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CHAPTER 1 
 
 

Introduction 
 
 

1.1 Abstract  

Cellular homeostasis, a fundamental requirement for all living organisms, is maintained 

in part through endocytic downregulation. Endocytosis of nutrient transporters is 

regulated in response to changing environmental conditions to adjust plasma 

membrane (PM) protein composition for optimal cell growth. Protein networks involved 

in cargo capture and sorting, membrane sculpting and deformation, and vesicle scission 

have been well-characterized, but less is known about the networks that sense 

extracellular cues and relay signals to trigger endocytosis of specific transporters. In 

Chapter 3 of this thesis, I establish that Hal kinases belong to a yeast kinase family that 

is orthologous with human AMPK/Snf1-related kinases, underscoring the importance of 

understanding the function and regulation of these evolutionarily conserved kinases. In 

Chapter 4, I demonstrate that loss of Hal4 and Hal5 leads to increased internalization of 

various nutrient transporters, including Art1-mediated endocytosis of the methionine 

transporter Mup1 and Art1-independent endocytosis of the uracil transporter Fur4. In 

Chapter 5, I find that acute inhibition of Hal5 in the absence of Hal4 triggers rapid 

endocytosis of these cargo, suggesting that Hal kinases function in the amino acid 

sensing relay upstream of the endocytic response. In Chapter 6, I report that Hal5 

localizes to the cell surface, but relocalizes away from the cell surface in response to 

stimulation with specific nutrients, indicating that Hal5 responds to nutrient availability. 

Taken together, my research indicates that Hal5 contributes to cellular homeostasis by 
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functioning as a nutrient-responsive endocytic gatekeeper, antagonizing endocytosis 

and promoting stability of transporters at the PM in nutrient-limiting conditions. Broadly, 

my research sheds light on how signaling molecules regulate endocytic trafficking to 

coordinate an adaptive growth response.  

 

1.2 Overview  

Regulation of endocytic trafficking in response to changing environmental conditions is 

critical to human health and disease. Endocytic trafficking and signal transduction 

networks regulate each other to achieve a variety of biological outcomes, such as 

signaling attenuation by endocytic downregulation and plasma-membrane remodeling.  

Additionally, signals sensed at the plasma-membrane are integrated to elicit 

transcriptional program changes. Together, these processes coordinate an adaptive 

growth response. Therefore, there is a critical need to understand the cross-regulation 

of endocytic trafficking and signal transduction networks.  

  

In this thesis, I present my study of two protein kinases Hal4 and Hal5, that maintain 

cellular homeostasis, at least in part, by acting as endocytic antagonists. In this 

Chapter, I introduce the concept of plasma-membrane homeostasis, and provide a 

review of the current understanding of how feedback mechanisms between signaling 

networks and trafficking machinery play a pivotal role in its regulation.  Next, I describe 

how signaling proteins are poised to contribute to maintenance of cellular homeostasis 

not only through transcriptional regulation but also through endocytic downregulation, 

and I describe how the yeast AMP-sensing kinase Snf1 exemplifies this paradigm. 
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Then, I introduce the NPR/HAL5 kinase family in yeast as emerging endocytic 

regulators in nutrient-sensing relays. Finally, I discuss the known role for NPR/HAL5 

family members Hal4 and Hal5 in cellular homeostasis, and the studies that position 

them as possible endocytic regulators.  

 

1.3 Cellular homeostasis is a fundamental requirement for all living organisms 

Complex homeostatic processes in humans, and the molecular mechanisms underlying 

their regulation, is a concept that unifies all of physiology.  Originally described by 

French physiologist Claude Bernard as the milieu interieur or “internal environment,” 

and later coined as “homeostasis” by Walter Bradford Cannon, homeostasis establishes 

a relationship between forces inside any given system that simultaneously interact with 

and protect from the forces outside of that system (Modell et al., 2015). Homeostasis, 

the tendency to maintain health and function in the face of changing environmental 

conditions, is a fundamental requirement of all living organisms. Homeostatic processes 

coordinate to maintain function at every biological level of organization from complex 

ecosystems, to the individual organisms that comprise distinct populations within 

ecosystems. At the level of the organism, failure to maintain homeostatic balance 

contributes to development of many diseases including (but not limited to)  diabetes 

(Röder et al., 2016), heart failure (Azzam et al., 2017; Vela, 2019), neurodegeneration 

(Galloway et al., 2019), asthma (Vanoni et al., 2019), atherosclerosis (Pennings et al., 

2006), inflammatory bowel disease (Maloy and Powrie, 2011; Röder et al., 2016), and 

cancer (Panieri and Santoro, 2016).  Homeostatic regulation also occurs within every 
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level of organization at the organismal level, including the organ systems, individual 

organs, tissues, cells, and subcellular compartments within cells.  

At the cellular level, homeostasis is the tendency to maintain intracellular concentrations 

of ions and nutrients as well as energy and pH despite fluctuating extracellular 

conditions and stresses (Romero, 2004). As the physical barrier between the 

extracellular and intracellular environments, the plasma membrane (PM) is the interface 

through which the cell senses and samples nutrients and growth signals in the 

extracellular environment. Complex signaling networks integrate information detected at 

the PM to coordinate diverse biological processes as part of the adaptive growth 

response to maintain cellular homeostasis. Multiple classes of proteins mediate these 

complex transactions between the cell and its environment, including integral 

membrane proteins (the PM proteome) such as nutrient transporters, ion channels, and 

signaling receptors, as well as signal transduction molecules like protein kinases and 

phosphatases. Ultimately, the coordinated action of the PM proteome and signaling 

molecules dictates a cell’s adaptive response, which is critical for regulation of cellular 

homeostasis in the face of changing environmental conditions.  

 

The cell carefully manages the abundance of receptors, transporters, and channels at 

the PM in coordination with the concentration and availability of various input signals in 

order to maintain cellular homeostasis (Blazek et al., 2015; Savir et al., 2017). The 

steady-state abundance of plasma membrane proteins, then, is critical for cellular 

homeostasis. This plasma-membrane homeostasis is achieved through a delicate 

balance of protein synthesis and degradation, which is carefully coordinated by 
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membrane trafficking events including secretion, endocytosis, recycling, and trafficking 

to the vacuole (Figure 1.1).  

 

1.3.1 Maintenance of cellular homeostasis by signal transducers  

The PM detects information about the extracellular environment, while signaling 

networks integrate and propagate that information to the nucleus to regulate gene 

expression and therefore protein synthesis. A key relay mechanism in these signaling 

networks involves phosphorylation, a reversible post-translational modification that 

occurs through the competing actions of protein kinases and protein phosphatases 

(Graves and Krebs, 1999; Hunter, 2012). Phosphorylation often plays a central role in 

signal transduction by functioning as a type of molecular switch. For example, it can 

activate or deactivate specific enzymatic activities, affect protein stability, change 

protein interaction profiles, or impact subcellular localization in order to propagate a 

signal (Ardito et al., 2017). Ultimately, protein kinases help to maintain cellular 

homeostasis by functioning as nutrient-sensing signal transducers that regulate gene 

expression (Wilson and Roach, 2002), and therefore protein synthesis, in response to 

changing environmental conditions. 

 

Snf1 is perhaps the best-characterized example of a nutrient-sensing kinase in 

Saccharomyces cerevisiae. Snf1 and its human homolog, AMPK, are evolutionarily 

conserved kinases that sense insufficient ATP levels through detection of increased 

intracellular concentrations of AMP and ADP (Coccetti et al., 2018). Snf1 and AMPK 

regulate downstream effector pathways that coordinate catabolic processes to control  
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FIGURE 1.1 Membrane trafficking pathways coordinate protein synthesis and 
protein degradation. In the nucleus, genes are expressed as a function of interactions 
between transcription factors and promoter elements and translated to proteins at the 
ER. Integral membrane proteins, such as nutrient transporters (green cylinders) then 
undergo 1) secretion, where they are trafficked from the Golgi to the PM in vesicles or 
2) biosynthesis, where they are trafficked to the endosome. At the PM, integral 
membrane proteins undergo 3) endocytosis, where they are internalized in vesicles 
from the PM and trafficked to endosomes. At endosomes, PM proteins are subject to 
MVB sorting, where they then undergo 4) recycling back out to the PM, either directly 
or through the Golgi, or 5) vacuolar trafficking to the vacuole, where they are 
ultimately degraded. These major membrane trafficking pathways coordinate the 
balance of protein synthesis and protein degradation to achieve a steady-state 
abundance of plasma membrane proteins conducive to growth.  
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energy homeostasis in the cell and thus are required for eukaryotic cells to adapt to 

various nutrient restrictive conditions (Coccetti et al., 2018). In yeast, Snf1 functions as 

the catalytic subunit of a multi-protein kinase complex that undergoes regulation by 

subcellular localization and nutrient availability (Vincent et al., 2001; Hedbacker and 

Carlson, 2008). In low-glucose conditions, auto-inhibition of Snf1 catalytic activity by g-

subunit Snf4 is relieved (Leech et al., 2003), permitting upstream activating kinases 

Tos3, Elm1, and Sak1 to interact with and phosphorylate Snf1 (Hong et al., 2003). 

Active Snf1 then phosphorylates multiple transcription factors to regulate expression of 

more than 400 genes, allowing for adaptive growth in glucose-scarce conditions (Young 

et al., 2012). This regulation includes relief of transcriptional repression to permit 

transcription of metabolic genes, including those that encode the metabolic enzymes for 

alternative carbon sources sucrose and galactose (SUC2 and GAL4) as well those that 

control the expression of high-affinity glucose transporters such as HXT2 and HXT4 for 

glucose and hexose scavenging (Nicastro et al., 2015). In glucose-replete conditions, 

active Snf1 is dephosphorylated by protein phosphatase Glc7 (Sanz et al., 2000), 

allowing for auto-inhibition by g-subunit Snf4 (Ludin et al., 1998). The mammalian 

homolog of Snf1, AMPK, functions analogously through allosteric activation by AMP 

(Gowans et al., 2013; Ahalawat and Murarka, 2017). While yeast Snf1 is not thought to 

be allosterically activated by AMP, it has been demonstrated that ADP molecules can 

bind the g-subunit Snf4 to interfere with Glc7-mediated dephosphorylation of Snf1, 

stabilizing the active Snf1 complex (Mayer et al., 2011).  
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This paradigm of transcriptional response mediated by signaling molecules is not limited 

to carbon metabolism. Nitrogen metabolism is maintained through at least two known 

nutrient-sensing pathways in yeast, including the target of rapamycin (TOR) pathway 

and the Ssy1-Ptr3-Ssy5 (SPS) sensor system (Ljungdahl, 2009; González and Hall, 

2017). In the TOR pathway, nitrogen-rich conditions (amino acid sufficiency) inside the 

cell activate Tor1 protein kinase activity as part of a multi-protein complex (TORC1) at 

the limiting membrane of the vacuole (lysosome) (Hara et al., 1998; Godard et al., 2007; 

Stracka et al., 2014). While the mechanism by which TORC1 senses amino acids in 

yeast is not clear, active TORC1 responds to amino acid sufficiency by multiple well-

characterized effector pathways (Loewith and Hall, 2011), one of which involves 

sequestration of a transcription factor, Gln3, in the cytoplasm. In nitrogen-poor 

(starvation) conditions, TORC1 is inactive and Gln3 localization shifts to the nucleus to 

induce expression of genes required for scavenging poor nitrogen sources (Beck and 

Hall, 1999; Cox et al., 2004). While Gln3 phosphorylation correlates with its nuclear 

localization, and TORC1 phosphorylates Gln3 in vitro (Bertram et al., 2000), it is not 

clear whether TORC1-mediated sequestration of Gln3 is due to a change in 

phosphorylation, a change in protein interactions, or some combination.  

 

While the TOR pathway senses amino acid abundance inside the cell, the SPS sensor 

system detects amino acid abundance in the extracellular environment and integrates 

that information through the coordinated action of Ssy1, Ptr3, and Ssy5 (the SPS 

sensor) with two yeast casein kinases, Yck1 and Yck2 (Ljungdahl and Daignan-Fornier, 

2012)}. Ssy1, a transporter-like integral membrane protein without transporter activity, 
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appears to sense amino acids by directly binding them, which stimulates a 

conformational change in the N-terminal cytoplasmic tail of Ssy1 (Wu et al., 2006; 

Poulsen et al., 2008). This signal is transduced by Ptr3, which then promotes the 

interaction of Yck1 and Yck2 with the SPS sensor (Liu et al., 2008; Omnus et al., 2011). 

Yck1 and Yck2 are PM-localized and constitutively active in nitrogen-poor conditions, 

but Ssy1 detection of excess amino acids brings them into close proximity of the SPS 

sensor, resulting in hyperphosphorylation and activation of the endoproteolytic enzyme 

Ssy5 (Omnus et al., 2011). Ssy5 then activates two transcription factors, Stp1 and Stp2, 

releasing auto-inhibition and enabling nuclear translocation (Andréasson et al., 2006; 

Pfirrmann et al., 2010; Omnus et al., 2011), resulting in the subsequent expression of 

amino acid and peptide transporter genes (Forsberg et al., 2001). While Snf1/AMPK 

appears to directly sense nutrient status, Yck1/2 and Tor1 appear to sense nutrient 

status indirectly, through the action of the SPS sensor in the case of Yck1/2 and an 

unknown mechanism in the case of TORC1. In each pathway, cellular homeostasis is 

achieved, in part, through negative feedback mechanisms controlling transporter 

synthesis, thus lowering transporter abundance at the surface over time. These 

mechanisms regulate biosynthesis of new transporters, but other branches of these 

responses can also regulate the turnover of existing transporters at the surface.  

 

1.3.2 Maintenance of cellular homeostasis by membrane trafficking 

The major way the cell achieves acute clearance of receptors, transporters, and ion 

channels from the PM is through endocytic downregulation. Frequently, a substrate or 

ligand of a transporter or receptor selectively stimulates endocytic internalization and 
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trafficking along the endocytic route, culminating in sorting to the lysosome (or vacuole) 

for degradation. This type of endocytic downregulation has been described for many 

nutrient transporters in Saccharomyces cerevisiae, including Mup1 (a high-affinity 

methionine transporter) (Lin et al., 2008; Guiney et al., 2016), Can1 (a high-affinity 

arginine transporter) (Ghaddar et al., 2014; Gournas et al., 2017), and Fur4 (a high-

affinity uracil transporter) (Marchal et al., 2000; Moharir et al., 2018). In each case, 

these proteins are stably expressed at the PM in the absence of their respective 

substrates, but are rapidly and selectively internalized and trafficked to the vacuole for 

degradation in the presence of specific substrates (Figure 1.1). 

 

Endocytic downregulation of these transporters is selective and ubiquitin-dependent 

(Léon and Haguenauer-Tsapis, 2009; Lauwers et al., 2010; MacGurn et al., 2012). 

Rsp5, the lone Nedd4 family E3 ubiquitin ligase in yeast, mediates ubiquitylation of 

transporters via interaction with an extensive network of arrestin-related adaptor 

proteins (ARTs) which target Rsp5 substrate selection in a context-dependent manner 

(Léon and Haguenauer-Tsapis, 2009; Lauwers et al., 2010; MacGurn et al., 2012). 

Cargo ubiquitylation is sufficient for capture by ubiquitin-binding elements in the 

endocytic machinery, and therefore understanding how extracellular cues are sensed 

and signals are relayed to trigger ubiquitylation of specific transporters at the PM will be 

critical for understanding the molecular basis for specificity in endocytic responses (Goh 

et al., 2010; Weinberg and Drubin, 2012; Schmid, 2017). Currently, the conventional 

wisdom is that the nutrient-sensing pathways relay signals to the ART-Rsp5 network to 
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regulate transporter ubiquitylation, as is the case for substrate-induced endocytic 

downregulation described above. In other cases, the signals are still not understood.  

 

1.4 Kinase regulation of endocytosis in response to nutrient status  

Clathrin-mediated endocytosis (CME) is a complex event, and how eukaryotic cells 

regulate endocytic site assembly and cargo selection for endocytosis remains poorly 

understood (Goh et al., 2010; Weinberg and Drubin, 2012; Schmid, 2017). Multiple 

studies in yeast are beginning to shed light on phospho-regulation along the endocytic 

trafficking route, which can involve regulation of cargo selection (MacGurn et al., 2011; 

Alvaro et al., 2016; Lee et al., 2019), endocytic site assembly (Chi et al., 2012; Peng et 

al., 2015), multi-vesicular body (MVB) sorting (Morvan et al., 2012), or recycling from 

endosomes (Lee et al., 2017). While there are many reported examples of 

phosphorylation regulating endocytic trafficking, here I will focus on summarizing the 

best reported examples of endocytic regulation by nutrient-sensing pathways (Figure 

1.2).  

 

1.4.1 Snf1/AMPK kinase regulates endocytosis of nutrient transporters  

Snf1 is conventionally thought to contribute to maintenance of cellular homeostasis 

through transcriptional regulation in response to glucose availability, as described 

above. However, recent studies suggest that Snf1 signaling contributes to cellular 

homeostasis using multiple effector pathways that involve both control over the glucose-

repression genes as well as glucose transporter abundance at the cell surface  
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FIGURE 1.2 Kinase regulation of endocytosis in response to nutrient status. Snf1 
regulates carbon transport in response to energy levels by inhibiting endocytosis of 
glucose transporters through regulation of Art4, an Rsp5 adaptor protein. Npr1 
regulates amino acid uptake by acting as a TORC-effector kinase to inhibit endocytosis 
of amino acid transporters by regulating Rsp5 adaptors like Art1, Bul1, and Bul2. Ptk2 
regulates ion transport by directly phosphorylating Pma1 to regulate its activity, although 
it is not clear whether this effects catalytic activity, abundance, or trafficking of Pma1.  
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(Becuwe et al., 2012; O'Donnell et al., 2015; Llopis-Torregrosa et al., 2016). 

Specifically, Snf1 phosphorylates the Rsp5 adaptor Art4 (Rod1) in response to glucose 

availability to modulate endocytic downregulation of lactate transporter Jen1 (Becuwe et 

al., 2012) as well as hexose transporters Hxt1, Hxt3, and Hxt6 (O'Donnell et al., 2015; 

Llopis-Torregrosa et al., 2016). Thus, in a manner that is glucose-responsive, Snf1 

regulates glucose transporter abundance at the cell surface (Figure 1.2). Importantly, 

the activity of AMPK in human cells also regulates the stability and trafficking of the 

GLUT1 and GLUT4 glucose transporters by regulating the activity of TXNIP, an arrestin 

domain containing protein similar to the ART adaptors in yeast (Wu et al., 2013; 

Waldhart et al., 2017). In each case, phosphorylation of Art4 and TXNIP by Snf1 and 

AMPK, respectively, inhibits their endocytic activities, while dephosphorylation activates 

or enhances endocytosis of nutrient transporters. Phosphorylation of Art4 by Snf1 

appears to inhibit endocytosis by impeding ubiquitylation by Rsp5 (O'Donnell et al., 

2015), while AMPK-mediated phosphorylation of TXNIP appears to be destabilizing (Wu 

et al., 2013). Thus, Snf1 and AMPK share similarities in regulation of nutrient 

transporter endocytosis, but it is not clear if the effector mechanisms are precisely 

analogous. Further studies elucidating the mechanism of endocytic regulation by Snf1 

(in yeast) and AMPK (in humans) will be required to better understand how nutrient 

signals are relayed to coordinate trafficking decisions in these two conserved signaling 

systems. 
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1.4.2 NPR1/HAL5 family kinases are emerging as endocytic regulators 

The NPR/HAL5 subgroup of kinases in yeast is emerging as a family of kinases that 

regulate nutrient transporter abundance at the PM. Npr1 kinase is known to be involved 

in nutrient-sensing, although this hasn’t been established for Hal kinases. Here, I review 

what is known about Npr1 and Hal kinases, and how they regulate endocytic trafficking 

in response to changing nutrient availability.  

 

Npr1, one of 11 NPR/HAL5 subgroup members, has a catalytic domain which 

comprises approximately half of the protein at the C-terminus, and similarly sized N-

terminal domain that is heavily phosphorylated and regulated by the TORC1 kinase 

complex (Schmidt et al., 1998; Bonenfant et al., 2003; Gander et al., 2008; Breitkreutz 

et al., 2010; MacGurn et al., 2011). In a manner that is TORC1-sensitive, Npr1 can 

phosphorylate and inhibit the Rsp5 adaptor protein Art1, specifically by antagonizing 

Art1 localization to the PM and therefore stabilizing the arginine transporter, Can1, at 

the cell surface (MacGurn et al., 2011). Similarly, endocytic downregulation of the yeast 

general amino acid permease, Gap1, is stimulated by TORC1 signaling through release 

of Npr1-mediated phosphoinhibition of arrestin-related Rsp5 adaptors Bul1 and Bul2 

(Merhi et al., 2011; Merhi and André, 2012). Thus, the Npr1 kinase provides an effector 

mechanism for nutrient-sensing TORC1 to regulate endocytosis of specific nutrient 

transporters at the PM (Figure 1.2).  Ptk2, another NPR/HAL5 family member, is 

reported to regulate the activity of the essential yeast proton pump Pma1 in response to 

glucose availability and pH stress, although it remains unclear if this regulation occurs at 

the level of catalysis, or stability and trafficking (Eraso et al., 2006; Lecchi et al., 2007; 
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Mason et al., 2014; Mazón et al., 2015) (Figure 1.2). These examples suggest that the 

broader NPR/HAL5 kinase family, like Snf1, may function in nutrient-sensing and the 

regulation of endocytosis. 

 

In humans, two sub-families of kinases have been identified as sharing homology with 

AMPK called AMPK-related (Bright et al., 2009) and Snf1-related (sometimes called 

Snf-related) (Jaleel et al., 2005) which are also both poorly understood relative to 

AMPK. The evolutionary relationship between Snf1 and NPR/HAL5 kinases has not 

been analyzed. Given the similarities discussed, I propose that the NPR/HAL5 family of 

kinases in yeast, previously labeled as a yeast-specific kinase family, shares 

evolutionary conservation with Snf1, AMPK, and AMPK/Snf1-rleated kinases. I present 

this analysis in Chapter 3 of this dissertation.  

 

1.4.3 Hal4 and Hal5 kinases regulate cellular homeostasis 

Hal4 and Hal5, two closely related AMPK/Snf1-related  kinases, have been best 

characterized for their redundant role in stabilizing two yeast potassium transporters, 

Trk1 and Trk2 (Mulet et al., 1999; Casado et al., 2010; Hirasaki et al., 2011). SDS-

PAGE mobility of Trk transporters shifts upon deletion of Hal kinases, prompting the 

hypothesis that Hal kinases phosphorylate Trk transporters directly to stabilize them at 

the PM, though direct phosphorylation has never been demonstrated. This hypothesis 

seems unlikely, as hal mutants exhibit decreased steady state abundance of a variety of 

nutrient transporters including Mup1, Gap1, Can1, Fur4, Hxt1, and Tat2 (Pérez-Valle et 

al., 2007; Pérez-Valle et al., 2010). Consistent with these findings, mutant cells 



 16 

exhibited decreased nitrogen and carbon uptake, as well as dysregulated cytosolic pH 

(Pérez-Valle et al., 2010). Not surprisingly, a transcriptomic analysis in Δhal4Δhal5 (or 

hal) double mutant cells revealed changes consistent with starvation stress including (i) 

genes associated with energy metabolism, carbohydrate metabolism, methionine 

biosynthesis, and stress response and (ii) genes associated with nucleotide 

metabolism, amino acid metabolism, iron assimilation, ribosome biogenesis, and 

ergosterol biosynthesis (Pérez-Valle et al., 2010).Taken together, these studies position 

Hal kinases squarely as regulators of nitrogen, metabolism, and ion homeostasis.  

 

Snf1, Npr1, and Hal mutants have all been reported to regulate the stability of nutrient 

transporters at the PM. Snf1-mediated regulation in this capacity appears limited to the 

stabilization of glucose transporters, while Npr1-mediated regulation appears limited to 

the stabilization of amino acid transporters. Hal-mediated stabilization of nutrient 

transporters does not appear to be limited to a particular class of nutrient, and spans 

amino acid, ion, and glucose transport. While nutrient-sensing relays are involved in 

Snf1-mediated and Npr1-mediated regulation of nutrient transporter stability, the ability 

of Hal kinases to participate in nutrient-sensing remains unclear from these studies.  

 

Consistent with the observed dysregulation of amino acid transporters, a recent study 

has implicated Hal kinases in the nitrogen-sensing TOR pathway by demonstrating that 

disruption of Hal kinases is associated with decreased Npr1 activity, and that 

overexpression of Npr1 partially restores hal mutant phenotypes (Primo et al., 2017). 

These data suggest that Hal kinase function may overlap with Npr1, and that Hal 
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kinases, like Npr1, may be functioning within, or in parallel to, a TORC signaling 

cascade. Interestingly, like Torc1, Hal4 and Hal5 appear to regulate the transcription 

factor Gln3. Specifically, disruption of Hal kinases correlates with increased 

phosphorylation and nuclear localization of the transcription factor Gln3 (Hirasaki et al., 

2011). Additionally, disruption of Hal kinases in a phosphatase mutant ppz1 background 

abolished Gln3-dependent gene expression of ENA1 (P-type ATPase/ sodium 

transporter) (Hirasaki et al., 2011). As Hal4 and Hal5 kinases were originally discovered 

in an overexpression screen for their ability to confer resistance to salt stress (Mulet et 

al., 1999), another possibility is that Hal kinases function in sensing ion concentrations, 

which would be consistent with the observed dysregulation of ion transporters. 

Transcriptomic data reveals that Hal5 expression is induced upon salt treatment (CaCl2) 

or alkaline pH stress in a calcineurin/Crz1-dependent manner (Casado et al., 2010). 

Consistent with these findings, Hal5 protein accumulates after salt treatment (CaCl2 and 

NaCl) and exhibits changes in SDS-PAGE mobility (Casado et al., 2010), suggesting 

nutrient-responsive changes in Hal5 phosphorylation that correlate with protein stability.  

 

The phenotypes reported for Δhal4Δhal5 double mutant cells (Figure 1.3) suggest that 

Hal kinases stabilize nutrient transporters to achieve and maintain cellular homeostasis.  

The process specifically regulated by Hal kinases, the mechanisms of action, and their  
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FIGURE 1.3 Hal-mediated stabilization of nutrient transporters A cartoon depicting 
the transcription-state and steady-state abundance of multiple nutrient transporters in 
WT cells in the left panel compared to hal mutant cells in the right panel.  
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relative contributions to transporter stabilization remain unknown. One possibility is that 

Hal kinases regulate ART-Rsp5 regulated endocytosis in a manner similar to Npr1 and 

Snf1. However, broad regulation of many different types of nutrient transporters by Hal 

kinases suggests that they may play a more general role in endocytosis, perhaps 

regulating a process upstream of cargo-specific ubiquitylation. Inspired by the parallels 

observed for Snf1, Npr1, and Hal kinases, I examine the hypothesis that Hal kinases 

regulate endocytosis in a manner similar to Npr1 and Snf1 kinases. Although my 

research suggests that these kinases are all part of an evolutionarily related family, my 

data indicates that Hal kinases regulate endocytic trafficking by a mechanism that is 

distinct from that described for Npr1 and Snf1 (Figure 1.2). 

 

1.5 Summary of thesis  

My thesis research has been driven by understanding how Hal kinases coordinate 

endocytic trafficking with nutrient response. Snf1 is a well-characterized example of how 

the cell achieves this regulation, but the NPR/HAL5 kinases remain poorly understood.  

In Chapter 2 of this thesis, I describe the materials and methods used to carry out my 

studies. In Chapter 3, I establish that Snf1 and NPR/HAL5 kinases cluster together in an 

original phylogenetic analysis, indicating evolutionary conservation. In Chapters 4-6 of 

this thesis, I investigate the role of Snf1/AMPK-related protein kinases, Hal4 and Hal5, 

in stabilizing nutrient transporters to maintain cellular homeostasis in yeast. In Chapter 

4, I report that Hal kinases negatively regulate nutrient transporter endocytosis 

upstream of the ART-Rsp5 network, and that in some cases Hal4 and Hal5 may exhibit 

distinct functions. In Chapter 5, I report that Hal5 catalytic activity is required for its 
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negative regulation of nutrient transporter endocytosis. In Chapter 6, I find that the 

previously uncharacterized N-terminal region of Hal5 is critical for regulation of 

endocytosis as well as localization of Hal5 to the PM. Parallel to Snf1, Hal5 localization 

to the PM is responsive to nutrient stimulation, as addition of specific nutrients triggered 

Hal5 ejection from the PM. In Chapter 7, I discuss how these results, taken together, 

indicate that Hal5 maintains cellular homeostasis, in part, by coordinating upstream 

nutrient-sensing events with the stability of nutrient transporters at the cell surface. 

These results improve our understanding of how endocytic trafficking and signaling 

networks regulate each other to coordinate an adaptive growth response. 
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CHAPTER 2 
 
 

Materials and Methods 
 

 
2.1 Plasmids, yeast strains and culturing conditions 
 
Unless otherwise indicated, all genes were cloned with native promoter sequence from 

genomic yeast DNA using standard PCR methods, restriction digest and ligation into 

centromeric (pRS) vector backbones. Constructs with point mutations were generated 

using PCR site-directed mutagenesis. All constructs generated by PCR in this study 

were verified by sequencing. See Table 2.1 for a list of plasmids used in this study. 

 

The SEY6210 strain background (MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 lys2-

801 suc2-Δ9) was used for most experiments. Genomic tagging and deletion of genes 

was performed using standard PCR-based homologous recombination, as described 

previously (Lin et al., 2008). Strains with multiple genomic modifications (genomic tags, 

deletions, or some combination) were generated by mating, sporulation (potassium 

acetate raffinose media), and subsequent tetrad dissection using a tetrad dissection 

microscope (MSM System 400, Singer Instruments).  For determination of growth 

phenotypes, yeast cells were cultured in indicated media (SC or YP + dextrose liquid 

media) overnight at 26°C. 1 OD600 equivalent was harvested, serially diluted into sterile 

water, and plated onto indicated media (SC or YP + dextrose solid media, either control 

of treated) using a 48-well metal replica plater (Sigma). Sensitivity to thialysine (toxic 

lysine analogue; 0.8 or 2.0 µg/ml on SC + dextrose solid media) was tested in the  
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plasmid 
designation 

plasmid 
backbone genotype source 

pCHL642 pRS416 MUP1-GFP (Lin et al., 
2008) 

pSR21 pRS416 FUR4-GFP (Lin et al., 
2008) 

pCHL571 pRS416 CAN1-GFP (Lin et al., 
2008) 

pSR25 pRS416 PMA1-GFP (Lin et al., 
2008) 

Pil1-GFP pRS416 PIL1-GFP This study 

Snc1-GFP pRS416 SNC1-GFP (Lewis et al., 
2000) 

Cps-GFP pRS416 CPS-GFP This study 
pJAM1292 pRS415 native Hal5 This study 
pJAM1368 pRS415 HAL5-adh1terminator-HTF This study 

pJMT4 pRS415 hal5K546R-adh1 terminator-HTF This study 
pJMT5 pRS415 hal5D688A-adh1 terminator-HTF This study 
pJMT6 pRS415 hal5M620G-adh1 terminator-HTF This study 

pJMT10 pRS415 hal5D1-493 This study 
pJMT11 pRS415 hal5D1-493-adh1 terminator-HTF This study 

pJAM1583 pRS415 HAL5-mNG This study 
pJAM1585 pRS415 hal5D494-855-mNG This study 

pJMT13 pRS415 hal5D1-493-mNG This study 
pJMT14 pRS415 hal5M620G-mNG This study 

pJAM1621 pRS415 hal5D1-339 This study 
pJAM1622 pRS415 hal5D1-248 This study 
pJAM1623 pRS415 hal5D1-99 This study 

pJMT18 pRS415 hal5D1-339-mNG This study 
pJMT19 pRS415 hal5D1-339-adh1 terminator-HTF This study 
pJMT21 pRS415 hal5D1-248-mNG This study 
pJMT23 pRS415 hal5D1-99-mNG This study 

pJAM1547 pRS415 ART1-mNG This study 
 
 
Table 2.1 List of plasmids Plasmids generated and/or used in this study including: 
plasmid designation, backbone, genotype, and source.  
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BY4741 strain background (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) since SEY6210 is a 

lysine auxotroph. See Table 2.2 for a list of strains used in this study.  

 

2.2 Fluorescence microscopy analysis of cargo trafficking and Hal localization 

Protein trafficking and localization analyses were performed by growing yeast cells 

expressing fluorescent fusion proteins (GFP, mNG, MARS, or mCherry) to mid-log 

phase in indicated synthetic liquid media at 26°C and imaged live in synthetic liquid 

media using a DeltaVision Elite Imaging system (Olympus IX-71 inverted microscope; 

Olympus 100× oil objective (1.4 NA); DV Elite sCMOS camera, GE Healthcare). In 

experiments using FM 4-64 as a PM label, cells were incubated on ice for 5 minutes, 

then spotted onto a slide and mixed with FM 4-64 (final concentration of 12.5x or 125 

µg/mL) and imaged within 10 minutes. In experiments examining cargo-GFP trafficking 

in response to treatment with 1-NA-PP1 (Adooq Bioscience, Irvine, CA), cells were 

treated for 1 hour and imaged in the same media.  In experiments examining Hal5-mNG 

localization in response to 1-NA-PP1 treatment, cells were treated for 10 minutes, and 

placed on ice for 5 minutes prior to imaging. In experiments examining Hal5-mNG 

localization in response to nutrients, cells were either resuspended in a starvation media 

(potassium-acetate raffinose media), or excess nutrients were added to the media 

(10µg/mL uracil, leucine, methionine, histidine, or tryptophan, 500mM NaCl, or 300mM 

KCl). After 10 minutes of treatment, cultures were placed on ice for 5 minutes prior to 

imaging. Images were collected and deconvolved, then quantified. The PM:Vac ratio 

analysis was performed as previously described (Lee et al., 2019). Specifically, 

Softworx image analysis software was used to measure the fluorescence  
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strain 
designation 

strain 
background genotype source 

WT BY4741 MATa his3D0 leu2D0 met15D0 ura3D0 ResGenTM 

Collection 

WT SEY6210 MATα leu2-3,112 ura3-52 his3-Δ200 trp1-Δ901 
lys2-801 suc2-Δ9 

(Robinson et al., 
1988) 

NHY101.1 BY4741 Dhal4::clonNATR This study 
NHY102.1 BY4741 Dhal5::clonNATR This study 
NHY107.1 SEY6210 Dhal4::KanMx This study 
NHY108.1 SEY6210 Dhal5::KanMx This study 
CLY461 SEY6210 Dart1::HIS3 (Lin et al., 2008) 

JMY1811 SEY6210 MUP1-pHlourin::KanMx (Lee et al., 2019) 
JMY909 SEY6210 VPH1-MARS::TRP1 (Lee et al., 2017) 
JTY220 SEY6210 HAL5-mNG::KanMx This study 
JTY195 SEY6210 Dhal4::KanMx VPH1-MARS::TRP1 This study 
JTY150 SEY6210 Dhal5::KanMx VPH1-MARS::TRP1 This study 
JTY158 SEY6210 Dart1::HIS3 VPH1-MARS::TRP1 This study 
NHY134 SEY6210 Dhal4::KanMx MUP1-pHlourin::KanMx This study 
NHY136 SEY6210 Dhal5::KanMx MUP1-pHlourin::KanMx This study 
JTY245 SEY6210 Dart1::HIS3 MUP1-pHlourin::KanMx (Lee et al., 2019) 
JTY167 SEY6210 Dhal4::KanMxDhal5::KanMx This study 
JTY229 SEY6210 Dhal4::KanMxDhal5::KanMx VPH1-MARS::TRP This study 

JTY154 SEY6210 Dhal4::KanMx Dhal5::KanMx MUP1-
pHlourin::KanMx This study 

JTY247 SEY6210 Dart1::HISDhal4::KanMxDhal5::KanMx This study 

JTY314 SEY6210 Dart1::HISDhal4::KanMx Dhal5::KanMx VPH1-
MARS::TRP1 This study 

JTY306 SEY6210 Dart1::HIS3Dhal4::KanMxDhal5::KanMx MUP1-
pHlourin::KanMx This study 

JTY285 SEY6210 HAL5-mNG::KanMx ART1-mCherry::TRP1 This study 
JTY287 SEY6210 HAL5-mNG::KanMx EDE1-mCherry::TRP1 This study 
JTY290 SEY6210 HAL5-mNG::KanMx SLA2-mCherry::TRP1 This study 
JTY292 SEY6210 HAL5-mNG::KanMx ENT1-mCherry::TRP1 This study 
JTY294 SEY6210 HAL5-mNG::KanMx PIL1-mCherry::TRP1 This study 
JTY295 SEY6210 HAL5-mNG::KanMx ABP1-mCherry::TRP1 This study 
JTY308 SEY6210 HAL5-mNG::KanMx MUP1-MARS::TRP1 This study 

JTY283 SEY6210 Dhal4::KanMxDhal5::KanMxDarg4::KanMx 
ART1-HTF::TRP This study 

JTY255 SEY6210 Darg4::KanMx ART1-HTF::TRP This study 
JTY254 SEY6210 Dhal4::KanMxDhal5::KanMxDarg4::KanMx This study 
JTY259 SEY6210 Dhal4::KanMx Darg4::KanMx This study 
JTY260 SEY6210 Dhal5::KanMxDarg4::KanMx This study 

 
 
Table 2.2 List of strains Strains used in this study including strain designation, 
background, genotype, and source.   
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signal intensity at the PM and in the vacuole and PM:Vac ratios were computed for a 

large number of cells (n=50). In cases where some cells contained no detectable 

localization to the PM, binning analysis was performed. Specifically, cells were counted 

and grouped (binned) into categories defined by the localization of Mup1-GFP, Can1-

GFP, or Fur4-GFP. If cargo was localized exclusively to the PM with no detectable 

signal in the vacuole above background, cells were binned into a category called “PM”. 

If cargo was localized with signal detectable above background at both the PM and 

vacuole, cells were binned into a category called “PM + Vac”. If cargo was localized 

exclusively to the vacuole with no detectable signal at the PM, cells were binned into a 

category called “Vac”. Pearson correlation coefficients were determined by drawing a 

region of interest around each cell and using the Pearson correlation coefficient function 

using Softworx software (GE Healthcare). Images were pseudo-colored using the free 

open-source program Fiji.  

 

2.3 Analysis of endocytic recycling by measurement of FM4-64 efflux 

FM 4-64 efflux was measured by growing yeast cells were grown to mid-log phase in 

liquid media (YP + dextrose) at 30°C then shifted to 22°C for 10 minutes. Cells were 

pulsed with FM 4-64 (1x or 10µg/mL) for 8 minutes at 22°C then placed on ice for 10 

minutes. Cells were washed with ice-cold liquid media (SM + dextrose) three times. 

Cells were distributed into a 96-well plate in 250 µl aliquots while on ice, and then 

warmed to room temperature for 3 minutes prior to analysis by flow cytometry using a 

BD Accuri C6 Plus benchtop flow cytometer (BD Biosciences). Over 10,000 cells per 
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time point were detected and analyzed per condition based on gating in the PE channel, 

which detects signal from FM 4-64.  

 

2.4 Analysis of Mup1-pHluorin trafficking  

Analysis of Mup1-pHluorin trafficking and steady state surface abundance was 

performed as previously described (Lee et al., 2019). Briefly, Mup1-pHluorin trafficking 

was examined at steady-state or over time in response to stimulus (either 2µg/mL 

methionine or 26.3µM 1-NA-PP1) by growing yeast cells to mid-log phase in indicated 

synthetic liquid media at 26°C. Cells were distributed into a 96-well plate in 250 µl 

aliquots prior to analysis by flow cytometry using a Guava easyCyte benchtop flow 

cytometer (Millipore). Over 10,000 cells per time point were detected and analyzed per 

condition based on gating in the FITC channel, which detects signal from pHluorin. 

 

2.5 Analysis of protein expression in cultured yeast cells  

Yeast lysates were prepared from mid-log phase cultures grown in the indicated 

selective synthetic liquid media at 26°C. 5 OD600 equivalents were precipitated in 10% 

trichloroacetic acid (TCA) in TE (10 mM Tris-HCl, 1mM EDTA, pH 8.0) and 

subsequently washed with acetone, aspirated, dried under vacuum, solubilized in lysis 

buffer (150 mM NaCl, 50 mM Tris pH7.5, 1 mM EDTA, 1% SDS) and disrupted by 

vortex with 100 µL of acid-washed glass beads. Urea-sample buffer (150 mM Tris pH 

6.8, 6 M Urea, 6% SDS, 10% β-mercaptoethanol, 20% glycerol) was added and 

samples were heated to 65°C prior to analysis by SDS-PAGE and subsequent 

immunoblotting. SDS-PAGE gels were transferred to a polyvinylidene fluoride (PVDF) 
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membrane (Immobilon-FL; 0.45µM pore-size; MilliporeSigma), and blocked using 5% 

milk in TBST (tris buffered saline with tween-20; 10mM tris-HCl, 150 mM NaCl, 0.05% 

tween-20, pH 7.5). Membranes were incubated with primary antibodies α-FLAG (M2; 

mouse monoclonal; Sigma; used at 1:2000 dilution) and/or α-G6PDH (rabbit polyclonal; 

Sigma; used at 1:20,000 dilution), washed using TBST, and incubated with fluorescently 

labeled secondary antibodies (LI-COR Biosciences; IRDye® 680RD Goat anti-Mouse 

IgG and IRDye® 800CW Goat anti-Rabbit IgG; used at 1:10,000 dilution). Fluorescent 

imaging of immunoblots was performed using an Odyssey infrared imaging system (LI-

COR Biosciences) and quantified using the proprietary Odyssey software LI-COR 

Image Studio (LI-COR Biosciences).  

 

2.6 Analysis of Art1 and Hal5 by SILAC-MS 

Quantitative mass spectrometry analysis of Art1-FLAG and Hal5-FLAG by SILAC-MS 

was performed as previously described (Lee et al., 2019). Briefly, lysates were 

generated from yeast cultures labelled with heavy or light arginine and lysine and 

FLAG-tagged bait proteins (Art1-FLAG or Hal5-FLAG) were purified using EZView M2 

FLAG agarose beads (Sigma). After washing, baits were eluted from beads by boiling in 

10% SDS and eluates were collected and precipitated by addition of 50% ethanol, 

49.9% acetone and 0.1% acetic acid. Protein pellets were resuspended in 20µL of 8M 

urea/50mM Tris (pH 8.0) and the suspension was diluted by addition of 50µL of water 

and digested overnight with 1µg trypsin (Gold, Promega). To analyze Art1 and Hal5 

phosphorylation, resulting phosphopeptides were enriched using immobilized metal 

affinity chromatography (MacGurn et al., 2011) and analyzed on a Q Exactive mass 
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spectrometer (Thermo). To analyze Hal5 interactions, resulting peptides were (insert 

description here) Resulting spectra were searched using MaxQuant software (ver. 

1.5.3.30) and chromatography was analyzed using Skyline software (MacCoss Lab). 

 

2.7 Bioinformatic analysis  

Protein kinase sequences were retrieved from Saccharomyces Genome Database 

(SGD, https://www.yeastgenome.org) and aligned using Clustal Omega (EMBL-EBI, 

multiple sequence alignment) or EMBOSS Water (EMBL-EBI, pairwise sequence 

alignment) (Madeira et al., 2019). Sequence alignments were visualized using iTOL 

(https://itol.ebl.de.itol.cgi) (Letunic and Bork, 2019), EvolView v3 

(www.evolgenius.info/evolview.html) (Subramanian et al., 2019), or JalView 

(www.jalview.org) (Waterhouse et al., 2009). SGD YeastMine 

(https://yeastmine.yeastgenome.org/yeastmine) was used to search and retrieve S. 

cerevisiae data, populated by SGD based on a curated list of protein kinases. Data 

retrieved through YeastMine for this study includes the number of publications 

annotated for each protein kinase (as of April 29, 2019) and orthologous across several 

model organisms. Information about protein kinase domains and architecture was 

retrieved automatically through the EvolView interface from UniProt (EMBL-EBI, 

https://www.uniprot.org). Secondary structure prediction of Hal5 was performed using 

JPred (Drozdetskiy et al., 2015). A pairwise sequence alignment of Hal5 and Snf1 

catalytic domains was used to generate a structural model for the Hal5 catalytic domain 

using MODELLER (https://salilab.org/modeller/ ) (Sali and Blundell, 1993) through the 

Chimera interface (UCSF, https://www.cgi.ucsf.edu/chimera/) (Pettersen et al., 2004).   
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CHAPTER 3  
 
 

The Evolution of NPR1/HAL5 family of Kinases and their Relationship to 
 

 AMPK/Snf1 
 
 

3.1 Introduction  

Protein kinases represent a significant portion of all genomes, specifically about 2-3% of 

both the human and yeast genomes (Krupa et al., 2004).  These enzymes catalyze the 

transfer of the g-phosphate group from ATP to a protein target (usually at serine, 

threonine, and tyrosine residues), forming a reversible post-translational modification 

that serves to increase the functional complexity of the genome. The vast majority of 

protein kinases are defined by a eukaryotic protein kinase (ePK) catalytic domain, and 

therefore belong to a single superfamily of kinases known as the ePKs. In these 

kinases, there is generally a lysine residue critical for coordinating ATP in the ATP-

binding pocket, and a catalytic aspartate residue in the active site. In spite of high 

conservation within the ATP-binding pockets and active sites across most protein 

kinases, sequence divergences within the catalytic domains and outside of the catalytic 

domains, as well as known biological functions, have led to further classification of ePKs 

into distinct groups, many of which are conserved across evolution. These groups fall 

into two divisions, the tyrosine kinases and the serine/threonine kinases. The 

serine/threonine kinase subdivision of ePKs includes the AGC Group (containing PKAs, 

PKGs, and PKCs, or protein kinase A, protein kinase G, and protein kinase C 

subfamilies), the CMGC Group (containing CDKs and MAPKs, or cyclin-dependent 

kinase and mitogen-activated protein kinase families),  the STE group (containing 



 30 

MEKs, or mitogen-activated protein kinase kinases), the CK1 group (containing casein 

kinases). and finally, the CAMK group (encompassing CAMKs, or calcium and 

calmodulin-regulated kinase subfamilies, as well as several other related families) 

(Manning et al., 2002). Most of what we know about each of these kinase groups, and 

our conventional wisdom about how these kinases function, is rooted in the 

characterization of just a few flagship kinases in each group.  

 

Nearly 40% of protein kinases identified in yeast failed to be classified into a classical 

ePK group, and were instead grouped into catch-all categories such as “Other” and 

“Atypical” (Hunter and Plowman, 1997).  One such yeast-specific subfamily lacking 

classification into the classical ePK groupings is the NPR1/HAL5 family of kinases, 

which hasn’t garnered a lot of attention because it is not thought to be conserved in 

humans. This is in contrast to protein kinases with clear human homologs, such as 

TORC1 or Snf1, which have been intensely characterized. Npr1, one of the better-

characterized kinases of the NPR1/HAL5 family, shares striking similarities to Snf1-

mediated regulation of glucose transporter abundance. For example, as an effector 

molecule for TORC1 in intracellular nitrogen sensing, Npr1 regulates amino acid 

transporter abundance (reviewed in Chapter 1). Similar to Npr1 and Snf1, Hal4 and 

Hal5 kinases of the NPR1/HAL5 family regulate nutrient transporter abundance, 

although the mechanism of this regulation is poorly characterized relative to Snf1 and 

Npr1. Thus, Npr1 and Hal kinases appear to function similarly to Snf1 in this capacity, a 

hallmark of defining and refining functional protein kinase families. However, the 

evolutionary relationship between NPR1/HAL5 kinases with Snf1 in yeast or AMPK in 
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humans has not been explored. Defining this evolutionary relationship, and re-

classifying NPR1/HAL5 kinases into ePK groups based on phylogenetic analysis 

presented in this chapter, and the functional data reviewed in Chapter 1 and presented 

in Chapters 4-6, will inform us broadly about the functions of an otherwise understudied 

group of kinases, including their human counterparts.  

 

3.2 Results  

 

3.2.1 Kinases clustering with Snf1 are understudied  

To better understand the evolutionary relationship of Snf1 with other protein kinases in 

yeast, I first examined the history of protein kinase classification. The first classical 

protein kinase groups (AGC, CMGC, CAMK, CK1, and protein tyrosine kinases or 

PTKs) were established in 1995 using about 400 kinases across evolution that had 

been previously characterized and/or sequenced (Hanks and Hunter, 1995). A 

combination of available functional data, and sequence conservation with the catalytic 

domains, ultimately informed the classical protein kinase groupings in yeast in 1997, 

shortly after the yeast genome was sequenced (Hunter and Plowman, 1997). In a 

cutting-edge bioinformatic approach at the time, the majority of kinases in yeast 

(encompassing metabolic, lipid, and protein kinases) were identified and classified into 

families based on gene sequence similarity with a known ePK catalytic domain. In 2002, 

a similar analysis was carried out in humans shortly after the human genome was 

sequenced, which expanded the classical kinase groupings (Manning et al., 2002). 

These studies were pioneering and powerful, because gene sequence analysis enabled 
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comprehensive identification of the yeast and human protein kinase complements. 

Establishing protein kinase groups and subfamilies for newly discovered kinase domain 

sequences was important because it allowed us to hypothesize function based on the 

physiology of known protein kinases, and to then study them in vivo. Since these 

pioneering studies that established protein kinase classification, additional kinases with 

divergent sequences have been identified, and others were revealed not to be kinases 

at all. For the most part, these classic family groupings remain, with revisions being 

made as we learn more about the physiological function of uncharacterized protein 

kinases.  

 

In contrast to the analysis carried out in 1997 to predict ePK domains in yeast, I used a 

widely-accessible and modern multiple sequence alignment algorithm to perform a 

multiple sequence alignment of full protein sequences for the 130 known protein 

kinases in yeast, which reveals 6 distinct kinase clades (Figure 3.1 and 3.2). 

Surprisingly, these clades don’t divide exactly into the classical ePK groupings, which 

may be a result of several factors, including (i) using full-length sequences as opposed 

to only catalytic domains, (ii) excluding all metabolic and lipid kinases, or (iii) improved 

algorithm performance compared to 1997. The NPR1/HAL5 kinases, among others 

lacking classical group classification, cluster into the clade that contains the well-studied 

CAMK kinase Snf1, implying that these protein kinases have undergone relatively 

recent evolutionary separation from a common ancestor, and may be part of the 

broader CAMK group which includes a variety of subfamilies. To gain a better sense of  
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FIGURE 3.1 Protein kinases in yeast cluster into 6 major clades that share 
evolutionary conservation. A multiple sequence alignment of all 130 known protein 
kinases in yeast was performed using Clusal Omega and visualized as a scaled, 
unrooted phylogenetic tree using iTOL. The protein kinases cluster into 6 major clades, 
which have been arbitrarily numbered and color-coded for simplicity and ease of 
viewing across different figures. The 5th clade in teal contains Snf1. Kinases clustering 
with Snf1 include many kinases originally described as the NPR/HAL5 family, denoted 
by black asterisks (PTK1, PTK2, NPR1, PRR2, RTK1, HRK1, HAL5, KKQ8, and HAL4) 
GCN2 and CHK1, also originally described as NPR/HAL5 family members, are 
clustering with groups 3 and 6, respectively.  
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Figure 3.2 Kinases 
clustering with Snf1 are 
relatively understudied.  
A multiple sequence 
alignment of all 130 
known protein kinases in 
yeast was performed 
using Clusal Omega and 
visualized as a scaled, 
rooted phylogenetic tree 
using iTOL. The protein 
kinases cluster into 6 
major clades, which have 
been arbitrarily numbered 
and color-coded for 
simplicity and ease of 
viewing across different 
figures.  A heat-map to the 
right of the phylogenetic 
tree conveys the number 
of publications annotated 
in SGD per kinase. Dots 
to the right of the heat 
map indicate the classical 
family assignment for 
each kinase.  
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how much research interest the 130 protein kinases in yeast, and each of the 6 kinase 

clades, have garnered, I determined how many publications have mentioned each 

kinase (as annotated in SGD as of April 29, 2019) (Figure 3.2). I found that the majority 

of protein kinases appear understudied relative to a select few, namely Rad53 and Snf1 

of the CAMK group and Cdc28 of the CMGC group, based on number of publications 

annotated in the Saccharomyces Genome Database (SGD). 

 

3.2.2 Kinases clustering with Snf1 are orthologous to human AMPK/Snf1-related 

kinases 

Hunter and Plowman speculated in their 1997 review of protein kinases in yeast that 

many of the unique kinases grouped into a category called “Other”, such as the 

NPR/HAL5 kinase family, would have homologs in other species. To identify related 

kinases across evolution, I used SGD YeastMine to search and retrieve S. cerevisiae 

data from SGD, specifically orthologs of the kinases clustering with Snf1 across 

evolution (Table 3.1).  Of the orthologs identified in this approach, 82% are either the 

Snf1 homolog AMPK, or part of the CAMK subfamily CAMK-like kinases, including the 

AMPK-related and Snf1-related kinases (Figure 3.3). 

 

The AMPK/Snf1-related kinases in humans were first identified in the 2002 analysis 

based on sequence homology with the AMPK catalytic domain (Manning et al., 2002), 

and have since been split into two subfamilies based on functional data: the AMPK-

related kinases (BRSKs, NUAKs, QIKs, SIKs, MARKs, and MELK) and the Snf1-related  
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Table 3.1 Orthologs of yeast AMPK/Snf1-related kinase across evolution. SGD 
YeastMine was used to search and retrieve S. cerevisiae data, populated by SGD and 
powered by InterMine by using a gene list of 130 protein kinases in yeast to identify 
orthologs across evolution.  For brevity, this table displays orthologs of the NPR/HAL5 
subgroup of kinases. Red text = AMPK ortholog, blue text = Snf1-related ortholog, and 
orange text = AMPK-related ortholog.  
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Table 3.1 continued  
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Table 3.1 continued 
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Table 3.1 continued 
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Table 3.1 continued 
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FIGURE 3.3 Kinases clustering with Snf1 are orthologous to human AMPK/Snf1-
related kinases. Every identified ortholog for kinases clustering with Snf1 by multiple 
sequence alignment was tallied and identified as AMPK (red), AMPK-related (AMPK-R, 
orange), Snf1-related (SNRK, blue), or Other (black).  
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kinases (NIMs, SNRKs, TSSKs, SSTKs, and HUNK). While the AMPK-related kinases 

were identified through sequence homology with the protein kinase domain of AMPK, 

they differ from AMPK in protein architecture and regulation. These kinases, like AMPK, 

are activated by phosphorylation at a conserved threonine residue within the activation 

loop (Bright et al., 2009). Broadly, they appear to participate in signaling cascades that 

respond to nutrient availability, and to regulate cell polarization in epithelial and 

neuronal cell types (Bright et al., 2009). Importantly, appropriate regulation of 

membrane trafficking events underlies the diverse functions described for AMPK-related 

kinases.  

 

The Snf1-related kinases have been grouped together due to their similarity to AMPK 

and AMPK-related kinases in sequence (Jaleel et al., 2005), but are distinct from 

AMPK-related kinases due to the fact that they either do not require activation at the 

conserved threonine in the activation loop, or do not contain a conserved threonine in 

the activation loop (Bright et al., 2009). While the function of AMPK is understood better 

than either AMPK-related or Snf1-related kinases, considerably less is known about the 

function of Snf1-related kinases compared to the AMPK-related subfamily.  

 

3.2.3 Kinases clustering with Snf1 appear to subdivide into two distinct groups 

A multiple sequence alignment of full protein sequences for kinases clustering with Snf1 

by phylogenetic analysis reveals that this group is characterized by high conservation 

restricted to the catalytic domains, and divergent sequences outside of the catalytic  
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FIGURE 3.4 Kinases clustering with Snf1 are characterized by homology within 
the catalytic domains and divergent sequences outside of the catalytic domains. 
A multiple sequence alignment of the kinases that clustered with Snf1 yeast was 
performed using Clusal Omega and visualized as a scaled, rooted phylogenetic tree 
using EvolView.  To the right of the phylogenetic tree, sequence homology for each 
kinase with Snf1 is displayed as a 4-column heat-map divided into two sections. In the 
first section labeled BLAST, percent identity (%ID) or percent similarity (%SIM) was 
calculated by aligning the two sequences using NCBI-BLAST. In the second section 
labeled SMS percent identity (%ID) or percent similarity (%SIM) was calculated by 
aligning the two sequences using Sequence Manipulation Suite (Stothard, 2000). Both 
programs were used due to having different methods for calculating homology. BLAST 
calculates homology based on only the aligned region, which in every case is restricted 
to mostly the catalytic domains. While SMS also aligns sequences, its calculation 
accounts for the entirety of the protein sequences, demonstrating lower sequence 
homology outside of the catalytic domains. To the right of the sequence homology heat-
map are protein architecture maps for each kinase drawn to scale. These were 
automatically generated in EvolView from data available for each kinase in UniProt.  
YPL150W is not annotated in UniProt, and therefore does not have a protein 
architecture map. Kinases with a conserved threonine in the activation loop are colored 
in orange, and kinases without a conserved threonine in the activation loop are colored 
in blue (See Table 3.2 and Figure 3.5 for more information).  
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TABLE 3.2 Important features of kinases clustering with Snf1 Most kinase domain 
boundaries, ATP-coordinating lysine residues, and catalytic aspartate residues were 
annotated in UniProt. These features corresponding to YPL150W were annotated here 
for the first time using the multiple sequence alignment. Activation loops and gatekeeper 
residues were annotated for the first time here using the multiple sequence alignment. 
Accessory domains identified here were retrieved from UniProt and include KA1, UBA, 
and adenylate sensor domains.  
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FIGURE 3.5 MSA of activation Loops in kinases clustering with Snf1 A multiple 
sequence alignment, performed using Clustal Omega and visualized in JalView, of the 
activation loops (DFG…APE) in kinases clustering with Snf1 by phylogenetic analysis. 
The amino acid position aligning with T210, critical threonine of the Snf1 activation loop 
(McCartney et al., 2016), is denoted by the black indicator.  
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FIGURE 3.6 MSA of ATP-binding pockets in kinases clustering with Snf1 A 
multiple sequence alignment of a portion of the ATP-binding pockets to identify the 
gatekeeper residues (denoted by black indicator) conserved with the Snf1 gatekeeper 
reside, I132 (Young et al., 2012). 
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domains (Figure 3.4). Next, using a combination of information available on UniProt 

and conservation with Snf1, I identified and annotated the kinase domain boundaries, 

and conserved residues such as the catalytic aspartate, the ATP-coordinating lysine 

residues, the gatekeeper residues which govern access to the ATP-binding pockets, as 

well as the activation loops and the presence or absence of a conserved threonine 

residue (Table 3.2, and Figures 3.5 and 3.6). I found that the kinases clustering with 

Snf1 subdivide into roughly two groups, those with and those without a conserved 

threonine residue in the activation loop (Figure 3.4). This analysis suggests that 

kinases clustering with Snf1 may divide into two subfamilies, reminiscent of human 

AMPK/Snf1-related kinases.  

 

3.3 Discussion  

While it is clear that these kinases clustering with Snf1 are orthologous to subfamilies 

within the broader CAMK group, it is not immediately clear how to classify them. Like 

the AMPK-related and Snf1-related subfamilies delineated in humans, I propose to 

classify these protein kinases into two subfamilies based on three sets of criteria 

including (i) domain architecture, (ii) classification of orthologous kinases across 

evolution, and (iii) the presence of a conserved threonine residue within the activation 

loop. I classify FRK1, KIN4, HSL1, GIN4, KCC4, YPL150W, KIN1, and KIN2 into one 

subfamily called the yeast AMPK-related kinases (yAMPK-RKs). These kinases are 

characterized by C-terminal kinase domains, conserved threonine residues within their 

activation loops, and are orthologous with AMPK-related kinases across evolution (with 

the exception of FRK1 and KIN4, which are orthologous with Snf1-related kinases). I  
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FIGURE 3.7 Kinases clustering with Snf1 are the yeast AMPK/Snf1-related kinases 
A schematic depicting the division of the broader yeast AMPK/Snf1-related kinase 
family into yeast AMPK-related kinases (yAMPK-RKs) and yeast Snf1-related kinases 
(ySnf1-RKs) based on protein domain architecture, kinase orthologs across evolution, 
and activation loops.  
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classify PRR2, NPR1, HRK1, RTK1, HAL4, HAL5, KKQ8, PTK1, PTK2, VHS1, SKS1, 

PRR1, and NNK1 into a second subfamily called the yeast Snf1-related kinases (ySnf1- 

RKs). These kinases are characterized by mid-to-N-terminal kinase domains, they lack 

conserved threonine residues in the activation loop, and are orthologous with Snf1- 

related kinases across evolution. Together, these subfamilies comprise the broader 

AMPK/Snf1-related kinase family in yeast (Figure 3.7). 

 

In this Chapter, I have demonstrated the evolutionary relationship between NPR/HAL5 

kinases and Snf1/AMPK, which is significant because it lays the foundation to study a 

group of kinases in yeast that has been historically ignored due to lack of true human 

homologs. In the next Chapter, I will begin to examine the mechanism by which 

NPR/HAL5 kinases regulate nutrient transporter abundance, which is not currently 

known.  
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CHAPTER 4 
 
 

Hal Kinases Inhibit Endocytosis of Nutrient Transporters 
 
 

4.1 Introduction  
 
Plasma-membrane protein abundance at steady-state results from a balance between 

protein synthesis and protein degradation, and a multitude of membrane trafficking 

pathways that bridge these processes including secretion, endocytosis, and recycling. 

Previous studies identified a role for Hal kinases in stabilizing a variety of APC-type 

superfamily nutrient transporters at the PM, however the mechanism remains unknown. 

Often, kinases impact nutrient transporter abundance by regulating transporter gene 

expression, and therefore protein synthesis. A limited number of nutrient-sensing 

kinases, such as Snf1 and Npr1, have been characterized in regulating transporter 

abundance through endocytic downregulation. The phenotypic similarities observed so 

far for Snf1, Npr1, and Hal kinases, and the evolutionary relationship demonstrated 

between these kinases in Chapter 3, have led me to hypothesize that Hal kinases 

regulate nutrient transporter abundance through negative regulation of membrane 

trafficking events.  

 

In this chapter, I test this hypothesis and present evidence that dysregulation of 

endocytic trafficking appears to be the primary mechanism by which the steady state-

abundance of nutrient transporters is altered in hal mutant cells, although this does not 

exclude a role for Hal kinases in the regulation of transporter transcription. This is 
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significant because it places Hal kinases as regulators of a specific membrane 

trafficking pathway for the first time.  

 

4.2 Results 

 

4.2.1 Hal4 and Hal5 regulate endocytosis but not endosomal recycling  

To better understand the role of Hal kinases in plasma membrane protein stability, I first 

analyzed the subcellular location of various GFP-tagged integral membrane proteins 

that are normally stably localized at the PM in wildtype cells. I found that Mup1-GFP 

(high-affinity methionine transporter), Can1-GFP (arginine transporter) and Fur4-GFP 

(high-affinity uracil transporter) localized to the PM in wildtype cells but exclusively to 

the vacuole lumen in Δhal4Δhal5 (or hal) mutant cells (Figures 4.1A-B, 4.2A-B, and 

4.3A-B), consistent with previous reports (Pérez-Valle et al., 2007; Pérez-Valle et al., 

2010). Surprisingly, Pma1-GFP, an essential proton pump in yeast, also localized 

exclusively to the vacuole in hal mutant cells (Figure 4.4A-B). I next examined the 

localization of the peripheral plasma membrane protein Pil1 - a BAR domain protein and 

a core structural component of eisosomes (Karotki et al., 2011; Olivera-Couto et al., 

2011). This analysis revealed no defects in Pil1-GFP localization or morphology in hal 

mutant cells (Figure 4.5).  Consistent with previous studies double hal mutants, but not 

single mutants, also exhibit a growth defect (Figure 4.6A-B). However, the relationship 

between the observed instability of nutrient transporters and the growth defects 

exhibited by hal mutant cells remains unclear. This data, combined with previous 

studies, suggests that PM protein instability observed is limited to nutrient transporters,  
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FIGURE 4.1 Mup1 aberrantly localizes to the vacuole in hal mutants (A) 
Representative images of Mup1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously-tagged Vph1-MARS, a marker 
for the limiting membrane of the vacuole. WT and Dhal4,5 mutant cells were imaged 
after being cultured to mid-log phase in selective media. (B) Quantification of Mup1-
GFP localization in (A) performed by binning ells into localization categories as 
indicated.  
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FIGURE 4.2 Can1 aberrantly localizes to the vacuole in hal mutants (A) 
Representative images of Can1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously-tagged Vph1-MARS, a marker 
for the limiting membrane of the vacuole. WT and Dhal4,5 mutant cells were imaged 
after being cultured to mid-log phase in selective media. (B) Quantification of Can1-GFP 
localization in (A) performed by binning ells into localization categories as indicated.  
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FIGURE 4.3 Fur4 aberrantly localizes to the vacuole in hal mutants (A) 
Representative images of Fur4-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously-tagged Vph1-MARS, a marker 
for the limiting membrane of the vacuole. WT and Dhal4,5 mutant cells were imaged 
after being cultured to mid-log phase in selective media. (B) Quantification of Fur4-GFP 
localization in (A) performed by binning ells into localization categories as indicated.  
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FIGURE 4.4 Pma1 aberrantly localizes to the vacuole in hal mutants (A) 
Representative images of Pma1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously-tagged Vph1-MARS, a marker 
for the limiting membrane of the vacuole. WT and Dhal4,5 mutant cells were imaged 
after being cultured to mid-log phase in selective media. (B) Quantification of Pma1-
GFP localization in (A) performed by binning ells into localization categories as 
indicated.  
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FIGURE 4.5 Pil1 localizes to the PM in hal mutants Representative images of Pil1-
GFP expressed from a centromeric plasmid under native promoter control in the 
presence of endogenously-tagged Vph1-MARS, a marker for the limiting membrane of 
the vacuole. WT and Dhal4,5 mutant cells were imaged after being cultured to mid-log 
phase in selective media. 
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FIGURE 4.6 Disruption of hal4 and hal5 results in a growth defect (A) 
Representative image of cells serially diluted on synthetic complete media and grown 
for 3 days to assess growth of various hal mutants. (B) Growth of cells seeded at 0.05 
OD from mid-log phase and monitored over time for OD600nm in synthetic complete liquid 
media.  
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although the nutrient transporters involve multiple nutrient classes, including amino 

acids, uracil, glucose, and ions.  

 

Given the broad destabilization of integral PM proteins, I considered the possibility that 

hal mutants are defective for endosomal recycling. To test this, I analyzed the 

localization of Snc1-GFP, a v-SNARE which normally cycles between the PM and 

endosomes but exhibits aberrant endosomal localization in mutants defective for 

endosomal recycling (Rossi et al., 1997; Lewis et al., 2000; Robinson et al., 2006). 

Importantly, I found that Snc1-GFP is not mislocalized upon loss of Hal4 and Hal5 

kinases (Figure 4.7), suggesting that Hal kinases do not regulate endocytic recycling. 

To explore this further, I assayed endosome-to-PM lipid recycling by measuring efflux of 

a lipophilic tracer dye (FM 4-64) into the media (Vida and Emr, 1995; Galan et al., 2001; 

Carroll et al., 2012). I detected no difference in lipid recycling upon loss of Hal kinases 

compared to WT cells, in contrast to Δrcy1 mutant cells which are known to exhibit lipid 

recycling defects (Figure 4.8) (Lewis et al., 2000; Galan et al., 2001). Additionally, I 

found that GFP-tagged carboxypeptidase S (CPS-GFP) (Spormann et al., 1992; 

Katzmann et al., 2001) exhibited normal vacuolar localization in hal mutant cells, 

indicating that Hal kinases are not required for the transport of proteases to the lumen of 

the vacuole (Figure 4.9). This analysis suggests hal mutant yeast cells exhibit broadly 

aberrant endocytic downregulation of multiple PM transporters while endosomal 

recycling and vacuolar transport are unaffected.  
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FIGURE 4.7 Snc1 localizes to the PM in hal mutants Representative images of Snc1-
GFP expressed from a centromeric plasmid under native promoter control in the 
presence of endogenously-tagged Vph1-MARS, a marker for the limiting membrane of 
the vacuole. WT and Dhal4,5 mutant cells were imaged after being cultured to mid-log 
phase in selective media. 
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FIGURE 4.8 Lipid recycling is not affected in hal mutants Percentage of cell 
population positive for FM 4-64 fluorescence as measured by cells that fall within a 
defined PE gate as measured by flow cytometry (10,000 cells counted per condition per 
time point, n=3 biological replicates graphed as an average ± standard deviation) in 
WT, Dhal4,5 or Drcy1 cells.  
  



 61 

 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4.9 Cps1 localizes to the PM in hal mutants Representative images of 
Cps1-GFP expressed from a centromeric plasmid under native promoter control in the 
presence of endogenously-tagged Vph1-MARS, a marker for the limiting membrane of 
the vacuole. WT and Dhal4,5 mutant cells were imaged after being cultured to mid-log 
phase in selective media. 
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4.2.2 Hal4 and Hal5 exhibit partially redundant roles with respect to transporter 

trafficking  

Although the destabilization of PM transporters has been previously reported for hal 

double mutant cells, the relative contributions of Hal4 and Hal5 to these phenotypes 

have not been addressed. I hypothesized that Hal4 and Hal5 have redundant (or 

partially-redundant) functions with respect to regulation of endocytosis. Alternatively, the 

broad trafficking phenotypes observed might result from the sum of distinct cargo 

specificities. To distinguish between these possibilities, I characterized endocytic 

trafficking in Δhal4 and Δhal5 cells to determine if single mutants exhibited phenotypic 

differences compared to hal double mutant cells. Importantly, I found that Δhal4 and 

Δhal5 single mutant cells both exhibited increased vacuolar localization of Mup1-GFP 

relative to wildtype cells (Figure 4.10A-B). However, unlike hal double mutant cells 

(Figure 4.1A-B), Δhal4 and Δhal5 single mutant cells both exhibited significant Mup1 

PM localization (Figure 4.10A-B), suggesting partially redundant functions with respect 

to Mup1 trafficking.  

 

To more specifically characterize Mup1 signal at the PM, I measured fluorescence of 

Mup1 tagged with pHluorin, a pH-sensitive GFP variant that quenches upon 

encountering acidic intracellular compartments (Prosser et al., 2010). Strikingly, I found 

that hal double mutant cells exhibited no Mup1-pHluorin signal at steady state (Figure 

4.10C), consistent with fluorescence microscopy analysis that revealed complete 

vacuolar localization of Mup1 in these cells (Figure 4.1A-B). In contrast, Δhal4 and 

Δhal5 single mutant cells exhibited significant Mup1-pHluorin signal intensity at steady  
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FIGURE 4.10 Hal4 and Hal5 are partially redundant with respect to Mup1 (A) 
Representative images of Mup1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously MARS tagged Vph1, a marker 
for the limiting membrane of the vacuole. WT, Dhal4, or Dhal5 cells were cultured to 
mid-log phase in selective media. (B) Quantification of Mup1-GFP localization in (A) 
performed by measuring the ratio of Mup1-GFP signal at the PM compared to the 
vacuole (PM:VAC). PM:VAC ratio graphed as an average of 50 cells ±	standard 
deviation. (C) Percentage of cell population expressing endogenously tagged Mup1-
pHluorin as measured by cells that fall within a defined FITC gate by flow cytometry at 
steady state (10,000 cells counted per condition, n=4 biological replicates graphed as 
an average ± standard deviation). (D) Percentage of cell population expressing 
endogenously tagged Mup1-pHluorin as measured by cells that fall within a defined 
FITC gate by flow cytometry (10,000 cells counted per condition, n=4 biological 
replicates graphed as an average ± standard deviation) over time in the presence of 
excess methionine, an endocytic stimulant. Mup1-pH PM half-time (t1/2) was estimated 
based on initial and final time points and elapsed time. 
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state (Figure 4.10C), consistent with fluorescence microscopy analysis revealing PM 

localization of Mup1-GFP in these cells (Figure 4.10A-B). I speculated that Δhal4 and 

Δhal5 single mutant cells may exhibit increased endocytic trafficking of Mup1. To test 

this, I measured the rate of internalization of Mup1-pHluorin from the plasma membrane 

in response to methionine (Prosser et al., 2016) and found that Mup1 internalizes faster 

in Δhal4 and Δhal5 single mutant cells compared to wildtype cells (Figure 4.10D). 

Taken together, these results indicate that both Hal4 and Hal5 contribute to the 

regulation of Mup1 endocytic trafficking, and loss of either kinase results in increased 

rate of Mup1 delivery to the vacuole. 

 

To further explore the endocytic trafficking phenotypes of Δhal4 and Δhal5 single 

mutant cells, I next examined localization of the arginine transporter Can1-GFP, which 

localizes primarily to the PM in wildtype cells and exclusively to the vacuole in hal 

double mutant cells (Figure 4.2A-B). Interestingly, Can1-GFP in Δhal4 single mutant 

cells exhibited an intermediate phenotype with a significant increase in vacuolar 

localization, while distribution of Can1-GFP in Δhal5 single mutant cells and wildtype 

cells was not significantly different (Figure 4.11A-B). This data indicates that Hal4 

contributes to the stabilization of Can1 at the plasma membrane, and Hal5 kinase 

activity partially stabilizes Can1 at the PM in the absence of Hal4. In contrast to Can1-

GFP and Mup1-GFP, Fur4-GFP subcellular localization in Δhal4 and Δhal5 single 

mutant cells was indistinguishable from wildtype cells (Figure 4.12A-B). Taken 

together, these data suggest that Hal4 and Hal5 negatively regulate endocytic trafficking  
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FIGURE 4.11 Hal4 and Hal5 are partially redundant with respect to Can1 (A) 
Representative images of Can1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously MARS tagged Vph1, a marker 
for the limiting membrane of the vacuole. WT, Dhal4, or Dhal5 cells were cultured to 
mid-log phase in selective media. (B) Quantification of Can1-GFP localization in (A) 
performed by measuring the ratio of Can1-GFP signal at the PM compared to the 
vacuole (PM:VAC).  PM:VAC ratio graphed as an average of 50 cells ±	standard 
deviation. 
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FIGURE 4.12 Hal4 and Hal5 exhibit fully redundant roles with respect to Fur4(A) 
Representative images of Fur4-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously MARS tagged Vph1, a marker 
for the limiting membrane of the vacuole. WT, Dhal4, or Dhal5 cells were cultured to 
mid-log phase in selective media. (B) Quantification of Fur4-GFP localization in (A) 
performed by measuring the ratio of Fur4-GFP signal at the PM compared to the 
vacuole (PM:VAC).  PM:VAC ratio graphed as an average of 50 cells ±	standard 
deviation. 
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FIGURE 4.13 Hal4 and Hal5 exhibit distinct roles in some cellular contexts 
Representative image of cells serially diluted onto indicated media and grown for 3 
(YPD) or 5 (SCD) days to assess growth of Dhal4 and Dhal5 single mutants under (A) 
thialysine stress, a toxic analog to lysine and indicator of trafficking fitness or (B) 
Tunicamycin, an ER protein folding stress, or low glucose (0.2% glucose compared to 
2% in control) and (C) manganese, lithium, or caffeine stresses.  
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and can function in a manner that is fully redundant (as for Fur4) or partially redundant 

(as for Mup1 and Can1).  

 

Additionally, I found that Δhal4 and Δhal5 single mutant cells exhibited different 

sensitivities when exposed to a variety of stress conditions (Figure 4.13A-C). For 

example, Δhal5 single mutant cells were resistant to thialysine (a toxic analog to lysine  

(Lin et al., 2008)) while Δhal4 single mutant cells were thialysine-sensitive (Figure 

4.13A), which is indicative of a cargo-specific function with respect to lysine transport.  

Strikingly, Δhal5 single mutant cells were sensitive to ER stress (tunicamycin), while 

Δhal4 single mutant cells were sensitive to low glucose conditions (Figure 4.13B), 

suggesting distinct roles for Hal4 and Hal5 in different environmental conditions. 

Furthermore, Δhal5 single mutant cells, but not Δhal4 cells, exhibited sensitivity to metal 

ion (MnCl2) and salt (LiCl) stresses (Figure 4.13C). Importantly, both Δhal4 and Δhal5 

single mutant cells exhibited growth comparable to WT cells in the presence of caffeine 

or sodium dodecyl sulfate (Figure 4.13C and data not shown, Nathaniel Hepowit, PhD), 

or DNA replication stress (methyl methanesulfonate) (data not shown, Nathaniel 

Hepowit, PhD). Overall, my data suggest that Hal4 and Hal5 exhibit partial or full 

redundancy with respect to endocytic trafficking phenotypes observed, arguing against 

a cargo-specific role in the regulation of endocytosis, although broader phenotypic 

characterization indicates that Hal4 and Hal5 may also have distinct functions in the 

cell. 
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4.2.3 Hal-mediated regulation of endocytosis requires both Art1-dependent and Art1-

independent endocytosis  

My results indicate that Hal kinases do not regulate endosome-to-PM recycling (Figure 

4.7 and 4.8) and may instead function at the level of endocytic internalization from the 

PM (Figure 4.10D). To better define the precise trafficking step regulated by Hal 

kinases, I tested if endocytosis is required for aberrant accumulation of nutrient 

transporters in the vacuole. Methionine-induced endocytic downregulation of Mup1 

requires Art1, an adaptor protein for the Rsp5 E3 ubiquitin ligase (Lin et al., 2008). 

Importantly, I found that loss of Art1 stabilized Mup1 at the PM in the absence of Hal 

kinases (Figure 4.14A-B), indicating that Art1-mediated endocytosis is required for 

vacuolar trafficking in hal mutant cells. However, I also found that deletion of ART1 did 

not restore the growth defect observed in hal mutant cells (Figure 4.15), suggesting that 

Art1-independent mechanisms of internalization may contribute to transporter instability.  

 

Based on these results, I hypothesized that Art1-mediated internalization only accounts 

for aberrant vacuolar trafficking of a subset of Hal-regulated cargo. To test this, I 

analyzed trafficking of Fur4, an endocytic cargo known to be Art1-independent (Nikko 

and Pelham, 2009). I found that loss of Art1 does not restore Fur4-GFP to the PM 

(Figure 4.16A-B). In contrast, treatment with Latrunculin A (LatA), an actin 

polymerization inhibitor known to block endocytosis (Coué et al., 1987; Kübler and 

Riezman, 1993; Engqvist-Goldstein and Drubin, 2003)), restored PM stability of both 

Fur4-GFP and Mup1-GFP in hal mutant cells (Figure 4.15A-B and 4.16A-B). I 

extended my analysis to Pma1-GFP, a cargo not known to be subject to endocytic  
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FIGURE 4.14 Hal4 and Hal5 regulate Art1-dependent endocytosis of Mup1 (A) 
Representative images of Mup1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously MARS tagged Vph1, a marker 
for the limiting membrane of the vacuole. WT Dhal4Dhal5 cells, or Dhal4Dhal5Dart1 cells 
were cultured to mid-log phase in selective media and treated with LatA for 1 hour were 
indicated. (B) Quantification of Mup1-GFP localization in (A) performed by binning cells 
into localization categories as indicated. 
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FIGURE 4.15 Deletion of art1 does not restore growth in hal mutants 
Representative image of cells serially diluted on synthetic complete media and grown 
for 3 days. 
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FIGURE 4.16 Hal4 and Hal5 regulate Art1-independent endocytosis of Fur4 (A) 
Representative images of Fur1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously MARS tagged Vph1, a marker 
for the limiting membrane of the vacuole. WT Dhal4Dhal5 cells, or Dhal4Dhal5Dart1 cells 
were cultured to mid-log phase in selective media and treated with LatA for 1 hour were 
indicated. (B) Quantification of Fur4-GFP localization in (A) performed by binning cells 
into localization categories as indicated. 
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FIGURE 4.17 Hal4 and Hal5 regulate Art1-dependent endocytosis of Pma1 (A) 
Representative images of Fur1-GFP expressed from a centromeric plasmid under 
native promoter control in the presence of endogenously MARS tagged Vph1, a marker 
for the limiting membrane of the vacuole. WT Dhal4Dhal5 cells, or Dhal4Dhal5Dart1 cells 
were cultured to mid-log phase in selective media and treated with LatA for 1 hour were 
indicated. (B) Quantification of Fur4-GFP localization in (A) performed by binning cells 
into localization categories as indicated. 
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downregulation, and found that like Mup1-GFP, both loss of Art1 and treatment with 

LatA restored Pma1 signal to the PM (Figure 4.17A-B). These results indicate that 

Pma1 is subject to Art1-dependent internalization in the absence of Hal kinases.   

 

4.3 Discussion  

Combined with previous reports, these findings indicate that (i) loss of Hal4 and Hal5 

kinases broadly affects the stability of integral PM transporters, extending beyond the 

APC-type superfamily to include the essential proton pump Pma1, (ii) Hal4 and Hal5 

regulation of transporter stability is partially-redundant, and (iii) Hal kinases achieve this 

regulation by inhibiting endocytosis, reminiscent of related kinases Snf1 and Npr1. 

These findings are important because they contribute to the understanding of Hal 

kinase function with respect to maintenance of cellular homeostasis. 

 

4.3.1 Hal4 and Hal5 are novel regulators of endocytosis  

Hal-mediated regulation of endocytosis appears limited to integral membrane proteins 

that act as nutrient transporters (including carbon, ion, and nitrogen transport), since 

loss of Hal4 and Hal5 does not appear to affect the stability of peripheral membrane 

proteins, like structural components of eisosomes. One possibility is that Hal5 regulates 

endocytic downregulation through inhibition of Art1, perhaps by a mechanism similar to 

that reported for Npr1 (MacGurn et al., 2011). In contrast to Npr1, which appears to 

promote endocytosis of some nutrient transporters, such as the tryptophan transporter 

Tat2 (Schmidt et al., 1998), but inhibit endocytosis of other transporters such as Can1 

(MacGurn et al., 2011) and Gap1(Merhi and André, 2012), Hal kinases appear to exert 
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negative regulatory control over every nutrient transporter examined to-date, spanning 

multiple nutrient classes and utilizing a variety of ART adaptor molecules. Consistent 

with these findings, art1 is clearly epistatic to npr1 in the context of membrane trafficking 

(MacGurn et al., 2011), indicating that most npr1 phenotypes can be attributed to Art1. 

Although some hal mutant phenotypes can be attributed to Art1, as is the case for Mup1 

and Pma1 instability, Art1 activity does not account for the growth defects observed in 

Hal5. Thus, while many of the phenotypes associated with loss of Npr1 are attributable 

to Art1 hyper-activation, this does not appear to be the case in the absence of Hal 

kinases.   

 

The role Hal kinases play in regulating the endocytosis of a diverse cargo could suggest 

that they operate on an endocytic bypass mechanism that promotes endocytosis 

independent of the normal regulatory control by the Art-Rsp5 network. An example of 

such a mechanism involves the COS proteins, which were recently described to 

promote endocytic downregulation of many nutrient transporters in stationary phase 

(MacDonald et al., 2015). However, one important feature of COS-mediated 

endocytosis is that it occurs independently of the ARTs (MacDonald et al., 2015). Thus, 

since Hal-mediated endocytosis can be Art1-dependent, it is unlikely that Hal-mediated 

endocytosis proceeds through induction of the COS pathway. Instead, the observation 

that induced trafficking of some proteins, like Mup1 and Pma1, are Art1-dependent 

suggests that loss of Hal kinases mimics changes in nutrient availability that typically 

induce Art1-mediated endocytosis. Although the data presented here do not exclude the 

possibility that Hal kinases regulate the function of Art1 and other ART adaptors, the 
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aberrant vacuolar trafficking of multiple transporters observed upon loss of Hal4 and 

Hal5 requires both Art1-dependent and Art1-independent mechanisms, suggesting that 

Hal regulation likely occurs upstream of the Art-RSP5 adaptor network, rather than via a 

bypass mechanism.  

 

4.3.2 Hal4 and Hal5 exhibit redundant and partially redundant functions  

Although many previous studies reported phenotypes of hal double mutants, 

phenotypes for hal4 and hal5 single mutants have not been previously reported. Here, I 

present evidence that Hal4 and Hal5 kinases are not fully redundant, as previously 

reported (Pérez-Valle et al., 2007). While Hal kinases are fully redundant in the context 

of growth, they are partially redundant in the regulation of nutrient transporters such as 

Mup1 and Can1, which may indicate that Hal kinases operate in concert on different 

pathways or distinct substrates, to regulate nutrient transporter stability.  One possibility 

is that Hal kinases operate together to form a kind of logic gate, whereby each kinase 

operates independently and signals in a manner that is sufficient to maintain normal 

growth and nutrient transporters at the cell surface. Consistent with the idea that Hal 

kinases may not perform exactly the same cellular functions, hal4 and hal5 single 

mutants appear to have distinct phenotypes, which suggests they may have separate 

functions (Figure 4.13A-C).   

 

4.3.3 A novel mechanism for regulation of Pma1 endocytic trafficking  

Pma1, a P-type ATP-ase that pumps protons out of the cell and is essential for viability, 

generates an electrochemical gradient that maintains cellular pH homeostasis and 
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drives nutrient transport across the PM. Most pma1 trafficking mutants described in the 

literature either fail to export from the ER, and are degraded via the ERAD (ER-

associated degradation) quality control pathway (Harris et al., 1994; DeWitt et al., 1998; 

Wang and Chang, 1999), or they export from the ER but fail to arrive at the PM and 

instead are trafficked to the vacuole (Chang and Fink, 1995; Luo and Chang, 2000). 

Once at the PM, Pma1 is thought to be tightly regulated and resistant to endocytosis 

due to its remarkable stability, with a half-life of approximately 11 hours (Benito et al., 

1991). The observed instability of Pma1 in hal mutant cells, though surprising, is 

consistent with the dysregulation of cytosolic pH and nutrient transport reported in 

previous studies (Pérez-Valle et al., 2010).  

 

At least one mutant pma1 allele, called pma1-10, effectively targets to the PM but is 

hypo-phosphorylated and unstable (Gong and Chang, 2001), suggesting that 

phosphorylation stabilizes Pma1 at the cell surface. Interestingly, Ptk2, a ySnf1-RK 

related to Hal4 and Hal5, is observed to regulate Pma1 activity through direct 

phosphorylation in response to glucose (Eraso et al., 2006), although it is not clear 

whether this regulates catalytic efficiency, trafficking, stability, or some combination. 

Consistent with these findings, Pma1 was recently observed to undergo endocytic 

downregulation, and replacement with Pma2, in response to heat stress (Zhao et al., 

2013). Additionally, loss of vacuolar proton pump activity in vma mutants results in 

aberrant endocytic trafficking of Pma1 (Velivela and Kane, 2018), suggesting that pH 

stress also triggers endocytic downregulation of Pma1.  These findings suggest that, 

despite the fact that Pma1 is essential and stable at the cell surface, the cell has 
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mechanisms for downregulating Pma1 in response to environmental stresses. Art1 was 

observed to be dispensable for the endocytic downregulation of Pma1 in vma mutants, 

which was mediated exclusively by Art9 (Velivela and Kane, 2018). In contrast, 

instability of Pma1 in hal mutants can be attributed exclusively to Art1. Thus, it appears 

yeast cells have evolved multiple mechanisms for targeting the endocytic 

downregulation of Pma1, which is perhaps not surprising given that its abundance at the 

PM has been observed to be tightly regulated independently of transcription (Eraso et 

al., 1987; Na et al., 1995).  

 

Deletion of pma1 in yeast is inviable, thus one prediction is that hal mutants grow slowly 

due to the aberrant and accelerated endocytic downregulation of Pma1. If this were 

true, I expected restoration of Pma1 to the PM, as I see with the deletion of art1 or 

treatment with LatA, to restore growth in hal mutant cells. However, art1 fails to restore 

growth upon loss of both Hal kinases despite stabilizing Pma1 at the cell surface.  

Therefore, I think it is likely that the broad loss of nutrient transporters, rather than the 

specific loss of Pma1, contributes to the constitutively-starved state and slow growth 

phenotypes observed for hal mutant cells in previous studies (Mulet et al., 1999; Pérez-

Valle et al., 2010).  

 

The evidence presented in this chapter improves our understanding of Hal kinases and 

their individual contributions to the regulation of nutrient transporter endocytosis. 

Additionally, it places Hal kinases in a specific membrane trafficking pathway for the first 

time. Although the instability of nutrient transporters in hal mutants has been 
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appreciated for decades, it remains unknown if kinase activity contributes to this 

regulatory function, and Hal substrates remain to be identified. In Chapter 5, I explore 

the role of Hal5 catalytic activity in regulation of endocytosis and a candidate substrate, 

Art1.  
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CHAPTER 5 
 
 

Hal5 Catalytic Activity is Critical for Regulation of Endocytosis 
 

 
5.1 Introduction  

Conventionally, protein kinases function enzymatically to phosphorylate protein targets 

and coordinate diverse biological outcomes.  However, a growing body of evidence 

indicates that the functions of many active protein kinases extend beyond simply 

phosphorylation to include non-catalytic roles, such as allosteric regulation and 

scaffolding (Kung and Jura, 2016). For example, in response to intracellular ATP 

depletion, AMPK activates PPARa-dependent transcription to ultimately increase 

cellular ATP yields independently of its kinase activity through allosteric activation of 

PPARa (Bronner et al., 2004).  As presented in Chapter 4, hal mutants grow very slowly 

and exhibit aberrant accumulation of nutrient transporters in the vacuole. While the 

literature attributes these phenotypes to the absence of Hal kinase activity, an important 

limitation of all previous studies regarding Hal kinases is that the mutant phenotypes 

have never been complemented. Therefore, phenotypes may be caused indirectly, 

either by off-target effects of disrupting endogenous HAL genes, by compensation 

which is often observed for slow-growing mutants, or Hals may regulate nutrient 

transporter abundance independently of kinase activity.  Some targets of Hal kinases 

have been hypothesized, such as the potassium transporters Trk1 and Trk2 (Casado et 

al., 2010), and the transcription factor Gln3 (Hirasaki et al., 2011), however; no 

substrates have been confirmed for either Hal4 or Hal5 kinase.  
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In Chapter 4, I determined that Hal kinases control nutrient transporter abundance at 

the cell surface through negative regulation of endocytosis. In this chapter, I present 

evidence that Hal5 catalytic activity is required for Hal-mediated regulation of 

endocytosis. Importantly, I find that endocytic downregulation of nutrient transporters is 

an acute effect of loss of Hal5 catalytic activity, rather than a chronic effect. I examine 

the possibility that Hal5 inhibits endocytosis by phosphorylating the Rsp5 adaptor 

protein Art1, as is the case for related kinase Npr1, but find no evidence to support this 

conclusion. Thus, despite the phenotypic similarities of Npr1 and Hal mutants, my 

studies indicate distinct mechanisms of action with respect to regulation of endocytosis. 

The evidence presented suggests that Hal5 undergoes auto-phosphorylation, the first 

evidence ever presented for a Hal substrate, but the physiological significance of these 

phosphorylation events remains unknown.  

 

5.2 Results  

 

5.2.1 Catalytic features of Hal5 are conserved with Snf1  

To pinpoint catalytic and gatekeeper resides of Hal5, and gain other insights into 

possible structural features of the Hal5 kinase catalytic domain, I began by performing a 

pairwise alignment of Snf1 and Hal5, and then modeling Hal5 catalytic domain 

sequence onto a determined Snf1 X-Ray crystal structure (PDB 2FH9) (Nayak et al., 

2006) (Figure 5.1A-B). I found a conserved ATP-coordinating lysine reside at amino 

acid 546 (K546), a conserved bulky, hydrophobic amino acid within the ATP-binding 

pocket, called the gatekeeper residue, at amino acid 620 (M620), and a conserved  
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FIGURE 5.1 Pairwise alignment of Hal5 and Snf1 (A) A pairwise sequence alignment, 
performed using EMBOSS (EMBL-EBI) and visualized using JalView, of the Hal5 and 
Snf1 catalytic domains to identify important conserved residues at Hal5 K546, M620, 
and D688 as well as lack of a conserved threonine in the activation loop at Snf1 T210. 
(B) The pairwise alignment of Snf1 and Hal5 catalytic domains was then used to model 
Hal5 (pink) onto Snf1(cyan) structure using MODELLER through the Chimera interface. 
In the panel at the top-right is a zoomed-in view of the conserved catalytic aspartate 
residues in the active sites. In the panel at the bottom-right is a zoomed-in view of the 
conserved ATP-coordinating lysine residues (in red) and the gatekeeper residues (in 
light blue) in the ATP-binding pockets.  
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catalytic aspartate at residue 688 (D688) (Figure 5.1A).  Overall, the predicted Hal5 

catalytic domain fold overlays with Snf1, with a few regions (some corresponding to 

insertions) modeling as loops (Figure 5.1B). One loop appears to be conserved with the 

Snf1 activation loop, but lacks a conserved threonine residue (Figure 5.1A). 

 

5.2.2 Chronic loss of Hal5 catalytic activity destabilizes Hal5  

To determine if Hal5 kinase activity is required to negatively regulate endocytosis, I 

generated and characterized a variant of Hal5 mutated for a conserved aspartic acid 

residue critical for the catalytic mechanism (hal5-D688A) (Figure 5.1A). While wildtype 

Hal5 (untagged and containing a C-terminal 6XHis-Tev-3XFLAG tag) complemented the 

aberrant trafficking of Mup1-GFP to the vacuole as well as increased rate of 

endocytosis observed for Mup1-pHluorin, catalytic dead Hal5 failed to complement 

these phenotypes (Figures 5.2A-C and 5.3A-B). However, immunoblot analysis 

revealed that the Hal5-D688A catalytic dead variant was not stably expressed (Figure 

5.3C), suggesting that kinase activity may be required for Hal5 stability. To explore this 

further, I analyzed a variant of Hal5 mutated at a conserved lysine in the ATP binding 

pocket of the kinase domain (hal5-K546R) (Figure 5.1A) and found that this variant also 

exhibited loss of protein stability (Figure 5.3C). These findings indicate that Hal5 

catalytic dead mutants are unstable, limiting our ability to draw conclusions about Hal5 

mechanism of action using catalytic dead variants. 
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FIGURE 5.2 Hal5 catalytic activity is required for complementation Dhal5 mutant 
cells expressing endogenously-tagged Mup1-pHluorin and exogenously expressed (A) 
native Hal5 (HAL5), (B) C-terminally-tagged Hal5 (HAL5-HTF) or (C) C-terminally-
tagged catalytic dead Hal5 (hal5D688A-HTF). Percentage of cell population expressing 
endogenously tagged Mup1-pHluorin as measured by cells that fall within a defined 
FITC gate by flow cytometry (10,000 cells counted per condition, n=3 biological 
replicates) over time in response to Methionine, an endocytic stimulant. Mup1-pH PM 
half-time (t1/2) estimated based on initial and final time points and elapsed time. 
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FIGURE 5.3 Hal5 catalytic point mutants are destabilized (A) Representative images 
of Mup1-GFP expressed from a centromeric plasmid in the presence of endogenously 
MARS tagged Vph1, a marker for the limiting membrane of the vacuole. HAL5 is 
exogenously expressed in the absence of endogenous Hal5 from a centromeric plasmid 
under native promoter control with either no tag (HAL5), a C-terminal 6xHIS-TEV-
3xFLAG tag (HAL5-HTF), or a C-terminally-tagged catalytic dead variant (hal5-D688A-
HTF). (B) Quantification of (A) by measuring the ratio of Mup1-GFP signal at the PM 
compared to the vacuole (PM:VAC). (C) Immunoblot analysis of C-terminally-tagged 
Hal5 variants described in (A) as well as an additional C-terminally-tagged catalytic 
dead variant (hal5-K546R-HTF). 
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5.2.3 Acute inhibition of Hal5 activity triggers rapid endocytic clearance of multiple cargo 

To better understand the role of Hal5 catalytic activity in regulation of endocytic 

trafficking, I adapted a chemical-genetic strategy (Knight and Shokat, 2007) by  

developing an analog-sensitive allele of Hal5 (M620G, called hal5AS) through mutation 

of the conserved gatekeeper residue (M620) in the ATP binding pocket (based on the 

corresponding position of the kinase Snf1 (Shirra et al., 2008)) (Figure 5.1A).  

Importantly, the hal5AS allele was functional and complemented the growth defect in 

hal mutant cells (Figure 5.4A) while addition of a PP1 analog (1-NA-PP1) induced a 

growth defect (Figure 5.4B). Thus, the hal5AS variant exhibits functional kinase activity 

that can be inhibited with 1-NA-PP1 and inhibition of Hal5 catalytic activity inhibits cell 

growth (in the absence of Hal4 kinase).  

 

Using the hal5AS allele, I analyzed endocytic trafficking following acute inhibition of 

Hal5 kinase activity. Importantly, addition of 1-NA-PP1 induced Mup1-GFP trafficking to 

the vacuole in cells expressing hal5AS but not wildtype Hal5 (Figure 5.5A). Importantly, 

acute inhibition of Hal5AS by 1-NA-PP1 did not induce protein instability (following a 60-

minute treatment) as observed with catalytic dead variants of Hal5 (Figure 5.5B), 

demonstrating that induction of vacuolar trafficking is not due to loss of Hal5 protein. To 

better characterize the kinetics of induced endocytosis following acute inhibition of Hal5 

(in a Δhal4 background), I analyzed Mup1-pHluorin trafficking and found that 1-NA-PP1 

triggered loss of Mup1-pHluorin signal with a half-time of ~28 minutes (Figure 5.5C), 

which is faster than methionine-induced endocytosis measured in wildtype cells (Figure 

4.10D). As expected, Art1 was required for endocytosis of fluorescently labeled Mup1  
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FIGURE 5.4 Hal5AS is functional and inhibited by 1-NA-PP1 (A) Cells were serially 
diluted onto synthetic selective media and grown for 3 days to assay functionality of hal5AS by 
growth. (B) Representative image of Dhal4,5 mutant cells expressing either WT (HAL5-HTF) or 
analog-sensitive (hal5AS-HTF) Hal5 spread onto synthetic selective media as a lawn and 
treated with Whatman paper disks soaked in a solution of 1-NA-PP1 dissolved in vehicle (EtOH) 
at the indicated concentrations (grown for 3 days) to assess inhibition of hal5AS by 1-NA-PP1 
(structure shown in right of panel). 
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FIGURE 5.5 Hal5 catalytic activity is required for aberrant endocytic trafficking of 
Mup1 (A) Representative images of Mup1-GFP expressed from a centromeric plasmid 
in the presence of endogenously MARS tagged Vph1, a marker for the limiting 
membrane of the vacuole. HAL5 is exogenously expressed in the absence of 
endogenous Hal5 from a centromeric plasmid under native promoter control with either 
no tag (HAL5), a C-terminal 6xHIS-TEV-3xFLAG tag (HAL5-HTF), or a C-terminally-
tagged catalytic dead variant (hal5-D688A-HTF). (B) Quantification of (A) by measuring 
the ratio of Mup1-GFP signal at the PM compared to the vacuole (PM:VAC). (C) 
Immunoblot analysis of C-terminally-tagged Hal5 variants described in (A) as well as an 
additional C-terminally-tagged catalytic dead variant (hal5-K546R-HTF). 
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variants (GFP and pHluorin) following acute inhibition of Hal5 (Figure 5.6A-C). 

Importantly, acute inhibition of Hal5 triggered rapid endocytosis and vacuolar trafficking 

of Fur4-GFP, a response which was inhibited by addition of LatA, but occurred 

independently of Art1 (Figure 5.7A-B). Rapid sorting of cargo to the vacuole upon 

inhibition of Hal kinase activity suggests that phosphatases antagonizing 

phosphorylation on Hal-targets are acting very quickly in mutant cells. Previous studies 

have shown that ppz phosphatase mutants exhibit endocytic trafficking defects (Lee et 

al., 2019), leading me to hypothesize that Hal kinase activity is antagonized by Ppz 

phosphatase activity. To test this hypothesis, I examined the genetic relationship of 

PPZ1, PPZ2, and HAL5. I found that hal5 is epistatic to ppz1,2 (Figure 5.8), suggesting 

that Hal5 and Ppz phosphatases affect the same regulatory pathway. These results are 

consistent with some overlap in Hal and Ppz targets in the cell.  

 

5.2.4 Loss of Hal5 kinase activity produces no observable effect on Art1  

My genetic evidence indicates that Hal kinases regulate both Art1-dependent and Art1-

independent endocytic events (Figures 5.6A-C and 5.7A-B), suggesting that Hal 

kinases operate upstream of the ART-Rsp5 network. However, given previous reports 

that Art1 is tightly regulated by Npr1 (MacGurn et al., 2011) - a kinase closely related to 

Hal4 and Hal5 - I wanted to test the hypothesis that Hal kinases antagonize endocytosis 

by inhibiting Art1 in a manner similar to Npr1. Unexpectedly, hal double mutant cells 

(but not Δhal4 or Δhal5 single mutant cells) exhibited a slight but significant decrease in 

Art1 abundance (Figure 5.9). To test if Hal kinases regulate Art1 phosphorylation, I  

  



 90 

 
 
FIGURE 5.6 Acute inhibition of Hal5 activity triggers rapid endocytic clearance of 
Mup1 (A) Representative images of Mup1-GFP expressed from a centromeric plasmid 
in the presence of endogenously-tagged Vph1-MARS, a marker for the limiting 
membrane of the vacuole. WT or analog-sensitive HAL5 (HAL5-HTF or hal5AS-HTF) is 
exogenously expressed in Dhal4,5 mutant cells from a centromeric plasmid under native 
promoter control. Cells were grown to mid-log phase in selective media and imaged 
after inhibitor treatment (1-NA-PP1) for 1 hour or further treated with LatA for 1 hour 
where indicated (B) Quantification of Mup1-GFP localization in (A) performed by binning 
cells into localization categories as indicated. (C) Percentage of cell population 
expressing endogenously tagged Mup1-pHlourin as measured by cells that fall within a 
defined FITC gate by flow cytometry at steady state (10,000 cells counted per condition, 
n=3 biological replicates) over time in the presence of hal5AS inhibitor 1-NA-PP1. WT or 
analog-sensitive HAL5 (HAL5-HTF or hal5AS-HTF) is exogenously expressed in 
Dart1Dhal4,5 mutant cells from a centromeric plasmid under native promoter control. EV 
indicates empty vector. 
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FIGURE 5.7 Acute inhibition of Hal5 activity triggers vacuolar localization of Fur4 
(A) Representative images of Fur4-GFP expressed from a centromeric plasmid in the 
presence of endogenously-tagged Vph1-MARS, a marker for the limiting membrane of 
the vacuole. WT or analog-sensitive HAL5 (HAL5-HTF or hal5AS-HTF) is exogenously 
expressed in Dhal4,5 mutant cells from a centromeric plasmid under native promoter 
control. Cells were grown to mid-log phase in selective media and imaged after inhibitor 
treatment (1-NA-PP1) for 1 hour or further treated with LatA for 1 hour where indicated 
(B) Quantification of Fur4-GFP localization in (A) performed by binning cells into 
localization categories as indicated. 
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FIGURE 5.8 Hal5 and Ppz phosphatases genetically interact Representative images 
of cells serially diluted onto indicated media and grown for 3 days to assess growth of 
mutant combinations under caffeine stress as well as manganese and lithium ion 
stressors to assess growth.  
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FIGURE 5.9 Art1 abundance is decreased in hal mutants Quantitative immunoblot 
analysis, with a representative immunoblot, of WT, Dhal4, Dhal5, or Dhal4,5 cells 
expressing Art1 endogenously tagged with 6X-HIS-TEV-3XFLAG at the c-terminus 
(ART1-HTF). Total Art1 (orange bars) was quantified by measuring signal of both bands 
corresponding to Art1, and normalizing to G6PDH levels. Unmodified Art1 (yellow bars) 
was quantified by measuring signal of the bottom band, and normalizing to G6PDH 
levels. Ubiquitin-modified (Ub modified) Art1 (gray bars) was quantified by measuring 
signal of the top band, and normalizing to G6PDH levels. N=3 
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performed SILAC-MS quantitative phosphoprofiling analysis of Art1 (Figure 5.10A-B 

and 5.11). First, I compared Art1 phosphorylation in wildtype cells to hal double mutant 

cells and detected only minor changes corresponding to slightly elevated 

phosphorylation at some N-terminal sites in the absence of Hal kinases (Figures 5.12 

and 5.13).  Additionally, I compared Art1 phosphorylation in the context of acute Hal5AS 

inhibition and similarly detected only minor changes corresponding to slightly elevated 

phosphorylation at some sites in the absences of Hal kinases (Figure 5.14 and 5.15). 

Indeed, two regulatory modifications recently reported to inhibit Art1 activity – 

phosphorylation of Thr93 and Thr795 (Lee et al., 2019) – were either unaffected or 

slightly elevated in the absence of Hal kinase activity (Figures 5.12, 5.13, and 5.14). 

Importantly, these experiments also reveal that loss of Hal kinase activity does not 

impact the interaction between Art1 and Rsp5 (Figures 5.12, 5.13, and 5.14).  

 

Since Art1 activation is known to involve its translocation to the plasma membrane 

(MacGurn et al., 2011), I considered the possibility that Hal kinases might regulate Art1 

localization. To test this, I analyzed Art1 subcellular localization and found that, in 

contrast to Δnpr1 mutant cells (MacGurn et al., 2011), hal mutant cells exhibited no 

observable increase in Art1 localization to the plasma membrane (Figure 5.16). Thus, 

although I cannot exclude the possibility that Hal kinases antagonize endocytosis by 

inhibiting Art1 function, the experiments shown here provide no evidence that Hal 

kinases regulate phosphorylation or localization of Art1. 

  



 95 

 
 
FIGURE 5.10 SILAC-MS experimental workflow (A) Schematic depicting the 
experimental workflow using SILAC coupled with immunoprecipitation, tryptic digest, 
and quantitative mass spectrometry analysis (1). To analyze phosphorylation, peptides 
are subjected to phosphopeptide enrichment prior to quantitative mass spectrometry 
analysis (2). (B) Description of how three different SILAC-MS experiments were 
performed to profile Art1 (Art1 and Hal5 in the case of Experiment #3) phosphorylation 
with and without Hal4 and Hal5 kinase activity.   
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Figure 5.11 Art1 domain architecture and phosphosites Schematic of the domain 
architecture of the Art1 protein, with known phosphorylation sites indicated. 
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FIGURE 5.12 Art1 phosphorylation is unchanged (SILAC-MS experiment #1) 
Analysis of experiment #1 described in Figure 5.10B. (A) 2% of prepared samples were 
analyzed by immunoblot to confirm Art1-HTF bait purification. Samples were 
subsequently submitted for mass spectrometry analysis. (B) The H:L ratio for all 
peptides of the indicated proteins were averaged to compute a measurement of the H:L 
ratio for the protein in the indicated experiment. Additional cell material was collected 
from hal mutant cells was to compensate for the observed loss in Art1 abundance 
(Figure 5.9) (i.e 1L of 0.5 OD WT cells vs 0.75 OD hal cells). (C) The LOG2(H:L ratio) 
(normalized to total Art1) for each phosphorylation event detected is plotted and color-
coded to correspond to the region of the Art1 protein as indicated in Figure 5.11. (D) 
Filtered chromatography data is shown for the indicated peptides (light peptide in red 
and heavy peptide in blue).  Phosphopeptides identifying phosphorylation at Thr93 (top 
right) and Thr795 (bottom right) and the corresponding unmodified peptides (top left and 
bottom left, respectively) are depicted. 
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FIGURE 5.13 Art1 phosphorylation is unchanged (SILAC-MS Experiment #2)  
Analysis of experiment #2 described in Figure 5.10B. (A) 2% of prepared samples were 
analyzed by immunoblot to confirm Art1-HTF bait purification. Samples were 
subsequently submitted for mass spectrometry analysis. (B) The H:L ratio for all 
peptides of the indicated proteins were averaged to compute a measurement of the H:L 
ratio for the protein in the indicated experiment. Additional cell material was collected 
from hal mutant cells was to compensate for the observed loss in Art1 abundance 
(Figure 5.9) (i.e 1L of 0.5 OD WT cells vs 0.75 OD hal cells). (C) The LOG2(H:L ratio) 
(normalized to total Art1) for each phosphorylation event detected is plotted and color-
coded to correspond to the region of the Art1 protein as indicated in Figure 5.11. (D) 
Filtered chromatography data is shown for the indicated peptides (light peptide in red 
and heavy peptide in blue).  Phosphopeptides identifying phosphorylation at Thr93 (top 
right) and Thr795 (bottom right) and the corresponding unmodified peptides (top left and 
bottom left, respectively) are depicted. 
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FIGURE 5.14 Art1 phosphorylation is unchanged (SILAC-MS Experiment #3) 
Analysis of experiment #3 described in Figure 5.10B. (A) 2% of prepared samples were 
analyzed by immunoblot to confirm Art1-HTF bait purification. Samples were 
subsequently submitted for mass spectrometry analysis. (B) The H:L ratio for all 
peptides of the indicated proteins were averaged to compute a measurement of the H:L 
ratio for the protein in the indicated experiment. Additional cell material was collected 
from hal mutant cells was to compensate for the observed loss in Art1 abundance 
(Figure 5.9) (i.e 1L of 0.5 OD WT cells vs 0.75 OD hal cells). (C) The LOG2(H:L ratio) 
(normalized to total Art1) for each phosphorylation event detected is plotted and color-
coded to correspond to the region of the Art1 protein as indicated in Figure 5.11. (D) 
Filtered chromatography data is shown for the indicated peptides (light peptide in red 
and heavy peptide in blue).  Phosphopeptides identifying phosphorylation at Thr93 (top 
right) and Thr795 (bottom right) and the corresponding unmodified peptides (top left and 
bottom left, respectively) are depicted. 
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FIGURE 5.15 Growth of cells after acute inhibition of Hal5 kinase activity (A) For 
experiment #3 described in Figure 5.10B, following treatment of cultures with 1-NA-PP1 
(and just prior to sample collection) 10mL of each culture was removed from the sample 
and cultured for an additional 24 hours in order to confirm inhibition by the compound. 
(B) Data in A plotted to better visualize time points from t=0 through t=12.  
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FIGURE 5.16 Art1 localization is unchanged in hal mutants Representative images 
of WT, Dhal4,5, Dnpr1, cells expressing Art1-mNG from a plasmid were grown to mid-
log phase in selective media and imaged after a brief FM 4-64 pulse to label PM 
immediately prior to imaging. In the far right column of the panel, WT cells were treated 
with methionine (2µg/mL) for 10 minutes prior to FM 4-64 pulse. (B) Art1 localization to 
the PM in (A) was quantified by measuring Pearson’s correlation coefficient of Hal5-
mNG signal with FM 4-64 signal. 
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5.2.5 Quantitative phosphoprofiling of Hal5 indicates N-terminal phosphorylation  

In the course of phosphoprofiling Art1 following acute inhibition of Hal5AS, I was also 

able to perform a similar phosphoprofiling analysis for Hal5 (since Hal5 was FLAG-

tagged in these experiments and thus was captured as a bait). Interestingly, this 

analysis revealed two phosphorylation events proximal to the kinase domain at Ser358 

and Ser395 that were dramatically reduced following acute inhibition of Hal5 kinase 

activity (Figure 5.17), suggesting that these modifications may occur by 

autophosphorylation. This is the first evidence of a substrate for Hal5, but the 

physiological significance of these phosphorylation events remains unclear. 

 

5.3 Discussion  

Taken together, these data indicate that (i) Hal5 kinase activity is required for its role in 

the regulation of endocytic trafficking, (ii) Hal5 kinase activity stabilizes PM proteins and 

inhibition of Hal5 kinase activity (in the absence of Hal4) triggers rapid endocytosis and 

vacuolar trafficking, and (iii) induction of endocytosis and vacuolar trafficking is an acute 

and rapid response to loss of Hal kinase activity, rather than a chronic adaptive 

condition in hal double mutant cells. The work presented in this chapter includes the first 

complementation analysis for Hal5, the first demonstration that kinase activity is 

required for function, and the first evidence of a substrate (itself). 

 

5.3.1 Hal5 regulation of transcription may result from loss of nutrient transporters  

Using an analog-sensitive allele of hal5 has allowed me to interrogate acute 

consequences of inhibiting Hal5 catalytic activity in the cell. This approach was used to  



 103 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5.17 Acute inhibition of Hal5AS results in decreased phosphorylation of 
the non-catalytic region Analysis of Hal5 phosphorylation from data collected in 
Experiment #3 from Supplemental Figure 6. (A) Quantitative phosphoprofiling analysis 
Hal5 based on SILAC-MS data. Schematic of the domain architecture of Hal5 is shown 
at the top. (B) Fingerprinting and quantification of individual phosphorylation events 
resolved for Hal5.  MS2 spectra for individual phosphopeptides (left panels) and filtered 
chromatograms for quantification of light (red) and heavy (blue) peptides (right panels) 
are shown for Ser353 (top), Ser358 (middle) and Ser395 (bottom). 
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characterize the role of Snf1 in glucose-responsive transcriptional regulation, but not 

transporter abundance, and has not been used in the characterization of Npr1-mediated 

regulation of transporter abundance. Thus, a question of whether these changes to 

endocytic trafficking were acute or chronic, not only in Hal mutants but in other mutants 

with similar phenotypes, remain. Upon acute inhibition of hal5-AS, in the absence of 

Hal4, rapid internalization of nutrient transporters occurs within minutes (Figure 5.6C), 

while growth of cells does not slow for at least 90 minutes after inhibition (Figure 

5.15B). This result suggests that loss of nutrient transporters occurs first, and that slow-

growth in hal mutant cells occurs subsequent to broad loss of nutrient transporters. 

Many transcriptional changes have been documented in hal mutant cells (Pérez-Valle et 

al., 2010), suggesting that Hal kinases maintain cellular homeostasis in part through 

regulation of transcription. However, many of these transcriptional changes are 

regulatory pathways turned on in response to starvation, a condition that may be 

provoked by the chronic and broad loss of nutrient transporters from the cell surface in 

hal mutant cells. Thus, it is possible that the transcriptional changes observed in hal 

mutant cells are due to compensation in hal mutant cells, rather than due to the direct 

loss of Hal kinases. Further studies comparing the kinetics of induced endocytosis and 

transcriptional effects associated with loss of Hal function will be required to determine 

which effects are primary and which are secondary.  

 

5.3.2 The mechanism of Hal5 endocytic regulation appears distinct from Npr1 and Snf1 

Npr1 phosphorylates Art1 in the N-terminal region to release Art1 from the PM, and 

inactivate it (MacGurn et al., 2011), thereby promoting stability of the Can1 at the cell 
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surface.  Ppz phosphatases dephosphorylate Art1 at T93 and T795, promoting PM-

localization of Art1 and physical interaction with cargo such as Mup1 (Lee et al., 2019). 

Considering the observed similarities between npr1 and hal mutant phenotypes, and the 

genetic interaction of hal mutants with ppz mutants (Figure 5.8), one model for Hal-

mediated inhibition of endocytosis is through hyper-activation of Art1.  This model 

predicts increased PM-localization of Art1, increased Art1 abundance at steady-state, or 

decreased phosphorylation on Art1 at sites known to be inhibitory in the absence of Hal 

kinases. However, phosphorylation sites on Art1 thought to be inhibitory were either 

slightly elevated or unchanged in hal mutant backgrounds (Figures 5.12, 5.13 and 

5.14), PM-localization of Art1 was unchanged, and Art1 protein abundance decreases 

slightly at steady-state. Taken together, these data do not support a model whereby 

loss of Hal kinases triggers hyper-activation of Art1. is inconsistent with a hyper-

activation model of Art1 upon loss of Hal kinases, which distinguishes Hal-mediated 

regulation of endocytosis from Npr1. Additional experimental analysis of Art4 upon loss 

of Hal5 will be required to determine whether Hal-mediated regulation of endocytosis is 

distinct from Snf1. This may be difficult, as considerably less is known about the 

activation of Art4 compared to Art1. 

 

5.3.3 The non-catalytic region of Hal5 is subject to auto-regulation  

To my knowledge, data presented in this chapter provides the first evidence of a 

substrate for Hal5 kinase activity (itself), and suggests that Hal5 may regulate the 

function of an uncharacterized feature upstream of the kinase domain.  One way in 

which Hal5 autophosphorylation may regulate its function is through regulation of its 
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stability. Consistent with this hypothesis, chronic catalytic-dead point mutants of Hal5 

(D688A and K546R) are not expressed. Other ways in which Hal5 autophosphorylation 

may regulate its function include regulation of protein-interaction partners, substrate 

selection, or subcellular localization. In Chapter 6 of this thesis, I test the function of the 

non-catalytic region of Hal5 and present evidence that there are features within this 

region important for both Hal5 function and localization.  

 

In this chapter, I presented evidence that Hal-kinase activity is critical for regulation of 

endocytosis, and that the mechanism of regulation appears to be distinct from related 

kinases that have been previously characterized. In Chapter 6, I extend my 

characterization of Hal5 kinase beyond its catalytic role in negative regulation of 

endocytosis to investigate the uncharacterized non-catalytic region.   
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CHAPTER 6 
 
 

Kinase-proximal Domains of Hal5 are Critical for Localization to the PM and  
 

Endocytic Function  
 
 

6.1 Introduction 

As I demonstrated in Chapter 3, my phylogenetic analysis of full amino acid sequences 

for the 130 protein kinases in yeast resulted in 6 distinct clades which do not perfectly 

align with the previously established classical kinase groupings. One possible 

explanation is that this analysis used full amino acid sequences, encompassing both 

catalytic domains and non-catalytic regions of protein kinases, while early analyses 

compare exclusively sequences corresponding to catalytic domains. This is consistent 

with a 2010 phylogenetic analysis of kinases across evolution, where more than 60% of 

kinases from nearly 500 distinct genomes spanning all domains of life were found to 

contain at least one non-kinase accessory domain (Martin et al., 2010), implying that 

non-catalytic domains within protein kinases are a globally important facet of kinase 

function. Accessory domains may augment protein kinase catalytic activity by conferring 

substrate specificity, determining intracellular localization, performing scaffolding 

functions, or auto-regulatory functions (Sali and Blundell, 1993). One hallmark of the 

yeast AMPK/Snf1-related kinases is the presence of large regions of non-catalytic 

sequence. For example, Snf1 contains an auto-inhibitory ubiquitin-associated (UBA) 

domain proximal to the kinase domain, and an adenylate sensing domain at the C-

terminus that appears to bind ADP molecules (Mayer et al., 2011). Additionally, Gin4 

and Kcc4 contain kinase-associated (KA1) domains that directly bind anionic 
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phospholipids at the plasma membrane to confer plasma-membrane localization (Chi et 

al., 2012). For most of the yeast AMPK/Snf1-related kinases, the non-catalytic regions 

of protein sequence remain uncharacterized. 

 

In Chapter 5, I determined that catalytic activity of the yeast AMPK/Snf1-related kinase 

Hal5 is required for Hal-mediated inhibition of nutrient transporter endocytosis.  In this 

chapter, I investigate the function of the non-catalytic region of Hal5 and find that 

elements proximal to the kinase domain in the N-terminal region are critical for Hal5 

function in endocytosis, Hal5 localization to the PM, and Hal5 response to nutrient 

availability.  

 

6.2 Results 

 

6.2.1 N-terminal elements of Hal5 are required for its function 

Hal5 consists of a C-terminal kinase domain (amino acids 502-837) with a large N-

terminal region (amino acids 1-501) that has not been characterized. To test for features 

at the N-terminus of Hal5 that are important for function, I first used JPred (Drozdetskiy 

et al., 2015) to predict secondary structure in the N-terminal region (Figure 6.1A). 

Based on the predicted secondary structure, I designed a truncation series deleting 

elements up to the beginning of the kinase domain (Figure 6.1B). Using this truncation 

series, I determined that hal5Δ1-493 and hal5Δ1-339 truncations failed to complement 

the growth defect in hal double mutant cells (Figure 6.1C) despite high levels of protein  
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FIGURE 6.1 N-terminal elements proximal to the kinase domain are important for 
Hal5 function in growth (A) Secondary structure prediction performed in JPred for the 
N-terminal region of Hal5 (B) Schematic representation of Hal5 truncation variants 
compared to WT Hal5. (C) Representative image of cells serially diluted on synthetic 
selective media and grown for 3 days. Cells exogenously expressing either empty 
vector (EV) or a variant of Hal5 as indicated (D) Immunoblot analysis to examine 
expression of Hal5 variants that fail to complement growth in hal mutant cells 
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expression (Figure 6.1D). Furthermore, these truncations failed to complement aberrant 

Mup1 trafficking to the vacuole observed in hal double mutant cells (Figure 6.2A-C). In 

contrast, hal5Δ1-248 and hal5Δ1-99 truncation variants fully complemented growth and 

trafficking phenotypes observed in hal double mutant cells (Figure 6.1C-D and 6.2A-C). 

Together, these data indicate that the kinase domain of Hal5 is not sufficient for 

regulation of endocytosis and suggest that features of Hal5 proximal to the kinase 

domain are critical for its function in the regulation of endocytic trafficking. 

 

6.2.2 Hal5 localizes to the plasma membrane  

Based on the functional data provided in my truncation analysis (Figures 6.1C-D and 

6.2A-C), I hypothesized that features proximal to the kinase domain might be important 

for Hal5 subcellular localization. Since Hal5 localization in cells has not been reported, I 

analyzed the subcellular localization of Hal5 tagged at the C-terminus with 

mNeonGreen (mNG, (Shaner et al., 2013)) (both endogenous and exogenous 

expression) and observed cytosolic and peripheral localization (Figure 6.3A-B). 

Importantly, C-terminal tagging of Hal5 with mNG did not result in loss of function as 

assayed by growth complementation (Figure 6.3C). To test if peripheral Hal5 localized 

to the plasma membrane (PM), I imaged Hal5-mNG in cells pulse-labelled with FM4-64 

(a lipophilic tracer dye that incorporates into the bilayer of the PM (Vida and Emr, 1995)) 

and detected significant colocalization, indicating that the peripheral pool of Hal5 indeed 

localizes to the PM (Figure 6.4A-C). Although this indicates Hal5 localizes to the PM, it 

does not address if Hal5 binds directly to lipids in the plasma membrane. To further  
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FIGURE 6.2 N-terminal elements proximal to the kinase domain are important for 
Hal5 function in endocytic trafficking (A) Representative images of Mup1-GFP 
expressed from a centromeric plasmid in the presence of endogenously-tagged Vph1-
MARS, a marker for the limiting membrane of the vacuole. Empty vector (EV) or Hal5 
variants are exogenously expressed in Dhal4,5 mutant cells from a centromeric plasmid 
under native promoter control. (B) Quantification of Mup1-localization in (D) performed 
by binning cells into localization categories as indicated. (C) Percentage of cell 
population expressing endogenously tagged Mup1-pHluorin as measured by cells that 
fall within a defined FITC gate by flow cytometry at steady state (10,000 cells counted 
per condition, n=3 biological replicates). 
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Figure 6.3 Hal5 localizes to the cell periphery (A) Representative image of WT cells 
grown to mid-log phase in selective media expressing Hal5 C-terminally-tagged with 
mNeonGreen (Hal5-mNG) from a centromeric plasmid under native promoter control. 
(B) Representative images of cells expressing endogenously-tagged Hal5-mNG grown 
to mid-log phase in rich media imaged near the cell middle (left) or cell surface (right) to 
asses Hal5 localization. (C) Cells expressing either empty vector (ev) or Hal5-mNG 
serially diluted onto synthetic selective media and grown for 5 days to assess 
functionality of C-terminally-tagged Hal5-mNG. 
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Figure 6.4 N-terminal elements proximal to the kinase domain are critical for Hal5 
localization to the PM (A) Schematic representation of c-terminally mNeonGreen-
tagged Hal5 variants compare to WT Hal5. (B) Representative images of WT cells 
grown to mid-log phase in selective media expressing Hal5-mNG after brief FM 4-64 
pulse to label PM immediately prior to imaging (C) Hal5 localization to the PM was 
quantified in (B) by measuring Pearson correlation coefficient of Hal5-mNG signal with 
FM 4-64 signal. Standard deviation of cells expressing full-length Hal5-mNG is denoted 
by the green box. (D) Table summarizing each Hal5 variant tested, its functionality, and 
its localization. 
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characterize the PM-localized pool of Hal5, I imaged cells expressing Hal5-mNG along 

with mCherry-tagged endocytic site components including Ede1, Sla2, Ent1, and Abp1 

(Weinberg and Drubin, 2012) and found that Hal5 only coincidentally co-localized with 

these structures (Figure 6.5A). Thus, Hal5 does not appear to associate with endocytic 

sites. Despite some co-localization of Hal5-mNG with Mup1-mCherry (a methionine 

transporter that localizes generally to the PM), I did not detect significant co-localization 

of Hal5-mNG with mCherry-tagged variants of the Rsp5 adaptor Art1 or the eisosome 

component Pil1 (Figure 6.5B). Interestingly, treatment of cells with LatA increased the 

extent of Hal5 localization to the PM (Figure 6.6A-B), indicating that inhibition of 

endocytosis and/or actin dynamics stabilizes Hal5 at the PM.  

 

6.2.3 Hal5 N-terminal region is critical for PM localization 

To determine whether the N-terminal region of Hal5 contains features critical for PM 

localization, I analyzed the subcellular location of an N-terminal truncation series of Hal5 

(Figure 6.4A) and found that deletion of amino acids 1-493 and 1-339 resulted in loss of 

detection at the PM, while truncations deleted for amino acids 1-248 and 1-99 were 

retained at the PM (Figure 6.4B-C). Importantly, I also observed that deletion of the 

kinase domain did not alter PM localization – indicating that PM localization is 

determined by elements proximal to the kinase domain. As with full-length Hal5, 

treatment of cells with LatA increased the PM localization of the Hal5 N-terminal domain 

but had no effect on the localization of the kinase domain (Figure 6.6C-D). Thus, my 

data reveals a correlation between Hal5 function and localization of the kinase domain  
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Figure 6.5 Hal5 does not colocalize with endocytic sites (A) Cells co-expressing 
endogenous Hal5-mNG and mCherry-tagged components of endocytic site machinery 
corresponding to either early (top), mid/late (middle), or invagination (bottom) events. 
(B) Cells co-expressing endogenous Hal5-mNG and mCherry-tagged Pil1 (eisosomes), 
Mup1 (nutrient transporter, broad PM marker), or Art1 (Rsp5 adaptor).  
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Figure 6.6 Acute inhibition of endocytosis increases Hal5 localization to the PM 
(A) Representative images of WT cells grown to mid-log phase in selective media 
expressing Hal5-mNG (with or without 1 hour LatA treatment) after brief FM 4-64 pulse 
to label PM immediately prior to imaging (B) Localization of Hal5 to the PM was 
quantified in (A) by measuring Pearson correlation coefficient of Hal5-mNG signal with 
FM 4-64 signal. (C) Representative images using conditions described in (A) for WT 
cells expressing either a Hal5 variant deleted for the N-terminal region (hal5Δ1-493-
mNG) or a Hal5 variant deleted for the kinase domain (hal5Δ494-855-mNG). (D) 
Quantification of Hal5 localization to the PM in (C) performed as described in (B). 
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to the PM (Figure 6.4D), suggesting that recruitment of Hal5 kinase activity to the 

plasma membrane is critical for its regulation of endocytic trafficking. One way in which 

Hal5 may localize to the PM is through interaction with a PM-bound or anchored protein. 

To test this hypothesis, I performed quantitative SILAC-MS interactome analysis of Hal5 

(Figure 6.7A-C). In this analysis, Hal5 was significantly enriched from both crude (S5, 

to include membrane fractions) and cleared (S13, to exclude membrane fractions) yeast 

lysates, indicating successful SILAC labeling and immunoprecipitation. In both 

experiments, a few other proteins were enriched slightly above background, including 

Slx5, a subunit of the Sumo-targeted Ubiquitin Ligase complex. High background in the 

S5 SILAC-MS experiment, and low peptide abundance for putative interacting partners 

in both the S5 and S13 SILAC-MS experiments, limits my ability to make conclusions 

about the interactions of Hal5 with other proteins in the cell.  

 

Another way in which Hal5 may localize to the PM is by binding directly to lipids through 

an uncharacterized lipid-binding domain. AMPK/Snf1-related kinases Gin4 and Kcc4 

have been shown to localize to the PM through binding of anionic phospholipids by 

critical lysine residues in KA1 (kinase-associate 1) domains (Chi et al., 2012). To test 

whether Hal5 may harbor an uncharacterized KA1 domain within its N-terminal region, I 

first performed a multiple sequence alignment of Hal5 (amino acids 1-493) with the KA1 

domains of Gin4 (amino acids 1007-1142) and Kcc4 (amino acids 901-1037). 

Importantly, I found that the KA1 domains of Gin4 and Kcc4 aligned with elements of 

the Hal5 N-terminal region proximal to the kinase domain that are important for both 

function and localization of Hal5 (Figure 6.8). To further explore the possibility that Hal5  
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      S5 (crude, soluble + membrane) 

 
      S13 (cleared, soluble only) 

 
 
Figure 6.7 Quantitative SILAC-MS interactome analysis of Hal5 (A-B) The 
LOG2(H:L ratio) for each protein group was graphed and color-coded based on the 
criteria indicated. Following the workflow described in Figure 5.10A, Untagged (L) or c-
terminally flag-tagged Hal5 (6X-HIS-TEV-3XFLAG, Hal5-HTF) (H) was expressed from 
a centromeric plasmid and immunoprecipitated from (A) a crude yeast lysate, called S5, 
comprised of both soluble and membrane fractions, or (B) a cleared yeast lysate, called 
S13, comprised of only the soluble fraction. (C) Tables summarizing data meeting the 
criteria indicated in red.  
  

C 
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Figure 6.8 MSA of Hal5 N-terminal region with known KA1 domains A multiple 
sequence alignment, performed using Clustal Omega (EMBL-EBI) and visualized in 
JalView, of the N-terminal region of Hal5 (amino acids 1-493) with the KA1 domains of 
Kcc4 (amino acids 901-1037) and Gin4 (amino acids 1007-1142). Positions 
corresponding to residues critical for Kcc4 PM localization and lipid binding (Moravcevic 
et al., 2010) are denoted by black indicators.  
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localizes to the PM through a lipid binding domain, I analyzed the localization of Hal5-

mNG in temperature- sensitive PI-kinase mutants (Mayinger, 2012).  Shifting both pik1-

ts and vps34-ts mutants (defective for PI(4) and PI(3) kinase activity, respectively 

(Auger et al., 1989; Garcia-Bustos et al., 1994)) from permissive temperature (26°C) to 

restrictive temperature (37°C) resulted in decreased PM localization of Hal5. One 

limitation of this experiment is that vps34-ts mutants appear to exhibit defects in Hal5-

mNG localization at permissive temperature (26°C), which may indicate that vps34-ts 

has loss of function at permissive temperature, impairing my ability to interpret a shift in 

Hal5-mNG localization. Importantly, shifting sec1-ts mutants to restrictive temperature 

(37°C) did not impact Hal5-mNG localization to the PM (Figure 6.9A-B), suggesting that 

the secretory pathway is not required for Hal5-mNG localization (Carr et al., 1999; Scott 

et al., 2004).  Additionally, Hal5-mNG localization to the PM was not disrupted in Dcho1 

mutants (Figure 6.9C-D), suggesting that phosphatidylserine is not important for Hal5-

mNG localization to the PM (Atkinson et al., 1980). Taken together, these data suggest 

that PI(P) lipids may be important for Hal5 localization to the PM, but does not indicate 

whether Hal5-mNG localization to the PM is direct or indirect.  

 

6.2.4 Nutrient availability regulates Hal5 localization  

Based on previous studies reporting that the Npr1 kinase localizes to the plasma 

membrane in response to changes in TORC1 signaling (MacGurn et al., 2011), I 

hypothesized that localization of Hal5 to the PM might be important for its regulation of 

endocytosis. I observed no effect of acute inhibition on the PM localization of Hal5AS 

(Figure 6.10A-B), indicating that Hal5 kinase activity, and N-terminal phosphorylation  
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Figure 6.9 PI(P) lipids are important for Hal5 localization to the PM (A) 
Representative images of WT cells expressing Hal5-mNG from a centromeric plasmid 
under native promoter control. Cells were grown to mid-log phase in selective media at 
permissive temperature then shifted to the restrictive temperature for 10 minutes, then 
briefly pulsed with FM 4-64 to label PM immediately prior to imaging. (B) Hal5 
localization to the PM was quantified in (A) by measuring Pearson correlation coefficient 
of Hal5-mNG signal with FM 4-64 signal. (C) Representative images of cho1 mutant 
cells expressing Hal5-mNG from a centromeric plasmid under native promoter control. 
Cells were grown to mid-log phase in selective media, then briefly pulsed with FM 4-64 
to label PM immediately prior to imaging. (D) Hal5 localization was quantified in (C) as 
described in (B).    
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Figure 6.10 Hal5 catalytic activity does not regulate its localization to the PM (A) 
Representative images of WT cells expressing WT or analog-sensitive variants of Hal5-
mNG (wt or hal5AS) from a centromeric plasmid under native promoter control. Cells 
were grown to mid-log phase in selective media. Cells were untreated (control), treated 
with vehicle (DMSO), or inhibitor (1-NA-PP1 26.3µM) for 10 minutes, then briefly pulsed 
with FM 4-64 to label PM immediately prior to imaging. (B) Hal5 localization to the PM 
was quantified in (A) by measuring Pearson correlation coefficient of Hal5-mNG signal 
with FM 4-64 signal. Standard deviation of control WT cells denoted by green box. 
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events dependent on Hal5 kinase activity (Figure 5.17), do not regulate its PM 

association. I next hypothesized that Hal5 might respond to environmental changes that 

trigger endocytic regulation. To test this, I analyzed the subcellular localization of Hal5 

(both full-length Hal5 (Figure 6.11A-B) and the N-terminal domain (Figure 6.12A-B)) 

following a variety of different environmental stimuli. I found that conditions of high salt 

(addition of excess sodium or potassium to the media) triggered a slight increase in the 

PM localization of Hal5 (both the N-terminus and full-length Hal5), while switching to a 

nutrient-starved media did not impact Hal5 PM association (Figure 6.11A-B and Figure 

6.12A-B). In contrast, I detected a significant loss of Hal5 PM localization following 

stimulation with uracil and methionine (Figure 6.11A-B and Figure 6.12A-B) – stimuli 

that trigger the endocytosis of Fur4 and Mup1, respectively. Additionally, stimulation 

with tryptophan, leucine, or rich media resulted in loss of Hal5 PM localization, while 

stimulation with histidine did not (Figure 6.11A-B). In contrast to Npr1, which is 

responsive to TORC1 signaling output (MacGurn et al., 2011), inhibiting TORC1 by 

treatment with rapamycin or activating TORC1 by treatment with cycloheximide did not 

result in any detectable changes in Hal5 localization (Figure 6.13A-B) or SDS-PAGE 

mobility (Figure 6.13C). Taken together, these data indicate that Hal5 responds to 

changes in nutrient availability, with excess nutrients like uracil and methionine 

triggering a decrease in Hal5 PM association. 

 

6.3 Discussion 

Taken together, these data indicate that (i) N-terminal elements proximal to the kinase 

domain are important for both PM localization and endocytic regulation, (ii) localization  
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Figure 6.11 Nutrient availability regulates Hal5 localization (A) Representative 
images of WT cells expressing full-length c-terminally tagged Hal5-mNG from a 
centromeric plasmid under native promoter control. Cells were grown to mid-log phase 
in selective media then switched to media with the indicated nutrient conditions (10 
µg/mL methionine (met), uracil (ura), leucine (leu), tryptophan (trp), histidine (his), 
500mM NaCl, or 300 mM KCl) for 10 minutes, then briefly pulsed with FM 4-64 to label 
PM immediately prior to imaging. (B) Hal5 localization to the PM was quantified in (A) 
by measuring Pearson correlation coefficient of Hal5-mNG signal with FM 4-64 signal. 
Standard deviation of WT cells is denoted by the green box 
  



 125 

 
 
Figure 6.12 The N-terminal region of Hal5 is sufficient to mediate localization 
change in response to nutrients (A) Representative images of WT cells expressing a 
variant of Hal5-mNG deleted for the kinase domain from a centromeric plasmid under 
native promoter control. Cells were grown to mid-log phase in selective media then 
switched to media with the indicated nutrient conditions (10 µg/mL methionine (met), 10 
µg/mL uracil (ura), 500mM NaCl, or 300 mM KCl) for 10 minutes, then briefly pulsed 
with FM 4-64 to label PM immediately prior to imaging. (B) Hal5 localization to the PM 
was quantified in (A) by measuring Pearson correlation coefficient of Hal5-mNG signal 
with FM 4-64 signal. Standard deviation untreated cells expressing full-length Hal5-
mNG is denoted by the green box. 
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FIGURE 6.13 TORC1 activity does not regulate Hal5 localization to the PM (A) 
Representative images of WT cells expressing full-length Hal5-mNG as described in 
(A). Prior to pulsing with FM 4-64 to label the PM, cells were treated with either DMSO 
(mock), Cycloheximide (50 µg/mL) or Rapamycin (200 ng/mL) for 15 minutes. (B) 
Quantification of (C) as described in (B). (C) Immunoblot analysis of whole cell lysates 
collected from WT cells expressing full-length c-terminally tagged Hal5-HTF, treated 
with either DMSO (mock), Cycloheximide (50 µg/mL), or Rapamycin (200 ng/mL) for 15 
minutes. EV indicates empty vector. 
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of Hal5 to the PM correlates with its role as an endocytic antagonist, and (iii) Hal5 PM 

localization is sensitive to changes in nutrient availability, with repletion of specific 

nutrients triggering Hal5 ejection from the PM. The work presented in this chapter 

includes the first analysis of Hal5 subcellular localization, builds on my previous findings 

to implicate non-catalytic regions of Hal5 in the regulation of endocytosis, and positions 

Hal5 as a potential signal transducer in a nutrient-sensing relay.  

 

6.3.1 Regulation of Hal5 subcellular localization is distinct from that of Npr1  

Both Hal5 and Npr1 are PM-localized in some conditions, and appear to be subject to 

extensive phosphorylation within the N-terminal region. In the case of Npr1, much of this 

phosphorylation appears to be TORC1-sensitive (MacGurn et al., 2011). Inhibition of 

TORC1 using rapamycin results in decreased phosphorylation of Npr1, which correlates 

with increased PM-localization of Npr1 (MacGurn et al., 2011). In contrast, PM-

localization of Hal5 does not appear to be modulated by rapamycin or cycloheximide 

treatment (TORC1 inhibiting and activating, respectively), and is instead modulated by 

the availability of amino acids, nucleosides, and ions in the media (Figures 6.11A-B 

and 6.12A-B). Upstream kinases mediating phosphorylation on Hal5 remain 

unidentified, although phosphorylation at serine residues 358 and 395 can be attributed 

to auto-regulation (Figure 5.17A-B), either directly through auto-phosphorylation or 

indirectly in some kind of feedback mechanism. Other Hal5 phosphorylation sites 

detected in quantitative SILAC-MS analysis were not sensitive to inhibition of Hal5AS 

(Figure 5.17A-B), suggesting trans-regulation by other kinases and phosphatases. For 

Hal5, it is clear that non-catalytic regions are important for function and PM-localization, 
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but the contribution of phosphorylation to this regulation remains unclear. Even though 

toggling TORC1 activity does not appear to impact Hal5 localization to the PM, it is 

possible that TORC1 mediates phosphorylation events on Hal5 to regulate some other 

facet of Hal5 function. As TORC1 ultimately functions in intracellular sensing of nitrogen 

availability, it is possible that, like Hal5, Npr1 localization to the PM may respond to 

changes in amino acid availability, although this has not been tested. For both Hal5 and 

Npr1, non-catalytic regions appear to be critical for PM-localization, but the mechanisms 

of regulation appear to be distinct. Further characterization of phosphorylation within the 

N-terminal region of Hal5 will be required to determine whether these events are critical 

for Hal5 function or localization, as has been established for the N-terminal 

phosphorylation of Npr1.  

 

6.3.2 Localization determinants may be important functional features of the broader 

yeast AMPK/Snf1-related family  

Several kinases in the yAMPK/Snf1-RK family have now been observed localizing to the 

PM. For example, Gin4, Kcc4, and Hsl1 exhibit strong localization to the PM, specifically 

at the bud-neck in dividing cells (Moravcevic et al., 2010). Critical arginine and lysine 

residues within the KA1 domain of Kcc4 directly binds acidic phospholipids to mediate 

this localization, in conjunction with a septin-binding domain (Moravcevic et al., 2010). 

In contrast to Hal5, phosphatidylserine appears to be critical for Kcc4 localization to the 

PM (Moravcevic et al., 2010). Reminiscent to Kcc4 and KA1 domain containing kinases, 

a non-catalytic region of Hal5 appears to mediate PM-localization, though further 

characterization is necessary to determine whether this is mediated through lipid 
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binding. In contrast to non-catalytic regions of Hal5, it is not clear whether the KA1 

domain in KCC4 is important for its function (Moravcevic et al., 2010). However, the 

KA1 domains of related kinases Gin4 and Hsl1 are essential for their functions 

(Moravcevic et al., 2010). The targeting of human AMPK-related Mark kinases to the 

PM via lipid-binding determinants in KA1 domains suggests that regulation of catalytic 

activity through targeted subcellular localization may be a conserved feature of the 

broader AMPK/Snf1-related kinase family (Moravcevic et al., 2010; Emptage et al., 

2017). Kin1 and Kin2 also have been identified as containing KA1 domains based on 

sequence (Elbert et al., 2005), but the localization of Kin1 and Kin2 remains 

uncharacterized. In contrast to Hal5, deletion of these non-catalytic regions from Kin1 

and Kin2 results in hyper-activation, indicating an auto-inhibitory role (Elbert et al., 

2005). Interestingly, the N-terminal region of Hal4, but not Hal5, is predicted to have a 

mitochondrial membrane targeting sequence (Gey et al., 2014). Consistent with this 

prediction, previous studies have observed Hal4 fractionating with mitochondrial 

membranes, and interacting with mitochondrial membrane proteins (Gey et al., 2014), 

although the subcellular localization of Hal4 has never been visualized.  These studies 

suggest that localization determinants may be an important feature of the large 

uncharacterized non-catalytic regions of yeast AMPK/Snf1-related kinases.  

 

6.3.3 Identification of Hal5 interaction partners may reveal functional insight  

Hal5 has been reported to interact with many different proteins through a variety of high 

and low-throughput protein-protein interaction studies (summarized in Table 6.1), 

including proteins involved in metabolic processes such as the tryptophan biosynthesis  
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Table 6.1 Summary of previously identified Hal5 protein interactions from high 
and low-throughput protein interaction studies This table displays data that has 
been curated by BioGrid, and augmented with functional information available about 
each interactor from SGD.  
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Table 6.1 continued  
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enzyme Trp1 and glycogen phosphorylase Gph1, ubiquitin-protein ligases such as 

Dma2 and Bre1, proteasome components Rpn3 and Rpn11, nutrient transporters like 

Itr2, Smf1, and Ycf1, a subunit of the HOPS endocytic tethering complex called Vam6, 

and glucose-responsive transcription factor Rgt1.  Though many of these reported 

interactions are from high-throughput studies, and still require validation, they are 

consistent with a role for Hal5 in the regulation of cellular homeostasis, including 

transcriptional regulation and endocytosis. It is possible that particular cellular 

conditions induce Hal5 to associate with interacting partners, and that quantitative 

SILAC-MS interactome analysis may need to be optimized for cell conditions to detect 

physiological interactions. For example, excess extracellular amino acids promote the 

physical interaction of Yck1 and Yck2 with SPS sensor components at the cell surface 

in a mechanism to control substrate selection for otherwise constitutively active kinases 

(Ljungdahl, 2009). Similarly, Tor1 relocalizes from a cytoplasmic pool to a lysosomal 

membrane pool in response to intracellular amino acids concentrations in mammalian 

cells, which promotes Tor1 association with active TORC1 complex subunits (Lawrence 

et al., 2018). Therefore, one possibility is that nutrient stresses, like the ones that alter 

Hal5 subcellular localization (Figures 6.11A-B and 6.12A-B), may improve resolution of 

physiological Hal5 interacting partners. Ultimately, characterizing Hal5 protein 

interactions will provide mechanistic insight into its regulation of endocytosis.  

 

In this Chapter, I shifted my focus to the functional role of the previously 

uncharacterized N-terminal region of Hal5 kinase. I present evidence that elements in 

the N-terminal region proximal to the kinase domain are critical for regulation of 
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endocytosis, subcellular localization, and nutrient response. These findings provide 

novel insight into the underlying mechanism of Hal5 function in regulation of nutrient 

transporter endocytosis.  
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CHAPTER 7 
 
 

Discussion 
 
 

7.1 Summary of results 

By investigating the role of Hal kinases in stabilization of nutrient transporters, I present 

evidence that Hal kinases contribute to cellular homeostasis by functioning to 

antagonize endocytosis and broadly stabilize nutrient transporters at the PM (Figure 

7.1).  Specifically, I report that (i) Hal inhibition of endocytosis likely occurs upstream of 

the ART-Rsp5 network, (ii) both the Hal5 kinase activity and elements in the 

uncharacterized N-terminal domain are critical for regulation of endocytosis, (iii) 

localization of Hal5 to the PM correlates with its role as an endocytic antagonist, and 

(iv) Hal5 PM localization is responsive to changes in nutrient availability, with repletion 

of specific nutrients triggering Hal5 ejection from the PM. Generally, my findings 

contribute to the broader understanding of how endocytosis and signaling events are 

coupled to nutrient sensing to coordinate complex physiological processes like the 

adaptive growth response.   

 

7.2 Conclusions 

 

7.2.1 Hal kinases as antagonists of nutrient transporter endocytosis 

Although the protein networks and machinery involved in endocytosis have been well 

characterized, mechanisms that regulate endocytic site assembly and cargo selection  
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Figure 7.1 Model of Hal5 inhibition of nutrient transporter endocytosis Hal5 acts 
as an endocytic gatekeeper, localizing to the plasma-membrane to inhibit nutrient 
transporter endocytosis until the appropriate signal received. In conditions of excess 
nutrients, such as methionine or uracil, Hal5 is ejected from the plasma-membrane, 
allowing endocytosis of nutrient transporters to proceed.  
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remain poorly understood. Phospho-regulation is known to occur at different stages 

along the endocytic trafficking route, and can involve regulation of cargo selection 

(MacGurn et al., 2011; Alvaro et al., 2016; Lee et al., 2019), endocytic site assembly 

(Chi et al., 2012; Peng et al., 2015), multi-vesicular body (MVB) sorting (Morvan et al., 

2012), or recycling from endosomes (Lee et al., 2017).  

 

Npr1 and Snf1 represent well-characterized examples of phospho-regulation at the level 

of cargo-selection. Snf1 phosphorylates arrestin-like adaptor protein Art4 to inhibit 

endocytosis of glucose and lactate transporters (Coccetti et al., 2018), while Npr1 

phosphorylates arrestin-like adaptor proteins Art1, Bul1, and Bul2 to inhibit endocytosis 

of arginine transporter Can1 the general amino acid permease Gap1 (Merhi and André, 

2012). Similar to Npr1 and Snf1, Hal5 inhibits endocytosis of nutrient transporters, 

although the list of transporters impacted by Hal kinases is more expansive than that 

reported for Npr1 and Snf1, spanning multiple nutrient classes that are known to require 

a wide variety of arrestin-related adaptor proteins. Thus, the negative regulatory control 

that Hal kinases exert over endocytosis appears to be broader than Npr1 or Snf1. At 

least two Art1 phosphorylation events, at Thr93 and Thr795, are important for endocytic 

downregulation of Art1-dependent cargo (Lee et al., 2019). However, phosphorylation at 

these residues does not appear to be regulated by Hal5 kinases (Figures 5.12D, 5.13D, 

and 5.14D). Globally, phosphorylation of Art1 appears unchanged or slightly elevated in 

hal mutants (Figures 5.12C, 5.13C, and 5.14C), inconsistent with the possibility that 

Hal5 inhibition of endocytosis occurs through phosphorylation of Art1, as is 

demonstrated for Npr1. This may indicate that Hal5 regulates Art1 through an 



 137 

uncharacterized mechanism, although this seems unlikely due to Hal-regulation of Art1-

indepndent endocytosis of Fur4 (Figures 4.16A-B and 5.7A-B). Instead, it seems more 

likely that Hal5 regulation of endocytosis could occur at the level of Rsp5, which 

interacts with all arrestin-related adaptor proteins, or even upstream of the ART-Rsp5 

network.  

 

A well-characterized example of regulation of endocytic assemblies in yeast involves 

the casein kinase Hrr25 (CKd/e in mammalian cells) which localizes to the PM in a 

discrete punctate pattern (Peng et al., 2015). Hrr25 was found to localize to endocytic 

sites and arrives concurrently with the early endocytic site protein Ede1, which is itself a 

substrate for the Hrr25 kinase (Peng et al., 2015). Thus, Hrr25 is an example of a 

kinase that generally regulates endocytosis by direct phosphorylation of endocytic site 

components. Like Hrr25, Hal5 also localizes to the PM in a punctate pattern, but in 

contrast to Hrr25 I find that Hal5 does not exhibit significant co-localization with known 

endocytic site components (Figure 6.5A). Although I cannot exclude the possibility that 

Hal5 may regulate the endocytic machinery, I believe my data suggests that Hal kinases 

operate upstream of endocytic site assembly, which is triggered by Rsp5/Art-mediated 

ubiquitylation.  

 

One possible mechanism of action for Hal kinases could involve direct phosphorylation 

of a broad array of nutrient transporters at the PM. A demonstrated example of cargo 

phosphorylation is illustrated by regulation of the essential yeast plasma membrane 

proton pump, Pma1, by Ptk2 (Eraso et al., 2006; Lecchi et al., 2007; Mazón et al., 
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2015). Ptk2, a ySnf1-RK related to Hal4 and Hal5, localizes to the PM and 

phosphorylates Serine 899 within the C-terminal tail of Pma1 to activate it in response 

to glucose stimulation (Eraso et al., 2006). Due to demonstrated roles for the C-terminal 

cytoplasmic tail of Pma1 in secretion to the PM, stability at the PM, as well as glucose-

activated enzymatic activity (Mason et al., 2014), it is not clear whether this 

phosphorylation event regulates enzymatic activity, protein abundance, or some 

combination. My study, along with previous reports, suggests that regulation by Hal 

kinases is quite broad and extends beyond APC superfamily transporters that move 

amino acids and nucleosides into the cell to include glucose transporters as well as ion 

transporters and the essential proton pump, Pma1 (Mulet et al., 1999; Pérez-Valle et al., 

2007). Given the diverse portfolio of transporters subject to Hal kinase regulation, I think 

a model involving direct phosphorylation of cargo by Hal kinases at the PM is unlikely.  

 

Alternatively, Hal kinases may broadly inhibit nutrient transporter endocytosis by 

regulation of plasma membrane organization. The eukaryotic plasma membrane is often 

described as having a patchwork organization of many different microdomains, each 

with a unique identity and distinct function marked by enrichment in particular proteins 

and lipids (Grossmann et al., 2007; Douglas and Konopka, 2014; Schuberth and 

Wedlich-Söldner, 2015). For example, eisosomes are endocytosis-resistant 

microdomains of the yeast PM that protect cargo from access by ubiquitylation 

machinery (Grossmann et al., 2008; Douglas et al., 2011; Ziółkowska et al., 2011; 

Gournas et al., 2018; Moharir et al., 2018). Nutrient transporters Can1 and Fur4 

organize into eisosome compartments in the absence of substrate (arginine and uracil, 
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respectively) while stimulation of cells with excess substrate triggers re-organization of 

nutrient transporters away from eisosomal compartments (Gournas et al., 2018; Moharir 

et al., 2018). This movement may depend on conformational changes induced by 

substrate binding, as mutations that prevent conformational changes during substrate 

transport result in increased association with the eisosomal compartment (Gournas et 

al., 2018).  Interestingly, structural components of the eisosome undergo extensive 

phosphorylation, but the physiological significance of such phosphorylation events is not 

currently understood (Douglas et al., 2012; Douglas and Konopka, 2014; Roelants et 

al., 2017; Gournas et al., 2018). Thus, it is possible that Hal kinases may antagonize 

endocytosis by regulating the function of eisosomes at the PM. However, I did not 

observe appreciable co-localization of Hal5 with eisosomes (Figure 6.5B) or disruption 

of eisosome microdomains in hal mutant cells (Figure 4.5). Thus, more detailed 

experimentation will be required to determine if Hal kinases regulate eisosome 

composition or function. 

 

7.2.2 Hal kinases are PM-localized nutrient-responsive trafficking regulators 

My localization of Hal5 to the PM (Figures 6.3A-B and 6.4B-C), and characterization of 

its response to changing environmental conditions (Figure 6.11A-B and 6.12A-B) 

suggests that Hal5 kinase activity at the PM may be inhibited upon changes in the 

availability of specific nutrients, like methionine and uracil. TORC1 (mTORC1) is a well-

characterized nutrient-sensing kinase that signals from the limiting membrane of the 

vacuole to control catabolic and anabolic decisions (including protein synthesis or 

autophagy) in response to availability of specific nutrients including nitrogen, glucose, 
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and lipids (Lawrence and Zoncu, 2019). Despite a significant cytosolic population of 

mTORC1, and a relatively small fraction of mTORC1 localized to lysosomal 

membranes, it is thought that most mTORC1 kinase activity occurs at the 

lysosomal/vacuolar membrane (Lawrence et al., 2018). High cytoplasmic amino acid 

concentrations (mainly leucine, arginine, and glutamine) promote the ability of mTORC1 

to localize to lysosomal/vacuolar membranes (Sancak et al., 2008; Zoncu et al., 2011; 

Jewell et al., 2015). My data suggests that Hal5 may be regulated in a manner 

analogous to TORC1, since nutrient availability affects its ability to localize to the PM. 

 

Despite the spatial restriction of active mTORC1 in mammalian cells (as well as yeast), 

TORC1 has recently been demonstrated to exert regulatory control over endocytosis in 

yeast. One way in which it does this is through negative regulation of Npr1 (an 

NPR1/HAL5 kinase related to Hal4 and Hal5) to regulate composition of the PM 

proteome, and therefore nutrient influx (Schmidt et al., 1998; MacGurn et al., 2011; 

Merhi et al., 2011; Merhi and André, 2012). In contrast to my findings for Hal kinases, 

Npr1 is thought to antagonize endocytosis at the level of specific Rsp5 adaptor proteins, 

including Art1, Bul1, and Bul2, and therefore impact a more specific subset of endocytic 

cargo (MacGurn et al., 2011; Merhi et al., 2011; Merhi and André, 2012). Surprisingly, 

previous reports indicate that overexpression of Npr1 improves hal mutant growth 

defects through stabilization of nutrient transporters at the PM (Primo et al., 2017), 

suggesting that Npr1 may compensate for some Hal functions. Furthermore, 

phosphoinhibition of Art1 is antagonized, at least in part, by Ppz phosphatases, 

although the mechanism is orthogonal to Npr1-mediated phospho-inhibition of Art1 (Lee 
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et al., 2019). Similar to Hal kinases, Ppz phosphatases are well-characterized for their 

role in potassium and ion homeostasis (Posas et al., 1993; Yenush et al., 2002; Ruiz et 

al., 2004). Given that both Hal kinases and Ppz phosphatases regulate potassium and 

ion homeostasis, and the observed genetic interactions of hal and ppz mutants (Figure 

5.8), I speculate that Ppz phosphatases may also antagonize Hal kinase activities that 

regulate endocytosis of nutrient transporters. 

  

7.2.3 Regulation of ySnf1-RKs by elements in the N-terminal domains  

The ySnf1-RK family of kinases shares conservation restricted to the catalytic domains 

(Figure 3.4). Outside of the catalytic domains, sequences are divergent. For example, 

the N-terminal regions of Hal4 and Hal5 do not exhibit any considerable degree of 

sequence conservation with each other or other family members, which have been 

largely uncharacterized. Snf1 (AMPK in mammalian cells), one of the best characterized 

nutrient-sensing kinase regulators of endocytic downregulation, exists as a catalytic 

subunit (a) in a heterotrimeric complex that is autoinhibited, and that autoinhibition is 

released as glucose is depleted (Coccetti et al., 2018). Other members of this 

heterotrimeric complex include Snf4, an invariant stimulatory subunit (g), and a variable 

(b) subunit which consists of either Sip1, Sip2, or Gal83 (Coccetti et al., 2018). In Snf1 

complexes, the b subunit confers specificity to activated Snf1 by targeting subcellular 

localization and mediating substrate interactions (Schmidt and McCartney, 2000; 

Vincent et al., 2001). Interestingly, inactivate Snf1 in complex with any one of the three 

b subunits localizes to the cytosol, while active Snf1 in complex with Sip1 re-localizes to 

the vacuole and association with Gal83 re-localizes active Snf1 to the nucleus (Vincent 
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et al., 2001). Active Snf1 association with Sip2 remains localizes to the cytosol (Vincent 

et al., 2001). Thus, the nutrient-sensing capabilities, subcellular localization, and 

substrate interactions of Snf1 are governed by its association with different subunits in-

trans. My data suggests that nutrient-responsiveness and subcellular localization of 

Hal5 are controlled by its N-terminal region in-cis. Alternatively, it is possible that Hal 

kinases may interact with regulatory subunits that contribute to its regulation or 

localization, although such interacting proteins are yet to be identified. In contrast to 

Snf1, it is currently unknown if Hal kinases are capable of directly sensing nutrients or if 

they indirectly respond to changes in nutrient availability, as has been established for 

the Npr1 kinase.  

 

Considering the divergence of N-terminal domains of ySnf1-RKs, I speculate that the N-

terminal regions confer substrate targeting and subcellular localization of these kinases, 

similar to the accessory subunits of the heterotrimeric Snf1 complexes. Consistent with 

this hypothesis, active Npr1 localizes to the PM, and inhibition of TORC1 signaling with 

rapamycin treatment alters both Npr1 localization as well as phosphorylation events in 

the N-terminal region (Bonenfant et al., 2003; Breitkreutz et al., 2010; MacGurn et al., 

2011).  In addition to those identified in this study, high-throughput proteomics studies 

have identified multiple phosphorylation events on Hal5 that occur throughout the N-

terminal region (Chi et al., 2007; Li et al., 2007; Albuquerque et al., 2008; Holt et al., 

2009), but the physiological significance of those events is not currently understood. 

Thus, similar to Npr1, it is possible that Hal kinases are regulated by phosphorylation 

events that occur within the N-terminal domain, and such phosphorylation may impact 
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the ability of Hal5 to localize to the PM. Although there are clear differences in Npr1 and 

Hal5 function, in each case regulatory elements of otherwise divergent N-terminal 

regions control subcellular localization, are nutrient-responsive, and are important for 

function. Therefore, I propose that regulation ySnf1-RKs, like Npr1 and Hal5, may be 

similar to regulation of Snf1, except that cis-acting elements in the N-terminal regions 

may function in regulation of localization or substrate selection, analogous to the β 

subunits of Snf1. Interestingly, Hal4 is predicted to have a mitochondrial targeting 

sequence and has been found to sediment in mitochondrial subcellular fractions (Gey et 

al., 2014). In contrast, Hal5 is not predicted to have a mitochondrial targeting sequence, 

and I speculate that differential subcellular localization of Hal4 and Hal5 kinases is 

critical for understanding how these activities are coordinated. Furthermore, differential 

subcellular localization of Hal4 and Hal5 may explain why their functions appear to be 

distinct in some cases (Figure 5.8).  

 

7.3 Future directions  

 

7.3.1 What is the catalytic mechanism of Hal5 inhibition of nutrient transporter 

endocytosis?  

My findings indicate that Hal5 maintains cellular homeostasis through negative 

regulation of nutrient transporter endocytosis, that catalytic activity is required, and that 

regulation is distinct from that observed for Npr1. Unlike Npr1, Hal5 substrates remain 

to be identified. The hal5AS allele developed and characterized in my work can be used 

in future studies to address this knowledge gap. For example, quantitative SILAC-MS 
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experiments may be used in an unbiased or candidate approach to identify 

phosphorylation events that change during acute inhibition of Hal5AS. Some important 

experiments include identification of the global Hal5 phosphoproteome, an examination 

of Hal5 phosphorylation at the plasma-membrane, and investigation of Rsp5 and 

nutrient transporters as candidate Hal5 substrates. Importantly, identifying Hal5 

substrates will reveal a molecular mechanism for Hal5-mediated regulation of endocytic 

trafficking, and will more broadly provide mechanistic insight into regulation of endocytic 

trafficking by signaling networks. 

 

Using quantitative SILAC-MS experiments, Hal5 itself has been identified as a putative 

substrate during the course of my work. Even though this experiment was performed 

under acute inhibition, which suggests direct auto-phosphorylation, indirect 

phosphorylation by upstream kinases cannot be excluded. Furthermore, the 

physiological significance of these phosphorylation events is unclear. In vitro 

reconstitution of Hal5 activity would confirm Hal5 auto-phosphorylation, and phosphor-

resistant point mutations of Hal5, like Ser358Ala or Ser395Ala, can be used in 

complementation assays developed during this study to interrogate the physiological 

significance of these phosphorylation events. Due to the instability observed for catalytic 

dead point mutants of Hal5 (Figure 5.3C), and the stabilization observed for N-terminal 

truncations of Hal5 (Figure 6.1D), one prediction is that Hal5 auto-phosphorylation 

regulates its stability. Parallel to these observations, acute inhibition of endocytosis with 

LatA treatment results in stabilization of Hal5 at the PM (Figure 6.6A-D). Taken 

together, these results suggest that the cell may regulate Hal5 activity in a feedback 



 145 

mechanism that involves auto-regulation and endocytic trafficking. Ultimately, 

understanding auto-phosphorylation of Hal5 may contribute to our understanding of how 

the cell manages Hal5 activity, which is important for maintenance of cellular 

homeostasis and nutrient transporter stability at the cell surface.  

 

7.3.2 How does Hal5 localize to the plasma-membrane?   

My findings indicate that PM-localization of Hal5 correlates with its functional role in 

endocytic trafficking, and that non-catalytic regions of Hal5 are critical for this. Hal5 is 

not predicted to have any transmembrane spanning regions, and the secretory pathway 

is not required for Hal5 localization to the PM (Figure 6.9A-B), arguing against Hal5 

integration into the PM. Furthermore, Hal5 localization to the PM is altered by nutrient 

availability (Figures 6.11A-B and 6.12A-B). Thus, it seems likely that Hal5 localization 

to the PM is regulated, and that this likely regulates proximity of Hal5 to substrates 

important for its role in nutrient transporter endocytosis. However, it is not clear from my 

studies whether Hal5 is targeted to the PM through direct binding of lipids at the PM, 

indirect binding of peripheral membrane proteins, or some combination. A portion of the 

N-terminal region of Hal5 that is important for PM-localization and function appears to 

align with KA1 domains from other yAMPK/Snf-RKs (Figure 6.8), and PI(P) lipids 

appear to be important for Hal5 PM-localization (Figure 6.9A-B). Based on these 

results, one hypothesis is that Hal5 is capable of directly binding lipids at the PM. To 

test this hypothesis, purified recombinant Hal5, both full-length and the N-terminal 

region, can be used in lipid dot-blots and liposome binding assays to determine whether 

Hal5 is capable of binding lipids in vitro and to determine lipid composition preference. 
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Additionally, the quantitative SILAC-MS interactome analysis performed for Hal5 

(Figure 6.7A-C) might be optimized to resolve relevant physiological interacting 

partners. For example, Hal5 PM-localization increases in response to salt treatment 

(Figure 6.11A-B and 6.12A-B) or acute inhibition of endocytosis with LatA (Figure 

6.6A-D). One prediction is that Hal5 interaction with peripherally bound proteins may 

increase under these conditions. Parallel to that, Hal5 PM-localization decreases in 

response to methionine and uracil treatment (Figures 6.11A-B and 6.12A-B), 

suggesting that Hal5 interactions may shift to cytosolic under these conditions. 

Characterizing the nature of Hal5 PM association will reveal mechanistic insight 

underlying its regulation of endocytosis and its nutrient-responsiveness, and will inform 

our broader understanding of Snf/AMPK-RKs.  

 

7.3.3 What is the contribution of Hal4 to regulation of nutrient transporter endocytosis?  

Given the complexity of phenotypes associated with loss of both Hal4 and Hal5, I 

deliberately chose to focus on a single kinase (Hal5) over the course of my studies in an 

effort to better elucidate the mechanism by which these kinases regulate nutrient 

transporter stability. Thus, important questions regarding Hal4 have not yet been 

addressed. A similar characterization and analysis that I have performed for Hal5 

should be applied to Hal4 to determine whether hal4 phenotypes are due to off-target 

effects, whether Hal4 catalytic activity is required, and to investigate the function of the 

large uncharacterized N-terminal region of Hal4, including its subcellular localization 

and nutrient-responsiveness. Hal4, but not Hal5, is predicted to have a mitochondrial 

targeting sequence (Gey et al., 2014), suggesting that, in contrast to Hal5, Hal4 may 
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localize to mitochondria.  Consistent with this hypothesis, hal4 single mutants, but not 

hal5 single mutants, are defective for growth in glucose-scarce conditions (Figure 

4.13B). This growth defect is suppressed by treatment with antimycin (data not shown, 

Nathaniel Hepowit, PhD.), an inhibitor of cellular respiration, consistent with a role for 

Hal4 at the mitochondria. One prediction is that, in addition to its role in nutrient 

transporter homeostasis, Hal4 has a distinct role in signaling from the mitochondria to 

control energy metabolism. Perhaps a more interesting hypothesis is that differential 

subcellular localization of Hal4 and Hal5 allows the cell to maintain nutrient homeostasis 

and nutrient transporter stability by coordinating signals about nutrient status across 

different subcellular compartments. This idea is not unlike what is observed for 

TORC1/Npr1-mediated regulation of nutrient transporter endocytosis, where TORC1 

senses nutrient status at the limiting membrane of the vacuole to regulate endocytosis 

of nutrient transporters through the activity of PM-localized Npr1. Ultimately, 

characterizing the activity and subcellular localization of Hal4 will improve our 

understanding of how Hal kinases maintain cellular homeostasis, and will help us to 

understand how cells sense and respond to environmental cues. 
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