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INTRODUCTION 

 

Staphylococcus aureus causes a wide range of diseases that together embody a 

significant public health burden due to the variety of clinical manifestations and 

complications during infection. Aided by metabolic flexibility and a large virulence 

repertoire, S. aureus can hematogenously disseminate and infect various tissues, including 

skin, lung, heart, and bone, among others. Resident cells at each tissue site mount an 

immune response through recognition of bacterial components and danger signals from 

cellular damage. This response leads to the production of proinflammatory cytokines, 

chemokines, and lipid mediators. The localized immune response enhances leukocyte 

infiltration and activation, leading to the phagocytosis and killing of bacteria. The hallmark 

lesions of staphylococcal infections are abscesses, which denote the powerful innate 

immune responses to tissue invasion, as well as the ability of staphylococci to persist within 

these lesions. The innate immune response develops from resident tissue cells, and specific 

immune cells are recruited to produce antimicrobial effectors and sequester bacteria to 

prevent spreading. In this introduction, I review the innate immune responses to S. aureus, 

focusing on the interactions that occur in bone, which serves as a paradigm for invasive 

disease.  

The research questions outlined in this dissertation investigate how innate immune 

signaling influences antibacterial host responses and bone remodeling alterations during S. 

aureus osteomyelitis. More specifically, Chapter I (Introduction) summarizes (1) specific 

details on bone as a target tissue of infection, (2) the key components necessary to mount 

an innate immune response to S. aureus in the context of invasive infections, (3) an 
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overview of osteo-immunologic crosstalk between the immune and skeletal systems, (4) 

the ability of S. aureus to induce pathology and modulate host immune responses, and (5) 

a summary of innate effector cells and mechanisms necessary for bacterial control as 

elucidated from S. aureus skin infections. Collectively, Chapter I provides the rationale for 

the studies described within this thesis. 

Based on this background information, in this thesis I test the central hypothesis 

that MyD88-dependent immune pathways are necessary for antibacterial responses during 

S. aureus osteomyelitis, but this dependence may have detrimental effects on bone 

homeostasis through the modulation of skeletal cell differentiation. In Chapter II, I test how 

inflammatory stimuli perturb osteoclast differentiation, in which I also outline the 

development of assays to define the ability of S. aureus to influence changes in osteoclast 

lineage cells. Chapter III presents data on how S. aureus influences trabecular bone 

remodeling and skeletal cell changes in vivo, while also testing the ability of the innate 

immune components MyD88 and IL-1R to influence bone remodeling and immune 

responses. Furthermore, Chapter IV defines the influence of TLR2 and TLR9 on bone 

remodeling and antibacterial immunity as defined by in vitro and in vivo analyses. 

Together, this thesis establishes how MyD88, TLR2, TLR9, and IL-1R modulate the host 

immune response and influence bone remodeling in response to S. aureus osteomyelitis. 
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CHAPTER I 
 

INNATE IMMUNITY TO STAPHYLOCOCCUS AUREUS: 

EVOLVING PARADIGMS IN INVASIVE DISEASE 
 
 

Introduction 
 

Staphylococcus aureus is a Gram-positive bacterium that colonizes approximately 

30% of the population [1]. Despite this relatively innocuous lifestyle, S. aureus is capable 

of breaching tissue barriers, circulating through the bloodstream, and infecting nearly every 

organ system in the body. S. aureus is the most common cause of bacterial skin and soft 

tissue infections in the United States [2, 3]. Other infection sites include but are not limited 

to bone, lung, kidney, and heart. A critical tenant in the battle against staphylococcal 

infections is to understand host risk factors, including those that parse out individuals 

capable of local control of infection, versus those that progress to invasive disease.  

 

Burden of S. aureus infections 

In the early 1880’s, Dr. Alexander Ogston examined purulent material from patients 

with soft tissue infection [4, 5]. Following Ogston’s landmark discovery, it has become 

clear that S. aureus is the predominant bacterial pathogen causing purulent infections in 

both superficial and deep tissues. Infections caused by S. aureus range from relatively 

harmless folliculitis to life-threatening sepsis. However, if not properly treated, less serious 

infections could progress to more complicated infection through spread into the 

bloodstream or translocation to deep tissues and organs [6]. Historically, most invasive S. 

aureus cases were due to hospital-acquired infections, but over the past few decades 
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community-acquired (CA) S. aureus strains have become a common cause of infection in 

otherwise healthy individuals [7]. These CA strains are thought to be able to cause severe 

infections in immunocompetent populations in part due to a higher abundance of virulence 

factors. Based on epidemiologic data from 2012 in the United States, approximately 80,000 

invasive methicillin-resistant S. aureus (MRSA) infections occur each year, leading to over 

11,000 deaths [8]. Invasive infections can encompass body sites such as the lung, heart, 

and bone. Although much has been learned regarding the architecture of staphylococcal 

abscesses and the major cellular contributors to pyogenic immune responses [9], many 

questions remain unanswered. In the sections that follow, we review the key events 

underlying effective recognition and microbiologic control of S. aureus bone infection, as 

S. aureus is responsible for the vast majority of all human osteomyelitis cases [10], and 

also serves as a paradigm for invasive disease.   

 

Skeletal cell remodel bone and are innate sensors of bacterial pathogens 

 
Osteoblast and osteoclast ontogeny and function 

Skeletal cells have specialized roles to maintain bone structure, which is continually 

remodeling. Osteoblasts are derived from mesenchymal stem cells, and function as bone-

forming cells that lay down an extracellular matrix, predominantly made of type I collagen. 

Osteoblasts then mineralize this matrix, incorporating hydroxyapatite crystals to give the 

bone its rigid tissue structure. When bone becomes old or damaged, this matrix can be 

degraded by osteoclasts derived from myeloid lineage cells. Osteoclasts function by 

forming a localized resorption compartment on bone with a low pH into which they secrete 

enzymes to mobilize mineral and digest the organic matrix, and coordinate resorption with 
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recruitment of bone-forming osteoblasts, to continually remodel bone and maintain a 

healthy extracellular matrix (ECM) [11-13].  

 

Homeostatic bone remodeling is regulated by cytokines and systemic cues 

Bone remodeling is regulated under tight homeostatic control. Osteoblasts and their 

descendant lineage osteocytes that become encased in bone matrix are key modulators of 

bone remodeling, with the ability to respond to systemic and local cues such as hormones, 

vitamins, and minerals. Under normal flux the cytokines receptor activator of NFκB ligand 

(RANKL) and osteoprotegerin (OPG) help precisely balance osteoblast and osteoclast 

activities. Osteoblast and osteocytes produce RANKL and OPG at varying ratios to favor 

either bone resorption or formation [14-16], although RANKL is also expressed by 

activated lymphocytes [17-20]. Increased production of the TNF-family cytokine RANKL 

signals through the RANK receptor on myeloid lineage cells to promote osteoclast 

differentiation and bone resorption [15] (Figure 1). Thus, mice deficient in RANK or 

RANKL do not have osteoclasts, resulting in very dense bones, or severe osteopetrosis [21, 

22]. In this way, RANKL is a key factor in monocyte cellular fate, as these cells can 

differentiate either into inflammatory macrophages or bone-resorbing osteoclasts 

depending on the environmental milieu. However, a decreased RANKL:OPG ratio will 

slow bone resorption, leading to a net anabolic effect by bone-forming osteoblasts. Tight 

regulation of osteoclastogenesis is imposed by osteoblasts through production of the 

soluble decoy receptor OPG that acts as an important physiologic inhibitor of 

osteoclastogenesis, and OPG-deficient mice exhibit osteoporosis [23]. To induce 

osteoclastogenesis RANK signaling must occur on a myeloid lineage cell in the presence 
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of M-CSF, and with co-stimulation through immunoglobulin-like receptors TREM2 or 

OSCAR [24]. Complex signaling pathways during osteoclast differentiation lead to the 

activation of transcription factors NFκB, AP-1, and NFATc1, among others, to induce 

osteoclast-specific genes [25-29] (Figure 2). 
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Figure 1. Homeostatic bone remodeling occurs through communication between 
osteoblast and osteoclast lineage cells. Mesenchymal stem cells give rise to osteoblasts 
that are responsible for forming and mineralizing the extracellular matrix of bone. 
Osteoblast lineage cells are also the primary producers of the TNF-family cytokines 
RANKL and OPG, which control bone resorption by promoting and inhibiting osteoclast 
differentiation, respectively. Osteoclasts arise from myeloid lineage cells of hematopoietic 
origin through multinucleation. Osteoclasts are functionally able to resorb bone by 
demineralizing and degrading bone matrix.  
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Figure 2. Osteoclast differentiation requires RANKL signaling in the presence of M-
CSF and co-stimulation from an Ig-like receptor. 
In a simplified version of osteoclast signaling: M-CSF signaling through its receptor, c-
FMS, leads to activation of cSrc kinase to phosphorylate ITAMS on a co-stimulatory Ig-
like receptor, allowing for Syk kinase docking. Syk kinase and TRAF6-mediated signaling 
activate phospholipase C (PLC)-γ to cleave the substrate PIP2. This reaction leads to 
cytoplasmic mobilization of calcium and activation of the canonical osteoclast 
transcription factor, NFATc1. RANK signaling through TRAF6 activates additional 
transcription factors necessary for osteoclastogenesis, including canonical and non-
canoncial NFκB and AP-1. In the nucleus, these transcription factors work together to 
induce osteoclast-specific genes, CTSK (cathepskin K), TRAP (tartrate-resistant acid 
phosphatase), CTR (calcitonin receptor), and DCST2 (DC-STAMP), among others.  
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Bone as a target tissue for S. aureus infection 

The skeletal environment is complex, and it is unclear how S. aureus is so well 

equipped to survive in this niche. S. aureus is capable of colonizing skeletal tissues 

following hematogenous dissemination, via direct inoculation following trauma, or by 

spread of a contiguous infection. Upon colonization of bone, S. aureus is capable of 

establishing chronic infection, often surviving within traditional abscess lesions in the bone 

marrow (Figure 3A and 3C) or invading directly into damaged bone through the network 

of osteocytic canaliculi [30]. In addition to invading into healthy bone tissue, S. aureus can 

also invade and adhere to pieces of devitalized bone known as sequestra, creating a niche 

for chronic infection [30] (Figure 3D and 3E). The mechanisms used by staphylococci to 

persist within bone are an area of ongoing investigation [31-35]. However, the events 

leading to detection of invading staphylococci by the immune system in bone are poorly 

understood in comparison to studies in skin. Moreover, innate immune responses to 

bacterial pathogens in bone lead to profound effects on bone remodeling, which in turn 

dramatically influence the outcome of infection [31, 36-40].  
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Figure 3. S. aureus forms traditional abscesses in bone marrow but also grows directly 
on and invades into living and dead bone fragments.  
Murine femurs were extracted, fixed in neutral buffered formalin, and dehydrated in 70% 
ethanol. Following decalcification in 20% EDTA (pH 7.4), femurs were processed and 
embedded in paraffin. Femurs infected with S. aureus (A) or mock infected with PBS (B) 
were sectioned and stained with a modified H&E stain prior to imaging at original 
magnification X1. Different abscess morphologies, including a traditional abscess (box C) 
in the bone marrow (C) and sequestra (box D) along cortical bone fragments (D), were 
observed in the S. aureus-infected femurs upon imaging at original magnification X10. 
Arrowheads in (C) denote the boundaries of the abscess’s neutrophilic infiltrate. * denotes 
the staphylococcal abscess community surrounded by an eosinophilic pseudocapsule in the 
center of the abscess. # in (D) denotes a non-viable piece of cortical bone (sequestrum) 
with tiny adherent clusters of staphylococci (arrows) both on the surface of and within the 
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sequestrum. (E and F) A second murine osteomyelitis sample was stained with both 
modified H&E (E) and tartrate-resistant acid phosphatase (mature osteoclast marker) (F) 
to demonstrate that S. aureus can also adhere to segments of living cortical bone (denoted 
by #), as osteoclasts (arrows) are visualized remodeling the same fragment of cortical bone. 
* denotes a large cluster of staphylococci directly adherent to the bone segment.  
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Skeletal cells as innate sensors of bacterial pathogens 

 S. aureus has an extraordinary virulence repertoire that facilitates binding to host 

tissues, subsequent tissue invasion, host cell death, and bacterial dissemination [41-44]. S. 

aureus is a Gram-positive pathogen and therefore has a thick peptidoglycan wall studded 

with lipoteichoic acids, surface adhesins, and immunomodulatory proteins. Staphylococci 

also secrete toxins, proteases, and other degradative enzymes that facilitate tissue invasion, 

host cell death, and dissemination. Yet these virulence factors also serve as potent stimuli 

for activation of innate immune responses. 

Staphylococcal adhesins allow binding to extracellular matrix components found 

in bone, including fibronectin and collagen [45]. Select adhesins also promote endocytic 

uptake into nonprofessional phagocytic cells, such as osteoblasts [45, 46]. Once 

internalized, S. aureus can escape into the cytoplasm by lysing the endosome [47-50]. This 

close association with bone cells triggers immune responses, as osteoblasts, osteoclasts, 

and their precursor cells express a repertoire of pattern recognition receptors (PRRs) [51-

56], each capable of detecting pathogen associated molecular patterns (PAMPs) and 

initiating downstream immune responses.  

Much like the epithelium, bone cells can express antimicrobial peptides (AMPs) 

that serve as an early defense to protect against invasion by pathogenic bacteria [57]. In 

bone samples isolated from humans and mice with osteomyelitis, AMPs were increased 

relative to healthy bones [58]. In vitro studies have also shown that S. aureus supernatants 

and IL-1 are able to enhance AMP expression from human and murine osteoblasts via the 

p38 MAPK and NFκB pathways [58, 59]. In a murine model of post-traumatic S. aureus 
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osteomyelitis, Yoshii et al. [60] found high levels of IL-1, IL-6, and TNFα in bone early 

after infection, with TNFα remaining elevated for the 28-day course of infection. 

PRRs on bone cells that sense S. aureus include toll-like receptors  

(TLRs) and nucleotide-binding oligomerization domain (NOD) receptors. Specifically, 

TLR2 recognition of peptidoglycan and lipoteichoic acid [54, 61, 62], TLR9 endosomal 

recognition of bacterial DNA [63], and NOD-mediated recognition of cytoplasmic bacteria 

following escape from the endosome [64]. Similar to the interactions with resident skin 

cells, S. aureus activates TLR2 on osteoblasts in vitro, leading to release of AMPs and cell 

death [58, 65]. Once internalized, S. aureus in osteoblasts can be killed in the endosome 

through TLR9-mediated induction of oxidative stress, though not as robustly as 

professional phagocytes [66, 67]. S. aureus also triggers expression of NOD2 by 

osteoblasts, [64, 68], and cooperation between TLR2 and NOD2 induces RANKL 

production [52, 53, 69]. Finally, the NLRP3 inflammasome can be activated in myeloid 

cells by S. aureus peptidoglycan and bone particles [70, 71]. Consequently, recognition of 

S. aureus by multiple PRRs on bone cells induces a robust inflammatory response and 

alters bone remodeling (Figure 4). S. aureus recognition by PRRs, such as TLR2 and 

NOD2, allows for shared innate mechanisms between resident skin and bone cells, 

emphasizing the importance of response to general bacterial motifs. 
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Figure 4. Outcomes of skeletal cell interactions with S. aureus.  
(A-B) Bone remodeling activities of osteoblasts (OBs) and osteoclasts (OCs) are altered 
following interactions between innate immune receptors and S. aureus. (A) In osteoblasts, 
TLR2 recognition of extracellular S. aureus leads to production of AMPs, TLR9 detection 
of bacterial CpG DNA in the endosome induces an antimicrobial ROS response, and NOD2 
sensing of cytoplasmic S. aureus occurs following escape from the endosome. The 
culmination of osteoblastic innate recognition results in production of proinflammatory 
cytokines, such as TNFα, IL-1, and IL-6. These cytokines allow osteoblasts to favor 
increased production of RANKL and decreased release of the RANKL inhibitory cytokine 
OPG. The increased RANKL:OPG ratio and pro-inflammatory cytokine production have 
a net effect to enhance osteoclast differentiation. However, osteoblast activation and the 
effects of staphylococcal toxins may also result in osteoblast dell death through apoptosis 
and necrosis. RANKL production allows for enhanced differentiation of osteoclast 
precursors. Pro-inflammatory cytokines, such as TNFα, IL-1, can signal directly onto 
osteoclast precursors to increase osteoclast survival and bone resorption activity. (B) 
Osteoclast expression and ligation of TLR2 have been shown to allow for the further 
differentiation down the osteoclast lineage; however, this occurs only in cells that have 
first been stimulated with RANKL. Whether or not S. aureus can invade osteoclasts of 
activate endosomal or cytoplasmic PRRs remains to be determined.  
 

 

 



 

	 16	
	

Host immunity to S. aureus during skeletal infection 

 
Osteomyelitis as a paradigm for invasive staphylococcal infection 

S. aureus has the remarkable ability to invade and establish infection at various 

sites throughout the body. The metabolic flexibility and large repertoire of immune evasion 

and virulence strategies employed by staphylococci allow these bacteria to seed various 

tissues and gain nutrients to sustain infection. Of the many tissues that S. aureus is capable 

of colonizing, bone is one of the most frequently infected, and unfortunately, one of the 

most debilitating manifestations of disease.  

S. aureus is by far the most common cause of osteomyelitis [10, 72]. Treatment 

regimens include prolonged antimicrobial therapy in conjunction with surgery to remove 

infected or devitalized bone. These surgical procedures are necessary given that S. aureus 

triggers profound bone destruction, which is accompanied by a loss of vascular 

architecture, and thus decreased delivery of antimicrobials to the site of infection. S. aureus 

is also the most common cause of septic arthritis, which can trigger subchondral bone 

destruction or even osteomyelitis if contiguous spread occurs [73, 74]. Osteomyelitis is 

therefore paradigmatic for invasive staphylococcal infections that are recalcitrant to 

treatment and carry considerable morbidity. In the following sections, we detail advances 

in our understanding of the innate immune responses to S. aureus infection of bone.  

Downstream of PRRs, signaling through MyD88 is critical for osteoclastogenesis 

induced by PAMPs and IL-1 [51, 75]. MyD88 and IL-1R are important for bacterial control 

on implants in a post-arthroplasty model of infection [76], just as they are also crucial for 

neutrophil recruitment and S. aureus clearance in cutaneous infection models [77].  

Furthermore, IL-1R-deficient mice were found to have a higher frequency and severity of 
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septic arthritis in a systemic S. aureus model [78]. The role of TLR2 in S. aureus infection 

is largely dependent on the model system employed and the target tissue examined (see 

section on skin infections below). However, TLR2 enhances bone resorption in response 

to injection of heat-killed S. aureus but not a lipoprotein-deficient strain [79]. This evidence 

supports a mechanism whereby TLR2 senses systemic bacterial components and can 

mediate changes in bone homeostasis. These studies corroborate that MyD88-dependent 

PRRs and cytokines are critical for bone remodeling and control of S. aureus infection. 

 

Animal models of osteomyelitis  

In 2013, our laboratory developed a unique murine model of bacterial osteomyelitis 

[31]. Contrary to other experimental osteomyelitis infections, this model induces a 

unicortical defect in the bone rather than a larger fracture that requires fixation. This 

increases precision by allowing for direct inoculation into the intramedullary canal of the 

femur and does not confound bacterial burden by introducing an implant. Additionally, 

mouse models are genetically tractable, as there are many readily available reagents 

specific for murine cells. Our infection model is advantageous for other reasons, including 

that we can precisely calculate colony-forming units (CFUs) and we have developed 

imaging analyses to accurately quantify bone remodeling. Many other experimental 

models of S. aureus osteomyelitis use larger mammalian hosts, including rabbits, rats, 

dogs, sheep, pigs, and goats [80-89]. Osteomyelitis animal models can also vary in their 

etiology from establishing bone infection downstream of hematogenous dissemination or 

fracture [36, 84, 86, 90], or associated with the implantation of a foreign device [30, 85, 

87, 91-93]. Thus, as animal models of osteomyelitis can be used to define critical immune 
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responses leading to inflammation and alterations in bone remodeling [31, 33, 35, 36, 80, 

94-97], there may be inherent differences between comparisons. 

Murine models of staphylococcal infection also have certain limitations. The 

contribution of individual toxins to disease pathogenesis is controversial when considering 

data from different animal models. For example, the Panton-Valentine Leukotoxin (PVL) 

activity is restricted to the human and rabbit C5a receptor; thus the effects of this toxin 

cannot be elucidated using murine models, but a rabbit model is well suited for discovery 

of toxin effects during infection [81, 82, 98]. Similarly, other staphylococcal bi-component 

toxins have species-specific interactions with receptors; therefore not all animal models are 

appropriate to measure toxin effects [99]. Moreover, humanized mice (NSG mice 

reconstituted with a human hematopoietic system) used in S. aureus infection models have 

been shown to exhibit increased pathogenesis relative to WT mice [100], which could also 

provide an improved experimental platform to study S. aureus toxin-mediated 

pathogenesis. 

 

Staphylococcal immune response in humans 

Individuals with diseases that impact innate immunity are at increased risk of 

staphylococcal infection. Genetic diseases that predispose individuals to S. aureus 

infections include chronic granulomatous disease (CGD) [101], deficiencies in MyD88 

[102], IRAK-4 [103], TIRAP [104], and RAC2 [105]; Wiskott-Aldrich Syndrome [106], 

leukocyte adhesion deficiencies [106], severe congenital neutropenia [106]; and allelic 

variants of cytokines IL-1α, IL-4, and IL-6 [107, 108]; among others. In patients with CGD, 

there is a failure to produce an antimicrobial respiratory burst in phagocytes due to 
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mutations in the NADPH oxidase complex [109]. CGD patients are therefore exquisitely 

susceptible to catalase-producing microorganisms, including S. aureus, and suffer from 

recurrent infections in skin, bone, lungs, and other tissues [109]. MyD88, IRAK-4, and 

TIRAP deficiency lead to a failure to transduce PRR- and IL-1R-associated signals, thereby 

significantly hampering immune responses to select pathogens. Interestingly, these patients 

experience infections with a narrow range of pathogens, most notably S. aureus and 

Streptococcus pneumoniae, and tend to improve with age [104, 110]. 

 Increased risk of S. aureus infection has also been associated with co-morbidities, 

such as diabetes [111, 112], malnutrition [113], bone marrow transplantation [114], and 

HIV infection [115]. In general, these conditions are associated with extreme dysregulation 

of the immune response. Although individuals with malnutrition [113, 116], newborns 

[117, 118] and bone-marrow transplant recipients [119] are functionally 

immunocompromised, subjects with uncontrolled diabetes [120-122], obesity [123, 124], 

and advanced age [125, 126] exhibit chronic low-grade inflammation and are also 

susceptible to infection. However, the common ground that favors S. aureus infection 

remains to be determined.  

 

The emerging field of osteoimmunology 

Reciprocal interactions between the skeleton and the immune system 

The intricate cellular interactions that lead to bone remodeling took many decades 

to delineate and are still an active area of research. In the late 1980s, osteoblasts were linked 

to the regulation of osteoclastogenesis, even before the primary signals for 

osteoclastogenesis had been identified [127-129]. M-CSF was identified as a critical factor 
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supporting osteoclastogenesis, in keeping with the observation that osteoclasts arise from 

myeloid cells during co-culture experiments [130, 131]. These early discoveries paved the 

way for the identification RANKL as the canonical osteoclast differentiating factor [14, 

15], as well as the discovery of a related inhibitory molecule OPG [132, 133].  

The field of osteoimmunology, in which the effects of various immune cell-derived 

factors and cytokines on bone homeostasis were examined, emerged from work dating back 

to the 1970s [134, 135]. TNFα, IL-1, and IL-6 favor bone resorption by promoting 

osteoclast differentiation and function. Indeed, IL-1 was initially described as osteoclast 

activating factor due to its effects on bone [136, 137]. IL-1, IL-6, and TNFα trigger 

osteoblast lineage cells to upregulate RANKL [138], whereas IL-1 and TNFα can also act 

on mature osteoclasts to promote differentiation, survival, and bone resorbing activity 

[139-141]. However, both TNFα and IL-1 can only affect osteoclast precursors that have 

first been primed with RANKL [142, 143]. Interestingly, bone remodeling mediated 

through TNFα is in part driven by its ability to alter osteoblastic expression of IL-1 and the 

IL-1R [144]. Cytokines can also indirectly impact bone resorption by osteoclasts, as both 

IL-1 and IL-6 increase production of RANKL by osteoblasts [138]. In addition to these 

cytokines, TH17 cells contribute to bone loss during arthritis, as IL-17 triggers RANKL 

production and osteoclastogenesis [145, 146]. In contrast to IL-1, IL-6, TNFα, and IL-17, 

anti-inflammatory and TH2 cytokines are anti-osteoclastogenic. IL-4 and IL-13 are 

generally suppressive to skeletal cells, reducing activities of both osteoblast and osteoclast 

lineage cells, as they inhibit osteoblast proliferation, favor production of OPG, and 

decrease RANK expression on osteoclasts [147-150]. Similarly, IL-10 can signal directly 

onto preosteoclasts to suppress RANKL-induced transcription factors [151, 152]. The net 
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effects of these cytokines in the skeleton favor bone resorption by shifting the axis towards 

enhanced osteoclast numbers and activity.  

 

Osteo-immunologic crosstalk impacts bone health in numerous human diseases 

The various effects of RANKL and other pro-inflammatory cytokines to influence 

bone biology and immune function have led to the classification of a field that merges these 

two disciplines, called osteoimmunology. Many human diseases have significant skeletal 

effects driven by inflammation, including conditions characterized by localized 

inflammation, such as rheumatoid arthritis, multiple myeloma, and tumor-induced bone 

disease. However, chronic inflammation present in patients with chronic conditions such 

as inflammatory bowel disease and systemic lupus erythematosus can also advance bone 

loss. Interactions between skeletal cells during inflammation are multifactorial, but studies 

in these fields show overlapping importance of cytokines such as TNFα [153, 154], IL-1 

[155], IL-6 [156, 157], IL-11 [158], and IL-17 [145, 159-163]. Interestingly, these fields 

became more entwined when it was discovered that activated B and T lymphocytes release 

RANKL, which can induce osteoclastogenesis, leading to bone loss and joint destruction 

[17, 19]. 

 

S. aureus-induced pathogenesis during skeletal infection 

 
S. aureus secreted virulence factors  

S. aureus pathogenesis is partially dependent on the elaboration of secreted 

virulence factors, including cytolytic toxins and proteins that modify immune functions. In 

experimental models of osteomyelitis, several S. aureus proteins have been shown to 
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impact bone architecture and contribute to comorbidities, such as sepsis. During bone 

infection, abscess formation in the bone marrow and around devitalized bone leads to a 

hypoxic environment, which subsequently alters quorum sensing and toxin production 

[32]. Along with many other staphylococcal toxins and proteases, the alpha-type phenol 

soluble modulins (PSMa) toxins are regulated by the accessory gene regulator (agr) 

quorum sensing system. PSMa toxins are small, amphipathic pore-forming toxins that are 

relatively promiscuous in their ability to induce toxicity among several cell types and 

species [32, 164]. In a murine model of post-traumatic osteomyelitis, PSMa toxins are 

responsible for killing primary bone cells in vitro and that killing enhances bone destruction 

in vivo [31, 32]. However, a S. aureus strain lacking the PSMa toxins still incites 

substantial bone damage, causing approximately 70% of the bone loss that is observed in 

femurs infected with a wild-type S. aureus strain [31]. In rabbit and murine models of 

experimental osteomyelitis, inactivation of agr further reduced bone destruction [31, 80]. 

However, significant cortical bone loss still occurred even with this virulence-attenuated 

strain during osteomyelitis [31]. 

Bone destruction mediated by S. aureus is multifaceted. PVL can mediate bone cell 

death through the lysis of myeloid cells, including osteoclasts, after binding the C5a 

receptor [165]. Meanwhile, PVL contributes to increased pathogenesis to enhance early 

bacterial survival in bone and promote bacterial spread to nearby muscles and joints in a 

rabbit model of osteomyelitis [82]. S. aureus strains expressing PVL are associated with 

more severe local disease and a greater systemic inflammatory response in children with 

osteomyelitis [165, 166] . Furthermore, bone destruction during S. aureus infection can 

also be triggered by the superantigen toxin shock syndrome toxin-1 (TSST-1) and the 
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antibody-binding protein staphylococcal protein A (Spa), which both activate osteoclast 

signaling to enhance bone resorption [40, 165, 167].  

To impede the early host defenses, S. aureus produces a repertoire of toxins that to 

damage biological membranes, including hemolysins and leukotoxins. Release from the 

phagosome and lysis of incoming innate immune cells allows S. aureus to avoid many host 

anti-bacterial effector mechanisms. Yet, the contribution of staphylococcal toxins 

regarding disease severity and pathogenesis varies based on the infection site and the 

repertoire of virulence factors expressed by the infecting S. aureus strains. 

 

The ability of biofilm to modulate innate immune responses 

Many S. aureus clinical isolates from infections are found to have a dysfunctional 

agr system [168]. These agr-deficient strains are characterized by low virulence factor 

production and enhanced biofilm formation [169, 170]. In individual cases, it is unclear 

whether colonizing bacteria are agr-deficient or the bacterial population have evolved in 

the host towards a biofilm-forming, toxin-limited state. However, serially isolation and 

sequencing of colonies from patient wounds over time have shown mixed populations with 

respect to agr functionality in consecutive samples [168]. Additionally, many isolates with 

non-functional agr systems appear to have developed simultaneously rather than 

sequentially, as agr mutants were reflective of various genetic alterations, including 

deletions, missense mutations, and frameshifts [168]. Bacteria that form biofilms are often 

more resistant to clearance by the host immune response, leading to a chronic infection. 

Neutrophils are the principal innate effector against S. aureus, and are still thought to be 

critical for the clearance of bacterial biofilms [171]. However, studies have shown that S. 
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aureus biofilms can negatively affect phagocytosis by macrophages and attenuate 

inflammation in vivo [172]. 

 

Innate immune responses to S. aureus:  

Lessons learned from studying skin infections 

 
Key players involved in bacterial recognition and innate immunity  

A plethora of research has been focused on defining the innate immune responses 

to S. aureus cutaneous infections. Critical steps in anti-staphylococcal immunity are 

outlined in this section. An active innate immune response is mounted in response to the 

invading bacteria once S. aureus has obstructed mechanical tissue barriers. Tissue resident 

macrophages can phagocytose and kill S. aureus efficiently by producing reactive oxygen 

and nitrogen species (ROS and RNS), AMPs, and chelating proteins that starve bacteria of 

essential nutrients [173, 174]. However, the main mechanisms of bacterial clearance 

require a large influx of leukocytes and phagocytosis of bacterial cells by innate effector 

cells.  

Resident tissue cells and endothelial cells lining blood vessels that supply the tissue 

are typically the first cells that encounter pathogens during infection, and such cells 

recognize PAMPs via different PRRs, such as TLRs and NOD-1 and -2 [175-177]. 

Signaling through these receptors induces activation of transcription factors, such as NFκB 

and AP-1 to generate cytokines, chemokines, and antimicrobial effector mechanisms [177-

179] (Figure 5, left).  
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Figure 5. Innate immune responses to S. aureus during infection.  
Left panel, S. aureus infects skin after breaching the epithelial layers. Keratinocytes and 
skin-resident macrophages produce inflammatory mediators that promote neutrophil 
responses. Middle panel, neutrophils are recruited to the skin where they phagocytose 
bacteria, undergo degranulation, and produce extracellular traps that aid in bacterial killing. 
Right panel, S. aureus infection is contained by abscess formation. Live and dead 
neutrophils and bacteria are found within the abscess. The abscess becomes encapsulated 
with fibrous material and surrounded by macrophages. 
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Staphylococcal-sensing TLRs of unique interest are the TLRs 1, 2, 6, and 9 because 

they have been implicated in osteoblast recognition of staphylococcal components and 

signal through MyD88 [180]. Extracellular TLR1/2 and TLR2/6 heterodimers are known 

to engage S. aureus cell wall components, specifically lipopeptides and peptidoglycan 

[181, 182], and S. aureus CpG DNA stimulates TLR9 during bacterial replication in the 

endosome [183]. These TLRs utilize the signaling adapter MyD88 to induce robust and 

efficient transcriptional programs that lead to inflammatory responses to S. aureus in 

different models of infections. Mice deficient in MyD88 are highly susceptible to S. aureus 

skin infection as evidenced by increased bacterial load, poor inflammatory response, and 

enhanced mortality or morbidity in various models of disease [77, 184-186]. TLR2 and 

TLR9 can recognize bacterial products and allow resident cells to produce neutrophil 

chemoattractants, AMPs, such as pore-forming cathelicidin LL-37 (human) or cathelicidin-

related AMP (mouse) and defensins, and pro-inflammatory cytokines such as TNFα and 

IL-6 [178, 187]. Moreover, TLR2 is highly expressed on the cell surface of resident 

macrophages and recruited neutrophils and monocytes, which promptly respond to S. 

aureus and further stimulate cytokine production and phagocytosis. Therefore, it is 

expected that TLR2 is critical for both systemic and localized S. aureus infection. 

However, in some infection models, the role of TLR2 is controversial. Although Miller et 

al. [77] demonstrated that TLR2 is dispensable to control S. aureus infection, Hoebe et al.  

showed that Tlr2-/- mice are more susceptible to infection [188]. Distinct bacterial strains 

express unique virulence factors and toxins that could underlie different TLR2 

requirements. Furthermore, the infection inoculum varies between these studies. If TLR2 

is required for fine tuning the immune response, higher amounts of bacteria (as used by 
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Miller et al.) could override the TLR2 requirement to induce an efficient response, whereas 

lower doses of the bacteria could require TLR2 to mount a robust immune response. 

Phagocytosis and internalization of S. aureus sequesters the bacterium into the host cell 

endosome, where TLR9 is expressed. TLR9 induction of IL-1α has been described in 

patients with atopic dermatitis, that have accumulated S. aureus in keratinocyte lysosomes 

[189]. Taken together, these data suggest that TLRs promote early antibacterial events 

during S. aureus infection. 

S. aureus has the ability to escape the host cell endosome by lysing the membrane 

and entering the cytoplasm [45, 48, 50]. Here, the intracellular PRRs NOD1 and NOD2 

can detect bacterial peptidoglycan to induce inflammatory responses, production of 

antimicrobial peptides and increased phagocyte antimicrobial effector functions. NOD2 

recognize the muramyl-dipeptide derived from peptidoglycan during S. aureus infection. 

Furthermore, Nod2-/- mice are highly susceptible to S. aureus skin and systemic infections 

when compared to WT counterparts [190-194].  

Resident stromal cells and endothelial cells at the site of infection are activated by 

S. aureus to release constitutively produced IL-1α, whereas tissue resident macrophages 

are the primary producers of IL-1β [195]. These tissue resident macrophages assist in the 

initial clearance of S. aureus, and in conjunction with perivascular macrophages, they 

regulate the recruitment of neutrophils and monocytes to the site of infection [196, 197]. 

Moreover, the secretion of chemoattractants required for neutrophil recruitment is 

dependent on IL-1R and MyD88 signaling [77]. IL-1 cytokines play a central role in 

recruitment of neutrophils by signaling through the IL-1R on skin and endothelial cells to 

increase chemotactic molecules such as CXCL1, CXCL2, and IL-8 [76, 77, 198, 199]. 
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Furthermore, the complement cascade results in the production of the potent neutrophil 

chemoattractant C5a and supports opsonization of bacterial cells to augment phagocytosis 

by innate effector cells, though S. aureus has many complement evasion strategies [200-

202]. Bacterial factors, such as the PSM toxins, can also serve as a mechanism to recruit 

and lyse neutrophils in vivo [203, 204]. 

IL-1β is produced as an inactive pro-IL-1β, which requires proteolytic processing 

to be functional. The NLRP3 inflammasome is a major mechanism that processes IL-1β 

and facilitates antimicrobial activities and enhances immune effector functions [205]. 

NLRP3 inflammasomes are multi-subunit protein complexes involving NLRP3, ASC, and 

caspase-1. Once assembled, caspase-1 is activated and cleaves pro-IL-1β to form mature 

IL-1β. Effective IL-1β processing by NLRP3 requires two signals: 1) TLR activation to 

induce expression of Il1b and 2) activation signal to induce inflammasome assembly and 

activity. Alternatively, IL-1β can also be processed in noncanonical NLRP3 activation, 

mediated through caspase-11 activation or via serine proteases from neutrophils and 

bacterial proteases in an inflammasome-independent mechanism [206]. The majority of 

IL-1β produced in the skin of S. aureus infected mice is processed primarily through 

NLRP3 inflammasome activity [199]. IL-1β is important for neutrophil recruitment and 

bacterial clearance during S. aureus infections [199] and for abscess formation [207]. 

Neutrophils are the primary cellular defense mechanism deployed during S. aureus 

infection. These cells make up the largest portion of circulating leukocytes and are 

effectively recruited to the site of infection, where opsonization of bacteria by complement 

C3 and C5 convertases facilitate phagocytic killing by neutrophils. Neutrophils are 

inherently short-lived cells, however, recognition of bacterial PAMPs and host DAMPs 
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through TLRs can prolong their survival, promote phagocytosis, ROS production, and 

granule release [208-210]. In addition to microbicidal activities and neutrophil 

extracellular trap (NET) formation carried out by neutrophils, they are a critical component 

of abscess formation, thought to sequester S. aureus bacteria to prevent dissemination of 

infection [9]. Once neutrophils arrive to the site of infection, they ingest S. aureus and 

attempt to control microbial growth by producing different antimicrobial effectors [174, 

211, 212]. Neutrophils are short-lived cells that readily undergo apoptosis and need to be 

cleared from the site of infection.  

Phagocytosis of bacteria and neutrophil activation prompts apoptosis, though S. 

aureus has also been described to enhance neutrophil necrosis, leading to secretion of 

damage associated molecular patterns (DAMPs) and further inflammation [213]. With a 

large repertoire of virulence factors, S. aureus can induce cell death of resident cells. The 

accumulation of dead cells and debris requires clearance by macrophages through a process 

called efferocytosis, which itself has been proposed as an innate antimicrobial mechanism 

to contribute to clearance of infected apoptotic cells [214]. These cells are also involved in 

the clearance of dead cells in the site of infection, which is essential for the resolution of 

the infection [173, 174]. Macrophage activity during clearance of the infected site is altered 

depending on whether the cellular debris resulted from apoptotic or necrotic cells, with 

inflammatory cell death supporting enhanced MHC II presentation and T cell activation 

[215]. After bacteria and debris are eliminated, fibroblasts and macrophages produce 

molecules to aid in the ECM remodeling.  
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Effector mechanisms of bacterial control 

S. aureus can be ingested into the cell using receptors that recognize both opsonized 

and nonopsonized bacteria [174, 216, 217]. When coated with opsonins (e.g. C3b and IgG), 

S. aureus elicits different antimicrobial effector functions [218]. ROS (such as O2−, H2O2 

and HOCl) are produced quickly following phagocytosis through the actions of NADPH 

oxidase and myeloperoxidase, and can directly kill bacteria or facilitate further killing by 

other mechanisms [219, 220]. The inducible nitric oxide synthase (iNos) produces nitric 

oxide (NO), a major RNS that has various antimicrobial and immunomodulatory functions 

[221]. Both genetic deletion and pharmacologic inhibition of NO formation render mice 

highly susceptible to S. aureus infection [222, 223].  

Neutrophils kill pathogens by producing toxic components within granules that are 

released in a process known as neutrophil degranulation [224]. Degranulation induces the 

secretion of specific granules containing AMPs and defensins. These cationic peptides 

interact and disrupt bacterial membranes. Degranulation also leads to secretion of 

azurocidin, cathepsins, lactoferrin, lysozymes, proteinase-3, and elastase [201, 225]. As an 

additional effector mechanism to control S. aureus infection, neutrophils secrete DNA rich 

structures known as NETs.  NETs are produced in a MyD88- and TLR2-dependent manner 

and are necessary for containing S. aureus in the skin to prevent bacteremia [226] (Figure 

5, middle). NETs limit the spread of pathogens because they are rich in antimicrobial 

molecules such as antimicrobial peptides, cathepsins, elastase, histones, and proteases 

[227]. However, S. aureus destroys NETs, and the degradation product 2'-deoxy-adenosine 

induces apoptosis in macrophages, which increases bacterial survival in the abscess [228].   
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Immune mechanisms of abscess formation 

 Abscesses are the hallmark inflammatory lesions during S. aureus infection, and 

function to restrain and eliminate the pathogen [9, 174, 229]. Abscess formation is a 

dynamic event that involves different features over time. The abscess core contains fibrin, 

viable and necrotic neutrophils, tissue debris, and live bacteria (Figure 5, right). Abscess 

maturation is accompanied by formation of a fibrous capsule at the periphery; however, if 

the abscess is not tightly organized, systemic spread of infection may occur via the 

bloodstream [9, 174, 229]. Macrophages are localized to the periphery of the abscess in 

areas near the fibrous capsule, which may suggest a role in neutrophil chemotaxis toward 

and egress from the abscess [9, 174].  

The immune mechanisms involved in abscess formation are beginning to be 

uncovered. Although fibroblasts synthesize collagen, and fibrin is synthesized from 

fibrinogen by thrombin, the role of phagocytes and their mediators involved in abscess 

formation and maturation is poorly understood. Cho et al. [207] have shown that 

neutrophil-derived IL-1β is required for S. aureus-induced abscess formation. Recently, 

Feuerstein et al. [184] suggested that resident macrophages expressing MyD88 contribute 

to abscess maturation. The lipid mediator leukotriene B4 (LTB4) is also essential for 

neutrophil direction to the infectious focus, microbial killing, and fibrous capsule formation 

[230]. Furthermore, an ointment containing LTB4 increases S. aureus clearance and 

decreases lesion size [230]. These findings correlate with increased neutrophil recruitment, 

abscess formation, ROS production, and IL-1β generation. Although there is much more 

to learn regarding the host-derived products that contribute to formation of abscess, a 
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considerable amount of research has focused on the staphylococcal factors that promote 

survival within abscesses.  

Among the S. aureus virulence factors involved in abscess formation, 

staphylocoagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping 

factor A (ClfA) are all required for abscess formation. These proteins promote coagulation 

leading to fibrin generation and the formation of a pseudocapsule surrounding 

“staphylococcal abscess communities” within individual abscess lesions [9, 231]. Taken 

together, understanding the immune responses to S. aureus in skin, as well as host and 

bacterial mechanisms of abscess formation and survival, will aid in understanding the 

dynamics of staphylococcal pathogenesis and invasive infection. 

 

Conclusions 

In conclusion, innate immunity to S. aureus infection is multifaceted and likely 

tissue specific. Decades of research on staphylococcal pathogenesis in skin have elucidated 

important roles for PRRs, as well as for specific cytokine signaling pathways such as IL-

1. However, innate immune responses that mediate control of bacterial burdens in bone 

remain undefined, as do the consequences of inflammation on tissue remodeling during S. 

aureus osteomyelitis. The work in this thesis was based on the overarching hypothesis that 

MyD88-dependent innate immune receptors, including TLR2, TLR9 and IL-1R, mediate 

control of bacterial burdens locally and prevent bacterial dissemination, but that they may 

also contribute to bone loss through increased osteoclastogenesis. Many triggers of altered 

bone loss have been postulated based on in vitro findings, but remain unsubstantiated in 

vivo. Changes in bone architecture during S. aureus osteomyelitis may be due to the 
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sustained presence of bacteria in bone, local inflammation, or activated immune pathways 

on skeletal cells. In order to better define how S. aureus perturbs bone remodeling, I 

characterized cytokines and chemokines present in the infected femur to provide context 

of the inflammatory environment and to inform future studies. I expanded the assays in our 

laboratory to reveal how osteoclast differentiation is affected by S. aureus in vitro, and 

tested the role of MyD88-dependent pathways on S. aureus-mediated changes in 

osteoclastogenesis. Finally, I assessed how bone loss, osteoclast number, and actively 

resorbing osteoclast surface were altered during S. aureus osteomyelitis, and how TLR2, 

TLR9, and IL-1R influence bone remodeling in vivo. Overall, this thesis elucidates critical 

anti-bacterial responses in bone and the consequences of the resulting innate immune 

response on bone remodeling.  
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CHAPTER II 
 
 

BACTERIAL STIMULI INFLUENCE THE DIFFERENTIATION  

OF BONE-RESORBING OSTEOCLASTS IN VITRO 
 
 

Introduction 

Bacterial osteomyelitis can cause serious complications from alterations in bone 

remodeling, including large areas of bone destruction, aberrant bone formation, and local 

vasculature damage. Altered bone remodeling can also be induced by other inflammatory 

disorders; understanding how bacterial-induced inflammation impacts bone remodeling 

will enhance understanding of how systemic inflammatory disorders affect bone health. 

The presence of S. aureus in bone disrupts normal, homeostatic bone remodeling [31, 39, 

40, 45, 80, 232]. Although PSMα toxins were found to induce direct skeletal cell death, in 

vivo experiments have shown that toxin-deficient S. aureus strains still induce dramatic 

alterations in bone physiology [31]. These results indicate that there are multiple 

mechanisms leading to changes in bone during S. aureus osteomyelitis. 

Osteomyelitis is at the cusp of the emerging field of osteoimmunology, which 

highlights the interplay between bone biology and immunology [26, 180, 233]. RANKL-

dependent osteoclastogenesis is a well-defined process, and it is often hypothesized that 

crosstalk between osteoclastogenic signaling pathways and inflammatory stimuli, 

including canonical and non-canonical NFκB pathways may occur [15, 234]. Local erosion 

of bone and teeth occurs in inflammatory bone disorders such as periodontal disease and 

rheumatoid arthritis [56, 235, 236], and systemic inflammatory diseases of the bowel and 

lung can also lead to bone loss [180, 237]. Notably, local inflammation of bone also occurs 
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subsequent to the establishment of S. aureus osteomyelitis [60, 238, 239]. Thus, 

inflammatory-induced bone resorption activities by osteoclasts may be responsible for 

potentiating pathologic bone destruction [180, 237]. These observations insinuate that 

enhanced bone loss occurs in part when osteoclast differentiation is favored. 

On a cellular basis, both osteoblast and osteoclast lineage cells express PRRs, 

although their contribution to changes in bone physiology and pathogen clearance have not 

been defined during osteomyelitis. Sensing of conserved molecular patterns on S. aureus 

by PRRs initiate innate immune responses during infection, leading to activation of 

transcription factors that are also involved in osteoclast differentiation. In regards to S. 

aureus, reports on osteoclastogenic effects are unclear due to the use of various pre-

osteoclast cultures and stimulation methods [140, 240-242].  

To better understand how S. aureus triggers bone destruction, research described in 

this chapter focuses on how innate immune sensing by bone cells might perturb osteoclast 

differentiation. We hypothesized that differentiation of bone-resorbing osteoclasts could 

be enhanced directly through sensing of bacterial stimuli and indirectly through cytokine 

induction. In experiments described in this chapter, we investigate how S. aureus alters the 

differentiation of myeloid cells into bone-resorbing osteoclasts with a focus on PAMPs and 

inflammation (Figure 6). To accomplish this investigation, we used bacterial supernatants, 

cell wall extracts, TLR agonists, and in vitro osteoclastogenesis assays to monitor the 

effects of PAMPs on osteoclast differentiation. To further investigate whether the 

inflammatory milieu modulates osteoclastogenesis through the production and action of 

specific cytokines, we tested specific cytokine blockade conditions. Finally, we explore the 

role of myeloid lineage cells to respond to S. aureus through the production of 
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inflammatory transcripts and cytokines. These data implicate direct PRR sensing on 

myeloid lineage cells in disrupting basic bone homeostasis, which relates current findings 

to the scenario of S. aureus osteomyelitis. 

 

Materials and methods 

 
Bacterial strains and growth conditions  

The wild-type S. aureus strain used  in these studies is an erythromycin-sensitive 

derivative of the USA300 type LAC clinical isolate (AH1263) [243]. The toxin-deficient 

strain LAC∆psmα1-4 (herein referred to as ∆psm) was described previously [31, 244]. S. 

epidermidis strain NRS6 is a clinical isolate from the NARSA library made available 

through BEI Resources and obtained as a gift from the Skaar laboratory. All staphylococci 

were routinely grown on trypic soy agar (TSA) or shaking in tryptic soy broth (TSB) with 

or without 10 µg/mL erythromycin. The E. coli strain used in these experiments is the 

laboratory strain DH5α. 
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Figure 6. We hypothesize that S. aureus perturbs bone remodeling by altering the 
interactions between skeletal cells.  
The communication between mesenchymal-derived osteoblast lineage cells and 
hematopoietic-derived osteoclast lineage cells normally maintains bone homeostasis. 
Osteoblasts are responsible for forming the mineralized matrix of bone. Osteoclasts 
develop from the M-CSF derived myeloid population of cells, with differentiation driven 
by the canonical cytokine, RANKL. During S. aureus osteomyelitis, bone remodeling is 
altered. Where aberrant bone formation and bone loss both occur during infection, the 
hypotheses in this chapter aim to elucidate how S. aureus perturbs bone remodeling 
through altering interactions between skeletal cells. The majority of this chapter focuses 
on the osteoclast lineage transition from monocyte/macrophages shown in the top right 
photo into multinucleated osteoclasts that stain positively for the presence of the osteoclast-
marker tartrate-resistant acid phosphatase (TRAP), shown in the bottom right photo.  
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Preparation of bacterial supernatants  

To prepare concentrated bacterial supernatants, bacterial cells were grown 

overnight in RPMI supplemented with 1% casamino acids at 37°C using a 1:5 ratio of 

liquid media to flask size (250 mL or 1 L Erlenmeyer flask were used), with shaking at 180 

rpm. Three bacterial colonies per 50 mL of media were inoculated into each flask, and the 

flask was stoppered to create a hypoxic environment that promotes toxin production, as 

previously described [32]. After 15 hours of growth, bacterial cultures were centrifuged at 

8000 x g for 8 minutes at 4°C with a fixed angle rotor. Supernatants were pooled and filter 

sterilized with a 0.22 µM filter. Amicon Ultra 50 mL concentration tubes were then filled 

with 15 mL of the filter sterilized supernatant and centrifuged at 4000 x g for 30-45 minutes 

at 4°C. This was done three times in succession, decanting the filtrate each time, until the 

concentrated supernatant remaining above the filter reached approximately 1.5 mL. 

Concentrated supernatants were then pooled, filter sterilized again with a 0.22 µM filter, 

and aliquoted to freeze at -80°C for a single thaw and use.  

 

Bacterial cell wall isolation 

 A 5 mL overnight culture at stationary phase was pelleted at 4000 x g for 5 minutes. 

TSM buffer (100 mM Tris, pH 7; 500 mM sucrose; 10 mM MgCl2) and 40 µg/mL 

lysostaphin were gently mixed with the bacterial cell pellet and incubated at 37°C for 1 

hour. Tubes were spun at 13000 rpm for 2 minutes and the supernatant, containing the cell 

wall, was collected and filter sterilized through a 0.45 µM filter. Cell wall fractions were 

stored at 4°C until use. 
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Cell lines, primary cell isolation, and cell maintenance 

RAW264.7 cells are a monocyte/macrophage adherent cell line (ATCC, Manassas, 

VA, TIB-71) that were used for their ability to differentiate into multinucleated osteoclasts 

with RANKL supplementation. These cells were routinely cultured in DMEM 

supplemented with 10% fetal bovine serum (FBS) and 1X Penicillin/Streptomycin (P/S). 

Cells were scraped off the plate and into a single cell suspension for subculture and plating. 

The mc3T3 adherent mouse pre-osteoblast cell line (ATCC, Manassas, VA, CRL-2593) 

was cultured in αMEM, 10% FBS, and 1X P/S. Cells were harvested using 0.25% 

Trypsin/EDTA. THP-1 Blue NFκB Cells (InvivoGen, San Diego, CA) are a human 

monocyte cell line that grows in suspension and contains an NFκB-inducible reporter, 

leading to the release of a secreted alkaline phosphatase (SEAP). SEAP activity can be 

measured by adding the QUANTI-Blue (InvivoGen, San Diego, CA) substrate into the cell 

culture media. THP-1 Blue cells were thawed and grown in RPMI supplemented with 10% 

FBS, 1% P/S, and 100 µg/mL normocin. Cells were subcultured and blastocidin was added 

into the culture medium at 10 µg/mL to select for cells containing the reporter construct. 

To obtain primary cells, 8- to 13-week old male mice were sacrificed by CO2 

asphyxiation, confirmed dead by observation, and cervically dislocated as a secondary 

method of euthanasia. Femurs from wild-type C57BL/6 (WT) mice (The Jackson 

Laboratory, Bar Harbor, ME, Stock #: 000664) were extracted and the muscle surrounding 

the femur was removed. Femurs were stored in PBS on ice until ready for skeletal cell 

isolation. To isolate whole bone marrow (WBM), the epiphyses (ends) of femurs were cut 

off and discarded. To collect bone marrow (BM), cold, unsupplemented αMEM was 

flushed through the medullary cavity into a tube using a 27-gauge needle and 10 mL Luer-
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Lock syringe. Cells were pelleted at 1500 rpm for 5 minutes, and incubated for 10 minutes 

at room temperature in Ammonium Chloride Potassium (ACK) Lysing Buffer (Lonza, 

Walkersville, MD). The reaction was quenched with 10 mL PBS, and cells were pelleted, 

counted, and either immediately used in cell culture or frozen.  

WBM was cultured in αMEM (without ascorbic acid), 10% FBS, 1X P/S, and 10 

nM 1α, 25-dihydroxyvitamin D3 (Sigma, Saint Louis, MO, D1530) to model a co-coculture 

system or was used to enrich for bone marrow macrophages (BMMs) by plating between 

8-13x106 cells per 10 cm dish in media supplemented with 100 ng/mL recombinant murine 

M-CSF (R&D Systems, Minneapolis, MN, 416-ML) for 4 days. After 4 days in culture, 

enriched BMMs were scraped into a single cell suspension to plate for immediate use or to 

freeze down for later use. Osteoclast precursors were derived from BMMs after treatment 

with 1:20 CMG14-12 supernatant (equivalent to 20 ng/mL recombinant murine M-CSF 

activity) and 35 ng/mL recombinant murine RANKL (R&D Systems, Minneapolis, MN, 

462-TR) for 2 days [28]. 

To isolate primary osteoblasts from WT, Myd88-/- (The Jackson Laboratory, Bar 

Harbor, ME, Stock #: 009088), and Tlr2-/- (The Jackson Laboratory, Bar Harbor, ME, 

Stock #: 004650) mice, the diaphysis (flushed of bone marrow) was cut lengthwise into 

strips, and then cut crosswise to create several small bone fragments. In a conical tube, the 

minced bone tissue was washed three times in PBS by successive centrifugations at 1500 

rpm for 5 minutes. Digestion media was prepared fresh, containing 20 mg of type II 

collagenase (Worthington Biochemical Corporation, Lakewood, NJ, #LS004176) and a 

final concentration of 0.01% Trypsin/EDTA in PBS. Bone fragments were incubated in 2 

mL digestion media at 37°C for 45 minutes two times, and washed three more times in 
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PBS. Digested bone fragments were then added to a 10 cm dish with αMEM (without 

ascorbic acid), 10% FBS, and 1X P/S. Importantly, only half of the media was replaced 

every 2-3 days to allow for cell-derived growth factors to remain in the media. Over time 

in culture, osteoblastic cells began to migrate out of the bone fragments. Between 10 and 

14 days, cells were between 50-80% confluent. At this time bone fragments were 

discarded, and cells were trypsinized and plated for use or frozen. All culture media was 

sterilized through a 0.22 µM filter, all FBS was heat-killed, all primary cells were frozen 

in 90% FBS and 10% DMSO, all cell lines were frozen in 90% media and 10% DMSO, 

and all cells were cultured in an incubator at 37ºC 5% CO2. 

 

Cell viability and toxicity 

Primary BMMs and osteoblasts were plated at 50,000 or 10,000 cells per well, 

respectively, in a 96-well plate and were cultured overnight at 37°C 5% CO2. LAC and 

∆psm supernatants, or vehicle controls were used to stimulate cells at a final volume / 

volume ranging between 2.5 – 20% per well for 22 hours, at which point media was 

removed and CellTiter 96 Aqueous One Solution Cell Proliferation Assay (MTS) 

(Promega, Madison, WI) was added to the media at a final concentration of 10%, and the 

cells incubated for an additional 2 hours at 37ºC 5% CO2. Similarly, the plates containing 

THP-1 Blue NFκB reporter cells were spun down to pellet cells in suspension. At 22 hours 

post-stimulation, media and stimuli were removed and cells were incubated for 2 hours 

with a 10% CellTiter 96 Aqueous One Solution. Each plate was read at an absorbance of 

490 nm, where an increased absorbance corresponds to higher cellular metabolic activity 
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from the cells in culture. Absorbance readings were corrected for background, and the 

percent viability of treated cells compared vehicle control was calculated.  

 To test for the viability of myeloid cells in response to various doses of S. aureus 

supernatants (LAC, ∆psm) or vehicle control, we stimulated RAW264.7 cells in culture 

and monitored their metabolic activity over 5 days as a proxy for cell proliferation over 

time. 7,500 RAW264.7 cells were plated per well in a 12-well plate, with one plate to be 

read on each day. At each time point, media was removed from the cells and a 10% 

CellTiter 96 Aqueous One Solution was incubated with the cells for 2 hours at 37ºC 5% 

CO2. From each well, 200 µL was removed and added to a 96-well plate to read the 

absorbance at 490 nm. After correcting for background, the absorbance for each condition 

was plotted over time. 

  

NFκB activity using THP-1 Blue cells 

Human THP-1 Blue cells were used to determine NFκB activity per manufacturer’s 

instructions. Cells were resuspended at 5 x 105 cells/mL and 200 µL of this cell suspension 

was added to each well of a 96-well plate to result in 100,000 cells/well. Stimulation was 

added to each well, including water (negative control), heat-killed Listeria monocytogenes 

(HKLM) (positive control), TLR agonists, and various bacterial fractions and supernatants. 

Human TLR1-9 Agonist kit (InvivoGen, San Diego, CA, product #: tlrl-kit1hw) were used 

to stimulate specific TLRs, such as synthetic tri- and di-acylated lipopeptides PAM3CSK4 

(TLR1/2) and PAM2CSK4 (TLR2/6), a synthetic unmethylated oligonucleotide ODN2006 

(TLR9), as well as purified bacterial components including Escherichia coli 

lipopolysaccharide (LPS) (TLR4), S. aureus peptidoglycan (PG) (TLR2), and S. aureus 
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lipoteichoic acid (LTA) (TLR2). Bacterial cell wall fractions were tested from S. aureus 

strain LAC and S. epidermidis, alongside a vehicle control containing TSM buffer and 

lysostaphin. Bacterial supernatants from LAC, ∆psm, S. epidermidis, and the DH5α strain 

of E. coli were also tested for NFκB activity. At 21 hours post-stimulation, 180 µL of pre-

warmed QUANTI-Blue substrate was added to a 96-well plate containing 20 µL of the cell 

culture medium from stimulated THP-1 Blue NFκB reporter cell. The plate was incubated 

for an additional 3 hours at 37ºC 5% CO2, and SEAP activity was then measured 

spectrophotometrically at 630 nm. 

 

Osteoclastogenesis assays   

RAW264.7 cells were plated at 250 cells per well in a 96-well plate format or 7,500 

cells per well in a 12-well format for osteoclastogenesis assays to prevent overgrowth in 

the week-long assay. In order to determine the ability of TLR agonists, bacterial cell wall 

extracts, and bacterial supernatants to induce osteoclastogenesis in RAW264.7 cells, they 

were stimulated with these components at the time of plating, at day 2 with fresh media, 

and cells were TRAP stained at day 6. The extent of osteoclastogenesis was determined by 

staining cells with reagents from the Acid Phosphatase, Leukocyte (TRAP) Kit (Sigma, 

Saint Louis, MO, 378-A) and counting TRAP+ multinucleated (>3 nuclei) cells. 

For osteoclastogenesis assays with primary cells, an osteoclast precursor population 

was first generated by pre-committing 50,000 BMMs per well in a 96-well plate with 1:20 

CMG14-12 supernatants as a source of M-CSF [28] and 35 ng/mL RANKL for 2 days. 

Mature osteoclasts were formed in culture after 6-7 days of continuous M-CSF and 

RANKL stimulation. To determine the osteoclastogenic response of enriched BMMs and 
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osteoclast precursors to S. aureus supernatants, we developed two different assays. 

Osteoclast precursors were either pre-committed with RANKL for 48 hours before they 

were stimulated with S. aureus supernatants for 4 days, or BMMs that had not been pre-

committed were stimulated with S. aureus supernatants for 24 hours before stimulation 

with RANKL for 5 days. All primary myeloid cultures had continuous M-CSF treatment. 

TRAP+ multinucleated cells were counted manually at 10X, with the assistance of 

OsteoMeasure software (OsteoMetrics, Inc., Decatur, GA) or by taking serial images of 

the entire well (18 total) and using the FIJI Cell Counter Plugin. 

Recombinant murine TNFα (R&D Systems, Minneapolis, MN, 410-MT) was 

added to osteoclast precursors at 10 ng/mL to determine the ability to enhance 

osteoclastogenesis. Additionally, RANKL and TNFα inhibitors were added to elucidate the 

ability of RANKL and TNFα to influence S. aureus-enhanced osteoclast differentiation. 

Anti-RANKL (R&D Systems, Minneapolis, MN, AF462) was used within the reported 

range for the neutralization dose 50 (ND50) for 30 ng/mL RANKL at 21 ng/mL. Anti-TNFα 

(R&D Systems, Minneapolis, MN, AF410) was used at 4 µg/mL to target an ND50 for 10 

ng/mL TNFα.  

Additionally, the complex cellular milieu of WBM was adapted into a co-culture 

system based on the presence of both myeloid and stromal cells. In this system, WBM was 

plated at 0.5 million cells or 3 million cells per well in 96-well plates or 24-well plates, 

respectively. In both formats, WBM cells were cultured in αMEM (without ascorbic acid), 

10% FBS, 1X P/S, and 10 nM 1α, 25-dihydroxyvitamin D3 (Sigma, Saint Louis, MO, 

D1530). Vitamin D3 (calcitriol) in this assay induces osteoblastic RANKL production, and 

thus, no exogenous RANKL or M-CSF was added to these cultures. For two weeks, half 
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of the media was removed and replenished with fresh media every 2-3 days. During the 

second week, cells were stimulated with 2.5-5% ∆psm supernatant. WBM co-cultures were 

TRAP stained two weeks later to look for osteoclastogenic induction.  

 

Transcriptional changes in osteoclast lineage cells in response to RANKL and S. 

aureus supernatant stimulation 

 BMMs, pre-osteoclasts, and osteoclasts were generated as described above in a 96-

well plate format. At day 7 in culture, RNA was harvested from myeloid cells treated with 

RANKL (osteoclasts) or untreated (BMMs). To determine the immune response of BMMs 

versus early osteoclasts, BMMs and osteoclast precursors, generated with 2 days of 

RANKL treatment, were stimulated with ∆psm and vehicle (RPMI) for four hours before 

harvesting RNA. The RNeasy Mini Kit (Qiagen, Germantown, MD, 74104) with RNase-

free DNase treatment (Qiagen, 79254) was used to harvest RNA from cells. After washing 

with PBS, cells were lysed with Buffer RLT supplemented with β-mercaptoethanol. The 

lysate from 15 wells with the same stimulation conditions were pooled, and cells were 

further homogenized through QIAshredder spin columns (Qiagen, Germantown, MD, 

79654). Per the manufacturer’s directions, 70% ethanol was added to the homogenate and 

loaded onto a RNeasy mini spin column, where an on-column DNase treatment was 

performed, and the resulting RNA washed and eluted in RNase-free water. Total RNA was 

quantified using the Take3 micro-volume plate (BioTek, Winooski, VT) and a BioTek 

plate reader. The First-Strand Synthesis cDNA system (Promega, Madison, WI, M-MLV) 

was used to convert 1 µg of RNA into cDNA in a buffered reaction with a recombinant 

RNase inhibitor, the M-MLV reverse transcriptase enzyme, random hexamers for 
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annealing, and dNTPs. Reactants were incubated for one hour at 37ºC. For quantitative 

Real-Time-Polymerase Chain Reaction (qRT-PCR) amplification of mRNA transcripts, 

SYBR Green Supermix was used with a 12.5 µL final reaction volume. cDNA was diluted 

1:100, and 1 µL was added to reactions for housekeeping genes, whereas 2.5 µL was added 

per reaction for other target genes. Forward and reverse primers were used at a final 

concentration of 2 µM. Primers were used to detect the presence of RNA transcripts for the 

genes Gapdh, Acp5, Ctsk, B2m, Tnfsf1a, and Nos2 (Table 1). 

 

Table 1. Primers for qRT-PCR detection of mRNA transcripts. 
 

Gene Product Primer 5’ to 3’ Sequence Tm (ºC) 

GAPDH mGapdhFw ACCCAGAAGACTGTGGATGG 56.6 

mGapdhRv TTCAGCTCAGGGATGACCTT 55.8 
TRAP mAcp5Fw CAGCTCCCTAGAAGATGGATTCAT 56.1 

mAcp5Rv GTCAGGAGTGGGAGCCATATG 57.2 
Cathepsin K mCtskFw ATGTGGGTGTTCAAGTTTCTGC 56 

mCtskRv CCACAAGATTCTGGGGACTC 55.1 
B2m mB2MFw CTGCTACGTAACACAGTTCCACCC  61.5 

mB2MRv CATGATGCTTGATCACATGTCTCG  57.3 
TNFα mTNFaFw CCTGTAGCCCACGTCGTAG 61.5 

mTNFaRv GGGAGTAGACAAGGTACAACCC 61.4 
iNos mNos2Fw CACCTTGGAGTTCACCCAGT 57.1 

mNos2Rv ACCACTCGTACTTGGGATGC 57.1 
 
Primers were used to detect the presence of RNA transcripts for the genes Gapdh, Acp5, 
Ctsk, B2m, Tnfsf1a, and Nos2. Listed in this table are the respective gene products, forward 
(Fw) and reverse (Rv) primer sequences, and corresponding melting temperature (Tm).  
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Cytokine detection via Luminex 

BMM and pre-osteoclast cytokine responses to S. aureus supernatant stimulation. BMMs 

and pre-osteoclasts were generated in a 96-well plate format. Cells were stimulated with 

∆psm supernatant or vehicle control in triplicate. At 24 hours, cells were washed twice with 

PBS and fresh media (αMEM, 10% FBS, 1X P/S, and 1:20 CMG14-12) was replenished. 

All conditions were incubated for another 24 hours at 37ºC 5% CO2, and supernatants were 

collected and stored at -80ºC until analyzed.  

Luminex platform. Supernatants were thawed slowly from -80ºC, by storing at -20ºC 

overnight, and at 4ºC two hours before starting. The Milliplex Map Kit – Mouse 

Cytokine/Chemokine Magnetic Bead Panels (Millipore Sigma, Burlington, MA, 

MCYTOMAG-70K-PMX32) was used per the manufacturer’s directions. Briefly, the 

plates were washed, samples were centrifuged to pellet particulate matter from supernatant, 

and quality controls and standards were prepared. Standards, quality controls, or samples 

were added to each well. Media was added to standards and quality controls, and assay 

buffer was added to sample wells to equilibrate a baseline mixture of assay buffer and cell 

culture media in each well. Detection beads were sonicated and added to each well. Plates 

were sealed, wrapped in foil, and left to shake overnight at 4ºC. The following day, with 

the use of a magnetic base, wells were washed with wash buffer, incubated with detection 

antibodies followed by streptavidin-phycoerythrin, washed, and resuspended in sheath 

fluid. The samples were run using the FLEXMAP 3D system. Data was analyzed by 

confirming quality control values, assessing standard curve generation, and verifying 

appropriate variance (CV) values between duplicate wells.  
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Results 

 Signaling crosstalk between immunologic pathways and pathways necessary for 

skeletal cell differentiation becomes an important consideration in the context of bacterial 

bone infection. This potential crosstalk led me to ask how S. aureus influences skeletal cell 

differentiation and bone homeostasis. To answer this question, we developed and 

conducted a variety of in vitro assays to ask how skeletal cells sense and respond to 

bacterial and inflammatory components. The majority of these assays focused on the 

perturbation of myeloid lineage cells as they differentiated into mature osteoclasts. 

However, we also began to explore how osteoblasts react to S. aureus in monoculture and 

co-culture systems. In this chapter, we describe how S. aureus or other bacterial 

components perturb osteoclast and osteoblast lineage cells in regards to cell differentiation 

status and immunologic capacity in terms of cytokine production.   

 

Bacterial stimuli stimulate monocytes to activate NFκB and increase their 

proliferative capacity  

 Previous work from our laboratory characterized the ability of PSMα toxins to 

induce cell death in a variety of cell lines, including RAW264.7 cells, a murine 

monocyte/macrophage cell line, and mc3T3 cells, a murine pre-osteoblast cell line [32]. In 

order to develop in vitro cell culture models, we first tested the susceptibility of primary 

murine skeletal cells isolated from WT mice to cell death induced by S. aureus 

supernatants. We used concentrated S. aureus supernatant preparations as reported 

previously [31, 32], and incubated WT BMMs with either wild-type S. aureus or PSMα-

deficient supernatants at increasing doses ranging from 2.5 to 10% volume/volume. The 
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results confirmed that PSMα toxins induce death of primary BMMs in a dose-dependent 

manner, where at 10% final supernatant concentration in the cell culture media, all the WT 

BMMs were non-viable after 24 hours post-intoxication (Figure 7A). Furthermore, when 

testing primary osteoblasts obtained from WT and immunodeficient animals, all cell types 

were sensitive to PSMα-induced cytotoxicity (Figure 7B). These data indicated that in 

order to retain viable cells in culture, we should utilize PSMα-deficient supernatants in our 

in vitro assays.  
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Figure 7. Alpha-type PSMs are toxic to primary skeletal cells. 
(A-B) Viability of skeletal cells after treatment with S. aureus supernatants (LAC, ∆psm) 
relative to vehicle control was determined by the ability of cells to metabolize the CellTiter 
96 Aqueous One dye, as enumerated by optical density at 490 nm (OD490). Percent viability 
was calculated relative to the OD490 of vehicle control. (A) WT BMMs were treated with 
increasing doses of concentrated supernatants from LAC (dark grey) and toxin-deficient 
∆psm (light grey) supernatants, ranging from 2.5%, 5%, to 10% supernatant volume/media 
volume or a vehicle control (RPMI). WT BMMs (diamonds) were plated at 50,000 
cells/well in a 96-well plate, and each treatment condition was plated in 10 replicates. (B) 
Primary osteoblasts (OBs) were harvested from WT (circles), Tlr2-/- (squares), and Myd88-

/- (triangles) femurs and plated at 10,000 cells per well in a 96-well plate. Cells were treated 
with LAC (dark grey) and toxin-deficient ∆psm (light grey) supernatants or vehicle at 20% 
volume/volume in 10 replicates per condition. Multiple t-tests were used to compare 
viability between supernatants at each dose and were corrected for multiple comparisons 
using the Holm-Sidak methods. Unpaired t-tests were used to compare viability between 
each osteoblast genotype. **** p < 0.0001. 
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When assaying cell lines and primary cells for toxicity, we calculated percent 

viability based on the relative cell metabolic rate compared to cells stimulated with vehicle. 

In some cases, cells were calculated to have much greater than 100% viability. When 

present, this phenotype was consistent, more robust in cell lines as previously reported [32], 

and was diminished in immunodeficient cells (Figure 7A and 7B). These data led us to 

believe that there was an enhanced proliferative response that may be downstream of NFκB 

transcription factor activation. NFκB signaling is critical for many cellular response 

systems, including cellular proliferation, osteoclast differentiation, and promotion of innate 

immune responses. This led us to ask whether S. aureus supernatants induce NFκB activity, 

and if so, what types of general bacterial components stimulate NFκB. 

To test which types of bacterial components are able to activate NFκB transcription 

factor activity, we stimulated a human THP-1 monocytic cell line containing an NFκB 

reporter system with diverse purified or synthetic TLR ligands, crude staphylococcal cell 

wall extracts, or supernatants from various bacterial strains. For viability and NFκB 

activity, concentrations of TLR agonists per the manufacturer’s suggestions, with an 

additional dose used outside this range for PAM3CSK4 and PAM2CSK4. Cell viability 

assays of each condition indicated there was only cell death associated with S. aureus LAC 

supernatant, and there was no appreciable cell death with any other stimulation condition 

(Figure 8A, 8C, and 8E). NFκB activity was measured by a colorimetric change, which 

could be quantified by reading OD630. Prominent NFκB activity occurred in response to 

the synthetic peptides PAM3CSK4 and PAM2CSK4. PAM2CSK4 acted as a more potent 

stimulator, with NFκB activity similar to the positive control (HKLM) at a much lower 

dose than PAM3CSK4 (Figure 8B). LPS appeared to induce some NFκB activity at high 
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doses, but had much weaker magnitude (Figure 8B). Furthermore, NFκB activity was 

induced by staphylococcal cell wall extracts and supernatants, as well as E. coli strain 

DH5α supernatants. S. aureus LAC supernatants at sub-cytotoxic doses could still 

stimulate NFκB activity. However, not all the PRR agonists tested activated NFκB 

transcription in this assay, including the TLR9 agonist ODN2006, purified peptidoglycan 

from S. aureus, and purified lipoteichoic acid from S. aureus. Overall, these results support 

that components from Gram-negative and Gram-positive bacteria, and more specifically, 

staphylococcal cell wall components and concentrated supernatants activate NFκB 

transcription factor activity, but the purified Gram-positive cell wall components supplied 

by the manufacturer do not.  
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Figure 8. TLR agonists, bacterial supernatants, and bacterial cell wall fractions 
induce NFκB transcription factor activity in human osteoclast progenitors. 
(A-F) 1x105 human THP-1 monocytes were treated with various stimulatory conditions 
and monitored for viability using Cell Titer 96 Aqueous One dye relative to a vehicle 
control (A, C, E) or NFκB reporter activity as measured by the enzymatic conversion of 
the QUANTI-Blue substrate in the supernatant at OD630 (B, D, F). Wedges under bar 
graphs indicate stimulation conditions (as numbered) with multiple stimulation 
concentrations tested, with wedge reflecting highest to lowest concentration. (A, B) TLR 
agonists were added to cells as follows: H2O vehicle control, PAM3CSK4 at 1 µg/mL 
and/or 10 ng/mL, PAM2CSK4 at 1 µg/mL and/or 10 ng/mL, LPS at 4.5 µg/mL, 2 µg/mL, 
and/or 10 ng/mL, ODN2006 at 5 µM, PGN-SA at 1 µg/mL, LTA-SA at 1 µg/mL, and 
HKLM positive control. Viability (A) reflects PAM3CSK4, PAM2CSK4, and LPS at the 
highest dose, whereas NFκB reporter activity (B) shows all doses. (C, D) Crude cell wall 
extracts were tested where the vehicle control, TSM buffer + lysostaphin at 10µL, S. aureus 
LAC cell wall at 10 µL, and S. epidermidis cell wall at 10 µL for viability (C) and NFκB 
reporter activity (D). (E, F) Various bacterial supernatants were tested for effects on 
viability (E) and NFκB reporter activity (F), including the vehicle control (RPMI) at 10µL 
, concentrated supernatants from LAC at 2 µL, 1 µL, or 0.25 µL, ∆psm at 10 µL, 2 µL, or 
0.25 µL, S. epidermidis at 10 µL, 2µL, or 0.25 µL, and E. coli DH5α at 10 µL, 2 µL, or 
0.25 µL (16). Comparisons between conditions on each panel were conducted using a one-
way ANOVA with Dunnett’s multiple comparisons test. * p < 0.0001. 
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Notably, the downstream consequences of NFκB activity include proliferation, 

osteoclast differentiation, and cytokine induction. To test the effects of proliferation on 

these cells, the growth kinetics of RAW264.7 myeloid cells were measured for 5 days in 

response to increasing doses of vehicle and S. aureus LAC or PSMα-deficient supernatants. 

In all conditions, vehicle-treated cells steadily proliferate over the course of the 5 days in 

culture. At all doses of ∆psm supernatants, cells proliferate above the vehicle-maximum by 

day 3 post-stimulation, after which the signal plateaus or drops, likely reflecting cell 

overgrowing (Figure 9A-D). Cells treated with sub-toxic doses of LAC supernatant 

(1.25% and 2.5%) show a similar trend (Figure 9A and 9B). However, higher doses of 

LAC stimulation cause immediate cell death (Figure 9C and 9D). Taken together, these 

data support that S. aureus stimulation enhances NFκB activity and its downstream effect 

on proliferation. 
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Figure 9. Toxin-deficient S. aureus supernatants enhance proliferation of a murine 
myeloid cell line.   
(A-D) The RAW264.7 murine macrophage/monocyte cell line was plated at 250 cells per 
well in a 96-well plate, where vehicle (RPMI; solid grey) or concentrated supernatants from 
LAC (solid black) or ∆psm (dashed black) supernatants were added at concentrations of 
1.25% (A), 2.5% (B), 5% (C), and 12.5% (D) at the time of plating, and replenished in 
fresh media at day 2. After plating and stimulating cells, CellTiter 96 Aqueous One dye 
was added to one plate replicate each day for 5 days, and plates were read at OD490 as a 
proxy for cell proliferation over time. 
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Bacterial stimuli promote osteoclast differentiation of myeloid cell lines and RANKL-

committed primary cells 

Next, we tested the ability of bacterial supernatants to induce osteoclastogenesis 

from RAW264.7 cells. In this assay, we treated the cells with vehicle or supernatants from 

S. aureus ∆psm, S. epidermidis, or E. coli DH5α. In all supernatant conditions compared 

to vehicle, we observed that post bacterial-stimulation, cells expressed the osteoclast 

marker TRAP (Figure 10A-D). In response to E. coli DH5α supernatants, we observed 

particularly large, multinucleated cells with expansive cytoplasm (Figure 10D). We then 

went on to test the osteoclastogenic potential of a panel of TLR agonists, compared to the 

water vehicle used to reconstitute the agonists (Figure 11A) and low or high doses of 

RANKL (Figure 11B and 11C). In this assay, we used concentrations of TLR agonists 

based on viability data and NFκB activity, or on other reports [62, 245]. We found that 

although purified S. aureus LTA and PGN failed to induce robust NFκB activity, each 

stimulus could induce osteoclastogenesis in RAW264.7 cells (Figure 11D and 11E). 

However, the TLR9 agonist ODN2006 was also unable to stimulate NFκB activity, and it 

did not induce osteoclastogenesis (Figure 11F). The synthetic lipoproteins that engage 

TLR2 heterodimers, PAM3CSK4 and PAM2CSK4, and the agonist for TLR4, LPS, were 

found to have both NFκB stimulating activity and various amounts of TRAP-positivity 

(Figure 11G-11I). Interestingly, the vehicle control for cell wall extraction had a low level 

of TRAP-positivity (Figure 11J). This vehicle included lysostaphin, a staphylococcal 

enzyme isolated from S. simulans, that may have other bacterial PAMPs in the preparation. 

In comparison to this vehicle, crude cell wall extracts from staphylococcal species S. 

aureus and S. epidermidis both exhibited a greater ability to drive osteoclast differentiation 
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(Figure 11K and 11L). These results broadly support that staphylococcal cell walls and 

TLR agonists induce osteoclastogenesis. 
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Figure 10. Bacterial supernatants from S. aureus, S. epidermidis, and E. coli induce 
osteoclastogenesis in the RAW264.7 monocyte/macrophage cell line. 
(A-D) RAW264.7 cells were plated at 250 cells per well in a 96-well plate, where 1% (v/v) 
of each, vehicle (RPMI; A) and concentrated supernatants from LAC∆psm (B), S. 
epidermidis (C), or E. coli DH5α (D) were added to each well with fresh media at day 1, 
4, and 6. At day 7 in culture, cells were TRAP stained and imaged at 10X. TRAP positivity 
is indicated by a pink-purple color change.  
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Figure 11. Cell wall components and TLR agonists induce osteoclastogenesis. 
(A-L) RAW264.7 cells were plated at 7,500 cells per well in 12-well plates and stimulated 
with vehicle or bacterial stimuli at the time of plating and at day 2 with fresh media. (A-I) 
Purified TLR agonists tested for osteoclastogenic enhancement compared to negative 
control (H2O; A), and positive control (RANKL; B, C), including LTA-SA at 2 µg/mL 
(D), PGN-SA at 20 µg/mL (E), ODN2006 at 5µM (F), PAM3CSK4 at 300 ng/mL (G), 
PAM2CSK4 at 300 ng/mL (H) and LPS at 10 µg/mL (I). (J-L) Crude cell wall extractions 
were tested for ability to induce osteoclastogenesis relative to vehicle control (TSM buffer 
+ lysostaphin; J), including S. aureus LAC cell wall at 10 µL (K) and S. epidermidis cell 
wall at 10 µL (L). Stimuli were added to each well with fresh media at day 2. At day 6 in 
culture, cells were TRAP stained and imaged at 10X.   
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  While cell lines were useful for preliminary experiments, primary cells are a more 

dependable model system that requires canonical signals for viability and differentiation. 

To better replicate osteoclastogenesis in culture, we generated osteoclasts from BMMs 

treated with M-CSF and RANKL. After 7 days in culture, cells treated with only M-CSF 

remained TRAP negative and mononuclear, whereas cells treated with RANKL were all 

TRAP positive and many were multinucleated (Figure 12A and 12B). In agreement with 

this, we determined that cells treated with RANKL were of osteoclast origin, as indicated 

by their increased levels of osteoclast transcripts, including the genes for TRAP and 

Cathepsin K (Figure 12C). In order to determine how S. aureus perturbs primary osteoclast 

differentiation, I developed an assay where precursor cells from a population of BMMs 

were treated with RANKL for two days, and were continuously treated with M-CSF. 

RANKL was removed at two days and replaced with RPMI vehicle stimulation. Six days 

into the assay, it appeared that these primary cells had received enough RANKL signaling 

and activity to allow some of the cells to become TRAP positive, with some 

multinucleation (Figure 13A). However, when the osteoclast precursor population was 

subjected to increasing doses of S. aureus ∆psm supernatant, we observed an increase in 

the number of TRAP+ multinucleated cells formed in vitro (Figure 13B and 13E). 

Excitingly, this increase occurred to a similar extent as osteoclastogenesis driven by 

RANKL alone (Figure 13C and 13E). These data indicate that, similar to cell lines that 

do not require canonical stimulation with M-CSF and RANKL, S. aureus stimulation 

allows primary osteoclast precursor cells to continue through osteoclastogenesis. 

Furthermore, with continuous RANKL treatment, S. aureus ∆psm supernatant can further 

enhance osteoclastogenesis (Figure 13D and 13E).  
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Figure 12. RANKL-derived osteoclasts express expected osteoclast markers Acp5 and 
Ctsk. 
(A-C) WT BMMs were plated at 50,000 cells per well in a 96-well plate and stimulated 
with M-CSF (BMMs; A) or M-CSF and 35 ng/mL recombinant murine RANKL (OCs; B). 
Fresh media and reagents were replenished at days 1, 4, and 6. At day 7 in culture, cells 
were TRAP stained and imaged at 10X. Buffer RLT was added to 15 wells per condition 
(BMMs or OCs) and lysed cells were pooled to harvest RNA. qRT-PCR was run to amplify 
mRNA transcripts for Gapdh, Acp5, and Ctsk. Gapdh was used to calculate relative values 
for each cellular condition, and the relative fold increase of Acp5 and Ctsk osteoclast genes 
are reported (C). 
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Figure 13. RANKL-stimulated osteoclast lineage cells are enhanced by S. aureus 
stimulation. (A-E) WT primary BMMs were pre-committed with 35 ng/mL RANKL for 
2 days (Pre-OCs) (A, B) or continuously treated with 35 ng/mL RANKL for 7 days (OCs) 
(C, D). Pre-OCs were stimulated at day 2 in culture with vehicle (A) or S. aureus ∆psm 
supernatant (B) at 12.5% in cell culture media, or OCs were continuously treated with 
RANKL were stimulated at days 1, 4, and 6 in culture with vehicle (B) or S. aureus ∆psm 
supernatant (D) at 12.5% in cell culture media. Cells were TRAP stained at day 6 (A, B) 
or day 7 (C, D) and TRAP+ multi-nucleated cells were manually quantified using 
OsteoMeasure software (E). A two-way ANOVA compared the effects of S. aureus 
stimulation and RANKL stimulation on the magnitude of TRAP+ multinucleated cells 
formed in culture. *** p < 0.001, **** p < 0.0001.  
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Due to the robust osteoclastogenesis with continuous RANKL treatment, we chose 

to use the pre-osteoclast state to assess modulation of osteoclast differentiation. To expand 

on these data, we found that osteoclastogenesis occurred in a dose-dependent manner 

(Figure 14A-G). From these results it appears that S. aureus enhances osteoclast 

differentiation; however, we also wondered how S. aureus stimulation of myeloid cells 

prior to commitment to the osteoclast lineage might influence osteoclastogenesis. The 

starting BMM culture contains precursor cells that are also able to differentiate into 

inflammatory macrophages. In order to address conflicting reports on how inflammatory 

stimuli influence osteoclastogenesis, primary WT BMMs were stimulated first with vehicle 

or S. aureus ∆psm supernatants for 24 hours and then given RANKL for the remaining 6 

days in culture. RANKL for the course of 6 days leads to numerous TRAP+ cells and is 

sufficient for the formation of TRAP+ multinucleated cells after vehicle treatment (Figure 

15A). Unlike stimulation of osteoclast precursors, we observed inhibition of 

osteoclastogenesis when BMMs were stimulated with supernatant prior to RANKL 

treatment (Figure 15B-G). These opposing phenotypes highlight the ability of naïve 

BMMs to undergo cell fate decisions to begin differentiation down a pathway that prevents 

osteoclast differentiation.  
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Figure 14. S. aureus enhances osteoclast differentiation from primary WT osteoclast 
precursors.  
(A-G) WT pre-osteoclasts were generated by plating 50,000 BMMs and treated them for 
2 days with M-CSF and 35 ng/mL RANKL. At day 2 post-plating, cells were washed 2 
times with PBS, and fresh media and M-CSF were added cells. Vehicle (RPMI; A) or 
LAC∆psm concentrated supernatants were added in increasing amounts at 1% (B), 2.5% 
(C), 5% (D), 12.5% (E), or 25% (F) (v/v). At day 6 in culture, cells were TRAP stained 
and imaged at 10X, and TRAP+ multinucleated cells were counted from triplicate wells 
(G). 
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Figure 15. WT BMMs pre-stimulated with bacterial supernatants show inhibited 
ability to undergo osteoclastogenesis.  
(A-G) WT BMMs were plated at 50,000 cells per well and treated with M-CSF and 
vehicle (RPMI; A) or LAC∆psm concentrated supernatants were added in increasing 
amounts at 1% (B), 2.5% (C), 5% (D), 12.5% (E), or 25% (F) (v/v). At 24 hours after 
stimulation, cells were washed with PBS and fresh media was replenished with M-CSF 
and 35 ng/mL RANKL. At day 6 in culture, cells were TRAP stained and imaged at 10X, 
and TRAP+ multinucleated cells were counted from triplicate wells in vehicle-treated, 
5%, or 25% ∆psm-treated conditions (G). 
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There has been debate in the field of bone biology as to what constitutes canonical 

or non-canonical osteoclastogenesis. As primary cells are harvested from bone marrow, 

they are inherently not RANKL-naïve given their close association in the bone marrow 

with osteoblast-lineage cells that produce RANKL. Canonical osteoclast differentiation is 

thought to be due to the combinatorial signals from the c-FMS receptor, the RANK 

receptor, and co-stimulatory Ig-like receptors OSCAR and TREM2. However, 

noncanonical osteoclast differentiation has referred to signals that are reportedly RANKL-

independent. In order to test whether or not S. aureus supernatants are triggering canonical 

or non-canonical osteoclastogenesis, we used pre-osteoclast and osteoclast differentiation 

conditions with or without S. aureus ∆psm supernatants in the presence of anti-RANKL 

antibody treatment. In the PBS control, we observed TRAP+ mononuclear osteoclast 

precursors and mature TRAP+ multinucleated osteoclasts (Figure 16A and 16B). In 

contrast, anti-RANKL treatment diminished osteoclast differentiation (Figure 16A and 

16B). However, it appears that some osteoclast differentiation still occurs in the context of 

S. aureus ∆psm supernatant stimulation in the presence of anti-RANKL treatment (Figure 

16B). These data indicate that osteoclast promotion through treatment with S. aureus 

supernatants is dependent on RANKL pre-commitment of myeloid cells down the 

osteoclast lineage. 
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Figure 16. S. aureus-enhanced osteoclastogenesis from primary bone marrow cells is 
dependent on RANKL pre-commitment.  
(A-B) WT BMMs were plated at 50,000 cells per well in a 96-well plate with M-CSF and 
RANKL for 2 days to generate osteoclast precursors (A) or M-CSF and continuous 
RANKL (B). PBS (negative control; left column) or anti-RANKL antibody at 21 ng/mL 
(right column) were added alongside S. aureus to test RANKL blockade on 
osteoclastogenesis. (A) At day 2 osteoclast precursors were generated, washed with PBS 
twice, and RPMI (top row) or ∆psm supernatants (bottom row) at 5% volume/volume and 
PBS or anti-RANKL were added to culture. Cells were TRAP stained at day 6. (B) In 
continuous RANKL treatment, RPMI (top row) or ∆psm supernatants (bottom row) were 
added to cells at 5% volume/volume one day after plating, with PBS or anti-RANKL. All 
reagents were replenished on days 4 and 6. Cells were TRAP stained at day 7.  
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TNF-family cytokines have been reported as potent inducers of non-canonical 

osteoclastogenesis [246]. In order to test whether S. aureus supernatant was inducing non-

canonical osteoclastogenesis through TNFα, we treated osteoclast precursors with TNFα 

as a positive control, supernatant vehicle control, or ∆psm supernatant and then added anti-

TNFα to the culture. As expected, TNFα enhanced osteoclastogenesis from osteoclast 

precursors compared to vehicle (Figure 17A and 17B), and anti-TNFα treatment blocked 

TNFα-mediated osteoclastogenesis (Figure 17D and 17E). Importantly, we found that S. 

aureus-enhanced osteoclastogenesis occurred even in the presence of inhibitory 

concentrations of anti-TNFα (Figure 17C and 17F). These data suggest that S. aureus 

supernatant-enhanced osteoclastogenesis is not due to the production of TNFα.  

While the previous studies have elucidated the influence of myeloid-lineage 

signaling pathways in S. aureus-enhanced osteoclastogenesis, a monoculture system is 

inherently simplistic when considering complex skeletal cell communication as it occurs 

in bone. We established a co-culture system that has a combination of cells with 

osteoblastic and osteoclastic potential, using the active form of (1,25)-dihydroxy vitamin 

D3 (calcitriol) to activate the production of growth factors and RANKL from osteoblast 

lineage cells to drive osteoclastogenesis. We found that after two weeks in culture with 

vehicle stimulation, the co-culture system was able to generate osteoclasts (Figure 18A 

and 18C). Before perturbation with bacterial stimulation, cells were cultured for a week to 

allow for osteoblast production of growth factors and RANKL, thus creating a network of 

skeletal cell communication in vitro. During the second week in culture, the addition of S. 

aureus ∆psm supernatant enhanced osteoclastogenesis over that of vehicle control, 
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suggesting that S. aureus supernatants can stimulate also osteoclastogenesis in co-cultures 

without the addition of exogenous M-CSF or RANKL (Figure 18A-D).  
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Figure 17. S. aureus-enhanced osteoclastogenesis is not dependent on TNFα. 
(A-H) WT osteoclast precursors were generated with M-CSF and RANKL for 2 days in 
culture, washed with PBS, after which fresh media and M-CSF were replenished with BSA 
vehicle (A-C) or 4µg/mL Anti-TNFα antibody (D-F), vehicle (RPMI; A, D), 10 ng/mL 
recombinant TNFα (B, E), LAC∆psm supernatant (C, F). Cells were TRAP stained at day 
6 and imaged at 10X.  
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Figure 18. S. aureus can enhance osteoclastogenesis in a primary co-culture system.  
(A-D) WT WBM was plated with 10 nM (1,25)-dihydroxy vitamin D3 and half the media 
was changed every 2-3 days for 2 weeks. Cells were plated at 0.5 million cells per well in 
96-well plates (A, B) or 3 million cells per well in 24-well plates (C, D). When media was 
changed during the second week in culture, vehicle (A, C) or ∆psm supernatants (B, D) 
were added in culture at 5% (v/v) in 24-well plates and 2.5% volume/volume to cells in 
96-well plates. At day 14 in culture, cells were TRAP stained and imaged at 4X.  
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BMMs and osteoclast precursors have overlapping and divergent immune responses 

in response to S. aureus stimulation 

To further explore how stimulation with bacterial supernatants alters inflammatory 

gene expression, we conducted preliminary assays to compare inflammatory gene 

transcripts and cytokine production between BMMs and osteoclast precursors. Our 

rationale for this experiment was that bacterial stimulation might have different effects on 

monocyte lineage cells depending on their differentiation state during osteoclastogenesis. 

Such differences in inflammatory gene expression might indicate differences in the ability 

to serve as immune effector cells. Thus, we cultured BMMs or osteoclast precursors and 

stimulated both cell populations with S. aureus ∆psm supernatants to assess their capacity 

to promote inflammatory changes. We measured this inflammatory effect by looking at 

transcriptional changes in inflammatory genes encoding the cytokine TNFα or enzyme 

iNos. These factors are observed in various cell types, but increased values of both 

characterize polarization into the inflammatory “M1” macrophage lineage. As expected, S. 

aureus-stimulated BMMs have highly abundant levels of these transcripts in relation to 

vehicle stimulation (Figure 19A and 19B). Furthermore, RANKL pre-commitment for 2 

days does not completely ablate the ability of osteoclast precursors to upregulate 

inflammatory transcripts Tnfsf1a and Nos2 compared to vehicle (Figure 19A and 19B). 

These data indicate that S. aureus potently increases transcription of inflammatory 

components in both BMMs and pre-osteoclasts. These data also indicate that differentiation 

status may determine the extent of gene expression, but these experiments should be 

extended. 
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Figure 19. BMMs and osteoclast precursors upregulate inflammatory macrophage 
transcripts in response to S. aureus stimulation.  
To determine transcript levels of Tnfsf1a (A) and Nos2 (B) genes in WT BMMs and 
osteoclast precursors, BMMs and pre-osteoclasts (Pre-OCs) were stimulated with ∆psm 
supernatant or vehicle for 4 hours before pooling RNA from 15 wells in triplicate. qRT-
PCR was performed using primers for the B2m housekeeping gene, Tnfsf1a, and Nos2. 
After correcting for expression relative to B2m, the fold change in transcript levels was 
calculated as ∆psm supernatant stimulation relative to vehicle for each cell type. Unpaired 
t-tests did not find statistical differences between Tnfsf1a fold changes (p = 0.0513) or Nos2 
fold changes (p = 0.2144).  
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Finally, to characterize the inflammatory output from BMMs and osteoclast 

precursors, we performed a cytokine profiling experiment. Cytokines were measured as 

they accumulated in the growth medium between 24-48 hours post-stimulation with vehicle 

or S. aureus ∆psm supernatant. BMMs and osteoclast precursors released significantly 

higher levels of IL-10, MIP-1α, MIP-1β, MIP-2, RANTES, and TNFα in response to S. 

aureus stimulation than when stimulated with vehicle (Figure 20N, 20AA-EE). Within 

this group of cytokines, BMMs produced higher levels of MIP-1α and RANTES than 

osteoclast precursors (Figure 20AA and 20DD), whereas osteoclast precursors produced 

more abundant levels of MCP-1 than BMMs (Figure 20Y). Additionally, BMMs were also 

able produce significantly more IL-6 after S. aureus stimulation than vehicle stimulation 

(Figure 20K), and osteoclast precursors showed significantly higher levels of G-CSF, IL-

2, IL-5, KC, and MCP-1 when stimulated with S. aureus (Figure 20B, 20G, 20J, 20U, 

20Y). These data indicate that BMMs and osteoclast precursors retain some overlapping 

ability to respond to S. aureus, however, they also have distinct abilities to produce specific 

cytokines.  
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Figure 20. BMMs and Pre-OCs differentially produce select cytokines in response to 
S. aureus stimulation. 
(A-FF) WT BMMs and osteoclast precursors (Pre-OCs) were generated in 96-well plates 
by plating 50,000 BMMs and stimulating them with M-CSF with or without RANKL, 
respectively for 2 days. At this time, cells were stimulated with vehicle (RPMI) or ∆psm 
supernatants for 24 hours. At 24 hours post-stimulation, cells were washed with PBS and 
fresh media with M-CSF was replenished to allow stimulated cells to continue to produce 
cytokines in media. 24hrs after the media change, supernatants from each well were 
collected and frozen at -80ºC until they were thawed and analyzed on the Luminex 
platform. Cytokine levels were compared between groups using a one-way ANOVA and 
Sidak’s multiple comparisons test for comparison made between cell type and stimulation 
within a cytokine. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  
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Discussion 

The complex signaling cascades that converge to allow myeloid cells to 

differentiate into osteoclasts have been characterized over decades of work [247]. 

Classically, RANKL signals through the RANK receptor of myeloid cells to drive 

osteoclast differentiation [15]. Osteoclast differentiation also requires activation of 

transcription factors for canonical and non-canonical NFκB, AP-1, and the major 

transcriptional regulator NFATc1, among others [25-27, 233]. In our work, we have found 

that stimulation of the RAW264.7 murine monocyte/macrophage cell line with 

concentrated staphylococcal supernatants, S. aureus cell wall fractions, and TLR agonists 

can drive osteoclast differentiation without the addition of exogenous RANKL. 

Furthermore, we confirmed that many of the stimulatory conditions that induce 

osteoclastogenesis in vitro also lead to early NFκB activation, and a sustained increase in 

proliferation of these monocytes suggest that these stimuli elicit functional changes 

following NFκB activation.   

While informative, these early experiments require cautious interpretation of the 

results because they were performed with cell lines. Although these cells bypass the 

requirement for exogenous RANKL to form TRAP+ multinucleated cells, this occurrence 

is likely an artifact of using an immortalized cell line. In order to increase the rigor of these 

studies, we fine-tuned in vitro osteoclastogenesis assays using primary cell cultures. This 

step was critical, as primary cells require viability signals through c-FMS receptor by M-

CSF and osteoclast differentiation in culture requires signaling through the RANK 

receptor, by RANKL.  
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Years of contradictory findings have clouded the interpretation on how bacterial 

stimulation perturbs osteoclast differentiation. In regards to S. aureus, reports on 

osteoclastogenic effects are unclear due to the use of various culture models and 

stimulation methods [25, 140, 240-242, 247-250]. The goal of these studies was to provide 

clarity on the mechanism by which bacterial stimuli alter osteoclastogenesis using primary 

skeletal cells and a clinically relevant strain of S. aureus. We used an isolate of S. aureus 

(LAC, a USA300-type strain) that represents the most common lineage causing bone 

infections, which may help clarify previous studies using laboratory strains. To avoid 

toxin-mediated cell death, cells were stimulated with PSM-deficient S. aureus 

supernatants.  

The hypothesis that overlapping immune and skeletal cell signaling pathways 

perturb osteoclastogenesis was tested with two assays. We hypothesized that different 

outcomes would occur based on the sequence of stimulation with bacterial supernatant or 

RANKL. To test this hypothesis, we pre-committed cells with 2 days of RANKL before 

stimulating with S. aureus supernatants, or conversely, stimulated myeloid cells with S. 

aureus before supplementing with RANKL for 5 days to allow cells sufficient time to 

undergo osteoclast differentiation. Our findings indicate that indeed, S. aureus is able to 

enhance and impede osteoclastogenesis, but the effects are solely dependent on the timing 

of stimuli. Other papers have characterized that these opposing phenotypes are time-

dependent using purified TLR agonists [55]. We are thus able to expand on these findings 

through providing bacterial supernatants from a clinically relevant S. aureus strain, the 

most common causative agent of bacterial osteomyelitis [251]. When myeloid cells are 
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first stimulated with the canonical differentiation factor RANKL, S. aureus alone is able to 

push these cells to continue down the osteoclast differentiation pathway [25, 240].  

Positive regulation of osteoclastogenesis can also occur through indirect alteration 

of osteoblast function or due to cytokines that signal onto skeletal cells in an autocrine or 

paracrine manner [236]. Cytokines IL-1 and TNFα favor osteoclast differentiation 

indirectly through an increase of the RANKL/OPG ratio [155, 236, 252]. In addition to IL-

1 and TNFα, the cytokines IL-6, IL-11, IL-15, and IL-17 have been identified as “pro-

osteoclastogenic” and function to stimulate bone resorption [180, 237]. These cytokines 

can directly alter osteoclastogenic potential of pre-osteoclasts by enhancing their ability to 

undergo differentiation [141, 144], promoting cell-cell fusion [253], increasing osteoclast 

survival [242, 253], promoting intracellular signaling (TRAF6, PLC-γ) [254], activating 

osteoclastogenic transcription factors, and enhancing receptor (RANK, c-Fms) expression. 

As RANKL is a TNF-family cytokine, there are an abundance of studies focusing on the 

ability of TNFα to enhance osteoclastogenesis [69, 141, 142, 144, 246, 255-258]. Our 

results confirm that TNFα enhances osteoclastogenesis from primary osteoclast precursors 

in vitro. To test whether S. aureus-enhanced osteoclastogenesis is due to paracrine effects 

of TNFα production, we used an anti-TNFα antibody in our assays. Here we show that 

anti-TNFα does not inhibit the ability of S. aureus to enhance osteoclast differentiation 

from precursors. Furthermore, anti-RANKL treatment confirmed that RANKL signaling 

on primary cells is necessary for S. aureus-mediated osteoclastogenesis. 

In contrast, when myeloid cells are first stimulated with S. aureus supernatants for 

just 24 hours before being provided RANKL, their ability to differentiate into osteoclasts 

is inhibited, which may recapitulate scenarios where osteoclastogenesis is negatively 
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regulated [248-250]. In addition to OPG, early IL-10 and GM-CSF signaling can prevent 

the development of osteoclast precursor cells, and several “anti-osteoclastogenic” 

cytokines can prevent osteoclast differentiation, including IL-4, IL-13, IL-27, and type I 

and II interferons [249]. Negative regulation of osteoclastogenesis can also occur through 

decreased receptor expression (RANK, c-Fms, OSCAR, TREM2), decreased RANKL and 

M-CSF production, suppression of intracellular signaling, increased anti-osteoclastogenic 

transcription factors, or increased OPG levels [249]. From our BMM cytokine levels, the 

increase in abundance of IL-10 may be responsible for the in vitro inhibition of 

osteoclastogenesis following BMM stimulation with ∆psm supernatants. IL-10 has been 

shown to suppress the early commitment of myeloid precursors into osteoclast precursors 

through inhibition of NFATc1, c-Fos, and c-Jun expression [151, 152]. However, it is also 

possible that quantification of cytokines from supernatants produced between 24-48 hours 

post-stimulation excluded the detection of important cytokines produced by BMMs and 

osteoclast precursors in the first 24 hours.  

The unique cellular milieu present in bone marrow means that S. aureus infection 

results in the juxtaposition of bacteria, myeloid and lymphoid precursors, and skeletal cells. 

In order to test whether we can recapitulate S. aureus-enhanced osteoclastogenesis in a 

more complex culture system, we developed a WBM co-culture assay in which vitamin D3 

supplementation drives osteoblast-lineage cells to produce factors necessary for skeletal 

cell viability in vitro, as well as RANKL to mediate osteoclast formation. Here, we support 

our monoculture findings to show that S. aureus leads to enhanced osteoclastogenesis in a 

co-culture system. These results provide the context that in vivo, where skeletal cells are 
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continuously remodeling bone, the reservoir of osteoclast precursors represent a pool of 

cells that can be subject to enhanced osteoclastogenesis and ultimately trigger bone loss. 

Finally, our findings that reciprocal stimulation of RANKL and S. aureus ∆psm 

supernatants conversely influence cell fate decisions on osteoclast differentiation in vitro 

led us to then inquire as to how macrophage and osteoclast precursor populations vary in 

their production of immune transcripts and cytokines. We found that in response to S. 

aureus supernatants, both BMMs and osteoclast precursors expressed mRNA transcripts 

Tnfsf1a and Nos2 that are characteristic of M1 inflammatory macrophages. Although there 

was no statistical difference between the fold-changes relative to vehicle treatment, the 

difference in magnitude between BMMs and osteoclast precursors was large enough to 

provide the rationale that BMMs and osteoclast precursors may have intrinsically different 

capacities to respond to inflammatory stimuli. Future studies should investigate how 

myeloid lineage cells, including BMMs, osteoclast precursors, and mature osteoclasts, vary 

in their ability to mount immune transcripts indicative of anti-bacterial immune responses. 

To begin to address how the cytokine and chemokine responses of BMMs and pre-

osteoclasts differ to S. aureus stimulation, we measured inflammatory analytes in culture 

supernatants in response to vehicle or ∆psm supernatants. However, S. aureus produces 

antibody-binding proteins that might confound cytokine detection kits that are antibody-

based. To avoid any false-positive signals, we stimulated cells for 24 hours, washed the 

supernatants from the cells, and allowed cells to produce cytokines in the media between 

24-48 hours. Therefore, the cytokine measurements do not represent the immediate 

cytokines released between stimulation and 24 hours, but rather represent sustained release 

kinetics into day 2 post-stimulation. Interestingly, we found that BMMs and pre-osteoclasts 
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maintain some overlap in their cytokine production, with both cell types releasing IL-10, 

MIP-1α, MIP-1β, MIP-2, RANTES, and TNFα. Relative to vehicle control, BMMs also 

produced significantly higher levels of IL-6 when exposed to S. aureus, whereas osteoclast 

precursors treated with ∆psm supernant produced higher levels of G-CSF, IL-2, IL-6, KC, 

and MCP-1. These data suggest that while some common cytokines are produced by 

BMMs and osteoclast precursors in response to S. aureus stimulation, just 2 days of 

RANKL pre-commitment allows their immune responses to diverge. Although these data 

are preliminary, they provide foundational knowledge to support the interrogation into how 

osteoclast lineage cells undergoing differentiation vary in their capacity to mount anti- 

staphylococcal immune responses.   

Data in this chapter clarify some of the discrepancies surrounding how bacterial 

stimulation perturbs osteoclastogenesis. We confirmed that many Gram-positive bacterial 

components influence osteoclast differentiation in myeloid lineage cells. In vitro 

osteoclastogenesis assays allowed us to show that osteoclast enhancement can only occur 

robustly once cells have been pre-committed to the osteoclast lineage with RANKL. 

Conversely, the ability of S. aureus to inhibit osteoclastogenesis from RANKL-naïve cells 

suggests that myeloid lineage cells undergo cell fate decisions that influence their capacity 

to differentiate. Accordingly, the ability of BMMs and osteoclast precursors to mount 

immune responses varied, as measured by Tnfsf1a and Nos2 transcripts and cytokine 

production. Moreover, while osteoclastogenesis can be enhanced by TNFα, it does not 

appear that osteoclast enhancement downstream of S. aureus is due to the paracrine effect 

of TNFα in culture. To expand on these findings, the roles of MyD88, IL-1 cytokines and 
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the IL-1R, and S. aureus sensing TLR2 and TLR9 on antibacterial immunity and 

osteoclast-driven bone loss are investigated in the following chapters.  
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A version of the following section (Chapter III, MyD88 and IL-1R signaling mediate 

antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus 

osteomyelitis) was originally published in PLoS Pathogens (April 2019). 
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JE. 2019. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven 

bone loss during Staphylococcus aureus osteomyelitis. PLoS Pathogens. 15(4):e1007744. 
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CHAPTER III 
 

MyD88 AND IL-1R SIGNALING MEDIATE ANTIBACTERIAL IMMUNITY 

AND OSTEOCLAST-DRIVEN BONE LOSS DURING  

STAPHYLOCOCCUS AUREUS OSTEOMYELITIS 

 
Introduction 

Osteomyelitis, or inflammation of bone, is most commonly caused by invasive 

bacterial infection [251]. S. aureus is the most frequently isolated etiologic agent of both 

acute and chronic bacterial osteomyelitis [10, 259]. S. aureus can colonize bone through 

hematogenous dissemination, contamination of bone following surgical or accidental 

trauma, or direct spread from a surrounding soft tissue infection [10, 260]. Bone represents 

a unique niche for invading bacterial pathogens as it is constantly undergoing turnover by 

bone-forming osteoblasts and bone-resorbing osteoclasts. Bone also represents an 

important immunological niche, as bone marrow houses hematopoietic stem cells that give 

rise to lymphocytes and myeloid cells [180]. Bone infections rarely resolve without 

medical intervention, and are difficult to treat due to the widespread antimicrobial 

resistance of S. aureus as well as induction of bone damage that effectively limits antibiotic 

delivery and immune cell influx [10, 259].  

Osteomyelitis elicits pathologic bone remodeling, which, in addition to 

contributing to treatment failure, can enhance the likelihood of complications such as 

pathologic fractures [10, 31, 32, 40, 61, 79, 80]. In order to explore mechanisms of bone 

loss during osteomyelitis, we previously established a murine model of post-traumatic 

osteomyelitis [31]. Using this model, we found that pore-forming PSMa toxins mediate 
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approximately 30% of the bone loss observed in our murine model of osteomyelitis, with 

direct cytolytic effects on bone-forming osteoblasts [31, 32]. Thus, the majority of bone 

loss still ensued even with the toxin-deficient strain. These findings indicate that while 

bacterial factors directly contribute to bone damage, a substantial proportion of bone loss 

during osteomyelitis may be caused by host factors [37].  

To maintain skeletal strength and structure, bone must be continuously remodeled 

by bone-forming osteoblasts and bone-resorbing osteoclasts [15, 16]. Bone remodeling 

occurs as a part of normal vertebrate physiology, but the kinetics of bone remodeling can 

be substantially altered in response to local and systemic inflammation [235]. 

Osteomyelitis, in particular, is associated with abundant levels of pro-inflammatory 

cytokines such as TNFa, IL-1b, and IL-6 [60, 180]. These pro-inflammatory cytokines 

promote skeletal cell differentiation in vitro, both directly by stimulating bone-resorbing 

osteoclasts and indirectly by promoting osteoblast production of RANKL to drive 

osteoclastogenesis [51, 235, 236]. IL-1 in particular was formerly referred to as “osteoclast 

activating factor,” reflecting the ability of IL-1a and IL-1b to signal on osteoclast lineage 

cells to increase osteoclast viability and resorptive capacity [134, 136, 140, 242, 261, 262]. 

Through these mechanisms, pro-inflammatory cytokines contribute to bone loss in vivo in 

non-infectious models of rheumatoid arthritis [14, 236, 263], although less is known about 

their influence on bone loss during osteomyelitis. These observations led us to hypothesize 

that S. aureus osteomyelitis triggers enhanced bone loss through pro-inflammatory 

cytokine production and signaling.  

IL-1 cytokines signal downstream of the IL-1R through the adapter protein MyD88, 

which also transduces signals from various Toll-like receptors (TLRs) after ligation by 
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conserved microbial motifs known as pathogen-associated molecular patterns (PAMPs). 

Thus, MyD88 is a critical component of the innate immune system, by relaying signals 

through the IL-1R and many TLRs. Prior research has highlighted a prominent role for 

MyD88 and IL-1R signaling in the activation of immune responses that are necessary to 

control S. aureus infection in other animal models of infection [76, 77, 199, 264-269]. In 

part, this occurs through the ability of IL-1 to mediate neutrophil recruitment and promote 

proper abscess formation for containment of S. aureus [77, 199]. Moreover, IL-1 plays a 

critical role in potentiating granulopoiesis, which occurs primarily in the bone marrow 

[270, 271]. The expansion and recruitment of granulocytes, such as neutrophils, are 

regulated in part by an IL-1R-dependent mechanism by which IL-1 signals onto endothelial 

cells in the bone marrow to release G-CSF [272-274]. Thus, MyD88 and the IL-1R form a 

critical signaling cascade that is necessary to mount an effective immune response to 

invading pathogens. 

Importantly, osteoblasts and osteoclasts express innate immune receptors through 

which these cells sense and respond to PAMPs and inflammatory cytokines in cell culture  

[263]. Given the important role of IL-1 in anti-staphylococcal immunity, as well as 

compelling evidence demonstrating that IL-1 signaling impacts bone cells in vitro, we 

hypothesized that MyD88 and IL-1R signaling are required for efficient antibacterial 

immune responses during osteomyelitis, but paradoxically may also promote pathologic 

bone loss. To test this hypothesis, we used a murine model of S. aureus osteomyelitis, high 

resolution imaging, histologic analyses, and in vitro skeletal cell assays. We show that IL-

1 is abundantly produced in bone in response to S. aureus infection, and that MyD88 and 

IL-1R signaling are required to limit staphylococcal burdens during osteomyelitis. 
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Furthermore, S. aureus incites bone loss in vivo through an IL-1R-mediated increase in 

osteoclastogenesis. Our findings reveal that while MyD88 and IL-1R signaling are 

necessary for antibacterial responses in bone, they also contribute to S. aureus-stimulated 

osteoclastogenesis and host-mediated bone loss during osteomyelitis. 

 

Materials and methods 

 
Ethics section 

All experiments involving animals were reviewed and approved by the Institutional 

Animal Care and Use Committee at Vanderbilt University Medical Center on the animal 

protocols M12059 and M1800055. All experiments were performed according to NIH 

guidelines, the Animal Welfare Act, and US Federal law. The murine model of 

osteomyelitis required inhalational anesthesia with isoflurane (1–5%). Post-operative 

analgesia (buprenorphine 0.5–0.1 mg/kg) was provided pre-operatively and every 8–12 

hours for 48 hours post-infection. Mice were euthanized by CO2 asphyxiation with 

secondary confirmation by cervical dislocation and observation of heart rate and breathing. 

 

Animal use  

C57BL/6J (Stock #: 000664), Myd88-/- (Stock #: 009088), and Il1r1-/- (Stock #: 

003245) mice were purchased through The Jackson Laboratory. Il1a-/- and Il1b-/- mice were 

generated as described [275]. WT mice were bred with Myd88-/- or Il1r1-/- mice to produce 

Myd88+/- or Il1r1+/- mice, respectively. Heterozygous mice were bred together to create 

mice carrying knockout (-/-), heterozygous (+/-), or wild-type (+/+) alleles for Myd88 or 

Il1r1. Heterozygous breeding was done to reduce the confounding influence of microbiome 
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effects associated with genotypes and maintenance of separate mouse colonies. Resulting 

littermates were earpunched and genotyped through Transnetyx, Inc. (Cordova, TN). 

 

Bacterial strain and growth conditions 

All infections were conducted with an erythromycin-sensitive derivative the 

USA300 type S. aureus LAC clinical isolate (AH1263) [243]. The toxin-deficient strain 

LAC∆psma1-4 (∆psm) has been previously described and was used for in vitro assays to 

prevent cell death [31, 244]. Bacteria were routinely grown on tryptic soy agar (TSA) or 

shaking in tryptic soy broth (TSB) with or without 10 µg/mL erythromycin as detailed 

previously [31]. To prepare concentrated supernatants, ∆psm was grown overnight in 

RPMI supplemented with 1% casamino acids [32]. 

 

Post-traumatic osteomyelitis infection  

The murine model of osteomyelitis was performed as described previously [31, 32]. 

AH1263 was sub-cultured from an overnight culture, grown for 3 hours, and then adjusted 

in PBS to a concentration of approximately 1x106 CFUs in 2 µL PBS, unless diluted 1:10 

or 1:100 to deliver inoculum doses of 1x105 or 1x104 CFUs, respectively. Osteomyelitis 

was induced in 5- to 8-week old male and female mice following the introduction of a 

unicortical bone defect using a 21G needle, into which 2 µL of bacterial suspension or PBS 

(mock infection) was injected into the intermedullary canal. Muscle fascia and skin were 

closed with sutures and mice were given buprenorphine analgesic every 12 hours for 48 

hours, with daily monitoring until the experimental end point. Mice were euthanized if they 
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met human endpoints, including inability to ambulate, inability to eat or drink, loss of 

greater than 20% body weight, and/or hunched posture.  

 

Micro-computed tomography (µCT) of cortical and trabecular bone 

Femurs were harvested 14 days post-infection and fixed for 48 hours in neutral 

buffered formalin at 4°C. Bones were scanned using a µCT50 (Scanco Medical, 

Switzerland) and analyzed with µCT Tomography V6.3-4 software (Scanco USA, Inc., 

Wayne, PA). To expand previous µCT50 analyses that assessed only the cortical bone of 

the femoral diaphysis [31], here the diaphysis and distal epiphysis of each femur were 

visualized in the scout-view radiographs and imaged with 10.0 µm voxel size at 70 kV, 

200 µA, and an integration time of 350 ms in a 10.24 mm view. Each imaging scan resulted 

in 1088 slices (10.88 mm) of the femur that included the diaphysis surrounding the 

inoculation site, trabecular bone in the distal femur, and excluded the proximal epiphysis. 

Three-dimensional volumetric analyses were conducted by contouring transverse image 

slices in the region of interest. The diaphysis of each femur was comprised of 818 image 

slices. These image slices were used to quantify cortical bone destruction (mm3) and 

reactive bone formation (mm3) surrounding the cortical bone inoculation site as described 

previously [31]. Trabecular bone measurements were obtained in the distal femur by 

advancing proximally past the growth plate 30 slices. 101 slices were analyzed with an 

inclusive contour drawn along the endosteal surface to include trabeculae and exclude the 

cortical bone. Trabecular bone volume per total volume (%), trabecular number (1/mm), 

trabecular thickness (mm), and trabecular spacing (mm) were determined by segmentation 

of the image with a lower threshold of 329 mg HA/ccm, sigma 1.3, and support 1.  
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Bone histology and histomorphometric analysis of osteoclasts in trabecular bone 

After µCT imaging, femurs were decalcified for three days in 20% EDTA at 4°C. 

Decalcified bones were processed and embedded in paraffin before sectioning at 4µm 

thickness through the infectious nidus and bone marrow cavity using a Leica RM2255 

microtome. Sectioned femurs were stained with a modified hematoxylin and eosin (H&E) 

that included orange G and phloxine for enhanced bone contrast, tartrate-resistant acid 

phosphatase (TRAP) stain with hematoxylin counterstain, or 3,3’-diaminobenzidine 

(DAB) immunohistochemistry to detect myeloperoxidase (MPO). OsteoMeasure software 

(OsteoMetrics, Inc., Decatur, GA) was used to manually analyze TRAP-stained histologic 

sections at a region of interest encompassing the trabeculae proximal to the growth plate 

in the distal femur. Osteoclast number, osteoclast surface, and bone perimeter were 

calculated and reported per ASBMR standards [276]. A Leica SCN400 Slide Scanner was 

used to scan stained femur sections in brightfield at 20X. Images were uploaded to and 

imaged with the Digital Imaging Hub (Leica Biosystems, Buffalo Grove, IL) and Tissue 

Image Analysis 2.0 (Tissue IA 2.0) (Leica Microsystems, Buffalo Grove, IL) was used to 

analyze callus area of infected femurs at 20X. 

 

Determination of bone formation rate with double calcein labeling 

WT and Il1r1-/- mice were intraperitoneally injected with 20 mg/kg calcein on days 

8 and 12 post-infection with 105 CFUs. Femurs were subsequently harvested, formalin 

fixed, and dehydrated prior to embedding in poly(methyl methacrylate) for sectioning, and 

counterstained with toluidine blue. Fluorescent labels were identified as single- or double-

labeled surface. Fluorescent labels and trabecular bone were traced in the distal femur using 
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OsteoMeasure software, and the mineralizing surface per bone surface (MS/BS), mineral 

apposition rate (MAR), and bone formation rate per bone surface (BFR/BS) were 

calculated per ASBMR standards [276]. 

 

CFU enumeration  

At various time points post-infection, tissues were harvested and homogenized 

using a BulletBlender and NAVY lysis tubes (Next Advance, Inc., Averill Park, NY) at 

4°C. To enumerate bacterial CFUs in infected femurs, the whole femur or only the regions 

encompassing the trabecular bone (i.e. metaphyses and epiphyses) were homogenized in 

PBS. To maximize cytokine signals in femur homogenates, CelLytic Buffer MT Cell Lysis 

Reagent (Sigma, Saint Louis, MO) was substituted for PBS to specifically lyse mammalian 

cells. Livers and kidneys were homogenized in PBS. Femur and organ homogenates were 

vortexed, serially diluted in PBS, and plated on TSA for bacterial enumeration. Femur 

homogenates lysed in CelLytic Buffer MT and PBS showed no difference in recoverable 

bacterial burdens.  

 

Multiplexed cytokine detection 

Following homogenization, femur homogenates were centrifuged at 4000 x g for 5 

minutes to remove debris and the supernatant was stored at -80°C for subsequent analysis 

using Milliplex MAP multiplex magnetic bead-based antibody detection kits (EMD 

Millipore, Billerica, MA) according to the manufacturer’s protocols. Cytokine 

quantification from bone homogenates was performed using the 32-plex Mouse 
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Cytokine/Chemokine Magnetic Bead Panel (MCYTMAG-70K-PX32) on the FLEXMAP 

3D instrument. The quality controls for IL-13 failed, and these data were excluded.  

Cytokine levels from femurs homogenized in 500 µL volume were read as pg/mL. 

Femur homogenates reported as relative values were homogenized in PBS, whereas 

cytokines values corrected for total protein were homogenized in CelLytic Buffer to 

maximize cytokine signals. Total protein (mg/mL) was quantified using the Pierce BCA 

Protein Assay Kit (ThermoFisher Scientific, Waltham, MA) per manufacturer’s directions. 

Infected Il1r1-/- femurs were up to two times larger than WT infected femurs and four times 

larger than mock infected WT and Il1r1-/- femurs. Cytokine levels are therefore reported 

as pg cytokine/mg protein to control for femur size differences between infected Il1r1-/- 

and WT femurs. 

 

Flow cytometry 

 Following S. aureus infection (105 CFUs), femurs from WT and Il1r1-/- mice were 

harvested at 1, 3, 5, and 14 days post-infection. Whole bone marrow (WBM) was flushed 

through a 70 µm nylon cell strainer (Falcon, Corning, New York) and red blood cells 

(RBCs) were lysed using the Ammonium Chloride Potassium (ACK) Lysing Buffer 

(Lonza, Walkersville, MD). Bone marrow (BM) mononuclear cells were counted and 1 

million cells were plated per well and washed in PBS supplemented with 3% FBS and 

0.1% sodium azide (FACS buffer). Cells were incubated with Anti-CD16/CD32 

(Biolegend, 1:100, clone 93, San Diego, CA) to block non-specific antibody staining. Cells 

were then incubated with a mixture of murine-specific cell surface antibodies on ice, 

including Anti-Ly6G-PE (Biolegend, 1:3200, clone 1A8), Anti-Ly6C-PE-Dazzle 594 
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(Biolegend, 1:1600, clone HK1.4), Anti-CD68-PE-Cy7 (Biolegend, 1:100, clone FA-11), 

Anti-CD11b-APC (Tonbo 1:4800, clone M1/70, San Diego, CA), and Anti-CD45-

AlexaFluor 700 (Biolegend, 1:400, clone 30-F11). Cells were washed two times in FACS 

buffer, resuspended in 2% paraformaldehyde solution, and run on a 3-laser BD LSRII flow 

cytometer the following day. Single BM cells were identified from successive gates, 

including side scatter-area by forward scatter-area (SSC-A x FSC-A), forward scatter area 

by height (FSC-A x FSC-H), and side scatter area by height (SSC-A x SSC-H). Next, 

CD45+ cells, CD11b+ cells, and Ly6G+LyClo cells (neutrophils) were gated sequentially. 

 

Osteoclastogenesis assays 

WBM was flushed from femurs of 8- to 13-week old male mice using α-MEM 

media. Following RBC lysis, WBM was resuspended in a 90% FBS and 10% DMSO 

solution and frozen in liquid nitrogen until thawed for use. BMMs were enriched by plating 

8 to 13 million cells per 10 cm dish in α-MEM, 10% FBS, 1X Penicillin/Streptomycin 

(P/S), and 100 ng/mL recombinant murine M-CSF (R&D Systems, Minneapolis, MN, 416-

ML) for 4 days. Non-adherent cells were removed and adherent cells were washed with 

PBS, scraped into fresh media, and counted prior to plating. Enriched BMMs were plated 

at a density of 50,000 cells/well in 96-well plates, and media (α-MEM, 10% FBS, 1X P/S) 

was supplemented 1:20 with CMG14-12 as an M-CSF source [28]. Osteoclastogenesis 

assays were performed with RANKL-primed osteoclast precursors, which were generated 

by plating BMMs in 35 ng/mL recombinant murine RANKL (R&D Systems, Minneapolis, 

MN, 462-TR) for 2 days. Prior to stimulation, RANKL-primed osteoclast precursors (WT, 

Myd88-/-, Il1r1-/-, Il1a-/-, and Il1b-/-) were washed twice with PBS. RANKL-primed 
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osteoclast precursors were stimulated with either a vehicle control (1% casamino acid-

supplemented RPMI) or ∆psm supernatant. M-CSF was supplemented into the media 

containing each stimulation. To confirm the proposed role of IL-1β (R&D Systems, 

Minneapolis, MN, 410-ML) on osteoclastogenesis, 10 ng/mL IL-1β was added to RANKL 

pre-committed osteoclast precursors. 

To test the specific role of IL-1R inhibition on S. aureus-enhanced osteoclast 

differentiation, osteoclastogenesis assays in WT and Il1r1-/- cells were conducted with the 

addition of a vehicle control (0.1% low endotoxin BSA) or 1 µg/mL recombinant murine 

IL-1ra (Novus Biologicals, LLC, Littleton, CO, NBP2-35105) during the 2 days of 

RANKL pre-commitment or during the 4 days of ∆psm supernatant stimulation. On day 6 

in culture, all RPMI- and S. aureus-stimulated osteoclastogenesis assays were fixed with a 

4% formaldehyde and 0.05% Triton X-100 solution in PBS (10 minutes) and 1:1 

acetone:ethanol (1 minute), before TRAP staining with reagents from the Acid 

Phosphatase, Leukocyte (TRAP) Kit (Sigma, Saint Louis, MO, 378A). In control 

osteoclastogenesis assays without S. aureus supernatant stimulation, cells were stimulated 

at the time of plating with 1:20 CMG14-12 and 35ng/mL RANKL. Fresh media, CMG14-

12, and RANKL were replenished on days 4 and 6 in culture, with cells TRAP stained on 

day 7. TRAP+ multinucleated cells were counted manually at 10X, with OsteoMeasure 

software (OsteoMetrics, Inc., Decatur, GA) or the FIJI Cell Counter Plugin.  

 

Statistical analysis 

Data analysis and statistical tests were conducted using Graph Pad Prism software. 

Unpaired t-tests were used to compare CFU burdens, measurements of bone architecture 
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using µCT and histology, cytokine levels, neutrophil abundance, and TRAP+ 

multinucleated cell counts when two groups were being compared. Log-rank Mantel Cox 

tests compared survival curves between genotypes for each S. aureus inoculum. A one-

way ANOVA with Tukey’s multiple comparison test compared CFU burdens from femurs 

between multiple genotypes. A two-way ANOVA was used with Fisher’s Least Significant 

Difference (LSD) test to compare the effects of genotype and infection status between 

histomorphometry measurements. A repeated measures two-way ANOVA with Tukey’s 

multiple comparisons test was used to compare TRAP+ multinucleated cell counts between 

genotype at each ∆psm supernatant dose. Repeated measures two-way ANOVAs with 

Dunnett’s multiple comparisons test were conducted on TRAP+ cell counts from each 

genotype, to compare ∆psm supernatant dosage effects. A three-way ANOVA with 

Tukey’s multiple comparisons test was used to compare cell genotype, IL-1ra pre-

treatment, and IL-1ra treatment alongside ∆psm supernatant stimulation. P values of less 

than 0.05 were considered statistically significant. Details on number of data points, 

experimental replicates, calculated standard deviation, and statistical significance for each 

experiment are described in figure legends.  

 

Results 

 
S. aureus osteomyelitis alters cortical and trabecular bone remodeling 

To determine changes in bone remodeling that occur during osteomyelitis, we 

compared architectural bone parameters between infected and mock infected wild-type 

(WT) C57BL/6J mice in a post-traumatic model of S. aureus bone infection [31]. We 

focused our analyses on two distinct anatomical sites of the infected femurs representing 
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the two major architectural types of bone: cortical bone that comprises the mid-region 

(diaphysis) of the long bone and trabecular bone found in the distal femur (metaphysis and 

epiphysis) (Figure 21A-C). We previously observed that mock infected WT mice display 

a rapid cortical bone healing response at the surgical site, in which the induced bone defect 

in the femoral diaphysis is replaced with new bone by 2 weeks post-surgery [31]. In 

contrast to this sterile cortical bone repair, mice infected with S. aureus develop 

osteomyelitis, are unable to restore the cortical bone defect, and experience extensive 

cortical bone loss surrounding the site of inoculation (Figure 22A and 22B). Moreover, S. 

aureus infected femurs show reactive cortical bone formation surrounding the site of 

inoculation (Figure 22C) [31].  
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Figure 21. Cortical and trabecular bone architecture of S. aureus infected femurs via 
histology. (A-C) Femurs were harvested from female WT mice (n = 5) 14 days after S. 
aureus infection (106 CFUs). Representative modified H&E section of an infected female 
WT femur, imaged at 0.58X (scale bar = 1mm) (A) shown with a grey box surrounds the 
central portion of the diaphysis and the extent of abscess formation, and a black box 
surrounds trabecular bone in the distal femur, or imaged at 1.28X (scale bar = 1 mm) (B, 
C). (B) Diaphysis and medullary cavity as outlined in the grey box, showing abscesses as 
indicated by white arrows and a S. aureus microcolony by a grey arrow. (C) Distal femur 
containing trabecular bone as outlined in the black box. 
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Figure 22. S. aureus osteomyelitis alters cortical and trabecular bone remodeling. (A-
H) Mock infection or osteomyelitis was induced in female wild-type C57BL/6J (WT) mice 
via intraosseous inoculation with PBS or S. aureus. At 14 days post-infection, femurs were 
harvested, fixed in neutral buffered formalin, and scanned with a µCT50 at 10 µm 
resolution (n = 5 mice per group). (A) Anteroposterior view of the femur at the inoculation 
site in representative mock infected and S. aureus infected femurs. (B, C) Cortical bone 
loss (mm3) (B) and reactive bone formation (mm3) (C) were quantified via µCT. (D) 
Representative three-dimensional top down (left) and side (right) views of trabecular bone 
architecture in mock infected and S. aureus infected femurs. (E-H) Trabecular bone 
indices, including three-dimensional measurements of trabecular bone volume/total 
volume (BV/TV) (%) (E), trabecular number (Tb.N) (1/mm) (F), trabecular spacing 
(Tb.Sp) (mm)  (G), and trabecular thickness (Tb.Th) (mm) (H) were measured via µCT. 
After scanning, femurs were decalcified, processed, and embedded in paraffin for 
histologic sectioning and tartrate resistant acid phosphatase (TRAP) staining. (I) 
Histomorphometric analyses of trabecular bone in the distal femur proximal to the growth 
plate compared the number of osteoclasts per bone perimeter (N.Oc/B.pm) (1/mm) 
between mock infected and S. aureus infected femurs (n = 9 mice per group). Symbols 
represent individual data points from each mouse (Mock = circles; Infected = squares), the 
top line of each bar represents the mean, and error bars represent standard deviation. 
Unpaired t-tests were used to compare µCT and histomorphometry measurements between 
mock infected and S. aureus infected femurs. * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001. 
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S. aureus osteomyelitis induced dramatic alterations in cortical bone surrounding 

the infectious focus, which was initiated in the middle of the femoral diaphysis. However, 

trabecular bone, located at the ends of the long bones, is the major site of homeostatic bone 

remodeling [277]. In order to elucidate how inflammation during osteomyelitis leads to 

alterations in trabecular bone architecture, we also performed micro-computed tomography 

(µCT) imaging on trabecular bone in the distal femur. To determine the amount of 

trabecular bone that was lost during osteomyelitis, we calculated the trabecular bone 

volume per total volume (BV/TV), which is a standard measure of bone volume and 

architecture [276]. S. aureus infected femurs exhibited a dramatic loss in trabecular bone, 

with BV/TV markedly decreased in infected femurs compared to mock infected femurs 

(Figure 22D and 22E). The observed decrease in BV/TV during infection is reflective of 

a decline in the number of bony trabeculae, which in turn increases the overall volume of 

space between trabeculae (Figure 22F and 22G). Trabecular thickness was not 

significantly reduced in infected relative to mock infected femurs (Figure 22H). Although 

skeletal histology revealed that the area of the femur encompassing the trabecular bone did 

not have apparent abscess formation (Figure 21C), viable S. aureus cells were recoverable 

from the femoral epiphyses encompassing the trabecular bone (Figure 23). These data 

collectively reveal that S. aureus osteomyelitis induces changes in bone turnover 

throughout the entire infected femur, which is reflected in a significant loss of cortical and 

trabecular bone.  
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Figure 23. S. aureus burdens are detectable from femoral metaphyses and epiphyses 
during S. osteomyelitis. Femurs were harvested from female WT and Il1r1-/- mice at days 
1, 3, 5, and 14 days after S. aureus infection (105 CFUs) (n = 3 per genotype). Distal and 
proximal femoral epiphyses were homogenized to quantify bacterial burdens in areas 
encompassing trabecular bone. S. aureus CFUs were detectable in the ends of WT and 
Il1r1-/- femurs at all time points. Symbols represent individual data points from each mouse 
(WT = circles; Il1r1-/- = squares), the top of each bar represents the mean, and error bars 
represent the standard deviation. Multiple t-tests were used to compare CFU burdens 
between WT and Il1r1-/- mice at each time point. ** p < 0.01. 
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One common mechanism of bone loss is mediated by an increase in the number of 

bone-resorbing osteoclasts residing on the bone surface. To examine whether the 

inflammation associated with S. aureus osteomyelitis enhances numbers of osteoclasts in 

vivo, we collected histologic sections of infected femurs for histomorphometry, which 

enables quantification of the number of osteoclasts and osteoclast resorbing surface relative 

to intact trabecular bone. Histomorphometric analysis showed an increased number of 

osteoclasts per bone perimeter (N.OC/B.pm) in S. aureus infected femurs relative to mock 

infected femurs, suggesting that enhancement of osteoclastogenesis might be one 

mechanism underlying trabecular bone loss during osteomyelitis (Figure 22I). Taken 

together, these data indicate that S. aureus osteomyelitis perturbs normal bone homeostasis 

to induce pathologic bone remodeling in both cortical and trabecular bone. 

 

Longitudinal cytokine profiling defines the local inflammatory milieu during S. 

aureus osteomyelitis 

Previous studies have shown that toxin-deficient S. aureus strains retain the ability 

to alter bone remodeling, albeit to a lesser extent than WT S. aureus, implicating 

inflammation as a potential mediator of dysregulated bone remodeling during osteomyelitis 

[31, 32]. To characterize the local inflammatory environment during S. aureus 

osteomyelitis, we conducted longitudinal, multiplexed cytokine profiling of S. aureus and 

mock infected femurs over the course of 14 days. Relative to mock infected femurs, S. 

aureus infected femurs have more abundant levels of cardinal pro-inflammatory cytokines 

including v (Figure 24). While both IL-1α and IL-1β are highly produced in infected 

femurs, IL-1β had a higher fold change than IL-1α throughout the timecourse when 
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comparing S. aureus infected to mock infected femurs. Furthermore, infected femurs have 

increased levels of cytokines that support myeloid cell chemotaxis and expansion, 

including KC (CXCL1), G-CSF, M-CSF, MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β 

(CCL4), and MIP-2 (CXCL2), compared to mock infected femurs (Figure 24). Cytokine 

profiling of S. aureus osteomyelitis demonstrated that inflammatory cytokines, 

chemokines, and growth factors are greatly increased in infected femurs by day 1 and 

throughout infection.  
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Figure 24. Longitudinal cytokine profiling defines the local inflammatory milieu 
during S. aureus osteomyelitis. Cytokine profiling was performed on homogenates from 
mock and S. aureus infected femurs from female WT mice. Groups of mock or S. aureus 
infected mice (n = 3 per time point) were sacrificed on days 1, 4, 7, 10, and 14 post-
infection. Relative cytokine levels are represented as Log2(S. aureus infected/mock 
infected) to reflect changes in cytokine production between sterile and infected bones. Dark 
blue shading represents increasing cytokine fold-changes observed in S. aureus infected 
femurs compared to mock infected femurs. Dark grey shading represents a decreasing 
cytokine fold-changes in S. aureus infected femurs compared to mock infected femurs.  
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The innate immune signaling adapter MyD88 and IL-1R signaling are critical for the 

control of bacterial burdens during S. aureus osteomyelitis 

A rapid and robust cytokine response to S. aureus in bone led us to focus on 

identifying host signaling pathways that are responsible for coordinating an innate immune 

response. Given the central role for the signaling adapter MyD88 in pathogen recognition 

and induction of innate immune responses, we first sought to determine how MyD88 

signaling influences staphylococcal burdens and host morbidity and mortality during 

osteomyelitis. Myd88-/- mice have enhanced susceptibility to, and morbidity from, bacterial 

infection [77, 184, 278]. We therefore inoculated these mice with a range of S. aureus 

colony forming units (CFUs), from 104-106. Although bacterial inocula up to 106 CFUs did 

not cause mortality in WT mice, Myd88-/- mice were exquisitely susceptible to S. aureus 

osteomyelitis, with mortality observed even at inocula as low as 104 CFUs (Figure 25A). 

For infected Myd88-/- mice that met humane endpoints prior to the experimental endpoint 

or succumbing to disease, bacterial CFUs were enumerated at that time in the femur, liver, 

and kidneys. At the time of early sacrifice, Myd88-/- mice had between 107-108 S. aureus 

CFUs in the femur, kidneys, and liver, which was significantly increased over CFUs 

recovered from WT mice (Figure 26). At the experimental endpoint (day 14 post-

infection), surviving Myd88-/- mice not only had significantly elevated bacterial burdens in 

the infected femur, but also experienced more bacterial dissemination to the kidneys and 

liver (Figure 25B). Consequently, the inability to prevent systemic bacterial dissemination 

results in significantly increased mortality in Myd88-/- mice. Taken together, these data 

demonstrate a critical role for MyD88-dependent immune responses during S. aureus 

osteomyelitis. 
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Figure 25. The innate immune signaling adapter MyD88 is critical for the control of 
bacterial burdens and systemic dissemination during S. aureus osteomyelitis. (A-B) 
Osteomyelitis was established in female WT and Myd88-/- mice, following infection with 
varying S. aureus inocula: 106 CFUs (WT n = 5, Myd88-/- = 6), 105 CFUs (WT n = 10, 
Myd88-/- = 12; duplicate experiments), 104 CFUs (WT n = 6, Myd88-/- = 6). Bacterial 
burdens were quantified from the infected femur, as well as both kidneys and the liver as a 
measure of bacterial dissemination. (A) Over the 14-day course of infection, mice were 
monitored for humane endpoints, and if necessary, mice were euthanized and mortality 
was recorded. Log-rank Mantel Cox test was used to compare WT and Myd88-/- survival 
curves due to infection mortality for each S. aureus inoculum. ** p < 0.01, ns = not 
significant. (B) Bacterial burdens were enumerated in surviving mice at day 14 post-
infection in duplicate experiments, following inoculation with 105 S. aureus CFUs (WT n 
= 8, Myd88-/- n = 6; duplicate experiments). Symbols represent individual data points from 
each mouse (WT = circles; Myd88-/- = squares), the top line of each bar represents the 
mean, and error bars represent standard deviation. Unpaired t-tests were used to compare 
CFU burdens between WT and Myd88-/- organ homogenates. * p < 0.05, ns = not 
significant. 
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Figure 26. Myd88-/- mice euthanized at humane endpoints exhibit greater S. aureus 
dissemination compared to WT mice. Following infection with 105 S. aureus CFUs, 
female Myd88-/- mice that lost greater than 20% of their body weight were humanely 
euthanized at day 8 and day 9 post-infection with a randomly chosen female WT 
comparator (n = 2 per genotype) to compare bacterial burdens enumerated from the 
infected femurs, and to determine dissemination to the kidneys and liver. Symbols 
represent individual data points from each mouse (WT = circles; Myd88-/- = squares), the 
top of each bar represents the mean, and error bars represent the standard deviation. 
Unpaired t-tests were used to compare CFU burdens between WT and Myd88-/- organ 
homogenates. ** p < 0.01, ns = not significant. 
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Myd88-/- mice have altered intestinal barrier function and are severely 

immunocompromised, and therefore may have significant microbiome differences relative 

to WT mice [75, 279, 280]. When considered in concert with recent studies suggesting that 

the microbiome may regulate bone mass [281-284], these observations prompted us to 

breed Myd88-/- and Myd88+/+ littermate controls from a heterozygous colony and compare 

these littermate controls for susceptibility to osteomyelitis. We also examined the influence 

of sex as a biologic variable in these experiments. In line with results from mice bred in 

separate colonies, significant mortality from osteomyelitis was observed in male Myd88-/- 

mice, but not Myd88+/+ littermate controls (Figure 27A). Of note, at day 14 post-infection, 

male Myd88-/- mice had no difference from Myd88+/+ littermate controls in recovered CFUs 

from infected femurs (Figure 27B). This observation could indicate sex-dependent 

differences in osteomyelitis pathogenesis, or alternatively may reflect selection bias from 

removal of mice that succumbed to infection (Figure 27A). In contrast to male mice, 

female Myd88-/- mice exhibited significantly higher bacterial burdens in the infected femur 

when compared Myd88+/+ littermate controls (Figure 27C). These experiments confirm 

that MyD88 is critical for the control of bacterial burdens and systemic dissemination 

during osteomyelitis independently of any confounding variables associated with separate 

colony maintenance.  
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Figure 27. MyD88 protects against local S. aureus burdens and dissemination during 
S. aureus osteomyelitis in male and female Myd88+/+ and Myd88-/- littermates. (A-C) 
Myd88+/- mice were bred to produce Myd88+/+ and Myd88-/- littermate controls. Male (n = 
5 each genotype) and female (n = 5 Myd88+/+; n = 3 Myd88-/-) littermate controls were 
infected with 106 S. aureus CFUs to establish osteomyelitis. All groups were monitored for 
severe weight loss and signs of sepsis. (A) Male Myd88+/+ (n = 5) Myd88+/+ (n = 5) and 
Myd88+/+ (n = 5) mice survived until day 14. Log-rank Mantel Cox test was used to 
compare male Myd88+/+ and Myd88-/- survival curves due to infection mortality. * p < 0.05. 
(B, C) Bacterial burdens were enumerated from the infected femur, kidneys and liver from 
male (B) and female (C) mice at day 14 post-infection. Symbols represent individual data 
points from each mouse (Myd88+/+ = circles; Myd88-/- = squares), the top line of each bar 
represents the mean and error bars represent standard deviation. Unpaired t-tests were used 
to compare CFU burdens between Myd88+/+ and Myd88-/- organ homogenates. * p < 0.05, 
** p < 0.01, ns = not significant. 
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  In the absence of MyD88 signaling, mice are unable to control S. aureus infection, 

indicating that upstream receptors that signal through MyD88, including S. aureus- 

recognizing TLRs and IL-1R, may be important for antibacterial protection. The high 

levels of IL-1 and IL-1-regulated cytokines present in S. aureus infected femurs led us to 

investigate the contribution of IL-1R signaling to anti-staphylococcal immunity in bone. 

We subjected WT and Il1r1-/- mice to S. aureus osteomyelitis. In contrast to the extreme 

systemic morbidity observed in MyD88-/- mice suffering from osteomyelitis, Il1r1-/- mice 

had less morbidity when compared to WT mice, in that they lost significantly less weight 

over the course of infection (Figure 28A). To determine the role of IL-1R and the relative 

contributions of IL-1 isoforms (IL-1a or IL-1b) to control bacterial burdens in bone, WT, 

Il1r1-/-, Il1a-/-, and Il1b-/- mice were subjected to S. aureus osteomyelitis. Enumeration of 

bacterial burdens revealed that Il1r1-/- mice harbored significantly higher bacterial burdens 

in infected femurs than WT, Il1a-/-, and Il1b-/- mice (Figure 28B). Il1a-/- and Il1b-/- mice 

sustained bacterial burdens that were not significantly different from WT mice (Figure 

28B). Unlike MyD88-/- mice, Il1r1-/- mice were protected from significant systemic 

dissemination to the liver or kidneys (Figure 28C). To determine whether differences in 

WT and Il1r1-/- strains were due to background genotype or separate colony maintenance, 

heterozygous Il1r1+/- mice were bred to generate Il1r1+/+ and Il1r1-/- littermate controls. 

Infection of littermates with 106 S. aureus CFUs confirmed that Il1r1-/- mice sustained 

higher bacterial burdens in bone compared to Il1r1+/+ mice (Figure 28D). We next 

investigated the kinetics of bacterial clearance between WT and Il1r1-/- mice. For this 

analysis we chose a lower S. aureus inoculum of 105 CFUs in an attempt to equilibrate 

bacterial burdens at day 14 post-infection. In both WT and Il1r1-/- mice, the initial S. aureus 
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inoculum of 105 CFUs replicates to approximately 107 CFUs by day 1 post-infection 

(Figure 28E). In WT mice, bacterial burdens decreased by greater than 1 log between days 

3 and 5 post-infection. In contrast, bacterial burdens in Il1r1-/- mice were essentially 

unchanged through day 5 post-infection, and only declined between days 5 and 10 post-

infection. Accordingly, WT and Il1r1-/- mice had significantly different bacterial burdens 

at day 5 post-infection with this lower inoculum, even though bacterial burdens were 

roughly equivalent at the final time point (day 14). These data reveal differences in 

infection kinetics between WT and Il1r1-/- mice, and suggest that Il1r1-/- mice might have 

a delay in bacterial control during osteomyelitis. 
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Figure 28. IL-1R signaling contributes to antibacterial immunity in bone. (A) Percent 
starting weight was monitored daily in triplicate experiments with 106 S. aureus CFU 
infection of female WT and Il1r1-/- mice (WT n = 15, Il1r1-/- n = 13). (B-C) At day 14 post-
infection with 106 S. aureus CFU, bacterial burdens were enumerated from the infected 
femurs (WT n = 29, Il1r1-/- n = 20, Il1a-/- n = 9, Il1b-/- n = 14; six independent experiments) 
(B) or kidneys (K) and liver (L) (WT n = 9, Il1r1-/- n = 7; duplicate experiments) (C) of 
each mouse. (D) A subsequent experiment with a 106 S. aureus CFU inoculum was 
conducted in Il1r1+/+ and ll1r1-/- mice bred as littermates from a heterozygous colony 
(Il1r1+/+ n = 10, ll1r1-/- n = 9; duplicate experiments). (E) Following a lower 105 S. aureus 
CFU inoculum, bacterial burdens were enumerated from infected femurs of WT and Il1r1-

/- mice on days 1, 3, 5, 10, and 14 post-infection (n = 3 mice per genotype per time point). 
On bar graphs, symbols represent individual data points from a single mouse (WT and 
Il1r1+/+ = circles; Il1r1-/- = squares; Il1a-/- = triangles, Il1b-/- = diamonds) and the mean is 
represented by the top line of the bar. On timecourse graphs, symbols represent the mean. 
On all graphs, error bars represent the standard deviation. Unpaired t-tests compared 
weight recovery and CFU burdens between WT and Il1r1-/- mice and between Il1r1+/+ and 
Il1r1-/- femurs. A one-way ANOVA with Tukey’s multiple comparisons test was used to 
compare bacterial burdens harvested from femurs between mice of all genotypes. For 
kidney and liver burdens, separate t-tests compared WT and Il1r1-/- burdens from each 
organ site. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns = not significant. 
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In other S. aureus infection models, IL-1 coordinates neutrophil recruitment and is 

necessary for sequestration of S. aureus into mature abscesses [77, 199]. We therefore 

hypothesized that the delay in bacterial clearance in Il1r1-/- mice subjected to osteomyelitis 

was related to differences in abscess maturation and neutrophil abundance. To visualize 

immune cell infiltration and abscess structure, we conducted myeloperoxidase (MPO) 

staining on histologic sections of infected femurs at day 14 post-infection. Il1r1-/- mice 

with osteomyelitis have differential MPO staining in comparison to WT controls, 

suggesting these mice have disorganized abscess structure (Figure 29A). WT mice have 

MPO+ cells that surround and encompass the abscess, whereas Il1r1-/- mice show extensive 

MPO+ staining throughout the femur. To assess changes in inflammatory signatures that 

correspond to differences in infection kinetics, infected femur homogenates from WT and 

Il1r1-/- mice were analyzed using multiplexed cytokine analysis. In comparison to WT 

mice, Il1r1-/- mice had significantly decreased abundance of neutrophil growth factors G-

CSF and GM-CSF and lower levels of the neutrophil chemokine CXCL1 at day 1 post-

infection, a timepoint that precedes early bacterial control in WT mice between days 3 and 

5 (Figure 29B-D, Figure 28E). GM-CSF and CXCL1 levels then decline in WT mice by 

day 5 post-infection. In contrast, Il1r1-/- mice display significantly higher levels of GM-

CSF and CXCL1 at day 5 post-infection when compared to WT mice, prior to the decrease 

in bacterial burdens that occurs between days 5 and 10 post-infection (Figure 29C and 

29D, Figure 28E). Moreover, there are global changes in cytokine abundance when 

comparing WT and Il1r1-/- mice (Table 2). These data suggest that WT mice have an early 

influx and/or expansion of neutrophils, important for the control of bacterial burdens and 

normal abscess formation.  
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Figure 29. Il1r1-/- mice have altered abscess structure, delayed granulocytic cytokine 
levels, and lower neutrophil abundance during S. aureus osteomyelitis. (A) Femurs 
were harvested from female WT and Il1r1-/- mice (n = 5 per genotype) 14 days after S. 
aureus infection (106 CFUs). Harvested femurs were fixed in neutral buffered formalin, 
dehydrated in 70% ethanol, and decalcified in 20% EDTA before embedding in paraffin 
for sectioning. The infected femurs were sectioned through the medullary cavity and 
sections from each femur were stained for myeloperoxidase (MPO) to visualize MPO+ 
(brown) neutrophils and gross abscess architecture in WT (left) and Il1r1-/- (right) sections. 
Slides were scanned at 20X using a Leica SCN400 Slide Scanner and images were taken 
at 4X (scale bars = 100 µm) and are representative of n = 5 mice per genotype. Abscesses 
are indicated by white arrows and a S. aureus microcolony by a grey arrow. (B-D) After 
infection with 105 S. aureus CFUs, cytokine levels and relative neutrophil abundance were 
measured from femurs (n = 3 per genotype) harvested at days 1, 3, 5, 10, and 14 post-
infection (cytokine analysis, B-D) or days 1, 3, 5, and 14 post-infection (flow cytometry, 
E). Cytokine levels in pg/mL were corrected for overall protein levels in the femur 
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homogenates as measured using a BCA assay. Depicted are select cytokines G-CSF (B), 
GM-CSF (C), and CXCL1 (D) from WT (black circles) and Il1r1-/- (grey squares) femurs. 
(E) Relative neutrophil abundance was measured in bone marrow harvested from infected 
and contralateral, uninfected femurs of WT and Il1r1-/- mice. Neutrophils are defined as 
CD45+CD11b+Ly6G+Ly6Clo and are reported as % of CD45+ immune cells (D). Symbols 
represent individual data points from each mouse (WT = circles; Il1r1-/- = squares), 
horizontal lines or the top of each bar represent the mean, and error bars represent standard 
deviation. Multiple unpaired t-tests were used to compared pg cytokine/mg protein and 
neutrophil percentages between WT and Il1r1-/- mice. * p < 0.05, ** p < 0.01, **** p < 
0.0001. If not denoted with asterisks, statistical difference between genotypes was not 
significant. 
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Table 2. Cytokine levels in WT and Il1r1-/- mice during S. aureus osteomyelitis.  
 

 
WT infected (white) 

Il1r1-/- infected (grey) 
(pg cytokine/mg protein) 

Cytokine Day 1 Day 3 Day 5 Day 10 Day 14 

IL-1α 217.7 ± 60.2 226.9 ± 82.2 212.5 ± 242.3 544.1 ± 545.0 241.2 ± 76.6 
234.5 ± 40.2 346.6 ± 73.3 432.8 ± 243.2 693.3 ± 50.4 965.3 ± 826.0 

IL-1β 
500.1 ± 
105.2* 408.5 ± 114.3 188.8 ± 146.7 199.9 ± 150.8 116.4 ± 34.5 

855.2 ± 93.8 402.5 ± 147.1 802.8 ± 471.2 314.2 ± 132.8 457.1 ± 305.2 

IL-2 4.0 ± 0.5 1.4 ± 0.2 1.0 ± 0.2* 2.1 ± 0.6 2.0 ± 0.4 
4.6 ± 0.9 1.1 ± 0.1 1.7 ± 0.2 1.8 ± 0.1 2.1 ± 0.8 

IL-3 0.5 ± 0.1 1.1 ± 0.2 1.3 ± 0.2 1.5 ± 0.5 1.5 ± 0.2 
0.7 ± 0.2 1.1 ± 0.4 2.5 ± 1.5 1.0 ± 0.1 1.3 ± 0.4 

IL-4 2.4 ± 0.1 1.6 ± 0.1 1.3 ± 0.1* 2.4 ± 1.1 10.9 ± 6.5 
2.1 ± 0.2 1.8 ± 0.2 2.3 ± 0.5 2.8 ± 0.9 15.7 ± 18.2 

IL-5 6.2 ± 1.8 2.3 ± 1.4 1.7 ± 1.8 3.3 ± 2.4 2.8 ± 1.6 
7.0 ± 3.4 3.7 ± 2.6 5.4 ± 3.2 5.2 ± 0.3 7.0 ± 3.6 

IL-6 724.6 ± 227.9 151.0 ± 50.6 51.8 ± 4.6** 144.1 ± 114.8 68.1 ± 30.9 
502.1 ± 136.3 86.4 ± 17.7 173.9 ± 43.9 69.0 ± 13.4 118.1 ± 131.9 

IL-7 3.1 ± 0.4 2.2 ± 0.3 2.1 ± 0.4* 3.0 ± 0.4 3.3 ± 0.3 
2.8 ± 0.6 2.2 ± 0.5 2.7 ± 0.2 3.0 ± 0.1 2.6 ± 0.7 

IL-9 208.3 ± 18.8 116.3 ± 7.9 112.4 ± 10.5 153.0 ± 26.0 129.2 ± 25.2 
225.1 ± 41.3 103 ± 15.5 114.8 ± 15.9 133.2 ± 5.1 131.5 ± 20.9 

IL-10 5.1 ± 0.7 5.4 ± 0.4 5.1 ± 0.5* 6.4 ± 2.4 7.2 ± 1.0 
5.6 ± 0.5 5.1 ± 1.1 8.4 ± 1.3 6.8 ± 0.8 10.0 ± 5.1 

IL-12 p40 0.8 ± 0.0 17.9 ± 6.9 27.9 ± 6.4 21.1 ± 4.3 46.5 ± 22.9 
0.7 ± 0.1 20.4 ± 12.0 34.3 ± 13.5 18.9 ± 6.0 24.2 ± 9.5 

IL-12 p70 9.8 ± 3.0 6.8 ± 1.1 8.3 ± 1.7 8.6 ± 4.4 8.2 ± 0.9 
6.3 ± 0.6 6.6 ± 2.2 7.9 ± 0.7 4.2 ± 1.1 6.1 ± 2.9 

IL-15 16.9 ± 3.8 13.3 ± 4.3 9.0 ± 1.8** 14.8 ± 6.8 12.4 ± 1.0* 
16.1 ± 5.2 10.8 ± 2.8 17.5 ± 0.6 14.1 ± 1.1 12.3 ± 7.3 

IL-17 4.6 ± 0.5 18.0 ± 6.4* 14.9 ± 10.9 233.5 ± 208.3 206.8 ± 
43.2** 

4.5 ± 0.6 3.3 ± 1.5 29.5 ± 36.4 6.2 ± 2.4 9.3 ± 5.6 

IFNγ 10.1 ± 1.7 6.3 ± 3.3 5.2 ± 2.0** 12.0 ± 8.2 12.0 ± 4.8 
10.0 ± 1.8 8.2 ± 2.1 20.1 ± 2.6 17.4 ± 5.2 16.8 ± 3.0 

LIF 133.4 ± 11.5 99.3 ± 9.0 84.5 ± 31.8 111.2 ± 34.3 98.9 ± 12.2 
157.3 ± 28.1 92.5 ± 13.0 112.5 ± 24.1 111.7 ± 12.0 130.6 ± 32.0 

TNFα 40.2 ± 5.7 56.4 ± 10.7 34.7 ± 16.5 64.9 ± 34.6 52.3 ± 5.2 
29.8 ± 5.1 53.2 ± 8.9 71.6 ± 24.7 60.5 ± 14.7 80.3 ± 33.1 

G-CSF 

6012.0 ± 
1879.3* 624.0 ± 215.4 359.6 ± 165.8 809.4 ± 495.4 555.6 ± 161.3 

1928.9 ± 84.7 678.3 ± 120.2 1115.0 ± 
454.3 

1285.6 ± 
504.4 

2339.3 ± 
1701.6 
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WT infected (white) 

Il1r1-/- infected (grey) 
(pg cytokine/mg protein) 

Cytokine Day 1 Day 3 Day 5 Day 10 Day 14 

GM-CSF 37.3 ± 6.6* 10.2 ± 6.4 3.3 ± 2.9** 13.3 ± 10.0 5.2 ± 4.1 
25.1 ± 2.1 6.6 ± 1.7 13.7 ± 2.6 7.6 ± 2.4 10.8 ± 10.0 

M-CSF 

1898.9 ± 
490.3 807.7 ± 651.3 761.0 ± 

1010.1 92.2 ± 53.4 89.2 ± 27.4 

936.5 ± 354.7 702.6 ± 128.9 1452.5 ± 
1163.2 119.0 ± 75.2 316.8 ± 344.4 

VEGF 184.0 ± 26.9 360.1 ± 74.2 358.9 ± 56.7 365. 0 ± 
169.5 334.2 ± 201.8 

187.4 ± 52.9 281.4 ± 103.4 306.3 ± 74.8 237.4 ± 58.5 179.1 ± 115.6 
CCL2 / 
MCP-1 

343.8 ± 95.7 178.8 ± 136.0 122.3 ± 126.5 63.6 ± 30.3 66.1 ± 2.2 
200.9 ± 36.4 113.0 ± 20.6 372.0 ± 144.2 73.2 ± 12.2 86.6 ± 62.1 

CCL3 / 
MIP-1α 

233.2 ± 42.0 258.6 ± 62.1 181.7 ± 82.5 319.3 ± 216.5 297.9 ± 5.04 
324.7 ± 75.3 332.5 ± 63.9 452.4 ± 177.2 487.1 ± 145.7 750.1 ± 421.1 

CCL4 / 
MIP-1β 

274.4 ± 70.1 181.2 ± 46.7 131.1 ± 66.0 305.0 ± 235.6 366.8 ± 90.3 
472.8 ± 126.5 274.2 ± 41.4 364.1 ± 168.6 410.9 ± 131.5 760.6 ± 441.9 

CCL5 / 
RANTES 

20.9 ± 3.1 25.2 ± 2.5* 42.2 ± 9.5 106.8 ± 63.2 89.8 ± 16.7 
22.1 ± 3.2 50.7 ± 13.8 64.5 ± 14.8 92.4 ± 30.8 97.9 ± 14.4 

CCL11 / 
Eotaxin 

178.6 ± 9.3 368.9 ± 35.9 289.3 ± 29.9* 421.9 ± 63.6 516.7 ± 61.4* 
164.2 ± 24.5 342.3 ± 35.1 395.8 ± 55.2 364.1 ± 33.4 322.3 ± 53.4 

CXCL1 / 
KC 

1619.2 ± 
447.1 532.5 ± 178.8 281.7 ± 

89.1*** 602.0 ± 378.9 345.5 ± 165.4 

1029.8 ± 
165.2 353.5 ± 27.3 809.6 ± 54.5 412.4 ± 156.7 541.3 ± 2453 

CXCL2 / 
MIP-2 

5713.9 ± 
1425.8 

7811.6 ± 
3065.5 

5648.5 ± 
3960.1 

6162.9 ± 
4560.5 

1977.1 ± 
1209.6* 

6414.7 ± 
918.3 

7358.6 ± 
2161.2 

12454.7 ± 
2926.9 

12014.6 ± 
569.7 

10345.3 ± 
4458.9 

CXCL5 / 
LIX 

364.3 ± 116.3 552.4 ± 241.3 399.8 ± 346.4 475.7 ± 290.3 336.9 ± 172.4 
393.0 ± 36.7 522.6 ± 113.9 873.3 ± 227.8 712.1 ± 262.4 683.0 ± 273.0 

CXCL9 / 
MIG 

121.7 ± 91.8 162.0 ± 24.4** 152.2 ± 37.2* 763.8 ± 596.5 712.7 ± 29.8 

92.1 ± 14.1 352.1 ± 60.6 673.1 ± 229.8 1301.7 ± 
342.1 

1042.2 ± 
375.8 

CXCL10 / 
IP-10 

394.3 ± 369.1 290.8 ± 57.4 170.6 ± 
42.0*** 363.4 ± 151.8 312.1 ± 70.9 

214.8 ± 26.4 399.8 ± 42.8 594.5 ± 62.7 534.1 ± 78.2 412.8 ± 87.9 
 
Female WT and Il1r1-/- femurs were harvested at days 1, 3, 5, 10, and 14 post-infection 
with 105 S. aureus CFUs (n = 3 mice per timepoint). Cytokine data are reported as the mean 
pg cytokine/mg protein ± standard deviation, and were compared between infected WT 
and Il1r1-/- mice using multiple t-tests. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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To monitor neutrophil abundance during the course of osteomyelitis, bone marrow 

from infected and contralateral, uninfected WT and Il1r1-/- femurs at various time points 

after S. aureus infection was analyzed via flow cytometry (Figure 30A-F). Neutrophils 

were identified as CD45+CD11b+Ly6G+Ly6Clo and reported as the percent of CD45+ 

immune cells. At day 1 post-infection, WT and Il1r1-/- mice were found to have neutrophils 

comprising less than 10% of CD45+ cells in the bone marrow. By day 3 post-infection, 

Il1r1-/- mice have significantly fewer neutrophils in the infected bone marrow compared to 

WT mice (Figure 29E). Furthermore, differences between relative neutrophil abundance 

were also observed between WT and Il1r1-/- mice in the contralateral, uninfected femurs. 

Neutrophil abundance at day 5 post-infection is comparable between WT and Il1r1-/- 

genotypes, but again was significantly decreased in Il1r1-/- femurs at day 14 post-infection. 

Therefore, the data suggest that Il1r1-/- mice with S. aureus osteomyelitis have altered 

neutrophil responses, indicated by the significant decrease in relative neutrophil abundance 

at two timepoints post-infection.  
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Figure 30. Flow cytometry gating scheme for identification of neutrophils. (A-F) WT 
and Il1r1-/- mice were infected with 105 S. aureus CFUs and at days 1, 3, 5, and 14 days 
after infection, the infected and contralateral, uninfected femurs were harvested and BM 
was collected for flow cytometry. Data shown here represent the gating scheme for each 
sample at each time point, where labels on plots can be identified by SSC = side scatter, 
FSC = forward scatter, A = area, H = height, or cellular marker conjugated to a fluorophore. 
BM cells were identified (A), followed by two single-cell gates (B, C), identification of 
CD45+ cells (D), CD11b+ cells (E), and finally the neutrophil population represented in 
quadrant 3 (Q3) as Ly6G+Ly6Clo (F).  
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S. aureus promotes osteoclastogenesis and pathologic bone loss through IL-1R 

signaling 

WT mice subjected to S. aureus osteomyelitis display significant cortical bone 

destruction and reactive bone formation at the site of infection, while sustaining alterations 

in osteoclast number and trabecular bone loss in the distal femur (Figure 26A-I) [31]. 

Given the important role of IL-1R signaling in skeletal cell differentiation and function in 

vitro, we hypothesized that pathologic bone remodeling during S. aureus osteomyelitis is 

mediated in part by IL-1R signaling. To test this hypothesis, we compared cortical bone 

remodeling between WT and Il1r1-/- mice using a lower dose (105 CFUs) S. aureus 

infection. At the site of infection, Il1r1-/- mice sustained increased cortical bone loss in 

comparison to WT mice (Figure 31A and 31B). In areas adjacent to the cortical bone loss, 

Il1r1-/- mice had a dramatic increase in new bone formation, at nearly twice the volume 

formed in infected WT femurs (Figure 31C), and these results were confirmed in littermate 

controls (Figure 32A and 32B). Importantly, these data do not completely control for 

differences in bacterial burdens at the site of infection, where Il1r1-/- mice harbor higher 

bacterial burdens at day 5 post-infection with a lower inocula (Figure 28E). However, 

Il1r1-/- mice do equilibrate bacterial burdens to the same level at WT mice by day 14 post-

infection (Figure 31D).  
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Figure 31. Loss of the IL-1R enhances cortical bone loss and reactive cortical bone 
formation during S. aureus osteomyelitis. (A-J) To determine changes in bone 
remodeling and final bacterial burdens, female mice were infected with S. aureus (105 
CFUs: WT n = 10, Il1r1-/- n = 9; duplicate experiments for bone remodeling; WT n = 9, 
Il1r1-/- n = 9; duplicate experiments for CFU enumeration) or mock infected (WT n = 5, 
Il1r1-/- n = 5 for bone remodeling) with PBS. Femurs were harvested at day 14 post-
infection and scanned using the µCT50. Representative anteroposterior views of S. aureus 
infected femurs (A) and mock infected femurs (H). µCT three-dimensional analysis of 
cortical bone loss (mm3) and reactive bone formation (mm3) between S. aureus infected 
(B, C) and mock infected (I, J) WT and Il1r1-/- femurs. Bacterial burdens were quantified 
at day 14 post-infection from WT and Il1r1-/- femurs (D). (E, F) After µCT analyses, 
histologic sections of the S. aureus infected femurs were prepared and TRAP-stained. 
Slides were scanned using a Leica SCN400 Slide Scanner, with representative images 
shown taken at 0.58X (scale bars = 1 mm) (E) with the region in the black box imaged at 
4X (scale bars = 100 µm) (F), with dashed black line demarcating the separation of intact 
cortical bone (left of dashed line) and the callus (right of dashed line). (G) Tissue IA 2.0 
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software was used to image callus area of infected femurs at 20X (105 CFUs; n = 5 per 
genotype). Symbols represent individual data points from each mouse (WT = circles; Il1r1-

/- = squares), the top line of each bar represents the mean, and error bars represent standard 
deviation. Unpaired t-tests were used to compare CFU burdens, µCT analyses, and Tissue 
IA 2.0 measurements between WT and Il1r1-/- mice. ** p < 0.01, **** p < 0.0001. 
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Figure 32. Il1r1-/- mice exhibit enhanced cortical bone loss and reactive bone 
formation relative to Il1r1+/+ littermates during S. aureus osteomyelitis. (A, B) Il1r1+/+ 
and Il1r1-/- littermate female mice were infected with 106 S. aureus CFUs (Il1r1+/+ n = 5, 
Il1r1-/- n = 4,) to assess changes in cortical bone architecture. Femurs were harvested at 
day 14 post-infection and were scanned using the µCT50. (A, B) Cortical bone loss (mm3) 
(A) and reactive bone formation (mm3) (B) from infected Il1r1+/+ and Il1r1-/- femurs were 
quantified using µCT analysis. Symbols represent individual data points from each mouse 
(Il1r1+/+ = circles, Il1r1-/- = squares), the top line of each bar represents the mean, and error 
bars represent standard deviation. Unpaired t-tests were used to compare cortical bone loss 
and reactive bone formation between Il1r1+/+ and Il1r1-/- mice. * p < 0.05, ** p < 0.01. 
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Histologic analyses revealed increased callus formation in infected Il1r1-/- femurs 

and also demonstrated qualitative differences in callus composition compared to infected 

WT femurs (Figure 31E-G). In contrast to cortical bone remodeling changes during S. 

aureus infection, µCT analysis revealed no differences in cortical bone remodeling of a 

sterile bone defect at day 14 post-surgery, where mock infected WT and Il1r1-/- femurs had 

no significant differences in cortical bone measurements (Figure 31H-J). Collectively, 

these data indicate that during S. aureus osteomyelitis, Il1r1-/- mice exhibit significantly 

altered cortical bone remodeling, with increased reactive bone formation, altered callus 

architecture, and greater cortical bone loss at the site of infection. 

 To elucidate the cellular changes driving differences in bone remodeling between 

WT and Il1r1-/- mice, we next analyzed trabecular bone remodeling during osteomyelitis. 

Histomorphometric analysis of trabecular bone was performed in both S. aureus infected 

femurs and contralateral, uninfected femurs from each genotype. Histomorphometry 

revealed that the infected femurs from WT mice had significantly lower trabecular BV/TV 

than contralateral, uninfected femurs (Figure 33A). In contrast, infected femurs from Il1r1-

/- mice showed no significant differences in BV/TV in comparison to the contralateral, 

uninfected femur, suggesting that these mice were protected from infection-associated 

trabecular bone loss despite having significantly higher bacterial burdens in the regions 

encompassing the trabecular bone over time (Figure 33A; Figure 28E). To determine 

whether differences in osteoclast biology underlie the distinct trabecular bone remodeling 

parameters of WT and Il1r1-/- mice, we calculated the numbers of osteoclasts present on 

trabecular bone surfaces in both infected and contralateral, uninfected femurs. The infected 

femurs in WT mice displayed greater osteoclast numbers per bone perimeter (N.Oc/B.pm) 
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and osteoclast surface per bone surface (Oc.S/BS) compared to the contralateral, uninfected 

femurs, correlating with the infection-induced loss of trabecular bone volume (Figure 

33A-C). In contrast, the infected femurs from Il1r1-/- mice showed no increase in 

N.Oc/B.pm or Oc.S/BS when compared to the contralateral, uninfected femur (Figure 33B 

and 33C). These data suggest that S. aureus infection causes enhanced osteoclastogenesis 

in trabecular bone, which is dependent on intact IL-1R signaling and contributes to bone 

loss.  
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Figure 33. IL-1R contributes to infection-induced osteoclastogenesis during S. aureus 
osteomyelitis. (A-C) Following S. aureus infection (105 CFUs), female WT and Il1r1-/- 
infected femurs (n = 5 per genotype per infection condition) and contralateral femurs from 
infected mice (n = 4 per genotype) were harvested, decalcified, processed for sectioning in 
paraffin, and TRAP-stained for histomorphometric analyses using OsteoMeasure software. 
Histomorphometric analyses of S. aureus infected femurs and contralateral femurs from 
infected mice were quantified to calculate the trabecular bone volume/total volume 
(BV/TV) (%) (A), the number of osteoclasts per bone perimeter (N.Oc/B.pm) (1/mm) (B), 
and the osteoclast surface per bone surface (Oc.S/BS) (%) (C) in the distal femur. Symbols 
represent individual data points from each mouse (WT = circles; Il1r1-/- = squares), the top 
line of each bar represents the mean, and error bars represent standard deviation. All 
statistical comparisons used a two-way ANOVA and Fisher’s Least Significant Difference 
(LSD) test to compare differences in trabecular bone composition of infected and 
contralateral, uninfected femurs of WT and Il1r1-/- mice. * p < 0.05, ** p < 0.01, ns = not 
significant.  
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Histomorphometric analysis revealed that S. aureus infection enhances 

osteoclastogenesis and trabecular bone loss in an IL-1R-dependent manner. However, bone 

volume and remodeling are also significantly impacted by osteoblast function. In order to 

determine the contribution of osteoblasts toward altered bone homeostasis and trabecular 

bone loss during staphylococcal osteomyelitis, we measured bone mineralization in the 

trabecular bone of infected WT and Il1r1-/- mice. No differences were observed in 

mineralizing surface, bone formation rate, or mineral apposition rate between WT and 

Il1r1-/- mice (Figure 34A-C). These data indicate that IL-1R signaling does not drive 

differences in trabecular osteoblastic function during S. aureus infection, and that the 

decrease in trabecular BV/TV is not a function of decreased osteoblastic bone formation.  

 

S. aureus triggers osteoclastogenesis of RANKL-primed myeloid cells through MyD88 

and IL-1R signaling 

Staphylococcal infection causes bone loss and enhanced osteoclastogenesis in 

trabecular bone. Accordingly, we hypothesized that secreted bacterial factors might 

augment osteoclast differentiation. To test this hypothesis, we measured osteoclast 

differentiation of RANKL-primed myeloid progenitors after stimulation with S. aureus 

culture supernatant or a vehicle control. To avoid induction of cell death in myeloid cells, 

we used a S. aureus strain lacking the alpha-type PSMs, which we previously demonstrated 

are both necessary and sufficient for causing cell death when staphylococcal supernatants 

are applied to murine bone marrow-derived macrophages (BMMs) [31, 32].   
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Figure 34. WT and Il1r1-/- mice have similar bone formation rates and osteoblast 
activity in trabecular bone during S. aureus osteomyelitis. (A-C) Female mice were 
infected with 105 S. aureus CFUs (WT n = 5, Il1r1-/- n = 4), with 20 mg/kg calcein injected 
intraperitoneally on days 8 and 12 post-infection. Femurs were harvested at day 14 post-
infection, and embedded in poly(methyl methacrylate) for sectioning. Calcein incorporated 
into the trabecular bone, and single- and double-labeled fluorescent surfaces were traced 
relative to total bone surface using OsteoMeasure software. (A-C) OsteoMeasure software 
was used to calculate mineralizing surface per bone surface (MS/BS) (%) (A), bone 
formation rate per bone surface (BFR/BS) (B), and mineral apposition rate (MAR) (C) 
from WT and Il1r1-/- infected femurs. Symbols represent individual data points from each 
mouse (WT = circles, Il1r1-/- = squares), the top line of each bar represents the mean, and 
error bars represent standard deviation. Unpaired t-tests were used to compare 
measurements of osteoblast activity in vivo between infected WT and Il1r1-/- mice. ns = 
not significant. 
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As we saw in Chapter II, stimulation of RANKL-primed BMMs from WT mice 

with toxin-deficient supernatant can result in a dramatic increase in mature osteoclasts, as 

identified as TRAP+ multinucleated cells, relative to vehicle control. To determine whether 

this bacterial enhancement of osteoclastogenesis was dependent on IL-1R signaling, we 

performed similar experiments with cells isolated from immunodeficient mice. We 

discovered that Myd88-/-, Il1r1-/-, and Il1b-/- cells do not undergo S. aureus-mediated 

osteoclastogenesis to the same extent as WT cells (Figure 35A, 35B, 35D; Figure 36). In 

fact, MyD88 was completely necessary for enhanced osteoclastogenesis in response to S. 

aureus supernatants. Cells unable to make the IL-1R or IL-1β were able to undergo some 

level of S. aureus-mediated osteoclastogenesis, but had significantly fewer TRAP+ 

multinucleated cells than WT cells. Also, cells deficient in IL-1α displayed an enhanced 

ability to undergo S. aureus-mediated osteoclastogenesis, but the mechanism remains 

unclear (Figure 35C and 36). Moreover, to test whether S. aureus stimulation prior to 

osteoclast commitment could inhibit subsequent RANKL-mediated osteoclastogenesis of 

these immunodeficient cells, we stimulated BMMs with S. aureus ∆psm supernatants 

before RANKL treatment for 5 days. The loss of MyD88 signaling completed ablated the 

ability of S. aureus to inhibit RANKL-mediated osteoclastogenesis, cells deficient in the 

IL-1R or IL-1β displayed some inhibition of osteoclast differentiation, and cells deficient 

in IL-1α were able to potently inhibit RANKL-mediated osteoclast formation, with almost 

no osteoclasts observed when treated with the highest dose of S. aureus ∆psm supernatants 

(Figure 37A-E). Notably, cells unable to undergo MyD88 and IL-1R signaling are still 

able to differentiate into osteoclasts via canonical RANKL stimulation to the same extent 

(Figure 38A-D).  
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Figure 35. Enhancement of osteoclastogenesis by S. aureus supernatant is dependent 
on MyD88 and in part on IL-1R signaling pathways.  
(A-D) Osteoclast precursors were generated from Myd88-/- (A), Il1r1-/- (B), Il1a-/- (C), and 
Il1b-/- (D) primary BMMs plated at 50,000 cells per well by treating with M-CSF and 
RANKL for 2 days. After washing with PBS, the cells were stimulated with vehicle (RPMI; 
left column), ∆psm supernatant at 5% (middle column) or 25% (right column), and M-CSF. 
Cells were TRAP stained at day 6 and imaged at 10X.  
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Figure 36. MyD88 and IL-1R signaling are required for enhancement of 
osteoclastogenesis by S. aureus supernatants. 
TRAP+ multinucleated cells were quantified using OsteoMeasure software from WT, 
MyD88-/-, Il1r1-/-, Il1a-/-, and Il1b-/- cells (n = 3 wells per genotype), representative of 
triplicate experiments. A two-way ANOVA was used to compare genotype to WT and 
dosage effects of S. aureus ∆psm supernatant, with Dunnett’s multiple comparisons test. * 
p < 0.05, † p < 0.001, # p < 0.0001. 
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Figure 37. S. aureus stimulation of BMMs prior to RANKL treatment inhibits 
osteoclast differentiation and is dependent on MyD88 and in part on IL-1R signaling.  
(A-E) Myd88-/- (A), Il1r1-/- (B), Il1a-/- (C), and Il1b-/- (D) BMMs were plated at 50,000 
cells per well and treated with M-CSF and vehicle (RPMI; left column) or ∆psm 
supernatant at 5% (middle column) or 25% (right column). After 24 hours of stimulation, 
cells were washed with PBS and fresh media was replenished with M-CSF and 35 ng/mL 
RANKL. At day 6 in culture, cells were TRAP stained and imaged at 10X. TRAP+ 
multinucleated cells were quantified, and the average vehicle-treated counts from each 
genotype was used to calculate the percent of average RANKL-derived osteoclasts (E). 
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Figure 38. WT, Myd88-/-, and Il1r1-/- cells undergo RANKL-mediated 
osteoclastogenesis at similar levels. (A-D) WT, Myd88-/-, and Il1r1-/- BMMs were plated 
at 50,000 cells per well in a 96-well plate. Cell cultures were supplemented with 35 ng/mL 
RANKL and 1:20 CMG14-12 supernatant as an M-CSF source. Media and reagents were 
replenished on days 4 and 6 in culture (i.e. RANKL stimulation was continued for the entire 
experiment), and cells were fixed and stained for TRAP expression on day 7. (A-D) Cells 
were imaged at 10X (A, C) and TRAP+ multinucleated cells were counted using the 
OsteoMeasure software (B, D). Symbols represent individual well counts from (WT = 
circles, Myd88-/- and Il1r1-/- = squares), the top of each bar represents the mean, and error 
bars represent standard deviation. Unpaired t-tests were used to compare cell counts 
between WT and Myd88-/- or Il1r1-/- cells. ns = not significant. 
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We next tested the role of IL-1 blockade on osteoclastogenesis using WT or Il1r1-

/- cells, with or without IL-1R antagonist (IL-1ra) treatment. In WT cells, IL-1ra treatment 

during RANKL pre-commitment and before S. aureus stimulation led to 50% fewer 

osteoclasts (Figure 39). This decline in S. aureus-enhanced osteoclastogenesis results in 

differentiation to a similar level as is observed in Il1r1-/- osteoclast precursors (Figure 39). 

Moreover, IL-1ra treatment during ∆psm supernatant treatment did not affect the number 

of TRAP+ multinucleated cells, as compared to the BSA vehicle controls given at the same 

time (Figure 39). In order to verify that IL-1ra treatment worked as expected in WT cells, 

we treated RANKL-committed osteoclast precursors with vehicle, IL-1β, or a combination 

of IL-1β and IL-1ra. In this assay we confirmed that IL-1β induced TRAP+ multinucleated 

cells from osteoclast precursors compared to vehicle, and also that IL-1ra treatment 

blocked this enhancement (Figure 40A-C). Collectively, these observations indicate that 

MyD88 and the IL-1R are required for S. aureus-mediated enhancement of 

osteoclastogenesis. Therefore, although MyD88 and IL-1R are critical mediators of the 

anti-staphylococcal immune response, S. aureus infection also elicits osteoclast-mediated 

bone loss through MyD88 and IL-1R signaling pathways.  
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Figure 39. IL-1R signaling drives S. aureus enhancement of osteoclast differentiation 
in vitro. WT and Il1r1-/- enriched BMMs were stimulated with 35 ng/mL exogenous 
RANKL for 2 days before stimulating with ∆psm supernatants for four days. In order to 
determine the contribution of IL-1 signaling in this assay, vehicle (0.1% low endotoxin 
BSA) or recombinant murine IL-1ra (1 µg/mL) were added during the 2 days of RANKL 
pre-commitment (BSA, black bars; IL-1ra, grey bars) or during the 4 days of ∆psm 
supernatant stimulation (indicated by + under each bar). The top line of each bar represents 
the mean and error bars represent standard deviation. A three-way ANOVA with Tukey’s 
multiple comparisons test compared the effects of genotype, IL-1ra treatment during 
RANKL pre-commitment, and IL-1ra treatment during ∆psm supernatant stimulation. 
Statistical comparisons to WT cells pre-committed with RANKL + BSA and ∆psm 
supernatant + BSA (first black bar from the left) are reported as @ p < 0.05, or compared 
to WT cells pre-committed with RANKL + BSA and ∆psm supernatant + IL-1ra (second 
black bar from the left) are reported as § p < 0.05. Comparisons between all RANKL + IL-
1ra pre-commitment conditions (grey bars) were non-significant 
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Figure 40. Osteoclast differentiation from precursor cells is promoted by IL-1β, and 
this can be blocked with IL-1ra. (A-C) WT osteoclast precursors were generated with 
M-CSF and RANKL for 2 days in culture, washed with PBS, after which fresh media and 
M-CSF were replenished with BSA vehicle (A), 10 ng/mL recombinant murine IL-1β (B), 
or simultaneously treated with 10 ng/mL recombinant murine IL-1β and 1 µg/mL IL-1ra 
(C). Cells were TRAP stained at day 6 and imaged at 10X. 
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Discussion 

Bacterial osteomyelitis is a debilitating invasive infection of bone that is 

accompanied by significant damage to skeletal tissues and the surrounding vasculature. 

Using a model of post-traumatic S. aureus osteomyelitis, we have detailed dramatic 

architectural and cellular bone remodeling alterations that accompany S. aureus infection. 

In prior research, we determined that some of the cortical bone loss observed during 

infection is due to psm- and agr-dependent mechanisms [31]. This observation is in 

keeping with the findings of Gillaspy et al., who used a rabbit model of osteomyelitis and 

observed significantly less bone pathology when infecting with an agr mutant [80]. 

However, the observation of residual bone pathology in mice infected with an agr mutant 

in our osteomyelitis model led us to postulate that host responses to bacterial infection may 

also contribute to bone loss. The focus of this work was therefore to delineate critical host 

responses to staphylococci in bone and to elucidate how an innate immune response might 

impact bone homeostasis.  

In this study, we focused primarily on MyD88 and IL-1R signaling cascades given 

their established roles in innate immune responses against S. aureus in other models of 

infection [76, 77, 199, 264-269], in concert with the known effects of these signaling 

pathways on bone cell function [136, 140, 242, 261]. Additionally, patients with single 

nucleotide polymorphisms (SNPs) in Myd88, Il1a, and Il1r1 genes have an increased risk 

of osteomyelitis and inflammatory joint disorders, further underscoring the importance of 

these immune pathways in skeletal homeostasis [102, 107, 108, 285-287].  

A robust innate immune response was observed in S. aureus infected femurs, with 

abundant levels of pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and TNFα detectable as 
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soon as one day after infection, similar to what has been reported in other musculoskeletal 

infection models [60, 180]. Many cytokines with increased abundance in infected versus 

mock infected femurs are encoded by IL-1 target genes, including IL-1α, IL-1β, IL-6, 

MCP-1 (CCL2), and the murine IL-8 homologs, KC (CXCL1) and MIP-2 (CXCL2) [288, 

289]. In turn, IL-1 cytokines and IL-6 also promote the release of IL-17 and subsequent G-

CSF production, both of which were highly abundant in S. aureus infected femurs [290]. 

These data suggest a role for IL-1 signaling in orchestrating downstream inflammatory 

responses to pathogens in bone. Growth factors and chemokines that support myeloid cell 

influx and expansion after infection, including M-CSF, G-CSF, MCP-1 (CCL2), MIP-1α 

(CCL3), MIP-1β (CCL4), KC (CXCL1) and MIP-2 (CXCL2), are also highly abundant in 

S. aureus infected femurs relative to mock infected femurs. This observation parallels other 

reports demonstrating increased levels of myeloid chemokines from osteoblasts after S. 

aureus infection, and a role of myeloid chemokines and growth factors in supporting 

osteoclastogenic bone degradation by promoting expansion of osteoclast precursor cells 

[291, 292]. Moreover, many of these chemokines have been shown to coordinate neutrophil 

responses during acute inflammation [293]. These data partially overlap with early 

cytokine signatures measured in a pin prosthetic implant model of S. aureus biofilm 

infection, with IL-1β, IL-6, TNFα, IL-12p70, and IL-17 detected in infected tissues. 

However local inflammation during biofilm infection was also characterized by increased 

abundance of IL-2 [294], which was not significantly elevated in our infection model. 

However, the development of a biofilm has been shown to attenuate the host pro-

inflammatory response in a catheter S. aureus biofilm model, as measured by decreased 

levels of IL-1β, TNFα, CXCL2, and CCL2 [172]. Future studies should continue to 
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delineate how implant-associated biofilms skew the immune response during 

osteomyelitis.  

The early increase in cardinal pro-inflammatory cytokines after S. aureus infection 

indicates that the post-traumatic model of osteomyelitis used in this study is most 

representative of acute osteomyelitis. However, the bone pathology visualized by day 14 

post-infection has clear features suggestive of chronic infection, including significant 

reactive bone formation and the presence of sequestra [295]. Consistent with a possible 

shift from acute to chronic infection, we observed production of IFNγ and IL-17 at later 

time points post-infection, which could represent S. aureus-specific adaptive Th1/Th17 

responses [294]. Delineating the cytokine milieu at later time points after infection will 

help to more comprehensively characterize the inflammation accompanying osteomyelitis 

in this model. 

Based on the robust early inflammatory responses to S. aureus in bone coupled with 

the detection of multiple IL-1 associated cytokines, we focused on the role of MyD88 and 

IL-1R signaling in coordinating antibacterial defenses during osteomyelitis. Furthermore, 

since several cardinal pro-inflammatory cytokines, including IL-1, have direct effects on 

skeletal cell differentiation and function, we hypothesized that MyD88 and IL-1R-

dependent signaling pathways would be necessary for control of bacterial proliferation 

during osteomyelitis, but that these same pathways might also contribute to pathogen-

induced bone loss through actions on skeletal cells. To determine the contribution of 

MyD88 and IL-1R signaling towards antibacterial immune responses during S. aureus 

osteomyelitis, we infected mice globally deficient in MyD88, IL-1R, IL-1α, and IL-1β and 

measured bacterial burdens and morbidity. We found that MyD88 and IL-1R signaling are 
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required to control bacterial burdens in bone in mice infected with a high dose inoculum. 

Furthermore, even with a lower S. aureus inoculum, a timecourse experiment revealed that 

Il1r1-/- mice had a delay in ability to control bacterial burdens. In order to determine the 

relative contributions of IL-1 isoforms to IL-1R-mediated antibacterial immunity in bone, 

we infected Il1a-/- or Il1b-/- mice and compared bacterial burdens to those observed in WT 

and Il1r1-/- mice. Mice lacking either IL-1α or IL-1β sustained bacterial burdens not 

statistically different from bacterial burdens harbored by WT mice, but Il1a-/- and Il1b-/- 

mice both harbored significantly less bacterial CFUs than Il1r1-/- mice. These data suggest 

that the loss of both cytokines may be required to recapitulate the enhanced bacterial 

burdens in Il1r1-/- mice. Moreover, the extensive repertoire of innate receptors that signal 

through MyD88 (e.g. TLRs) likely promote a more effective antibacterial response to S. 

aureus, as MyD88 signaling is critical to prevent disseminated disease and death during 

osteomyelitis. 

Our findings that MyD88 and IL-1R mediate antibacterial protection in bone are 

consistent with data from previous studies demonstrating that Myd88-/- and Il1r1-/- mice 

have enhanced susceptibility to bacterial infection in various experimental models [77, 78, 

184, 278]. Several studies have also reported that IL-1R signaling contributes to the early 

influx of neutrophils and abscess formation to protect against S. aureus cutaneous and 

prosthetic joint infection [76, 77, 199, 207]. Elevated levels of GM-CSF, G-CSF, and 

CXCL1 in WT mice suggest that neutrophil influx and/or expansion is also a critical early 

response to S. aureus in bone to prevent continued bacterial replication and spread. 

Interestingly, the neutrophilic cytokine response was delayed in Il1r1-/- mice in response 

to S. aureus, which in congruent with other Il1r1-/- mouse models in response to 
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inflammatory stimuli [272-274]. Disorganized abscess architecture in Il1r1-/- infected 

femurs may indicate improper neutrophil mobilization without IL-1R signaling as an 

underlying mechanism for the inability to control bacterial burdens. Furthermore, we have 

previously shown that neutrophil depletion leads to significantly increased bacterial 

burdens during S. aureus osteomyelitis [32]. Here, we determined that relative neutrophil 

abundance was lower in Il1r1-/- mice at early and late time points in the infected femurs, 

suggesting that Il1r1-/- mice have altered systemic neutrophil responses that may correlate 

with alterations in G-CSF and GM-CSF data. Lower amounts of neutrophils in both the 

infected and contralateral, uninfected femurs of Il1r1-/- mice relative to WT mice support 

prior observations that Il1r1-/- mice have a defect in granulopoiesis [272-274]. Together 

these reports detail the importance of IL-1R signaling to protect against S. aureus bone 

infections by coordinating an effective anti-staphylococcal neutrophil response. 

The inability of Myd88-/- and Il1r1-/- mice to mount appropriate anti-staphylococcal 

immune responses and the characteristic differences in bone remodeling between WT and 

Il1r1-/- mice led us to confirm these phenotypes with littermate controls bred 

heterozygously. Contradictory reports have detailed either no difference in bone mass of 

Il1r1-/- mice [296], low bone mass in Il1r1-/- mice [297], or greater bone mass in Il1r1-/- 

mice [139, 298] when compared to WT comparators. These studies used various WT 

comparators (129/J, 129/Sv, BALB/cA, C57BL/6), and also varied with respect to the 

assessment of mouse age and gender. Additionally, Myd88-/- mice have altered intestinal 

barrier function and differences in the microbiome, which can lead to differences in 

immune function and bone mass [75, 279, 281-284]. Therefore, breeding of heterozygous 

colonies allowed us to reduce the confounding influence of mouse genotype and 
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microbiome effects to confirm the importance of MyD88 and IL-1R signaling in 

antibacterial responses and bone remodeling.  

To investigate the mechanisms by which S. aureus alters bone homeostasis to incite 

bone destruction and reactive bone formation, we measured cortical and trabecular changes 

in bone architecture via µCT, quantified changes in skeletal cell function and activity in 

vivo using standard bone histomorphometry, and cultured skeletal cells in vitro to 

determine how S. aureus influences skeletal cell differentiation. These data reveal that S. 

aureus osteomyelitis induces changes in bone turnover both locally at the inoculation site, 

as well as in more distal areas not grossly impacted by abscess formation, leading to the 

significant loss of cortical and trabecular bone. Il1r1-/- mice exhibited more dramatic 

cortical bone changes, which may be due to differences in bone remodeling processes 

between WT and Il1r1-/- mice, the fact that Il1r1-/- mice harbor increased bacterial burdens 

over the duration of infection, or a combination of these factors. Previous studies have 

shown that the loss of IL-1R and MyD88 signaling enhances healing of sterile bone defects 

[299], which may explain the enhanced volume of reactive callus formed on the cortical 

bone of Il1r1-/- mice in our findings. Although, we did not observe significant differences 

in osteoblast-mediated bone parameters in trabecular bone, it is possible that there are 

significant differences in osteoblast or pre-osteoblast differentiation and function in healing 

cortical bone (callus).  

Trabecular bone is the major site of homeostatic bone remodeling [277], and bone 

loss here is thought to be multifactorial with potent contributions from inflammation, 

altered skeletal cell differentiation, and direct interaction with bacterial cells. With respect 

to the latter mechanisms, we detected viable S. aureus in the regions of the femur 
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encompassing trabecular bone throughout the course of infection. S. aureus infection 

enhanced the number of osteoclasts as well as the actively resorbing trabecular bone 

surface during osteomyelitis in WT mice, thereby corroborating previous observations of 

enhanced osteoclast surface from S. aureus infected human bone biopsies [300]. This may 

reflect, in part, direct interactions with S. aureus protein A which induces 

osteoclastogenesis through TNFR1 and EGFR [40]. However, other bacterial factors that 

directly enhance osteoclastogenesis in vivo remain to be determined. In contrast, Il1r1-/- 

mice were protected from enhanced osteoclastogenesis and trabecular bone loss. 

Excitingly, although Il1r1-/- mice harbored higher bacterial burdens throughout the course 

of infection, they did not exhibit trabecular bone loss or increased osteoclastogenesis 

relative to contralateral, uninfected femurs. Taken together, these in vivo bone remodeling 

data indicate that S. aureus osteomyelitis enhances osteoclastogenesis and triggers 

trabecular bone loss in WT mice, mainly through IL-1R-dependent effects on osteoclasts.  

In vitro osteoclast differentiation assays further supported the observation of 

increased osteoclastogenesis in response to S. aureus in vivo, as staphylococcal 

supernatants significantly enhanced osteoclast formation from RANKL-primed WT 

precursor cells. These data corroborate other reports demonstrating that infection of host 

cells in vitro with live S. aureus enhances osteoclastogenesis and bone resorbing activity 

[241], and our in vivo data now provide evidence that this enhanced osteoclastogenesis 

translates to bone loss during infection. Mechanistically, genetic deletion of Myd88, Il1r1, 

and Il1b and molecular inhibition of IL-1R signaling were found to confer resistance to S. 

aureus-enhanced osteoclastogenesis. Consistent with previously published reports, 

endogenous IL-1 has been described to promote osteoclastogenesis in vitro through 
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synergistic signaling of the IL-1 and RANK receptors in the absence of infection [301]. 

Canonical osteoclast differentiation is initiated by RANK receptor signaling to activate the 

transcription factors NFATc1 and cFos, which in turn increase IL-1R expression. As we 

and others have shown, this allows IL-1 to signal osteoclast precursors to potentiate 

osteoclast formation by activating osteoclast-specific genes, and IL-1 has been reported to 

enhance “pathologically activated osteoclasts” that favor bone loss [136, 139, 140, 143, 

242, 261, 301]. In the context of infection, S. aureus and specific staphylococcal toxins 

have been found to stimulate the production of IL-1 cytokines [302-304]. Moreover, IL-1 

cytokines have been described to promote osteoclastogenesis in vitro and lead to bone 

destruction in murine models of rheumatoid arthritis and autoinflammatory disorders [140, 

236, 242, 305, 306]. Therefore, these data are consistent with other observations and 

suggest that IL-1 signals onto osteoclast precursors to enhance osteoclastogenesis and 

trabecular bone resorption during infection. However, residual osteoclast formation 

observed in Il1r1-/- cells suggests that while MyD88 is required for osteoclastogenesis in 

response to staphylococcal supernatant, there are both IL-1R-dependent and independent 

mechanisms involved. These in vitro studies support our findings that a major driver of 

bone loss during S. aureus osteomyelitis is coordinated by IL-1R-mediated osteoclast 

enhancement. 

Data presented in this chapter highlight MyD88 and IL-1R signaling as critical 

pathways supporting anti-staphylococcal immunity in bone, but also implicate these 

signaling cascades in promoting bone loss during osteomyelitis. There are a few limitations 

of the experimental approach outlined in this study. We used globally deficient knockout 

mice to elucidate how MyD88-dependent IL-1R signaling impacts bone homeostasis and 
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anti-staphylococcal immunity. In certain S. aureus infection models, TLR2 and TLR9 have 

been shown to contribute to anti-staphylococcal immunity [188, 264, 278]. Given that the 

adapter protein MyD88 is necessary to relay signals from other upstream receptors 

including TLRs, Chapter IV will explore the relative contributions of other MyD88-

dependent receptors in the pathogenesis of osteomyelitis. In vitro osteoclastogenesis assays 

imply that other MyD88-dependent receptors can sense and respond to components of S. 

aureus in culture to enhance osteoclastogenesis. Accordingly, osteoblast and osteoclast 

lineage cells have been shown to be activated in vitro through TLRs and IL-1R signaling 

to favor bone resorption [51, 55, 307]. During staphylococcal osteomyelitis, it remains 

unclear how much pathogen-induced bone loss occurs as result of direct osteoclast 

stimulation versus indirect perturbations of bone homeostasis that involve osteoblasts. This 

could be tested using MyD88 skeletal cell lineage specific knockout mice. Furthermore, 

the IL-1R-expressing target cells that stimulate anti-staphylococcal immunity and the 

source and isoform of IL-1 that promotes bone loss remain unclear. 

Collectively, this chapter details the paradoxical roles of innate immune signaling 

pathways in the pathogenesis of osteomyelitis. Although MyD88 and IL-1R signaling elicit 

antibacterial responses during bone infection to protect against bacterial proliferation, 

dissemination, and systemic disease, they also contribute to host-mediated bone loss. Our 

findings also highlight a specific MyD88- and IL-1R-dependent mechanism of osteoclast 

enhancement, thereby uncovering a new mechanism for bone loss during S. aureus 

osteomyelitis.  
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CHAPTER IV 
 

THE CONTRIBUTION OF TLR2 AND TLR9 TO  

ANTIBACTERIAL IMMUNITY AND OSTEOCLAST  

FORMATION DURING S. AUREUS OSTEOMYELITIS  

 
Introduction 

 
Many disease states significantly alter bone homeostasis and lead to bone loss by 

perturbing the equilibrium between osteoblasts that deposit new bone and osteoclasts that 

resorb bone [180, 235, 237]. Bone loss occurs when osteoclast differentiation is favored 

leading to excessive bone resorption [180], which can be seen during systemic 

inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease 

[237], as well as locally due to periodontal disease and joint inflammation [56, 235, 236]. 

As discussed in Chapter III, dramatic local inflammation occurs subsequent to the 

establishment of S. aureus osteomyelitis, and this inflammation causes bone loss [31, 308]. 

S. aureus contains conserved molecular patterns that are recognized by PRRs to initiate 

innate immune responses during infection. Skeletal cells express PRRs, although their 

contribution to changes in bone physiology and pathogen clearance have not been defined 

during osteomyelitis.  

Though RANKL-dependent osteoclastogenesis is well defined as the canonical 

osteoclast differentiation pathway, immunologic crosstalk between other signaling 

pathways and transcription factors has been shown to promote osteoclastogenesis [234, 

253]. Transcription factor activity and proinflammatory cytokine production downstream 

of PRRs have been implicated as potential mechanisms for non-canonical (RANKL-
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independent) osteoclast differentiation, such as TNFa and IL-1b, as we have corroborated 

in Chapters II and III [51, 53, 57, 58, 144, 246, 253, 254]. Specifically, RANKL signaling 

on myeloid cells induces signaling cascades through TRAF6, NIK, IKK, p38, ERK, and 

JNK, activating non-canonical and canonical NFκB, AP-1, MITF, and NFATc1 

transcription factors [247]. These differentiation pathways overlap with immune-mediated 

signaling and provide potential for crosstalk downstream of immune activation. In addition 

to the IL-1R, many TLRs (e.g., 1, 2, 6, 9) are upstream of TRAF6 and MyD88 and have 

been implicated in the anti-staphylococcal immune response [45]. Extracellular TLR1/2 

and TLR2/6 heterodimers engage S. aureus lipoproteins [181, 182]. Additionally, S. aureus 

can stimulate endosomal TLR9 during bacterial replication following internalization into 

cells [183]. Downstream of TLR2 and TLR9, S. aureus activates signaling factors TRAF6, 

NIK, IKK and NFκB [61], all of which are also necessary during osteoclast differentiation.  

Crosstalk between RANK receptor signaling and these immune pathways likely 

cause perturbations in osteoclastogenesis due to overlapping TRAF6 activation (Figure 

41). TRAF6 overexpression enhances osteoclastogenesis from precursor cells [254], but 

depending on the skeletal cell culture system, PRR ligation has variable outcomes. Our 

findings in Chapter III suggest that MyD88 plays a role in mediating S. aureus-

enhancement and inhibition of osteoclastogenesis. These findings are supported by studies 

showing that PRR agonists can inhibit RANKL-naïve myeloid cells from subsequently 

becoming osteoclasts [51, 248, 250]. However, osteoclast differentiation is promoted if 

PRRs are activated on RANKL-committed osteoclast precursors [25, 51, 236, 240]. As we 

and other have shown, collectively these observations indicate that the effect of PRR 

ligation on osteoclast differentiation is complex, but once cells are primed with RANKL 
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PRR signaling appears to enhance osteoclastogenesis. However, the contribution of 

individual innate immune receptors to infection-associated osteoclastogenesis has not been 

studied in the context of S. aureus osteomyelitis. 
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Figure 41. Osteo-immunologic crosstalk between RANK and MyD88-dependent 
receptors.  
In a simplified schematic, osteoclastogenic signals through c-FMS, a co-stimulatory Ig-
like receptor (OSCAR, TREM2), and RANK lead to cooperation between Syk kinase and 
TRAF6-mediated signaling to activate phospholipase C (PLC)-γ, cytoplasmic mobilization 
of calcium, and eventually activation of the canonical osteoclast transcription factor, 
NFATc1. However, TRAF6 signaling also occurs downstream of TLR and IL-1R family 
members through MyD88. Therefore, in the context of c-FMS and co-stimulatory 
receptors, either RANK or other MyD88-dependent receptors could lead to TRAF6 and 
transcription factors necessary for osteoclastogenesis. It has been established that RANK 
signaling (shown by dotted arrows) must first be activated to allow MyD88-dependent 
enhancement of osteoclast differentiation. Thus, the question remains, what does TRAF6 
activate downstream of MyD88 (indicated by 3 black arrows to the left of the red question 
mark). In the nucleus, transcription factors may work together to induce osteoclast-specific 
genes such as Ctsk (cathepsin K), Acp5 (tartrate-resistant acid phosphatase), Ctr (calcitonin 
receptor), and Dcst2 (DC-STAMP), among others.  
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We speculate that innate recognition of PAMPs significantly influences 

physiologic bone remodeling and that skeletal cells sense and respond to both pathogenic 

microorganisms and the host microbiota. In support of this hypothesis, C3H/HeJ mice 

defective in TLR4 signaling have greater cortical thickness than C57BL/6 mice, and 

C3H/HeJ osteoblasts have a decreased RANKL response to LPS [309, 310]. These data 

suggest that some level of innate sensing is likely a normal part of homeostatic bone 

remodeling. However, the direct influence of PRRs or innate receptors on skeletal cells 

remains to be elucidated.  

In this chapter, we explore whether or not the direct inoculation of S. aureus into 

the bone and absence of PRR signaling affect bone remodeling and immunity in the context 

of S. aureus osteomyelitis. As bone homeostasis is an equilibrium between both osteoblast 

and osteoclast lineage cells, we also begin to investigate how PRR sensing of S. aureus 

affects osteoblasts as well. Based on this background information, we hypothesize that 

skeletal cells can sense and respond to innate immune stimuli to influence cytokine 

responses and osteoclast differentiation. To test this hypothesis, we investigate how TLR2 

and TLR9 influence S. aureus-altered osteoclastogenesis in vitro, as well as antibacterial 

immunity and bone remodeling in a murine model of S. aureus osteomyelitis.   

 

Materials and methods 

 
Ethics section 

All experiments involving animals were reviewed and approved by the Institutional 

Animal Care and Use Committee at Vanderbilt University Medical Center on the animal 

protocols M12059 and M1800055. All experiments were performed according to NIH 
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guidelines, the Animal Welfare Act, and US Federal law. The murine model of 

osteomyelitis required inhalational anesthesia with isoflurane (1–5%). Post-operative 

analgesia (buprenorphine 0.5–0.1 mg/kg) was provided pre-operatively and every 8–12 

hours for 48 hours post-infection. Mice were euthanized by CO2 asphyxiation with 

secondary confirmation by cervical dislocation and observation of heart rate and breathing. 

 

Bacterial strains and growth conditions  

The toxin-deficient strain LAC∆psmα1-4 (∆psm) was described previously and 

used for in vitro assays to prevent cytotoxicity in culture [31, 244]. To distinguish 

differences between toxin-induced and TLR-mediated bone remodeling, we infected a 

subset of mice with an agr deficient S. aureus strain. LAC∆agr (∆agr) was described 

previously and induced only 50% of the bone loss compared to WT S. aureus during 

osteomyelitis [31].  All staphylococci were routinely grown on trypic soy agar (TSA) or 

shaking in tryptic soy broth (TSB) with 10 µg/mL erythromycin as needed.  

 

Preparation of bacterial supernatants  

To prepare concentrated bacterial supernatants, bacterial cells were grown 

overnight at 37°C with a 1:5 ratio of liquid media to flask size (250 mL or 1 L Erlenmeyer 

flask were used) and shaking at 180 rpm. The liquid media used for growth in this 

preparation was RPMI + 1% casamino acids. Three bacterial colonies per 50 mL of media 

were inoculated into each flask, and the flask was stoppered to create a hypoxic 

environment [32]. After 15 hours of growth, bacterial cultures were centrifuged at 8000 x 

g for 8 minutes at 4°C with a fixed angle rotor. Supernatants were pooled and filter 



 

	 153	
	

sterilized with a 0.22 µM filter. Amicon Ultra 50 mL concentration tubes were filled with 

15 mL of the filter sterilized supernatant and centrifuged at 4000 x g for 30-45 minutes at 

4°C. This was done three times in succession, decanting the filtrate each time, until the 

concentrated supernatant remaining above the filter reached 1.5 mL. Concentrated 

supernatants were then pooled, filter sterilized with a 0.22 µM filter, and aliquoted to freeze 

at -80°C for a single thaw and use.  

 

Primary cell isolation and osteoclastogenesis assays  

To obtain primary cells, 8- to 13-week old male mice were sacrificed by CO2 

asphyxiation, confirmed dead by observation, and cervically dislocated as a secondary 

method of euthanasia. Femurs from WT C57BL/6 mice were extracted and the muscle 

surrounding the femur was removed. Femurs were stored in PBS on ice until ready for 

skeletal cell isolation. To isolate whole bone marrow (WBM), the epiphyses (end) of 

femurs were cut off and discarded. To collect bone marrow cold, αMEM was flushed 

through the medullary cavity into a tube using a 27-gauge needle and 10 mL Luer-Lock 

syringe. Cells were pelleted at 1500 rpm for 5 minutes, and incubated for 10 minutes at 

room temperature in ACK Lysing Buffer. The reaction was quenched with 10 mL PBS, 

and cells were pelleted, counted, and either used in cell culture or frozen for future use.  

WBM was cultured in DMEM supplemented with 10% FBS and 1X P/S, and was 

either used as a diverse cell population as isolated or used to enrich for bone marrow 

macrophages (BMMs) by plating between 8-13x106 cells per 10 cm dish in media 

supplemented with 100 ng/mL recombinant murine M-CSF for 4 days. After 4 days in 
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culture, enriched BMMs were scraped into a single cell suspension to plate for use or to 

freeze down for later use.  

To isolate primary osteoblasts, the diaphysis (flushed of bone marrow) was cut 

lengthwise into strips, and then cut crosswise into small fragments. The minced bone tissue 

was washed three times in PBS by successive centrifugations at 1500 rpm for 5 minutes. 

Digestion media contains 20 mg of type II collagenase (Worthington Biochemical 

Corporation, Lakewood, NJ, #LS004176), and a final concentration of 0.01% 

Trypsin/EDTA in PBS. Bone fragments were incubated in 2 mL digestion media at 37°C 

for 45 minutes two times, and then washed three more times in PBS. Digested bone 

fragments were then added to a 10 cm dish with αMEM, 10% FBS, and 1X P/S. 

Importantly, only half of the media was replaced every 2-3 days to allow for cell-derived 

growth factors to remain in the media. Over time in culture, osteoblastic cells migrate out 

of the bone fragments. Between 10 and 14 days, cells are approximately 50-80% confluent. 

At this time bone fragments were discarded, and cells were trypsinized, plated for use, or 

frozen. All culture media was sterilized through a 0.22 µM filter, all FBS was heat-killed, 

and all primary cells were frozen in 90% FBS, 10% DMSO. 

Osteoclast precursors were derived from enriched BMMs by treatment with 1:20 

CMG14-12 supernatant (equivalent to 20 ng/mL recombinant murine M-CSF activity) and 

35 ng/mL RANKL for 2 days [28]. Osteoclast precursors were stimulated with S. aureus 

supernatants for 4 days, or BMMs were stimulated with S. aureus supernatants for 24 hours 

before stimulation with RANKL for 5 days. All primary cells had continuous M-CSF 

treatment. On day 6 in culture, all RPMI- and S. aureus-stimulated osteoclastogenesis 

assays were fixed with a 4% formaldehyde and 0.05% Triton X-100 solution in PBS (10 
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minutes) and 1:1 acetone:ethanol (1 minute), before TRAP staining with reagents from the 

Acid Phosphatase, Leukocyte (TRAP) Kit (Sigma, Saint Louis, MO, 378A). TRAP+ 

multinucleated cells were counted manually at 10X, with the assistance of OsteoMeasure 

software (OsteoMetrics, Inc., Decatur, GA) or by taking serial images of the entire well 

(18 total) and using the FIJI Cell Counter Plugin. 

 

Post-traumatic osteomyelitis infection  

The murine model of osteomyelitis was performed as described previously [31, 32]. 

C57BL/6J (Stock #: 000664) and Tlr2-/- (Stock #: 004650) mice were purchased through 

The Jackson Laboratory. Tlr9-/- mice were generated as described [311]. Mice were bred 

in house, which may account for mismatched numbers of animals in each replicate. The 

USA300 type S. aureus LAC clinical isolate or ∆agr was sub-cultured and prepared for 

infection inocula using OD600 to target a concentration of approximately 1x106 CFUs in 2 

µL of PBS. For some infections, the inoculum was diluted 1:10 to provide a dose of 1x105 

CFUs. Osteomyelitis was induced in 7- to 8-week old female mice, following the 

introduction of a cortical bone defect using a 21G needle to reveal the medullary canal, 

into which 2 µL of bacterial suspension or PBS (mock-infection) was injected into the bone 

marrow cavity. Muscle fascia and skin were sutured and mice were given buprenorphine 

every 12 hours for 48 hours, with daily monitoring until the experimental end point. 

 

CFU enumeration  

At various time points throughout infection, tissues were harvested and 

homogenized using a BulletBlender and NAVY lysis tubes (Next Advance, Inc., Averill 
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Park, NY) at 4°C. Femurs were homogenized in CelLytic Buffer MT Cell Lysis Reagent 

(Sigma, Saint Louis, MO) to specifically lyse mammalian cells, and organs (liver, kidneys) 

were homogenized in PBS. Femur and organ homogenates were vortexed, serially diluted 

in PBS, and plated on TSA for bacterial enumeration. Following homogenization, femurs 

lysed in CellLytic Buffer were centrifuged at 4000 x g for 5 minutes to remove debris and 

the lysate was stored at -80°C for subsequent analysis.  

 

Micro-computed tomography (µCT) of cortical and trabecular bone 

Femurs were harvested 14 days post-infection and fixed for 48 hours in neutral 

buffered formalin at 4°C. Bones were analyzed using the Scanco Medical µCT50 and µCT 

Tomography V6.3-4 software (Scanco USA, Inc., Wayne, PA). Each scan included the 

diaphysis and distal epiphysis of each femur at 10 µm resolution (10mm, 10.0µm, 70kV, 

200µA), resulting in 1088 slices for analysis and excluding the proximal epiphysis. Three-

dimensional volumetric analyses were conducted by manually contouring transverse image 

slices in the region of interest. The diaphysis of each femur was comprised of 818 image 

slices. These image slices were used to quantify bone destruction and bone formation 

surrounding the cortical bone inoculation site. Trabecular bone measurements were 

obtained in the distal femur by advancing proximally past the growth plate 30 slices and 

101 slices were manually contoured to include trabeculae and exclude the cortical bone, to 

measure trabecular bone volume/total volume (%). 

 

Bone histology and histomorphometric analysis of trabecular bone 
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Following µCT data acquisition, fixed bones were dehydrated in 70% ethanol and 

decalcified for three days in 20% EDTA at 4°C. Decalcified bones were processed and 

embedded in paraffin and sectioned at 4µm thickness through the infectious nidus and bone 

marrow cavity using a Leica RM2255 microtome (Leica Biosystems, Buffalo Grove, IL). 

Sectioned femurs were stained with a modified hematoxylin and eosin (H&E) that included 

Orange G and Phloxine for enhanced bone contrast, tartrate-resistant acid phosphatase 

(TRAP) stain with hematoxylin counterstain. The region of interest in the distal femur 

included trabecular bone proximal to the growth plate. To quantify osteoclast number per 

bone perimeter in the distal femur, TRAP-stained histologic sections were analyzed using 

OsteoMeasure software (OsteoMetrics, Inc., Decatur, GA) and reported per ASBMR 

standards [276].   

 

Cytokine detection via Luminex 

Osteoblast infection and supernatant collection for cytokine analysis. To determine the 

how innate immune recognition alters the osteoblastic response to S. aureus infection, we 

infected the mc3T3 osteoblast cell line, as well as WT, Myd88-/-, and Tlr2-/- primary 

osteoblasts in vitro. Osteoblasts were plated at 5,000 cells per well in a 96-well plate and 

LAC and ∆psm strains were prepared for infection. An overnight culture of each was grown 

up to stationary phase, and subcultured 1:100 the following day. After 3 hours of growth 

at 37ºC with shaking at 180 rpm, the exponential phase culture was pelleted and bacterial 

cells were resuspended in PBS. Each bacterial suspension was adjusted by OD600 to 

approximately 5x108 bacterial cells/mL. A dilution was then calculated to target a 

multiplicity of infection (MOI) of 10. 
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Two hours prior to infection, cells were washed twice with PBS, and antibiotic-free 

media (αMEM with 10% FBS) was added to the cells. Bacterial cells at an MOI of 10 were 

added to each cell monolayer. Each infection condition had triplicate conditions from 

which to harvest host cell supernatants and calculate cytotoxicity. Cells were incubated at 

37ºC and 5% CO2 for 2 hours. Cells were washed twice with PBS, and media was added 

back with antibiotics (αMEM, 10% FBS, 1X P/S, and 10 µg/mL gentamicin). The 

following day, media was collected at 22 hours post-infection and pooled from each cell 

type and infection condition and stored at -80ºC. To assess the cytotoxic effect of S. aureus 

infection of osteoblasts, media solution containing 10% Cell Titer 96 Aqueous One 

Solution was added to each well. Plates were incubated at 37ºC 5% CO2 for 2 hours at 

37ºC, 5% CO2, before reading optical density at 490 nm. Absorbance relative to PBS 

control was reported as a relative measure of viability of osteoblasts in each infection 

condition. 

Luminex analysis. Supernatants or homogenates were thawed slowly at -20ºC overnight 

and at 4ºC two hours before setting up the assay. The Milliplex Map Kit - Mouse 

Cytokine/Chemokine Magnetic Bead Panel (EMD Millipore, Billerica, MA, 

MCYTOMAG-70K-PMX32) was used per the manufacturer’s directions. Briefly, the 96-

well plate was washed, samples were centrifuged to pellet particulate matter from 

supernatant, and quality controls and standards were prepared. To each well, standard, 

quality control, or sample was added. All standards, quality controls, and samples were run 

in duplicate. Beads were sonicated and added to each well. Plate was sealed, wrapped in 

foil, and left to shake overnight at 4ºC. The following day, with the use of a magnetic base, 

wells were washed with wash buffer, incubated in detection antibodies followed by 
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streptavidin-phycoerythrin, washed, and resuspended in sheath fluid. The samples were 

run using the FLEXMAP 3DTM xPONENT software (Luminex Corporation, Austin, TX). 

G-CSF failed to generate a standard curve for osteoblast cytokine analysis and was thus 

excluded. Data was analyzed by confirming quality control values, assessing standard 

curve generation, and verifying appropriate variance (CV) values between duplicate wells.  

 

Results 

 
TLR2 and TLR9 signaling influence S. aureus-mediated osteoclastogenesis in vitro 

Other studies suggest that TRAF6 signaling alters osteoclast differentiation [254], 

and our own results show that depending on the timing and sequence of stimulation 

conditions (RANKL before S. aureus or S. aureus before RANKL), opposing cell 

differentiation phenotypes are observed. To assess what factors upstream of TRAF6 may 

be implicated in altering osteoclast differentiation, we used primary cells isolated from 

Tlr2-/- and Tlr9-/- mouse strains. To assess the roles of TLR2 and TLR9 in S. aureus-

enhanced osteoclastogenesis from pre-osteoclasts and S. aureus-driven inhibition of 

osteoclast differentiation from BMMs, we used both BMMs and pre-committed osteoclast 

precursors for these assays. Tlr2-/- cells did not undergo enhanced osteoclastogenesis in 

response to S. aureus stimulation and instead formed only TRAP+ mononuclear cells 

(Figure 42A and Figure 43), similar to what was observed in Myd88-/- cells (Chapter III). 

Tlr9-/- pre-osteoclasts differentiated into multinucleated TRAP+ cells, but to a lesser extent 

than WT pre-osteoclasts (Figure 42B and Figure 43). Similar trends were observed when 

we tested the ability of S. aureus to inhibit osteoclast differentiation from Tlr2-/- and Tlr9-

/- cells. The loss of TLR2 completely ablated the ability of S. aureus supernatants to inhibit 
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RANKL-mediated osteoclastogenesis in BMMs, whereas BMMs deficient in TLR9 still 

displayed inhibition of osteoclast differentiation upon stimulation with S. aureus 

supernatants (Figure 44A-C). These data suggest that in the myeloid lineage cells, MyD88 

and TLR2 likely mediate the mechanisms by which S. aureus alters osteoclast 

differentiation. However, Tlr9-/- cells displayed enhanced osteoclastogenesis in response to 

S. aureus stimulation, although to a lesser extent than WT cells, and some level of S. 

aureus-mediated inhibition of osteoclasts, suggesting that TLR9 recognition and signaling 

may play an intermediate role as well.   
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Figure 42. Enhancement of osteoclastogenesis by S. aureus supernatant is dependent 
on TLR2 and in part on TLR9.  
(A-B) Osteoclast precursors were generated from Tlr2-/- (A) and Tlr9-/- (B) primary BMMs 
plated at 50,000 cells per well and treated with M-CSF and RANKL for 2 days. After 
washing cells with PBS, cells were stimulated with vehicle (RPMI; left column), or ∆psm 
supernatant at 5% (middle column) or 25% (right column) and M-CSF. Cells were TRAP 
stained at day 6 and imaged at 10X.  
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Figure 43. Quantification of S. aureus-mediated osteoclastogenesis from Tlr2-/- and 
Tlr9-/- osteoclast precursors. 
TRAP+ multinucleated cells were quantified from WT, Tlr2-/-, and Tlr9-/- osteoclast 
precursor cells after stimulation with vehicle, low (5% v/v) or high (25% v/v) ∆psm 
supernatant doses (n = 3 wells per genotype) using OsteoMeasure software. Data are 
representative of triplicate experiments. A two-way ANOVA was used to compare 
genotype and dosage effects, with Dunnett’s multiple comparisons test. * p < 0.001, # p < 
0.0001. 
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Figure 44. S. aureus stimulation of BMMS prior to RANKL treatment inhibits 
osteoclastogenesis and is dependent on TLR and in part on TLR9.  
(A-C) Tlr2-/- (A) and Tlr9-/- (B) BMMs were plated at 50,000 cells per well and treated 
with M-CSF and vehicle (RPMI; left column) or ∆psm supernatant at 5% (middle column) 
or 25% (right column). After 24 hours of stimulation, cells were washed with PBS and 
fresh media was replenished with M-CSF and 35 ng/mL RANKL. At day 6 in culture, cells 
were TRAP stained and imaged at 10X. TRAP+ multinucleated cells were quantified, and 
the average vehicle-treated counts from each genotype was used to calculate the percent of 
average RANKL-derived osteoclasts (C). 
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Osteoblasts sense and respond to S. aureus infection in vitro through MyD88  

Together, our data have implicated MyD88 and TLR2 sensing as the major 

pathways by which myeloid cell differentiation down the osteoclast lineage are perturbed. 

Thus far, we have not tested the ability of these pathways to alter cells of the osteoblast 

lineage, which are responsible for forming bone and further regulating osteoclastogenesis. 

To determine how the inflammatory response of osteoblasts is influenced by innate 

immune recognition of S. aureus, we infected osteoblasts isolated from WT mice or 

immunodeficient mice lacking MyD88 and TLR2. All osteoblasts remained viable 24 

hours post-infection (Figure 45A). This experiment was preliminary and triplicate wells 

were pooled together, preventing the ability to use statistical comparisons. All data 

described below are based solely on the magnitude of changes between mock-infection and 

infection, or between genotype. We found that WT mice had higher levels of many 

cytokines after S. aureus infection, including GM-CSF, IL-1α, IL-6, IL-9, IL-10, IL-13, 

IP-10, KC, LIF, LIX, MCP-1, MIP-1α, MIP-1β, MIP-2, RANTES, TNFα (Figure 45D, 

45F, 45K, 45M-N, 45Q, 45T-W, 45Y, 45AA-EE). The magnitude of some increases was 

relatively small, with changes within 10 pg/mL observed in eotaxin, IFNγ, IL-1β, IL-5, IL-

12p70, and IL-15 (Figure 45B, 45C, 45E, 45J, 45P, 45R). There were no differences (less 

than 1 pg/mL) in IL-2, IL-3, IL-4, IL-7, IL-12p40, IL-17, MIG, or VEGF between mock 

and infected WT cells (Figure 45G-I, 45L, 45O, 45S, 45Z, 45FF), and M-CSF appeared 

to decrease with WT infection (Figure 45X).  
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Figure 45. The role of MyD88 and TLR2 in cytokine responses of primary osteoblasts 
to S. aureus infection in vitro.  
(A-FF) WT, Myd88-/-, and Tlr2-/- osteoblasts (OBs) were plated at 5,000 cells per well in a 
96-well plate and were mock-infected with PBS or infected with S. aureus LAC at a 
multiplicity of infection (MOI) of 10. At 2 hours, media containing antibiotics was added 
to cells to kill extracellular bacteria. Media was collected at 22 hours post-infection and 
pooled from 3 wells of the same cell type and infection condition and stored at -80ºC. To 
assess the cytotoxic effect of S. aureus infection of osteoblasts the following day, Cell Titer 
96 Aqueous One Solution was read at 490 nm and absorbance relative to PBS control was 
reported to calculate relative viability of osteoblasts in each infection condition (A). Pooled 
cell-free supernatants were run using the Luminex platform to quantify the abundance of 
individual cytokines (B-FF).  
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In relation to WT osteoblasts, Myd88-/- osteoblasts were less able to produce 

cytokines in response to S. aureus infection, showing discrepancies greater than 10 pg/mL 

in magnitude in only IP-10, LIF, MCP-1, MIP-1α, RANTES, and TNFα (Figure 45T, 45V, 

45Y, 45DD, 45EE). Despite drastic differences in WT and Myd88-/- osteoblasts, Tlr2-/- 

osteoblasts had a remarkably similar cytokine responses to S. aureus infection when 

compared to WT osteoblasts. Notably, some differences remained in that Tlr2-/- osteoblasts 

produced lower levels of IFNγ, IL-2, IL-7, LIX, and TNFα in comparison to WT 

osteoblasts (Figure 45D, 45G, 45L, 45EE). Unexpectedly, Tlr2-/- osteoblasts produced 

some cytokines at higher abundance than WT osteoblasts following infection, including 

IL-10, IL-12p40, IP-10, LIF, MCP-1, MIP-1α, MIP-1β, RANTES, and VEGF (Figure 

45N, 45O, 45T, 45V, 45Y, 45AA, 45BB, 45DD, 45FF). These data suggest that 

osteoblasts show an early and robust inflammatory response to S. aureus infection, leading 

to the production of numerous cytokines and chemokines. Thus, the osteoblastic cytokine 

response to S. aureus is shaped by MyD88 and TLR2.  

 

Early inflammation suggests an innate immune response is mounted during S. aureus 

bone infection 

Our previous studies have shown that exoprotein- and toxin-deficient S. aureus 

strains retain some ability to dysregulate bone remodeling, implicating inflammation as a 

critical parameter that disrupts normal skeletal cell communication [31]. In order to 

determine whether cells local and distant to the site of infection are sensing and responding 

to infection by secreting cytokines, we compared cytokine levels from infected femurs and 

contralateral, uninfected femurs from the same mice to baseline levels of cytokines present 
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in femurs from healthy mice. We measured a panel of 32 cytokines over the course of 14 

days. We sought to measure inflammatory responses that are produced locally in infected 

femurs, as well as systemic inflammation as measured in the contralateral femurs from 

infected mice.  

In Chapter III, we observed that after osteomyelitis is established, S. aureus can 

disseminate to the contralateral femur. Here, we measured elevated levels of G-CSF and 

KC at day 1 post-infection in both the infected and the contralateral femurs (Table 3). 

Specific to the infected femurs, GM-CSF, KC, and MIP-1α were significantly more 

abundant at days 1 and 4 (Table 3). Similarly, LIF was elevated at days 1, 4, 7, and 10 

post-infection, while eotaxin and TNFα were elevated at all days measured in the infected 

femurs (Table 3). Conversely, IL-9 and LIX were decreased from baseline in both femurs 

(Table 3). In a more acute manner, many cytokines were elevated in only infected femurs 

at day 1 post-infection, including IL-1β, IL-3, IL-5, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, 

IL-15, MCP-1, MIP-1β, M-CSF, and MIP-2 (Table 3). Furthermore, some cytokines, 

chemokines, and growth factors were more irregular in their expression signatures, with 

IP-10 increasing in femurs at days 4 and 10, IL-2 elevated at day 7, IL-17 increased at days 

7 and 10, greater levels of IFNγ, IL-1α, RANTES, and VEGF at day 10, and more abundant 

levels of IL-4, MIP-1α, and MIP-1β at day 14 post-infection (Table 3). Together, these 

data suggest that there is an abundant inflammatory response in the infected femur, but 

transient inflammation can be detected in the contralateral femurs as well.  
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Table 3. WT cytokine levels in non-infected femurs (baseline), infected femurs, and 
contralateral uninfected femurs from S. aureus infected mice. 
 

 Infected Femur Cytokine Levels 
 Contralateral, Uninfected Femur Cytokine Levels  

Cytokine 
Day 1 Day 4  Day 7 Day 10 Day 14 Baseline 

G-CSF 7440.7 ± 
1373.1**** 306.7 ± 74.5 164.7 ± 78.6 124.3 ± 

17.6 143.0 ± 64.3 

6.7 ± 0.6 2900.7 ± 
48.1**** 78.8 ± 18.1 44.6 ± 8.6 31.2 ± 26.2 33.6 ± 27.5 

Eotaxin 514.0 ± 
10.4**** 

455.3 ± 
9.1**** 

472.0 ± 
45.0**** 

395.0 ± 
4.0** 

341.0 ± 
99.4* 

198.7 ± 
28.0 

456.0 ± 
35.1**** 

443.7 ± 
27.6**** 

385.0 ± 
33.0*** 

330.7 ± 
47.2* 270.7 ± 15.4 

GM-CSF 73.5 ± 
7.1**** 51.7 ± 6.9** 43.8 ± 2.5 45.3 ± 4.9 45.1 ± 8.3 

31.8 ± 5.0 40.1 ± 0.0 37.4 ± 5.5 38.3 ± 1.6 33.7 ± 4.7 34.1 ± 5.2 

IFNy 18.1 ± 3.7 31.6 ± 20.1 16.0 ± 4.6 37.2 ± 
15.8* 22.4 ± 2.7 

13.3 ± 07 12.7 ± 1.2 12.2 ± 2.9 10.6 ± 2.2 10.5 ± 2.2 19.3 ± 2.0 

IL-1α 143.0 ± 43.1 83.7 ± 10.1 76.4 ± 7.7 138.1 ± 
62.8* 112.3 ± 19.9 

79.0 ± 2.5 82.5 ± 4.2 60.6 ± 8.0 66.6 ± 8.6 64.9 ± 8.1 101.1 ± 8.8 

IL-1β 424.7 ± 
209.4**** 126.3 ± 35.1 49.8 ± 15.4 65.0 ± 15.4 70.6 ± 15.0 

47.1 ± 
15.4 39.7 ± 11.4 25.9 ± 3.4 22.8 ± 4.7 20.3 ± 0.9 54.7 ± 18.3 

IL-2 15.2 ± 2.3 9.4 ± 1.5 8.3 ± 1.1* 10.0 ± 1.7 15.1 ± 1.5 
13.3 ± 0.4 12.2 ± 1.5 9.7 ± 1.6 8.6 ± 1.4* 9.0 ± 0.8 15.7 ± 2.4 

IL-3 1.1 ± 0.1**** 0.9 ± 0.2**** 0.6 ± 0.0* 0.7 ± 0.1** 0.5 ± 0.1 
0.3 ± 0.0 0.5 ± 0.1 0.6 ± 0.0* 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.0 

IL-4 2.6 ± 0.0 1.8 ± 0.3 1.4 ± 0.2 2.1 ± 0.8  5.2 ± 2.5** 
1.78 ± 0.2 2.3 ± 0.4 2.0 ± 0.2 1.3 ± 0.2 1.4 ± 0.1 2.3 ± 0.3 

IL-5 20.1 ± 
5.2**** 7.9 ± 1.8 5.9 ± 0.7 6.0 ± 0.7 6.6 ± 1.0 

3.9 ± 0.9 9.1 ± 1.0 5.7 ± 0.9 5.9 ± 2.3 4.5 ± 1.0 5.2 ± 1.3 

IL-6 465.3 ± 
200.5**** 129.2 ± 53.8 56.3 ± 22.5 60.5 ± 18.0 34.9 ± 13.5 

15.7 ± 0.9 19.8 ± 1.2 12.7 ± 2.2 14.1 ± 2.1 12.9 ± 1.3 21.5 ± 1.9 

IL-7 7.3 ± 1.3* 4.7 ± 0.9 5.2 ± 0.1 5.5 ± 0.8 4.6 ± 0.8 

4.1 ± 0.9 4.0 ± 0.2 2.8 ± 0.2 4.3 ± 1.9 4.6 ± 0.6 5.4 ± 0.9 
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 Infected Femur Cytokine Levels 
 Contralateral, Uninfected Femur Cytokine Levels  

Cytokine 
Day 1 Day 4  Day 7 Day 10 Day 14 

Baseline 

IL-9 216.0 ± 
56.3**** 334.0 ± 46.0* 289.7 ± 

29.1** 
441.3 ± 

51.0 
541.0 ± 

76.3 
496.3 ± 

40.5 
201.3 ± 
27.5**** 290.3 ± 41.2** 291.7 ± 

16.8** 
391.0 ± 

93.6 
522.3 ± 

62.7 

IL-10 14.5 ± 
3.6*** 8.3 ± 2.2 6.1 ± 0.8 6.0 ± 1.1 9.2 ± 1.9 

6.3 ± 0.5 7.7 ± 1.3 7.1 ± 1.1 4.8 ± 1.2 4.0 ± 0.1 8.1 ± 1.9 

IL-12(p40) 21.2 ± 
6.8**** 12.7 ± 2.9* 4.7 ± 2.6 7.3 ± 1.4 2.9 ± 2.0 

1.1 ± 0.0 5.7 ± 3.6 14.2 ± 3.9** 2.3 ± 1.3 6.3 ± 5.4 3.3 ± 2.8 

IL-12(p70) 37.5 ± 
3.3**** 27.4 ± 2.3* 23.0 ± 1.9 23.8 ± 1.9 22.9 ± 1.4 

20.5 ± 1.5 25.4 ± 2.1 21.6 ± 0.4 21.3 ± 3.0 22.7 ± 1.7 21.6 ± 1.8 

LIF 114.0 ± 
11.1**** 

81.5 ± 
14.0**** 

69.3 ± 
13.8**** 

58.1 ± 
4.5** 41.2 ± 8.7 

25.2 ± 6.6 47.6 ± 6.5 47.2 ± 5.5 34.2 ± 1.5 31.7 ± 6.0 25.0 ± 1.5 

LIX 1189.3 ± 
638.2 364.7 ± 75.5** 383.7 ± 

73.3** 
625.7 ± 
178.6 

2003.0 ± 
177.8 

1331.7 ± 
48.4 

576.3 ± 
308.8 

187.7 ± 
110.6** 463.7 ± 98.2* 649.7 ± 

292.2 
1447.0 ± 

286.0 
IL-15 34.2 ± 8.8* 22.4 ± 5.0 20.4 ± 1.8 23.1 ± 3.0 28.7 ± 0.0 

22.5 ± 2.2 21.4 ± 3.6 17.9 ± 2.4 19.1 ± 3.1 19.2 ± 0.6 31.3 ± 6.2 

IL-17 6.6 ± 0.7 47.5 ± 13.6 104.4 ± 
55.4**** 

97.7 ± 
20.1*** 

46.5 ± 
20.8 

3.0 ± 0.4 3.1 ± 0.6 2.6 ± 0.3 2.5 ± 0.3 2.3 ± 0.3 4.5 ± 1.0 

IP-10 124.0 ± 3.0 507.0 ± 
202.9**** 251.3 ± 36.0 366.3 ± 

49.7* 
268.3 ± 

91.8 
116.2 ± 

23.3 91.4 ± 5.3 344.0 ± 51.0* 167.0 ± 16.8 144.3 ± 5.0 183.0 ± 
67.1 

KC 1352.7 ± 
257.0**** 352.7 ± 59.5* 219.0 ± 79.1 164.3 ± 

18.7 
109.8 ± 

31.9 

43.5 ± 1.9 350.3 ± 
86.2* 107.8 ± 14.5 83.1 ± 6.2 62.6 ± 9.7 56.5 ± 4.8 

MCP-1 412. 7 ± 
126.9**** 88.6 ± 29.8 52.9 ± 8.8 43.6 ± 4.0 30.5 ± 

12.8 
15.0 ± 5.8 31.1 ± 7.8 28.1 ± 2.8 25.3 ± 11.0 15.2 ± 4.7 16.4 ± 4.4 
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  Infected Femur Cytokine Levels 
 Contralateral, Uninfected Femur Cytokine Levels  

Cytokine 
Day 1 Day 4  Day 7 Day 10 Day 14 

Baseline 

MIP-1α 299.7 ± 
75.8**** 

171.0 ± 
23.8** 107.1 ± 27.7 115.4 ± 

31.0 
153.3 ± 
69.1* 

45.9 ± 3.0 49.7 ± 12.2 40.7 ± 9.3 33.9 ± 6.1 35.0 ± 1.7 54.7 ± 6.6 

MIP-1β 223.7 ± 
83.2**** 105.2 ± 23.1 80.3 ± 13.1 88.3 ± 18.1 127.7 ± 

51.6* 
26.8 ± 5.5 28.9 ± 7.6 27.8 ± 46 26.0 ± 0.9 26.5 ± 2.4 35.9 ± 4.2 

M-CSF 429.7 ± 
149.7**** 107.3 ± 54.0 53.8 ± 12.5 47.9 ± 6.4 59.4 ± 5.3 

35.9 ± 10.3 67.1 ± 5.88 53.3 ± 4.6 100.2 ± 
108.9 40.9 ± 5.2 44.2 ± 5.8 

MIP-2 7815.1 ± 
4479.2**** 

2180.7 ± 
784.8 

1032.3 ± 
719.8 

932.3 ± 
409.2 

542.0 ± 
466.5 

61.2 ± 6.0 90.8 ± 11.6 82.9 ± 11.6 68.9 ± 6.8 69.3 ± 15.1 68.1 ± 9.2 

MIG 192.3 ± 
76.1 

848.3 ± 
676.0 275.7 ± 64.1 657.0 ± 

327.2 
597.7 ± 
116.9 

191.1 ± 
86.4 

163.7 ± 
64.6 266 ± 56.1 172.0 ± 76.7 122.7 ± 

41.5 
322.0 ± 

92.7 

RANTES 24.9 ± 7.9 38.1 ± 13.5 49.3 ± 3.7 59.9 ± 
21.9* 50.5 ± 14.1 

26.0 ± 9.4 23.0 ± 8.0 21.8 ± 1.1 44.9 ± 4.4 27.9 ± 1.1 40.4 ± 9.4 

VEGF 28.0 ± 19.4 78.7 ± 13.2 90.8 ± 6.1 101.5 ± 
47.2* 38.0 ± 20.2 

34.6 ± 3.6 47.3 ± 15.2 92.3 ± 16.2 107.4 ± 
19.3** 

123.7 ± 
15.9*** 31.9 ± 6.4 

TNFα 45.5 ± 
15.1**** 34.2 ± 2.3** 26.6 ± 3.5* 30.2 ± 

7.2** 
26.5 ± 
14.0* 

5.9 ± 0.8 11.2 ± 0.8 19.3 ± 1.0 13.5 ± 0.6 12.7 ± 3.1 10.4 ± 1.8 
 
Uninfected femurs from WT mice (n = 3) or the infected and uninfected, contralateral 
femurs (n = 3 per time point) were harvested and homogenized in CelLytic Buffer. The 
resulting lysate was analyzed on the Luminex Platform using a 32-plex analyte Millipore 
kit. The quality control for IL-13 failed, and these data were excluded. Cytokine data are 
reported in pg/mL as mean ± standard deviation. A one-way ANOVA was performed using 
Tukey’s multiple comparisons test for each cytokine, comparing baseline cytokine levels 
to infected and uninfected, contralateral femurs, where * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001. 
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TLR2 and TLR9 signaling are dispensable for control of staphylococcal burdens 

during osteomyelitis 

Data in Chapter III revealed a critical role of MyD88 and the IL-1R in antibacterial 

responses to S. aureus in bone. However, many of the TLRs also require MyD88 for 

signaling, and we therefore sought to assess the role of TLRs known to sense S. aureus 

during osteomyelitis. To assess the antibacterial role of TLR2 during bone infection, we 

subjected WT and Tlr2-/- mice to S. aureus osteomyelitis. At day 14 post-infection, there 

was no difference in bacterial burdens recovered from the infected femur, kidneys, or liver 

when comparing WT and Tlr2-/- mice (Figure 46A). After infection with a lower dose of 

S. aureus, WT and Tlr2-/- mice had similar bacterial burdens isolated at days 1, 2, 5, and 7 

post-infection as well (Figure 46B). In order to test whether TLR9 contributes to the 

control of bacterial burdens during osteomyelitis, both WT and Tlr9-/- mice were infected 

with S. aureus. Enumeration of bacterial burdens showed that Tlr9-/- mice had similar 

bacterial burdens in the infected femur to WT mice at day 14 post-infection (Figure 46C). 

Collectively, these data suggest that TLR2 and TLR9 likely do not exclusively contribute 

to the reduction of S. aureus burdens in the bone during osteomyelitis. 



 

	 173	
	

 
 
Figure 46. TLR2 and TLR9 signaling are dispensable for the control of staphylococcal 
burdens during osteomyelitis. (A-C) Female mice were infected with S. aureus at 106 (A, 
C) or 105 CFUs (B). (A, B) WT and Tlr2-/- mice were infected with S. aureus in duplicate 
experiments and femurs and organs (WT n = 10, Tlr2-/- n = 10) were harvested at day 14 
post-infection (A). In duplicate experiments, femurs were harvested at day 1 (WT n = 4, 
Tlr2-/- n = 5), day 4 (WT n = 3, Tlr2-/- n = 3), day 5 (WT n = 8, Tlr2-/- n = 7), and day 7 
(WT n = 3, Tlr2-/- n = 3) (B). (C) WT and Tlr9-/- mice were infected with S. aureus in 
triplicate experiments and femurs (WT n = 15, Tlr9-/- n = 14) and organs (WT n = 5, Tlr9-

/- n = 4) were harvested at day 14 post-infection. To compare bacterial burdens harvested 
between genotypes, t tests were used for each organ site. To compare CFUs harvested in 
femurs between genotype at each time point we used a one-way ANOVA with Sidak’s 
multiple comparisons test. All comparisons were not statistically significant.  
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TLR2 and TLR9 do not alter bone remodeling during S. aureus osteomyelitis  

In order to test the hypothesis that specific TLRs alter bone remodeling, we 

compared cortical and trabecular bone architecture between WT and Tlr2-/- mice after S. 

aureus osteomyelitis using microCT imaging (Figure 47A). The extent of cortical and 

trabecular bone remodeling was similar between WT and Tlr2-/- mice at day 14 post-

infection (Figure 47B and 47C). Moreover, cellular histomorphometry of trabecular bone 

showed no difference in N.Oc/B.pm, indicating that no differences in osteoclast number 

were observed in vivo between WT and Tlr2-/- mice (Figure 47D). To rule out bone 

remodeling changes strictly due to bacterial-induced bone cell death, we infected WT and 

Tlr2-/- mice with an agr-deficient S. aureus strain and analyzed femurs with microCT 

imaging (Figure 48A). In comparison to the fully virulent WT S. aureus strain, Tlr2-/- mice 

infected with agr-deficient S. aureus had no significant differences in cortical or trabecular 

bone (Figure 48B and 48C). These data confirm that TLR2 signaling does not contribute 

appreciably to infection-mediated bone remodeling at the site of infection or at sites distal 

to the infectious focus.   
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Figure 47. Tlr2-/- mice infected with S. aureus show no differences in bone loss or 
osteoclast number compared to WT mice. (A-D) Female WT and Tlr2-/- mice (n = 10 
per genotype) were infected with 106 CFUs of S. aureus LAC in duplicate experiments. At 
day 14 post-infection, femurs were extracted and fixed in neutral buffered formalin for 48 
hours. Femurs were scanned using the Scanco Medical µCT50 and the cortical bone around 
the site of infection was imaged at 10 µm resolution. One representative image from each 
genotype is pictured here (A). Contouring of the cortical and trabecular bone regions 
quantified bone loss (mm3) (B) and bone volume/total volume (BV/TV, %) (C). After scans 
were complete, femurs were dehydrated and stained for TRAP to visualize osteoclasts. The 
number of osteoclasts per bone perimeter (N.Oc/B.pm, 1/mm) were calculated in relation 
to trabecular bone in the distal femur (D).  Differences in bone remodeling and osteoclast 
number between genotypes were compared by t tests. All comparisons were not statistically 
significant.  
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Figure 48. Tlr2-/- mice infected with a toxin-deficient strain of S. aureus (∆agr) show 
no differences in bone loss compared to WT mice. (A-D) Female WT and Tlr2-/- mice (n 
= 7 per genotype) were infected with 106 CFUs of S. aureus ∆agr. At day 14 post-infection, 
femurs were extracted and fixed in neutral buffered formalin for 48 hours. Femurs were 
scanned using the Scanco Medical µCT50 and the cortical bone around the site of infection 
was imaged at 10 µm resolution. One representative image from each genotype is pictured 
here (A). Contouring of the cortical and trabecular bone regions quantified bone loss (mm3) 
(B) and bone volume/total volume (BV/TV, %) (C). Differences in bone remodeling 
between genotypes were compared by t tests. All comparisons were not statistically 
significant.  
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To assess whether bone remodeling was different between WT and Tlr9-/- mice 

during S. aureus infection, we imaged infected bones via µCT (Figure 49A). As observed 

in previous experiments with Tlr2-/- mice, µCT analysis showed no significant difference 

in cortical or trabecular bone architecture at the site of infection (Figure 49B and 49C). 

To determine whether there were alterations in resident osteoclast abundance in Tlr9-/- 

mice, we measured osteoclast number per bone perimeter using histomorphometry. No 

differences were observed in relative osteoclast number between WT and Tlr9-/- mice 

(Figure 49D). These data indicate that Tlr9-/- mice have similar outcomes as WT mice in 

response to S. aureus osteomyelitis, in the specific contexts of cortical bone loss, trabecular 

bone volume, and quantification of bone-resorbing osteoclasts. Collectively, these studies 

indicate that TLR9 or TLR2 deletion alone does not contribute to bone remodeling during 

S. aureus osteomyelitis.  
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Figure 49. Tlr9-/- mice infected with S. aureus show no differences in bone loss or 
osteoclast number compared to WT mice. (A-D) Female WT and Tlr9-/- mice (n = 10 
per genotype) were infected with 106 CFUs of S. aureus LAC in duplicate experiments. At 
day 14 post-infection, femurs were extracted and fixed in neutral buffered formalin for 48 
hours. Femurs were scanned using the Scanco Medical µCT50 and the cortical bone around 
the site of infection was imaged at 10 µm resolution. One representative image from each 
genotype is pictured here (A). Contouring of the cortical andx trabecular bone regions 
quantified bone loss (mm3) (B) and bone volume/total volume (BV/TV, %) (C). After scans 
were complete, femurs (WT n = 5, Tlr9-/- n = 7) were dehydrated and stained for TRAP to 
visualize osteoclasts. The number of osteoclasts per bone perimeter (N.Oc/B.pm, 1/mm) 
were calculated in relation to trabecular bone in the distal femur (D). Differences in bone 
remodeling and osteoclast number between genotypes were compared by t tests. All 
comparisons were not statistically significant.  
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Discussion 

 S. aureus contains conserved molecular patterns that are recognized by PRRs to 

initiate innate immune responses during infection. Osteoclast and osteoblast lineage cells 

express PRRs, although the full repertoire expressed at each differentiation state remains 

unclear [241, 250]. As we have shown in Chapter II, innate sensing of bacteria leads to 

activation of the transcription factor NFκB that is also involved in osteoclast 

differentiation. To test the role of the major S. aureus-recognizing PRRs upstream of NFκB 

on perturbation of osteoclastogenesis, we utilized primary cells harvested from mice 

lacking specific innate immune signaling components. We found that S. aureus 

enhancement or inhibition of osteoclastogenesis was completely dependent on the presence 

of TLR2. The loss of TLR9 did not completely prevent S. aureus-mediated 

osteoclastogenesis, but the extent of osteoclast formation was significantly less than that 

observed in WT cells. These data further support our results in Chapters II and III, wherein 

cell lines stimulated with purified TLR2 agonists and crude cell wall extracts enhance 

osteoclastogenesis in a MyD88-dependent manner. These data suggest that S. aureus 

lipoproteins or other cell wall components likely activate TLR2 and MyD88 on myeloid 

cells to alter the signaling pathways shared with skeletal cell differentiation pathways. 

Kassem et al. found that TLR2 enhances S. aureus-mediated osteoclastogenesis, but this 

occurs through increased RANKL production from osteoblasts [53], which are not present 

in our monoculture system of myeloid cells. Thus, S. aureus stimulation can lead to 

measurable changes in the ability of primary cells to undergo osteoclastogenesis, and these 

theories should be tested in more complex models as well.  
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Our data in Chapter III and other studies have characterized changes in 

inflammatory cytokines and chemokines after S. aureus bone infection in vivo [291, 292]. 

To expand on the findings characterizing cytokine levels only in infected femurs, we 

wanted to determine how cells local and distant to the site of infection were responding to 

infection. We compared secreted cytokine levels from infected femurs and contralateral, 

uninfected femurs from the same mice to baseline levels of cytokines present in femurs 

from healthy mice. We detected the early enrichment of growth factors and chemokines in 

both femurs from infected mice, including G-CSF, GM-CSF, and KC, which are 

characteristic of a granulopoietic response to bacterial infection [272-274]. In this study, 

we observed sustained levels of the cardinal pro-inflammatory cytokine TNFα in the 

infected femur over the two-week long infection. The infected femurs also had increased 

levels of myeloid chemoattractants MCP-1, MIP-1α, MIP-1β, and MIP-2, as well as IL-1α 

and IL-1β, but the contralateral uninfected femurs did not. These data suggest that over the 

course of bone infection, IL-1 and other inflammatory mediators are predominantly 

produced locally in the infected femur, and granuolopoiesis likely occurs early in both 

femurs after S. aureus osteomyelitis.  

Many of the identified inflammatory cytokines produced downstream of PRR 

activation are proposed to stimulate bone resorption by inducing osteoclast differentiation 

[53, 144, 180, 237, 246, 253]. Because many cytokines influence bone remodeling in vitro, 

we hoped to define the role of MyD88 and TLR2 on osteoblasts in dictating the cytokine 

responses downstream of S. aureus infection. To do so, we conducted experiments to 

measure the cytokines produced following S. aureus infection of WT or immunodeficient 

osteoblasts. Importantly, these conclusions are based on magnitude alone and not statistical 
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comparisons, and this experiment needs to be repeated. However, we observed that WT 

osteoblasts made abundant levels of hallmark pro-inflammatory cytokines, IL-1α, IL-6, 

and TNFα, and also produced a large range of factors responsible for chemotaxis and 

expansion of other cell types, including GM-CSF, IL-9, IP-10, KC, MCP-1, MIP-1α, MIP-

1β, MIP-2, and RANTES. In response to S. aureus infection, Myd88-/- osteoblasts retained 

the ability to increase levels of LIF (which inhibits cell differentiation), TNFα, IP-10, 

MCP-1, and RANTES. The production of all other cytokines measured, including IL-1 and 

IL-6, were diminished, if not completely absent. Tlr2-/- osteoblasts had similar cytokine 

responses to WT osteoblasts, although curiously, they did not produce the cytokines IFNγ, 

LIX, and TNFα, and they appeared to produce more abundant levels of some chemokines, 

including IP-10, RANTES, MCP-1 and MIP-1β. Accordingly, the osteoblast response to 

S. aureus infection details the necessity for MyD88 in order to mount a strong 

inflammatory cytokine response. Pro-inflammatory cytokines, myeloid growth factors, and 

chemokines present early after S. aureus osteomyelitis can promote differentiation of 

myeloid precursors into osteoclasts [138-141, 242, 291, 292]. Further analysis into 

perturbations of molecules that balance bone homeostasis, including RANKL and OPG, 

should also be considered in future studies given published reports of how altered 

RANKL:OPG ratios influence bone remodeling [53, 155, 236, 252].  

Based on data of MyD88 mediating an inflammatory response in osteoblasts and in 

vivo (Chapter III), we next wanted to determine how TLRs that recognize S. aureus 

contribute to anti-staphylococcal immune responses in vivo. We hypothesized that 

recognition of S. aureus through TLRs would mediate bacterial clearance after bone 

infection. However, we saw no difference in the ability of Tlr2-/- or Tlr9-/- mice to clear 
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bacterial burdens, relative to WT mice. While the specific role of TLR2 on osteoblasts to 

mount a cytokine response remained unclear, our preliminary evidence suggests that the 

response of Tlr2-/- osteoblasts to S. aureus infection is remarkably similar to WT 

osteoblasts even at a relatively early 24-hour time point. Together, these data suggest that 

perhaps individual TLRs are dispensable for mounting a proper immune response, or that 

their role occurs so quickly after infection that we missed important differences. TLRs 

exhibit remarkable redundancy in their downstream signaling pathways and activation. 

Where Myd88-/- cells and mice exhibit dramatic phenotypes, including the loss of cytokine 

responses, perturbation of osteoclast differentiation, dissemination, and death, this is likely 

because they have prevented almost all TLRs and IL-1 receptors from responding to any 

of the corresponding stimuli. Thus, it is possible that we have not fully tested whether these 

individual pathways have functional overlap in vivo. One immediate avenue for future 

study is combinatorial knockout of TLR2 and TLR9 to assess for functional redundancy in 

the two major S. aureus-sensing TLRs.  

Given that MyD88 and TLRs mediate S. aureus-perturbed osteoclastogenesis in 

vitro, we next measured bone remodeling in TLR-deficient mice during S. aureus 

osteomyelitis. In order to measure bone remodeling outcomes from infection, we quantified 

bone loss and osteoclast numbers in infected femurs from WT, Tlr2-/-, and Tlr9-/- mice. We 

found that in vitro evidence of S. aureus-enhanced osteoclastogenesis in Tlr2-/- and Tlr9-/- 

cells did not predict osteoclastogenesis in vivo during S. aureus osteomyelitis. Specifically, 

we found no differences in the relative osteoclast number in trabecular bone between WT 

and Tlr2-/- or Tlr9-/- mice. Additionally, cortical bone loss occurred to the same extent 

between WT and Tlr2-/- or Tlr9-/- mice.  
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Collectively, data presented in this chapter describe that TLR2 and TLR9 do not 

mediate differences in the ability to control staphylococcal burdens, bone loss, or 

osteoclastogenesis in trabecular bone during osteomyelitis. While myeloid cells in culture 

respond directly to TLR ligands that influence their differentiation, the more complex 

cellular and inflammatory milieu in vivo likely diminishes these differences between WT 

and Tlr2-/- or Tlr9-/-cells. We found that a majority of inflammation induced in vivo occurs 

locally in the infected femur, but granulopoiesis occurs systemically in response to S. 

aureus. We speculate that perhaps inflammation in TLR-deficient bones may still promote 

the influx of myeloid cells that subsequently serve as a reservoir of osteoclast precursors. 

Moreover, direct signaling through TLRs indicate robust abilities to modulate 

osteoclastogenesis, and thus, should be explored using more specific methods, such as a 

whole TLR-knockout mouse (Unc93b1) or a TLR2/9 double-knockout mouse. Here we 

demonstrate that, despite the mechanistic insights that can be gained in regards to TLR-

mediated regulation of skeletal cell differentiation using in vitro systems, the in vivo 

environment creates additional complexities. In this chapter we found that, although TLR2 

and TLR9 do not alter osteoclastogenesis or bone remodeling during S. aureus 

osteomyelitis, compelling in vitro data support myeloid sensing of TLRs to influence 

osteoclastogenesis. 
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CHAPTER V 
 
 

SUMMARY AND FUTURE DIRECTIONS 
 

Conclusions 

Investigation into the physiology of bone remodeling affirms that skeletal and 

immune systems are interconnected. Research on bone infections has expanded research 

and findings in the area of osteoimmunology. In particular, my research has focused on S. 

aureus osteomyelitis. S. aureus is a leading cause of healthcare-associated infections and 

community-acquired S. aureus strains has also been shown to infect otherwise healthy 

individuals through strains [8, 312, 313]. Osteomyelitis can lead to serious complications 

from alterations in bone remodeling forming large areas of bone destruction, aberrant bone 

formation, and local vasculature damage. In this thesis, we hypothesized that sensing of S. 

aureus PAMPs and subsequent TLR and IL-1R signaling converges with osteoclastogenic 

differentiation pathways to enhance bone resorption, in addition to the ascribed roles for 

innate immune receptors towards the promotion of antibacterial responses. To address 

these questions, my thesis research has focused on (1) defining the bacterial components 

and innate immune receptors necessary to perturb osteoclastogenesis, (2) understanding 

how skeletal cells sense and respond to S. aureus, in terms of altering osteoclast 

differentiation and immune responses, (3) investigating innate immune host factors 

responsible for impacting bone remodeling during S. aureus osteomyelitis, (4) examining 

changes in inflammatory cytokines in response to S. aureus in bone, and (5) defining how 

innate immune receptors affect the anti-bacterial host response to S. aureus osteomyelitis. 

These goals have elucidated effects of S. aureus on bone at the cellular and organ level and 
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may describe common processes shared between sensing of the microbiota, infection, and 

inflammatory states. 

 

Defining the bacterial stimuli and innate immune receptors necessary to perturb 

osteoclastogenesis  

The data presented in Chapter II show how bacteria perturb osteoclast 

differentiation. We stimulated osteoclast precursors with synthetic TLR agonists, purified 

bacterial factors, crude cell wall extracts, and bacterial supernatants. We ultimately 

determined that both Gram-positive and Gram-negative PAMPs induce potent 

osteoclastogenic responses. For S. aureus specifically, cell wall and concentrated cell-free 

bacterial supernatants, purified lipoteichoic acid, and peptidoglycan were all capable of 

inducing osteoclastogenesis in RAW264.7 cells. Additionally, synthetic lipoproteins 

designed to engage TLR2 heterodimers, cell wall extracts, and bacterial supernatants all 

show patterns of NFκB transcription factor activation, a pathway necessary for 

osteoclastogenesis.   

The bone biology literature has several contrasting papers classifying PRR agonists 

as either “stimulatory” or “inhibitory” towards osteoclast differentiation [25, 62, 75, 240, 

248, 250]. While some researchers have compared the precursor cell populations used, 

timing of stimuli, or the effects of PRR agonists [51, 54, 55], there has not yet been a 

comprehensive study of how a clinically relevant strain of S. aureus perturbs 

osteoclastogenesis. Thus, my research into this area aimed to develop two different assay 

formats to allow for the investigation of both osteoclast enhancement and inhibition by 

bacterial stimuli. We have found that if BMMs are stimulated with bacterial supernatants, 
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they undergo changes consistent with the transcript repertoire of inflammatory M1 

macrophages. Additionally, they are then inhibited from undergoing subsequent RANKL-

mediated osteoclastogenesis. However, when given RANKL first, BMMs are activated to 

undergo osteoclast differentiation and become TRAP+ mononuclear osteoclast precursors. 

When RANKL is removed, S. aureus can then provide signals to the cells to support 

continued osteoclastogenesis and the development of TRAP+ multinucleated (mature) 

osteoclasts. Thus, recognition of S. aureus supernatants allows for cell fate decisions to 

skew the ability of the cells to differentiate down other lineages (Figure 50). Furthermore, 

in Chapters II and III, we determined that S. aureus-enhanced osteoclastogenesis from 

osteoclast precursor cells is not dependent on paracrine signaling of TNFα and IL-1 

cytokines produced in response to bacterial stimulation of cells in culture. These results 

indicate that NFκB activity alone is not sufficient to induce osteoclastogenesis, but that the 

RANKL cell program first needs to be activated. 
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Figure 50. Myeloid-lineage cells sense and respond to S. aureus to influence osteoclast 
differentiation. When starting with an enriched BMM population in cell culture, these 
cells can be polarized to different extents depending on the order of stimuli seen. RANKL-
priming forms osteoclast precursors, which allows subsequent S. aureus stimulation to 
increase osteoclast formation. However, S. aureus-priming of BMMs before RANKL 
treatment inhibits cells from forming osteoclast-lineage cells. 
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In Chapters III and IV, we determined that the S. aureus recognition on myeloid 

lineage cells influenced osteoclast differentiation in a manner dependent on MyD88 and 

TLR2. While cells deficient in TLR9, IL-1R, and IL-1β showed some osteoclast 

enhancement above baseline in response to S. aureus supernatants, the magnitude of 

osteoclasts differentiating in culture was diminished relative to WT cells. We next assessed 

the ability of S. aureus to prevent RANKL-mediated osteoclastogenesis in WT and 

immunodeficient cells, and the inverse was true for each cell type. Myd88-/- and Tlr2-/- 

myeloid cells evaded S. aureus-mediated osteoclast inhibition compared to WT cells first 

stimulated with S. aureus supernatants. Tlr9-/-, Il1r1-/-, and Il1b-/- myeloid cells limited the 

extent of, but did not completely impede, inhibition of RANKL-dependent 

osteoclastogenesis. In response to S. aureus supernatants, these data describe that 

osteoclast precursor cells of myeloid origin are dependent on signaling through MyD88 

and TLR2 in order to perturb osteoclastogenesis. S. aureus supernatants are less able to 

influence myeloid cells that have lost expression of TLR9, IL-1R, and IL-1β, indicating 

that these innate immune receptors and cytokine play a role in mediating S. aureus-induced 

osteoclast changes. Together, these data describe a multifactorial approach to the ability of 

S. aureus to influence osteoclast differentiation.  

 

Understanding how skeletal cells sense and respond to S. aureus 

We have determined that osteoclast lineage cells differentially respond to S. aureus 

supernatants based on their differentiation state. We found that BMMs and osteoclast 

precursors retained similarities in the production of particular cytokines in response to S. 

aureus supernatants, including myeloid and T cell chemokines (MIP-1α, MIP-1β, MIP-2, 
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RANTES), anti-inflammatory IL-10, and the cardinal proinflammatory cytokines IL-6 and 

TNFα. However, as the BMMs skewed towards an M1 phenotype, osteoclast precursors 

took on a divergent cytokine profile. Osteoclast precursors were able to promote the 

production of granulocytic growth factors and chemokines (G-CSF and KC), as well as IL-

2 which promotes the expansion of T cell populations, and MCP-1 to potentially promote 

additional myeloid cell influx. These data suggest that osteoclast lineage cells undergoing 

differentiation have an altered capacity to mount inflammatory responses. 

We also interrogated the ability of S. aureus infection to induce inflammatory 

changes in primary osteoblasts, asking if MyD88 or TLR2 influence the osteoblastic 

immune response. Our results described that while deletion of MyD88 significantly 

hindered the ability of osteoblasts to mount an appropriate immune response, WT and Tlr2-

/- osteoblasts had remarkably similar cytokine responses. WT osteoblasts had the greatest 

cytokine increases observed in IL-6, KC, MCP-1, MIP-1α, MIP-1β, MIP-2, and TNFα, 

among all cytokines measured. Thus, similar to cytokine responses elicited from BMMs 

and osteoclast precursors, early cytokine responses to S. aureus encouraged the production 

of pro-inflammatory cytokines and could support the influx of innate immune cells such as 

macrophages and neutrophils to promote bacterial clearance.  

 

Investigating innate immune host factors responsible for impacting bone remodeling 

during S. aureus osteomyelitis 

 Investigation into bone remodeling in our laboratory has characterized cortical bone 

loss and the reactive bone callus during S. aureus osteomyelitis [31]. My research into bone 

remodeling has expanded these findings to characterize bone loss in the trabecular bone of 



 

	 191	
	

the distal femur with µCT imaging and histomorphometric analysis. One intriguing finding 

from my work was that trabecular bone loss is accompanied by enhanced osteoclast number 

and actively resorbing osteoclast surface. These data support what we and others have 

observed in vitro, wherein stimulation of RANKL pre-committed osteoclasts with bacterial 

products cause increased osteoclastogenesis. While many of my other investigations into 

innate immune receptors began by assessing the role of MyD88, we did not conduct these 

experiments with the knowledge that their underlying bone physiology is osteopenic, 

meaning they have lower rates of both bone formation and bone resorption [75]. Instead, 

we focused on three upstream receptors dependent on MyD88 signaling: TLR2, TLR9, and 

IL-1R. TLR2 and TLR9 have been implicated in sensing extracellular and endosomal S. 

aureus, and both receptors are reported to be expressed in skeletal cells [55, 75]. TLR2 

sensing of S. aureus has been shown to directly enhance RANKL production from 

osteoblasts [53]. Furthermore, the osteoblastic response to produce pro-inflammatory 

cytokines and myeloid chemokines by our group and others [291, 314], suggest that these 

factors are linked to enhanced bone loss [246, 292]. However, in mice deficient in TLR2 

and TLR9, we did not observe any differences in cortical or trabecular bone remodeling in 

response to S. aureus. These data indicate that even in the absence of TLR2 or TLR9, no 

profound changes in bone remodeling were observed in response to S. aureus when 

compared to WT mice. Compelling evidence has demonstrated a role for IL-1R signaling 

in skeletal cell communication, but many studies have used exclusively in vitro systems, 

while others have focused on how IL-1 influences bone remodeling in the absence of 

infection or other inflammatory states [134, 136, 140, 242, 261, 262, 299]. We also utilized 

in vitro assays to tease out mechanistic detail, that indicate IL-1R stimulation during 
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RANKL pre-commitment is important for developing osteoclast precursors. Work done in 

this thesis has expanded this body of knowledge to ask how the role of IL-1R to modulate 

bone remodeling occurs in a mouse model of infection. We found that Il1r1-/- mice were 

protected from the enhancement in relative osteoclast number and surface in the trabecular 

bone, and did not sustain a decrease in trabecular bone volume associated with S. aureus 

bone infection in WT mice. Furthermore, Il1r1-/- mice had an immense cortical bone 

remodeling callus formed along the diaphysis. Overall, these findings reveal that WT mice 

exhibit profound osteoclast-mediated trabecular bone loss during S. aureus osteomyelitis, 

while mice deficient in IL-1R signaling do not exhibit these changes. However, these data 

provide questions for future research, including elucidating mechanisms by which the 

dysregulated cortical bone callus forms and cortical bone loss occurs in Il1r1-/- mice, that 

may require new assays or tools to explore. 

 

Examining changes in inflammatory cytokines in response to S. aureus osteomyelitis 

 One goal of my research was to define the inflammatory milieu in bone as it 

develops in response to S. aureus. While some researchers have focused on the roles and 

production of particular cytokines and chemokines in vivo [60, 292], broad profiling of the 

changes in inflammation post-infection are lacking. To address this gap in the field, I first 

aimed to answer what cytokines are more plentiful in response to S. aureus infection, in 

comparison to bone healing observed during mock infection. S. aureus infected femurs had 

more abundant levels of pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and TNFα than 

mock-infected femurs. S. aureus infected femurs also had increased levels of chemokines 

and growth factors responsible for myeloid and granulocytic cell chemotaxis and 
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expansion, including M-CSF, MCP-1, MIP-1α, MIP-1β, MIP-2, KC, and G-CSF. 

Cytokines measured in the infected femurs are indicative of an antibacterial response. 

Comparison of infected femurs to mock infected femurs revealed cytokines and 

chemokines that are more abundant during S. aureus infection. However, these studies did 

not elucidate whether inflammation was localized to the site of infection or perhaps was 

systemically distributed throughout the infected animal. We therefore compared baseline 

cytokine values to those measured in the S. aureus infected femur or the uninfected, 

contralateral femur. These experiments revealed more abundant cytokine levels implicated 

in neutrophil chemotaxis and granulopoiesis, including G-CSF and KC at day 1 post-

infection in both femurs, as well as GM-CSF at days 1 and 4 post-infection in the infected 

femur. While TNFα was elevated throughout the entire two-week timecourse in the S. 

aureus infected femur, many cytokines were only significantly increased in an acute 

manner (at day 1 post-infection). Finally, these studies elucidated the production of some 

cytokines commonly associated with T cell recruitment, expansion, and effector cell 

function, including RANTES, IP-10, IL-2, IFNγ, and IL-17. Our cytokine data consistently 

underscore the importance of IL-1 and TNFα production, neutrophil expansion and 

recruitment through G-CSF, GM-CSF, and KC, as well as the myriad of chemokines and 

cytokines associated with myeloid cell recruitment (Figure 51, left column). 
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Figure 51. S. aureus osteomyelitis alters inflammation and bone remodeling, in part 
through IL-1R and MyD88. WT mice, data comparing infected versus mock-infected 
femurs and infected versus contralateral femurs show consistent increases in cytokine 
abundance of pro-inflammatory cytokines, myeloid growth factors and chemokines, and 
granulocyte growth factors and chemokines. Normal immune responses to S. aureus are 
characterized by abscess formation in bone marrow and/or bone fragments. In trabecular 
bone, WT mice exhibited increased osteoclastogenesis and bone loss. We next assessed the 
antibacterial and bone remodeling effects using Myd88-/-, Tlr2-/-, Tlr9-/-, and Il1r1-/- mice. 
MyD88 and IL-1R were found to mediate the control of local bacterial burdens, 
osteoclastogenesis, and bone loss.  
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Defining how innate immune receptors affect the anti-bacterial host response to S. 

aureus osteomyelitis 

 In the post-traumatic model of murine osteomyelitis, the mouse is unable to 

completely clear S. aureus infection over the course of two weeks. WT mice harbor 

approximately 106 CFUs in the infected femurs at day 14 post-infection. Via histology, we 

can visualize S. aureus on living and dead fragments of bone or in the marrow space as a 

staphylococcal abscess community surrounded by a mature abscess. The mechanisms by 

which innate immune receptors allow bone cells to mount anti-staphylococcal immune 

responses has largely been explored in vitro. TLR2 has been shown to contribute to the 

production of antimicrobial peptides by osteoblasts [58, 65], and TLR9 promotes reactive 

oxygen species formation in these cells  [66, 67]. However, roles for these TLRs against S. 

aureus in vivo remain minor [77, 172, 315]. IL-1 cytokines, however, have been found to 

contribute to anti-staphylococcal responses in several infection models [76, 77, 199, 207, 

316]. Thus, the goal of this research was to determine how the MyD88-dependent receptors 

TLR2, TLR9, and IL-1R influence the anti-bacterial host response to S. aureus in bone.  

We sought to more comprehensively investigate the role of MyD88 and its 

upstream receptors in osteomyelitis to control bacterial burdens at the site of infection, 

dissemination to other S. aureus-susceptible organs, mortality, and identification of innate 

immune cells in the infected femur via histology and flow cytometry. In these studies, we 

found that Myd88-/- mice were extremely susceptible to S. aureus osteomyelitis. Without 

upstream signals transduced from TLRs and IL-1Rs, these immunodeficient mice had 

significant mortality rates and succumbed to infection due to dissemination of S. aureus. 

The Myd88-/- mice that made it to day 14 post-infection (the experimental end point) 
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harbored higher S. aureus burdens in the bone as well. However, when Tlr2-/- and Tlr9-/- 

mice were subjected to S. aureus osteomyelitis, they had similar bacterial burdens as WT 

mice in the infected femurs and no dissemination. These data suggest that loss of a single 

TLR is not overtly detrimental to bacterial clearance or dissemination. In support of other 

findings that suggest IL-1R mediates bacterial clearance in vivo [76, 77, 199, 264-269], we 

found that IL-1R was responsible for the early clearance of bacterial burdens in the femur 

during S. aureus osteomyelitis. With a higher S. aureus inoculum, Il1r1-/- mice were unable 

to control bacterial burdens to the same extent as WT mice by day 14 post-infection. We 

observed dysregulated abscess architecture in Il1r1-/- mice that may have enabled the 

sustained high bacterial burdens. Additionally, with studies suggesting that IL-1R signaling 

is critical for a proper anti-staphylococcal neutrophil response  [270-274], we investigated 

inflammatory mediators of neutrophil responses. We found that, Il1r1-/- mice had a delayed 

ability to produce G-CSF, GM-CSF, and KC. These data suggest a defect in neutrophil 

expansion and recruitment, and via flow cytometry, Il1r1-/- mice did have less neutrophils 

in the bone marrow at two days after infection. Interestingly, the decreased neutrophil 

abundance was detected in both the infected and the uninfected, contralateral femurs. These 

data indicate that IL-1R mice likely have a defect in granulopoiesis, leading to delayed 

clearance of S. aureus (Figure 51, right column).  

 

Remaining questions and future directions 

The innate immune response to S. aureus dictates infection outcomes in a manner 

dependent on host genetics, comorbidities, and the tissue environment. Our research 

supports that skeletal cells participate in the induction of innate immunity and subsequent 
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tissue remodeling events. Future research should therefore investigate how tissue resident 

cells instigate immune responses through the elaboration of cytokines, the recruitment of 

phagocytes, and the production of antimicrobial compounds. At the same time, these 

studies must address the consequences of such immune activation on tissue homeostasis 

and remodeling, factors which play a large role in the morbidity of infectious diseases and 

the eventual recovery of a functional organ system. To this end, specific questions remain 

about the contribution of individual cell lineages to immunity in bone.  

Areas of future research should include: (1) defining the role of immune responses 

mounted by osteoclast lineage cells at various differentiation states, (2) defining how 

crosstalk downstream of common PRR and tissue-specific signaling pathways affects 

skeletal cell communication and bone homeostasis, (3) addressing redundancy or 

compensation between TLRs, (4) determining mechanisms by which IL-1R contributes to 

altered bone remodeling during S. aureus osteomyelitis, (5) examining mechanisms of 

innate and adaptive immunity that limit morbidity from S. aureus osteomyelitis, and (6) 

develop methods to dissociate bacterial- versus immunologic-associated bone remodeling 

alterations. 

 

Define the role of immune responses mounted by osteoclast lineage cells at various 

differentiation states 

 While the results in this thesis primarily focus on mature osteoclasts, results in 

Chapter II clearly describe differences in the inflammatory responses elicited by osteoclast 

lineage cells throughout differentiation. This data was preliminary in nature and leaves 
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many open areas of investigation regarding the role of osteoclast lineage cells (BMMs, 

osteoclast precursors, and mature osteoclasts) in response to S. aureus osteomyelitis.  

1. Define the ability of osteoclast-lineage cells to ingest and kill internalized 

bacterial 

As osteoclasts are also myeloid cells capable of phagocytosing large quantities of 

material [317], questions remain regarding what other macrophage-like qualities 

osteoclasts retain. Internalization of bacteria by professional phagocytes of the myeloid 

lineage such as macrophages, neutrophils, and dendritic cells, lead to the activation of 

intracellular killing mechanisms and antigen presentation [318]. However, it remains 

unclear how osteoclasts throughout their differentiation vary in the ability to internalize 

and kill S. aureus. Moreover, as we have observed differences in cytokine abundance in 

response to S. aureus between BMMs and osteoclast precursors, the capacity of mature 

osteoclasts to mount an immune response remains unknown. 

2. Define the innate immune receptor repertoire at each differentiation state 

The repertoire of TLRs expressed on mature osteoclasts and precursors throughout 

osteoclastogenesis remains unclear. While some published research has addressed this 

question, their findings have tested an incomplete repertoire of TLR protein expression or 

have focused on identifying only transcripts encoding various receptors [55, 75]. 

Osteoimmunology as a field would benefit from the delineation of protein expression of 

various TLRs as the ontogeny of osteoclast differentiation progresses. With specific 

interest in the response to S. aureus, changes in transcript expression and protein abundance 

in response to bacterial stimulation or infection would be informative. 
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3. More clearly define immune responses and transcription factors activated 

downstream of S. aureus stimulation 

The characterization of innate immune receptor expression would allow for the use 

of TLR agonists to define how stimulation of an individual receptor or a combination of 

known receptors can activate transcription factors and production of cytokines. Of interest 

to this project are S. aureus specific ligands that promote osteoclastogenesis in RAW264.7 

cells, that should first be repeated in primary cells. Next, this aim should focus on cytokines 

known to influence osteoclastogenesis and the pathways that activate transcription factors 

shared by osteoclast differentiation, including canonical and non-canonical NFκB, c-Fos, 

c-Jun, Pu.1, MITF, and NFATc1 [25-27, 233]. Activated transcription factors downstream 

of TLR activation should be determined using nuclear localization. Cytokines known to 

influence osteoclastogenesis should be measured following TLR activation and blocked 

during in vitro osteoclastogenesis assays. These studies will define potential mechanisms 

by which specific TLRs overlap with osteoclastogenic pathways cytokine production. 

Investigation into TLR-activated transcription factors may identify major pathways of 

crosstalk with osteoclastogenesis and provide insight into how skeletal cells are affected 

by S. aureus. 

 

Define how crosstalk downstream of common PRR and tissue-specific signaling 

pathways affects skeletal cell communication and bone homeostasis 

Osteoclastogenesis assays in this thesis highlight important innate immune 

receptors necessary to recognize S. aureus and influence myeloid lineage cells. However, 

the discrepancy between in vitro and in vivo osteoclast enumeration suggest that there are 
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other mechanisms that influence skeletal communication to promote osteoclastogenesis. 

As we have used mice completely deficient in each signaling component, it may be 

beneficial to model a more complex system in vitro to more precisely determine skeletal 

cell interactions. I propose the following experiments to test how skeletal interactions 

mediate responses to infectious stimuli in vitro. 

1.  Co-culture assays 

Using a WBM co-culture system has allowed for communication between 

osteoblast and osteoclasts, whereby the osteoblasts in culture are able to produce factors 

for viability and RANKL to mediate osteoclastogenesis. WBM co-cultures would be 

established from cells from the same animal, thus we could compare cellular 

communication between WT and immunodeficient co-cultures in response to S. aureus. 

Thus, S. aureus stimulated WBM co-cultures may be used as a platform to determine the 

role of innate receptors on non-myeloid lineage cells on osteoclastogenesis. However, the 

gold standard co-culture assay would use neonatal calvarial cells from one mouse and 

BMMs from another, to represent osteoblast and osteoclast lineages, respectively. This 

assay would allow for the mixing of genotypes to determine how sensing of S. aureus by 

osteoblasts could lead to quantitative changes in the amount of osteoclast differentiation 

observed, or vice versa. It would be informative to determine the functional consequences 

of combinatorial receptor deletion on each lineage. Furthermore, these studies would be 

enlightened by experiments testing how the loss of innate receptors affects osteoblast 

ability to produce RANKL and OPG in monoculture. 

2. Functional assays  
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A recent study by Shiratori et al. has described a phenotype known as the 

“pathologically activated osteoclast,” which is the result of co-treatment of osteoclast 

precursors in vitro with RANKL and IL-1β [261]. Pathologically activated osteoclasts have 

been classified as having a greater functional capacity to resorb bone, relative to mature 

osteoclasts differentiated by RANKL alone. Findings by Shiratori et al. may further explain 

our own findings in vivo: that Il1r1-/- mice were protected from both enhancement in 

relative osteoclast numbers and osteoclast surface per bone perimeter in trabecular bone, 

but perhaps also lacked the formation of pathologically activated osteoclasts. Thus far, we 

have looked primarily at the ability to perturb differentiation itself through inhibition or 

enhancement of osteoclastogenesis. However, it is likely that if IL-1β enhances osteoclast 

function in terms of the quantity of bone being resorbed, this phenotype may also be 

dependent on TLR stimulation. By this rationale, it would then support experiments 

wherein co-stimulation with S. aureus supernatants alongside RANKL may influence 

osteoclast function differently than giving either stimulus alone. This could be tested in 

vitro with the development of bone resorption assays, utilizing commercially available 

OsteoAssay plates or dentin chip assays [261, 319]. In this assay, osteoclast precursors 

would be differentiated into mature osteoclasts on a mineralized matrix that could then be 

quantified for the amount of bone resorption. 

3. Targeted inactivation of innate pathways in tissue resident cells  

Our results have shown that MyD88 is necessary for S. aureus-induced increases 

in osteoclastogenesis in vitro. The precise roles of tissue resident cells in these signaling 

processes are beginning to be explored, and will be facilitated by new mammalian genetic 

models. To determine if MyD88 signal transduction is critical in skeletal cells during S. 
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aureus osteomyelitis, immune pathways that overlap with osteoclast differentiation could 

be targeted specifically in skeletal cells through genetic deletion. Skeletal cell-specific 

MyD88 knockout mice can be created with Cre-Lox breeding schemes. MyD88-floxed 

mice will be bred to Ocn-cre and Ctsk-cre mice to create mice with MyD88-deficient 

mature osteoblasts and osteoclasts, respectively. The creation of novel skeletal cell-specific 

knockout mice will allow us to determine the importance of MyD88 in skeletal cells during 

bone infection. Additionally, the role of MyD88 in skeletal cell precursor cells may be of 

interest. Cell-specific deletion of MyD88 in osteoblast and osteoclast precursors can be 

accomplished by crossing MyD88 floxed mice with Osx-cre or LysM-cre mice, 

respectively. However, these models are likely to have deletions in other cell lineages. 

Alternatively, BM transplants between WT and Myd88-/- mice can be used to identify 

changes in MyD88 signaling through osteoclast precursors, as osteoblasts and 

mesenchymal cells are resistant to radioablation [320]. These genetic and experimental 

tools will be necessary to study the contribution of MyD88 in specific skeletal cells to bone 

remodeling in vivo. 

 

Redundancy or compensation between TLRs 

 When testing a hypothesis with cells or a host that is deficient in a single receptor 

in the TLR family, the results can be theoretically confounded in two ways: (1) by the 

overlapping downstream activation shared with other TLRs and (2) the ubiquitous 

expression of other TLRs on nearly all host cell types. Within a given host cell, ligation of 

other TLRs may lead to the same or similar functional outcomes. The data from our in vitro 

osteoclastogenesis assays revealed several “intermediate” phenotypes, specifically in cells 
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deficient in TLR9 and IL-1R signaling. The shared signaling pathways through MyD88 

and these intermediate phenotypes suggest that the method by which osteoclastogenesis is 

altered by S. aureus is multifactorial. Moreover, it is unclear whether cells that lack 

signaling through one TLR have other unrelated compensatory changes.  In order to further 

address the hypothesis that S. aureus-sensing TLRs (specifically TLR2 and TLR9) play a 

role in antibacterial immunity and bone remodeling, two methods could be used that 

ameliorate these concerns. The creation of a double knockout mouse, deficient in both 

TLR2 and TLR9, may prevent compensatory signaling between the two individual TLRs. 

If perhaps, TLR9 activation in a Tlr2-/- mouse or TLR2 activation in a Tlr9-/- mouse 

prevented measurable differences in osteoclast number or immune responses in vivo, these 

changes would be elucidated in this mouse. However, it is well established that TLRs also 

respond to DAMPs, which are surely present in the context of cellular death and bone loss 

observed during S. aureus osteomyelitis. To test the more general role of TLR signaling 

without impacting IL-1R family signaling, the Unc93b1-/- mice could be used. Unc93b1-/- 

mice are effectively deficient in all TLR signaling, but retain signaling by IL-1, IL-18, and 

IL-33, which Myd88-/- mice lack [321]. Thus, the Unc93b1-/- mice deliver an animal model 

deficient in several TLRs whereby bone remodeling and histomorphometry can be assessed 

in vivo.  

 

Determine mechanisms by which IL-1R contributes to altered bone remodeling 

during S. aureus osteomyelitis  

 In this thesis, IL-1R signaling was found to contribute to altered bone remodeling 

in cortical and trabecular bone. Il1r1-/- mice have fewer osteoclasts, exhibit less trabecular 
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bone loss, but also have a more extensive cortical bone callus formed around the 

inoculation site. To determine mechanisms by which IL-1R leads to altered bone 

remodeling during S. aureus osteomyelitis, µCT and histomorphometry should be 

compared between infected femurs from WT, Il1r1-/-, Il1a-/- and Il1b-/- mice. Comparisons 

between bone remodeling data should determine if infected Il1a-/- and Il1b-/- femurs are 

similar to WT, if they phenocopy alterations in Il1r1-/- mice, or if they display transitional 

results somewhere between the two. Moreover, the transcriptional activity of IL-1α may 

lead to effects not dependent on IL-1R, which may be elucidated using an Il1a-/- Il1b-/- 

double knockout mouse. These proposed experiments may reveal if there is a primary IL-

1 isoform contributing to altered bone remodeling during S. aureus osteomyelitis. While 

the mechanism behind the robust callus architecture observed in Il1r1-/- mice remains 

unclear, it is possible that decreased bone resorption by osteoclasts in these mice led to a 

less actively remodeling callus. Additionally, enhanced bone formation has been shown in 

sterile bone healing in Il1r1-/- mice [299], and it is possible that the increased callus size in 

Il1r1-/- mice with S. aureus osteomyelitis could reflect a mechanism by which bone heals 

over more quickly in the absence of IL-1R signaling.  

 

Examine mechanisms of innate and adaptive immunity that limit morbidity from S. 

aureus osteomyelitis  

 The primary goal of this thesis was to test how sensing through a subset of MyD88-

dependent innate immune receptors influenced antibacterial responses and bone 

remodeling. However, anti-staphylococcal immunity encompasses not only innate immune 

cell recruitment, but activation of innate immune cell effector functions, other immune 
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effectors such as AMPs and complement, and cells of the adaptive immune system. We 

have shown differences in neutrophil abundance supporting a mechanism of IL-1R-

dependent antibacterial immunity in bone. This work raises the question as to how 

neutrophil activity and function is perturbed in response innate immune activation by S. 

aureus. In connection to work done in this thesis measuring various T cell cytokines in the 

infected bone, the development and functions of anti-staphylococcal effector T cells should 

be explored as well. As critical antibacterial immune responses are identified in bone, we 

should also investigate how they impact bone homeostasis, given that bone pathology is a 

significant driver of morbidity, mortality, and treatment failure. Data elucidated here will 

begin to fill gaps in knowledge regarding anti-staphylococcal innate and adaptive immune 

responses that are important during osteomyelitis.  

 

Develop methods to dissociate bacterial- versus immunologic-associated bone 

remodeling alterations 

 Dysregulated bone remodeling occurs subsequent to S. aureus osteomyelitis. In this 

thesis, we began to address which innate immune receptors influence bone remodeling 

alterations. However, we are unable to conclude from results in this thesis what the degree 

of bone remodeling is dependent on bacterial factors versus immunologic changes. In order 

to dissociate between these two driving factors, new methods must be explored. New 

methods should be informed by similar studies that have intraperitoneally administered 

heat-killed WT or mutant bacteria or TLR agonists [79], or have used polyurethane 

scaffolds to release materials in close proximity to bone [322]. The contribution of bacterial 

components and inflammation on bone remodeling can be better parsed with the 
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combination of genetic mouse models, and testing inflammation or administration of 

bacterial components without active infection.  
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