seasons of precipitation (Kemp 1983). 

The photosynthetic pathway of the dominant vegetation type corresponds to the temperature 

during these periods of abundant precipitation, with C3 plants growing during the colder, winter-

precipitation season and C4 plants dominating during the hotter, summer-precipitation season 

(Kemp 1983). Previous work also indicates that warm regions with insufficient summer 

precipitation have limited C4 vegetation (e.g., Kemp 1983) and that a change in the season of 

abundant rainfall from summer to spring can cause a shift from C4 to C3 plants, in simulated 

conditions (Epstein et al. 1999). 

Carbon isotope values in tooth enamel can reveal dietary food sources by capturing the relative 

proportion of C3/C4 plants consumed regionally. By characterizing climatic regimes and C4 

consumption by resident mammalian herbivores, we can begin to assess driving mechanisms for 

C4 abundance in the past. For medium- to large-bodied herbivores, δ
13

C values recorded in their 
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tooth enamel have an enrichment factor of ~14.1‰ relative to their diet (Cerling and Harris 

1999). Accounting for this enrichment, δ
13

Cenamel values ≤ −8‰ reflect a predominantly C3 diet, 

whereas values ≥ −2‰ indicate a predominantly C4 diet (Cerling et al. 1997). 

Whereas carbon isotope values can be used to examine vegetation, stable oxygen isotopes, which 

are influenced by climatic and geographic variables such as temperature, precipitation, and 

humidity, can be analyzed to characterize regional climates (e.g., Dansgaard 1954, 1964; Ayliffe 

and Chivas 1990). Oxygen isotope values can also serve as a proxy for regional terrestrial 

temperature and precipitation, with greater δ
18

O values indicative of warmer and/or drier 

conditions (e.g., Dansgaard 1964; Luz et al. 1984; Kohn 1996). 

Below 20C, there is a positive correlation between mean annual air temperature and the δ
18

O 

value of precipitation (Dansgaard 1954, 1964). This temperature effect, which is approximately 

0.7‰ per degree centigrade, is the dominant control on high latitude precipitation δ
18

O values 

year round and dominates at midlatitudes during the winter months (Dansgaard 1964; Criss 

1999). At lower latitudes, and midlatitudes during the summer, when temperatures are above 

20C and there is abundant precipitation or high humidity, the “amount effect” becomes a 

dominant control on δ
18

O values of precipitation (Dansgaard 1964)—that is, an increase in the 

amount of precipitation leads to lower δ
18

O values. If precipitation/humidity is limited in a 

particular region, the influence of temperature will have the greatest effect (Dansgaard 1964). 

Original water sources also affect the resulting precipitation. Continental sources of water result 

in precipitation with lower δ
18

O values than precipitation derived from a marine source, owing to 

continuous evaporation of isotopically light water (Dansgaard 1964). Seasonal changes in the 

source of moisture can also influence δ
18

O values (Dansgaard 1964). The southwestern United 



  23 

 

States experiences seasonal monsoons with varying sources of moisture (e.g., Douglas et al. 

1993). The Southwest receives its largest proportion of annual precipitation during the summer 

(e.g., Kemp 1983; Douglas et al. 1993), when it is on the edge of a larger phenomenon—the 

Mexican Monsoon—that forms during the summer months over the northwestern portion of 

Mexico (Douglas et al. 1993). In the United States, the effects of the monsoon are greatest in 

New Mexico and Arizona and extend into Colorado, Kansas, Nevada, Oklahoma, Texas, Utah, 

and southeastern California (Douglas et al. 1993). During May, winds from the west largely 

bring moisture inland from the Pacific Ocean, with only a small influx from the Gulf of 

California (Douglas et al. 1993). By July, the winds are coming from the west over the Pacific 

Ocean and the Gulf of California, as well as from the east over the Caribbean and Gulf of 

Mexico (Douglas et al. 1993). Despite changing wind patterns, previous work suggests that the 

Caribbean and Gulf of Mexico are not providing abundant low-level warm-season precipitation 

during the monsoon (Douglas et al. 1993; Higgins et al. 1997). Instead, convection over the 

tropical Pacific Ocean and Gulf of California appears to provide the moisture needed for 

abundant summer rains (Douglas et al. 1993; Higgins et al. 1997). Effects of these monsoons 

were likely weaker or nonexistent during full glacial times (e.g., Spaulding and Graumlich 1986; 

Connin et al. et al. 1998; Metcalfe et al. 2000), but may have been stronger between 12 and 9 Ka 

(e.g., Spaulding and Graumlich 1986). In Florida, precipitation is derived from the Atlantic 

Ocean and the Gulf of Mexico with little to no change in seasonal moisture sources; however, 

there is a dry season between November and April (e.g., Biedinger and Lushine, 1993).  

In addition to varying climatic and source-water controls, geographic variables such as elevation, 

latitude, and continentality affect δ
18

O precipitation values. Increasing elevation causes a 

depletion of 
18

O, which leads to a decrease in δ
18

O values at a rate of about 2.0 ± 1‰ per 
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kilometer (Dansgaard 1964; Criss 1999; Poage and Chamberlain 2001). Extreme elevations 

(>5000 m) have different lapse rates and can affect δ
18

O values (Dansgaard 1954, 1964), but 

because all sites in this study are well below the 5000-m threshold, elevation is less likely a 

contributor to δ
18

O values. Latitude also plays a role in the δ
18

O values of precipitation and on 

average; the effect is 0.002 ± 0.001‰ per kilometer (Criss 1999). As with extreme elevation, 

δ
18

O values at extreme polar latitudes (>70) also deviate from global lapse rates. All sites in this 

study are between 25° and 45 N, so the effect of extreme latitudes does not significantly 

influence δ
18

O values. At temperatures greater than 5C, there is also an influence of 

continentality, where δ
18

O values become more negative as you move inland; this is due to the 

rain-out of heavier 
18

O and continuous evaporation of isotopically depleted freshwater as you 

move away from the source (Dansgaard 1964). Globally, the influence of continentality is highly 

variable, but if the effect of elevation is removed, the average longitudinal effect is 0.002 ± 

0.002‰ per kilometer (Criss 1999). Thus, increasing elevation, latitude, and continentality leads 

to precipitation with lower δ
18

O values (Dansgaard 1964). 

Fresh surface water will also have varying δ
18

O values (e.g., Epstein and Mayeda 1953). Epstein 

and Mayeda (1953) included snow in Chicago (mean value, −17.0‰), rain in Bermuda (−6.6‰) 

and Chicago (−7.1‰), Mississippi River water in St. Louis (−8.9‰) and Baton Rouge (−4.9‰), 

and water from Lake Michigan (−6.1‰) and the Great Salt Lake (−7.4‰). Each of these bodies 

of water has a different value due to the amount of evaporation that has occurred and the 

Rayleigh distillation processes (Dansgaard 1964). The value of source water also affects the δ
18

O 

values from tooth enamel, which can vary at a given fossil locality if there are numerous sources 

of fresh water (e.g., Longinelli 1984; Luz et al. 1984). The isotopic composition of leaf water can 

also influence δ
18

O values during the formation of tooth enamel (e.g., Kohn et al. 1996). 
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Increased aridity causes greater evaporation of leaf water and results in more evaporative (i.e., 

positive) δ
18

O values (e.g., Ayliffe and Chivas 1990).  

Oxygen isotope values in tooth enamel are also affected by a host of other factors. Among these 

are physiological characteristics such as diet, metabolic rates, and water turnover (Longinelli 

1984; Luz et al. 1984; Kohn 1996), with the dominant control being body water (Kohn and 

Cerling 2002). Controls affecting δ
18

O tooth enamel values of an individual organism are 

dependent on specific inputs (e.g., breathing, leaf water, and drinking) and outputs (e.g., exhaled 

CO2 and water vapor, sweat, waste excretion) and consequently require an understanding of the 

physiology of disparate organisms (Kohn and Cerling 2002). Seasonal changes in the 

environment or behavior can also influence δ
18

O values (Kohn and Cerling 2002). 

Influences of temperature versus precipitation are difficult to disentangle, but there are multiple 

terrestrial aridity proxies including those that utilize plant macrofossils (Wilf 2000), carbonate 

nodules (Retallack 2007), bone collagen (Cormie et al. 1994), bone phosphate (Ayliffe and 

Chivas 1990), enamel carbonate (Levin et al. 2006), and microfossil paleocommunities (Patnaik 

2003). Geochemical proxies (e.g., bone collagen, bone phosphate, enamel carbonate) and 

paleocommunities are directly associated with vertebrate faunas and are likely of greatest value 

when examining biotic responses to climate change. To better understand and separate out the 

influences on oxygen isotope values, taxa with differing drinking water requirements, and 

therefore different sensitivities to aridity, need to be examined (Kohn 1996). Previous work on 

modern mammals has shown that oxygen isotopic enrichment of tooth enamel relative to 

meteoric water values can be used as an aridity index to separate the influences of temperature 

and precipitation by examining taxa with demonstrated sensitivity to water deficits, i.e., 

evaporation-sensitive taxa (Levin et al. 2006). Evaporation-sensitive taxa get most of their water 



  26 

 

from leafy plant material whereas evaporation-insensitive taxa derive most of their water by 

actively drinking (Levin et al. 2006). The work of Levin et al. (2006) suggests that African 

elephants can be used as a baseline evaporation-insensitive taxon because they drink water 

multiple times a day when there is abundant surface water (Owen-Smith 1988). The seasonal 

abundance and distribution of this surface water controls the abundance and distribution of 

elephants (Stokke and du Toit 2002). During the wet season, elephant groups are typically found 

within 5 km of surface water, but during the dry season, they have more limited ranges and are 

often found within 3.5 km of a water source (Stokke and du Toit 2002). This need to drink water, 

as opposed to getting it from their food, supports the identification of proboscideans as 

evaporation-insensitive animals. 

Levin et al. (2006) also identified giraffids, dikdiks, and oryxes as evaporation-sensitive taxa, 

given their significant positive relationships between δ
18

Oenamel values and increasing water 

deficits, but these taxa are not present in the United States today. Thus, identifying North 

American taxa capable of tracking climatic changes (i.e., relative aridity) can help clarify 

regional climatic differences during historic and prehistoric times (e.g., Cook et al. 2004).   

Here, we further developed an aridity index and show how stable oxygen and carbon isotopes 

can be used to quantify regional climatic and environmental conditions in the southeastern and 

southwestern United States during the Pleistocene. We determine which mammals are most 

sensitive to aridification by assessing the magnitude and frequency of aridity index values (i.e., 

the difference between oxygen isotope values of each taxon and a site-specific evaporation-

insensitive proboscidean δ
18

O value). Using carbon isotope values, we also investigated the 

influence of diet on evaporation-sensitivity. Once evaporation-sensitive taxa are identified, we 

then test the following hypotheses: (1) the Southeast was warmer and wetter than the Southwest 
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during the Pleistocene, and (2) C4 abundance in the Southwest was driven by greater aridity, 

rather than temperature. 

2.1.1. Site Information 

Basic information about each site was collected from previously published literature and has 

been included in Table 1 and Figure 1. When available, we also mention isotopically inferred 

environments. Spring-fed and riverine deposits that range in age from >40,000 to 7000 years old 

dominate in the Southwest. These sites have an average elevation of ~1170 m. Most sites in the 

Southwest have been interpreted as glacial sites, but the remaining sites were classified by age. If 

sites extended past the last glacial period, they were identified as glacial/transitions. No 

interglacial sites from the Southwest were included, because published isotopic data are lacking. 

Southwestern sites are likely dominated by C4 vegetation in basins at lower elevations, but 

possibly have more C3 vegetation at higher elevations.   

Sinkholes and other freshwater and shallow marine environments dominate in the Southeast. 

Leisey 1A (1.6 to 1.3 Ma) and Inglis 1A (2.0 to 1.6 Ma) are the oldest sites included in this 

study, but the remaining seven sites in the Southeast are Rancholabrean in age. Estimates from 

Google Earth indicate that all sites in the Southeast have elevations of <20 m. Seven of the nine 

sites are identified as glacial or are inferred to be glacial/transition, but Leisey 1A and 

Waccasassa River were identified as interglacial sites. Inglis 1A was identified as a C3 

dominated site, but mosaics of C3 and C4 vegetation characterize the others. 
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2.2. Methods 

2.2.1. Data Collection 

We compiled previously published mammalian tooth enamel stable isotope values from 

Pleistocene fossil sites with a minimum of two taxa. Our search terms in Web of Science, Google 

Scholar, and GeoRef included combinations of the following: stable isotopes, mammal, 

Pleistocene, Quaternary, carbon, oxygen, diet, climate, United States, and North America. Data 

were included from sites based on location, the reporting of carbon and oxygen isotope values, 

the presence of an evaporation-insensitive proboscidean (Levin et al. 2006), and the age of 

Pleistocene. All papers used comparable chemical methodologies, including sodium hypochlorite 

or hydrogen peroxide, acetic acid, and phosphoric acid reactions, following the procedures in 

Koch et al. (1997). Neither sodium hypochlorite nor hydrogen peroxide affect the isotopic 

signature of tooth enamel (Koch et al. 1997), making these studies comparable. Notable 

deviations include the use of 1.0 M acetic acid by Connin et al. (1998), Koch et al. (1998), 

Feranec and MacFadden (2000), and Hoppe (2004), as opposed to 0.1 M acetic acid used by 

DeSantis et al. (2009), and Nunez et al. (2010). Feranec and MacFadden (2000) further modified 

their procedures and used 0.1 M acetic acid for serial samples, as suggested by Koch et al. 

(1997). Connin et al. (1998) also used a phosphoric acid reaction temperature of 50C whereas 

the other studies used 90C. Not all studies specified whether a single vessel or a common acid 

bath was used during the phosphoric acid reaction. Despite small deviations, the methods used in 

these studies are comparable, thus making the stable isotope values comparable. 

Definitions of the Southeast and Southwest are modified after Karl and Koss (1984) (Fig. 1). The 

Southwest includes Nevada, Utah, Colorado, Arizona, New Mexico; however, one site from 
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north central Sonora, Mexico was included because of its proximity (less than ~250 km) to sites 

in Arizona and New Mexico (Fig. 1). The southeast includes Virginia, North Carolina, South 

Carolina, Georgia, Alabama, and Florida; however, the need for oxygen isotope values and the 

presence of evaporation-insensitive proboscideans limited all southeastern sites to Florida (Fig. 

1). Our searches yielded 17 sites with 311 specimens. Nine sites are in Florida (n = 220) and 

eight sites are in the Southwest (n = 91). Because δ
18

O values from three-quarters of the sites (12 

of 16) and almost half of the specimens (144 of 311) were based on V-SMOW, all V-PDB values 

were converted to V-SMOW by using the following equation δSMOW = 1.03086 δPDB+30.86 

(Friedman and O’Neil 1977). 

2.2.2. Data Analysis 

Evaporation-sensitivity was determined by calculating the difference between each sample and a 

known evaporation-insensitive taxon, i.e., proboscideans. As previously stated, proboscideans 

were used as an evaporation-insensitive baseline because of their need to drink water (Owen-

Smith 1988) and their documented insensitivity to water deficits in Africa (Levin et al. 2006). To 

determine aridity index values, δ
18

O values for proboscideans at each site were averaged to 

create a site-specific value that was subtracted from all remaining mammalian isotope values 

from that same site. Individuals with greater δ
18

O values than proboscideans have positive aridity 

index values whereas individuals with lower δ
18

O values have negative values. All aridity index 

values were calculated separately for each site in the Southeast and Southwest and were 

subsequently used to create frequency histograms (Fig. 2). These histograms and average family 

aridity index values were then used to determine evaporation-sensitive/less-sensitive 

classifications. All families with mean aridity index values greater than 0.5‰ were classified as 

evaporation-sensitive. This cutoff, although arbitrary, separates groups that typically have more 



  30 

 

positive values from those with typically zero to negative values, and is further supported by 

family means and standard errors of mean values. Alternatively, a cutoff value of 1‰ could also 

be used; however, because all southeastern taxa would have been categorized as less sensitive 

(including the most sensitive camelids, see Results), this more conservative cutoff is likely 

inappropriate for global comparisons or studies that includes less arid regions. Additional 

applications of this aridity index will require calibration of an appropriate cutoff value based on 

the site- or region-specific isotope values before additional families can be identified as 

evaporation-sensitive or insensitive. We tested each variable for normality using the Shapiro-

Wilk test and all subsequent statistical tests were done using parametric two-sample Student’s t-

tests and nonparametric Mann-Whitney U-tests (XLSTAT-Pro), when appropriate. To address 

the potential influences of comparing sites from different climatic regimes we reanalyzed the 

data after removing the older localities of Leisey 1A (1.6–1.3 Ma) and Inglis 1A (2.0–1.6 Ma) 

from the Southeast. Thus, the second analyses included two sites of Rancholabrean age and 12 

sites less than 45,000 cal yr B.P.   

2.3. Results 

2.3.1. Stable Oxygen Isotopes 

Family aridity index values are noted in the frequency histograms (Fig. 2) and in Table. 

Although taxa are grouped by family, each of the following families is only represented by one 

genus: Bovidae, Cervidae, Equidae, and Tapiridae. There are two genera represented by 

Antilocapridae, Camelidae, and Tayassuidae, but there is no statistical difference between the 

aridity index or oxygen isotope values from Mylohyus and Platygonus (Tayassuidae) or 

Hemiauchenia and Palaeolama (Camelidae) in the Southeast. Because of differences in available 
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taxa, we used two different genera of Antilocapridae and Camelidae for comparisons between 

the Southeast and Southwest, but both antilocaprids are from the same tribe, Stockoceratini 

(Janis and Manning 1998), and both of the camelids are from the same tribe, Lamini (Honey et 

al. 1998). Thus, we posit that family classifications are sufficient for the scope of this study.   

In the southeast, Camelidae has the greatest mean aridity index value, 0.8‰, followed by 

Bovidae, 0.5‰; Cervidae, 0.5‰; Equidae, 0.5‰; Antilocapridae, 0.3‰; Tayassuidae, −0.1‰; 

and Tapiridae, −1.7‰. In the Southwest, Antilocapridae has the greatest mean aridity index 

value, 6.6‰, followed by Tayassuidae, 5.7‰ (only one specimen was analyzed); Camelidae, 

2.7‰; Cervidae, 1.4‰; Equidae, 1.3‰; and Bovidae, 0.3‰. Aridity index values of sensitive 

taxa are greatest in the Southwest (p < 0.01). When all values from the Southeast and the 

Southwest are averaged, families have the following mean aridity index values: Antilocapridae, 

4.1‰; Camelidae, 1.4‰; Equidae, 0.9‰; Cervidae, 0.6‰; Bovidae, 0.4‰; Tayassuidae, 0.1‰; 

and Tapiridae, −1.7‰. Given our cutoff for sensitive taxa of 0.5‰, which represents a threshold 

above which most specimens in a particular family have greater aridity index values than 

insensitive taxa, we categorized Antilocapridae, Camelidae, Equidae, and Cervidae as 

evaporation-sensitive families, in contrast to the less sensitive families of Bovidae, Tayassuidae, 

and Tapiridae. Further, Camelidae is consistently one of the most sensitive families in both the 

Southeast and the Southwest, with the greatest and second greatest mean aridity index values, 

respectively.    

Mean δ
18

O values of all combinations of taxa (i.e., sensitive, less sensitive, proboscideans, and 

all taxa; Table 3, Fig. 3) in the southeastern United States are greater than those in the 

southwestern United States. Mean δ
18

O values of evaporation-sensitive taxa are greater than less 
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sensitive taxa in both the Southeast and Southwest (Table 3). The same comparisons of aridity 

index values and δ
18

O values hold even when early to mid-Pleistocene sites are removed. 

2.3.2. Stable Carbon Isotopes 

All interregional comparisons (e.g., sensitive, proboscideans, and all taxa) demonstrate greater 

δ
13

C values in the Southwest than the Southeast (Table 3, Fig. 3). In the Southwest, less sensitive 

taxa have greater mean δ
13

C values than the evaporation-sensitive taxa; however, mean 

differences are indistinguishable in the Southeast (Table 3). Again, when the earlier Pleistocene 

sites are removed there are no changes in the statistical significance of any comparisons. 

2.4. Discussion 

2.4.1. Identifying Climate-Sensitive Families 

The identification of taxa capable of tracking climate change is important for determining 

climatic regimes both regionally and through time. Although “shotgun blast” analyses of fossil 

taxa (i.e., sampling all herbivorous taxa in a fauna) have been used to characterize climates 

without identifying evaporation-sensitive taxa a priori (e.g., DeSantis et al. 2009; Secord et al. 

2012), it is difficult to determine if more homogenous δ
18

O values are indicative of lower aridity 

rather than the lack of “aridity tracking” evaporation-sensitive taxa in a given fauna. Previous 

research on paleoclimatic reconstructions has focused on equids (Bryant et al. 1994) and cervids 

(Cormie et al. 1994); however, our data suggest that they may not be the best taxa for tracking 

aridity. Much like giraffids, dikdiks, and oryxes in Africa (Levin et al. 2006) and kangaroos in 

Australia (Ayliffe and Chivas 1990; Murphy et al. 2007), camelids and antilocaprids may be 

important taxa for assessing changes in relative humidity. Further, families such as Camelidae 
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can be used to track changes in aridity since the middle Eocene in North America (Honey et al. 

1998) and early Pleistocene in South America (e.g., Marshall et al. 1982), and antilocaprids can 

be used to track more evaporative conditions in North America since the Miocene (Janis and 

Manning 1998). The methods outlined in this study can be used to identify evaporation-sensitive 

taxa through time and globally.  

Although carbon isotope values have been suggested as a possible metric of determining 

evaporation-sensitivity (Levin et al. 2006), our results question the utility of using dietary niches 

based on δ
13

C values to identify evaporation-sensitivity. In the Southeast, the sensitivity of taxa 

cannot be determined from mean δ
13

C values, and in the Southwest, δ
13

C values are lower for 

evaporation-sensitive taxa than for less sensitive taxa (Table 3). This pattern of lower δ
13

C values 

in less sensitive taxa is particularly interesting considering that δ
13

C values in the Southwest are 

greater overall. Taxa most sensitive to changes in evaporation, possibly because they rely on 

plant matter as a water source rather than drinking, may not be able to consume greater amounts 

of C4 resources if the region is too dry. Although this is speculative, further work examining the 

relationship between evaporation-sensitivity and dietary niches is necessary for clarifying the 

paleobiology of extinct mammals. Aridity index values are a better predictor of evaporation-

sensitivity than average carbon or oxygen isotope values alone.  

2.4.2. Identifying Regional Climatic Regimes 

Although modern meteoric water δ
18

O values are not analogous to Pleistocene meteoric water 

values, modern precipitation δ
18

O values are lower in the Southwest than in the Southeast 

(Bowen and Revenaugh 2003; Bowen 2013). This may be due to differing temperatures, aridity, 

elevation, continentally, and/or sources of moisture. Because these variables are difficult to 

disentangle we do not draw conclusions about relative differences in temperature between the 
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Southwest and southeast during the Pleistocene, but we can use an aridity index to interpret the 

relative aridity of the southeastern and southwestern United States. 

Lower aridity index values suggest wetter conditions in the Southeast relative to the Southwest 

during the Pleistocene. Although the robustness of climate interpretations from time-averaged 

sites spanning the Pleistocene may be a cause for question, analysis of only latest Pleistocene 

sites (i.e., middle to late Rancholabrean, ~200 to 9 Ka) results in identical trends and 

interpretations. This indicates that the time-averaging of fossil localities analyzed here does not 

alter regional climate interpretations for Pleistocene sites. These results provide compelling 

evidence for regionally variable climates, specifically, significant differences in aridity between 

the Southwest and Southeast during the late Pleistocene, much as we see today. This research 

demonstrates how integrating stable isotope analyses with an aridity index improves our 

understanding of past climates, the first step to understanding potential biotic responses to 

changing climates.   

Comparisons of oxygen isotope values between extinct mammals and modern taxa can also 

inform our understanding of climatic conditions in the two regions. Oxygen isotope values of 

Pleistocene evaporation-sensitive horses (27.0‰) in the Southwest are approximately equivalent 

to values seen in horses today (~27.2±1.9‰; Hoppe et al. 2005), suggesting that conditions in 

the Southwest during the Pleistocene were similar to present-day conditions. In contrast, feral 

horses from Shackleford Banks off the coast of North Carolina have tooth enamel oxygen 

isotope values of 27.3±1.5‰ (Hoppe et al. 2004) versus average values of 30.7‰—or 31.1‰ if 

only the late Pleistocene equids are averaged—for Pleistocene horses from Florida. Thus, 

Pleistocene Florida appears to have been warmer and/or drier than modern coastal North 

Carolina. However, further examination of the geochemistry of modern animals throughout 
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Florida and the Southwest is needed to make more specific comparisons between regional 

climates during the Pleistocene and today. 

The application of an aridity index allows for large-scale comparisons of relative aridity despite 

complex effects of climatic and geographic variables on precipitation δ
18

O values. For example, 

the aridity index can also be used to examine intraregional differences in relative aridity. Modern 

conditions at Leisey 1A and Inglis 1A are similar—both sites have mean annual precipitation 

between 127 and 178 cm per year (National Climatic Data Center 2005a), mean annual 

temperatures greater than 21ºC (National Climatic Data Center 2005b), and similar modern 

precipitation δ
18

O values (−3.7‰ and −3.9‰, respectively [Bowen and Revenaugh 2003; Bowen 

2013]). Both sites are approximately ≤3 m in elevation and are located <30 km from the Gulf of 

Mexico. For the Pleistocene, however, mean sensitive aridity index values are greater at Leisey 

1A than at Inglis 1A (Table 2). This indicates drier conditions at Leisey 1A, a conclusion also 

supported by the geology and palynology (e.g., DeSantis et al. 2009). Collectively, these data 

suggest that Leisey 1A and Inglis 1A were deposited during differing climatic conditions 

(DeSantis et al. 2009). 

This aridity index can be expanded to investigate geographically or temporally disparate sites 

beyond North America and the Pleistocene. Evaporation-insensitive proboscideans could be used 

from sites dating from the Miocene to today (Lambert and Shoshani 1998). Sites older than 

Miocene in age, or sites that lack proboscideans, will require additional research to identify an 

evaporation-insensitive baseline. Levin et al. (2006) also identified the hippopotamus, 

rhinoceros, and warthog as modern African taxa that are not sensitive to changes in water deficit, 

indicating that they, or their fossil equivalents, may be reasonable candidates for evaporation-
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insensitive baselines. This would allow for an increase in the number of sites that could be 

examined globally. 

Identifying other evaporation-insensitive taxa requires understanding the physiology of a given 

taxon well enough to suggest it was dependent on meteoric water. One example  includes a study 

of the Paleocene-Eocene Thermal Maximum in which the hippo-like Coryphodon was used as an 

evaporation-insensitive taxon (Clementz et al. 2008; Secord et al. 2012) and Sifrhippus was 

identified as an evaporation-sensitive taxon (Secord et al. 2012). Using morphology and oxygen 

isotopes to determine evaporation-sensitivity may be more difficult during more humid times in 

the geologic past, and may require changes in the calibration of the aridity index. 

With the identification of evaporation-insensitive taxa, this aridity index could also be useful in 

Australia, despite the near absence of placental taxa. For example, kangaroos such as Macropus 

have been identified as aridity indicators and are capable of tracking relative humidity (e.g., 

Ayliffe and Chivas 1990; Murphy et al. 2007). Additionally, koalas, which get most of their 

water from the leaves they eat, may be good candidates for evaporation-sensitive taxa. Because 

of its large body size and inferred higher drinking requirements, Diprotodon (Price and Piper 

2009) may be a candidate for an evaporation-insensitive taxon during the Pleistocene. 

In addition to using modern temperature and precipitation data to characterize regions, aridity 

index values could be used to further investigate modern taxa, specifically the influences of 

changing climates on local mammals. A better understanding of the modern record may also 

allow for more informed interpretations of the fossil record. 
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2.4.3. Drivers of C4 Abundance 

The absence of forest indicator taxa such as Tapirus (DeSantis and MacFadden 2007), paired 

with greater δ
13

C values, indicates a more open landscape with abundant C4 vegetation (typically, 

warm-season grasses, although CAM plants may have also been consumed in the Southwest 

[Ehleringer 1989; van der Merwe and Medina 1991; Cerling et al. 1997]) in the Southwest sites 

examined. C4 vegetation is typically dominant when temperatures are higher and/or pCO2 levels 

are lower (Monson et al. 1982; Jordan and Ogren 1984; Koch et al. 2004). However, the amount 

of precipitation and the season of precipitation also influence the abundance of C4 vegetation 

today (e.g., Paruelo and Lauenroth 1996; Murphy and Bowman 2007). Specifically, C4 

abundance in North America is positively correlated with mean annual temperature, mean annual 

precipitation, and the proportion of precipitation falling during the summer (Paruelo and 

Lauenroth 1996). In Australia, seasonal water availability is a better predictor of relative C4 

abundance than is mean annual temperature (Murphy and Bowman 2007). 

Although aridity and season of precipitation are thought to be the main drivers of C4 abundance 

today, pCO2 has been suggested as a possible driver in the past (Huang et al. 2001; Koch et al. 

2004). Our findings cast doubt on this. DeSantis et al. (2009) showed greater consumption of C4 

resources at the interglacial Leisey 1A locality, and although no direct measurements of CO2 

coincident with this ~1.5 Ma site are possible (ice core data do not exceed ~800,000 years; 

Lambert et al. 2008), CO2 levels were likely higher at the interglacial site than at the glacial site 

Inglis 1A, which is instead typified by C3 consumers and the near absence of C4 consumption 

(DeSantis et al. 2009). During the Pleistocene, greater aridity is coincident with increased C4 

consumption in the Southwest—despite possibly lower inferred mean temperatures based on 

mean δ
18

O values. Carbon dioxide is unlikely to be the sole determinant of C4 abundance during 
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the Pleistocene (Huang et al. 2001), and the associations we observed between C4 abundance and 

pCO2 levels  suggest that aridity or seasonal aridity may have been a greater driver than 

temperature or pCO2 in influencing C4 abundance during the Pleistocene. 

2.5. Conclusions 

1. Oxygen isotope aridity index values can be used to better understand regional aridity, and 

Camelidae and Antilocapridae may be more useful for tracking changing climatic conditions, 

including aridity, than taxa that have been used in the past (e.g., horses).   

2. Based on aridity index values, this work suggests that the southwestern United States was 

drier than the southeastern United States during the Pleistocene.  

3. C4 consumption was greater in the Southwest than in the wetter Southeast during the 

Pleistocene. Thus, aridity or seasonal precipitation may have been a more important driver 

than temperature or pCO2 of regional C4 abundance at this time. 

4. The applicability of this aridity index extends beyond North America and the Pleistocene. 

With the identification of an evaporation-insensitive taxon, the aridity index can be used both 

globally and through time. 

Collectively, the methods described here can be used to identify evaporation-sensitive taxa, 

(including those lacking modern analogues) through time and globally. Further, the identification 

and subsequent study of evaporation-sensitive and less sensitive taxa can improve our 

understanding of regional climate change and potential drivers for C4 abundance. 



  39 

 

 

References 

Ayliffe, L. K., and A. R. Chivas. 1990. Oxygen isotope composition of the bone phosphate of 

Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et 

Cosmochimica Acta 54:2603-2609. 

Bender, M. M. 1971. Variations in the 
13

C/
12

C ratios of plants in relation to the pathway of 

photosynthetic carbon dioxide fixation. Phytochemistry 10:1239-1244. 

Biedinger, R., and J. B. Lushine. 1993. Duration of the summer season in south Florida. 

NOAA/NWS. http://www.srh.noaa.gov/mfl/?n=summer_season. 

Bowen, G. J. 2013. The online isotopes in precipitation calculator, Version 2.2. 

http://www.waterisotopes.org. 

Bowen G. J., and J. Revenaugh. 2003. Interpolating the isotopic composition of modern meteoric 

precipitation. Water Resources Research 39:1299. 

Bryant, D. J., B. Luz, and P. N. Froelich. 1994. Oxygen isotopic composition of fossil horse 

tooth phosphate as a record of continental paleoclimate. Palaeogeography, 

Palaeoclimatology, Palaeoecology 107:303-316. 

Cerling, T. E., and J. M. Harris. 1999. Carbon isotope fractionation between diet and bioapatite 

in ungulate mammals and implications for ecological and paleoecological studies. 

Oecologia 120:347-363.  

Cerling, T. E., J. M. Harris, B. J. MacFadden, M. G. Leakey, J. Quade, V. Eisenmann, and J. R. 

Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. 

Nature 389:153-158. 



  40 

 

Clementz, M. T., P. A. Holroyd, and P. L. Koch. 2008. Identifying aquatic habits of herbivorous 

mammals through stable isotope analysis. Palaios 23:574-585. 

Connin, S. L., J. Betancourt, and J. Quade. 1998. Late Pleistocene C4 plant dominance and 

summer rainfall in the southwestern United States from isotopic study of herbivore teeth. 

Quaternary Research 50:179-193. 

Cook, E. R., C. A. Woodhouse, C. M. Eakin, D. M. Meko, and D. W. Stahle. 2004. Long-term 

aridity changes in the western United States. Science 306:1015-1018. 

Cormie, A. B., B. Luz, and H. P. Schwarcz. 1994. Relationship between the hydrogen and 

oxygen isotopes of deer bone and their use in the estimation of relative humidity. 

Geochimica et Cosmochimica Acta 58:3439-3449. 

Criss, R. E. 1999. Principles of stable isotope distribution. Oxford University Press, Oxford. 

Dansgaard, W. 1954. The O
18

-abundance in fresh water. Geochimica Cosmochimica Acta 6:241-

260. 

———. 1964. Stable isotopes in precipitation. Tellus 16:436-468. 

Delcourt, H. R. 2002. Forests in peril: tracking deciduous trees from ice-age refuges into the 

greenhouse world. McDonald and Woodward, Blacksburg, Va. 

DeSantis, L. R. G., and B. J. MacFadden. 2007. Identifying forested environments in deep time 

using fossil tapirs: evidence from evolutionary morphology and stable isotopes. Courier 

Forschungsinstitut Senckenberg 258:147-157. 

DeSantis, L. R. G., R. S. Feranec, and B. J. MacFadden. 2009. Effects of global warming on 

ancient mammalian communities and their environments. PLoS ONE 4(6):e5750. 

Douglas, M. W., R. A. Maddox, and K. Howard. 1993. The Mexican monsoon. Journal of 

Climate 6:1665. 



  41 

 

Ehleringer, J. R. 1989 Carbon isotope ratios and physical processes in aridland plants. Pp. 41-54 

in P. W. Rundel, J. R. Ehleringer, and K. A. Nagy, eds. Stable isotopes in ecological 

research. Springer, New York. 

Epstein, H. E., W. K. Lauenroth, I. C. Burke, and D. P. Coffin. 1999. Productivity patterns of C3 

and C4 functional types in the U.S. Great Plains. Ecology 78:722-731. 

Epstein, S., and T. Mayeda. 1953. Variations of O
18

 content of waters from natural sources. 

Geochimica et Cosmochimica Acta 4:213-224. 

Feranec, R. S., and B. J. MacFadden. 2000. Evolution of the grazing niche in Pleistocene 

mammals from Florida: evidence from stable isotopes. Palaeogeography, 

Palaeoclimatology, Palaeoecology 162:155-169. 

Friedman, I., and J. R. O’Neil. 1977. Compilation of stable isotope fractionation factors of 

geochemical interest. Geological Survey Professional Paper 440(KK):KK1–KK12. 

Graham, R. W. 1976. Late Wisconsin mammalian faunas and environmental gradients of the 

eastern United States. Paleobiology 2:343-350. 

Higgins, R. W., Y. Yao and X. L. Wang. 1997. Influence of the North American monsoon 

system on the U.S. summer precipitation regime. Journal of Climate 10:2600-2622. 

Holmgren, C. A., J. Norris, and J. L. Betancourt. 2007. Inferences about winter temperatures and 

summer rains from the late Quaternary record of C4 perennial grasses and C3 desert 

shrubs in the northern Chihuahuan Desert. Journal of Quaternary Science 22:141-161. 

Holman, J. A. 1980. Paleoclimatic implications of Pleistocene herpetofauna of eastern and 

central North America. Transactions of the Nebraska Academy of Sciences Paper 286. 

Honey J. G., J. A. Harrison, D. R. Prothero, and M. S. Stevens. 1998. Camelidae. Pp. 439-462 in 

Janis et al. 1998. 



  42 

 

Hoppe, K. A. 2004. Late Pleistocene mammoth herd structure, migration patterns, and Clovis 

hunting strategies inferred from isotopic analyses of multiple death assemblages. 

Paleobiology 30:129-145.  

Hoppe, K. A., R. Amundson, M. Vavra, M. P. McClaran, and D. L. Anderson. 2004. Isotopic 

analysis of tooth enamel carbonate from modern North American feral horses: 

implications for paleoenvironmental reconstructions. Palaeogeography, 

Palaeoclimatology, Palaeoecology 203:299-311. 

Hoppe, K. A., S. Stuska, and R. Amundson. 2005. The implications for paleodietary and 

paleoclimatic reconstructions of intrapopulation variability in the oxygen and carbon 

isotopes of teeth from modern feral horses. Quaternary Research 64:138-146. 

Huang Y., F. A. Street-Perrott, S. E. Metcalfe, M. Brenner, M. Moreland, and K. Freeman. 2001. 

Climate change as the dominant control on glacial-interglacial variations in C3 and C4 

plant abundance. Science 293:647-1651. 

Janis, C. M., and E. Manning. 1998. Antilocapridae. Pp. 491-507 in Janis et al. 1998. 

Janis, C. M., K. M. Scott, and L. L. Jacobs, eds. 1998. Evolution of Tertiary mammals of North 

America, Vol. 1. Terrestrial carnivores, ungulates, and ungulatelike mammals. 

Cambridge University Press, Cambridge. 

Jordan, D. B., and W. L. Ogren. 1984. The CO2/O2 specificity of ribulose 1,5-bisphosphate 

carboxylase/oxygenase. Planta 161:308-313. 

Karl, T., and W. J. Koss. 1984.  National climatic data: regional and national monthly, seasonal, 

and annual temperature weighted by area, 1895-1983. National Climatic Data Center, 

Asheville, N.C. 



  43 

 

Kemp, P. R. 1983. Phenological patterns of Chihuahuan desert plants in relation to the timing of 

water availability. Journal of Ecology 71:427-436. 

Koch, P. L., N. Tuross, and M. L. Fogel. 1997. The effects of sample treatment and diagenesis 

on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of 

Archaeological Science 24:417-429. 

Koch, P. L., K. A. Hoppe, and S. D. Webb. 1998. The isotopic ecology of late Pleistocene 

mammals in North America, Part 1. Florida. Chemical Geology 152:119-138. 

Koch, P. L., N. S. Diffenbaugh, and K. A. Hoppe. 2004. The effects of late Quaternary climate 

and pCO2 change on C4 plant abundance in the south-central United States. 

Palaeogeography, Palaeoclimatology, Palaeoecology 207:331-357. 

Kohn, M. J. 1996. Predicting animal δ
18

O: accounting for diet and physiological adaptation. 

Geochimica et Cosmochimica Acta 60:4811-4829. 

Kohn, M. J., and T. E. Cerling. 2002. Stable isotope compositions of biological apatite. In M. J. 

Kohn, J. Rakovan, and J. M. Hughes, eds. Phosphates: geochemical, geobiological, and 

materials importance. Reviews in Mineralogy and Geochemistry 48:455-488. 

Mineralogical Society of America, Washington D.C. 

Kohn, M. J., M. J. Schoeninger, and J. W. Valley. 1996. Herbivore tooth oxygen isotope 

compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 

60:3889-3896. 

Lambert, F., B. Delmonte, J. R. Petit, M. Bigler, P. R. Kaufmann, M. A. Hutterli, T. F. Stocker, 

U. Ruth, J. P. Steffensen, and V. Maggi. 2008. Dust-climate couplings over the past 

800,000 years from the EPICA Dome C ice core. Nature 452:616-619. 

Lambert, W. D., and J. Shoshani. 1998. Proboscidea. Pp. 606-621 in Janis et al. 1998. 



  44 

 

LaMoreaux, H. K., G. A. Brook, and J. A. Knox. 2009. Late Pleistocene and Holocene 

environments of the Southeastern United States from the stratigraphy and pollen content 

of a peat deposit on the Georgia Coastal Plain. Palaeogeography, Palaeoclimatology, 

Palaeoecology 280:300-312. 

Leigh, D. S., and T. P. Feeney. 1995. Paleochannels indicating wet climate and lack of response 

to lower sea level, southeast Georgia. Geology 23:687-690. 

Levin, N. E., T. E. Cerling, B. H. Passey, J. M. Harris, and J. R. Ehleringer. 2006. A stable 

isotope aridity index for terrestrial environments. Proceedings of the National Academy 

of Science USA 103:11201-11205. 

Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for 

paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 

48:385-390. 

Luz, B., Y. Kolodny, and M. Horowitz. 1984. Fractionation of oxygen isotopes between 

mammalian bone-phosphate and environmental drinking water. Geochimica et 

Cosmochimica Acta 48:1689-1693. 

Marshall, L. G., S. D. Webb, J. J. Sepkoski Jr., and D. M. Raup. 1982. Mammalian Evolution 

and the Great American Interchange. Science 215:1351-1357. 

Metcalfe, S. E., S. L. O’Hara, M. Caballero, and S. J. Davies. 2000. Records of late Pleistocene-

Holocene climatic change in Mexico: a review. Quaternary Science Reviews 19:699-721. 

Metcalfe, S., A. Say, S. Black, R. McCulloch, and S. O’Hara. 2002. Wet conditions during the 

last glaciation in the Chihuahuan Desert, Alta Babicora Basin, Mexico. Quaternary 

Research 57:91-101. 



  45 

 

Monson, R., R. Littlejohn, and G. Williams. 1982. The quantum yield for CO2 uptake in C3 and 

C4 grasses. Photosynthesis Research 3:153-159. 

Murphy, B. P., and D. M. J. S. Bowman. 2007. Seasonal water availability predicts the relative 

abundance of C3 and C4 grasses in Australia. Global Ecology and Biogeography 16:160-

169. 

Murphy, B. P., D. M. J. S. Bowman, and M. K. Gagan. 2007. The interactive effect of 

temperature and humidity on the oxygen isotope composition of kangaroos. Functional 

Ecology 21:757-766. 

National Climatic Data Center. 2005a. Climate maps of the United States. “Lower 48 States, 

PRECIPITATION – Mean Total Precipitation (Annual).” [ESRI shapefile.] 

http://cdo.ncdc.noaa.gov/cgi-bin/climaps/climaps.pl. 

———. 2005b. Climate Maps of the United States. “Lower 48 States, TEMPERATURE – Mean 

Daily Average Temperature (Annual).” [ESRI shapefile.] http://cdo.ncdc.noaa.gov/cgi-

bin/climaps/climaps.pl. 

Nunez, E. E., B. J. MacFadden, J. I. Mead, and A. Baez. 2010. Ancient forests and grasslands in 

the desert: diet and habitat of Late Pleistocene mammals from northcentral Sonora, 

Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 297:391-400. 

Owen-Smith, R. N.  1988. Megaherbivores: the influence of very large body size on ecology. 

Cambridge University Press, Cambridge. 

Paruelo, J. M., and W. Lauenroth. 1996. Relative abundance of plant functional types in 

grasslands and shrublands of North America. Ecological Applications 6:1212-1224. 



  46 

 

Patnaik, R. 2003. Reconstruction of Upper Siwalik palaeoecology and palaeoclimatology using 

microfossil palaeocommunities. Palaeogeography, Palaeoclimatology, Palaeoecology 

197:133-150. 

Poage, M. A., and C. P. Chamberlain. 2001. Empirical relationships between elevation and the 

stable isotope composition of precipitation and surface waters: considerations for studies 

of paleoelevation change. American Journal of Science 301:1-15. 

Price, G. J., and K. J. Piper. 2009. Gigantism of the Australian Diprotodon Owen 1838 

(Marsupialia, Diprotodontoidea) through the Pleistocene. Journal of Quaternary Science 

24:1029-1038.  

Retallack, G. J. 2007. Cenozoic Paleoclimate on Land in North America. The Journal of Geology 

115:271-294.  

Russell, D. A., F. J. Rich, V. Schneider, and J. Lynch-Stieglitz. 2009. A warm thermal enclave in 

the late Pleistocene of the south-eastern United States. Biological Reviews 84:173-202. 

Secord, R., J. I. Bloch, S. G. B. Chester, D. M. Boyer, A. R. Wood, S. L. Wing, M. J. Kraus, F. 

A. McInerney, and J. Krigbaum. 2012. Evolution of the earliest horses driven by climate 

change in the Paleocene-Eocene Thermal Maximum. Science 335:959-962. 

Smith, G. A., Y. Wang, T. E. Cerling, and J. W. Geissman. 1993. Comparison of a paleosol-

carbonate isotope record to other records of Pliocene–early Pleistocene climate in the 

western United States. Geology 21:691-694. 

Spaulding, W. G., and L. J. Graumlich. 1986. The last pluvial climatic episodes in the deserts of 

southwestern North America. Nature 320:441-444.  

Stokke, S., and  J. T. du Toit. 2002. Sexual segregation in habitat use by elephants in Chobe 

National Park, Botswana. African Journal of Ecology 40:360-371. 



  47 

 

van der Merwe, N. J., and E. Medina. 1991. The canopy effect, carbon isotope ratios and 

foodwebs in Amazonia. Journal of Archaeological Science 18:249-259. 

Van Devender, T. R., and W. G. Spaulding. 1979. Development of vegetation and climate in the 

southwestern United States. Science 204:701-710. 

Voorhies, M. R. 1974. Pleistocene vertebrates with boreal affinities in the Georgia Piedmont. 

Quaternary Research 4:85-93. 

Walker, J. D., and J. W. Geissman, compilers. 2009. GSA geologic time scale. Geologic Society 

of America, Boulder, Colo. 

Wilf, P. 2000. Late Paleocene-early Eocene climate changes in southwestern Wyoming: 

Paleobotanical analysis. Geological Society of America Bulletin 112:292-307.  

Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and 

aberrations in global climate 65 Ma to present. Science 292:686-693. 

  



  48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 North American sites analyzed from the southeastern (black) and the southwestern 

(dark gray) United States. 
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Figure 2.2. Aridity index values from the southwestern and the southeastern United States. Each 

bin encompasses a 2‰ aridity index value. Values for each bin are greater than or equal to the 

left end-member, and less than the right-end member (e.g., 0 ≤ x < 2). Evaporation-sensitive 

families (solid) and less sensitive families (patterned).  
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Figure 2.3. Mean isotopic values of all taxa, evaporation-sensitive tax), less sensitive, and 

proboscideans. ▲ = Southwest, ● = southeast, error bars indicate standard errors of the means.  
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Table 2.1. Site Characteristics. 
State Site Latitude Longitude Elevation 

(m) 

Estimated age              

(103 yr B.P.) 

Site type Glacial or 

interglacial 

Inferred landscape 

Florida Cutler 

Hammocka 

25.617* -80.317* 3* 11.0-9.5 sinkhole glacial mosaic environment with C3 and C4 vegetation, C4 

abundance ~80-90% 

Florida Hornsby 

Springsa 

29.85* -82.593* 11* 12.3-10.75 sinkhole glacial/transitional† mosaic environment with C3 and C4 vegetation, C4 

abundance ~50-80% 

Florida Inglis 1Ab 29 -82.683 3* 2000-1600 sinkhole glacial forested with low abundance of C4 vegetation 

Florida Leisey 1Aa,b 27.7 -82.5 1* 1600-1300 shell bed interglacial mosaic environment with C3 and C4 vegetation 

Florida Page Ladsona 30.233* -83.917* 7* 15.08-14.2 sinkhole glacial mosaic environment with C3 and C4 vegetation, C4 

abundance ~80-90% 

Florida Rock Springsa 28.75* -81.5* 15* Rancholabrean bed of spring 

run 

glacial C3 and C4 vegetation present‡ 

Florida Vero Beacha 27.633* -80.383* 3* >30.0-9.0 pond or marsh glacial/transitional† mosaic environment with C3 and C4 vegetation, C4 

abundance ~50-80% 

Florida Waccasassa 

Riverc 

29.5* -82.7* 15* middle 

Rancholabrean 

river deposit interglacial C3 and C4 vegetation present‡ 

Florida West Palma 26.667* -80.067* 6* 25 coastal marsh glacial mosaic environment with C3 and C4 vegetation, C4 

abundance ~80-90% 

Arizona Murray 

Springsd 

31.567* -110.167 1270 31.0-10.2 spring fed 

ponds and 

marshes 

glacial/transitional† basin C4 grasslands/wetlands, possibly more C3 plants 

at higher elevations 

Arizona Seffd 31.967* -110.3 1130 12.0-10.0 not reported glacial/transitional† basin C4 grasslands/wetlands, possibly more C3 plants 

at higher elevations 

New 

Mexico 

Blackwater 

Drawd,e 

34.433* -103.2 1280 20.0-0.7 spring fed 

pond/drainage 

glacial basin C4 grasslands/wetlands, possibly more C3 plants 

at higher elevations 

New 

Mexico 

Howell’s 

Ridge Caved 

31.917* -108.5 1680 14.0-12.0 cave glacial† basin C4 grasslands/wetlands, possibly more C3 plants 

at higher elevations 

Nevada Rye Patchd 40.467* -118.3 1260 29.0-22.0 riverine glacial† C3 dominated environment‡ 

Nevada Tule Springsd 36.317* -115.183 970 ≥40.0-11.5 spring deposit glacial/transitional† C3 dominated environment with some C4 vegetation‡ 

Mexico Terapaf 29.683* -109.65 605 43.0-40.0 riverine glacial† mosaic environments with marsh and grasslands 

Source: 
a 
Koch et al. 1998; 

b
 DeSantis et al. 2009; 

c 
Feranec and MacFadden 2000; 

d 
Connin et al. 1998; 

e
 Hoppe 004; 

f
 Nunez et al. 2010  

 
*not published, 

estimated using Google Earth;
  †

the interpretation was not published, inferred from age, 
‡
the interpretation was not published, inferred from limited published 

δ
13

C values.
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Table 2.2. Site-specific mean δ
18

O values and aridity index values for proboscideans, less sensitive taxa (LS), and sensitive taxa (S). 

Aridity index = site-specific mean δ
18

O value minus site-specific mean proboscidean value. 

State Site n 

Proboscidean  

δ18O (‰) SD  n 

LS      

δ18O (‰) SD 

LS                      

aridity index (‰) SD  n 

S                   

δ18O (‰) SD 

S                           

aridity index (‰) SD 

                 
Florida Cutler Hammocka 6 30.7 1.2   4 29.2 1.4 -1.5 1.4   2 31.4 1.7 0.7 1.7 

Florida Hornsby Springsa 6 30.9 0.8  1 29.8 -- -1.1 --  2 29.4 1.6 -1.6 1.6 

Florida Inglis 1Ab 1 29.6 --  14 29.0 1.0 -0.6 1.0  19 29.7 0.9 0.1 0.9 

Florida Leisey 1Aa,b 16 29.9 1.4  28 29.6 2.4 -0.3 2.4  37 31.1 1.4 1.2 1.4 

Florida Page Ladsona 6 30.0 0.9  2 28.4 1.6 -1.6 1.6  3 27.1 1.4 -2.9 1.4 

Florida Rock Springsa 7 29.9 1.2  2 27.8 1.4 -2.1 1.4  2 31.7 0.1 1.8 0.1 

Florida Vero Beach 2a 7 29.8 0.9  4 28.3 1.0 -1.5 1.0  4 31.0 1.0 1.2 1 

Florida Waccasassa Riverc 5 30.8 0.7  10 31.8 1.1 1.0 1.1  18 31.3 0.9 0.5 0.9 

Florida West Palma 12 29.0 0.9  2 30.2 1.0 1.6 1.0  0 -- -- -- -- 

Arizona Murray Springsd 2 26.6 0.8  5 26.9 1.3 0.3 1.3  22 27.4 2.2 0.8 2.2 

Arizona Seffd 1 27.1 --  0 -- -- -- --  1 29.4 -- 2.3 -- 

New Mexico Blackwater Drawd,e 9 26.5 3.0  11 26.3 2.3 -0.2 2.3  1 27.5 -- 1.0 -- 

New Mexico Howell’s Ridge Caved 1 30.1 --  0 -- -- -- --  1 22.9 -- -7.2 -- 

Nevada Rye Patchd 1 18.8 --  1 19.8 -- 1.0 --  2 18.8 0.3 0.0 0.3 

Nevada Tule Springsd 4 20.8 1.5  2 22.7 3.3 1.9 3.3  8 25.5 2.3 4.7 2.3 

Mexico Terapaf 3 26.1 0.7   3 29.1 2.4 3.0 2.4   13 29.8 2.6 3.7 2.6 

Source: 
a 
Koch et al. 1998; 

b
 DeSantis et al. 2009; 

c 
Feranec and MacFadden 2000; 

d 
Connin et al. 1998; 

e
 Hoppe 2004; 

f
 Nunez et al. 2010.  δ

13
C values are 

based on the VPDB standard and δ
18

O values are based on the VSMOW standard.  
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Table 2.3. Means and p-values from two sample t-tests and Mann-Whitney U-tests for δ
13

C and 

δ
18

O values from the southeastern (SE) and southwestern (SW) United States. Abbreviations: S, 

evaporation-sensitive; LS, less sensitive; P, proboscidean. 

Comparisons δ
13

C (‰) δ
18

O  (‰) 

SW (S,LS,P) vs. SE (S,LS,P) -3.0 > -7.6 p < 0.0001* 26.5 < 30.1 p < 0.0001* 

SW (S,LS) vs. SE (S,LS) -2.8 > -8.2 p < 0.0001* 26.9 < 30.2 p < 0.0001* 

SW (P) vs. SE (P) -3.8 > -6.4 p = 0.006* 25.2 < 29.9 p < 0.0001* 

SW (LS) vs. SE (LS) -2.1 > -7.4 p < 0.0001* 25.7 < 29.8 p < 0.0001* 

SW (S) vs. SE (S) -3.9 > -7.9 p < 0.0001* 27.3 < 30.7 p < 0.0001* 

SE (S) vs. SE (LS) -7.9 < -7.4 p = 0.179 30.7 > 29.8 p = 0.0002* 

SW (S) vs. SW (LS) -3.9 < -2.1 p = 0.005* 27.3 > 25.7 p = 0.038* 

 δ
13

C values are based on the V-PDB standard and δ
18

O values are based on the V-SMOW standard. * =significant 

result. 
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 Chapter 3

 

EFFECTS OF PLEISTOCENE CLIMATE ON DIETARY NICHES AND ENVIRONMENTAL 

HETEROGENEITY IN FLORIDA 

 

3.1. Introduction 

Pleistocene glacial and interglacial cycles have substantially affected past climates and biotic 

communities (e.g. Graham et al., 1996). Previous research indicates that Pleistocene plant and 

animal assemblages are more complex and non-analogous when compared to the assemblages 

that we see today (e.g. Leopold, 1967; Graham and Lundelius, 1989). Understanding how 

relatively rapid glacial and interglacial fluctuations affected medium to large bodied mammals 

and their communities may help clarify the consequences of changing climates on modern 

mammalian communities. 

Globally, glacial and interglacial climatic changes are reconstructed using proxies such as ice 

cores (e.g. Lambert et al., 2008), lake sediments (e.g. Brigham-Grette et al., 2007; Nakagawa et 

al., 2012), and mammalian tooth enamel (e.g. Connin et al., 1998; Gaboardi et al., 2005; Tutken 

et al., 2007),  in addition to many others. In Florida, the state with the richest Pleistocene fossil 

record of terrestrial mammals east of the Mississippi river, Pleistocene climate and sea level 

reconstructions have largely been based on pollen from lake cores that only record the past 

~62,000 years (e.g. Watts, 1980; Grimm and Jacobson, 2003; Huang et al., 2006; Grimm et al., 

2006). Multiproxy analyses of coral have also been used further back in the Pleistocene (e.g. 

Gischler et al., 2009; Muhs et al., 2011), but they provide little information about terrestrial 

environments and mammalian communities. Stable isotope analyses of mammalian tooth enamel 

have also been used to characterize climate and environmental conditions in Florida (e.g. Koch et 
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al., 1998; DeSantis et al., 2009), but these analyses are also limited during the early and middle 

Pleistocene. This paucity of data leaves the early and middle Pleistocene without compelling 

evidence of terrestrial climates or environmental reconstructions for Florida. 

Despite limited early to middle Pleistocene climatic reconstructions, Florida still provides an 

interesting backdrop for understanding the impact of changing climatic conditions on large 

herbivorous mammals throughout the Pleistocene. As sea level changes are recorded on the 

relatively narrow peninsula, it is possible to use the geology and the paleontology of fossil sites 

located close to the present coast line to identify them as glacial or interglacial (Morgan and 

Hulbert, 1995; Emslie, 1998). Unfortunately, many sites in Florida lack geologic evidence 

allowing for classifications of glacial or interglacial.  

Previous work on a known glacial site, Inglis 1A, and a known interglacial site, Leisey Shell Pit 

1A (hereafter referred to as Leisey 1A), used stable oxygen and carbon isotopes to further clarify 

the climates and environments and document dietary niche modification of mammals between 

these two sites (DeSantis et al., 2009; Feranec and DeSantis, 2014). The isotopic characterization 

of each site was consistent with geologic evidence indicating glacial and interglacial designations 

at Inglis 1A and Leisey 1A, respectively (DeSantis et al., 2009). Further, these sites can be used 

as a “Rosetta stone” for comparison to additional Pleistocene sites in Florida. In order to 

understand the causes of dietary niche modification, stable oxygen and carbon isotope ratios 

from sympatric taxa at two additional sites in Florida are here used to quantify relative 

differences in climatic regimes and dietary niches of mammalian taxa. Specifically, we test the 

hypothesis that more evaporative conditions supported more heterogeneous vegetation, leading 

to an increase in more disparate dietary niches during the Pleistocene in Florida. 



56 

 

3.1.1. Stable Isotopes and Paleoenvironmental Reconstructions  

Stable isotope values from mammalian tooth enamel can be used to assess past climates and 

environments. Bulk samples, taken parallel to the growth axis of a tooth, provide an average 

oxygen (δ
18

O) and carbon (δ
13

C) isotope value over the time the tooth was mineralizing. δ
18

O 

values can be used to investigate the climate of a site or region (e.g. Longinelli, 1984; Luz et al., 

1990; Bryant and Froelich, 1995; Bocherens et al., 1996). Specifically, δ
18

O values reflect the 

isotopic signature of water consumed through drinking meteoric water and/or the consumption of 

leaf water (e.g. Dansgaard, 1964; Kohn, 1996; Levin et al., 2006). Taxa that get the majority of 

their water by actively drinking track changes in meteoric water and are termed "evaporation 

insensitive" (Levin et al., 2006). In contrast, taxa that get the majority of their water from the 

food they eat record evaporative conditions and are referred to as "evaporation sensitive" (Levin 

et al., 2006).  

Under more evaporative conditions (i.e., warmer and/or drier) oxygen isotope values increase, 

especially in leafy vegetation (Dansgaard, 1964; Luz et al., 1984; Ayliffe et al., 1992). 

Additionally, increases in δ
18

O values during more evaporative conditions result in a disparity 

between the oxygen isotope values from evaporation sensitive and evaporation insensitive taxa 

(Levin et al., 2006). Differences between evaporation sensitive and insensitive taxa can 

subsequently be used as an aridity index to compare the relative aridity of sites or regions (Levin 

et al., 2006; Yann et al., 2013).   

Stable carbon isotopes (δ
13

C) from plant material are incorporated into the tooth enamel of 

medium and large bodied ungulates with an enrichment factor of 14.1‰ (Cerling and Harris, 

1999). Stable carbon isotope values can therefore be used to reconstruct diet and changes in 
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dietary niches, specifically the relative proportion of C3 and C4 vegetation consumed (e.g. 

Cerling et al., 1997; Cerling and Harris, 1999; DeSantis et al., 2009). C4 grass and C3 trees and 

shrubs dominate modern environments in Florida, while C3 grass, C4 dicots, and CAM plants are 

rare (Teeri and Stowe, 1976; Stowe and Teeri, 1978). Based on the dominant vegetation, tooth 

enamel δ
13

C values greater than -2‰ are indicative of a C4 grass dominated diet, and δ
13

C values 

less than -8‰ indicate a diet dominated by C3 browse (Cerling et al., 1997; Cerling and Harris, 

1999). Mixed feeders are characterized by δ
13

C values between -8‰ and -2‰ (Cerling et al., 

1997; Cerling and Harris, 1999). 

In addition to bulk isotope samples that reflect an animal’s average diet and/or climatic regime, 

serial samples can classify the climate and the environment of each site and investigate relative 

seasonality. Serial samples taken perpendicular to the growth axis of a tooth record intervals of 

time during which the tooth was mineralizing (e.g. a few months). While Equus teeth are 

typically sampled from fossil sites to facilitate comparisons with previously published work (e.g. 

Higgins and MacFadden, 2004; Hoppe et al., 2004; DeSantis et al., 2009; Feranec et al., 2009), 

camelids may be better trackers of environmental conditions, specifically changes in relative 

aridity (Yann et al., 2013). The combination of Equus and camelid serial samples will likely 

allow for more detailed interpretations of the climate, the environment, and relative seasonality 

at Pleistocene sites. 

3.1.2. Fossil sites 

Two previously published Pleistocene sites from Florida, Leisey 1A and Inglis 1A, were 

discussed by DeSantis et al. (2009). Here, we examine two additional Pleistocene sites in 

Florida, Haile 8A and Tri-Britton (Figure 1, Table 1), and combine all data to assess past 
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climates, ecology, and mammalian paleobiology during the Pleistocene of Florida. All sites in 

this study are primarily dated using vertebrate biochronology, which does not allow for 

correlation with oxygen isotope stages, but the inclusion of multiple proxies allows for the 

interpretation of climatic conditions at each site.  

The two oldest sites, Inglis 1A (2.0-1.6 Ma) and Leisey 1A (1.6-1.0 Ma), can respectively be 

assigned to glacial and interglacial climates based on the local geology and the fossils present 

(Morgan and Hulbert, 1995). Inglis 1A (2.0 to 1.6 Ma) is a sinkhole deposit in the Eocene Inglis 

Formation and contains terrestrial fossils found approximately 5 meters below modern sea level. 

This indicates they were deposited at a much lower sea level stand when the sinkhole was 

located further from the Pleistocene coast (Morgan and Hulbert, 1995). The lack of a marine 

fossil component, plus the presence of cool adapted muskrat and pronghorn, contributes to the 

identification of Inglis 1A as a glacial site. Further work characterized the glacial site using 

stable oxygen isotopes and found that Inglis 1A had a smaller range in δ
18

O values and lower 

mean δ
18

O values, all consistent with a glacial interpretation (DeSantis et al., 2009).  

Leisey 1A (~1.6 to 1.0 Ma)  is part of  a bone bed found in the Belmont Formation that is 

dominated by marine shell material that was being excavated when the deposit was discovered 

(Morgan and Hulbert, 1995). The intermixed warm adapted alligators and marine invertebrates 

suggest the material was deposited during a high sea level stand during an interglacial period 

(Morgan and Hulbert, 1995). Further, greater δ
18

O values at Leisey 1A as compared to Inglis 1A, 

suggest warmer and/or drier conditions during an interglacial climatic regime (DeSantis et al., 

2009).  
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Tri-Britton (0.5-0.4 Ma) is a collection of vertebrate fossils from a shelly, quartz sand deposit 

(Meers and Hulbert, 2002). Within the original deposit there were no obvious signs of 

unconformities, and there were no indications of mixing (pers. comm., Hulbert, 2014)  While the 

deposit is dominated by terrestrial and freshwater species, there are also marine vertebrate and 

invertebrate fossils that were likely reworked during periods of relatively low sea level (Meers 

and Hulbert, 2002). As the site is found inland with little geologic evidence to support extremely 

low sea levels, it is possible that the deposit indicates sea levels lower than the previous extreme 

interglacial. Sea levels during the previous interglacial are thought to be six to nine meters higher 

than modern conditions (Kopp et al., 2009). The presence of gopher tortoises and two species of 

Hesperotestudo tortoises at Tri-Britton also suggest xeric environments and according to one 

study, there are no additional upland vertebrate taxa that suggest mesic hardwoods, pine 

flatwoods, or coastal marine environments (Franz and Quitmyer, 2005). 

Haile 8A (0.3-0.13 Ma)  is a Pleistocene sinkhole deposit in the Ocala Limestone that is located 

approximately 24 meters above modern sea level (Webb, 1974). The assemblage of box turtles 

present at Haile 8A, as well as the transition between highly organic deposits at the base of the 

sinkhole to truncated lateritic beds at the top, suggest rising sea level, potentially transitioning 

from a glacial (Illinonian) to an interglacial (Sangamonian) period (Auffenberg, 1967). The 

presence of gopher tortoises, two species of Hesperotestudo tortoises, pocket gophers (Geomys) 

and additional faunal components suggest the presence of xeric, pine flatwoods, and freshwater 

environments (Franz and Quitmyer, 2005). 

3.2. Methods 

Samples for stable carbon and oxygen isotope analysis were collected from mammalian tooth 
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enamel using a low speed rotary drill and carbide bits. We preferentially selected late erupting 

teeth when available to reduce the effects of weaning on isotope values (Bryant et al., 1996); 

however, earlier erupting teeth were used when late erupting teeth were not available. A total of 

96 enamel samples were collected from two sites in Florida, 46 from Tri-Britton and 50 from 

Haile 8A, and they were compared to previously published values from Leisey 1A (81 samples; 

DeSantis et al., 2009) and Inglis 1A (34 samples; DeSantis et al., 2009). Both bulk samples 

(samples taken parallel to a tooth’s growth axis) and serial samples (a series of samples taken 

perpendicular to the growth axis of an individual tooth) were taken from fossil specimens housed 

in the Florida Museum of Natural History Vertebrate Paleontology collections located in 

Gainesville, Florida, USA. In addition to one Equus tooth from each site, a Hemiauchenia tooth 

from Haile 8A and a Palaeolama tooth from Tri-Britton were serially sampled. Also, one 

Hemiauchenia and one Palaeolama tooth from Leisey 1A and one Hemiauchenia tooth from 

Inglis 1A were sampled for comparison, and Equus serial samples were taken from DeSantis et 

al. (2009). Serial sample spacing of Equus was based on DeSantis et al. (2009) to increase 

comparability of taxa across localities and was approximately 2.5 mm between the start of each 

sample.  

Two to three milligrams of powdered enamel was collected from each specimen, placed 

in microcentrifuge vials, and pretreated with 30% hydrogen peroxide for 24 hours to remove 

organics and 0.1 N acetic acid for 18 hours to remove secondary carbonates (similar to DeSantis 

et al., 2009). These samples were analyzed at the Department of Geological Sciences at the 

University of Florida where they were run on a Finnigan-MAT 252 isotope ratio mass 

spectrometer coupled with a Kiel III carbonate preparation device. All results are reported using 

the delta notation, δ = [(Rsample/Rstandard – 1)*1000] (Coplen, 1994). For oxygen isotope values, 
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R=
18

O/
16

O and values are reported against V-SMOW (Coplen, 1994). All V-PDB values were 

converted using the following equation: δVSMOW=1.03086*δVPDB+30.86 (Friedman and O’Neil, 

1977). For carbon isotope values, R=
13

C/
12

C and all values are reported against V-PDB (Coplen, 

1994). All stable isotopes are from the carbonate portion of tooth enamel hydroxyapatite. Using 

replicate analyses of the standard NSB-19 and of the samples, the analytical precision is better 

than ±0.1‰. All statistical analyses were conducted using XLSTAT Pro. Shapiro-Wilk tests 

were used to determine normality and appropriate parametric (two-sample t-test or ANOVA) or 

non-parametric (Mann-Whitney U or Kruskal-Wallis) tests were used to compare resulting 

geochemical data. 

3.3. Paleoenvironmental interpretations of sites in Florida 

3.3.1. Climate 

Using methods described in Yann et al. (2013), all taxa were categorized as "sensitive" or "less 

sensitive.” Evaporation sensitive taxa include members of Antilocapridae, Camelidae, Cervidae, 

and Equidae. Less sensitive families include Bovidae, Tapiridae, and Tayassuidae, while the 

proboscideans include Elephantidae, Gomphotheriidae, and Mammutidae. Mean bulk δ
18

O 

values of sensitive taxa and camelids are greatest at Tri-Britton followed by Leisey 1A, Haile 

8A, and Inglis 1A (p < 0.01, Table 2, 3; Figure 2; DeSantis et al., 2009). The rank order of mean 

and maximum δ
18

O values of sensitive taxa and camelids follow the same trend (Table 4). Based 

on mean and maximum δ
18

O values of sensitive taxa and camelids, Tri-Britton is the warmest 

and/or driest of the four sites. Both Tri-Britton and the known interglacial, Leisey 1A, are 

warmer and/or drier than the known glacial site, Inglis 1A. There are no significant differences in 
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bulk δ
18

O values between Haile 8A and Leisey 1A (interglacial) or between Haile 8A and Inglis 

1A (glacial). 

Extant proboscideans are known to drink a significant portion of water and are insensitive to 

changes in evaporative conditions (Levin et al., 2006); thus, they can be used to assess changes 

in meteoric water, both today and in the past. However, as proboscideans are also known to 

travel long distances, their δ
18

O values may or may not reflect meteoric water from their last site. 

Today, African elephants can travel more than 500 km during seasonal movement (Leggett, 

2006). Individual fossil proboscidean specimens from Florida have strontium isotope ratios 

suggestive of movements of 150 km or more into Georgian environments, with some repeatedly 

traveling approximately 250 km to the Appalachian Mountains (Hoppe and Koch, 2006, 2007). 

To overcome the potential problems associated with seasonal migration of proboscideans, both 

proboscideans and peccaries (an evaporation "less sensitive" taxon based on Yann et al., 2013, 

which is also fairly abundant at all sites examined) were used to examine meteoric water.  

Proboscidean mean δ
18

O values are greatest at Haile 8A, followed by Tri-Britton, Leisey 1A 

(29.9‰), and Inglis 1A (29.6‰; Table 2; DeSantis et al., 2009). Further, proboscideans from 

Tri-Britton have a greater mean δ
18

O value than those at Leisey 1A (p = 0.0001; Inglis 1A and 

Haile 8A cannot be compared due to small sample sizes; Table 2). The greater mean δ
18

O 

proboscidean value at Haile 8A may be an artifact of a small sample size, or it may be 

complicated by the fact that modern proboscideans often have large home ranges and can 

seasonally migrate (Leggett, 2006). Due to limited peccaries at Tri-Britton, the site was not 

included in statistical comparisons; however, the greatest mean δ
18

O value for peccaries is from 

Tri-Britton (n=3, 32.5‰). When comparing just peccaries, Inglis 1A has a lower mean δ
18

O 

value (28.5‰) than Haile 8A (29.8‰, p = 0.029) and Leisey 1A (30.7‰, p ≤ 0.001), but Leisey 
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1A and Haile 8A are not significantly different from one another. As δ
18

O values of meteoric 

water are influenced by temperature, with lower δ
18

O values occurring during periods of colder 

temperatures (e.g. Dansgaard, 1964), Inglis 1A (the known glacial site) likely experienced the 

coldest temperatures, while Tri-Britton was likely the warmest.   

Since Pleistocene proboscideans from Florida may have migrated (Hoppe et al., 1999; Hoppe 

and Koch, 2007), both a proboscidean and a peccary offset was used to determine relative aridity 

for the four sites analyzed. Mean proboscidean oxygen offset values of camelids and evaporation 

sensitive taxa indicate that Tri-Britton has significantly greater mean offset values than both 

Inglis 1A and Haile 8A (p < 0.01, Table 3), suggesting greater evaporative conditions at Tri-

Britton. Camelids and sensitive taxa from Leisey 1A have significantly greater mean values than 

camelids and sensitive taxa from Inglis 1A and Haile 8A (p < 0.01 and p < 0.0001, respectively), 

and Inglis 1A has greater mean values than Haile 8A (p < 0.001; Table 4); mean peccary oxygen 

offset values for camelids follow the same trend. Further, Tri-Britton has a significantly greater 

mean peccary offset value than Haile 8A (p = 0.016). Both the proboscidean and the peccary 

offset values indicate that Tri-Britton was the driest site followed by Leisey 1A and Inglis 1A, 

with Haile 8A being the wettest site analyzed.  

Comparisons of mean δ
18

O values of serially sampled teeth follow the same rank order as mean 

δ
18

O values of all taxa. Specifically, mean δ
18

O values for both equids and camelids were 

greatest at Tri-Britton followed by Leisey 1A, Haile 8A, and Inglis 1A (Table 5, Figure 3). As 

δ
18

O values are greater during the summer as compared to the winter (e.g. Ayliffe et al., 1992; 

Dutton et al., 2005), the total range of serial samples from a given tooth can provide an estimate 

of relative seasonality with greater ranges suggestive of increased seasonality. All individual 

camelid oxygen ranges are ≤ 1.2‰ while Equus serial samples are ≤ 2.7‰ (Table 5). Low 
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variability in the serially sampled camelids and horses likely indicates relatively low seasonality 

at all sites, with Inglis 1A and Leisey 1A potentially experiencing slightly more seasonally 

variable temperatures and/or precipitation (due to more pronounced ranges in Equus teeth at 

these sites). Another cause for small ranges in the serially sampled teeth could be due to 

migration, specifically the movement of animals south (or to warmer environments) during 

colder periods and further north during warmer periods; thus, dampening a seasonal signal in 

δ
18

O values. While proboscideans are known to migrate today and in the past (Hoppe et al., 

1999; Leggett, 2006; Hoppe and Koch, 2007), there is evidence that at least some of the equids 

found in Florida also migrated 150 km or more (Hoppe and Koch, 2007). It is unclear if 

Pleistocene camelids also migrated, but some of the specimens, especially those from Leisey 1A 

and Tri-Britton, suggest either mild seasonal changes or seasonal migration resulting in isotopic 

dampening. Alternatively, some of the fossil specimens analyzed were acquired from sinkhole 

localities that may have provided more homogenized drinking water. Specifically, sinkholes can 

contain both precipitation water and groundwater; thus, Haile 8A may have the most pronounced 

dampening of δ
18

O values due to the mixing of both new and old water sources (Gat, 1971).  

Collectively, the incorporation of δ
18

O values, offset values, and other proxies can be used to 

characterize relative climates at each site (e.g. Auffenberg, 1967; Webb, 1974; Franz and 

Quitmyer, 2005; DeSantis et al., 2009; Kopp et al., 2009; Yann et al., 2013). The greatest 

camelid δ
18

O values, the greatest camelid offset values, and the arid assemblage of tortoises and 

other vertebrates indicate that Tri-Britton is the warmest and driest of the four sites (this study; 

Franz and Quitmyer, 2005). Relatively high δ
18

O and offset values, paired with the presence of 

warm adapted taxa and the geology of the site, indicate that Leisey 1A was a warm and dry 

interglacial site (DeSantis et al., 2009). Lower δ
18

O and offset values, the geology of the site, and 
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the presence of cool adapted taxa suggest Inglis 1A was a cooler and potentially wetter glacial 

site (DeSantis et al., 2009). Odocoileus and peccary δ
18

O values at Haile 8A were 

indistinguishable from Leisey 1A, Haile 8A Odocoileus δ
18

O values were indistinguishable from 

Inglis 1A, and Hemiauchenia δ
18

O values were intermediate between Leisey 1A and Inglis 1A; 

therefore, Haile 8A has been identified as a transitional site. The assemblages of box turtles and 

changing soil types support a transition from cooler climates to warmer climates with increasing 

sea level (Auffenberg, 1967); while the lowest offset values indicate Haile 8A was the wettest of 

the four sites examined.  

3.3.2. Environment 

At Tri-Britton, δ
13

C values suggest that Equus and Mammuthus were primarily C4 grazers, and 

Mammut, Palaeolama, and Tapirus were primarily C3 browsers (Table 6). Taxa with sample 

sizes of five or more (Equus, Mammuthus, Mammut, Palaeolama, and Tapirus) were used for 

intra-site comparisons at Tri-Britton (Table 7). Palaeolama has a mean value that is significantly 

lower than both Mammuthus and Equus (p ≤ 0.001), and Tapirus and Mammut have significantly 

lower mean values than Equus (p ≤ 0.016; Table 7). There are no statistical differences between 

browsers, but δ
13

C values suggest that Mammuthus may be a mixed feeder. Mammuthus mean 

δ
13

C values are indistinguishable from all taxa (browsers or grazers) with the exception of 

Palaeolama (Table 7), which has the most negative δ
13

C value of all taxa at Tri-Britton.   

Based on δ
13

C values at Haile 8A, Bison and Equus were primarily C4 grazers, Hemiauchenia 

was a mixed feeder, and Mylohyus and Odocoileus were primarily C3 browsers (Table 6). Due to 

small sample sizes, Mammuthus and Platygonus were not included in the intra-site comparisons 

at Haile 8A (Table 8). At Haile 8A Hemiauchenia had significantly greater δ
13

C values than the 
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C3 browsing Odocoileus (p = 0.019) and significantly lower δ
13

C values as compared to Bison 

and Equus (p < 0.001; Table 8). Additionally, both Bison and Equus had significantly greater 

δ
13

C values than each of the inferred browsers (Mylohyus and Odocoileus) and the mixed feeding 

Hemiauchenia (p ≤ 0.028; Table 8). 

Comparisons of taxa across sites indicate that Equus was fairly common at both Tri-Britton and 

Haile 8A, with mean values of -0.1‰ and -2.5‰, respectively (Table 6, Figure 4). The same 

applies to Leisey 1A (-3.1‰), but at Inglis 1A, Equus was likely less common and δ
13

C values 

for the two specimens are -4.8‰ and -4.6‰  (Figure 4; DeSantis et al., 2009). Equus from Tri-

Britton had a diet of C4 grass, while Equus from Haile 8A, Leisey 1A, and Inglis 1A had a diet of 

predominantly C4 grass but consumed some C3 resources (DeSantis et al., 2009). Inglis 1A has 

too few Equus specimens to be included in statistical comparisons, but Equus specimens from 

Tri-Britton have significantly greater mean δ
13

C values than specimens from Haile 8A or Leisey 

1A (p < 0.05); there is no difference between Haile 8A and Leisey 1A, and Inglis 1A has the 

lowest mean δ
13

C value. Statistical comparisons indicate that Equus from Tri-Britton may have 

consumed a greater proportion of C4 resources than individuals from any other site and/or C4 

grass values may have been more enriched in 
13

C due to greater evaporative conditions. 

Specimens from Haile 8A and Leisey 1A suggest that Equus consumed fewer C4 resources 

and/or C4 grasses were more deplete in 
13

C due to climatic conditions. Although Inglis 1A 

specimens were not included in statistical comparisons, Equus is the only taxon at Inglis 1A to 

consume C4 recourses; thus, C4 grasses were likely fairly limited.   

Palaeolama, Tapirus, and Odocoileus are all present at Tri-Britton and Leisey 1A, but 

Palaeolama is not present at Inglis 1A or Haile 8A, and Tapirus is not present at Haile 8A. Mean 

δ
13

C values of Palaeolama, Tapirus, and Odocoileus are greatest at Tri-Britton (Table 6), 
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followed by Leisey 1A (-13.0‰, -12.7‰, -11.5‰, respectively). Based on δ
13

C values ≤-10.5‰, 

Palaeolama, Tapirus, and Odocoileus are obligate browsers at all sites examined. Ranges of δ
13

C 

values for these obligate browsers are less than or equal to 2.4‰, 2.8‰, and 1.5‰, respectively, 

indicating a relatively narrow dietary niche. Palaeolama from Tri-Britton has a significantly 

greater mean δ
13

C value than from Leisey 1A (p = 0.027). Tapirus from Tri-Britton also had a 

significantly greater mean δ
13

C value than at Leisey 1A or Inglis 1A (p < 0.01). Of these three 

taxa, Odocoileus is the only one present at all four sites, but due to small sample sizes of 

Odocoileus at Tri-Britton, statistical comparisons between all sites could not be made. 

Odocoileus specimens from Leisey 1A have a greater mean δ
13

C value than Haile 8A or Inglis 

1A (p ≤ 0.023), but Haile 8A and Inglis 1A are indistinguishable.  

In addition to determining dietary strategies, δ
13

C values from Tapirus and other obligate 

browsers can be used to interpret the presence of forests and relative canopy density (van der 

Merwe and Medina, 1991; DeSantis and MacFadden, 2007). Tapirs have been used to track 

forested environments through time (DeSantis and MacFadden, 2007), thus they can be used to 

make interpretations about the presence of forested environments at Tri-Britton, Haile 8A, 

Leisey 1A, and Inglis 1A. Additionally, modern studies have shown that lower δ
13

C values occur 

in denser canopy environments (van der Merwe and Medina, 1989, 1991), which can be used to 

compare relative canopy density between the four sites. The presence of Tapirus at Tri-Britton, 

Leisey 1A, and Inglis 1A indicates that these three sites had forested environments. Based on 

mean δ
13

C values of Tapirus, Tri-Britton likely had more open forests than Leisey 1A or Inglis 

1A. The absence of Tapirus at Haile 8A does not necessarily indicate the absence of forested 

environments, especially as Odocoileus is present and interpreted to be a C3 browser.  
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Although Tapirus has been shown to track forested environments (DeSantis and MacFadden, 

2007), some of the most negative δ
13

C values are from Odocoileus. There is only one Odocoileus 

specimen from Tri-Britton, but the mean δ
13

C value from Leisey 1A is significantly greater than 

the mean δ
13

C values at Haile 8A and Inglis 1A. Thus, Odocoileus δ
13

C values indicate that 

Leisey 1A likely had more open forests than Haile 8A and Inglis 1A and suggest the presence of 

even denser forests at the latter two sites than indicated by Tapirus. Palaeolama also has a more 

negative mean δ
13

C value at Leisey 1A and Tri-Britton than Tapirus (although not statistically 

significant), suggesting denser forests than indicated by Tapirus. As evidenced by greater mean 

δ
13

C values at Tri-Britton as compared to Leisey 1A, Palaeolama like Tapirus, indicates the 

presence of more open forests at Tri-Britton.  

Mean δ
13

C values of serially sampled equids follow the same trend as the δ
18

O and offset values 

of bulk and serially sampled taxa, with Tri-Britton having the greatest mean value followed by 

Leisey 1A, Haile 8A, and Inglis 1A (Table 5). The largest range in δ
13

C values is from Inglis 1A 

(2.3‰), but the three other sites have ranges between 1.1‰ and 1.7‰ (Table 5). Serially 

sampled Equus teeth indicate there is no substantial seasonal change in the diet of equids at all 

sites examined, but it suggests that the δ
13

C values of the C4 resources consumed are influenced 

by increasing evaporative conditions, recorded in δ
18

O values. Hemiauchenia mean δ
13

C values 

are greatest at Leisey 1A followed by Inglis 1A and Haile 8A. Palaeolama mean δ
13

C values are 

greater at Tri-Britton than at Leisey 1A (Table 5). The greatest camelid ranges are from 

Hemiauchenia at Leisey 1A (3.0‰) and Palaeolama at Tri-Britton (2.5‰). The other camelid 

ranges are between 1.0‰ and 1.4‰ (Table 5). Based on the range of δ
13

C values of 

Hemiauchenia from Leisey 1A (3.0‰), there may have been seasonal variation in diet, but there 

is no clear seasonal pattern in the tooth sampled (Figure 3).  
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As all medium to large bodied ungulates were sampled at all sites, assessing the total range of 

δ
13

C values can provide insights to floral composition, including evaluating the presence of 

dense forests and/or open grasslands. Tri-Britton has the greatest total range in δ
13

C values from 

-13.3‰ to +1.5‰ (range: 14.8‰) with many browsers, a few mixed feeders, and several 

obligate grazers (Table 2, Figure 4). Haile 8A has the second largest range in δ
13

C values 

(14.4‰) from -14.2‰ to +0.2‰, but lacks mixed feeders (Table 2, Figure 4). Previously 

published δ
13

C values from Leisey 1A range from -14.3‰ to -1.7‰ (12.6‰) with several 

browsers, grazers, and mixed feeders (DeSantis et al., 2009). Inglis 1A has the smallest range in 

δ
13

C values from -15.3‰ to -4.6‰ and is dominated by browsers, with only grazing equids 

(10.7‰; Figure 4; DeSantis et al., 2009). Based on total ranges, taxa present, and the presence of 

obligate browsers and grazers at each site, Tri-Britton contained grassland environments and the 

most open forests of the four sites. Leisey 1A had moderately closed forests with available C4 

grasses, and Haile 8A was similar to both Tri-Britton and Leisey 1A, but with potentially fewer 

C4 grass resources. Inglis 1A was the most homogeneous site and was dominated by denser 

canopied forests and limited C4 resources.  

Tri-Britton, the most open site with fairly open forests and the presence of grasslands, was also 

the warmest and driest of the four sites. As the climate cooled, some environments may have 

become more homogeneous with the presence of primarily forests and fewer C4 grasslands. 

While there are limited reconstructions of the environment and climate of Florida during the 

early and middle Pleistocene, and climates of the late Pleistocene are interpreted as being out of 

phase with the North Atlantic (Grimm et al., 2006), the stable isotope analyses from Tri-Britton 

and Haile 8A may be used to improve previous environmental and climatic interpretations. In 

comparison with modern climates, the stable oxygen isotope values from Tri-Britton support 
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previous interpretations of a more arid environment (Franz and Quitmyer, 2005). Despite the 

interpretation of no mesic hardwoods or pine flatwoods based on smaller vertebrates at Tri-

Britton (Franz and Quitmyer, 2005), δ
13

C values suggest a fairly heterogeneous environment 

with forests and open grasslands. Tortoises and other small vertebrates from Haile 8A suggest a 

more heterogeneous environment than Tri-Britton with pine flatwoods and freshwater 

environments (Franz and Quitmyer, 2005), but the range of δ
13

C values at Haile 8A is not 

significantly different from that at Tri-Britton. While Haile 8A δ
18

O values discussed above do 

not suggest the presence of xeric environments, as supported by the smaller vertebrates (Franz 

and Quitmyer, 2005), it is possible that xeric environments occurred on a much smaller scale. 

Modern Florida is characterized by a diversity of ecoregions and ecotones, often including a 

variety of smaller or patchier scale microenvironments (e.g. Griffith et al., 2002; Dee and 

Menges, 2014). Due to the lack of floral reconstructions associated with the Pleistocene sites 

included in these analyses, it is challenging to separate the specific causes of floral diversity. 

Other interpretations for changes in δ
13

C values could include influences of smaller scale 

differences in the local hydrology, the presence of or proximity to an ecotone with mixed 

environments, changes in fire regimes, topography, or soil type (e.g. Stephenson, 1990; Menges 

and Hawkes, 1998; Obeysekera et al., 1999; Boughton et al., 2006; DeSantis et al., 2007). 

Changes in the fire regime may have influenced the floral environment and stand structure, with 

less frequent fires allowing for the development of forested environments while an increase in 

fire frequency could have favored more open grasslands and/or the presence of smaller shrubs 

(e.g., Veno, 1976; Menges et al., 1993; Peterson and Reich, 2008).  

It is compelling that the driest sites (Tri-Britton, Leisey 1A) have a high number of C4 grazers 

and many C3 browsers, indicating both open grasslands and forests. Further, the coolest site 
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(Inglis 1A) is dominated by C3 browsing taxa, while Haile 8A shows intermediate conditions. 

While it is difficult to estimate the extent of forested and grassland environments at any of these 

sites, the resources had to have been abundant enough to support multiple taxa as well as their 

local, reproducing populations. However, additional work that assesses relationships between 

floral diversity and paleoclimates could help clarify the mechanisms driving environmental 

changes. 

Identifying the specific sources driving differences in δ
18

O values from Pleistocene tooth enamel 

can also be difficult. Groundwater from different modern aquifers in Florida can have distinctive 

isotopic signatures from at least -6.75‰ to 3.23‰, and can be used to identify the source and 

percent mixing of surface and ground water (e.g. Meyers et al., 1993; Katz et al., 1995; Ewe et 

al., 1999; Gremillion and Wanielista, 2000; Price and Swart, 2006). While identifying δ
18

O 

values and the extent of groundwater mixing is possible in modern systems, it is difficult to 

interpret the effects of groundwater on δ
18

O values in past systems. The medium to large bodied 

mammals included in this study, and other similar studies, were likely not consuming pure 

groundwater, but instead a mixture of rainwater, evaporated surface water, and more isotopically 

homogeneous groundwater (Koch et al., 1998; Hoppe et al., 2004). Greater influence of 

groundwater could lead to less seasonal signals in serial sampled teeth, similar to what we see in 

the serially sampled Equus teeth from Tri-Britton and Haile 8A and serially sampled 

Hemiauchenia teeth from Inglis 1A and Haile 8A. This dampened (or lack of) seasonal signal 

could alternatively suggest a less seasonal climate, especially at Haile 8A and Tri-Britton. 

Although the Hemiauchenia specimen from Inglis 1A shows no clear seasonal signal, the serially 

sampled Equus tooth from Inglis 1A shows the greatest seasonal variability (Figure 3, Table 5). 

Despite both specimens being recovered from a sinkhole, within a groundwater and rainwater fed 
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larger karst environment, there was likely some real differences in the water sources consumed 

by these two taxa. 

In addition to animals that actively drink water, taxa that consume large quantities of plant water 

may also be influenced by the δ
18

O values of local groundwater and surface water. A study of 

modern hammock and pineland forest environments in southern Florida showed that different 

vegetative communities utilize different water sources (Ewe et al., 1999). For example, the 

pineland forests maintained high groundwater usage (78-100%), while the hammock vegetation 

had seasonally varied reliance on groundwater (0.8-86%; Ewe et al., 1999). Additionally, δ
18

O 

values of plants can also vary in response to the local hydrology including access to various 

water sources and/or coastal flooding (e.g. DeSantis et al., 2007). This variation likely also 

occurred during the Pleistocene and may have influenced δ
18

O values of plant water consumed 

by the mammals analyzed. Comparisons of taxa that typically consume vegetation from different 

environments (forests versus open grass/shrubland) can be complicated by the fact that plants in 

more open settings experience greater evaporation than plants growing in a denser forest 

(Kelliher et al., 1993; van der Merwe and Medina, 1989). While Hemiauchenia had greater δ
18

O 

values than Palaeolama at Leisey 1A, consistent with the latter consuming less evaporative leaf 

water from relatively dense forests, there were no significant difference between browsing 

Odocoileus and mixed feeding Hemiauchenia at Leisey 1A, Inglis 1A, or Tri-Britton. 

Additionally, there were no significant differences between browsing Mammut and mixed 

feeding Mammuthus at Leisey 1A or Haile 8A, although that may be expected as these 

proboscideans were likely primarily drinking from local water sources and less influenced by 

differences in plant water.  
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3.3.3. Dietary Niche Modification 

Bison, Capromeryx, and Cuvieronius are only found at one site, so they are not included in inter-

site comparisons of dietary niches. Browsing Palaeolama and Tapirus and grazing Equus do not 

appear to significantly modify their dietary niches at the four sites included in this study. 

Specifically, they maintain their presence and their respective consumption of either denser 

forest vegetation or more open grassland resources regardless of environmental and/or climatic 

conditions. Significantly greater mean δ
13

C values of Tapirus and Palaeolama at Tri-Britton, as 

compared to Leisey 1A (p ≤ 0.046), may indicate more 
13

C enriched plant values in response to 

increasing temperature and/or aridity (Cerling et al., 1997; Passey et al., 2005; Murphy et al., 

2007; Fraser et al., 2008) and/or their consumption of plants within more open forests (van der 

Merwe and Medina, 1989). Odocoileus maintains a C3 browsing niche at all sites present, but 

shifts from having the most negative δ
13

C values at Inglis 1A and Haile 8A to more positive δ
13

C 

values than both Tapirus and Palaeolama at Leisey 1A; this suggests a shift from a denser forest 

browser to a more open forest or edge browser at the more evaporative Leisey 1A site (as 

previously suggested by DeSantis et al., 2009). This pattern may also occur at Tri-Britton; 

however, as there is only one Odocoileus tooth, it is difficult to know if this trend is further 

supported. Consistent with previous work, Equus also maintains its niche as an obligate grazer 

during the Pleistocene (MacFadden and Cerling, 1994; Feranec and MacFadden, 2000); the 

significant increase in δ
13

C values at Tri-Britton may represent an increase in the availability of 

C4 grasses at the warmest and driest site. 

Despite the lack of Mammut specimens from Haile 8A and only one specimen from Tri-Britton, 

mean δ
13

C values of Mammut indicate all specimens have δ
13

C values more negative than -6‰. 

Only one specimen from Tri-Britton had a mixed feeding diet (-6.3‰), all other specimens have 
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δ
13

C values indicative of a browsing diet (≤ -10.0‰, Table 6). A predominately browsing diet is 

consistent with results from low-magnification stereomicroscopy and stable isotope analysis (e.g. 

Koch et al., 1998; Green et al., 2005), while opal phytoliths from tooth calculus have suggested 

they consumed some grasses (Gobetz and Bozarth, 2001). Although one specimen from Tri-

Britton suggests that Mammut consumed a substantial amount of C4 resources, additional work is 

needed to determine the extent to which Mammut was a mixed feeder at other Pleistocene 

localities in Florida and throughout North America. 

The two Mammuthus specimens from Halie 8A have δ
13

C values of 0.1‰ and 0.2‰ which are 

more positive than the mean δ
13

C values from Leisey 1A (-2.9‰) and Tri-Britton (-7.6‰; Table 

6; DeSantis et al., 2009). While there is no significant difference between Leisey 1A and Tri-

Britton, Tri-Britton has a broader isotopic range (7.5‰) than Leisey 1A (2.6‰; Table 6; 

DeSantis et al., 2009). Previous work suggested that Mammuthus from sites in northern Florida 

had more negative δ
13

C values than those from southern sites, indicating Mammuthus tracked the 

proportion of C3 and C4 grass (Koch et al., 1998). Data included here do not support this 

conclusion, as the most negative Mammuthus δ
13

C values are found at the most southern site, 

which is the warmest and driest of those examined. While it seems counterintuitive for 

Mammuthus to consume more C3 vegetation at the warmest and driest site, they may have altered 

their diets in response to the presence of other herbivores, or those values may have recorded 

their diet while present in other regions (e.g., migration). Collectively, geochemical data suggest 

that Mammuthus maintained a C4 grazing diet at Haile 8A and Leisey 1A, but incorporated more 

C3 vegetation at Tri-Britton. 

Hemiauchenia δ
13

C values are more variable than the other taxa previously discussed. The two 

specimens from Tri-Britton have δ
13

C values of -6.3‰ and -13.1‰, but they were not included 
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in the statistical analysis due to small sample sizes. The 11 specimens at Haile 8A have a mean 

δ
13

C value of -9.2‰ and a range of 9.7‰ (Table 6). The 10 specimens from Leisey 1A have a 

mean δ
13

C value of -6.4‰ and a range of 5.5‰ (DeSantis et al., 2009). The Hemiauchenia 

specimens from Leisey 1A have a significantly greater mean δ
13

C value than those at Haile 8A 

(p < 0.01) or Inglis 1A (p < 0.0001), but there is no significant difference between mean δ
13

C 

values at Haile 8A and Inglis 1A. The two specimens from Tri-Britton have a much larger range 

(11.1‰), but the mean value falls between Haile 8A and Leisey 1A (Table 6). Increased δ
13

C 

ranges have been documented in Hemiauchenia, suggesting a change in dietary behavior from an 

obligate browser to a mixed feeder (with increased consumption of C4 grasses; Feranec and 

MacFadden, 2000; Feranec, 2003; DeSantis et al., 2009). Floral changes across the Blancan-

Irvingtonian boundary have been suggested to explain the increase in δ
13

C values (Feranec, 

2003), and this study further supports that changing environments and/or warmer and drier 

conditions may contribute to increased C4 consumption (DeSantis et al., 2009).  

Like Hemiauchenia, peccaries at these four sites also have more variable δ
13

C values. 

Platygonus, the only peccary at Inglis 1A, has a mean δ
13

C value of -11.4‰ and a range of 3.1‰ 

(DeSantis et al., 2009). Both Platygonus and Mylohyus are present at Haile 8A and their mean 

δ
13

C values are -10.7‰ and -10.2‰ and their ranges are 2.8‰ and 4.3‰, respectively, 

indicative of a browsing diet (Table 6). Both peccaries are also present at Leisey 1A, but 

Platygonus has a mean of -6.2‰ and a range of 5.7‰ (suggestive of mixed feeding) and 

Mylohyus has a mean of -8.6‰ and a range of 7.3‰ (indicative of browsing; DeSantis et al., 

2009). At Tri-Britton there are only two specimens of Platygonus (-7.8‰ and -7.5‰) and one 

specimen of Mylohyus (-9.9‰; Table 6); thus, statistical comparisons between peccaries at Tri-

Britton were not possible. Mylohyus δ
13

C values are not significantly different from those present 



76 

 

at Haile 8A and Leisey 1A. Platygonus δ
13

C values at Leisey 1A are significantly greater than 

those at both Haile 8A (p < 0.05) and Inglis 1A (p < 0.001), and there are no significant 

differences between mean δ
13

C values from Haile 8A and Inglis 1A.  

Previous work suggested that Mylohyus was a smaller forest browser while Platygonus had 

longer limbs and a grazing diet, which may have allowed for the co-occurrence of closely related 

taxa (Martin, 1974; Kurten, 1980). Dental microwear analysis of Platygonus from Indiana 

suggested a browsing to mixed feeding diet, and further comparisons suggested a faunivorous 

diet (Schmidt, 2008). Stable carbon isotope values from a Mylohyus and a Platygonus specimen 

in Florida show an overlap in δ
13

C values (-8.0‰ and -8.3‰, respectively) suggesting a diet of 

C3 or CAM vegetation (MacFadden and Cerling, 1996). Later work on the δ
13

C values from 

Platygonus suggest a change from mixed feeding in the early Irvingtonian to a browsing diet in 

the late Irvingtonian (Feranec and MacFadden, 2000). Contrary to previous work, Platygonus 

had a browsing diet during glacial (Inglis 1A, early Irvingtonian; DeSantis et al., 2009) or 

potentially transitional sites (Haile 8A, early Rancholabrean), but was a mixed feeder during 

interglacial (Leisey 1A, early Irvingtonian; DeSantis et al., 2009) or more evaporative conditions 

(Tri-Britton, late Irvingtonian). 

3.4. Conclusions 

Collectively, this research further supports the idea that increasing evaporative conditions may 

have contributed to the existence of for more heterogeneous environments. These environments 

may have subsequently allowed for the co-occurrence of closely related taxa (e.g. the co-

existence of taxa from the same family) at Tri-Britton, similar to Leisey 1A (DeSantis et al., 

2009). Although Haile 8A represents a potential transitional site, it still documents an increase in 
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taxa with more disparate dietary niches and greater heterogeneity than the glacial site, Inglis 1A. 

Dietary niche modification occurs in the dietary generalists (Hemiauchenia, Platygonus, and 

Mylohyus), potentially in response to changing climates and/or more heterogeneous 

environments. The lack of significant dietary niche modification in Equus, Mammut, 

Palaeolama, and Tapirus suggests that these taxa are dietary specialist and their diet was less 

impacted by changing climatic and/or environmental conditions. Thus, dietary niches are 

conserved in only the most specialized mammals. Further, this work demonstrates that aridity 

indices and stable oxygen isotope values can be used to determine relative temperature and 

aridity in Florida fossil sites that lack geologic evidence of glacial or interglacial designations. 

References 

Auffenberg, W. 1967. Further notes on fossil box turtles of Florida. Copeia: 319-325. 

Ayliffe, L., Lister, A., and Chivas, A. 1992. The preservation of glacial-interglacial climatic 

signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, 

Palaeoclimatology, Palaeoecology 99: 179-191. 

Bocherens, H., Koch, P.L., Mariotti, A., Geraads, D., and Jaeger, J.-J. 1996. Isotopic 

Biogeochemistry (
13

C, 
18

O) of Mammalian Enamel from African Pleistocene Hominid 

Sites. PALAIOS 11: 306-318. 

Brigham-Grette, J., Melles, M., and Minyuk, P. 2007. Overview and significance of a 250 ka 

paleoclimate record from El’gygytgyn Crater Lake, NE Russia. Journal of 

Paleolimnology 37: 1-16. 

Bryant, D. J. and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of 

large mammals. Geochimica et Cosmochimica Acta 59: 4523-4537. 



78 

 

Bryant, J. D., Froelich, P. N., Showers, W. J., and Genna, B.J. 1996. A tale of two quarries: 

biologic and taphonomic signatures in the oxygen isotope composition of tooth enamel 

phosphate from modern and Miocene equids. PALAIOS: 397-408. 

Cerling, T. E. and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in 

ungulate mammals and implications for ecological and paleoecological studies. 

Oecologia 120: 347-363. 

Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Elsenmann, V., and 

Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene 

boundary. Nature 389: 153-158. 

Coleman, J. M. 1988. Climatic warming and increased summer aridity in Florida, USA. Climatic 

change 12: 165-178. 

Connin, S. L., Betancourt, J., and Quade, J. 1998. Late Pleistocene C4 plant dominance and 

summer rainfall in the southwestern United States from isotopic study of herbivore teeth. 

Quaternary Research 50: 179-193. 

Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus 16: 436-468. 

Dee, J.R., Menges, E.S., 2014. Gap ecology in the Florida scrubby flatwoods: effects of time‐

since‐fire, gap area, gap aggregation and microhabitat on gap species diversity. Journal of 

Vegetation Science. Early view. 

DeSantis, L. R. G., and B. J. MacFadden. 2007. Identifying forested environments in deep time 

using fossil tapirs: evidence from evolutionary morphology and stable isotopes. Courier 

Forschungsinstitut Senckenberg 258:147-157. 

DeSantis, L. R. G., Feranec, R. S., and MacFadden, B. J. 2009. Effects of Global Warming on 

Ancient Mammalian Communities and Their Environments. PLoS ONE 4: e5750. 



79 

 

Dutton, A., Wilkinson, B.H., Welker, J.M., Bowen, G.J., Lohmann, K.C., 2005. Spatial 

distribution and seasonal variation in 18O/16O of modern precipitation and river water 

across the conterminous USA. Hydrological Processes 19, 4121-4146. 

Emslie, S. D. 1998. Avian community, climate, and sea-level changes in the Plio-Pleistocene of 

the Florida Peninsula. Ornithological Monographs: 1-113. 

Feranec, R. S. 2003. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia 

(Mammalia: Camelidae): a morphological specialization creating ecological 

generalization. Paleobiology 29(2): 230-242. 

Feranec, R. S., and B. J. MacFadden. 2000. Evolution of the grazing niche in Pleistocene 

mammals from Florida: evidence from stable isotopes. Palaeogeography, 

Palaeoclimatology, Palaeoecology 162:155-169. 

Feranec, R.S., Hadly, E.A., Paytan, A., 2009. Stable isotopes reveal seasonal competition for 

resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La 

Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 153-

160. 

Franz, R., and Quitmyer, I. R. 2005. A fossil and zooarchaeological history of the gopher tortoise 

(Gopherus polyphemus) in the southeastern United States. Bulletin of the Florida 

Museum of Natural History 45: 179-199. 

Fraser, R.A., Grün, R., Privat, K., Gagan, M.K., 2008. Stable-isotope microprofiling of wombat 

tooth enamel records seasonal changes in vegetation and environmental conditions in 

eastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 269, 66-77. 

Friedman, I., O'Neil, J. R. 1977. Compilation of stable isotope fractionation factors of 

geochemical interest. USGPO. 



80 

 

Gaboardi, M., Deng, T., and Wang, Y. 2005. Middle Pleistocene climate and habitat change at 

Zhoukoudian, China, from the carbon and oxygen isotopic record from herbivore tooth 

enamel. Quaternary Research 63: 329-338. 

Gischler, E., Hudson, J., and Storz, D. 2009. Growth of Pleistocene massive corals in south 

Florida: low skeletal extension-rates and possible ENSO, decadal, and multi-decadal 

cyclicities. Coral Reefs 28: 823-830. 

Graham, R., Lundelius Jr, E., Graham, M., Schroeder, E., Toomey III, R., Anderson, E., 

Barnosky, A., Burns, J., Churcher, C., and Grayson, D. 1996. Spatial Response of 

Mammals to Late Quaternary Environmental Fluctuations. Science 272: 1601. 

Graham, R. W. and Lundelius Jr, E. L., 1989. Coevolutionary disequilibrium and Pleistocene 

extinctions. in Martin, P. S., and R.G. Klein (Eds.), Quaternary extinctions: a prehistoric 

revolution. University of Arizona Press, pp. 223-249. 

Green, J.L., Semprebon, G.M., Solounias, N., 2005. Reconstructing the palaeodiet of Florida 

Mammut americanum via low-magnification stereomicroscopy. Palaeogeography, 

Palaeoclimatology, Palaeoecology 223, 34-48. 

Griffith, G.E., Omernik, J.M., Pierson, S.M., Level III and IV Ecoregions of Florida. 

Grimm, E. C. and Jacobson Jr, G. L. 2003. Late-Quaternary vegetation history of the eastern 

United States. in Gillespie, A. R., S. C. Porter, B. F. Atwater (Eds.), Developments in 

Quaternary Sciences. Elsevier, pp. 381-402. 

Grimm, E. C., Jacobson Jr, G. L., Watts, W. A., Hansen, B. C., and Maasch, K. A. 1993. A 

50,000-Year Record of Climate Oscillations from Florida and its Temporal Correlation. 

Science 61: 9. 



81 

 

Grimm, E. C., Watts, W. A., Jacobson Jr, G. L., Hansen, B. C. S., Almquist, H. R., and 

Dieffenbacher-Krall, A. C. 2006. Evidence for warm wet Heinrich events in Florida. 

Quaternary Science Reviews 25: 2197-2211. 

Gobetz, K.E., Bozarth, S.R., 2001. Implications for late Pleistocene mastodon diet from opal 

phytoliths in tooth calculus. Quaternary Research 55, 115-122. 

Higgins, P., MacFadden, B.J., 2004. “Amount Effect” recorded in oxygen isotopes of Late 

Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, 

southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 

337-353. 

Hoppe, K.A., Koch, P.L., 2006. The biogeochemistry of the Aucilla River fauna, First Floridians 

and Last Mastodons: The Page-Ladson Site in the Aucilla River. Springer, pp. 379-401. 

Hoppe, K.A., Koch, P.L., 2007. Reconstructing the migration patterns of late Pleistocene 

mammals from northern Florida, USA. Quaternary Research 68, 347-352. 

Hoppe, K.A., Koch, P.L., Carlson, R.W., Webb, S.D., 1999. Tracking mammoths and 

mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology 

27, 439-442. 

Hoppe, K. A., R. Amundson, M. Vavra, M. P. McClaran, and D. L. Anderson. 2004. Isotopic 

analysis of tooth enamel carbonate from modern North American feral horses: 

implications for paleoenvironmental reconstructions. Palaeogeography, 

Palaeoclimatology, Palaeoecology 203:299-311. 

Huang, Y., Shuman, B., Wang, Y., Webb III, T., Grimm, E. C., and Jacobson Jr, G. L. 2006. . 

Palaeogeography, Palaeoclimatology, Palaeoecology 237: 428-435. 



82 

 

Koch, P. L., Hoppe, K. A., and Webb, S. D. 1998. The isotopic ecology of late Pleistocene 

mammals in North America: Part 1. Florida. Chemical Geology 152: 119-138. 

Kohn, M. J., 1996. Predicting animal δ
18

O: Accounting for diet and physiological adaptation. 

Geochimica et Cosmochimica Acta 60: 4811-4829. 

Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A.C., and Oppenheimer, M. 2009. 

Probabilistic assessment of sea level during the last interglacial stage. Nature 462: 863-

867. 

Kurtén, B., 1980. Pleistocene mammals of North America. Columbia University Press. 

Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. 

F., Ruth, U., Steffensen, J. P., and Maggi, V. 2008. Dust-climate couplings over the past 

800,000 years from the EPICA Dome C ice core. Nature 452: 616-619. 

Leggett, K.E., 2006. Home range and seasonal movement of elephants in the Kunene Region, 

northwestern Namibia. African Zoology 41, 17-36. 

Leopold, E. B. 1967. Late-Cenozoic patterns of plant extinction. In Martin, P. S. and H. E. 

Wright (Eds.), Pleistocene extinctions: the search for a cause. Yale University Press, pp. 

223-246.  

Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R. 2006. A stable 

isotope aridity index for terrestrial environments. Proceedings of the National Academy 

of Sciences of the United States of America 103: 11201-11205. 

Long, R. W. and Lakela, O. 1971. A flora of tropical Florida: a manual of the seed plants and 

ferns of southern peninsular Florida. University of Miami Press, Coral Gables. 



83 

 

Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: A new tool for 

paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 

48: 385-390. 

Luz, B., Cormie, A. B., and Schwarcz, H. P. 1990. Oxygen isotope variations in phosphate of 

deer bones. Geochimica et Cosmochimica Acta 54: 1723-1728. 

Luz, B., Kolodny, Y., and Horowitz, M. 1984. Fractionation of oxygen isotopes between 

mammalian bone-phosphate and environmental drinking water. Geochimica et 

Cosmochimica Acta 48: 1689-1693. 

Macfadden, B.J., Cerling, T.E., 1996. Mammalian herbivore communities, ancient feeding 

ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. 

Journal of Vertebrate Paleontology 16, 103-115. 

Martin, R., 1974. Fossil mammals from the Coleman IIA fauna, Sumter County. Art. 3: 35-99 in 

Webb, SD (ed.), Pleistocene Mammals of Florida. University of Florida Press, 

Gainesville. 

Meers, M. B. and Hulbert Jr, R. C. 2002. A new middle Pleistocene local fauna from 

southwestern Florida. Society of Vertebrate Paleontology Abstract. Journal of Vertebrate 

Paleontology 22(3). 

Morgan, G. S. and Hulbert Jr, R. C. 1995. Overview of the geology and vertebrate biochronology 

of the Leisey Shell Pit local fauna, Hillsborough County, Florida. Bulletin of the Florida 

Museum of Natural History 37: 1-92. 

Muhs, D. R., Simmons, K. R., Schumann, R. R., and Halley, R. B. 2011. Sea-level history of the 

past two interglacial periods: new evidence from U-series dating of reef corals from south 

Florida. Quaternary Science Reviews 30: 570-590. 



84 

 

Murphy, B. P., D. M. J. S. Bowman, and M. K. Gagan. 2007. The interactive effect of 

temperature and humidity on the oxygen isotope composition of kangaroos. Functional 

Ecology 21:757-766. 

Nakagawa, T., Gotanda, K., Haraguchi, T., Danhara, T., Yonenobu, H., Brauer, A., Yokoyama, 

Y., Tada, R., Takemura, K., and Staff, R.A. 2012. SG06, a fully continuous and varved 

sediment core from Lake Suigetsu, Japan: stratigraphy and potential for improving the 

radiocarbon calibration model and understanding of late Quaternary climate changes. 

Quaternary Science Reviews 36: 164-176. 

Passey, B.H., Robinson, T.F., Ayliffe, L.K., Cerling, T.E., Sponheimer, M., Dearing, M.D., 

Roeder, B.L., Ehleringer, J.R., 2005. Carbon isotope fractionation between diet, breath 

CO2, and bioapatite in different mammals. Journal of Archaeological Science 32, 1459-

1470. 

Schmidt, C.W., 2008. Dental microwear analysis of extinct flat-headed peccary (Platygonus 

compressus) from southern Indiana.Proceedings of the Indiana Academy of Science. 

Stowe, L.G., Teeri, J.A., 1978. Geographic distribution of C4 species of the Dicotyledonae in 

relation to climate. American Naturalist 112: 609-623. 

Teeri, J. A. and Stowe, L. G. 1976. Climatic patterns and the distribution of C4 grasses in North 

America. Oecologia 23: 1-12. 

Tütken, T., Furrer, H., and Vennemann, T., 2007. Stable isotope compositions of mammoth teeth 

from Niederweningen, Switzerland: implications for the Late Pleistocene climate, 

environment, and diet. Quaternary International 164: 139-150. 

van der Merwe N.J., Medina E. 1989 Photosynthesis and 
13

C/
12

C ratios in Amazonian rain 

forests. Geochimica et Cosmochimica Acta 53(5), 1091-1094.  



85 

 

van der Merwe, N. J., and E. Medina. 1991. The canopy effect, carbon isotope ratios and 

foodwebs in Amazonia. Journal of Archaeological Science 18:249-259. 

Watts, W. A., 1980. The Late Quaternary Vegetation History of the Southeastern United States. 

Annual Review of Ecology and Systematics 11: 387-409. 

Webb, S. D. 1974. Chronology of Florida Pleistocene mammals. In Webb, S. D. Pleistocene 

mammals of Florida, The University of Florida Press. 

Wigley, T., Jones, P., and Kelly, P. 1980. Scenario for a warm, high-CO2 world. Nature 283: 17-

21. 

Yann, L. T., DeSantis, L. R. G., Haupt, R. J., Romer, J. L., Corapi, S. E., and Ettenson, D. J. 

2013. The application of an oxygen isotope aridity index to terrestrial paleoenvironmental 

reconstructions in Pleistocene North America. Paleobiology 39: 576-590. 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

 

Figure 3.1. Site map of all Pleistocene fossil sites examined. 
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Figure 3.2. Box plots of δ
18

O values for all taxa, sensitive taxa, and camelids from Tri-Britton 

(closed diamonds), Leisey 1A (open squares), Haile 8A (closed triangles), and Inglis 1A (open 

circles). 
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Figure 3.3. δ
13

C and δ
18

O serial samples from camelids (a and c) and equids (b and d). Each line 

represents one tooth from Hemiauchenia (solid symbol), Palaeolama (open symbol) or Equus 

(solid symbol) from Tri-Britton (square), Haile 8A (asterisk), Leisey 1A (circle), and Inglis 1A 

(plus sign).   
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Figure 3.4. δ
13

C values and dietary niche partitioning of herbivores from all sites examined. Sites 

are arranged based on increasing mean δ
18

O values of sensitive taxa, from top to bottom. Within 

each site, taxa are ordered by increasing mean δ
13

C values, including from left to right, browsers 

(taxa with mean values less than -8‰, dark gray), mixed feeders (taxa with mean values greater 

than or equal to -8‰ and less than or equal to -2‰, light gray), and grazers (taxa with mean 

values greater than -2‰, black). 
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Table 3.1. Site descriptions for all fossil sites examined. 

site mammals analyzed other vertebrates present 
depositional 
environment 

inferred 
environment 

rationale for inferred 
environment 

age      
(NALMA) 

age            
(Ma) 

Haile 8A1,2 

bison, camelids, deer, 

horses, mammoths, 

peccaries 

felids, canids, ursid, 
pampatheres, mustelids, 

small mammals                                                            

birds, lizards, snakes, 

tortoises, turtles, frogs 

sinkhole 

intermediate 
climate, 

transitional 

between glacial 

and interglacial 

assemblages of box 

turtles and transitioning 

of soil types  

early 

Rancholabrean 
0.3 - 0.13 

Tri-Britton3,4 

camelids, deer, horses, 

mammoths, mastodons, 
peccaries, tapirs 

tortoises, turtles, fish, 
alligator 

fluvial arid assemblage of tortoises  
late 

Irvingtonian 
0.5 - 0.4 

Leisey 1A1,5 

camelids, deer, 
gomphotheres, horses, 

mammoths, mastodons, 

peccaries, tapirs 

felids, canids, ursid, small 
mammals, xenarthrans                                             

birds, reptiles, freshwater 

fish, marine fish 

coastal 

mangrove 

bay 

interglacial 

higher sea level, 

intermixed marine 
invertebrates and 

terrestrial vertebrates, 

warm adapted taxa, 

more positive δ18O 
values 

early 

Irvingtonian 
1.6 - 1.0 

Inglis 1A1,5 

antilocaprids, camelids, 

deer, horses, mastodon, 

peccaries, tapirs 

felids, canids, small 

mammals, xenarthrans                                     

birds, reptiles 

sinkhole glacial 

lower sea level, deposit 

is 5 m below modern 
sea level, no marine 

fossils, presence of cool 

adapted taxa, lower 

δ18O values 

early 

Irvingtonian 
2.0 - 1.6 

 
1
 Morgan and Hulbert, 1995; 

2
 Auffenberg, 1967; 

3
 Meers and Hulbert, 2002; 

4
 Franz and Quitmyer, 2005; 

5
 DeSantis et al., 2009 
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Table 3.2. Descriptive statistics of stable oxygen isotopes (δ
18

O), carbon isotopes (δ
13

C), and 

oxygen (δ
18

O) offset values from Haile 8A and Tri-Britton. 

 

    Haile 8A Tri-Britton 

    All S LS P All S LS P 

δ
18

O n 37 21 14 2 39 20 8 11 

 mean 30.5 30.6 30.2 33 33.2 34.0 32.7 32.2 

 max 33.3 32.9 32.1 33.3 35 35.0 33.2 33.8 

 min 29 29.0 29.1 32.6 31.1 32.0 31.9 31.1 

 range 4.3 3.9 3.0 0.7 3.9 3.0 1.3 2.7 

 SD 1.1 1 0.9 0.5 1.1 0.7 0.7 0.7 

 skewness 0.8 0.6 1.1 -- -0.1 -1.1 -0.8 0.8 

 SEM 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 

δ
13

C n 38 21 14 3 39 20 8 11 

 mean -7.5 -8.6 -7.4 -0.3 -8.5 -8.1 -10.3 -8.1 

 max 0.2 -1.8 -0.1 0.2 1.5 1.5 -7.5 -0.9 

 min -14.2 -14.2 -11.9 -1.3 -13.3 -13.3 -11.9 -12.5 

 range 14.4 12.4 11.8 1.5 14.8 14.8 4.4 11.6 

 SD 4.7 4.3 4.5 0.8 4.7 5.9 1.7 3.8 

 skewness 0.4 0.5 0.6 -1.7 0.9 0.7 1 0.6 

 SEM 0.8 0.9 1.2 0.5 0.8 1.3 0.6 1.2 

δ
18

O offset n 35 21 14 -- 28 20 8 -- 

 mean -2.6 -2.4 -2.8 -- 1.4 1.8 0.5 -- 

 max -0.1 -0.1 -0.9 -- 2.8 2.8 1 -- 

 min -4 -4 -3.9 -- -0.3 -0.2 -0.3 -- 

 range 3.9 3.9 3 -- 3.1 3 1.3 -- 

 SD 0.9 1 0.9 -- 0.9 0.7 0.4 -- 

 skewness 0.7 0.6 1.1 -- -0.3 -1.1 -0.8 -- 

  SEM 0.2 0.2 0.2 -- 0.2 0.2 0.2 -- 
All=all taxa except proboscideans, S=evaporation sensitive taxa, LS=less sensitive taxa, P=proboscideans, 

n=number of individuals, max=maximum value, min=minimum value, range=maximum-minimum, SD=standard 

deviation (n-1), SEM=standard error of the mean. 
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Table 3.3. Means and p-values from Kruskall-Wallis tests for stable oxygen isotopes (δ
18

O) and oxygen offset values from all sites 

examined. 

  Sites Camelids Sensitive Less Sensitive Peccaries 

δ18O Tri-Britton  vs Inglis 1A 34.1 > 29.4 <0.0001 34.0 > 29.7 < 0.0001 32.7 > 29.0 < 0.0001 --  -- -- 

 Tri-Britton  vs Haile 8A 34.1 > 30.5 <0.0001 34.0 > 30.6 < 0.0001 32.7 > 30.2 0.005 --  -- -- 

 Tri-Britton  vs Leisey 1A 34.1 > 31.7 0.0010 34.0 > 31.3 < 0.0001 32.7 > 29.6 0.0001 --  -- -- 

 Leisey 1A vs Inglis 1A 31.7 > 29.4 0.004 31.3 > 29.7 0.001 29.6 > 29.0 0.289 30.7 > 28.5 0.001 

 Leisey 1A vs Haile 8A 31.7 > 30.5 0.109 31.3 > 30.6 0.164 29.6 < 30.2 0.364 30.7 > 29.8 0.282 

  Haile 8A vs Inglis 1A 30.5 > 29.4 0.175 30.6 > 29.7 0.067 30.2 > 29.0 0.088 29.8 > 28.5 0.043 

Proboscidean Tri-Britton  vs Inglis 1A 1.9 > -0.2 0.005 1.8 > 0.1 0.0004 0.5 > -0.6 0.170 --  -- -- 

offset Tri-Britton  vs Haile 8A 1.9 > -2.5 <0.0001 1.8 > -2.4 < 0.0001 0.5 > -2.8 < 0.0001 --  -- -- 

 Tri-Britton  vs Leisey 1A 1.9 > 1.8 0.817 1.8 > 1.4 0.206 0.5 > -0.3 0.196 --  -- -- 

 Leisey 1A vs Inglis 1A 1.8 > -0.2 0.006 1.4 > 0.1 0.005 -0.3 > -0.6 0.783 --  -- -- 

 Leisey 1A vs Haile 8A 1.8 > -2.5 <0.0001 1.4 > -2.4 < 0.0001 -0.3 > -2.8 0.0001 --  -- -- 

  Haile 8A vs Inglis 1A -2.5 < -0.2 0.174 -2.4 < 0.1 0.001 -2.8 < -0.6 0.002 --   -- -- 

Peccary Tri-Britton  vs Inglis 1A 1.6 > 0.9 0.087 1.5 > 1.2 0.352 -0.1 < 1.4 0.008 --  -- -- 

offset Tri-Britton  vs Haile 8A 1.6 > 0.7 0.016 1.5 > 0.8 0.024 -0.1 < 1.6 0.011 --  -- -- 

 Tri-Britton  vs Leisey 1A 1.6 > 1.0 0.091 1.5 > 0.6 0.002 -0.1 > -1.8 0.036 --  -- -- 

 Leisey 1A vs Inglis 1A 1.0 > 0.9 0.674 0.6 < 1.2 0.055 -1.8 < 1.4 <0.0001 --  -- -- 

 Leisey 1A vs Haile 8A 1.0 > 0.7 0.328 0.6 < 0.8 0.635 -1.8 < 1.6 <0.0001 --  -- -- 

  Haile 8A vs Inglis 1A 0.7 < 0.9 0.7 0.8 < 1.2 0.196 1.6 > 1.4 0.82 --   -- -- 

Bold values indicate significance. Less sensitive proboscidean offset values do not include proboscideans, and less sensitive peccary offset values do not include 

peccaries. 
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Table 3.4. Rank order of δ
18

O values for sensitive taxa and camelids from all sites examined. 

 

    Sensitive Camelids 

  site δ
18

O rank δ
18

O rank 

mean Tri-Britton 34.0 1 34.1 1 

 Leisey 1A 31.3 2 31.7 2 

 Haile 8A 30.6 3 30.5 3 

 Inglis 1A 29.7 4 29.4 4 

maximum Tri-Britton 35.0 1 34.2 1 

 Leisey 1A 33.8 2 33.8 2 

 Haile 8A 32.9 3 30.5 3 

  Inglis 1A 31.2 4 30.0 4 
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Table 3.5. Descriptive statistics of serial samples from camelids and Equus. 

 

   δ
18

O δ
13

C 

  n mean max min range mean max min range 

Equus Haile 8A 12 30.5 30.9 30.3 0.6 -3.2 -2.6 -3.8 1.1 

Equus Inglis 1A 11 28.6 29.8 27.1 2.7 -4.1 -2.6 -4.9 2.3 

Equus Leisey 1A 12 32.2 33.4 31.0 2.5 -2.4 -1.8 -3.1 1.3 

Equus Tri-Britton 12 35.1 35.5 34.6 0.9 -0.3 0.2 -1.5 1.7 

Hemiauchenia Haile 8A 8 31.3 31.7 30.6 1.1 -10.0 -9.4 -10.7 1.3 

Hemiauchenia Inglis 1A 8 30.7 31.2 30.1 1.0 -8.2 -7.5 -8.9 1.4 

Hemiauchenia Leisey 1A 8 32.2 32.7 31.6 1.1 -2.3 -1.3 -4.3 3.0 

Palaeolama Leisey 1A 8 32.9 33.5 32.3 1.2 -13.1 -12.6 -13.6 1.0 

Palaeolama Tri-Britton 8 33.8 34.3 33.4 0.8 -11.7 -9.9 -12.4 2.5 

 

n=number of samples per tooth, max=maximum, min=minimum, range=max-min 
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Table 3.6. Descriptive statistics of mammalian isotope values for Tri-Britton and Haile 8A. 

 

    Carbon Oxygen Proboscidean Offset 

site taxa n mean min max range SD SEM mean min max range SD SEM mean min max range SD SEM 

Tri-

Britton Equus 6 -0.1 -1.9 1.5 3.4 1.2 0.5 33.5 32.0 34.5 2.5 0.9 0.4 1.3 -0.2 2.3 2.5 0.9 0.4 

 Hemiauchenia 2 -7.6 -13.1 -2.0 11.1 7.8 5.6 33.7 33.3 34.0 0.7 0.5 0.4 1.5 1.1 1.8 0.7 0.5 0.4 

 Mammut 6 -10.7 -12.5 -6.3 6.2 2.3 0.9 32.2 31.6 32.8 1.2 0.5 0.2 -- -- -- -- -- -- 

 Mammuthus 5 -5.1 -8.4 -0.9 7.5 2.9 1.3 32.2 31.1 33.8 2.7 1.0 0.5 -- -- -- -- -- -- 

 Mylohyus 1 -9.9 -- -- -- -- -- 32.5 -- -- -- -- -- 0.3 -- -- -- -- -- 

 Odocoileus 1 -10.5 -- -- -- -- -- 35.0 -- -- -- -- -- 2.8 -- -- -- -- -- 

 Palaeolama 11 -12.3 -13.3 -11.6 1.7 0.6 0.2 34.2 33.6 34.9 1.3 0.5 0.1 2.0 1.4 2.7 1.3 0.5 0.1 

 Platygonus 2 -7.7 -7.8 -7.5 0.3 0.2 0.2 32.5 31.9 33.1 1.2 0.8 0.6 0.3 -0.3 0.9 1.2 0.8 0.6 

 Tapirus 5 -11.4 -11.9 -10.7 1.2 0.5 0.2 32.9 32.5 33.2 0.7 0.3 0.1 0.7 0.3 1.0 0.7 0.3 0.1 

Haile 

8A Bison 5 -1.9 -4.7 -0.1 4.6 2.0 0.9 30.8 30.4 32.1 1.7 0.7 0.3 -2.2 -2.6 -0.9 1.7 0.7 0.3 

 Equus 5 -2.5 -3.3 -1.8 1.5 0.7 0.3 30.7 30.2 31.2 1.0 0.4 0.2 -2.3 -2.8 -1.8 1.0 0.4 0.2 

 Hemiauchenia 11 -9.2 -12.1 -2.4 9.7 2.5 0.8 30.5 29.0 32.9 3.9 1.2 0.3 -2.5 -4.0 -0.1 3.9 1.2 0.3 

 Mammuthus 2 0.2 0.1 0.2 0.1 0.1 0.1 33.0 32.6 33.3 0.7 0.5 0.3 -- -- -- -- -- -- 

 Mylohyus 5 -10.2 -11.9 -7.6 4.3 1.8 0.8 29.9 29.1 31.7 2.6 1.0 0.5 -3.1 -3.9 -1.3 2.6 1.0 0.5 

 Odocoileus 5 -13.4 -14.2 -12.3 1.9 0.7 0.3 30.7 29.7 31.9 2.2 1.0 0.4 -2.3 -3.3 -1.1 2.2 1.0 0.4 

  Platygonus 4 -10.7 -11.5 -8.7 2.8 1.3 0.7 29.6 29.4 29.9 0.5 0.2 0.1 -3.4 -3.6 -3.1 0.5 0.2 0.1 

n=number of individuals, max=maximum value, min=minimum value, range=maximum-minimum, SD=standard deviation (n-1), SEM=standard error of the 

mean. 
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Table 3.7. Intra-site comparisons of stable carbon isotope values from taxa at Tri-Britton. Taxa 

ordered by increasing mean values. 

  Tapirus Mammut Mammuthus Equus 

Palaeolama 0.116 0.196 0.001 < 0.0001 

Tapirus  0.750 0.159 0.016 

Mammut   0.074 0.004 

Mammuthus       0.344 

 

Bold p-values indicate significant comparisons. 
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Table 3.8. Intra-site comparisons of stable carbon isotope values from taxa at Haile 8A. Taxa 

ordered by increasing mean values. 

  Mylohyus Hemiauchenia Equus Bison 

Odocoileus 0.102 0.019 0.000 < 0.0001 

Mylohyus  0.675 0.026 0.012 

Hemiauchenia   0.028 0.012 

Equus       0.781 

 

Bold p-values indicate significant comparisons. 
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 Chapter 4

 

DIETARY NICHES OF PLEISTOCENE LAMINI CAMELIDS: INFLUENCES OF CLIMATE, 

ENVIRONMENT, AND SYMPATRIC TAXA 

 

4.1. Introduction 

With current and projected climate change, high elevation environments, like those in the Andes 

Mountains, are predicted to be some of the most severely affected (e.g. Bradley et al., 2004). Of 

the three extant arid adapted genera in Camelidae (Camelus, Lama, Vicugna), two of the wild 

species live exclusively in South America and occupy these harsh environments. The wild South 

American vicuna (Vicugna vicugna) and guanaco (Lama guanicoe) are part of the tribe Lamini, 

which is a rank between family and genus (Honey et al., 1998), as are the domesticated llama 

(Lama glama) and alpaca (Lama pacos or Vicugna pacos as suggested by Kadwell et al, 2001; 

Honey et al., 1998). These animals typically survive on low quality vegetation in the high-

elevation Andes Mountains (Bas and Bonacic, 2003). In these arid environments, heavy reliance 

on the water contained in their food allows them to live where few other large animals could 

survive (Bas and Bonacic, 2003). Understanding how these extant animals have survived in the 

harsh environments of the Andes may provide insight for their conservation in the face of 

changing climates.  

A more detailed examination of the dietary habits and paleoecology of Pleistocene ancestors may 

help to understand the dietary characteristics that support the harsh lifestyle of modern Lamini 

camelids. During the Pleistocene, there were four Lamini camelid genera in North America 

including Blancocamelus, Camelops, Hemiauchenia, and Palaeolama (Honey et al., 1998; 

PBDB, 2013). Many studies have looked at the paleoecology of multiple genera of Lamini 
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camelids (e.g. Dompierre and Churcher, 1996; Meachen, 2003; Kohn et al., 2005; DeSantis et 

al., 2009; Semprebon and Rivals, 2010; Yann et al., in prep), but there has been no direct 

comparison of the stable isotope dietary ecology of the three most abundant North American 

genera during the Pleistocene (i.e. Camelops, Hemiauchenia, and Palaeolama). 

Here, we aim to clarify the paleoecology of Pleistocene camelids by asking the following 

questions: 1) how does a camelid’s dietary strategy (i.e. more generalized or more specialized) 

influence the dietary ecology and/or presence of confamilies (i.e. genera from the same family)?; 

2) can we predict the occurrence of camelids based on the occurrence of other mammalian taxa, 

including the presence or absence of inferred “obligate browsers” or “obligate grazers”?; and, 3) 

how has the feeding ecology of Pleistocene camelids potentially played a role in influencing 

modern distributions of Lamini camelids? 

4.1.1. Stable Isotopes for Dietary and Environmental Reconstructions 

Stable isotopes from mammalian tooth enamel have been used to reconstruct diets and climates 

(Koch, 1998; MacFadden, 2000; Kohn and Cerling, 2002); when whole communities are 

sampled, it allows for reconstructions of dietary niche partitioning and environmental 

heterogeneity (e.g., DeSantis et al., 2009). An organism’s diet is recorded in its tooth enamel 

through the incorporation of stable carbon isotopes (δ
13

C). Specifically, tooth enamel values 

track the proportion of C3 and C4 vegetation in the diet of herbivores with a 14.1‰ enrichment 

between tooth enamel and vegetation consumed (DeNiro and Epstein, 1978; Cerling and Harris, 

1999). Before reconstructing diets inferred from tooth enamel, the regional abundance of C4 

grasses and shrubs should be consider. C4 grasses typically dominate in areas with high growing 

season temperatures whereas C3 grasses are typically found in areas that are cooler and wetter, 



100 

 

such as higher latitude sites in North America (Teeri and Stowe, 1976). C4 grasses make up more 

than 50% of all grasses in the Gulf Coast states, New Mexico, Arizona, and Oklahoma (Teeri 

and Stowe, 1976, MacFadden et al., 1999). In south Florida and the Gulf Coast of Texas C4 

grasses make up 70% to 100% of all the grasses (Teeri and Stowe, 1976, MacFadden et al., 

1999).  

Data presented in this study are from sites in Florida (i.e. Leisey 1A, Inglis 1A, Haile 8A, and 

Tri-Britton; DeSantis et al., 2009; Yann and DeSantis, in prep), the Gulf Coast of Texas 

(Ingleside), and a site in the southern portion of the San Joaquin Valley in California (McKittrick 

Brea). Where C3 grasses are rare today (i.e. the four sites in Florida and Ingleside in Texas), 

tooth enamel δ
13

C values of -8‰ or less are indicative of a diet consisting of mostly C3 tree or 

shrub browse, values between -8‰ and -2‰ suggest a mixed feeding diet with varying 

proportions of C3 and C4 vegetation, and δ
13

C values of -2‰ or greater suggest reliance on C4 

grasses.   

In California, C3 grasses like Nassella pulchra (the state grass, commonly referred to as purple 

needlegrass) dominated the San Joaquin Valley prior to heavy grazing, and C4 grasses dominate 

the Sonoran and Chihuahuan deserts (e.g. Woodward, 2008). While Florida is currently 

dominated by C4 grass and C3 trees/shrubs (and this was likely also the case during the 

Pleistocene; e.g. Teeri and Stowe, 1976; Stowe and Teeri, 1978; Koch et al., 1998, DeSantis et 

al., 2009), the potential presence of C3 grass and C4 shrubs in California, and potentially Texas, 

complicates dietary interpretations during the Pleistocene. Molecular evidence suggests that 

Atriplex arrived in North America between 9.8 and 8.8 million years ago (Kadereit et al., 2010), 

making it a viable food source during the Pleistocene. Additionally, 71 species of Atriplex are 

native to the United States and Canada (of 113 modern species), with only one species found in 
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Florida, 15 species in Texas (mostly west Texas), and 37 species in California (USDA, NRCA, 

2014). While there are only a few studies that have assessed the distribution of Atriplex 

throughout the United States during the Pleistocene, there is evidence of Atriplex in the Mojave 

Desert 20,000 years ago and potentially even older specimens (between 25,000 and 30,000 years 

old) have been found in the Great Basin and at McKittrick Brea (< 50 Ka, likely between 30 and 

5.2 Ka; Atriplex lentiformis; Mason, 1944; Thompson, 1979; Van Devender and Spaulding, 

1979). There also appears to be an increase in saltbush abundance during the early Holocene 

(Louderback and Rhode, 2009), as suggested by pollen records. Further, it has been suggested 

based on stable carbon isotopes and vegetation records that C4 saltbush (Atriplex) may have been 

a significant part of the diet of Camelops (Vetter et al., 2007, 2008). Thus, in California, δ
13

C 

values around -2‰ may indicate consumption of C4 browse such as Atriplex and should be 

considered when making dietary interpretations.   

Stable oxygen isotope (δ
18

O) values track the water consumed by an animal, either through 

actively drinking water or through the consumption of leafy vegetation (Longinelli, 1984; Luz et 

al., 1984; Bryant and Froelich, 1995; Kohn, 1996). Thus, δ
18

O values can be used to reconstruct 

relative climates (e.g. Longinelli, 1984; Luz et al., 1990; Bryant and Froelich, 1995; Bocherens 

et al., 1996). Additionally, not all animals record climate information in the same way, which 

provides the opportunity to infer relative temperature separate from relative aridity (Levin et al., 

2006; Yann et al., 2013). For example, animals that get the majority of their water by actively 

drinking track changes in meteoric water and typically do not have highly enriched δ
18

O tooth 

enamel values during periods of increased aridity; this group of animals is considered to be 

"evaporation insensitive" (Levin et al., 2006). For example, proboscideans have been identified 

as evaporation insensitive due to their need to drink large quantities of water and evinced by the 
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lack of significant changes in δ
18

O values with increased water deficits in modern Africa (Levin 

et al., 2006). Average proboscidean δ
18

O values can therefore be used to roughly infer relative 

meteoric water values at a given site (Yann et al., 2013). In contrast, animals that get the 

majority of their water from plants that are subjected to greater amounts of evaporation are better 

able to record evaporative conditions and are considered as "evaporation sensitive" (Levin et al., 

2006). Thus, using a proboscidean baseline, δ
18

O values from "evaporation sensitive" taxa can be 

used to calculate δ
18

O offset values and serve as a relative aridity index to separate the influence 

of temperature and precipitation on mammalian tooth enamel δ
18

O values (Yann et al., 2013). 

4.1.2. Camelid Diet and Distributions 

The diets for Pleistocene camelids have been interpreted using many different proxies including, 

but not limited to, morphological characteristics, isotopic studies, dental bolus analysis, and 

microwear studies. Previous isotopic and morphological work suggests that the three Pleistocene 

camelids in this study consumed at least some C3 vegetation; however, the proportion of C4 

vegetation consumed is more variable (e.g. Akersten et al., 1988; MacFadden et al., 1994; 

Dompierre and Churcher, 1996; Feranec, 2003; DeSantis et al., 2009). 

Camelops has been interpreted as having a variety of feeding strategies based on different 

proxies, including a mixed feeder based on premaxilla shape (Dompierre and Churcher, 1996), 

and mostly a browser with some mixed feeding based on SEM microwear (Dompierre, 1995). 

Other studies suggest little to no reliance on grasses based on dental bolus and stable isotope 

analyses (Akersten et al., 1998; Coltrain et al., 2004). A combination of hypsodonty, mesowear, 

and microwear suggest Camelops had a browsing diet with differing amounts of grit (Semprebon 

and Rivals, 2010). Stable carbon isotopes and independent vegetation records also indicate that 
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Camelops may have had an affinity for C4 halophytic shrubs such as Atriplex (saltbush), which 

can still be found in areas like the Mojave Desert (Vetter et al., 2007, 2008). 

Palaeolama has the lowest crowned teeth of the Lamini camelids (Honey et al., 1998) and has 

been interpreted as a browser based on stable isotope, microwear, morphology, and coprolite 

analysis (e.g. MacFadden et al., 1994; Meachen, 2003; Kohn et al., 2005; MacFadden and 

Shockey, 1997; DeSantis et al., 2009; Semprebon and Rivals, 2010; Marcolino et al., 2012). 

Based on δ
13

C values, Palaeolama has been interpreted as dwelling in denser, closed canopy 

forests (Meachen, 2003; Kohn et al., 2005; DeSantis et al., 2009), and it is possible that 

Palaeolama may have tracked forest environments much like Tapirus (DeSantis and 

MacFadden, 2007). 

Hemiauchenia has a greater diversity of interpretations, including grazing, mixed feeding, and 

browsing (e.g. Janis, 1988; Dompierre and Churcher, 1996; Feranec, 2003; DeSantis et al., 

2009). The shape of the premaxilla suggests that Hemiauchenia was likely a browser or 

specialized mixed feeder (Janis, 1988; Dompierre and Churcher, 1996). Carbon isotope studies 

similarly suggest a diet of browse or mixed vegetation and further indicate that Hemiauchenia 

had the ability to alter its diet in response to competition (e.g. the presence of Palaeolama; 

DeSantis et al., 2009) or environmental change (e.g. Feranec, 2003; DeSantis et al., 2009). 

The distribution of these three camelids covers much of the western half of the United Sates and 

Florida (PBDB, 2013) (Fig. 1). While all three camelids can be found from the west to east coast 

of North America, Camelops has predominately been found in the western portion of North 

America while Palaeolama has predominately been found in Florida, and Hemiauchenia 

overlaps the range of both Camelops and Palaeolama. According to the Paleobiology Database 
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(2013), there are 171 unique camelid sites in the United States, 34 contain both Camelops and 

Hemiauchenia, 12 have Hemiauchenia and Palaeolama, and 3 have Camelops and Palaeolama 

(Figure 2). In addition to the three sites on the Paleobiology Database, Ingleside in Texas also 

had Camelops and Palaeolama (Lundelius, 1972). Of all potential sites with multiple camelids, 

Ingleside (TX, Lundelius, 1972), McKittrick Brea (CA, Schultz, 1938), and Haile 8A, Tri-

Britton, Leisey 1A, and Inglis 1A (FL, Auffenberg, 1967; Webb, 1974; Meers and Hulbert, 2002; 

DeSantis et al., 2009; Yann and DeSantis, in prep)  were examined or reviewed here. These sites 

were selected due to the high abundance of at least one camelid, the co-occurrence of certain 

camelids, and the ability to geochemically sample the herbivorous mammalian fauna to better 

understand respective environments. Specifically, we examined Ingleside in Texas to compare 

the dietary niches of Palaeolama and Camelops, McKittrick Brea in California to compare 

Camelops and Hemiauchenia, and previously published isotopic data from Haile 8A, Tri-Britton, 

Leisey 1A, and Inglis 1A in Florida were used to compare Hemiauchenia and Palaeolama. 

4.2. Site Descriptions 

Site descriptions of Ingleside in Texas and McKittrick Brea in California are summarized here. 

As all Florida sites are extensively discussed in prior work (DeSantis et al., 2009; Yann and 

DeSantis, in prep), we only briefly summarize site descriptions.   

McKittrick Brea consists of multiple late Pleistocene asphalt deposits occurring in lenses of 

different ages (Schultz, 1938). Deposits range in age from about 30,000 to 5,255 
14

C years BP, 

with a questionable date of 38,000±2,500 
14

C years BP (Berger and Libby, 1966; Miller and 

Peck, 1979; France, 2008; Fox-Dobbs et al., 2014). It has been suggested that the McKittrick 

Brea fauna lived in a cold, harsh environment during the last glacial period (France, 2008); 
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however, Schultz (1938) suggested that the Pleistocene climate was similar to modern conditions 

in the San Joaquin Valley, based on plants, rodents, and birds present. Some of these deposits do 

contain aquatic and semiaquatic species suggesting seeps of water and muddy terrain near 

intermittent bodies of water (Miller, 1922), but the bodies of water were likely surrounded by dry 

areas that were slightly higher in elevation (~1 meter) and well drained (Miller, 1935). The 

presence of Atriplex lentiformis, a hydrophyte that occurs in both wetland and non-wetland 

environments (Mason, 1944; USDA, NRCS, 2014), also suggests the presence of seeps or bodies 

of water. 

The Ingleside locality is located on Live Oak Ridge, a barrier island that is thought to have 

formed during a sea level stand 25 feet higher than modern levels. This high sea level stand dates 

to approximately 120,000 years ago and appears to be correlative with the Sangamonian 

interglacial (Ericson et al., 1964; Zeuner, 1959; Otvos and Howat, 1996). The fresh-water pond 

deposits, which contained the fossil bones, overlie the lagoonal deposits that formed behind the 

Ingleside barrier and are thus younger. The pond deposits apparently accumulated in an aolian 

deflation depression. The fauna indicates a late Pleistocene age for the deposit. The bison is the 

Bison antiquus morphotype, the common Bison in late Pleistocene deposits. An electron spin 

resonance (ESR) date on mastodon teeth indicates middle to late Wisconsinan age (Otvos and 

Howat, 1996). The presence of abundant large tortoise (Geochelone sp.) remains suggests a 

climate without severe winters.  

The four sites in Florida are Pleistocene in age and include Inglis 1A (2.0-1.6 Ma), Leisey 1A 

(1.6-1.0 Ma), Tri-Britton (0.5-0.4 Ma), and Haile 8A (0.3-0.13 Ma) (Webb, 1974; Morgan and 

Hulbert, 1995; Meers and Hulbert, 2002). Leisey 1A was identified as an interglacial site based 

on the presence of marine fossils, the presence of warm adapted taxa, and high δ
18

O values, 
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indicating warm climates with high sea level (Morgan and Hulbert, 1995; DeSantis et al., 2009). 

Inglis 1A was identified as a glacial site based on the presence of fossils approximately 5 meters 

below current sea level, the presence of cool adapted taxa such as pronghorns and muskrats, the 

lack of marine fossils, and lower δ
18

O values than Leisey 1A (Morgan and Hulbert, 1995; 

DeSantis et al., 2009). Unlike Leisey 1A and Inglis 1A, Haile 8A and Tri-Britton cannot be 

characterized as glacial or interglacial based on their geology alone. Instead, stable oxygen 

isotope values and aridity index values were used to further characterize the climate of these two 

sites (Yann and DeSantis, in prep). Tri-Britton has greater δ
18

O and aridity index values than 

Leisey 1A, suggesting Tri-Britton was warmer and drier than Leisey 1A (Yann and DeSantis, in 

prep). δ
18

O values of evaporation sensitive taxa at Haile 8A are not statistically different from 

Leisey 1A or Inglis 1A and suggest it was intermediate in climate and the combination of δ
18

O 

values and aridity index values suggest Haile 8A was a moderately warm site that was wetter 

than the other three sites examined in Florida (Yann and DeSantis, in prep). Assessments of 

climate based on geochemical data are in agreement with previous data suggesting that Tri-

Britton was warm and dry based on the tortoises present and Haile 8A was an intermediate site 

with a warm and wetter climate based on transitions in soils and the fauna present (Auffenberg, 

1967; Franz and Quitmyer, 2005). 

4.3. Methods 

4.3.1. Stable Isotopes 

Bulk enamel samples (n=133) were collected from medium to large herbivorous mammals from 

McKittrick Brea (CA) and Ingleside (TX) using a low speed rotary tool with carbide bits. 

Approximately 2 to 5 milligrams of tooth enamel were pretreated with 30% hydrogen peroxide 

or bleach to remove organic material and 0.1 N acetic acid or acetic acid/calcium acetate 
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buffered solution to remove secondary carbonates. After chemical pretreatment, samples were 

either sent to the University of Florida’s Department of Geological Sciences and run on a 

Finnigan-MAT 252 isotope ratio mass spectrometer coupled with a Kiel III 

carbonate preparation device or to Princeton Universitiy’s Department of Geosciences lab where 

a VG Optima gas source mass spectrometer with an ISOCARB automated system was used. 

Results are reported using the standard delta notation, δ=[(Rsample/Rstandard)-1)*1000], with carbon 

(R=
13

C/
12

C) reported against V-PDB and oxygen (R=
18

O/
16

O) reported against V-SMOW 

(Coplen, 1994). To convert oxygen values from V-PDB to V-SMOW we used the following 

formula: δVSMOW=1.03086*δVPDB+30.86 (Friedman and O’Neil, 1977). 

 Of the 133 samples, 40 are bulk samples from McKittrick Brea and 93 are bulk samples 

from Ingleside. To allow for a comparison across six sites, we combined these data with 

previously published work from Florida (n=188; DeSantis et al., 2009; Yann and DeSantis, in 

prep) for a total of 321 bulk samples. To examine seasonality and strengthen climatic 

interpretations, one molar from Camelops, Equus, and Hemiauchenia were sampled from 

specimens at McKittrick Brea (28 total samples; 8, 12, and 8, respectively). Additionally, molars 

from Camelops, Equus, Mammuthus, and Palaeolama (36 total samples; 8, 12, 8, and 8, 

respectively) were sampled from specimens at Ingleside. Previously published serial samples of 

Equus molars from Inglis 1A, Leisey 1A, Haile 8A, and Tri-Britton (47 total samples; 11, 12, 12, 

and 12, respectively; DeSantis et al., 2009; Yann and DeSantis, in prep) were included. As 

camelids may better record relative seasonality (Yann et al., 2013), camelid teeth from all 

Florida sites were selected and serially sampled. Specifically, we sampled Hemiauchenia and 

Palaeolama teeth from Leisey 1A (16 samples; 8 and 8, respectively), a Hemiauchenia tooth 

from Inglis 1A (8 samples), a Palaeolama tooth from Tri-Britton (8 samples), and a 
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Hemiauchenia tooth from Haile 8A (8 samples; DeSantis et al., 2009; Yann and DeSantis, in 

prep; Supplemental Table 2). In addition to the above mentioned 472 samples here mentioned, a 

literature search using Web of Science, Google Scholar, and GeoRef (using search terms 

including camelid, Camelops, carbon, enamel, Hemiauchenia, Palaeolama, Paleolama, stable 

isotope, and tooth)  resulted in an additional 135 geochemical samples from the camelids 

Camelops, Hemiauchenia, and Palaeolama (total of 62, 110, and 44 samples, respectively; 

MacFadden and Cerling, 1996; MacFadden and Shockey, 1997; Connin et al., 1998; Feranec and 

MacFadden, 2000; Feranec, 2003; Kohn et al., 2005; Ruez, 2005; Feranec and MacFadden, 

2006; Hoppe and Koch, 2006; Vetter, 2007; Higgins and MacFadden, 2009; Nunez et al., 2010; 

Domingo et al., 2012; Kohn and McKay, 2012; Perez-Crespo et al., 2012; Trayler, 2012; Kita et 

al., 2014). 

 To examine relative aridity between the six sites, we also used a δ
18

O aridity index 

(Levin et al., 2006; Yann et al., 2013). To calculate the aridity index, we subtracted average δ
18

O 

values of evaporation sensitive taxa (e.g., camelids) from site-specific average proboscidean 

values, using the methods described in Yann et al. (2013). To further characterize the climate of 

each site, we combined aridity index values and mean δ
18

O values to classify sites as warm and 

wet, cold and wet, warm and dry, or cold and dry. We also used δ
13

C values to clarify the types 

of flora present at a site, including identifying the presence of dense forests (van der Merwe and 

Medina, 1989, 1991; Cerling et al., 1997; DeSantis and Wallace, 2008).  

For all statistical comparisons of geochemical data, we used the Shapiro-Wilk test to determine 

normality and then used the appropriate parametric (two sample Student’s t-test or ANOVAs 

with Tukey HSD and/or Fisher LSD comparisons) or nonparametric (Mann-Whitney U- or 

Kruskal Wallis) tests to compare isotopic values of taxa between and among sites. Bonferroni 
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corrections, used to decrease the likelihood of Type I error (false positive), were not used for any 

of the multiple comparisons we ran as it also increases the likelihood of Type II error (false 

negative) (Cabin and Mitchell, 2000; Nakagawa, 2004). We conducted all analyses in Excel 

using XLSTAT-Pro. 

4.3.2. Faunal Analysis 

To determine which medium to large mammalian taxa commonly occurred with each of the 

camelids, all localities with Camelops, Hemiauchenia, or Palaeolama were downloaded from the 

Paleobiology Database on 18 March 2013 (PBDB, 2013). All sites with a minimum age greater 

than 2.6 million years were removed to limit the search to the Pleistocene. To ensure that only 

well sampled sites were included in the analyses, all sites with less than 10 mammalian taxa and 

all sites with less than 5 genera from the orders Artiodactyla, Perissodactyla, or Proboscidea 

were removed. Presence/absence data for all genera within the families Antilocapridae, Bovidae, 

Camelidae, Cervidae, Elephantidae, Equidae, Gomphotheriidae, Mammutidae, Tapiridae, and 

Tayassuidae, were then tabulated. Using the Paleobiology Database, the presence/absence of 32 

genera was recorded and the percentage of sites where each genus co-occurred with each camelid 

was calculated. These percentages were used to determine if each camelid co-occurred most 

often with obligate grazers (i.e. Mammuthus, Bison), obligate browsers (i.e. Odocoileus, 

Tapirus), or other combinations of taxa. 



110 

 

4.4. Results 

4.4.1. Dietary and Environmental Characterization 

All taxa at Ingleside have δ
13

C values that range from -13.2‰ to 1.8‰ (Figure 3) with a mean of 

-6.4‰. Bison, Equus, and Mammuthus have mean δ
13

C values ≥-2.1‰, consistent with a diet of 

primarily C4 vegetation (likely grass based on the rarity of C4 shrubs along the Gulf Coast of 

Texas; Table 1, Figure 3). Mammut, Palaeolama, and Tapirus have mean δ
13

C values ≤-11.1‰, 

consistent with primarily C3 vegetation (likely browse, due to the presence of primarily C4 

grasses in this region today and δ
13

C values suggestive of some forest cover; Table 1, Figure 3). 

Camelops specimens have the greatest range in δ
13

C values from -12.0‰ to 1.0‰, suggesting 

consumption of C3 and C4 resources (Figure 3). Comparisons of all taxa with a sample size of 

n≥5 at Ingleside indicate that Bison, Mammuthus, and Equus (interpreted as grazers) have 

significantly greater δ
13

C values than Mammut, Palaeolama, and Tapirus (interpreted as 

browsers; p ≤ 0.001; Table 2). Camelops δ
13

C values are significantly less than those of the 

inferred grazers (p < 0.05) and indistinguishable from the inferred browsers noted above (Table 

2). A tooth from Equus, Camelops, and Palaeolama were also serially sampled from Ingleside. 

The greatest intra-tooth δ
13

C value range (3.2‰) is from the Equus tooth (Figure 4). Both 

Camelops and Palaeolama have low variability in δ
13

C values, with intra-tooth ranges of ≤1.0‰ 

(1.0‰ and 0.9‰, respectively; Figure 4). 

All taxa at McKittrick Brea have δ
13

C values that range from -9.5‰ to -2.6‰ (Figure 5) with a 

mean δ
13

C value of -6.4‰. Taxa identified as grazers at Ingleside (Equus, Bison) have δ
13

C 

values between -8.1‰ and -3.3‰ (Table 1). The most negative mean δ
13

C value is from the 

Antilocapra specimens (-7.7‰, Table 1, Figure 5). Much like Camelops specimens from 



111 

 

Ingleside, Camelops specimens from McKittrick Brea have the greatest range in δ
13

C values, 

from -9.5‰ to -2.6‰ (Table 1, Figure 5). At McKittrick Brea, the only significant differences in 

δ
13

C values are between Antilocapra and three other taxa, Camelops, Hemiauchenia, and Bison 

(Table 3; p < 0.05). At McKittrick Brea, one tooth was serially sampled from Equus, Camelops, 

and Hemiauchenia (Figure 4). Equus has an intra-tooth range in δ
13

C values of 3.2‰ (Figure 4). 

The samples from Camelops at McKittrick Brea have a range in δ
13

C values of 3.3‰, but the 

samples from Hemiauchenia have low variability (total range of 0.5‰; Figure 4). 

4.4.2. Climate Characterization 

At Ingleside, δ
18

O values of all taxa range from 26.1‰ to 34.3‰ (mean: 30.2‰). Families 

identified as “evaporation sensitive” (Camelidae, Cervidae, Equidae; Yann et al., 2013) range 

from 26.1‰ to 34.3‰ (Table 1). “Less sensitive” families (Bovidae, Tayassuidae, Tapiridae; 

Yann et al., 2013) have δ
18

O values that range from 29.4‰ to 32.9‰ (Table 1). Proboscidean 

(Cuvieronius, Mammut, Mammuthus) δ
18

O values range from 28.0‰ to 31.7‰ (Table 1). Three 

teeth were also serial sampled and Equus has an intra-tooth range in δ
18

O values of 0.8‰, 

Camelops δ
18

O values have a range of 0.7‰, and Palaeolama δ
18

O values have a range of 1.1‰ 

(Figure 4). 

Aridity index values at Ingleside range from -4.0‰ to 4.2‰ (Table 1). Of the taxa with n≥5, the 

maximum aridity index value is from Equus, followed by Bison, Palaeolama, and 

Camelops/Tapirus (Table 1). Mean aridity index values are greatest for Palaeolama, followed by 

Bison, Camelops/Tapirus, and Equus (Table 1). 

At McKittrick Brea, δ
18

O values from all taxa range from 22.1‰ to 32.0‰ (mean: 27.7‰). 

Families typically identified as “evaporation sensitive” (Antilocapridae, Camelidae, Equidae; 
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Yann et al., 2013) have δ
18

O values that range from 23.3‰ to 32.0‰, while the only less 

sensitive taxon (Bison) ranges from 22.1‰ to 28.3‰ (Table 1). “Less sensitive” Bison has the 

lowest mean δ
18

O value followed by Camelops, Equus, Hemiauchenia, and Antilocapra (Table 

1). The lack of proboscidean samples prohibits the calculation of aridity index values. Serial 

samples of Equus, Camelops, and Hemiauchenia were highly variable; Equus δ
18

O values have a 

total range of 3.5‰, Camelops δ
18

O values have a total range of 2.3‰, and Hemiauchenia δ
18

O 

values have a total range of 3.8‰ (Figure 4). 

4.4.3. Camelid Diets 

When Palaeolama (n=10) and Camelops (n=9) co-occur at Ingleside, camelid δ
13

C values are 

never lower than -12.4‰ (Table 1, Figure 5). While Palaeolama has a maximum δ
13

C value of -

10.4‰, Camelops has a much larger range (total range of 13.0‰, from -12.0‰ to 1.0‰; Table 

1). Additionally, two Camelops specimens have δ
13

C values ≥-2.0‰, while the remaining seven 

specimens have δ
13

C values ≤-9.8‰.  

Hemiauchenia (n=8) and Camelops (n=5) co-occur at McKittrick Brea where all camelid δ
13

C 

values are between -9.5‰ and -2.6‰ (Table 1, Figure 5). Of these two camelids, Camelops has a 

larger range in δ
13

C values (-9.5‰ to -2.6‰, total range of 6.9‰) as compared to Hemiauchenia 

(-6.9‰ to -5.2‰, total range of 1.7‰; Table 1).  

Hemiauchenia and Palaeolama both co-occur at Leisey 1A (n=10 and 6, respectively; DeSantis 

et al., 2009) and Tri-Britton (n=2 and 11, respectively; Yann and DeSantis, in prep). At Leisey 

1A, Hemiauchenia δ
13

C values range from -8.7‰ to -3.2‰ with a mean δ
13

C value of -6.4‰, 

and Palaeolama δ
13

C values range from -14.3‰ to -11.9‰ with a mean δ
13

C
 
value of -13.0‰ 

(DeSantis et al., 2009). At Tri-Britton, the two Hemiauchenia specimens have δ
13

C values of -



113 

 

13.1‰ and -2.0‰, while Palaeolama δ
13

C values range from -13.3‰ to -11.6‰ with a mean 

δ
13

C value of -12.3‰ (Yann and DeSantis, in prep). 

At Haile 8A and Inglis 1A, Hemiauchenia is the only camelid present (DeSantis et al., 2009; 

Yann and DeSantis, in prep). At Haile 8A (n=11), δ
13

C values range from -12.1‰ to -2.4‰ with 

a mean δ
13

C value of -9.2‰ (Yann and DeSantis, in prep). At Inglis 1A (n=7), δ
13

C values range 

from -12.4‰ to -9.1‰ with a mean δ
13

C value of -10.9‰ (DeSantis et al., 2009). 

Previously published δ
13

C values for Camelops and all data included here (n=62 individual 

specimens) range from -12.0‰ to 1.0‰ with a mean δ
13

C value of -6.0‰ (Connin et al., 1998; 

Vetter, 2007; Higgins and MacFadden, 2009; Perez-Crespo et al., 2012; Kohn and McKay, 2012; 

Trayler, 2012; Kita et al., 2014; Yann and DeSantis, in prep; Figure 6). Published Hemiauchenia 

δ
13

C values and all data included here (n=110) range from -14.7‰ to 2.1‰ with a mean δ
13

C 

value of -7.6‰ (MacFadden and Cerling, 1996; MacFadden and Shockey, 1997; Feranec and 

MacFadden, 2000; Feranec, 2003; Kohn et al., 2005; Feranec and MacFadden, 2006; Hoppe and 

Koch, 2006; DeSantis et al., 2009; Nunez et al., 2010; Yann and DeSantis, in prep; this work; 

Figure 6). Published Palaeolama δ
13

C values and all data included here (n=44) range from -

15.7‰ to -7.2‰ with a mean δ
13

C value of -12.0‰ (MacFadden and Shockey, 1997; Hoppe and 

Koch, 2006; Kohn et al., 2005; Ruez, 2005; DeSantis et al., 2009; Domingo et al., 2012; Yann 

and DeSantis, in prep; this work; Figure 6). 

4.4.4. Faunal Analysis 

Occurrence data from the Paleobiology Database (2013) identified 65 sites with Hemiauchenia, 

62 sites with Camelops, and 21 sites with Palaeolama that fit the requirements discussed in the 

methods (minimum age ≤ 2.6 Ma, presence of ≥ 10 mammalian taxa, presence of ≥ 5 genera 
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from Artiodactyla, Perissodactyla, or Proboscidea). The presence data associated with each site 

indicates that Equus co-occurs with Hemiauchenia, Camelops, and Palaeolama at 98.5%, 98.4%, 

and 95.2% of all sites, respectively (Figure 7). Hemiauchenia most often co-occurs with 

Odocoileus (66.2%), Camelops (64.6%), and Platygonus (50.8%). At 20% to 50% of sites, 

Hemiauchenia co-occurs with Tapirus (44.6%), Mammuthus (43.1%), Capromeryx (38.5%), and 

Mammut (20%; Figure 7). Camelops most commonly occurs with Hemiauchenia (67.7%), 

Odocoileus (66.1%), and Mammuthus (54.8%). At 20% to 50% of all sites, Camelops also co-

occurs with Capromeryx (43.5%), Platygonus (38.7%), Bison (30.6%), Tapirus (24.2%), and 

Antilocapra (21.0%; Figure 7). Palaeolama co-occurs with either Tapirus or Odocoileus at 100% 

of the sites included, and 81.0% of the sites contain both Tapirus and Odocoileus. Looking at 

Tapirus and Odocoileus individually, each co-occurs with Palaeolama at 90.5% of all sites 

(Figure 7). Palaeolama also commonly co-occurs with Mammuthus (71.4%) and Mammut 

(52.4%; Figure 7). At 20% to 50% of the sites, Palaeolama also co-occurs with Hemiauchenia 

(47.6‰), Platygonus (42.9%), Mylohyus (38.1%), and Bison (38.1%; Figure 7). 

4.5. Discussion 

4.5.1. Climate and Environmental Characterization of Sites 

The range in δ
13

C values at Ingleside (-13.2‰ to 1.8‰) indicates the presence of both C3 and C4 

vegetation (Figure 3). The occurrence of Tapirus with a mean δ
13

C value of -11.5‰, suggests 

that forests were present and fairly open (van der Merwe and Medina, 1991; DeSantis and 

MacFadden, 2007; DeSantis and Wallace, 2008). The presence of open C4 grasslands is indicated 

by the occurrence of morphologically inferred grazers like Bison, Mammuthus, and Equus, with 

mean δ
13

C values indicative of predominately C4 diets (0.1‰, -1.4‰, -2.1‰, respectively).  
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While mean δ
13

C values of morphologically inferred grazers (e.g. Janis, 1995) demonstrates the 

presence of C4 vegetation (probably grass as C4 shrubs were likely not consumed in any 

abundance by Bison, Mammuthus, and Equus), C3 grasses were also likely present (Silvens, 

1933; Teeri and Stowe, 1976). In addition to the known forest browser Tapirus, other inferred 

browsers at Ingleside (Odocoileus, Palaeolama, Mammut) have mean δ
13

C values 

indistinguishable from Tapirus (Table 1, 2) suggesting enough C3 forest resources to support a 

variety of browsing taxa, which is consistent with previous interpretations (Lundelius, 1972). In 

addition to these browsers, the mean δ
13

C value of Camelops is indistinguishable from Tapirus 

(Table 1, 2), and previous studies have suggested that Camelops is a browser (e.g. Akersten et 

al., 1988; Coltrain et al., 2004). However, two individuals have δ
13

C values that suggest they 

consumed substantial proportions of C4 vegetation. While C4 shrubs are less common, saltbush 

has been hypothesized as a vegetation source for Camelops (Vetter et al., 2007, 2008). As 

modern Atriplex is found relatively close to Ingleside (USDA, NRCA, 2014) it may have been a 

potential food source for Camelops and other herbivores at Ingleside. 

Serial samples from Equus (total range of 2.1‰) at Ingleside indicate a seasonally variable diet, 

but a small range in δ
18

O values (0.8‰) suggests little to no climate seasonality (Figure 4). Serial 

samples from Camelops and Palaeolama also indicate little to no climatic seasonality. The lack 

of high seasonal variability could be due to migration (e.g., ungulates moving to cooler regions 

during the summer and vice versa), or it is possible that the climate was less seasonally variable 

than today. Previous work on large tortoises (Gopherus hexagonata and Geochelone 

crassicutata) suggests potentially warmer winters or a more seasonal climate (Hibbard, 1960; 

Brattstrom, 1961; Lundelius, 1972); however, the age distribution of Palaeolama at Ingleside 

suggests seasonal reproduction or migration among the smaller camelid (Lundelius, 1972). 
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Unlike Ingleside, the majority of mammals examined from McKittrick Brea suggest they 

consumed a mixture of C3 and C4 vegetation, with no mammals browsing primarily in dense 

forests or consuming primarily C4 vegetation (Figure 5). At McKittrick Brea, both Equus and 

Bison δ
13

C values (-6.6‰ and -6.1‰, respectively) suggest greater consumption of C4 resources 

than those found at Rancho La Brea (-8.6‰ and -7.4‰, respectively; Feranec et al., 2009), 

another Late Pleistocene tar seep (with pits ranging in age from ~35,000-11,000 years ago; 

O'Keefe et al., 2009) located ~220 km southeast of McKittrick Brea in Southern California. As 

both Equus and Bison (morphologically inferred grazers; Tieszen, 1994; Coppedge et al., 1998; 

Janis and Ehrhardt, 1988) have δ
13

C values indicative of a mixed C3-C4 diet, this suggests the 

presence of both C3 and C4 grasses within the vicinity of McKittrick Brea. Additionally, ~40% of 

Antilocapra specimens suggest a diet dominated by C3 vegetation (i.e., δ
13

C values ≤ -8.3‰; 

Figure 5); however, the mean δ
13

C value still suggests a mixed C3-C4 diet. While one elk tooth 

(Cervus elaphus) from a different McKittrick Brea collection (University of California Museum 

of Paleontology, UCMP) suggests the potential of forested environments (-11.3‰; Trayler, 

2012), it is unclear if the collections are identical in age. Camelops has the greatest mean δ
13

C of 

all taxa at McKittrick Brea suggesting the greatest percent of C4 resources consumed. While C4 

resources could be from grasses, prior studies have suggested that Camelops was a browser (i.e. 

dental bolus studies; Akersten et al., 1988), even potentially consuming C4 shrubs such as 

saltbush (i.e. Atriplex) in Nevada (Vetter et al., 2007, 2008). At McKittrick Brea, the most 

common fossil plant material has been identified as Atriplex lentiformis (also known as big 

saltbush), a C4 shrub native to the area today (Mason, 1944; USDA, NRCA, 2014). While 

Camelops δ
13

C values suggest the consumption of C3 and C4 resources, they may have been 

predominately browsers consuming both C3 and C4 trees and shrubs. Additional proxies, such as 
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dental microwear texture analysis, may be necessary to parse out differences between browsing 

and grazing of Camelops and other mammalian taxa from McKittrick Brea. 

While all taxa at McKittrick Brea have mean δ
13

C values indicative of mixed C3-C4 diets, serial 

samples suggest seasonally variable diets and climates (Figure 4). While Hemiauchenia does not 

have a highly variable diet, it has the greatest range in δ
18

O values (3.8‰); collectively, this 

suggests that even though there may have been a seasonally variable climate at McKittrick Brea, 

Hemiauchenia maintained similar proportions of C3 and C4 vegetation in its diet. Serial samples 

from Camelops and Equus both suggest the possibility of seasonally variable diets and climates. 

Camelops suggests the consumption of more C3 resources during warmer and/or drier times and 

more C4 resources during cooler and/or wetter periods. This same trend is also recorded in 

another serially sampled Camelops tooth from the UCMP collection from McKittrick Brea 

(Trayler, 2012). Equus shows the same pattern with the lowest δ
13

C values corresponding with 

the greatest δ
18

O values; however, this pattern was not observed by Trayler (2012) from the 

UCMP collection. Similar seasonal patterns are also seen in both Bison and Equus from Rancho 

La Brea (Feranec et al., 2009); however, previous work from Rancho La Brea suggests that 

seasonal signals in δ
13

C values may reflect seasonal migration between areas dominated in C3 

vegetation and other dominated by C4 vegetation (Feranec et al., 2009). The amount of variation 

in the McKittrick Brea specimens is smaller than those from Rancho La Brea and may represent 

seasonal differences within McKittrick Brea, as opposed to migrations to different environments 

with differing proportions of C3 and C4 vegetation.  

In contrast to Rancho La Brea where carbon isotopes of mammalian herbivores do not suggest 

the presence of significant C4 plant resources (Coltrain et al., 2004; Feranec et al., 2009), with 

the potential exception of Bison (Feranec et al., 2009), mammals at McKittrick Brea consumed a 
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greater proportion of C4 resources. For example, Bison from McKittrick Brea have a greater 

mean δ
13

C value (-6.1‰) than those at Rancho La Brea (-7.4‰, Feranec et al., 2009).   

4.5.2. Camelid Dietary Strategies 

While Hemiauchenia samples from McKittrick Brea have a limited total range of 1.7‰ (n=8), 

suggestive of a mixed C3 and C4 diet, comparisons to material in Florida (Leisey 1A, Inglis 1A, 

Haile 8A, and Tri-Britton; i.e., δ
13

C values that range from -13.1‰ to -2.0‰; DeSantis et al., 

2009; Yann and DeSantis, in prep) suggest that Hemiauchenia was an opportunistic generalist 

and consumed a range of plant resources from predominately C3 vegetation to predominately C4 

vegetation. The ability of Hemiauchenia to modify its diet does not appear to change through 

time. For example, δ
13

C values indicative of a browsing diet are recorded at Inglis 1A (2.0-1.6 

Ma), Tri-Britton (0.5-0.4 Ma), and Haile 8A (0.3-0.13 Ma) while Leisey 1A (1.6-1.3 Ma), Haile 

8A (0.3-0.13 Ma) and McKittrick Brea (0.03-0.005 Ma) specimens indicate some degree of C4 

consumption. Thus, the diet of Hemiauchenia is fairly broad and may instead be influenced by 

climatic and/or environmental changes. 

In Florida, C3 grasses and C4 shrubs were rare or absent from the environments so predominately 

C3 values is indicative of browsing on C3 trees and shrubs, while δ
13

C values suggestive of 

primarily C4 resources suggest grazing on predominately C4 grass. At McKittrick Brea, C3 

grasses and C4 shrubs were likely a larger part of the ecosystem. Thus, Hemiauchenia had the 

ability to consume both C3 browse and C4 grass in Florida, and at McKittrick Brea, 

Hemiauchenia likely consumed C3 and C4 resources. Additional work is needed to determine the 

extent to which Hemiauchenia utilized C3 grass and C4 shrubs at McKittrick Brea and will 

necessitate additional tools such as dental microwear.  
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The incorporation of additional geochemical data expands the total range of δ
13

C values for 

Hemiauchenia to -14.7‰ to 2.1‰ (n=110; Figure 6; MacFadden and Cerling, 1996; MacFadden 

and Shockey, 1997; Feranec and MacFadden, 2000; Feranec, 2003; Kohn et al., 2005; Feranec 

and MacFadden, 2006; Hoppe and Koch, 2006; DeSantis et al., 2009; Nunez et al., 2010; Yann 

and DeSantis, in prep; this work), suggesting Hemiauchenia could feed in nearly every habitat 

from closed forests to open C4 grasslands. This great range in δ
13

C values (16.8‰) suggests 

Hemiauchenia is a dietary generalist that is able to opportunistically feed on the vegetation 

available in an environment, but the mean δ
13

C value of -7.6‰ does suggest a preference for 

browse, as suggested by Feranec (2003). 

Palaeolama specimens from Ingleside have a greater mean δ
13

C value than samples from Florida 

(Leisey 1A and Tri-Britton), but samples from all three sites suggest a C3 dominated diet 

(DeSantis et al., 2009; Yann and DeSantis, in prep). At both Leisey 1A and Tri-Britton, this 

suggests a diet consisting of forest browse, and a higher mean δ
13

C value at Ingleside suggests 

the presence of potentially more open forests. Although the mean δ
13

C value is greater at 

Ingleside, the overall range in δ
13

C values (2.0‰) falls intermediate between Leisey 1A (2.4‰; 

DeSantis et al., 2009) and Tri-Britton (1.7‰, Yann and DeSantis, in prep), suggesting that 

Palaeolama has fairly constrained diets (dominated by C3 resources) at a given site. The 

incorporation of previously published δ
13

C values (total of 44 specimens; MacFadden and 

Shockey, 1997; Hoppe and Koch, 2006; Kohn et al., 2005; Ruez, 2005; DeSantis et al., 2009; 

Domingo et al., 2012; Yann and DeSantis, in prep; this work) indicates a diet dominated by C3 

browse, and all but four specimens suggest a denser forest diet. This supports previous 

interpretations and is consistent with other proxies (MacFadden et al., 1994; Dompierre and 
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Churcher, 1996; DeSantis et al., 2009), but the limited range in δ
13

C values suggests that 

Palaeolama was a specialized forest browser. 

At McKittrick Brea, Camelops has a larger total range in δ
13

C values (from -9.5‰ to -2.6‰), 

than co-occurring Hemiauchenia (-6.9‰ to -5.2‰). Other McKittrick Brea material from the 

UCMP extends the maximum range of Camelops to include a value of -0.7‰ (Trayler, 2012). 

While the geochemical data of Camelops suggests a mixed C3-C4 diet to a predominately C3 diet, 

the addition of material from Trayler (2012) suggests that some individuals relied more heavily 

on C4 resources. Further, C4 resources consumed by Camelops likely included C4 shrubs such as 

saltbush, both at McKittrick Brea (as discussed above) and in Nevada (Vetter et al. 2007, 2008).  

Camelops specimens from Ingleside have a greater range in δ
13

C values then those from 

McKittrick Brea. Seven of the specimens have δ
13

C values indicative of a predominately C3 diet, 

but two suggest a heavy reliance on C4 resources. Much like Camelops from California, 

individuals at Ingleside may have also consumed C4 shrubs. Modern distributions of some 

species of saltbush (Atriplex canescens) can be found relatively close to the Ingleside site, today 

(efloras, 2014), and it is possible that this shrub or other C4 shrubs made up substantial portions 

of Camelops’s diet. 

Previous isotopic studies indicate Camelops δ
13

C values ranged from -12.0‰ and 1.0‰ (mean: -

6.0‰; n=62; Connin et al., 1998; Vetter, 2007; Higgins and MacFadden, 2009; Perez-Crespo et 

al., 2012; Kohn and McKay, 2012; Trayler, 2012; Kita et al., 2014; Yann and DeSantis, in prep). 

Previous work using stable isotopes from bone collagen and dental bolus studies at Rancho La 

Brea suggest that Camelops consumed little to no grass (~90% dicots and gymnosperms; 

Akersten et al., 1988; Coltrain et al., 2004). Microwear and mesowear of Camelops teeth from 
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New Mexico, Nevada, and Mexico also support a browsing diet (Semperbon and Rivals, 2010). 

This suggests that Camelops may not be a true dietary generalist, but instead an opportunistic 

browser. While the opportunistic generalist Hemiauchenia was able to immigrate to South 

America, Camelops failed to extend into “Beringia,” potentially due to the lack of trees and 

shrubs compounded by limited access to winter forage (Guthrie, 2001; Szpak et al., 2010). 

When Hemiauchenia is present as the only camelid (Inglis 1A and Haile 8A), all but one 

individual suggests a C3 dominated diet with statistically indistinguishable mean δ
13

C values. In 

the presence of another camelid, Hemiauchenia has a greater mean δ
13

C value. At Leisey 1A, 

Hemiauchenia and Palaeolama co-occur and Palaeolama is a closed forest browser while 

Hemiauchenia becomes a mixed feeder; there is no overlap in δ
13

C values at Leisey 1A. At Tri-

Britton Palaeolama again has a closed forest browsing diet, but there were fewer Hemiauchenia 

specimens available to sample (n=2). While there are too few samples to make any strong 

conclusions, one sample overlaps with Palaeolama, consistent with a C3 browsing diet, while the 

other sample indicates significant consumption of C4 grass.  

At McKittrick Brea, Hemiauchenia and Camelops are statistically indistinguishable from one 

another. The presence of C4 Atriplex (saltbush; Mason, 1944) and the previous interpretations of 

browsing in Camelops (Akersten et al., 1998; Coltrain et al., 2004; Semprebon and Rivals, 2010) 

suggest that Camelops was likely browsing at McKittrick Brea. The mixed C3-C4 signal in 

Hemiauchenia may indicate greater consumptions of grass (as seen in the samples from Leisey 

1A and Haile 8A) or it may also indicate the consumption of C4 shrubs. Camelops and 

Hemiauchenia may be able to co-exist either because Hemiauchenia is more of a mixed feeder, 

potentially eating both browse and grass or body size differences allowed these taxa to eat 

different plant resources. Palaeolama and Camelops co-occurred at Ingleside where Palaeolama 
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maintains a narrow range of δ
13

C values, suggesting a forest browsing diet. All but two of the 

Camelops specimens have δ
13

C values that overlap with Palaeolama, suggesting the 

consumption of C3 forest browse in Camelops. As these taxa were likely consuming similar 

resources, Camelops’s large body size may have played a larger role in allowing these closely 

related taxa to co-occur at Ingleside. 

4.5.3. Faunal Occurrences 

While Hemiauchenia samples from McKittrick Brea have a limited total range of 1.7‰ (n=8), 

suggestive of a mixed C3 and C4 diet, comparisons to material in Florida (Leisey 1A, Inglis 1A, 

Haile 8A, and Tri-Britton; i.e., δ
13

C values that range from -13.1‰ to -2.0‰; DeSantis et al., 

2009; Yann and DeSantis, in prep) suggest that Hemiauchenia was an opportunistic generalist 

and consumed a range of plant resources from predominately C3 vegetation to predominately C4 

vegetation. The ability of Hemiauchenia to modify its diet does not appear to change through 

time. For example, δ
13

C values indicative of a browsing diet are recorded at Inglis 1A (2.0-1.6 

Ma), Tri-Britton (0.5-0.4 Ma), and Haile 8A (0.3-0.13 Ma) while Leisey 1A (1.6-1.3 Ma), Haile 

8A (0.3-0.13 Ma) and McKittrick Brea (0.03-0.005 Ma) specimens indicate some degree of C4 

consumption. Thus, the diet of Hemiauchenia is fairly broad and may instead be influenced by 

climatic and/or environmental changes. 

In Florida, C3 grasses and C4 shrubs were rare or absent from the environments so predominately 

C3 values is indicative of browsing on C3 trees and shrubs, while δ
13

C values suggestive of 

primarily C4 resources suggest grazing on predominately C4 grass. At McKittrick Brea, C3 

grasses and C4 shrubs were likely a larger part of the ecosystem. Thus, Hemiauchenia had the 

ability to consume both C3 browse and C4 grass in Florida, and at McKittrick Brea, 



123 

 

Hemiauchenia likely consumed C3 and C4 resources. Additional work is needed to determine the 

extent to which Hemiauchenia utilized C3 grass and C4 shrubs at McKittrick Brea and will 

necessitate additional tools such as dental microwear.  

The incorporation of additional geochemical data expands the total range of δ
13

C values for 

Hemiauchenia to -14.7‰ to 2.1‰ (n=110; Figure 6; MacFadden and Cerling, 1996; MacFadden 

and Shockey, 1997; Feranec and MacFadden, 2000; Feranec, 2003; Kohn et al., 2005; Feranec 

and MacFadden, 2006; Hoppe and Koch, 2006; DeSantis et al., 2009; Nunez et al., 2010; Yann 

and DeSantis, in prep; this work), suggesting Hemiauchenia could feed in nearly every habitat 

from closed forests to open C4 grasslands. This great range in δ
13

C values (16.8‰) suggests 

Hemiauchenia is a dietary generalist that is able to opportunistically feed on the vegetation 

available in an environment, but the mean δ
13

C value of -7.6‰ does suggest a preference for 

browse, as suggested by Feranec (2003). 

Palaeolama specimens from Ingleside have a greater mean δ
13

C value than samples from Florida 

(Leisey 1A and Tri-Britton), but samples from all three sites suggest a C3 dominated diet 

(DeSantis et al., 2009; Yann and DeSantis, in prep). At both Leisey 1A and Tri-Britton, this 

suggests a diet consisting of forest browse, and a higher mean δ
13

C value at Ingleside suggests 

the presence of potentially more open forests. Although the mean δ
13

C value is greater at 

Ingleside, the overall range in δ
13

C values (2.0‰) falls intermediate between Leisey 1A (2.4‰; 

DeSantis et al., 2009) and Tri-Britton (1.7‰, Yann and DeSantis, in prep), suggesting that 

Palaeolama has fairly constrained diets (dominated by C3 resources) at a given site. The 

incorporation of previously published δ
13

C values (total of 44 specimens; MacFadden and 

Shockey, 1997; Hoppe and Koch, 2006; Kohn et al., 2005; Ruez, 2005; DeSantis et al., 2009; 

Domingo et al., 2012; Yann and DeSantis, in prep; this work) indicates a diet dominated by C3 
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browse, and all but four specimens suggest a denser forest diet. This supports previous 

interpretations and is consistent with other proxies (MacFadden et al., 1994; Dompierre and 

Churcher, 1996; DeSantis et al., 2009), but the limited range in δ
13

C values suggests that 

Palaeolama was a specialized forest browser. 

At McKittrick Brea, Camelops has a larger total range in δ
13

C values (from -9.5‰ to -2.6‰), 

than co-occurring Hemiauchenia (-6.9‰ to -5.2‰). Other McKittrick Brea material from the 

UCMP extends the maximum range of Camelops to include a value of -0.7‰ (Trayler, 2012). 

While the geochemical data of Camelops suggests a mixed C3-C4 diet to a predominately C3 diet, 

the addition of material from Trayler (2012) suggests that some individuals relied more heavily 

on C4 resources. Further, C4 resources consumed by Camelops likely included C4 shrubs such as 

saltbush, both at McKittrick Brea (as discussed above) and in Nevada (Vetter et al. 2007, 2008).  

Camelops specimens from Ingleside have a greater range in δ
13

C values then those from 

McKittrick Brea. Seven of the specimens have δ
13

C values indicative of a predominately C3 diet, 

but two suggest a heavy reliance on C4 resources. Much like Camelops from California, 

individuals at Ingleside may have also consumed C4 shrubs. Modern distributions of some 

species of saltbush (Atriplex canescens) can be found relatively close to the Ingleside site, today 

(efloras, 2014), and it is possible that this shrub or other C4 shrubs made up substantial portions 

of Camelops’s diet. 

Previous isotopic studies indicate Camelops δ
13

C values ranged from -12.0‰ and 1.0‰ (mean: -

6.0‰; n=62; Connin et al., 1998; Vetter, 2007; Higgins and MacFadden, 2009; Perez-Crespo et 

al., 2012; Kohn and McKay, 2012; Trayler, 2012; Kita et al., 2014; Yann and DeSantis, in prep). 

Previous work using stable isotopes from bone collagen and dental bolus studies at Rancho La 



125 

 

Brea suggest that Camelops consumed little to no grass (~90% dicots and gymnosperms; 

Akersten et al., 1988; Coltrain et al., 2004). Microwear and mesowear of Camelops teeth from 

New Mexico, Nevada, and Mexico also support a browsing diet (Semperbon and Rivals, 2010). 

This suggests that Camelops may not be a true dietary generalist, but instead an opportunistic 

browser. While the opportunistic generalist Hemiauchenia was able to immigrate to South 

America, Camelops failed to extend into “Beringia,” potentially due to the lack of trees and 

shrubs compounded by limited access to winter forage (Guthrie, 2001; Szpak et al., 2010). 

When Hemiauchenia is present as the only camelid (Inglis 1A and Haile 8A), all but one 

individual suggests a C3 dominated diet with statistically indistinguishable mean δ
13

C values. In 

the presence of another camelid, Hemiauchenia has a greater mean δ
13

C value. At Leisey 1A 

Hemiauchenia and Palaeolama co-occur and Palaeolama is a closed forest browser while 

Hemiauchenia becomes a mixed feeder; there is no overlap in δ
13

C values at Leisey 1A. At Tri-

Britton Palaeolama again has a closed forest browsing diet, but there were fewer Hemiauchenia 

specimens available to sample (n=2). While there are too few samples to make any strong 

conclusions, one sample overlaps with Palaeolama, consistent with a C3 browsing diet, while the 

other sample indicates significant consumption of C4 grass.  

At McKittrick Brea, Hemiauchenia and Camelops are statistically indistinguishable from one 

another. The presence of C4 Atriplex (saltbush; Mason, 1944) and the previous interpretations of 

browsing in Camelops (Akersten et al., 1998; Coltrain et al., 2004; Semprebon and Rivals, 2010) 

suggest that Camelops was likely browsing at McKittrick Brea. The mixed C3-C4 signal in 

Hemiauchenia may indicate greater consumptions of grass (as seen in the samples from Leisey 

1A and Haile 8A) or it may also indicate the consumption of C4 shrubs. Camelops and 

Hemiauchenia may be able to co-exist either because Hemiauchenia is more of a mixed feeder, 
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potentially eating both browse and grass or body size differences allowed these taxa to eat 

different plant resources. Palaeolama and Camelops co-occurred at Ingleside where Palaeolama 

maintains a narrow range of δ
13

C values, suggesting a forest browsing diet. All but two of the 

Camelops specimens have δ
13

C values that overlap with Palaeolama, suggesting the 

consumption of C3 forest browse in Camelops. As these taxa were likely consuming similar 

resources, Camelops’s large body size may have played a larger role in allowing these closely 

related taxa to co-occur at Ingleside. 

4.5.4. Implications for Extant Camelids 

Hemiauchenia has the largest range of δ
13

C values of the three common Pleistocene Lamini 

camelids, indicating the ability to utilize different vegetation types and different environments. 

Their ability to modify their diet may have allowed Hemiauchenia to exist in areas with highly 

variable environments, including arid climates. While Hemiauchenia was able to immigrate to 

South America and Palaeolama immigrated back to North America (e.g. Wheeler, 1995), 

Camelops was unable to emigrate out of North America (Guthrie, 2001). Specialized browsing 

taxa are relatively rare on the mammoth steppes of areas like Beringia, which could be due to a 

combination of a grassland-dominated environment and limited access to winter forage (Guthrie, 

2001). The lack of appropriate food sources (abundant browse) may have limited the movement 

of animals like Camelops out of North America (Guthrie, 2001). 

Hemiauchenia is hypothesized as the most common ancestor to the modern Lamini camelids 

(Lama and Vicugna; e.g. Wheeler, 1995; Honey et al., 1998; Scherer, 2013), all of which are 

adapted to cold, arid environments. Fecal samples from modern vicunas indicate that they are 

able to take advantage of all plant functional types (e.g. grasses and shrubs, C3 and C4 resources) 
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from all habitats within their range, but grasses do make up a large proportion of their diet 

(Borgnia et al., 2010). Based on isotopic analyses of grass and teeth, coupled with fecal analysis 

and degree of browsing, modern guanacos are also identified as generalist feeders (Cavieres and 

Fajardo, 2005; Gonzalez et al., 2006). Extant South American camelids are opportunistic feeders, 

allowing them to survive in high elevation, arid Andean environments (e.g. Gonzalez et al., 

2006, Borgnia et al., 2010). Based on this work, it is likely that the generalized, opportunistic 

diet of Hemiauchenia allowed for the evolution of the arid adapted Lama (guanaco) and Vicugna 

(vicuna). 

4.6. Conclusions 

This work further clarifies the dietary ecology of extinct Pleistocene Lamini camelids indicating 

Palaeolama was a specialized browser and Hemiauchenia was an opportunistic dietary 

generalist. Additional work is needed to elucidate the proportion of C4 browse or C3 grass in the 

diet of Camelops, but it is likely that Camelops is not a true generalist and instead is an 

opportunistic browser. Occurrence data indicates that Palaeolama may be restricted to forested 

environments, much like Tapirus, and is found most often with the browsers Odocoileus and 

Tapirus. Camelops and Hemiauchenia both co-occur with a broader range of taxa, suggesting 

that these taxa could exist in a broader range of habitat types than Palaeolama. It is likely that 

the generalized, opportunistic diet of Hemiauchenia may have paved the way for modern Lamini 

camelids to exist in more extreme environments. 
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Figure 4.1. Distributions of Pleistocene Lamini camelids. A) Camelops, B) Hemiauchenia, C) 

Palaeolama. 
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Figure 4.2. Distributions of Pleistocene sites with two camelids. Solid line=Palaeolama and 

Hemiauchenia, dashed line=Hemiauchenia and Camelops, stars=Camelops and Palaeolama. 
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Figure 4.3. δ
13

C values and dietary niche partitioning of herbivores from Ingleside. Taxa are 

ordered by increasing mean δ
13

C values. Dark grey=browsers, taxa with mean values less than -

8‰; light grey=mixed feeders, taxa with mean values greater than or equal to -8‰ and less than 

or equal to -2‰; black=grazers, taxa with mean values greater than -2‰. 
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Figure 4.4. δ
13

C and δ
18

O serial samples from equids (a and c) and camelids (b and d). Each line 

represents one tooth. Solid line=carbon, dashed line=oxygen. Circles=Ingleside, 

diamonds=McKittrick Brea. Black symbols=Hemiauchenia and Equus, open 

symbols=Palaeolama; gray symbols=Camelops. 
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Figure 4.5. δ
13

C values and dietary niche partitioning of herbivores from McKittrick Brea. Taxa 

are ordered by increasing mean δ
13

C values.  
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Figure 4.6. Stable carbon isotope values of A)Hemiauchenia, B) Camelops, and C) Palaeolama. 

Open symbols=this study, solid symbols=previously published values. 
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Figure 4.7. Percent of sites where taxa co-occur with each camelid. Open boxes=Palaeolama, 

black boxes=Hemiauchenia, grey boxes=Camelops. All taxa that co-occurred at less than 20% of 

all sites were excluded.
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Table 4.1. Genus level descriptive statistics for Ingleside and McKittrick Brea. 

 

    Carbon Oxygen Offset 

site taxa n mean min max range SD SEM mean min max range SD SEM mean min max range SD SEM 

Ingleside Bison 9 0.1 -2.0 1.8 3.8 1.2 0.4 31.0 29.4 32.9 3.5 1.2 0.4 0.9 -0.7 2.8 3.5 1.2 0.4 

 

Camelops 9 -8.5 -12.0 1.0 13.0 4.7 1.6 30.3 29.2 31.3 2.1 0.8 0.3 0.2 -0.9 1.2 2.1 0.8 0.3 

 

Cuvieronius 1 -7.4 -- -- -- -- -- 29.3 -- -- -- -- -- -- -- -- -- -- -- 

 

Equus 24 -2.1 -4.0 -0.6 3.4 1.2 0.2 29.7 26.9 34.3 7.4 1.8 0.4 -0.4 -3.2 4.2 7.4 1.8 0.4 

 

Mammut 19 -11.1 -12.6 -9.5 3.1 0.9 0.2 30.2 28.5 31.7 3.2 0.9 0.2 -- -- -- -- -- -- 

 

Mammuthus 11 -1.4 -2.6 0.2 2.8 0.8 0.2 30.0 28.0 31.4 3.4 1.0 0.3 -- -- -- -- -- -- 

 

Odocoileus 4 -12.3 -13.2 -10.8 2.4 1.1 0.6 28.7 26.1 31.9 5.8 2.4 1.2 -1.4 -4.0 1.8 5.8 2.4 1.2 

 

Palaeolama 10 -11.5 -12.4 -10.4 2.0 0.8 0.2 31.1 29.2 32.6 3.4 1.0 0.3 1.0 -0.9 2.5 3.4 1.0 0.3 

 

Platygonus 2 -9.0 -9.1 -8.8 0.3 0.2 0.1 32.5 32.3 32.6 0.3 0.2 0.2 2.4 2.2 2.5 0.3 0.2 0.2 

 

Tapirus 5 -11.5 -12.3 -10.6 1.7 0.6 0.3 30.3 29.4 31.3 1.9 0.7 0.3 0.2 -0.7 1.2 1.9 0.7 0.3 

McKittrick 

Brea Antilocapra 10 -7.7 -9.1 -5.8 3.3 1.1 0.3 29.1 27.6 32.0 4.4 1.5 0.5 -- -- -- -- -- -- 

 

Bison 8 -6.1 -7.6 -3.3 4.3 1.3 0.4 25.8 22.1 28.3 6.2 2.2 0.8 -- -- -- -- -- -- 

 

Camelops 5 -5.0 -9.5 -2.6 6.9 2.7 1.2 26.9 23.3 29.9 6.6 2.7 1.2 -- -- -- -- -- -- 

 

Equus 10 -6.6 -8.1 -5.4 2.7 1.0 0.3 28.0 25.7 29.9 4.2 1.4 0.4 -- -- -- -- -- -- 

  Hemiauchenia 8 -5.9 -6.9 -5.2 1.7 0.6 0.2 28.1 24.7 29.6 4.9 1.7 0.6 -- -- -- -- -- -- 

n=number of specimens, min=minimum, max=maximum, SD=standard deviation (n-1), SEM=standard error of the mean 
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Table 4.2. p-values for intra-site comparisons of stable carbon isotope values from taxa at 

Ingleside. Taxa ordered by increasing mean values. 

  Mammuthus Equus Camelops Mammut Palaeolama Tapirus 

Bison 0.192 0.047 0.0004 < 0.0001 < 0.0001 < 0.0001 

Mammuthus 

 

0.600 0.015 < 0.0001 < 0.0001 0.001 

Equus 

  
0.020 < 0.0001 < 0.0001 0.001 

Camelops 

   

0.170 0.103 0.177 

Mammut 

    

0.619 0.693 

Palaeolama           0.994 
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Table 4.3. p-values for intra-site comparisons of stable carbon isotope values from taxa at 

McKittrick Brea. Taxa ordered by increasing mean values. 

  Hemiauchenia Bison Equus Antilocapra 

Camelops 0.740 0.349 0.098 0.002 

Hemiauchenia 

 

0.491 0.130 0.002 

Bison 

  

0.432 0.017 

Equus       0.089 
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 Chapter 5

 

CONCLUSIONS 

 

Understanding how changing temperatures and changes in aridity affected Pleistocene camelids 

and their communities can provide clues to future responses and adaptations of modern taxa. 

Collectively, this work provides a better understanding of the dietary ecology of three 

Pleistocene Lamini camelids, Camelops, Hemiauchenia, and Palaeolama, through stable isotope 

analysis of their tooth enamel. Investigations into if and why these camelids modified their 

dietary niches provide clarity as to the paleoecology of Pleistocene camelids, including potential 

ancestors of extant South American camelids. Additionally, this work has also allowed for a 

better understanding of paleoclimates, including documenting changes in aridity in North 

America - a method with global applications. 

In chapter 2, stable oxygen isotope values were used to further develop an aridity index that 

allows the influences of temperature and precipitation to be separated when assessing 

paleoclimates. Additionally, results of this work further clarify relative aridity in different 

regions of North America Camelidae and Antilocapridae were identified as families that are 

more useful for tracking changing climatic conditions, including aridity, than taxa that have been 

used in the past (such as Equidae). The identification of camelids as trackers of environmental 

change allowed for further investigations into differences in relative aridity and into the 

influences of changing climatic conditions on the dietary niches of Pleistocene taxa. While this 

method was applied to Pleistocene sites in North America (chapters 2-4), with the identification 

of evaporation insensitive taxa, this work can be applied to sites through time and across the 

globe. 
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In chapter 3, comparisons of four Pleistocene sites in Florida (Tri-Britton, Haile 8A, Leisey 1A, 

Inglis 1A) indicate that Hemiauchenia, Platygonus, and Mylohyus modified their dietary niches 

from browser to mixed feeder in response to warming temperatures. This suggests that these 

three taxa were dietary generalists that took advantage of the abundant vegetation in the 

environment. Mammut, Palaeolama, and Tapirus maintained a C3 browsing diet and Equus 

maintained a grazing diet, suggesting these taxa were dietary specialists that did not modify their 

dietary niche in response to changing environmental conditions. The combination of stable 

carbon and oxygen isotopes suggests that these four sites had more heterogeneous environments 

during warmer climates, as Inglis 1A (glacial site) had a fauna dominated by forest browsers 

while Leisey 1A (interglacial site) and Tri-Britton had multiple forest browsers and open 

grassland grazers. The presence of more heterogeneous environments also appears to have 

allowed for the co-occurrence of closely related taxa (i.e., members of the same family) at sites 

in Florida. This work suggests that changing climates and environments influenced the dietary 

niches of mammalian herbivores in Florida, while further supporting the idea that dietary niches 

are not necessarily conserved through time. 

In chapter 4, camelids from Ingleside, McKittrick Brea, Tri-Britton, Haile 8A, Leisey 1A, and 

Inglis 1A were used to further clarify the dietary ecology of extinct Pleistocene Lamini camelids. 

Stable carbon isotope values indicate that Hemiauchenia was a generalist with an opportunistic 

diet of both C3 and C4 vegetation, while Palaeolama was a specialist, feeding on C3 vegetation 

from fairly dense forests. Camelops was likely not a true generalist, but instead an opportunistic 

browser that consumed C4 shrubs. Occurrence data indicate that Palaeolama was usually found 

in association with other browsers, like Tapirus and Odocoileus, indicating that they may have 

tracked forested environments (like Tapirus). The co-occurrence of both Hemiauchenia and 
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Camelops with a broader range of taxa is consistent with the stable carbon values indicating 

these taxa could live in a broader range of habitats (unlike Palaeolama). When Hemiauchenia is 

the only camelid represented in a fossil fauna, it typically had a diet dominated by C3 browse. 

When Palaeolama and Hemiauchenia co-occurred, Palaeolama had a C3 browsing diet, while 

Hemiauchenia consumed more C4 grass. In the presence of browsing Camelops, it appears that 

Hemiauchenia may have again modified its dietary niche to include more grass. When two 

browsers co-occurred (Camelops and Palaeolama) Camelops’s large body size may have 

allowed it to take advantage of different browse than the smaller, forest browsing Palaeolama. In 

addition, Camelops may have consumed C4 browse despite the fact that C4 shrubs are rare or 

absent in the modern Gulf Coast. 

This work further clarifies the dietary ecology of Pleistocene Lamini camelids and suggests that 

the generalized, opportunistic diet of Hemiauchenia allowed for arid adapted Lama (guanaco) 

and Vicugna (vicuna) to survive in arid environments of the Andes Mountains. The integration of 

the Pleistocene fossil record and geochemical tools, such as stable carbon and oxygen isotopes 

and aridity indices, has allowed for a better understanding of the dietary niches of fossil 

mammals during different climatic regimes and in different faunal and floral communities. 

Understanding past dietary and environmental change can also provide insights into current and 

future biotic responses to climate change. 

 

 

 

 


