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CHAPTER 1 

 

INTRODUCTION 

 

1.1. The Colorful History of the Prodigiosin Alkaloids. 

The prodigiosin pigments are known for their bright colors and various biological 

activities.
1,2

 These bright red natural products have a long and ‘colorful’ history. The 

deep red color of these compounds is due to the pyrrolylpyrromethene core, in which 

three pyrrole units make up a system with substantial extended conjugation (Figure 

1.1).
1,3

 

 
 

Figure 1.1. Structures of the prodigiosin alkaloids. 

 

Various acyclic and cyclic substitutions can be incorporated onto the C-ring by 

different bacterial species. Nonylprodigiosin is completely cyclic, with an alkyl chain that 
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extends from the C-ring to connect to the A-ring. Roseophilin is another prodiginine 

alkaloid that incorporates a methoxyfuran in place of the methoxypyrrole of the 

prodigiosins and incorporates a strained macrocyclic motif that contains the azafulvene 

moiety. This strained macrocyclic azafulvene has been the focus of numerous total and 

formal syntheses.
1 

The prodigiosin alkaloids are secondary metabolites produced by a number of 

Gram-negative and Gram-positive bacteria, including Serratia spp., actinomycetes (such 

as Streptomyces coelicolor A(3) 2), and various marine bacteria, including Hahella 

chejuensis, Pseudoalteromonas dentrificans, and KCTC 2396 (Figure 1.2, Panel A).
4,5

 

Since the bacteria strains producing the prodigiosin closely resembled drops of blood 

(Figure 2A), it was hypothesized that this pigment may have been responsible for the 

many miraculous events recorded throughout history.
1,4

 The compound was named 

prodigiosin for this observation
1,6

  Prodigious is an adjective used to describe a noun that 

is extraordinary in size, amount, extent, degree, or force. It can also be used to describe 

something which is wonderful, marvelous, or miraculous. The etymology is the Latin 

prodigiosis from prodigium, which means omen. For the Romans, a prodigium was a 

literally a sign about the future that came from the gods.
7 

This 'prodigious’ pigment has been proposed to be responsible for the miraculous 

phenomenon of the bleeding host in the European Middle Ages.
1,4,8 

 The Mass of Bolsena 

was one of the most famous cases which was commemorated as the festival of Corpus 

Christi and was immortalized by Raphael in 1508, when he was commissioned to 

decorate the papal apartments of Julius II in the Vatican (Figure 1.2, Panel C). Even 

before the Middle Ages, prodigiosin alkaloids had been implicated by historians as early 
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as 332 BC. At the Siege of Tyre, Alexander the Great predicted victory based on the 

‘bloody’ bread served throughout the camp.
1,4 

 Since the ‘blood’ was inside the bread, not 

on the outside, Alexander’s seer predicted that the omen meant the besieged city would 

bleed from the inside. Tyre was considered an impregnable island fortress off the coast of 

modern Lebanon, situated about one half mile off the mainland, surrounded by 18 feet 

deep water, and with walls 150 feet high. Alexander’s army started to build a 200 yard 

wide land bridge from the mainland to the island in January of 332 BC. These endeavors 

took seven long months, but the ensuing struggle of the Tyrians was short-lived. Today, 

Tyre is still connected to mainland by this manmade causeway (Figure 1.2, Panel D). 9 

 

Figure 1.2. Panel A: Streptomyces coelicolor producing the blood red prodigiosin pigment. Panel 

B: Structure of prodigiosin.  Panel C: Raphael’s “Mass of Bolsena” fresco in the Vatican.
1
 Panel 

D: Present-day Google Earth image of the island of Tyre and Alexander the Great’s land bridge 
that now connects the island to the mainland and completely altered the coastal currents. 
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While the prodigious prodigiosins produced by bacteria were the subject of 

miracles and signs from God, until the late 1900s, the true nature of their ability to 

perform ‘miracles’ would be unknown. During this time, the biological properties of the 

prodigiosins and their potential to become life-saving therapeutics would begin to be 

realized. 

 

1.2. Biosynthetic Origins of Prodigiosin Alkaloids. 

In 1960, the structure of prodigiosin was confirmed through chemical synthesis by 

Rapoport and Holden.
10

 Over the next 50 years, biosynthetic studies to identify the gene 

clusters responsible for prodigiosin production would prove challenging yet rewarding. 

The first major milestone was the confirmation that the biosynthesis is a bifurcated 

pathway that combines an alkyl pyrrole (MAP, 2-Methyl-3-n-Amyl-Pyrrole in 

prodigiosin) with the 4-Methoxy-2,2’-Bipyrrole-5-Carbaldehyde (MBC) through an 

enzymatic condensation.
11

 Feeding studies revealed that proline, serine, acetate, glycine, 

and S-adenosylmethionine were the required components necessary for the biosynthesis 

of prodiginines.
4,12 

 Once the genomes of prodigiosin-producing bacteria were sequenced, 

the gene clusters for pigment production were identified by inactivation and measurement 

of accumulated biosynthetic intermediates. It became evident that gene clusters 

responsible for production of MBC were highly conserved throughout the prodiginine-

producing bacteria. However, gene clusters responsible for MAP or other alkyl pyrrole 

formation, were completely different. This difference may be explained by the need to 

incorporate different starter units to construct slightly different monopyrroles. 

Undecylprodigiosin biosynthetic cluster components were abbreviated red, whereas the 
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prodigiosin biosynthetic gene clusters of Serratia sp. ATCC 39006 and S. marcescens 

ATCC274 were abbreviated pig. A summary of our current knowledge of the 

biosynthetic pathways of prodiginine natural products is described in Figure 1.3.
4
  

 

Figure 1.3. Biosynthesis of Prodigiosin, Undecylprodigiosin, and Butyl-meta-
cycloheptylprodigiosin.

4
 (adapted from Williamson 2006). 

 

 

1.3. Biomimetic Syntheses of Prodigiosin Alkaloids. 

At the time of the first total synthesis of prodigiosin in 1962, the bifurcate 

pathway had been identified and a biomimetic approach, which involved synthesizing 

MBC and subsequent condensation with MAP, was the route chosen for the early 

endeavors in prodiginine chemical synthesis. 
4,13
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Scheme 1.1. First total synthesis of prodigiosin 1.1 by Rapoprt and Holden.
10 

 

The 1962 Rapoport Holden synthesis began with the condensation of the sodium 

salt of diethyl N-ethoxycarbonyl glycinate 1.9 with diethyl ethoxymethylenemalonate 

1.10 to give diethyl 3-hydroxypyrrole-2,4-dicarboxylate 1.11.
10

 O-alkylation with 

diazomethane and subsequent selective hydrolysis of the more reactive ester at C4 

followed by decarboxylation of the resulting acid afforded pyrrole 1.13 which was 

condensed with imine 1.14 to provide pyrrole-pyrrolidine 1.15 in very low yield. 

Dehydrogenation of the pyrrolodine ring was achieved with Pd/C to give ester 1.16, 
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which was transformed to aldehyde 1.17 through McFayden-Stevens reduction. 

Condensation of aldehyde 1.17 with alkyl pyrrole 1.18 completed the first total synthesis 

of prodigiosin (1.1). This route highlighted the difficulty of pyrrole synthesis and the 

methods available at the time, namely, condensation reactions and thermal 

decarboxylations and fragmentations with variable yields. In the last 50 years, subsequent 

routes to access the tripyrrole prodiginine cores have led to considerable advances in 

heterocyclic chemistry.  

 

Scheme 1.2. First generation synthesis of MBC 1.17 by Wasserman and co-workers.
14 

 

Wasserman and co-workers developed a method for the synthesis of MBC 1.17 

based on cyclization of a vicinal tricarbonyl intermediate (1.22) (Scheme 1.2).
14
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Aldeyhde 1.19 was treated with dianion 1.20. The most basic, terminal anion reacts with 

the aldehyde and subsequent acidic work-up quenched the second anion and provided the 

elimination product of the addition, the -keto ester 1.21. Oxidation of the activated 

methylene with N,N-dimethyl-p-nitrosoaniline provided tricarbonyl 1.22. Reaction with 

benzylamine 1.23 proceeds through a 1,2-addition to the highly electrophilic center 

carbonyl and subsequent intramolecular 1,4-addition. Acidic dehydration provides the 

aromatic bipyrrole 1.24. O-alkylation and removal of the dimethoxy benzyl protecting 

group gave ester 1.16. McFayden-Stevens reduction provided the desired aldehyde 1.17 

 

Scheme 1.3. Second generation synthesis of MBC 1.17 by Wasserman and co-workers.
15 

 

In a second-generation synthesis by Wasserman and co-workers, an oxidative 

method was used to combine the two pyrrole units (Scheme 1.3).
15

 Treatment of ester 

1.25 with methylene blue and irradiation with a tungsten halogen lamp under an oxygen-

rich atmosphere provided peroxide 1.26. Addition of pyrrole to the reaction mixture traps 

the intermediate peroxide generating the t-butyl ester bipyrrole 1.27. McFayden-Steven’s 
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reduction afforded aldehyde 1.17. Both of these routes relied upon the inefficient, 

McFayden-Stevens reduction, resulting in low overall yields. Nevertheless, Wasserman 

and co-workers were able to use their routes to achieve the synthesis of prodigiosin, 

undecylprodigiosin, and metacycloprodigiosin in addition to several unnatural 

analogues.
15-19

  

 

Scheme 1.4. Synthesis of MBC 1.17 by Boger and co-workers featuring a key inverse-electron-

demand Diels-Alder reaction.
20

 
 

 Boger and co-workers prepared the MBC core through a key inverse-electron-

demand Diels-Alder reaction between 1,2,4,5 tetrazine 30 and 1,1-dimethoxy ethane to 

give the resulting pyridazine 1.29 in excellent yield (94%) (Scheme 1.4).
20

 Ring 

contraction with zinc dust and acetic acid provided the 2,5-dimethylcarboxylate pyrrole 
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1.30 in good yield. Hydrolysis of the more sterically-accessible and electrophilic C5 ester 

and iodine-mediated decarboxylation provided the diiodo intermediate 1.32. 

Hydrogenolysis provided pyrrole 1.33 and acylation gave urea 1.35, which was subjected 

to oxidative coupling with stoichiometric polymer-supported palladium acetate. 

Hydrolysis of the urea tether and subsequent conventional, yet low-yielding, McFayden-

Stevens reduction provided MBC 1.17 in 34 % yield. Boger and co-workers used the 

MBC 1.17 in various condensation reactions to probe the structure-activity relationship 

(SAR) of this class of compounds and the parameters responsible for cytotoxic and 

antibacterial activities.  

While routes to achieve the total synthesis of prodigiosin heavily focused on the 

generation of MBC 1.17, the synthesis of variously substituted alkyl mono-pyrroles, 

especially the cyclic pyrrole congeners, proved a considerable synthetic challenge. 

Wasserman and co-workers were the first to access the strained macrocyclic 

pyrrolophanes for the total synthesis of metacycloprodigiosin (Scheme 1.5).
19

 

Cyclododecanone was transformed into the brominated derivative 1.38 through routine 

manipulations. Elimination and deprotection provided enone, 1.39, which then underwent 

several reaction to achieve transposition and provide enone 1.40. Conjugate addition of 

cyanide anion to transposed enone 1.40, protection of the carbonyl, reduction of the 

cyano moiety to the aldehyde, and subsequent deprotection provided 1,4-dicarbonyl 1.41. 

Paal-Knorr condensation completed the synthesis of the desired 12-membered 

pyrrolophane macrocycle (1.42) in 1.4 % yield over 13 steps. Biomimetic condensation 

with MBC 1.17 provided metacycloprodigiosin (1.6).  
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Scheme 1.5. Synthesis of metacycloprodigiosin by Wasserman and co-workers.
19

 

 

Fürstner and co-workers achieved the synthesis of the 12-memebered 

pyrrolophane core of metacycloprodigiosin by utilizing an intramolecular Tsuji-Trost 

reaction of the vinyl epoxide 1.43 to provide the highly-functionalized 12-membered ring 

(1.44) (Scheme 1.6).
21

 Functional group manipulations and base-induced elimination of 

the sulfone provided 1,4-dicarbonyl 1.45. Paal-Knorr condensation with benzyl amine 

gave the protected pyrrole (1.46).  Additional steps led to the formation of the benzyl-

protected pyrrolophane moiety in 1.6 % yield over 14 steps.  
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Scheme 1.6. Synthesis of the metacycloprodigiosin pyrrolophane core by Fürstner and co-
workers.

21 

 

The Paal-Knorr condensation has proven a very effective method of generating 

the alkyl-substituted pyrrolophane cores of prodigiosin alkaloids. However, in Fürstner 

and co-workers’ synthesis of streptorubin B, a novel ring expansion reaction was utilized 

to generate the 10-membered ring pyrrolophane core (1.55) (Scheme 1.7).
22

 Allylic 

amination of cyclooctene 1.48 provided amine 1.49, which underwent alkylation with 

propargyl bromide and subsequent acylation of the acetylide with butanoyl chloride to 

provide enyne 1.50. The ring expansion reaction is a formal “enyne metathesis” reaction 

catalyzed by platinum (II) chloride that is hypothesized to occur through a nonclassical 

carbocation intermediate (1.51-1.53), based on observed byproducts, to yield macrocycle 

1.54. Subsequent transformations provided the alkyl pyrrole component (1.55) of 

streptorubin B (1.7) in 9 steps from cyclooctene and 13.5 % overall yield.  
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Scheme 1.7. Fürstner and co-workers’ ‘Enyne metathesis” route to prepare the C-ring pyrrole of 

streptorubin B (1.7). 
22 

 

 

 This ring expansion reaction also proved highly successful at accessing the 12-

membered pyrrolophane core of metacycloprodigiosin (1.6) from cyclodecene in 9 steps 

and 3.4 % yield (Scheme 1.8). 
22 

 

Scheme 1.8. Synthesis of the C-ring pyrrole of metacycloprodigiosin (1.6) by Fürstner and co-

workers utilizing their developed ring-expansion reaction.
22 
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1.4. Cross-Coupling Reactions in the Synthesis of Prodigiosin Alkaloids. 

 D’Alessio and co-workers were the first to move away from the biomimetic 

condensation of MBC 1.17 and an alkyl pyrrole. Instead of combining the A and B rings 

to form MBC 1.17 and incorporating the C-ring in the condensation reaction, D’Alessio 

and co-workers condense the B and C ring and incorporate the A ring through a Suzuki 

cross-coupling reaction (Scheme 1.9).
23,24

 Aldehyde 1.59 underwent base-mediated 

condensation with commercially available pyrrolinone 1.60 to give enelactam 1.61. 

Treatment with triflic anhydride provided triflate 1.62, which was used in a Suzuki cross-

coupling reaction with 1-Boc-pyrrole-2-boronic acid (1.60) to provide 

undecylprodigiosin (1.2) in 3 steps and 45.6 % yield from aldehyde 1.59.  This great 

improvement yield and the requirement for significantly fewer steps highlights the 

importance and impact of the development of cross-coupling reactions as a means of 

forming C-C bonds, especially in heterocyclic, aromatic systems.  

 

Scheme 1.9. D’Alessio et al. total synthesis of undecylprodigiosin utilizing a key Suzuki cross-

coupling reaction for the generation of the bipyrrole moiety.
23,24
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The methods developed by D-Alessio and co-workers were incorporated into the 

first total synthesis of nonylprodigiosin by Fürstner and co-workers (Scheme 1.10).
25

 By 

employing the basic condensation of formylated alkyl pyrrole 1.64 and pyrrolinone 1.60, 

triflate formation, and Suzuki cross-coupling, a mixture of E (1.68) and Z (1.69) isomers 

about the methylene bond was obtained. Ring-closing metathesis (RCM) with ruthenium-

based catalyst 1.70 could only occur with the Z-isomer (1.68). As the Z-isomer reacts to 

form the macrocyclic product, the preequilibrium is constantly shifting to form more of 

the minor Z-isomer in solution, which is subsequently intercepted in the metathesis 

reaction. Hydrogenation of the presence of Wilkinson’s cationic rhodium catalyst 

completed the first total synthesis of nonylprodigiosin (1.4). The convergent nature of 

this route has enabled the synthesis of many unnatural analogs with heterocyclic variants 

for SAR studies.
26,27 
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Scheme 1.10. Fürstner and co-worker’s synthesis of nonylprodigiosin (1.4) utilizing a key RCM 
reaction.

25 

 

 

Diari and co-workers developed a highly scalable route for the synthesis of an 

unnatural prodigiosin analog, obatoclax, for clinical trials (Scheme 1.11).
28

 Diari’s route 

is based on D’Alessio’s route, which incorporates a key Suzuki cross-coupling reaction.
25

 

However, Diari’s route utilizes the Suzuki reaction to form the C-C bond between the A-

ring and B-ring and includes the biomimetic acid-mediated condensation reaction to 
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incorporate the C-ring pyrrole. A Vilsmeier-Haack haloformylation is utilized to generate 

bromoenamine 1.72, and subsequent Suzuki cross-coupling with the N-protected indole 

boronic acid 1.73 provides the MBC analog 1.74. Acidic condensation with 2,4-

dimethylpyrrole (1.75) completes the synthesis of obatoclax (1.76) in 3 steps from 

commercially available starting material. 

 

Scheme 1.11. Diari and co-workers route for the large-scale synthesis of obatoclax (1.76) 
for clinical trials. 

28 

 

 

Recently, a Meldrum’s acid route that allows easy access to prodigiosin analogues 

with variations at the A, B, and C ring has been developed by McNab and co-workers 

(Scheme 1.12).
29

 Starting from known 1.77 analogs, flash vacuum pyrolysis (FVP) is 

employed to generate ketone 1.78, which was immediately methylated to provide methyl 

ether 1.79. Vilsmeier formylation conditions were utilized to provide the aldehyde 1.80. 

Phosphoryl chloride catalyzed condensation of aldehyde 1.80 with 2-unsubstituted 

pyrrole 1.84 provided prodigiosin unnatural analogs 1.85. By altering the 3 core rings to 

incorporate various heterocycles, they hope to develop detailed structure-activity 

relationships to better understand the prodigiosin bioactivity. The Meldrum’s acid route is 
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unique in the fact that it enables variation at all 3 pyrrole rings, not just at the C-ring, 

which is available from the condensation routes, or the A-ring, with is available from the 

cross-coupling routes.  

 

Scheme 1.12 Meldrum’s acid route to prodigiosin analogues developed by McNab and co-

workers.
29 

 

 

1.5. Enantioselective Syntheses of Prodigiosin Alkaloids. 

While there have been numerous efforts to achieve the total synthesis of 

prodigiosin alkaloids, it was not until 2009 that the first enantioselective total syntheses 

of a tripyrrole prodiginine natural product wwas achieved by Thomson and co-workers.
30 

Thomson and Clift utilized a stereoselective, merged 1,4-addition/oxidative 

coupling process to achieve the total synthesis of metalocycloprodigiosin (1.6) and the 

recently isolated prodigiosin R1 (1.8) (Scheme 1.13).
3
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Scheme 1.13. Merged 1,4 addition/oxidative coupling for the synthesis of metacycloprodigiosin 

(1.6) and prodigiosin R1 (1.8) by Thomson and Clift
30 

 
 

Using conditions developed by Feringa and co-workers, Thomson and Clift began 

the synthesis of metalocycloprodigiosin (1.6) by regio- and stereoselective copper-

catalyzed 1,4-addition of ethylmagnesium bromide to enone 1.83 followed by enolate 

trapping with chlorosilane 1.84 to give silyl bis-enol ether 1.85 as a mixture of enol 

isomers (Scheme 1.14). Using conditions developed in Thomson’s lab for oxidative bond 

formation, dione 1.86 was generated in 35% yield over two steps from enone 1.83. RCM, 

hydrogenation, and Paal-Knorr condensation provided the chiral, saturated, C-ring 

pyrrole, and methyl oxidation with DDQ provided aldehyde 1.87. Aldehyde 1.87 was 

then utilized in a trimethylsilyltriflate-mediated aldol condensation reaction with 

pyrrolinone 1.60 to give conjugated lactam 1.88. Triflation, Suzuki cross-coupling with 

boronic acid 1.63, and Boc-deprotection afforded metalocycloprodigiosin (1.6) in 11 

steps from enone 1.83 and proceeded in 13% overall yield. This enantioselective strategy 

was also applied to the first total synthesis of prodigiosin R1 (1.8) in 11 steps and 7% 

overall yield (Scheme 1.15).
30

 These two syntheses represent the first time that any 

members of the tripyrrole prodigiosin alkaloids have been prepared in enantioenriched 

form.  
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Scheme 1.14. Enantioselective total synthesis of  metalocycloprodigiosin (1.6) by 

Thomson and Clift.
30

 

 

 

 

Scheme 1.15. Enatioselective total synthesis of prodigiosin R1 (1.8) by Thomson and 

Clift.
30 
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In 2011, Thomson and coworkers once again designed an enatioselective route for 

the preparation of a prodigiosin analogue, streptorubin B (1.7) (Scheme 1.16).
31

 After 

attempts to incorporate their previously developed methodology, they found that the 

RCM used to form the 12-memebred ring of metalocycloprodigiosin (1.6) and 

prodigiosin R1 (1.8) was not a viable option for the formation of the 10-membered ring in 

streptorubin B (1.7). In light of this discovery, they investigated alternative routes to 

achieve the enantioselective synthesis of this highly strained prodigiosin alkaloid. The 

synthesis began with the oxidative cleavage of cycloheptene 1.89 to form dialdehyde 

1.90, which underwent a one-pot enantioselective aldol/Wittig reaction to provide alcohol 

1.91 in 10:1 dr and 98:2 er. Swern oxidation followed by addition of vinyl anion 1.92 

gave alcohol 1.93, the precursor to an anionic oxy-Cope rearrangement in 97:3 er. 

Exposure of alcohol 1.93 to KHMDS and 18-crown-6 produced the desired 10-memebred 

ring (1.95) in 85% yield. Alkene reduction and concomitant benzyl ether cleavage, 

oxidation of the liberated alcohol to the aldehyde, and Paal-Knorr condensation provided 

pyrrole 1.55. Using chemistry developed in our lab based on the work of Diari and co-

workers,
29,33

 Thomson and co-workers completed the first enantioselective synthesis of 

streptorubin B (1.7) in 9 steps and 20% overall yield.
31

 After comparing the Circular-

Dichroism (CD) spectra of the natural and synthetic streptorubin B (1.7), it was 

determined that the S-enantiomer is the naturally-occurring stereoisomer, which is unique 

from the 12-membered pyrrolophane, metalocycloprodigiosin (1.6), which was 

determined to naturally occur as the R-enantiomer. 
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Scheme 1.16. Enantioselective total synthesis of streptorubin B (1.7) by Thomson and co-

workers, incorporating a tandem aldol/Wittig sequence and a key anionic oxy-Cope 

rearrangement.
31

 
 

 

The evolution of synthetic, heterocyclic chemistry is clearly evident in the 

preparation prodigiosin alkaloids. From the condensations and decarboxylations of 

Rapoport and Holden in 1960, to RCM, Suzuki cross-coupling, and enantioselective 1,4 

conjugate additions of the twenty-first century; alkaloid synthesis has come a long way.  
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1.6. Biological Activity of Prodigiosin Alkaloids and Unnatural Analogs.  

The interest in prodiginine natural products is not simply due to the synthetic 

challenges offered by the unique structures. This class of natural products exhibits many 

interesting biological activities, from immunosuppression, to anticancer activity, to 

antimicrobial and antimalarial activity.
1,4

 In many cases, these activities occur at 

nanomolar concentrations with a considerable therapeutic window. 

 

 

Figure 1.4. Numerous actions of the prodigiosin by different pathways. The prodigiosin 

alkaloids have been shown to facilitate an apoptotic scenario by 4 alternative routes.
33

(adapted 

from Pérez-Tomás 2003). 
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The prodigiosin alkaloids have been implicated to exert biological activities 

through numerous possible mechanisms of action in various cell types and disease states 

(Figure 1.4).
33

 Prodigiosin alkaloids possess considerable hydrophobic components and 

are highly unstable in aqueous solutions. These compounds may diffuse rapidly through 

membranes and interact with DNA with a preference for the AT sites at the minor groove 

promoting copper-mediated dsDNA cleavage. Cells respond to this DNA damage by 

activating cell-cycle arrest, DNA repair, or triggering apoptosis (Route 1).
34-36

  

Prodiginine compounds may be incorporated into the lipid bilayer of the plasmatic 

membrane, where by endocytosis they reach the endosome compartment and uncouple 

vacuolar H
+
-ATPase (V-ATPase) through promotion of the H

+
/ Cl

-
 symporter. This 

causes neutralization of acidic compartments within the cells, thus inducing intracellular 

acidification and triggering autophagy-induced cell death and eventually apoptotic cell 

death (Route 2).
 37-40

 A prodiginine compound may activate an unidentified prodigiosin 

receptor or a known death receptor, inducing caspase 8 activation and consequently, 

apoptosis (Route 3). Prodigiosin alkaloids may diffuse freely through membranes and 

interact with the mitochondrial outer membrane, uncoupling Fo-F1-ATPase and triggering 

apoptosis (Route 4).
41,42

 The pathway followed by a particular prodiginine compound 

would depend very much on the cell type studied, the drug concentration within the cell, 

the uncharacterized hierarchy of the prodiginine targets, and the interaction between 

distinct pathways.
33 

In human neuroblastoma cell lines prodigiosin (1.1) acts as a proton sequestering 

agent that destroys the intracellular pH gradient, and it has been proposed that the main 

cytotoxic effect could be related to action on mitochondria, where it exerts an uncoupling 
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effect on the electronic chain transport of protons to mitochondrial ATP synthase.
43 

Nonylprodigiosin-HCl has been shown to inhibit apoptosis in PC12-RasN17 cells 

through Ras and the activation of the Ras-PI3K-Akt pathway.
44

 Acidification of 

cytoplasm, DNA damage, suppression of NF-kappa beta, and sustained JNK activity 

could all activate Ras and initiate a protective effect in this cell line; however, to date, 

this is the first example of prodigiosins exhibiting an antiapoptotitc effect in any cancer 

cell line. 

Prodigiosins have also been shown to uncouple lysosomal vacuolar-type ATPase 

through promotion of H
+
/ Cl

-
 symport. Prodigiosin (1.1), metacycloprodigiosin (1.6), and 

undecylprodigiosin (1.2) all raise intralysosomal pH through inhibition of lysosomal 

acidification driven by vacuolar (V-)-ATPase without inhibiting ATP hydrolysis in a 

dose-dependent manner with IC50 values of 30-120 pmol/mg of protein.
45

  

Prodigiosin (1.1) has also demonstrated induction of p21, a negative cell-cycle 

regulator, in a p-53 independent manner as prodigiosin induced p21 in MCF-7 cells with 

both mutated and dominant negative p53.
46

 The p53 protein is mutated in most human 

cancers and this mutation prevents cancer cells from suffering the cytostatic and/or 

cytotoxic effects of anticancer drugs.
47

 Since prodigiosin (1.1) does not require the 

presence of this protein to exert its effect on cancer cells, this could make prodiginine 

compounds a promising lead for treatment of p53-mutant cancer cell lines. 

 In vitro, prodiginine alkaloids have been shown to intercalate DNA with a 

preference for the AT sites in the minor groove.
34

 Prodiginine compounds display 

oxidative copper-promoted dsDNA-cleavage and the superior copper-nuclease activity 

correlates to superior anticancer properties in leukemia (HL-60) cell line. Through SAR 
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studies, it has been found that a nitrogen-containing A-ring and the B-ring methoxy 

substituent are required for potent cytotoxicity.
20,23,48,49

 

X-ray crystallography has revealed that prodigiosin binds to copper in a 1:1 Cu (I) 

complex ( 1.98) and that all 3 nitrogens coordinate to the metal atom (Scheme 1.5).
48

 The 

C-pyrrole ring is oxidized and contains an OH group attached to C1 to generate an sp
3
-

hybridized carbon atom and a new double bond between N1 and C4. Coordination with 

Zn forms a 1:2 Zn(I)2 complex (1.97) where prodigiosin has not undergone oxidation. 

Also, the A-ring does not participate in Zn (II) binding. These results indicate that all 3 

nitrogens of the tripyrrole core of the prodigiosins is required for oxidative dsDNA 

cleavage. 

 

 

Figure 1.5. Crystal structures of prodigiosin (1.1) bound to zinc as a dimeric species (left) and 

copper as a monomeric species (right).
48
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Replacement of the A-ring with substituted indoles and unnatural alkyl pyrrole 

substituents has produced new antiproliferative prodigiosin analogs.
49

 However, 

substitution of the A-ring with thiophene, furan, or phenyl decreases nuclease activity and 

abolishes anticancer activity. One of the most important and successful unnatural 

prodiginine alkaloids is a synthetic compound named obatoclax (1.76), which was 

developed by GeminX Pharmaceuticals and was described as a BH3 mimetic drug.
50

 

However, the molecular target of the majority of prodiginine derivatives remains 

unidentified and the pathways involved in observed biological activities uncharacterized. 

In 2012, Pérez-Tomás, R. and co-workers discovered a new molecular target for 

prodigiosin (1.1) and obatoclax (1.76), the mammalian target of rapamycin (mTOR) 

(Figure 1.6).
51

 mTOR is an evolutionarily conserved serine/threonine protein kinase 

which is constituted of two signaling complexes: mTOR complex 1 (mTORC1) and 

mTOR complex 2 (mTORC2). Both complexes have specific effects on distinct cellular 

functions, such as controlling mRNA translation, ribosome biogenesis, autophagy, and 

metabolism.
52-54

 It was discovered that the two prodiginine alkaloids inhibit both 

mTORC1 and mTORC2 and thus counteract S6K-1/IRS-1 negative feedback loop in 

melanoma.
51

 Melanoma is notoriously resistant to cytotoxic reagents, and the 

development of this resistance has been related to the presence of different feedback 

loops that link both P13K/AKT/mTOR and mitogen activated protein kinase (MAPK) 

pathways. These pathways are critical to melanoma progression and both are deregulated 

in melanoma, but not in normal cells.
 55,56
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Figure 1.6. Structures of prodigiosin (1.1) and obatoclax (1.76). 

 

Pérez-Tomás, R. and co-workers discovered that prodigiosin (1.1) and obatoclax 

(1.76)  both induced activation of autophagic-dependent and apoptotic cell death and that 

induction of autophagy actually occurred before apoptosis.
51

 Kinetics and affinity 

evaluation revealed high-affinity binding between mTOR and the two prodigiosin 

alkaloids. In silico modeling was performed to identify key interactions between each of 

the prodiginine compounds and mTOR. In the induced fit prodigiosin-mTOR complex, 

the hydrophonic environment around the pentyl side chain includes Ile2500, Ile2559, and 

Val2504 (Figure 1.7). Stacking interactions were observed between His2340 and PG 

pyrrole rings. The “H-bond ring” created by the alcohol chain of Ser2342 and the two 

extreme pyrrole nitrogens in the A-ring and C-ring appeared to be a key interaction. 

Obatoclax-mTOR complex has a key H-bond interaction between the C-ring pyrrole and 

a glutamine residue (Figure 1.7). The indole moiety appears to be involved in 

hydrophobic interactions between I2559 and I2500. The lack of a key H-bonding 

interaction between the indole ring and residues within the mTOR binding site is 

surprising since it has been shown that a nitrogen containing A-ring is necessary for 

activity.
20,23,48,49

 The role of the B-ring in mTOR binding is not evident from the in silico 

models. Clearly, prodiginine research could benefit from biological testing of additional 
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analog libraries to elucidate the molecular mechanisms and targets of these interesting 

molecules. With both of these compounds in Phase I/II clinical trials, it would be highly 

desirable to generate compounds with known mechanisms of action and improved 

chemical properties to facilitate bioavailability and the development of oral 

formulations.
51

 

 

 

Figure 1.7. In silico induced fit models of prodigiosin-mTOR complex (top) and obatoclax-

mTOR complex (bottom).
51

 (adapted from Pérez-Tomás 2012). 

 

 

The anticancer activity of the prodigiosin alkaloids alone makes them intriguing 

synthetic targets; however, the immunosuppressive properties of prodiginine compounds 
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have been receiving a large amount of attention due to the need of compounds with this 

activity and novel mechanisms of action. Cyclosporin A (CsA), FK 506, and rapamycin 

are currently the immunosuppressive drugs utilized to prevent allograft rejection in organ 

and tissue transplants and to treat autoimmune diseases.
2,57

 Prodigisin alkaloids have been 

shown to suppress cytotoxic T-cells without affecting B cell-mediated immune functions, 

which is unique from the traditional immunosuppressants.
57

 In another sturdy, co-

treatment with prodigiosin and CsA in mice that have undergone bone marrow 

transplants provided a more effective treatment than either drug dosed alone. Prodigiosin 

(1.1)  inhibited only IL-2R expression, but not IL-2 expression; whereas CsA inhibited 

both.
58

 Exogenously added IL-2 reversed the suppressive activity of CsA, but not that of 

prodigiosin (1.1). These results indicated that prodigiosin (1.1) and CsA have similar 

inhibitory potencies but different modes of action that warrant additional investigation. It 

is of great interest to generate prodiginine analogs that ‘dial out’ anticancer activity and 

increase immunosuppressant activity in order to investigate their potential to treat 

autoimmune diseases and to prevent allograft rejection. D’Alessio and coworkers 

identified PNU-156804, a compound which prevented heart allograft rejection in mice in 

a dose-dependent fashion (Figure 1.8).
23

  

 

Figure 1.8. Structure of PNU-156804 (1.99) synthesized by D’Alessio and co-workers.
23
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The ability to uncouple the anticancer and immunosuppressive activity of these 

compounds is highly desirable in the search for clinically relevant drug candidates. In the 

last decade, numerous diseases have been identified to result from immune system 

deregulation, such as lupus, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, 

Psoriasis, and Diabetes mellitus type 1.
59

 These diseases are included in a class known as 

autoimmune diseases, and could potentially be treated by selective immunosuppressant 

agents.  

If immunosuppression and anticancer activity are able to be optimized or ‘dialed-

out’, then one could also imagine optimizing the observed antimalarial activity over other 

biological activities to obtain effective therapeutics for eradication of the Plasmodium 

falciparum parasite. While synthetic prodigiosin analogs have shown potent antimalarial 

activity, dose-limiting toxicity is still a problem and additional compounds will need to 

synthesized and further SAR developed.
61

 Reynolds and co-workers have synthesized 

extensive libraries of unnatural prodigiosin analogs and have found that the A-ring 

pyrrole is critical for antimalarial activity, as has been observed in numerous other SAR 

studies of various biological activities. Variation of the C-ring by incorporating 

hydrophobic groups of various size and length proved integral to activity enhancement in 

vitro and in mouse models. 
60

 

 

1.7. Summary. 

The prodigiosin alkaloids possess a rich history, and have been the focus of 

numerous synthetic endeavors.
10-31

 These natural products are produced by various 

bacteria species, and have been shown to possess antibacterial, antimalarial, anticancer, 
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and immunosuppressant activities.
33-60

  The interesting and numerous biological activities 

of the prodiginine alkaloids are the main reason these natural products have been the 

subject of numerous synthetic endeavors and SAR studies over the past 50 years and will 

continue to intrigue chemists and biologists for many years to come. 
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CHAPTER 2 

 

PROGRESS TOWARD THE TOTAL SYNTHESIS OF MARINEOSINS A & B 

 

2.1. Isolation and Structure Elucidation of Marineosins A & B.  

 Marineosins A and B (2.1 and 2.2) were isolated by Fenical and co-workers in 

2008 from cultures of a marine sediment-derived actinomycete related to the genus 

Streptomyces.
1
 The key structural features common to the marineosins are the spiroiminal 

center, two pyrrole moieties, and a 12-membered macrocyclic ring (Figure 2.1).  

 

Figure 2.1.  Structures of marineosins A & B (2.1 & 2.2) and prodigiosin 2.3.
1 

 

The marineosins appear to be derived from unknown modifications of 

prodigiosin-like bacterial pigment pathways. A biosynthetic route suggested by Fenical 

and co-workers (Figure 2.2),
1
 begins with the condensation of 2.4, the known primary 

precursor bipyrrole aldehyde (MBC) of the prodigiosin alkaloids, with a novel 2-keto-

undec-3-enylpyrrole 2.5 to give 2.6. Enone 2.6 could then undergo an intramolecular, 

inverse-electron-demand hetero-Diels-Alder cyclization to form the tetrahydropyran ring 

and spiroiminal simultaneously.  
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Scheme 2.1. Possible biosynthesis of 2.1 and 2.2 via an inverse-electron-demand hetero-Diels-

Alder cyclization. 
 

 

2.2. Biological Activity of Marineosins A & B. 

Following isolation and structure elucidation through 1D and 2D NMR 

techniques, the marineosins were tested for their ability to arrest cell division in the HCT-

116 human colon tumor cell line.
1
 Marineosin A exhibited an IC50 value of 0.5 M in the 

HCT-116 cytotoxicity assay. In contrast, marineosin B showed considerably weaker 

cytotoxicity with an IC50 value of 46 M. Testing of marineosin A in the National Cancer 

Institute (NCI) 60 cell line panel showed considerable selectivity against melanoma and 

leukemia cell lines. Due to the unprecedented spiroiminal core and the potential of 

marineosin A as an anticancer therapeutic, these new members of the prodiginine family 

of natural products are intriguing synthetic targets.  

By synthesizing marineosin analogs and performing biological assays for 

anticancer activity, immunosuppression, and antimalarial activity, we hope to identify the 

minimal pharmacophore necessary for each of these activities, to prepare simplified 

analogs based on the knowledge of the key structural feature required for activity, and to 

optimize compounds that display one activity preferentially over the other activities. 
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Once we have obtained these selective compounds, gene-expression profiling can be 

performed to reveal candidate pathways involved in the observed activities and RNAi 

modifier studies can be utilized to identify which proteins in a signaling pathway are 

putative targets for our compounds. We can also perform affinity chromatography 

experiments to identify protein targets and determine specificity. This knowledge would 

prove invaluable to prodiginine research, as well as cancer, immunology, and malaria 

research.  

 

2.3. The Diels-Alder Reaction in Organic Synthesis.  

 

2.3.1. Discovery of the Diels-Alder Reaction 

In 1928 Otto Diels and Kurt Alder published their landmark paper describing the 

[4+2] cycloaddition of cyclopentadiene and quinone (Scheme 2.2).
2
 After several key 

theoretical breakthroughs, such as Alder’s endo rule and Woodward’s prediction of 

regiochemistry based on the electronic nature of diene and dienophile sbstituents, the 

synthetic utility of this reaction, which effectively couples a conjugated diene and an 

olefin (dienophile), became evident.
3-5

 The ability to generate complex cyclohexene-

containing products with excellent regio- and stereoselectivity at multiple stereocenters 

makes this reaction one of the most valuable tools available to synthetic chemists.
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Scheme 2.2. The Diels-Alder reaction is a concerted [4+2] pericyclic reaction. Otto Diels and 

Kurt Alder discovered the reaction when they identified the products formed from reaction of 

cyclopentadiene (2.8) and quinone (2.9) in 1928. They received the Nobel Prize in 

chemistry in 1950 for this reaction.
2,3 

 

2.3.2 Theoretical Framework for Regio- and Stereochemical Outcomes of the 

Diels-Alder Reaction. 

 

The Diels-Alder reaction is a pericyclic [4+2] reaction which is characterized by a 

cyclic transition state where three  bonds are broken concomitantly forming two  

bonds and a  bond in a single concerted step (Scheme 2.2). Frontier molecular orbital 

theory (FMO) and symmetry considerations predict that the key orbital interactions in the 

Diels-Alder reaction are the highest occupied and lowest unoccupied molecular orbitals 

(HOMO and LUMO) (Figure 2.2).
6,7

 Decreasing the energy gap between the HOMO and 

LUMO orbitals will cause the reactivity of the system to increase. Orbital coefficients 

derived from FMO theory predict the regiochemistry of the reaction, which can be 

exploited by incorporating electron-donating and electron-withdrawing substituents into 

the reactants.
7,8 

 Incorporation of these substituents changes the energy of the system and  

creates geometric asymmetries in the key frontier molecular orbitals, which affects the 
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synchronicity of bond formation in the transition state,
 
thus affecting  the regio- and 

stereoselectivity of the reaction.
9
 The favored transition state will be the one that arises 

from complementing orbital coefficients of the diene-dienophile pair, which leads to the 

formation of pseudo-ortho substituted products and precludes the formation of possible 

pseudo-meta substituted products with C1 substituted dienes. By the same reasoning, C2 

substituted dienes will preferentially form pseudo-para adducts over the corresponding 

pseudo-meta adducts.
8,9 

Formation of the kinetically favored endo transition state is rationalized by 

invoking secondary orbital bonding interactions between the diene and dienophile to 

form the syn product (Figure 2.2).
3
 The thermodynamically favored anti product, 

obtained from the exo transition state, may also be isolated in some systems when steric 

interactions become increasingly important. However, by incorporating suitable 

conjugating substituents into the dienophile, the endo transition state is considerably 

more energetically favorable.
3,8

  

The Diels-Alder reaction is classified by the flow of electrons. A normal-electron-

demand Diels-Alder reaction is characterized by a reaction between an electron-rich 

diene and an electron-poor dienophile, where the HOMO of the diene and the LUMO of 

the dienophile are the key frontier molecular orbital interactions in this class of pericyclic 

reaction. The opposite polarization, an electron-rich dienophile and electron-poor diene, 

is also possible and the reaction is classified as an inverse electron-demand Diels-Alder 

reaction (Figure 2.2).
9,10 
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Figure 2.2. Frontier molecular orbitals involved in the normal-electron-demand and inverse-

electron demand Diels-Alder reaction. Regio- and stereochemical outcomes of the Diels-Alder 

reaction with 1- and 2-sunstituted dienes. (D =electron-donating substituent, W = electron- 

withdrawing substituent).
3, 8-10 

 

 

The formation of stereogenic chiral elements is predictable in a relative sense 

since the Diels-Alder reaction is regioselective, stereospecific and diastereoselective due 

to the orbital coefficients of the reactants from FMO theory and Alder’s endo rule.
3
 The 

high level of control and predictability makes the Diels-Alder reaction a powerful 

transformation in modern organic synthesis; however, the ability to achieve absolute 

stereocontrol and not just relative control of stereogenic outcomes will continue to be an 

important topic of future Diels-Alder research. The development of reagent-controlled 

methods of stereoselectivity could provide access to Diels-Alder adducts that could not 
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be achieved through substrate-controlled methods and will make the Diels-Alder reaction 

an even more powerful tool for modern organic synthesis. 

 

2.3.3. The Elusive “Diels-Alderase”. 

The existence of “Diels-Alderases”, enzymes that catalyze Diels-Alder reactions 

in nature, is a subject of great speculation.
11

 There are certainly numerous cases of Diels-

Alder retrons in natural products that could indeed arise from enzyme catalysis and have 

been predicted to involve a Diels-Alder reaction in proposed biosynthetic routes (Figure 

2.3).
3,11

 However, despite numerous biosynthetic proposals that incorporate the Diels-

Alder reaction, the isolation of an enzyme that performs this reaction or identification of 

a gene cluster with a Diels-Alderase domain has yet to occur.
11 

 

Figure 2.3. Examples of natural metabolites for which biosynthetic Diels-Alder transformations 

have been proposed. 
3,11
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Macrophomate Synthase (MPS) is the most extensively studied of all the putative 

Diels-Alderases.
11,14,15

 However, quantum and molecular mechanics support a stepwise 

sequence of a Michael-addition followed by an aldol reaction (Scheme 2.3).
16

 Solution of 

the crystal structure of MPS revealed a similar tertiary to 2-dehydro-3-deoxygalactarate 

(DDG) aldolase, despite weak sequence identity (20%). Both enzymes generate pyruvate 

enolate in the active site; MPS by decarboxylation of oxaloacetate 2.20 and DDG 

aldolase by deprotonation of pyruvate.
15,17,18

 It was initially proposed that MPS utilizes 

the pyruvate enolate to bicyclic intermediate 2.23 en route to macrophomic acid 2.15 by 

either an inverse-electron-demand Diels-Alder reaction or a sequential Michael-aldol 

mechanism (Scheme 2.3).
19,12,14

 Hilvert and co-workers demonstrated that, like DDG 

aldolase, once MPS generates the pyruvate enolate, it efficiently mediates an aldol 

reaction with a variety of aldehyde substrates.
20

 These results certainly support the 

stepwise Michael-aldol pathway as the most likely mechanism employed by this enzyme.  

 
Scheme 2.3. Proposed biosynthetic mechanisms for macrophomate acid synthase: The Michael-

Aldol mechanism (top) and the Diels-Alder Mechanism (bottom).
11-14,19

 (adapted from Kelly 

2008). 
 

 

2.3.4. The Diels-Alder Reaction in Complex Natural Product Synthesis. 

There have been numerous synthetic endeavors that incorporate a ‘biomimetic’ 

intramolecular Diels-Alder reaction to impart stereoselectivity and stereospecificity to 
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highly-substituted cyclic cores.
3,11,21-24

 Shown in Scheme 2.4 are a few relevant examples 

where a Diels-Alder cycloaddition is a key transformation in the synthetic route to access 

a complex natural product.
3,11, 

 These transformations are examples of intramolecular 

Diels-Alder reactions (IMDA) and/or transannular Diels-Alder reactions, common 

synthetic strategies increasingly associated with the biosynthetic origins of various 

secondary metabolites.
3,11  

Many of these routes exemplify creativity in organic synthesis 

and have proven highly successful in practice.
21-24

 
 

 
Scheme 2.4. Incorporation of biomimetic Diels-Alder reactions into the syntheses of complex 

natural products.
21-24 
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The possibility of the existence of a Diels-Alderase in the thousand-year-old 

prodigiosin biosynthetic pathway is very exciting and we eagerly anticipate the 

development of routes to synthesize compounds to test this biosynthetic hypothesis for 

the synthesis of marineosins A and B (Scheme 2.5). 

 

Scheme 2.5. Fenical’s biosynthetic proposal of marineosins A and B. 

 

 

2.4. Snider’s Synthesis of the Spiroiminal Core of the Marineosins and Proposal of 

an Alternative Biosynthetic Route. 

 

In 2010, Snider and co-workers published a model synthesis of the novel 

spiroiminal core (2.39) of the marineosins in 7 steps from lactone 2.37( Scheme 2.6).
25

  

 

Scheme 2.6. Snider and co-workers route to the novel spiroiminal core of marineosins A 

and B.
25 
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In addition to preparing the spiroiminal core of the marineosins through a non-

Diels-Alder-based route, Snider suggests an alternative to the Diels-Alder biosynthetic 

proposal (Scheme 2.7).
25

 Undecylprodigiosin (2.40), a likely precursor in Streptomyces 

sp., could undergo oxidation of the methylene group to a radical or cation by a RedG 

homologue that is a nonheme iron-dependent dioxygenase. This radical or cation 2.42 

could then add to the exocyclic double bond to give macrocyclic radical 2.43. RedG is 

responsible for conversion of undecylprodigiosin (2.40) to butyl-meta-

cycloheptylprodigiosin (2.42) by C-H activation/oxidation to a radical or cation and 

subsequent intramolecular Friedel-Crafts reaction to pyrrole to form 2.42.
26-28

 In the case 

of marineosins, radical 2.43 could then undergo 1,5 hydride shift would provide 

macrocycle 2.44, with the radical in close proximity to the enzyme active site where the 

molecule was first oxidized. A second one-electron oxidation would provide alcohol 

2.45. 2H- pyrrole 2.45 could then undergo a 1,5 sigmatropic hydride shift to generate 3H-

pyrrole 2.46, which would rapidly undergo cyclization to give enamine  2.47. 

Isomerization to the imine should provide marineosins A and B. A 1,5 sigmatropic shift 

could also provide the 1H-pyrrole 2.48, but for cyclization occur, the aromaticity of the 

resulting pyrrole would have to be broken, which would be a very energetically 

unfavorable process. For this reason, it is hypothesized that the unstable 3H-pyrrole 2.46 

would lead to product formation.  
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Scheme 2.7. Snider and co-workers’ alternative biosynthetic proposal.

25
 (adapted from 

Snider 2010). 
 

Snider’s synthesis began with the addition of vinyl magnesium bromide to lactone 

2.37 and quenching with TESCl to form enone 2.49. Reaction of 2.49 with oxime 2.50 in 

aqueous sodium hypochlorite provided isoxazoline 2.38. Hydrogenolysis of the 
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isoxazoline over Raney Nickel and subsequent methylation gave iminal 2.51. Exposure 

of the iminal to acidic conditions provided various amounts of all possible marineosin 

diastereomers 2.52 as described in Scheme 2.8. Removal of the SEM protecting groups 

from the three diastereomers obtained after 2-3 weeks of equilibration proceeded 

smoothly to provide the deprotected analogs 2.53-2.55.  

 

Scheme 2.8. Snider and co-workers’ synthesis of the spiroiminal core of marineosin A and B.
25 
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Snider and co-workers conclude that incorporation of the fused macrocycle 

should force the equatorial methyl group to the proper axial conformation and that 

interaction between the macrocyclic ring and the methoxy substiuent should favor the 

formation of marineosin A and B isomers over all other isomers.  

 

2.5. Marineosins A & B as Intriguing Synthetic Targets. 

Despite the debated biosynthetic route, the marineosins appear to belong to the 

family of prodigiosin pigments, and the evolution of synthetic, heterocyclic chemistry is 

evident in the rich history of these alkaloids. From the condensations and 

decarboxylations of Rapoport and Holden in 1962, to ring-closing metathesis, Suzuki 

cross-coupling, and enantioselective 1,4 conjugate additions of the twenty-first century; 

alkaloid synthesis has come a long way. It is obvious why the marineosins, prodigiosin-

like alkaloids containing an unprecedented number of stereogenic centers (5), would 

provide an intriguing framework to explore current methods of asymmetric synthesis and 

to catalyze the development of novel methods for the challenging synthesis of alkaloids 

containing electron-rich pyrrole moieties. 

The prodigiosin alkaloids possess a rich-array of biological activities. Anticancer, 

antibacterial, antimalarial, and immunosuppressive properties have been observed in 

many prodiginine natural products and unnatural analogs. The ability to fine-tune one 

particular activity over another makes this group of natural products an intriguing study 

in structure-activity relationships. Synthesis of the marineosins, preparation of unnatural 

analogs and subsequent biological testing will add to the SAR knowledge of the 

prodigiosin alkaloids. Of particular interest will be the role of the transformed B-ring of 
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the spiroiminal center. While a nitrogen-containing A-ring is required for biological 

activity and variations in the C-ring are well-tolerated in most cases, the role of the 

azafulvene B-ring in the biological activity of the prodigiosin alkaloids has yet to be 

investigated in detail.
29

 In addition, the prodigiosin alkaloids have been shown to possess 

a wide variety of ‘tunable’ biological activities, but the mechanisms of action behind 

many of these activities have yet to be discovered and will be a future goal within our 

laboratory. 
 

Although the existence of a naturally occurring Diels-Alderase is still in question, 

a stepwise process for marineosin formation in the prodigiosin biological pathway could 

explain the Diels-Alder retron. A RedG homologue could be responsible for C-H 

activation in the alkyl chain, followed by addition to the pyrrolomethene core of the 

tripyrrole pigment. This mechanism would be consistent with the biosynthesis of other 

cyclic prodigiosin natural products, such as metalocycloprodigiosin, prodigiosin R1, and 

streptorubin B, and the fact that RedG has been predicted to catalyze oxidative 

cyclization of undecylprodigiosin (1.2) to form butyl-meta-cycloheptylprodigiosin (1.3) 

in S. coelicolor A3 (2).
25-28

 With these possibilities in mind, we set out to achieve the 

total synthesis of marineosins A and B by incorporating a key intramolecular inverse-

electron-demand hetero-Diels-Alder reaction.  
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2.6.Synthesis of the Prodiginine Substrate and the Intramolecular Diels-Alder 

Reaction. 

As outlined in Scheme 2.9, the retrosynthetic analysis of marineosins A and B begins 

with chemoselective hydrogenation of the electron-rich carbon-carbon double bonds in 

the Diels-Alder adduct 2.7. 

 

Scheme 2.9. Retrosynthetic analysis of marineosins A and B (2.1 and 2.2).(Nuc = nucleophile, 

LG = leaving group, R = protecting group or H). 
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Acid-mediated condensation between aldehyde 2.4 and enone 2.5 gives the Diels-

Alder substrate 2.6. Aldehyde 2.4 is synthesized via Vilsmeier-Haack haloformylation of 

4-methoxy-3-pyrrolin-2-one 2.58 and subsequent Suzuki coupling of bromoenamine 2.56 

with N-Boc-pyrrole-2-boronic acid 2.57. The key reactions that provide the carbon 

framework of enone 2.5 are a cross metathesis (CM) and an alkylation to form the C13-

C14 bond or the C14-C15 bond.  

The synthesis of aldehyde 2.4 was very straightforward following known methods 

utilized in the synthesis of the structurally similar BH3 mimetic obatoclax by Diari and 

co-workers.
30

 
 
The Vilsmeier-Haack haloformylation of 4-methoxy-3-pyrrolin-2-one 2.58 

was carried out with phosphorous oxybromide and N,N-diethyl formamide to yield 

bromoenamine 2.56 in 59% yield (Scheme 2.10). Suzuki cross-coupling of 

bromoenamine 2.56 with N-Boc-pyrrole-2-boronic acid gave Boc-protected aldehyde 

2.64 in 48% yield. According to the literature procedures, the deprotected aldehyde (2.4) 

was expected to be the major product; however, it was only isolated in 10% yield. 

Isolated 2.4 proved to be relatively unstable and polymerized even when stored at 0 
o
C 

under argon, so it was decided to use the Boc-protected 2.64 in the acid-mediated 

condensation and allow deprotection to occur in situ. 

 

Scheme 2.10. Synthesis of aldehyde 2.64. 
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 The synthesis of enone 2.5 proved to be significantly more challenging and began 

with attempts to form the C13-C14 bond to combine the pyrrole and alkyl chain moieties. 

Deprotonation at the 2-position of pyrrole 2.65 was achieved using lithium 2,2,6,6-

tetramethylpiperidide (LTMP) at -78 
o
C (Scheme 2.11). Unfortunately, the 

nucleophilicity of the pyrrolyl anion 2.66 was too low to react with alkyl bromide 2.67.
31 

Displacement also failed to occur with the alkyl mesylate 2.68. Deprotonation was not 

the problem, since the anion could be quenched by adding iodine, a much hotter 

electrophile, to the reaction mixture.  

 

Scheme 2.11. Attempted alkylation of N-Boc pyrrole 2.65 to form alkyl pyrrole 2.69. 

 

 At this point, we decided to form the C14-C15 bond to provide alkyl pyrrole 2.69. 

In this alkylation route, the pyrrole fragment would now be the electrophilic partner and 

the alkyl chain the nucleophile. Polymer-supported borohydride reduction of N-Boc-

pyrrole-2-carboxaldehyde 2.71 resulted in quantitative conversion to alcohol 2.72 with 

required no purification (Scheme 2.12). The polymer-bound reagent was simply removed 
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by filtration and the solvent was removed in vacuo to give alcohol 2.72. Mesylation of 

the alcohol was carried out at 0 
o
C with methanesulfonylchloride and triethylamine. 

Unfortunately, the major product obtained was quaternary ammonium salt 2.73, which 

resulted from displacement of the mesylate by triethylamine. In order to overcome this 

problem, polymer-supported diisopropylethylamine was used instead. Under these 

conditions, formation of mesylate 2.74 was successful (74% yield).  

 

Scheme 2.12. Formation of mesylate 2.74 from N-Boc-pyrrole-2-carboxaldehyde 2.71. 

 

To perform the cuprate addition, 8-bromo-1-octene (2.67) was first converted to 

the Grignard reagent and then added to a solution of the mesylate 2.74 and catalytic 

Li2CuCl4 (Scheme 2.13).
32

 The cuprate addition proved unsuccessful, and only starting 

material was recovered. Upon warming to room temperature, the starting material 

decomposed and no discernible product was observed upon work-up and purification. 

The displacement was then attempted with the Grignard reagent alone, but this method 

gave no desired product and no starting material could be recovered. This was most likely 

a result of addition to the t-butyl carbamate protecting group, followed by decomposition 

of a highly unstable, deprotected pyrrolylmesylate. In light of these observations, it was 

concluded that the Boc-protected pyrrole may not be the best electrophilic substrate for 
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this type of addition.  

 

Scheme 2.13. Unsuccessful SN2 displacement of mesylate to form alkylpyrrole 2.69. 

 

In order to explore the reactivity of differentially substituted pyrrole systems, the 

8-bromo-1-octene Grignard reagent was simply added to N-Boc-pyrrole-2-

carboxaldehyde (2.71). Incorporation of aldehyde 2.71 as the electrophilic reagent, 

should take advantage of the Grignard reagent’s preference for 1,2-addition to the most 

electrophilic center.  As expected, the desired 1,2-addition was observed; however, the 

only isolable product was oxazolidinone 2.75, which resulted from transesterification of 

the Boc-carbamate t-butyl ester by the alkoxide generated upon 1,2-addition of the 

Grignard reagent  (Scheme 2.14). Since opening of the oxazolidinone would require 

additional steps, a different protecting group was explored. 

 

Scheme 2.14. Unexpected cyclization of Grignard addition product to form oxazolidinone 2.75. 
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  The commercially available 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde was 

chosen as a desirable protecting group. It was hypothesized, based on the observation that 

the Boc protecting group could be converted to a cyclic carbamate, that the sulfonate 

protecting group of 2.76 could be transferred to the alkoxide  2.77 and eliminated upon 

treatment with sodium borohydride and heat to give intermediate 2.79 (Scheme 2.15). 

Addition of a second equivalent of hydride should provide anion 2.80 and mildly acidic 

work-up generate alkylpyrrole 2.69 in one step. There is also literature precedence for 

this type of reaction. In 1985 Muchowski et. al showed that alkylpyrroles could be 

synthesized by the reduction of acylpyrroles with sodium borohydride in refluxing 

isopropanol.
33

 

 

Scheme 2.15. Hypothesized one-pot addition, rearrangment, deoxygenation, deprotection to form 

an alkylpyrrole from a sulfonamide-protected acylpyrrole. 

 

Following addition of the 8-bromo-1-octene Grignard reagent at 0 
o
C to 1-

(phenylsulfonyl)-2-pyrrolecarboxaldehyde (2.81), the reaction mixture was stirred 4 h at 

room temperature. Sodium borohydride in methanol was then added and the solution was 

heated to reflux. After 72 h, minimal formation of alkyl pyrrole 2.69 had occurred. The 

major product was the secondary alcohol 2.82, not the alkylpyrrole 2.69 (Scheme 2.16).  
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Scheme 2.16. Unsuccessful One-pot addition, rearrangment, deoxygenation, and deprotection to 
give alkyl pyrrole 2.69. 

 

 

After isolating alcohol 2.82, we treated it with sodium borohydride in refluxing 

isopropanol to determine if the rearrangement could occur with the already reduced 

alcohol, or if the ketone had to be reduced and in situ rearrangement occur to facilitate 

elimination (Scheme 2.17).  

 

Scheme 2.17.  Attempted sodium borohydride-mediated deoxygenation/deprotection of alcohol 
2.82 to give alkylpyrrole 2.69. 

 

Unfortunately, no product formation was observed, so a Ley oxidation was 

performed to oxidize alcohol 2.82.
34

 After purification to remove any ruthenium, 

acylpyrrole 2.83 was obtained in 86% yield. Acylpyrrole 2.83 was suspended in 

isopropanol, treated with excess sodium borohydride, and refluxed for 24 hours. At this 

time, the reaction had reached completion, and after purification, the desired alkylpyrrole 

2.69 was obtained in 94% yield. Scheme 2.18 describes the current synthesis of 

alkylpyrrole 2.69. 
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Scheme 2.18. Current synthesis of alkylpyrrole 2.69. 

 

 The next step in the current synthesis is the cross metathesis of alkylpyrrole 2.69 

with 3-buten-2-one using the Grubbs’ second generation catalyst.
35

 When the reaction 

was refluxed in dichloromethane for 12 hours, the major product was not the expected 

enone 2.5, but a pyrrole alkylated at the 2-position by the 3-buten-2-one Michael acceptor 

(2.84) (Scheme 2.19).  
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Scheme 2.19.  Minimization of the unexpected Michael adducts 2.84 and  2.85 in the cross 

metathesis of alkenylpyrrole 2.69 and 3-buten-2-one to form enone 2.5. 

 

The presence of this unexpected by-product reveals that the Grubb’s catalyst may 

act as a Lewis acid that activates the Michael acceptor to attack by the electron-rich 

pyrrole. In order to minimize this side reaction, a higher catalyst loading was used (30 

mol %) and the reaction was carried out at room temperature. After 6 h, the side product 

had begun to form, so the reaction was stopped although conversion was only 70 %. 

After purification, enone 2.5 was isolated in 40% yield.  

Although the yield was low, the reaction sequence was simply performed on a 10 

gram scale in order to produce a large quantity of the Diels-Alder substrate for catalyst 

screening. The complete synthetic route to access enone 2.5 is described in Scheme 2.20. 
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Scheme 2.20.  Current synthesis of enone 2.5. 

 

 The acid-mediated condensation of enone 2.5 with aldehyde 2.64 was carried out 

using 2 equivalents of HCl at a 0.87 M concentration in methanol according to procedure 

used in the synthesis of Obatoclax by Dairi et. al.
30

 After 10 minutes the reaction had 

reached completion and the conversion was quantitative. The reaction was quenched with 

excess ammonium hydroxide, which readily removed the carbamate protecting group, 

giving Diels-Alder substrate 2.6 (Scheme 2.21). 

 

Scheme 2.21. Acid-mediated condensation of enone 2.5 with aldehyde 2.64 to give Diels-Alder 

substrate 2.6. 

 

With the Diels-Alder substrate in hand, it was time to screen conditions to 

catalyze the [4+2] cycloaddition. The various conditions for the catalyst screen are 

outlined in Table 2.1. Unfortunately, none of the Lewis acids that are commonly used for 

inverse electron-demand hetero Diels-Alder reactions gave any product formation.
36 
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Table 2.1. Lewis Acids and conditions used to catalyze the intramolecular hetero Diels-Alder 

reaction. 

 
Catalyst Equiv. 

(mol%) 

Solvent Temperature 

(
o
C) 

Time (h) Result 

Eu(FOD)3 20 Cylcohexane 80 72 No rxn 

Eu(FOD)3 20 Cyclohexane 25 96 No rxn 

Yb(OTf)3 20 CH2Cl2 25 96 No rxn 
Sc(OTf)3 20 CH2Cl2 25 96 No rxn 

SnCl4 100 CH2Cl2 25 4, 12 Decomposed 

Me2AlCl 100 CH2Cl2 25 4, 12 Decomposed 
AcOH xs EtOH (1:1) 120 (mw) 0.25, 0.5 No rxn 

AcOH xs EtOH (1:1) 150 (mw) 0.5 No rxn 

AcOH xs Neat 160 (mw) 0.5 No rxn 

HCl xs Dioxane (1:1) 120 (mw) 0.5 No rxn 
TFA xs DCE 120 (mw) 0.25, 0.5 Decomposed 

Me2AlCl 500 CH2Cl2 -78 2, 4, 6, 

16, 24, 
48 

No rxn 

SnCl4 500 CH2Cl2 -78 2, 4, 6, 

16, 24, 

48 

No rxn 

SnCl4 500 CH2Cl2 -78 to -45 24 Decomposed 

BBr3 400 CH2Cl2 -78 2 Decomposed 

Me2AlCl 500 CH2Cl2 -20 4, 8, 16, 
24, 48, 

72, 96, 

108 

No rxn 

--- --- Mesitylene 215 1 Decomposed 

Methylene blue 

h 

100 CH2Cl2 25 4, 8, 12 No rxn 

ZnCl2 100 CH2Cl2 25 6, 12, 

24, 48 

No rxn 

ZnCl2 800 CH2Cl2 25 12, 24, 

48 

No rxn 

 

Without any promising leads, it was concluded that Diels-Alder substrate 2.6 was 

fairly unreactive. In order to make the heterodiene more reactive as an inverse electron-

demand Diels-Alder substrate, we decided to add an electron-withdrawing group to the 
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enone, namely, an -keto ester. This would provide a more electron-deficient, and thus 

more reactive, heterodiene. In light of the conjugate addition observed during the cross 

metathesis of 3-buten-2-one with alkylpyrrole 2.69, we thought that a Wittig-type 

reaction might prove more effective when incorporating the pyruvate moiety. This 

required either cleaving one carbon from the alkyl chain during the synthesis of this 

fragment or incorporating a carbon chain that is one carbon shorter in the Grignard 

reaction and then generating an aldehyde following a hydroboration/oxidation sequence. 

The new retrosynthesis is described in Scheme 2.22.  

 

Scheme 2.22. Retrosynthesis of Diels-Alder substrate 2.91 via synthesis of aldehyde 2.86 by 

either an oxidative cleavage or hydroboration/oxidation route. 

 

Ozonolysis was the first method used to synthesize aldehyde 2.86 from 

alkylpyrrole 2.69. Unfortunately, these conditions also resulted in cleavage of the 

electron-rich pyrrole to form a terminal amide. Dihydroxylation and subsequent oxidative 

cleavage proved unsuccessful as well due to incomplete dihydroxylation and production 
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of complex reaction mixtures during oxidative cleavage.  

It was finally decided that 7-bromo-1-heptene would be used in the Grignard 

addition (Scheme 2.23). After Ley oxidation of the resulting alcohol (2.92), acylpyrrole 

2.93 underwent sodium borohydride-mediated reduction, deoxygenation, and 

deprotection to give alkylpyrrole 2.87. Hydroboration and oxidation of 2.87 gave 

quantitative conversion to alcohol 2.94 with a 96% yield following purification. Ley 

oxidation of alcohol 2.94 gave clean conversion to aldehyde 2.86, which was purified by 

filtration of the reaction mixture through a celite plug and rinsing with dichloromethane. 

This method of aldehyde formation provided good yields (73% over two steps from 

alkylpyrrole 2.87) and has become the method of choice.  

 

Scheme 2.23. Synthesis of -keto ester 2.90. 

 

Reaction of aldehyde 2.86 with ethyl(triphenylphosphoranylidene)pyruvate (2.95) 

to give  -keto ester 2.90proved unsuccessful. The stabilized ylide is so highly stabilized 

that it is fairly unreactive. After refluxing in dichloromethane overnight, the ylide was 
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still present and the aldehyde had decomposed, possibly as a result of polymerization 

through a series of condensation reactions (Scheme 2.24.).  

 

Scheme 2.24. Unsuccessful Wittig olefination of aldehyde 2.86 to generate -keto ester 2.90. 

 

The next approach to generate -ketoester 2.90 was to use phosphonate 2.97 in a 

Horner-Wadsworth-Emmons olefination as a hotter reagent than the phosphoranylidene. 

Ethyl bromopyruvate (2.96) was treated with triethylphosphite at room temperature, 

resulting in a highly exothermic reaction (Scheme 2.25). After cooling to room 

temperature, TLC determined that all the starting material had been consumed, and LC-

MS confirmed that the product had the correct mass. However, H
1
 and C

13
 NMR revealed 

that the product was not the desired phosphonate 2.97 but was vinyl phosphate 2.98. 

According to an extensive review of the Michaelis–Arbuzov rearrangement by 

Bhatacharya and Thyagarman,
37

 the vinylphosphate is the major product with -chloro 

ketones and -bromo ketones. With the addition of an electron-withdrawing ester, it is 

logical that the ethyl -bromopyruvate would form the vinylphosphate product 

exclusively, as was observed.  
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Scheme 2.25.  Formation of undesired vinyl phosphate 2.98. 

 

Bhatacharya and Thyagarman report that -iodo ketones form the phosphonate 

exclusively. Ethyl iodopyruvate (2.99) is not commercially available, but it was easily 

synthesized from 2.96 in 91% yield using a Finkelstein reaction (Scheme 2.26).  

 

Scheme 2.26. Attempted preparation of Horner-Wadsworth-Emmons reagent, phosphonate 2.97. 

 

Addition of triethylphosphite to ethyl iodopyruvate 2.99 should result in the 

desired phosphonate 2.97. Unfortunately, iodination of bromopyruvate and subsequent 

Michaelis-Arbuzov reaction failed to provide phosphonate 2.97. Once again, vinyl 

phosphate 2.98 was the only product observed, presumably a result of the increased 

acidity of the -carbon due to the presence of the -keto ester. This result was undesired 

but not entirely unexpected, since Bhatacharya and Thyagarman investigated -iodo 
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ketones, not -iodo--ketoesters. 

If phosphonate formation had been successful, the final step in the synthesis of -

ketoester 2.90 would have been a Horner-Wadsworth-Emmons reaction with aldehyde 

2.86 performed in the presence of lithium chloride and DBU in acetonitrile, conditions 

developed by Roush and Masamune for base-sensitive substrates.
38

 These conditions 

were chosen since the deprotected pyrrole would most likely be problematic if sodium 

hydride is used. Without-ketoester 2.90, further investigation of an intramolecular 

Diels-Alder route to produce the marineosins was not possible. Due to the failure to 

produce the desired phosphonate 2.97 and the inherent instability of aldehyde 2.86, this 

route was abandoned in favor of one with more stable intermediates.  

In summary, Diels-Alder substrate 2.6 has been successfully synthesized. 

However, 2.6 did not undergo a [4+2] cycloaddition in the presence of various Lewis 

acids. We decided to derivatize 2.6 by adding an -ketoester to the enone in order to 

make substrate 2.90, a more electron-deficient heterodiene, which would be more likely 

to undergo the desired cycloaddition based on reactivity. To date, the relatively unstable 

aldehyde 2.86 has been synthesized; however, incorporation of the pyruvate moiety 

through an olefination reaction proved unsuccessful, which has led to the exploration of 

alternate routes. 

 

2.7. Intermolecular Diels-Alder Reaction. 

 

  

In light of the difficulty encountered with olefination reactions to produce 2.90 

and the unreactive nature of Diels-Alder substrate 2.6, an alternative synthesis has been 

developed that incorporates many of the key reactions from previous routes. The two 
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notable changes are the RCM to form macrocycle and an intermolecular inverse electron 

demand hetero Diels-Alder (Scheme 2.27). 

 

Scheme 2.27. Restrosynthetic analysis of intermolecular hetero Diels-Alder route. 

 

 The alternative route starts from commercially available, (tert-

butyldimethylsilyloxy)-acetaldehyde (2.100). This compound has a high boiling point 

(165-167
o
C) and no extraneous, deprotected, highly reactive functional groups, so we 

hypothesized that unlike aldehyde 2.86, it should not decompose in the conditions 

necessary to activate the highly stabilized ethyl (triphenylphosphoranylidene) pyruvate 

(2.95). After refluxing in toluene overnight, heterodiene 2.101 was readily obtained 

(Scheme 2.28). 
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Scheme 2.28. Synthesis of heterodiene 2.101. 

 

 The synthesis of silylether 2.102 is very straightforward (Scheme 2.29). Most of 

the steps have been accomplished before in the synthesis of aldehyde 2.86. The route 

begins with Grignard addition to 1-(phenylsulfonyl)-pyrrole-2-carboxaldehyde (2.81), the 

only difference is that the Grignard reagent was prepared from 5-bromo-1-pentene, to 

give alcohol 2.106 in 76% yield. Ley oxidation and subsequent sodium borohydride-

mediated reduction, deoxygenation, and deprotection yielded alkylpyrrole 2.108 (81% 

over 2 steps). Hydroboration and oxidation of 2.108 gave alcohol 2.109, which was 

immediately subjected to TBDPS protection yielding silylether 2.102 (82% over 2 steps).  

 

Scheme 2.29. Synthesis of silylether 2.102. 

 

 Instead of immediately subjecting silylether 2.102 to acid-mediated condensation 

with aldehyde 2.64 to give dieneophile 2.103 (Scheme 2.27), we decided to construct a 

simpler model system to save our starting material and simplify NMR interpretation. This 
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model system was synthesized by condensation of aldehyde 2.64 with commercially 

available 2-ethylpyrrole to yield the Diels-Alder model substrate 2.110 (Scheme 2.30).   

  

Scheme 2.30. Condensation of 2-ethylpyrrole with aldehyde 2.2 to give model dienophile 2.110. 

 

At this point, we began to screen different Lewis acids for their ability to catalyze 

a [4+2] cycloaddition between heterodiene 2.101 and model dienophile 2.110 to generate 

Diels-Alder adduct 2.111 (Table 2.2).  

 

Table 2.2.  Lewis Acids and conditions used to catalyze the intermolecular Diels-Alder reaction. 

 

Catalyst Equiv.  Solvent Temperature 

(
o
C) 

Time (h) Result 

Eu(FOD)3 0.2 Cyclohexane 25 72 No rxn 

Yb(OTf)3 0.2 Cyclohexane 25 72 No rxn 

Sc(OTf)3 0.2 CH2Cl2 25 72 No rxn 

Me2AlCl 1 CH2Cl2 0 12 No rxn 
SnCl4 1 CH2Cl2 0 12 Decomposed 

BBr3 1 CH2Cl2 -78 2 Decomposed 

ZnCl2 10 CH2Cl2 0 4 Reacted 

 

Finally, a positive result was obtained using ZnCl2 (10 equiv.) in CH2Cl2 at 0 
o
C. 

The mass of the resulting adduct as determined by LC-MS matched the expected mass of 
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the Diels-Alder product 2.111. Also, 
1
HNMR and 

13
CNMR revealed the correct number 

of proton and carbon atoms with similar shifts as would be expected for the Diels-Alder 

adduct. However, the splitting patterns in the 
1
HNMR were slightly unexpected; 

therefore, HMBC and HSQC spectra were obtained for the compound. Based on HMBC 

correlations, it was determined that the Diels-Alder reaction had not occurred, but instead 

the ZnCl2 had catalyzed a conjugate addition between the A-ring pyrrole of the 

dienophile (2.110) and the ,-unsaturated -keto ester (2.101) (Scheme 2.31).  

 

Scheme 2.31. ZnCl2-mediated conjugate addition of dienophile 2.110 to heterodiene 2.112. 

 

In light of this result with the pyruvate heterodiene 2.101, we decided to 

investigate the intermolecular Diels-Alder reaction further by experimenting with 

different heterodienes and by incorporating a carbamate-protected dienophile 2.113 

(Scheme 2.32). The methyl ketone (2.114) and ethyl ester (2.115) heterodienes were 

prepared from commercially available Wittig reagents and (tert-butyldimethylsilyloxy)-

acetaldehyde 1.100 in the same manner as heterodiene 2.101 was prepared (Scheme 

2.28). Unfortunately, the methyl ketone (2.114) and ethyl ester (2.115) heterodiene 

derivatives failed to react with dienophile 2.110 under any of the conditions previously 

described in Table 2.2. Not even the conjugate addition adduct was observed. When the 

A-ring pyrrole of dienophile 2.110 was protected as the t-butyl carbamate (2.113), no 

reaction occurred with pyruvate heterodiene 2.101 in the presence of ZnCl2. Although 
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carbamate protection efficiently prevented the conjugate addition reaction, it did not 

facilitate the desired [4+2] cycloaddition.  

 

Scheme 2.32. Reaction of various heterodienes and protected/deprotected dienophiles in the 

presence of Lewis acids from Table 2.2 in an attempt to initiate an intermolecular Diels-Alder 

cycloaddition. 
 

Since none of the prepared heterodienes reacted in the desired manner, it was 

finally concluded that dienophile 2.110 was not a competent partner for a Diels-Alder 

reaction.  

 

2.8. Molecular Modeling of the Prodigine Substrate for the Intramolecular Diels-

Alder Reaction. 

 

In light of the difficulties encounter with facilitating the Diels-Alder reaction, we 

enlisted molecular modeling in an attempt to understand this lack of reactivity in both the 

intramolecular and the intermolecular variants. Molecular mechanics sampling for the 

intramolecular substrate 2.6  was conducted starting from the hypothesized transition 

state geometry using both stochastic and systematic conformer searches and gradient 

energy minimization with the Merck MMFF94 forcefield as implemented in the MOE 

software package (Chemical Computing Group).
39

  Analysis of the top 10,000 
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conformers with the lowest relative energies (20kcal from lowest energy conformer) 

indicated a failure to identify favorable Diels-Alder transition state geometries. Out of 

10,000 systematic search conformers generated for 2.6, less than 15% of the structures 

sampled have a folded topology, and the key atoms remained separated by almost five 

angstroms (Figure 2.4). Of those conformers with a folded topology, only 15% form 

intramolecular hydrogen bonds. Thus, as a result of intramolecular hydrogen bonds and a 

large degree of conformational flexibility present in the long, alkyl linker moiety, the 

intramolecular Diels-Alder mechanism is likely energetically disfavored. Moreover, since 

attempts at intermolecular variants proved equally unsuccessful, it was concluded that the 

key olefin of the extended poly-pyrrole π-system is not a competent dienophile. This 

extended conjugation removes electron density from the olefin, which needs to be 

electron-rich in order to raise the alkene HOMO to a state that is energetically favorable 

for an inverse demand Diels-Alder reaction to occur. With this information, we 

concluded that a Diels-Alder cycloaddition is not a viable synthetic route for the 

synthesis of Marineosins A & B in the laboratory.
40

 However, this does not rule out an 

enzyme-templated process in nature that could impart the correct electronic state and 

conformation in order to catalyze the reaction. 
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Figure 2.4.  Most favored Merck MMFF94 minimized conformer 2.6. 

 

 In summary, we constructed various heterodienes in an attempt to catalyze an 

intermolecular inverse electron-demand hetero-Diels-Alder reaction with model 

dienophile 2.111. Unfortunately, no reaction occurred with any of the substrates except 

the pyruvate derivative, which underwent a conjugate addition reaction with the A-ring 

pyrrole of model dienophile 2.110. Through organic synthesis and computational 

modeling, we have concluded that the biosynthetic proposal of an inverse electron-

demand hetero-Diels-Alder reaction is not a viable method for the synthesis of 

Marineosins A & B. Therefore, we have decided to pursue the synthesis of these marine 

alkaloids by alternative routes that do not proceed through a tripyrrole prodigiosin 

alkaloid intermediate. 
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2.9. Acid-catalyzed Intramolecular N-Acyliminium Cyclization for the Synthesis of 

Marineosin A. 

 

 After many unsuccessful attempts to synthetically validate the proposed 

biomimetic route to Marineosins A & B, we decided to investigate other ways to 

synthesize spiroaminal centers in alkaloid natural products. One of the most 

straightforward and amenable routes involves Grignard addition to a chiral hydroxy-

malimide, readily prepared from (S)-2-hydroxysuccinic acid, followed by acid-catalyzed 

intramolecular N-acyliminium cyclization to form the spiroaminal core (Scheme 2.33). 
41 

 

Scheme 2.33. Preparation of aza-spiropyran 2.123. by Huang and coworkers.
41 

 

 This key reaction could easily provide the core structure of Marineosin A as 

described by the retrosynthesis outlined in Scheme 2.34 

 

2.9.1. Addition of an -Nucleophilic Pyrrole to (S)-Hydroxy Malimide. 

The key aspect of this new route is the formation of an -nucleophilic pyrrole, 

which should add regioselectivly to the (S)-hydroxy malimide 2.119 to form the 

spriocyclic core. Marineosin A (2.1) is obtained from lactam spiroaminal 2.124 by 

deprotection/hydrogenation, stereocenter inversion, triflate formation, and a Suzuki cross 

coupling to install the final pyrrole moiety. Metalation and addition of bromide 2.125 to 

malimide 2.119, followed by acid-catalyzed imtramolecular N-acyliminium cyclization 
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will provide lactam spiroaminal 2.124 as the thermodynamically favored product. 

Malimide 2.119 is readily obtained from (S)-2-hydroxy-succinic acid (2.126) by a known 

procedure.
42-44 

Bromide 2.125 is synthesized by reduction, subsequent bromination, and 

ring-closing metathesis of acylpyrrole 2.127. Addition of the pyrrolylanion of 

alkylpyrrole 2.130 to the pyridylthioester of acid 2.128 followed by sulfonamide 

protection will provide acylpyrrole 2.127. Alkylpyrrole 2.108 is accessed through 

previously described transformations (Scheme 2.29), beginning with Grignard addition of 

5-bromo-1-pentene to 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde 2.81. Acid 2.128 is 

obtained through stereoselective alkylation of lactone 2.129, lactone hydrolysis, and silyl 

protection of the resulting alcohol.  

 
Scheme 2.34. Retrosynthesis of marineosin A utilizing N-acyliminium spirocyclization. 

  

Malimide 2.119 was prepared in 73% overall yield by a known method which 

begins with a 3-step-1-pot sequence to give the malimide core (Scheme 2.35).
42-44

 (S)-2-

hydroxy-succinic acid (2.126) was suspended in excess acetylchloride and heated to      
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50 
o
C for 2 hours, then the mixture was concentrated and excess benzylamine in THF was 

added at the resulting oil. This mixture was stirred at room temperature for 4 hours, and 

then the solution was concentrated a second time. The remaining residue was 

resuspended in excess acetylchloride and heated at 50 
o
C for 18 hours. After 

concentrating the mixture a final time, the resulting oil was purified by flash 

chromatography to give acetate-protected hydroxy-malimide 2.130 in 87 % yield. Acid-

catalyzed transesterification of malimide 2.130 with acetylchloride in ethanol, gave 

hydroxy malimide 2.131 in 98 % yield. The free hydroxyl group was subsequently 

protected using benzylbromide and silver (I) oxide to give benzyl ether 2.119 (85 %). 

 

Scheme 2.35. Synthesis of malimide 2.119  from (S)-2-hydroxy-succinic acid. 

 

 Lactone 2.129 was readily obtained following a procedure developed by White 

and coworkers (Scheme 2.36).
45

 Regioselective, basic epoxide-opening of commercially 

available (S)-2-methyloxiriane was achieved with the dianion of (phenylthio)acetic acid 

2.132 yielding hydroxy-acid 2.133. Acid-catalyzed lactonization of hydroxy-acid 2.133 

with catalytic p-TSA gave thiophenyllactone 2.134 in 71% yield over 2 steps. Raney 

nickel desulfurization completed the synthesis of lactone 2.129 (86% yield).   
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Scheme 2.36. Synthesis of lactone 2.129 from (phenylthio)acetic acid and (S)-2-methyloxirane. 

 

In order to access acid 2.138, lactone 2.129 was first treated with lithium 

hexamethyldisilazide then allyl iodide at -78 
o
C to afford -allyl lactone 2.135 in 6:1 dr 

(anti:syn) and 80 % yield (Scheme 2.37). Hydrolysis of -allyl lactone 2.135 with 1.1 

equivalents of lithium hydroxide in THF/H2O (7:1 v/v) at 0 
o
C for 10 hours provided 

hydroxy-acid 2.136 in 98% yield with essentially no racemization of the stereocenter. 

Extra equivalents of base or higher temperatures decreased the reaction time but led to 

considerable racemization. Hydroxy-acid 2.136 was then bis-protected as 

silylether/silylester 2.137 which was immediately purified and then chemoselectively 

deprotected to give acid 2.138 in 93 % yield over 2 steps. 
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Scheme 2.37. Synthesis of acid 2.138 from lactone 2.129. 

 

With acid 2.138 in hand and alkylpyrrole 2.108, which was prepared as 

previously described in Scheme 2.29, it was time to start considering coupling conditions 

to yield acylpyrrole 2.140. Since the ketone was the desired product following 

pyrrolylanion addition, utilization of a Weinreb amide was investigated first. Weinreb 

amide 2.139 was easily prepared from acid 2.138 by amide coupling with N,O-

Dimethylhydroxylamine hydrochloride in 86 % yield (Scheme 2.38). Unfortunately, the 

amide proved to be completely unreactive to addition of the pyrrolylanion of alkylpyrrole 

2.108, even at room temperature and for extended reaction times. 

 

Scheme 2.38. Unsuccessful addition of pyrrolylanion 2.108 to Weinreb amide 2.139 to form 

acylpyrrole 2.140. 
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. 

In light of this result, we decided to prepare a more reactive acylating reagent, a 

thioester. Thioester 2.141 was prepared from acid 2.138, 2,2’-dipyridyldisulfide, and 

triphenylphosphine in 92 % yield (Scheme 2.39).
44

 Thioester 2.141 was very stable; it 

could be purified by column chromatography and stored at 0 
o
C for three months without 

any appreciable decomposition. Addition of the pyrrolylanion 2.108 to thioester 2.141 in 

toluene at -78 
o
C gave the desired acylpyrrole 2.140 in 85 % yield. Attempts to combine 

the thioester formation and pyrrolylanion addition into a one-pot procedure were 

unsuccessful. Only unreacted thioester 2.141 and alkylpyrrole 2.108 were recovered from 

the reaction mixture; however, when the thioester was purified and then treated with 

pyrrolylanion 2.108, addition proceeded smoothly with complete conversion. 

 

Scheme 2.39. Synthesis of acylpyrrole 2.140 by pyrrolylanion addition to thioester 2.141. 

 

The next step was to protect the pyrrole nitrogen of acylpyrrole 2.140 with a 

suitable protecting group that would be compatible with organometallic reagents. Choice 

of a proper protecting group is critical since acylpyrrole 2.140 will become bromide 



80 
 

2.125 that must undergo oxidative addition to become the Grignard reagent. Since the 

phenylsulfonamide protecting group had proven robust in previous organometallic 

reactions, it was chosen as the ideal protecting group. Also, an electron-withdrawing 

protecting group should deactivate the electron-rich alkylpyrrole thus making it less 

likely to undergo undesirable side reactions. Traditional protection conditions were 

employed with acylpyrrole 2.140 (Scheme 2.40); however, no reaction occurred under 

these conditions.  

 

Scheme 2.40. Attempt to protect acylpyrrole 2.140 using traditional protection conditions. 

 

A model system was then designed in order to test protection conditions and to 

save the advanced intermediate acylpyrrole 2.140 (Scheme 2.41).  

 

Scheme 2.41. Synthesis of model acylpyrrole 2.146 from butyl levulinate 2.142. 

Synthesis of the model system began with Corey-Bakshi-Shibata (CBS) reduction 

of butyl levulinate 2.142 to give alcohol 2.143 in 92 % yield but only 60 % ee (as 

determined by Mosher ester analysis)
47

. Since this was only a model system to determine 
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protection conditions, we decided to carry on with this modest enantiomeric excess. The 

free alcohol was protected to give silylether 2.144 (100 %) and then the ester hydrolyzed 

to give acid 2.145 in 98 % yield. Acid 2.145 was then treated with 2,2’-dipyridyldisulfide 

and triphenylphosphine to give the thioester, and the pyrrolylanion of commercially 

available 2-ethylpyrrole was added in situ giving model acylpyrrole 2.146 in 88 % yield 

for the one-pot procedure. With model acylpyrrole 2.146 in hand, we began investigating 

different protecting groups and conditions as listed in Table 2.3.  
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Table 2.3.  Trial conditions for the protection of model acylpyrrole 2.146. 

 

Entry Base Solvent Electrophile Additive Method
a
 

Yield 

(%)
b
 

1 NaH DMF PhSO2Cl --- A 0 

2 NaH DMF TolSO2Cl --- A 0 

3 NaH DMF TolSO2OO2STol --- A 0 

4 NaH DMF PhSO2Cl --- B 0 

5 NaH THF PhSO2Cl --- A 0 

6 NaH THF PhSO2Cl 15-crown-5 C 0 

7 NaH DMF MeSO2Cl --- A 0 

8 KOtBu THF MeSO2Cl 18-crown-6 C 0 

9 Collidine DCM MeSO2Cl --- A 0 

10 BuLi THF TolSO2OO2STol --- D 0 

11 BuLi THF PhSO2Cl --- D 0 

12 LiHMDS THF TolSO2OO2STol --- D 0 

13 LiHMDS THF PhSO2Cl --- D 0 

14 DBU DCM PhSO2Cl --- A 0 

15 Cs2CO3 MeCN PhSO2Cl --- E 0 

16 Et3N MeCN TolSO2Cl DMAP F 0 

17 NaH DMF BnBr --- A 95 
a
 Method A: Base is added to solution of pyrrole at rt and stirred for 0.5 h, then electrophile is 

added and stirred at rt for 2 h. Method B: Same as A, except stirred 8 h after addition of 

electrophile. Method C: Base is added to a solution of pyrrole and additive at rt and stirred for 0.5 

h, then electrohphile is added and stirred at rt for 2 h. Method D: Base is added to solution of 

pyrrole at 0 
o
C and stirred for 0.5 h, then electrophile is added the reaction is warmed to rt and 

stirred for 2 h. Method E: Same as method A, but instead of stirring at rt, the mixture is heated to 

80 
o
C. Method F: Same as method B, but reaction was stirred for 16 h.  

b
 isolated yield of desired protected product. 

 

Protection of the acylpyrrole 2.146 with an electron-withdrawing sulfonamide 

group proved highly unsuccessful; however, Entry 17 shows that protection as the 

benzylamine was not only successful, but high yielding (95 %). With N-

benzylacylpyrrole 2.147 in hand, we decided to investigate reduction conditions with this 
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readily available model system to provide alcohol 2.148. Unfortunately, every reduction 

attempted (NaBH4, L-selectride, CBS) resulted in the elimination product 2.149 as the 

only isolated product (Scheme 2.37). Noyori transfer hydrogentation gave no product 

formation even after extended reaction times (7 days).  

 

Scheme 2.42. Attempted reduction of N-benzylacylpyrrole 2.147 to alcohol 2.148. 

 

In light of these results, it was concluded that the benzyl protecting group was not 

suited for these transformations. All of the sulfonamide protection conditions (Entries 1-

16) for the model system listed in Table 2.3 were then tried with the actual system 

(acylpyrrole 2.140). When none of the conditions successfully protected the pyrrole, we 

tried reducing acylpyrrole 2.140 to the alcohol with no protecting group. This, too, only 

resulted in the elimination product.  

Prior to adjusting the synthesis further, we decided to develop a model system to 

test the validity of the key core-forming addition to malimide 2.119 followed by acid-

catalyzed spirocyclization. The inclusion of a sulfonamide protected-pyrrole was crucial, 

since a naked benzene or furan could not adequately represent the electronic and steric 

properties of a benzenesulfonamide-protected pyrrole (Scheme 2.43). Bromide 2.76 is a 
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simplified version of bromide 2.125 (Scheme 2.34). The model bromide lacks the 

macrocyclic ring, so it requires a much simpler synthesis. Also, bromide 2.152 contains a 

primary alcohol instead of a secondary alcohol, so there are no diastereomers to 

complicate NMR interpretation.  

 

Scheme 2.43. Retrosynthetic analysis for model synthesis of the spiroiminal core 2.150 of 

marineosin A. 

 

As outlined in Scheme 2.43, model marineosin A (2.150) is obtained from 

spiroaminal 2.151 through a Mitsunobu inversion, triflate formation and Suzuki cross-

coupling. Spiroaminal core 2.151 is prepared by Grignard addition of bromide 2.152 to 

malimide 2.119 and subsequent acid-catalyzed spirocyclization of the intermediate N-

acyliminium ion. Malimide 2.119 is readily available from 2-(S)-hydroxysuccinic acid 

2.126 (Scheme 2.35). Bromide 2.152 is synthesized by addition of 

allylmagnesiumbromide to 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde 2.81, followed 
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by hydroboration/oxidation, and mono-silylether protection of the resulting primary 

alcohol.  

The seemingly straightforward synthesis of bromide 2.152 proved to be quite a 

challenge. Grignard addition of allylmagnesiumbromide to 1-(phenylsulfonyl)-2-

pyrrolecarboxaldehyde 2.81 provided homoallylic alcohol 2.153 in 93 % yield (Scheme 

2.44). Subsequent hydroboration/oxidation sequence gave diol 2.154 in excellent isolated 

yield (98 %). Mono-protection of the primary alcohol as the tert-butyldimethylsilylether 

yielded alcohol 2.155 as the only product (89 %). 

 
Scheme 2.44. Synthesis of alcohol 2.155 from 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde 2.81. 

 

In order to prepare bromide 2.152, alcohol 2.155 was added to a solution of 

carbon tetrabromide and triphenylphosphine in dichloromethane. Unfortunately, the only 

product obtained in quatitative yield was tetrahydrofuran 2.156 (Scheme 2.45).  

 
Scheme 2.45. Formation of tetrahydrofuran 2.156  as an undesired side product in an attempted 

bromination of alcohol  2.155. 
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The observed product formation is a result of silylether cleavage by hydrogen 

bromide formed in situ and subsequent cyclization by intramolecular displacement of the 

resulting bromide, or the phosphonium salt intermediate, by the free primary alcohol. In 

light of this occurrence, an investigation of bromination conditions was initiated (Table 

2.4). 

 

Table 2.4. Investigation of bromination conditions.  

 

 

Substrate Conditions 
Product Distribution 

A : B : C 

2.155 PPh3, CBr4, CH2Cl2 0 : 100 : 0 

2.155 Ph3PBr2, THF:pyr (6:1) 0 : 15 : 85 

2.155 DPPE, Br2, CH2Cl2 0 : 0 : 100 

2.155 Ph3PCl2, CH2Cl2 0 : 10 : 90 

2.157 PPh3, CBr4, CH2Cl2 0 : 0 : 100 

2.157 Ph3PBr2, THF:pyr (6:1) 0 : 0 : 100 

2.157 DPPE, Br2, CH2Cl2 0 : 0 : 100 

2.157 Ph3PCl2, CH2Cl2 0 : 0 : 100 

 

Attempted bromination with triphenylphosphine dibromide in the presence of 

pyridine as a proton sponge inhibited tetrahydrofuran formation; however, none of the 

desired product was formed. Instead of bromide 2.152, alkene 2.161 was the major 

product with minor tetrahydrofuran formation. The next bromination conditions tested 

were 1,2-Bis(diphenylphosphino)ethane (DPPE) (0.5 equiv) and bromine (1 equiv) in 

dichloromethane. The use of DPPE instead of triphenylphosphine generally results in 
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simpler purification and decreased elimination side products.
48 

Unfortunately, these 

conditions still gave alkene 2.161 as the sole product. An attempt to use neutral 

chlorination conditions also failed to deliver the desired halogenated product 2.158. The 

tert-butyldimethylsilyl ether protecting group was then replaced by a tert-

butyldiphenylsilylether (2.157), which is much more robust in acidic media. 

Unfortunately, the TBDPS group only served to prevent tetrahydrofuran formation 

completely and to provide the undesired elimination product, alkene 2.162 as the only 

product.  

With these results, it was decided that if the -bromide could actually be formed, 

it would be unstable and possess a highly thermodynamically stable elimination pathway. 

Also, if this sp
3
 bromide was subjected to magnesium metal to undergo oxidative 

addition, the resulting organometallic reagent would possess a highly favorable 

elimination pathway. In light of these conclusions, it was decided to take advantage of 

the stability of alkene 2.161 by preparing an -pyrrolo-vinylbromide that could later be 

hydrogenated to provide marineosin core 2.151. A Shapiro reaction was chosen as the 

key reaction to provide the vinyl bromide since the required hydrazone could readily be 

synthesized using conditions that have already been optimized for this pyrrole substrate. 

The modified retrosynthetic route is described in Scheme 2.44.  
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Scheme 2.46. Retrosynthesis of  model marineosin core 2.151 by Grignard addition of 

vinylbromide 2.164. 

 

 Vinylbromide 2.164 will undergo a Grignard reaction with malimide 2.119 to 

provide unsaturated spiroaminal 2.163, which can be hydrogenated to the desired model 

marineosin core 2.151. The substrate for the Shapiro reaction, tosylhydrazone 2.165, is 

synthesized by hydroboration/oxidation of ketone 2.166, silyl protection of the primary 

alcohol, and subsequent hydrazone formation. Ketone 2.166 is prepared by Grignard 

addition of allylmagnesium bromide to 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde 2.81 

and oxidation of the resulting alcohol. 

 The synthesis of tosylhydrazone 2.165 proved straightforward and highly efficient 

(Scheme 2.47). Grignard addition of allylmagnesium bromide to 1-(phenylsulfonyl)-2-

pyrrolecarboxaldehyde 2.81 gave the secondary homoallylic alcohol 2.167 in 88 % yield. 

Ley oxidation rapidly provided ketone 2.166 in 91 % yield, and hydroboration/oxidation 

of the terminal alkene gave a 96 % yield of primary alcohol 2.168. Protection as the 

silylether (2.169) proceeded in 86 % yield and subsequent condensation with 

tosylhydrazide gave tosylhydrazone 2.165 in 83 % yield.  
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Scheme 2.47. Synthesis of tosylhydrazone 2.165 from 1-(phenylsulfonyl)-2-
pyrrolecarboxaldehyde 2.81. 

  

 With tosylhydrazone 2.165 in hand, it was time to experiment with conditions for 

the Shapiro reaction (Scheme 2.48). 

 

 

Scheme 2.48. Shapiro reaction with tosylhydrazone 2.165 in an attempt to form vinylbromide 

2.164 or vinyliodide 2.170 

 

  Unfortunately, every temperature, solvent, and electrophile combination failed to 

provide the desired vinylbromide 2.164 or vinyliodide 2.170. It was concluded that 

perhaps the hydrazone was too sterically hindered or simply too stable to undergo the 

required fragmentation reaction, since in every case, only starting material was recovered, 

with no evidence of the desired vinylbromide or even the alkene that would result from 
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hydrogen abstraction and/or unsuccessful electrophilic attack.  

At this point, we decided to rethink the use of an -nucleophilic pyrrole for the 

regioselective addition to (S)-hydroxy malimide 2.119 to form the spriocyclic core. 

 

2.9.2. Hydroamination for Late-Stage Pyrrole Formation. 

 With all the problems encountered performing simple tranformations on pyrrole-

based substrates, we decided to develop a synthetic approach that called for a late-stage 

pyrrole installation.  

 In 2010, Zheng and Hua reported conditions for the formation of 1,2,5-

trisubstituted pyrroles from 1,3 diynes using cuprous chloride and a primary amine 

(Scheme 2.49).
49 

Since this was the necessary pyrrole substitution pattern and a 1,3-diyne 

could easily be incorporated into a previously established route, this method was ideal.  

 

Scheme 2.49. 1,2,5-substituted pyrrole synthesis by intermolecular hydroamination followed by 

intramolecular hydroamination. 

 

2.9.3. Addition of a Diyne to (S)-Hydroxy Malimide. 

Using this hydroamination methodology, a diynyl bromide would replace the -

bromopyrrole as the Grignard reagent in this new synthesis as outlined in Scheme 2.51. 
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Scheme 2.51. Retrosynthesis of marineosin A (2.1) from a 1,3-diyne pyrrole precursor 2.173. 

 

 Unsaturated marineosin core 2.171 could be prepared using Zheng-Hua diyne 

hydroamination strategy followed by a ring-closing methathesis reaction.
49

 Spiroaminal 

2.172 would be achieved through Grignard addition of diynyl bromide 2.173 to malimide 

2.119. diynyl bromide 2.172 could be provided by addition of the deprotonated acetylide 

2.175 to aldehyde 2.174, which is prepared from lactone 2.129. Diyne 2.175 is prepared 

by a copper-catalyzed Cadiot-Chodkiewicz alkyne-alkyne cross-coupling with 

ethynyltrimethylsilane 2.177 and iodoacetylene 2.176 followed by silane deprotection. 

Lithium acetylide (2.178) addition to 6-bromo-1-hexene 2.179) followed by iodination 

should provide iodoacetylene 2.176.
 

 The forward synthesis began with the preparation of aldehyde 2.174 

(Scheme 2.52) from previously prepared (Scheme 2.37) TBS ester 2.137. Ester 2.137 is 

treated with diisobutylaluminumhydride (DIBAL-H) to provide alcohol 2.180 in 93 % 

yield. Parikh-Doering oxidation of alcohol 2.180 completed the synthesis of aldehyde  

2.174 (81% yield). 
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Scheme 2.52. Preparation of aldehyde 2.174 from previously prepared ester 2.137. 

 

The synthesis of 1,3-diyne 2.175 proved equally as straightforward (Scheme 

2.53). Nucleophilic substitution of 6-bromo-1-hexene 2.179 with commercially available 

lithium acetylide ethylenediamine complex 2.178 gave terminal acetylene 2.181. 

Iodination of the terminal acetylene by deprotonation with n-butyl lithium and quenching 

of the resulting anion with iodine provided iodoacetylene 2.176 in 59 % yield over 2 

steps. A Cadiot-Chodkiewicz cross-coupling of iodoacetlyene 2.176 and 

ethynyltrimethylsilane 2.177 with Alami’s improved conditions gave the TMS-protected 

1,3-diyne 2.182 in excellent yield (89 %).
50

 Silane deprotection by basic methanolysis 

provided the terminal 1,3-diyne (2.175) in 95 % yield. Treatment of 1,3-diyne 2.175 with 

a ethyl magnesium bromide provided the acetylide Grignard reagent, which was then 

added to aldehyde 2.174 at 0 
o
C to provide diynyl alcohol 2.174 in 85 % isolated yield 

(1:1 dr). At this point in the synthesis the diastereomers from the allylation reaction are 

easily separated and the reported yield of 85 % is for the major diastereomers syn, syn, 

anti and syn, syn, syn). The configuration of the stereocenter formed in the addition of 

diyne 2.175 to aldehyde 2.174 is not important, since this center will become the 
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nucleophilic center of the Grignard reagent. Since Grignard reactions can follow anionic 

or radical addition pathways, it is very likely that this stereocenter will racemize. 

Bromination of diynyl alcohol 2.183 with carbon tetrabromide, triphenylphosphine, and 

pyridine in dichloromethane readily provided diynyl bromide 2.173 in 82 % isolated 

yield (Scheme 2.53). It is important to note that without the pyridine additive (4 equiv.), 

the silylether was cleaved and the cyclized tetrahydrofuran was the only product 

observed, as with the pyrrole substrate (Scheme 2.45).  

 

Scheme 2.53. Synthesis of 1,3 diyne 2.175, subsequent addition to aldehyde 2.174, and 

bromination of the resulting alcohol 2.183 to provide diynyl bromide  2.173. 

 

Diynyl bromide 2.173 was only stable at room temperature for approximately 4 

days. After one week, the bromide had completely decomposed. Fortunately, if kept at      

-35 
o
C, the bromide was stable for about three weeks. With diynyl bromide 2.173 in 

hand, it was time to begin exploring conditions for the addition to malimide 2.119. 

Since work by Huang had shown that numerous Grignard reagents could 

regioselectively add into malimide 2.119,
41

 we first chose to convert diynyl bromide 

2.173 to a magnesium Grignard reagent. Stirring the 2.173 with magnesium metal in THF 
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at -78 
o
C followed by addition of malimide 2.119 provided no product formation. diynyl 

bromide 2.173 and malimide 2.119 were the only compounds recovered (Figure 2.5). 

Such a low temperature was chosen to avoid -elimination once the organometallic 

complex had formed. Since a highly conjugated ene-diyne compound would be formed 

upon -elimination, it was considered to be a very likely side reaction. The elimination 

product was not observed at -78 
o
C, and since the reaction failed to initiate, the decision 

was made to raise the temperature. At 0 
o
C in THF and diethyl ether, the same result was 

observed. Since the lack of reactivity was caused by an inability to initiate, the 

magnesium/diynyl bromide 2.173/THF or ether solutions were heated to reflux for 1 hour 

and then cooled to 0 
o
C and malimide 2.119 was added. Unfortunately, no addition was 

observed with these reactions either. However, instead of recovering diynyl bromide 

2.173, only des-bromo diyne 2.184 was obtained (Scheme 2.54). Interestingly, none of 

the -elimination product was recovered, only the dihydro diynyl compound 2.184. Since 

this side reaction could be due to hydrogen abstraction from the solvent, it was decided to 

use a Barbier method of addition. Although the Grignard reagent was forming, it was 

given enough time to abstract a hydrogen atom before the electrophile was added.  If the 

two reagents were combined, then as soon as the Grignard reagent forms, it should react 

with the electrophile available in solution.diynyl bromide 2.173 and malimide 2.119 were 

combined in THF and added to magnesium metal. This solution was rapidly stirred and 

heated to reflux for 2 hours. Unfortunately, the same result was observed: des-bromo 

diyne 2.184 and malimide 2.119 were the only isolated products.  
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Scheme 2.54. Summary of diynyl bromide (2.173) additions to malimide 2.119 and reduced 

malimide 2.185. 

 

Since malimide 2.119 is much less reactive than a traditional electrophile, like an 

aldehyde, it was theorized that the diynyl Grignard was forming, but the hydrogen 

abstraction pathway proceeds much faster than addition to the sterically hindered imide. 

To test this theory, malimide 2.119 was replaced with p-methoxybenzaldehyde. 

Surprisingly, none of the expected alcohol was observed, only des-bromo diyne 2.184 

and p-methoxybenzaldehyde were isolated. At this point, it was concluded that diynyl 

bromide 2.173 was the main problem, since it was unable to react with a simple 

electrophile. It was decided to investigate different types of additions besides the 

traditional Grignard. First, Rieke magnesium was used to generate the organometallic 

reagent using a Grignard addition procedure and a Barbier addition procedure, both 

carried out at -78 
o
C. Rieke magnesium is traditionally used for difficult Grignard 

reagents, such as secondary benzyl and allyl halides, so it was chosen for these 

properties. Unfortunately, the only isolated products were malimide 2.119 and des bromo 

diyne 2.184. This time, the des-bromo compound 2.184 was observed at -78 
o
C, which 

was not the case with magnesium ribbon where no reaction occurred. So it was concluded 

that the Grignard reagent was able to initiate at a much lower temperature with Rieke 

magnesium, but that hydrogen abstraction was still the favored pathway. The next 
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approach was described by Kobayashi where zinc dibromide is added to magnesium 

metal, propargyl bromide, and ether at room temperature.
51

 These conditions are 

optimized to make a hydrogen abstraction pathway less favorable by preventing 

magnesium bromide salts from irreversibly crashing out of solution; however, these 

conditions did not work with our system. Once again, the dihydro diynyl compound 

2.184 was isolated. The next conditions tested were developed by Kim and Han for use 

with propargyl halide additions to cyclic imides.
52

 Diynyl bromide 2.173, malimide 

2.184, zinc dust, and lead II bromide were suspended in THF and stirred at room 

temperature. After 48 hours, only starting material was recovered. Once it was 

determined that the Kim-Han procedure was unsuccessful, a method by Jiang and Tian 

that utilizes propargyl zincates to displace acetate from a reduced hydroxymalimde 

(2.185) was utilized.
53

 The diynyl bromide 2.173 was combined with acetoxyamide 2.185 

and zinc dust in THF and heated to reflux for 18 hours (Scheme 2.54). When the reaction 

was quenched, the only isolated product was deprotected hydroxymalimide 2.186. No 

diynyl bromide was recovered, so it is highly likely this relatively unstable starting 

material decomposed under the reaction conditions. In light of these results, it was 

concluded that the instability of diynyl bromide 2.173 combined with its steric bulk were 

preventing it from successfully undergoing addition to the malimide 2.119 

. The addition/acid-catalyzed N-acyliminium intramolecular spirocyclization 

method for spiroaminal synthesis may highly successful with substrates like primary 

halides that do not readily eliminate, undergo rapid abstraction pathways, or have 

significant steric bulk. Unfortunately, our diynyl bromide 2.173 proved incompatible 

with the conditions necessary to achieve this addition. Since this route to access the 
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marineosin core structure has proven unsuccessful to date, a new synthesis that involves 

acyclic key intermediates and a late-stage lactamization of a hydroxyketoamide has been 

envisaged. 

 

2.10 Acid-catalyzed Spirocyclization of a Hydroxyketoamide for the Synthesis    

        of Marineosin A. 

 

 

 Cyclization of hydroxyketoamides to form spiroaminals containing amide 

moieties has proven highly successful in the synthesis of complex natural products.
54,55

. 

These routes generally involve concomitant removal of acid labile protecting groups to 

reveal the reactive functional groups and subsequent acid-catalyzed spirocyclization, 

which can significantly improve the efficiency of a complex synthesis.
55

 

 

Scheme 2.55. Mechanism of the acid-catalyzed lactamization of a hydroxyketoamide.  

 

As described in Scheme 2.55, the spirocyclization reaction begins by treating 

protected hydroxyketoamide 2.187 with acid to remove the acid-labile alcohol protecting 

group. The free alcohol then adds to the activated carbonyl to preferentially form ketal 

2.189.  Subsequent loss of water generates oxonium ion 2.190, which is quenched by 

intramolecular attack of the primary amide to give spiroaminal 2.191. 
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One caveat of this method of spirocyclization is that the conformation of the 

spiroaminal center cannot be controlled; the compound will adopt the most 

thermodynamically stable conformation. If the natural product does not exist as the most 

stable conformer, then this method of spirocyclization would be ineffective. Molecular 

modeling studies can assist in determining the ability of this methodology to provide the 

desired compound by predicting the most stable conformations, and are commonly 

employed for this task.
55

 

 

Scheme 2.56. Marineosins A (2.1) and B (2.2) and alternative spirocenter conformations (2.1’ 
and 2.2’). 

 

 

In the case of marineosins A (2.1) and B (2.2), marineosin A should be the most 

thermodynamically favored product. In both marineosin diastereomers, the trans-fused 

macrocyclic ring is placed in the equatorial position in the chair conformation of the 

cyclohexane ring. Also, the methoxy substituent is positioned away from the macrocyclic 

ring in both marineosin A and B, which may favor formation of these two stereoisomers 

over the other two possible diastereomers (2.1’ and 2.2’). Finally, the nitrogen of the 
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spiroiminal center of marineosin A is placed in the axial position and stabilized by the 

anomeric effect, making this conformation more favorable than one in which the nitrogen 

is in the non-anomerically stabilized equatorial position (2.1’). This should facilitate 

formation of the desired marineosin A isomer as the most thermodynamically favored 

product in our acid-catalyzed spirocyclization. Preference for formation 2.2 over 2.2’ 

may prove more difficult due to the balance between decreasing the steric hindrance by 

adapting a conformation that positions the methoxy group away from the macrocyclic 

ring (2.2) versus the electronic stabilization provided by of the anomeric effect (2.2’). By 

enantioselectively preparing the hydroxyketoamide for the formation of the marineosin A 

isomer (which differs from marineosin B at the methoxy chiral center and spirocenter), 

we should obtain the desired, biologically active, marineosin A stereoisomer upon acidic 

spirocyclization. 

 

2.10.1. Diyne Substrates for Hydroxyketoamide Synthesis. 

 

 Based on the success of acid-catalyzed spirocyclizations of hydroxyketoamides to 

produce spiroaminals in the total synthesis of natural products, a route was devised which 

incorporates this key reaction to provide marineosin A (Scheme 2.57). 

Unsaturated marineosin A core structure 2.192 can be prepared by the key acid-

catalyzed spirocyclization of hydroxyketoamide 2.193 and an RCM reaction. 

Hydroxyketoamide 2.193 is prepared using the hydroamination methodology developed 

by Hua and co-workers with a 1,3 diyne,
49

 which is accessed by oxidation and amide 

formation from diol 2.194. Diol 2.194 is derived from allylic alcohol 2.195 through an 

asymmetric epoxidation, methylation, and concomitant pivolate deprotection/epoxide 
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opening to the 1,2-diol with DIBAL-H.
56

 Allylic alcohol 2.195 can be prepared from 

hydroxyepoxide 2.196 by epoxide opening with sodium bis(2-methoxyethoxy)aluminum 

hydride (Red-Al) to give the 1,3-diol and subsequent pivolate protection of the primary 

alcohol.
56

 Reduction of ester 2.197 and asymmetric epoxidation should provide epoxide 

2.196. Ester 2.197 could readily be obtained from previously prepared diynyl alcohol 

2.183 by oxidation and olefination of the resulting ketone.  

 

 

Scheme 2.57. Retrosynthesis of marineosin A (2.1) by spirocyclization of hydroxyketoamide 

2.193. 
 

The forward synthesis of hydroxyketoamide 2.193 began with Ley oxidation of 

diynyl alcohol 2.183 to give diynyl ketone 2.198 in 83 % yield (Scheme 2.58). A Horner-

Wadsworth-Emmons reaction with phosphonate 2.199 and n-butyllithium was employed 

to access ester 2.197. Unfortunately, ester 2.197 was only obtained in 31 % yield. It was 

decided to continue with the route, but to simultaneously investigate alternative 
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olefination conditions in order to obtain improved yields. Reduction of ester 2.197 with 

DIBAL-H gave allylic alcohol 2.200 in 86 % yield; however, subsequent epoxidation of 

allylic alcohol 2.200 using modified Sharpless conditions
 
proved unsuccessful.

57
 After 1 

week at -20 
o
C, no product formation was observed. The reaction was allowed to warm to 

room temperature, but after stirring for 3 days, only starting material remained. Attempts 

to utilize dimethyldioxirane (DMDO), meta-chloroperoxybenzoic acid (mCPBA), or 

vanadyl acetoacetonate, or basic methods (H2O2, NaOH or Triton B) resulted in 

decomposition of the starting material and/or non-selective olefin oxidation. 

 

Scheme 2.58. Synthesis of epoxide 2.196 from diynyl alcohol 2.183. 

 

The absence of any product formation led to the conclusion that the reactivity of 

the alkene was being attenuated by the extended conjugation. Mechanistically, an 

epoxidation reaction is an electrophilic substitution of an alkene. Electron-rich alkenes 

react very quickly and electron-deficient alkenes react very slowly, if at all. 

Unfortunately, our system, with substantial delocalization of electron density through the 

highly conjugated diene/diyne system, proved unreactive to epoxidation with mild, 

stereoselective conditions and decomposed upon exposure to more reactive conditions. In 

addition to this difficulty with the epoxidation, olefination of ketone 2.198 continued to 
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be low-yielding with a variety of conditions. Aspects of this route, such as the late-stage 

installation of the electron-rich pyrrole and the acid-catalyzed spirocyclization, were 

appealing; however other aspects were undesirable, like low-yielding olefinations, 

unsuccessful epoxidations, and a very long linear sequence of reactions. In light of these 

results and observation, this route was modified to remove the troublesome reactions and 

provide a more convergent synthesis of the required hydroxyketoamide 2.193.  

Excluding the sequential asymmetric epoxidation reactions by preparing terminal 

alkene 2.202 for cross metathesis (CM) with a methylene derivative of diynyl ketone 

2.183 would not only remove a troublesome reaction sequence, but would also provide a 

more convergent route (Scheme 2.59).  

 

Scheme 2.59. RCM/CM route to incorporate allylic methoxy fragment, alkene 2.202. 

 

Macrocycle 2.201 could be obtained through a CM reaction between terminal 

alkene 2.202 and geminal alkene 2.203, which is prepared from ketone 2.198 by a RCM 

reaction and a simplified olefination. Grubbs and co-workers have put an extensive 

amount of work into discerning the reactivity differences of alkenes in cross metathesis 
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reactions with the Grubb’s second-generation catalyst.
58

 Type 1 olefins undergo rapid 

homodimerization and the homodimers are consumable, whereas Type 2 alkenes undergo 

slow homodimerization, and the homodimers are sparingly consumable. Type 3 olefins 

do not homodimerize, and type 4 olefins are spectators that are inert to cross metathesis. 

Alkene 2.202 is a terminal alkene with a secondary allylic alcohol protected by a small 

group, which makes it a type 2 alkene. Geminal alkene 2.203 is a type 3 olefin since it is 

a 1,1-disubstituted olefin, so cross metathesis between 2.202 and 2.203 should proceed 

smoothly if type 2 alkene 2.202 is added slowly to minimize homodimerization. Since 

type 3 olefin 2.203 does not homodimerize, it will not be a problem to have a high 

concentration of this alkene in solution.  

Alkene 2.202 would be readily prepared from vinyl epoxide 2.204 by directed 

epoxide-opening to the 1,3-diol, mono-protection of the primary alcohol as the pivolate, 

and subsequent methylation of the free secondary alcohol. Vinyl epoxide 2.204 could be 

synthesized from cis-2-butene-1,4-diol 2.205 through mono-protection, epoxidation, 

oxidation of the free alcohol to the aldehyde, Wittig olefination, and deprotection of the 

alcohol. 

Before finalizing the changes to access diol 2.133 (Scheme 2.56), it was necessary 

to investigate the reactivity of the three key functional handles of d ketone 2.113. It was 

crucial to determine whether pyrrole formation followed by RCM then olefination would 

work better than RCM, pyrrole formation, then olefination. Since olefination of diynyl 

ketone 2.198 was low-yielding, it was decided to approach functionalization of the other 

two reactive groups of 2.198 first, the terminal alkene or 1,3-diyne moieties, in order to 

determine if olefination would proceed more smoothly when these groups were absent.  
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Ring-closing metathesis of diynyl ketone 2.198 appeared to proceed smoothly. 

TLC showed formation of a single product spot and consumption of all starting material 

and LC-MS data revealed that a compound with the correct mass had indeed formed. 

However, 
1
HNMR revealed a very different story. The compound that had formed was 

actually 1,5-diene-3-yne 2.207.
59 

 

Scheme 2.60. Attempted ring-closing metathesis of diynyl ketone 2.198. 

 

This formation of this compound can be explained by envisioning a RCM-

induced metallotropic [1,3-shift] as described by Lee and coworkers to produce a 1,5-

diene-3-yne (Scheme 2.61).
59

 First, enyne metathesis occurs generating alkylidene 

intermediate 2.208. This intermediated can then undergo a [1,3] metallotropic shift, 

which can be considered a special case of enyne metathesis where there is no tether 

between the ene and the yne counterparts. This shift results in the rearranged alkylidene 

2.209, which can then undergo RCM with the remaining alkene to give the observed 1,5-

diene-3-yne 2.207. 
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Scheme 2.61. Formation of 1,5-diene-3-yne  2.107 from attempted RCM of ketone 2.198 with 
Grubbs II catalyst.

59 

 

Since RCM could not be achieved with the diyne in place, we decided to use a 

pyrrole derivative in the RCM reaction. Since pyrrole 2.140 had already been synthesized 

and could be successfully protected as N-benzylpyrrole 2.210 (Scheme 2.62), it was 

simply used for the RCM because the preparation was already optimized and the 

compound had been stored and was immediately available. Interestingly, after refluxing 

at 40 
o
C for 24 hours, only starting material was recovered. Changing the solvent to 

toluene and refluxing at 100 
o
C provided no improvement. 

 

Scheme 2.62. Unsuccessful RCM with N-benzylpyrrole 2.140. 
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Even with a protected pyrrole, it appeared that the catalyst was being poisoned. 

This was unexpected since the pyrrole nitrogen had been protected and the pyrrole was 

substituted at the 2-position by an electron-withdrawing acyl substituent. One possible 

explanation is that protection of the pyrrole nitrogen with an alkyl group (benzyl) actually 

increases the basicity of the amine, as is seen with simple alkyl amines. If this is the case, 

the more basic pyrrole would actually chelate to the catalyst more efficiently than the 

deprotected pyrrole. To test this theory, ring-closing metathesis was attempted with 

deprotected pyrrole 2.140. Unfortunately, no reaction was observed with this substrate 

either. However, this does not discount the hypothesis that the benzyl-protected pyrrole 

nitrogen would be more basic. The deprotected pyrrole may be an efficient chelator as 

well, since the nitrogen is less hindered and more open for chelation.  

 Routes to achieve the synthesis of the required hydroxyketoamide for the acid-

mediated spirocyclization have proven unsuccessful so far in our progress toward the 

total synthesis of marineosin A. Our major focus to achieve the synthesis of the requisite 

hydroxyketoamide has been on the preparation of a diyne and then incorporating it into 

the molecule as a single unit, followed by a ring-closing reaction to form the macrocycle. 

Considering the results of these endeavors, we decided to investigate the formation of the 

diyne for the ring-closing reaction. 
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2.10.2  Intramolecular Alkyne-Alkyne Coupling for Hydroxyketoamide Synthesis.                 

In light of the problems encountered with electron-rich pyrrole intermediates and 

reactive diynes, a route to achieve the synthesis of the key hydroxyketoamide without 

these components was designed. We decided to investigate the possibility of forming an 

alkyne within a stereochemically advanced intermediate, followed by subsequent 

intramolecular Hay alkyne-alkyne coupling (Scheme 2.63).
60

 Hydroamination of diyne 

2.212 could incorporate the C-ring pyrrole into the macrocycle forming intermediate 

2.211, which can provide the hydroxyketoamide following a few functional group 

interconversions.
61

 Intramolecular Hay coupling of two terminal alkynes would provide 

the requisite diyne 2.212. Regioselective epoxide opening with an acetylide could 

provide the first terminal alkyne and deprotection, oxidation, and homologation could 

provide the second terminal alkyne of dialkyne 2.212. Epoxide 2.214 is generated from 

stereoselective reduction of enone 2.215 and subsequent asymmetric epoxidation. Enone 

2.215 is obtained from cross metathesis of an easily accessed enone 2.216 and a mono-

substituted terminal alkene 2.217.   
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Scheme 2.63. Retrosynthesis of marineosin A (2.1) incorporating a key Hay coupling to form the 

diynyl macrocycle 2.212. 

 

 

 Enone 2.216 was prepared from 1,3-propanediol (2.218), which was mono-

protected to give benzyl ether 2.219 and oxidized to -hydroxy aldehyde 2.220 under 

Parikh-Doering conditions (Scheme 2.64).
62

 Addition of vinyl magnesium bromide to the 

aldehyde and subsequent Ley oxidation provided the desired enone 2.216 in 31 % overall 

yield.  
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Scheme 2.64. Synthesis of enone 2.216 from 1,3-propanediol (2.218). 

 

 

Preparation of terminal alkene 2.217, which contains the required stereochemical 

elements, was not as straightforward (Scheme 2.65). Stereoselective alkylation with alkyl 

iodide 2.221 of lactone 2.129 proceeded slowly (12 h) and in low yield (39 %) with the 

addition of DMPU to breakup lithium aggregates. Without DMPU, the reaction showed 

no evident conversion to alkyl lactone 2.222.  Since the diastereoselectivity was good 

(7:1), this route was carried forward. Careful hydrolysis of lactone 2.129, subsequent bis-

protection as the TBDPS ether/ester, and finally DIBAL-H reduction of the ester 

provided the primary alcohol (2.223) in 50 % yield over 3 steps. Parikh-Doering 

oxidation to aldehyde 2.224 and Wittig olefination gave the required terminal olefin 

2.217.
62,63

 Unfortunately cross metathesis with the prepared vinyl ketone 2.216 proved 

unsuccessful. Only 5 % conversion to product was observed, even after 5 days and 

addition of 60 mol % of catalyst. 5 days at 100 
o
C in toluene resulted in no noticeable 

increase in conversion.   
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Scheme 2.65. Attempted synthesis of enone 2.215 from lactone 2.129.  

 
 

Since there are numerous methods for the synthesis of-unsaturated ketones, 

we decided to explore the Horner-Wadsworth-Emmons (HWE) reaction to prepare this 

intermediate.
64

 In order to use this method, we had to prepare the required -

ketophosphonate 2.225. This was achieved in a three-step sequence (Scheme 2.66), 

beginning with Jones oxidation of mono-benzyl ether 2.226 and subsequent esterification 

of the resulting carboxylic acid. Deprotonation of methyl-dimethylphosphonate 2.227 and 

treatment with the prepared -hydroxy ester 2.228 provided the necessary phosphonate 

2.225.  

 

Scheme 2.66. Synthesis of -ketophosphonate 2.225. 
 

Using the conditions developed by Roush and co-workers for the HWE reaction 

with base-sensitive substrates, phosphonate 2.225 was treated with barium hydroxide in 
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THF at room temperature.
64

 After 1 h, aldehyde 2.224 was added as a solution in 

THF:H2O (40:1 v/v) at room temperature. The HWE reaction provided the desired enone 

2.215 in 46 % yield (58 % yield brsm) with no noticeable racemization.  

 

Scheme 2.67. HWE reaction of aldehyde 2.224 and phosphonate  2.225 to provide enone 2.215. 

 

While exploring conditions for the preparation of the enone 2.215, efforts were 

underway to optimize the stereoselective alkylation of lactone 2.129. Based on previous 

alkylation studies with allyl iodide, it was decided to use a substituted allylic iodide 

(2.230) in the alkylation reaction. Following optimization of iodination conditions, the 

route described in Scheme 2.68 was utilized to prepare the required allylic iodide 2.230. 

 

Scheme 2.68. Synthesis of alkyl iodide 2.230 from 6-hepten-1-ol (2.226). 
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6-hepten-1-ol (2.226) was protected as the TBS ether (2.227), and the resulting 

alkene underwent CM with ethyl acrylate to provide the -unsaturated ester 2.228 

which was reduced to allylic alcohol 2.229 with DIBAL-H. Subsequent iodination with 

iodine, triphenylphosphine, and imidazole provided allylic iodide 2.230 in excellent yield 

(64 % over 4 steps with purification). Allylation of lactone 2.129 with allylic iodide 

2.230 proceeded in the absence of DMPU, much more rapidly (2 h), and with better yield 

(82%) of the allylated lactone 2.231 than alkylation with the alkyl iodide 2.221 (Scheme 

2.69).  

 
Figure 2.69. Synthesis of chiral allylic alcohol 2.237 from lactone 2.129. 

 

Careful hydrolysis of lactone 2.231, TBDPS bis-protection, and subsequent 

reduction of the TBDPS ester gave primary alcohol 2.233 in 85 % yield over 3 steps. 

Parikh-Doering oxidation and hydrogenation gave the saturated aldehyde 2.235 for the 
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HWE reaction. The HWE reaction proceeded in 45 % yield (69 % brsm) to give enone 

2.236. Stereoselective reduction of enone 2.236 was achieved using the Corey-Bakshi-

Shibata (CBS) catalyst 2.238 and a method optimized by Drummond and Sutherland to 

give the desired secondary allylic alcohol 2.237  in 94% yield and greater than 20:1 

dr.
65,66

 

The CBS catalyst 2.238 is synthesized from proline and is utilized to 

enantioselectively reduce ketones to alcohol. The enantioselectivity is derived from 

transition state 2.240 where the larger substituent is positioned away from the large R 

group on the catalyst. Internal hydride delivery from borane results in formation of the S 

enantiomer 2.241  in good to excellent ee based on the size difference of R1 and R2.
65 

 

Scheme 2.70. Mechanism of the CBS reduction. 

 

Kinetic resolution utilizing Sharpless asymmetric epoxidation (SAE) conditions 

(Scheme 2.71) is an effective way to generate a chiral allylic alcohol from a racemic 

mixture.
67-69

 By utilizing the reagent control provided by the chiral catalyst, one is able to 

choose which enantiomer of the allylic alcohol is obtained in > 95% ee. The other 

enantiomer will be converted to the erythro epoxy alcohol due to its faster reaction rate. 

The alcohol with the fastest reaction rate is the one that minimizes the A1,2 strain between 
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the R group of the secondary alcohol and the geminal substituent on the double bond 

(Scheme 2.72). If (+)-DET is chosen as the chiral reagent, the R enantiomer decreases 

this strain, so it is the fastest to react, leaving the S enantiomer as unreacted, 

enantiomerically-enriched allylic alcohol.
67 

 

Scheme 2.71. Mnemonic for determining facial selectivity in the SAE reaction. 

 

 

Scheme 2.72. Rational for observed kinetic resolution utilizing SAE. 

 

The stereoselectivity of the CBS reduction was confirmed by Sharpless kinetic 

resolution to form the desired epoxide 2.242 (Scheme 2.73). (+)-DET gave complete 

conversion to the epoxide product, which confirmed that the reduction had indeed 
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occurred exclusively from the face to give the (S) stereoisomer of the alcohol (2.237). 

If considerable addition had occurred from the face, then unreacted (R)-allylic alcohol 

would have been recovered from the epoxidation reaction.
67 

 

Scheme 2.73. Kinetic resolution of alcohol 2.237 and synthesis of -methoxy epoxide 2.244. 

 

Since the threo isomer was required and the erythro isomer is obtained from the 

Sharpless asymmetric epoxidation, we inverted the alcohol stereocenter of hydroxyl 

epoxide 2.242 using Mitsunobu conditions to provide the desired R-hydroxy epoxide 

2.243. Subsequent soft methylation with trimethyloxonium tetrafluoroborate and proton 

sponge provided the methyl ether 2.244 in excellent yield (87%). 
70 

At this point, it was time to investigate conditions to regioselectively open the 

epoxide by addition of mono-TMS-protected acetylene. We began by treating epoxide 

2.244 with diethyl aluminum chloride, which has been shown to provide regioselective 
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epoxide-opening of hindered substrates.
71

 We hoped the methoxy substitutent would 

chelate to the epoxide and increase the electrophilicity of the C9 carbon to facilitate 

addition at this center. TMS-acetylene 2.177 was deprotonated with n-butyl lithium at -78 

o
C and the resulting solution added to the epoxide at -78 

o
C. After stirring for 12 h with 

no reaction, the solution was warmed to 0 
o
C and stirred for an additional 12 h. After 

observing no reaction, the mixture was warmed to room temperature and stirred for 24 h. 

At this point, there was still no evidence of conversion to product, so additional diethyl 

aluminum chloride was added at room temperature. After 8 h, all starting material had 

been consumed and TLC revealed conversion to a single product that was more polar 

than the starting epoxide 2.244. Upon inspection of 
1
H NMR and 

13
C NMR data, it was 

concluded that the epoxide had indeed been opened regioselectively at the desired 

position. However, the nucleophile responsible was not acetylide 2.177, it was the 

chloride anion from the Lewis acid additive to provide chloro-alcohol 2.245. Subsequent 

oxidation to ketone 2.246 provided a cleaner spectrum with clear coupling constants and 

shifts, thus corroborating the identity of the nucleophile as the chloride anion. 

 

Scheme 2.74. Undesired regioselective opening of epoxide 2.244 with chloride anion to form 

chloro-alcohol 2.245. 
 

 

Attempts to open the epoxide 2.244 with a relevant nucleophile proved futile. 

Various Lewis acids, solvents, nucleophiles, temperatures, and orders of addition were 

studied as outlined in Scheme 2.75. The only addition to occur successfully was the 
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chloride anion addition which resulted from treating the epoxide with excess diethyl 

aluminum chloride. At this point it was concluded that this route would be unable to 

provide the desired hydroxyketoamide and that substantial alterations would have to be 

made to incorporate the C9 stereocenter.  

 

Scheme 2.75. Attempts to form alkyne 2.247 by regioselective addition to epoxide 2.244. 

 

2.10.3 Intermolecular Alkyne-Alkyne Coupling for Hydroxyketoamide  Synthesis. 

We began to consider alternative disconnections to achieve the hydroxyketoamide 

core, and in light of our previous success with the Cadiot-Chodkiewicz hetero alkyne-

alkyne cross-coupling, we decided to incorporate an intermolecular diyne formation and 

still utilize an intermolecular/intramolecular hydroamination reaction to generate the 

pyrrole followed by an RCM reaction to form the macrocycle (Scheme 2.76).
72-75

 We had 

experienced successful cross-metathesis reactions with an electron-rich, deprotected alkyl 

pyrrole in our work with the proposed biosynthetic route of the marineosins (Chapter 2, 

Section 2.6), and we believe that this pyrrole will display similar reactivity.
76

 The 

spiroiminal center will still be formed by an acid-mediated cyclization of a 
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hydroxyketoamide intermediate, followed by installation of the final pyrrole moiety.  

As described in Scheme 2.76, a readily available iodoalkyne 2.256 will be 

coupled to a highly derivatized terminal alkyne 2.251 to provide the diyne for pyrrole 

formation and subsequent cyclization. Alkyne 2.251 can be prepared by a stereoselective 

1,4-addition, followed by an stereoselective aldol reaction directed by the same acylated 

oxazolidinone 2.252. The opportunity to utilize a single auxiliary to direct the formation 

of three stereocenters, including the elusive C9 stereocenter, was highly appealing.
77-79 

 

Scheme 2.76. Retrsynthesis of marineosin A 2.1 through key intermolecular Cadiot-

Chodkiewwicz hetero alkyne-alkyne cross coupling and a Michael addition/aldol reaction 

sequence. 
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The acylated oxazolidinone was readily prepared starting from (S)-methyl oxirane 

2.254 by the regioselective addition of vinyl cuprate to the least substituted position of 

the epoxide (Scheme 2.77). Protection of the resulting, crude alcohol 2.257 as the TBDPS 

ether provided the product 2.258 in 81% yield over 2 steps. Cross metathesis with methyl 

acrylate and subsequent hydrolysis of the methyl ester 2.259 provided the required 

carboxylic acid 2.260 in excellent yield.  

 

Scheme 2.77. Synthesis of carboxylic acid 2.259 from (S)-methyl oxirane 2.254. 

 

Acid 2.260 was then treated with trimethylacetyl chloride and triethylamine to 

form the mixed anhydride in situ which was added to a solution of lithiated (R)-4-Benzyl-

2-oxazolidinone 2.255 to provide acylated oxazolidinone 2.253 for the conjugate addition 

(Scheme 2.78). To our delight, the 4-benzyl oxazolidinone proved to be an excellent 

substrate for the conjugate addition, providing a single diastereomer in 84 % yield and 

greater than 20:1 dr. 
79 
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Scheme 2.78. Acylation of oxazolidinone 2.255 with acid 2.260 and subsequent conjugate 
addition to provide 2.261. 

 

 

This excellent stereoselectivity is a result of the rigid, chelate transition state 

2.262 described in Scheme 2.79.
79

 The benzyl substituted oxazolidinone has historically 

shown inconsistent and undesirable results for facial selectivity in conjugate addition 

reactions. However, Williams and co-workers have shown that in the case of conjugate 

addition with allyl cuprate, the benzyl substrate displays excellent stereoselectivity.
79

 The 

more active allyl cuprate species appears to react more quickly than other cuprates at -78 

o
C

 
and with preferential formation of the adduct resulting from chelated transition state 

2.262, as opposed to open-chain transition state 2.263, which is the common reactive 

chelate in aldol reactions with oxazolidinone auxiliaries (vide infra), and has been used to 

explain the typical, opposite stereoselection (2.264) of benzyl-substituted versus phenyl-

substituted derivatives. Williams and co-workers observed that the benzyl-substituted 

auxiliary only showed modest selectivity in the conjugate addition reaction. However, 

when allyl cuprate was utilized as the nucleophile under the same reaction conditions, 

they observed excellent stereoselectivity for the formation of the same stereoisomer as 
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the phenyl-substituted auxiliary. In light of the poor stereoselectivity of the phenyl-

substituted oxazolidinones in aldol reactions, we decided to use the benzyl-substituted 

auxiliary for the conjugate addition reaction with allyl cuprate, so that the subsequent 

aldol reaction could be performed with the same auxiliary. In this manner, we will 

effectively set three stereocenters with one chiral auxiliary.  

 

Scheme 2.79. Possible transition states for conjugate addition reaction with an oxazolidinone 

auxiliary.
79 

 

With the completion of the highly successful conjugate addition reaction, it was 

time to investigate the subsequent aldol reaction. The -methoxy aldehyde was prepared 

as described in Scheme 2.80. 3-buten-1-ol (2.265) was protected as the benzyl ether 

(2.266), and cross metathesis provided the unsaturated ester (2.267) which was reduced 

to the allylic alcohol (2.268) with DIBAL-H. Sharpless asymmetric epoxidation provided 

epoxide 2.268 in excellent yield. Regioselective, europium–mediated solvolysis of the 

epoxide provided an excellent yield of the 1,2 diol 2.269 (94 %, >20:1 1, 2 : 1, 3).
80 

Oxidative cleavage of 2.269 provided the desired -methoxy aldehyde 2.270 for the aldol 

reaction.  



122 
 

 

Scheme 2.80. Preparation of -methoxy aldehyde 2.270 from 3-buten-1-ol (2.265). 
 

In order to choose the correct conditions to facilitate the aldol reaction and 

promote formation of the desired stereoisomer, it was necessary to investigate the theory 

behind stereoselection in the aldol reaction. This theory is based upon the Zimmerman-

Traxler transition state model which explains that the factors controlling stereoselectivity 

are the preference for placing substituents equatorially in six-membered ring transition 

states and the avoidance of 1, 3-diaxial interactions.
81,82 

In the aldol reaction, two new stereocenters are set. To account for all 

combinations, there is a possibility of forming 2
x
 diastereomers, where x is the number of 

new stereocenters formed in the reaction. In the case of the aldol reaction, x = 2, so there 

are four possible diastereomers. Formation of the Z-enolate (2.272) and reaction with an 

aldehyde can form a syn or anti aldol adduct (Scheme 2.81). Formation of the E-enolate 

(2.273) will provide the enantiomers of the syn or anti adducts that result from the Z-

enolate. The stereocontrol in this case is a result of the 1, 3-diaxial interaction between 
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the R2 group of the aldehyde and the R1 substituent of the enolate in the Zimmerman-

Traxler transition states 2.275 and 2.277. Minimization of this interaction places the 

aldehyde R2 group in a pseudoequatorial position (2.274 and 2.276) and results in the 

formation of syn aldol adducts (2.278) from Z-enolates and anti-aldol adducts (2.280) 

from E-enolates.  

 

Scheme 2.81. Four diastereomers are possible in the aldol reaction. Avoidance of 1,3 diaxial 

interactions precludes formation of  two of the diastereomers (2.279 and 2.281), resulting in the 

formation of anti adducts from E-enolates (2.280) and syn adducts (2.278) from Z-enolates.
81,82

 

(adapted from Li 2009). 
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Incorporation of the Evan’s oxazolidinone forces the transition state to adopt the 

conformation described in Scheme 2.82, where the polar imide of the oxazolidinone 

points away from the acyl moiety and aldehyde coordinated to the metal, thus forming a 

dipole. In order to prevent the chiral benzyl substituent of the oxazolidinone from 

experiencing unfavorable 1,3-diaxial interactions with the metal ligands in transition state 

2.285, this substituent is oriented away from the reactive components of the aldol 

reaction. This removes the possibility of forming a syn relationship between the auxiliary 

substituent and the -substituent, and controls the formation of the anti-relationship 

between the auxiliary and the -substituent, known as the Evan’s syn product (2.286). 

Formation of a product with the syn relationship between the auxiliary and the -

substituent is known as the non- Evan’s syn product (2.287) which is achievable through 

alternative reagents and reaction conditions. 

 

Scheme 2.82. Dipole Model of auxiliary control to provide Evan’s syn adol products (2.286)
 81,82

 
(adapted from Li 2009).
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. 

 Utilization of soft enolization conditions will favor formation of the Z-enolate 

over the E-enolate as described in Scheme 2.83. Chelation between the Lewis acid 

additive and the imide and amide carbonyls occurs first, followed by deprotonation. The 

Z-enolate 2.291 is favored by removing the gauche interaction between the enolate 

substituent and the chiral auxiliary in transition 2.289. As a result, the chirality of the-

carbon is set, and it is trans to the auxiliary substituent, as predicted by the Zimmerman-

Traxler transition state model. 

 

Scheme 2.83. Soft enolization conditions favor the formation of Z-enolates.
 81,82

 (adapted 

from Li 2009).
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By choosing the correct chirality for the oxazolidinone and utilizing soft 

enolization conditions to favor formation of the Z-enolate 2.293, we should be able to 

control the stereoselectivity of the aldol reaction to give the desired product 2.252 as 

highlighted in Scheme 2.84 

 
Scheme 2.84. Zimmerman-Traxler transition state for the formation of aldol adduct 2.252. 

 

 
Aldol procedures requiring boron as the chelation metal proved unsuccessful and 

only facilitated removal of the TBDPS protecting group. Titanium conditions developed 

by Crimmins and co-workers proved to be much more substrate-tolerant in our case.
78 

Unfortunately, the aldol reaction failed to occur with the methoxy aldehyde, and only 

starting materials were recovered.  

In addition to stereocontrol provided by avoidance of 1,3-diaxial interactions in 

the transition state, enolate geometry, and auxiliary chirality, with an -chiral aldehyde 

one must also consider the effect of this stereocenter on the transition state. To better 

understand this phenomenon we have to consider the Felkin-Ahn model of carbonyl 

addition (Figure 2.5). 
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Figure 2.5. Felkin-Ahn Model for addition to -chiral carbonyl compounds.
83 

 

In the Felkin-Ahn model, typically the largest substituent is placed perpendicular 

to the carbonyl and antiperplanar to the incoming nucleophile (Figure 2.5). The larger the 

nucleophile and RL, the greater the Felkin selectivity.
83,84

  

 

Figure 2.6. Felkin-Ahn Model predicts stereochemically distinct products based on enolate 

geometry (top). Desired product 2.252 could be formed through the Z-enolate if size-based 
assignments are made (bottom).

84 
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As described in Figure 2.6, formation of the Z-enolate should provide the syn, syn Felkin 

product, which is the desired product, if we consider R = CH2CH2OBn the large group 

and R = OCH3 the medium group. However, the incorporation of an -polar substituent 

(such as an -methoxy) affects the Felkin transition state in which RL is always placed 

anti to the incoming nucleophile. This -polar substituent effect is known as the 

antiperiplanar effect, which maximizes separation between the incoming anionic 

nucleophile and the electronegative α-substituent.. The effect is based on the preference 

to align the best acceptor 
*
 orbital parallel to the  and 

* 
orbitals of the carbonyl and 

antiperiplanar to the incoming anion, thus stabilizing the incoming anion (Figure 2.7).
85 

 

Figure 2.7. Felkin-Ahn antiperiplanar effect (left) can lead to anti-Felkin selectivity if X (the 

electronegative substituent) is not also the largest substituent (right).
85-87 

 
 

With -methoxy aldehyde 2.271, RM = OCH3 and RL = CH2CH2OBn; however, 

the antiperiplanar effect will place the -methoxy substituent away from the incoming 

nucleophile and the large R group next to the carbonyl and closer to the incoming 

nucleophile (Figure 2.8). In our case, the nucleophile and RL are very large, which 

typically makes Felkin selectivity very favorable. However, minimization around RL 
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places the electronegative -methoxy substituent into the path of the incoming anionic 

nucleophile, which is electronically very unfavorable. Consideration of the 

electronegative -substituent would predict the anti-Felkin product would be favored 

based on the antiperiplanar effect. However, this places the large RL substituent into the 

path of the very large, incoming nucleophile, thus resulting in significant steric repulsion.  

 

 

Figure 2.8. Analysis of aldehyde 2.271 based on Felkin-Ahn theory. 

 

This analysis led to the conclusion that neither of the possible reaction pathways 

is particularly favorable, and this is very likely the reason for the observed lack of 

reactivity. 

To investigate whether the combined steric and electronic liabilities of the -

methoxy aldehyde were responsible for this lack of reactivity, the aldol reaction was 

performed with a non-branched aldehyde, 6-hexanal. In this case, the aldol product was 
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readily formed, so it was concluded that the aldol reaction must be performed with a 

simpler substrate that does not experience opposing steric and electronic effects.  

Unsaturated aldehyde 2.298, possessing a flat and sterically undemanding surface, 

was chosen as a suitable substrate and was easily prepared in two steps. Mono-protection 

of 1,4-cis-buten-diol 2.296 with PMB chloride and subsequent oxididation/isomerization 

with excess manganese dioxide provided aldehyde 2.298 for use in the aldol reaction.   

 
 

Scheme 2.84. Synthesis of sterically-undemanding aldehyde 2.296 from cis-butenediol 2.294. 

 

Aldehyde 2.298 should provide the aldol product 2.252, and subsequent 

stereoselective epoxidation, regioselective epoxide opening, and functional group 

manipulations will provide the required hydroxyketoamide core 2.249 as described in 

Scheme 2.85. A key asymmetric epoxidation reaction, regioselective opening of the 

epoxide with Red-Al, and subsequent methylation will provide the chiral methoxy 

substituent of intermediate 2.300 that was unable to be directly incorporated as an -

methoxy aldehyde in the aldol reaction.  
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Scheme 2.85. Incorporation of aldehyde 2.298 into the retrosynthesis of marineosin A. 

 

Fortunately, the simplified, unsaturated aldehyde 2.298 proved to be an excellent 

partner in the aldol reaction, providing the desired syn isomer 2.299 in 65% yield and 

10:1 dr (Scheme 2.86). Recovered starting material (25%) was easily separated and 

resubmitted to improve the yield (78%, one resubmission). The success of the conjugate 

addition/aldol reaction sequence is an important milestome, since this is the first time we 

have been able to stereoselectively form the C9 stereocenter of marineosin A.  

 

Scheme 2.86. Aldol reaction with sterically undemanding aldehyde 2.298. 
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Intermediate 2.299 contains the three stereocenters that are the same in both 

marineosin A and marineosin B. Although our main focus is currently on the synthesis of 

the biologically active marineosin A diastereomer, one could envision a route to 

marineosin B which simply uses alternative asymmetric epoxidation conditions to 

prepare the other diastereomer (Scheme 2.87). Acid-catalyzed spirocyclization would not 

benefit from anomeric stabilization, but the inverted methoxy sbstituent could provide 

enough steric repulsion to orient this substituent away from the bulky, electron-rich 

pyrrolophane to favor formation of the non-anomerically stabilized spiroiminal. 

 

Scheme 2.87. C7-epi-2.300 could be prepared from aldol adduct 2.299 using an asymmetric 

epoxidation to provide marineosin B (2.2).  
 

After successfully optimizing the conjugate addition/aldol sequence, auxiliary 

removal proved to be a daunting task. In addition to the desired diol, two by-products 

were formed, namely, the retro-aldol product 2.261 and the amido alcohol 2.302 resulting 

from hydride addition to the oxazolidinone auxiliary. After trying numerous conditions, 

only lithium borohydride and methanol in THF provided any of the desired diol product 
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2.301. It was concluded that these conditions provided the best and most consistent yield 

of diol 2.301 (36-42%) and that the isolated retro-aldol product (2.261) could be 

resubmitted to the aldol conditions to provide additional starting material (2.299) 

 

Scheme 2.88. Auxiliary removal to give diol 2.301 and by products. 

 

The 42% of material lost as the amido alcohol 2.302 was unfortunate, so we 

decided to look into the other auxiliaries for the conjugate addition/aldol sequence. We 

tried three different auxiliaries (phenyl oxazolidinone, benzyl thiazolidinethione, and 

benzyl oxazolidinthione), and found the reaction sequence unsuccessful in all cases due 

to lack of stereoselectivity in the aldol reaction (phenyl), cuprate addition to the auxiliary 

(thiazolidinethione), or opening of the auxiliary to give amido alcohol 2.302 when treated 

with LiBH4 (oxazolidinthione).  At this point it was decided that a 36-42% yield of diol 

2.299 was acceptable at this stage of the synthesis, and the route was continued. 

Diol 2.301 was protected as the bis-TES ether (2.303) and the PMB protecting 

group was oxidatively removed by treatment with DDQ to give the primary allylic 

alcohol 2.304. Surprisingly, Sharpless’ asymmetric conditions for the epoxidation of 
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allylic alcohol 2.304 provided 0% conversion to product, even after a 7 day reaction time 

and the addition of stoichiometric amounts of reagents. It was concluded that the olefin 

was most likely too sterically crowded to undergo the desired reaction. The secondary 

TES ether may be blocking the face of the alkene and thus preventing any product 

formation due to the facial selectivity of the reactants.  

 

Scheme 2.89. Attempted asymmetric epoxidation of alkene  2.304. 

 

We decided to explore the effects of different protecting groups and oxidation 

states of diol 2.301 as summarized in Scheme 2.90.  

Although diol 2.01 could be selectively oxidized with manganese dioxide to 

provide enone 2.306, subsequent protection of the primary alcohol as the benzyl ether, 

pivolate ester, and benzoate ester was unsuccessful. Dioxolane protection of the hindered, 

enone 2.306 was also unsuccessful. The primary alcohol of enone 3.206 was found to be 

efficiently reactive with TBSCl to provide the TBS ether; however, subsequent acidic 

conditions required for the dioxolane protection were incompatible with the primary TBS 

ether. By manipulating the primary alcohol of diol 2.301 first, it was found that it could 
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selectively be protected as the pivolate ester over the secondary alcohol. Pivolate ester 

2.308 was oxidized to enone 2.309, but subsequent reactions to form he dioxolane ketal 

all failed. Since we were unable to protect the hindered enone derivatives (2.306, 2.307, 

and 2.309) and remove the steric bias within our molecule, we decided to exploit the 

presence of the chiral secondary alcohol and the inherent steric bulk of alkene 2.304 by 

attempting a substrate-directed asymmetric epoxidation. 

 

Scheme 2.90. Attempts to remove the steric bias of diol 2.301 by oxidation and dioxolane 
protection. 
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First, diol 2.301 had to be mono-protected to leave the secondary alcohol free for 

chelation. This was accomplished with TBSCl and imidazole to provide mono-TBS ether 

2.310 in 96 % yield (Scheme 2.91). With chiral allylic alcohol 2.310 in hand it was time 

to analyze the conformation of the substrate and decide what strategy would give the 

desired stereoselectivity.    

 

Scheme 2.91. Mono-protection of allylic alcohol 2.310 for substrate-controlled 
epoxidation. 

 

Due to the reliability, chemoselectivity, and stereoselectivity associated with 

vanadyl acetoacetonate, this reagent was chosen for the substrate-controlled epoxidation. 

Typically, excellent, substrate-controlled stereoselectivity is observed in metal-catalyzed 

epoxidations by exploiting the A1,2 strain within a molecule (Figure 2.9).
88 

In the case of vanadyl acetoacetonate, the role of the geminal substituent is 

crucial.
88,89

 If the germinal substiuent is sufficiently large, it can control the epoxidation 

to generate solely the erythro product. However, if the geminal substituent is very small, 

A1,2 strain becomes less important. If Rcis or R is very large, A1,3 strain will become the 

controlling factor.  
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Figure 2.9. Vanadyl acetoacetonate epoxidation and rational for the observed stereochemical 

outcomes.
88,89 

 

In our case, the geminal substituent is a hydrogen atom, which is very small, and 

R is very large. As explained by the Newman projections in Figure 2.10, the more 

favorable conformation is the one in which A1,3 strain is minimized by placing the very 

large R group away from the double bond and gauche with the geminal hydrogen. This 

conformation should provide the desired threo product. One could easily see how a 

methyl geminal substituent could increase A1,2 strain and lower the stereocontrol of A1,3 

strain. It is also evident that a large cis substituent could improve the stereocontrol by 

maximizing the A1,3 strain. In our case, we are expecting the A1,3 strain to be the 

controlling factor. The only question remaining is how strong that control will be.  
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Figure 2.10. Analysis of A1,3 strain within allylic alcohol 2.310 and predicted outcome of 

epoxidation reaction. 

 

Treatment of allylic alcohol 2.310 with tert-butyl hydrogen peroxide (TBHP) and 

vanadyl acetoacetonate at 0 
o
C resulted in 100% conversion to a single diastereomer 

(>20:1 by NMR) in only 4 hours.  

 

Scheme 2.92. Substrate-controlled stereoselective epoxidation of allylic alcohol 2.310 with 

vanadyl acetoacetonate. 

 

A crystal structure was unable to be obtained from the viscous oil; however, 

molecule modeling agrees with the assignment of the product as threo isomer 2.311. The 

energy-minimized conformation of allylic alcohol 2.310 reveals that the most favored 
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conformation is indeed the one that minimizes the A1,3 strain. This leaves the -face of 

the alkene open for epoxidation in the most energetically favored conformation, as 

predicted.   

.  

Figure 2.11. Most favored energy minimized conformation of allylic alcohol 2.310. 

Lowest energy conformation reveals open bottom face of C6-C7 alkene in agreement with 
minimization of A1,3 strain. 

 

 

With threo epoxide 2.311 in hand, it was time to choose protecting groups and 

investigate the regioselective epoxide-opening. Protection of the free secondary alcohol 

as the TBS ether was unsuccessful with TBSCl and imidazole; however, the more 

reactive TBSOTf and pyridine facilitated complete conversion to silyl ether 2.312 

(Scheme 2.93). The PMB protecting group was oxidatively removed using DDQ, 

revealing the free primary alcohol (2.313). The alcohol was then treated with Red-Al to 

regioselectively open the epoxide through chelation with the free alcohol and internal 
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hydride delivery to provide 1,3-diol 2.314.
56

 Unfortunately, the TBS groups proved too 

labile under the strongly basic conditions and mixed regioisomers of tetra-ols were 

obtained.  

 

Scheme 2.93. Undesired protecting group removal in regioselective epoxide-opening. 

 

. The protecting group strategy was reassessed, and the primary alcohol of diol 

2.301 was chemoselectively protected as the TIPS ether (2.315). Epoxidation proceeded 

smoothly with this highly hindered substrate to provide the threo epoxide (3.316) as 

before. The secondary alcohol of 3.316 was carefully protected as the benzyl ether by 

adding sodium hydride as 0 
o
C, immediately followed by addition of excess benzyl 

bromide and catalytic TBAI. The mixture was allowed to slowly warm to room 
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temperature once all of the reagents were combined. These precautions were taken in 

order to avoid an intramolecular Payne rearrangement considering the steric crowding at 

this position in the molecule. Fortunately, the reaction proceeded in 91 % yield to provide 

benzyl ether 3.317 with no evidence of a Payne rearrangement by NMR analysis.
91 

 

Scheme 2.94. Preparation of alcohol 2.318 for regioselective epoxide-opening. 

 

The PMB ether of 2.317 was oxidatively cleaved to reveal the desired 2,3-epoxy 

alcohol (2.318), which was treated with Red-Al. After 4 hours, the reaction was near 

completion, but removal of the TIPS protecting group was becoming apparent by LCMS. 

The reaction was quenched, extracted, and purified to provide the desired 1,3-diol 2.319 

as the major product (63%), recovered starting material 2.318 (15%), and the TIPS 

removal product as a minor by-product (<5%). None of the 1,2 diol was observed by 

NMR. The primary alcohol was selectively protected as the pivolate ester (2.320), and the 

secondary alcohol subjected to soft methylation conditions to provide the fully protected 

intermediate 2.321, as a single diastereomer. 

In order to incorporate the alkyne, it was necessary to identify conditions that 

could selectively deprotect a primary TIPS ether in the presence of a secondary TBDPS 
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ether. The chosen conditions would need to be acidic since TIPS ethers are slightly more 

acid labile than a TBDPS ether. In general, it should also be easier to remove a primary 

acid-labile protecting group over the secondary, more acid-stable protecting group. 

Previous research indicated that chemoselective removal of silyl ethers was possible with 

dilute HCl in MeOH and other protic solvents.
91,92

 In light of these successes, 2.321 was 

treated with 0.01 M HCl in MeOH, and after 5 hours, all starting material had been 

consumed. Upon purification and NMR analysis, it became evident that the secondary 

TBDPS ether had been selectively deprotected under these conditions to provide the free 

secondary alcohol 2.323 in 91% yield.  

Scheme 2.95. Chemoselective deprotection of a primary TIPS ether in the presence of a 
secondary TBDPS ether. 

 

 

 These results were disheartening, but conditions were fortuitously revealed that 

could successfully remove the TBDPS protecting group from the protected 

hydroxyketoamide in the acid-catalyzed spirocyclization step. After unsuccessful 

experiments with several organic acids, we decided to test Lewis acids. According to rate 

studies performed by Mabic and Lepoittevin, TBDPS ethers are stable to BF3OEt2 in 
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CH2Cl2; however, TIPS ethers should be hydrolyzed within 1 h.
93

 In our hands, treatment 

of intermediate 2.321 with BF3OEt2 in CH2Cl2 at room temperature resulted in complete 

conversion to the desired deprotected primary alcohol 2.322 in 0.5 hours and 94 % 

isolated yield. The hindered primary alcohol was readily oxidized under Parikh-Doering 

conditions to provide the desired aldehyde 2.324 in 79 % yield with no racemization.
 

However, excess reagents were needed in order for the reaction to reach completion 

within the average 4-6 hour reaction time commonly observed for these conditions. Since 

aldehyde 2.324 proved sensitive to air oxidation to the carboxylic acid, it was stored at     

-20 
o
C under argon and used within 1 week, or stored at 0 

o
C under argon and carried on 

to the next reaction within 24 hours. 

 

Scheme 2.96. Attempted homologation to form alkyne 2.325 

 

Aldehyde 2.324 was then subjected to Ohira-Bestmann conditions for 

homologation to alkyne 2.325.
95

 Unfortunately, the only observed product was the -

hydroxy elimination product 2.326. Corey-Fuchs homologation proved unsuccessful as 
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well; formation of the geminal dibromide intermediate never occurred at room 

temperature and gently heating the reaction mixture resulted in decomposition of the 

starting material.
96

 

Our inability to generate the advanced alkyne intermediate 3.325 prevented 

further pursuit of the total synthesis of marineosin A through completion of the route 

described in Scheme 2.97. Since the hydroamination route for pyrrole formation was no 

longer a viable route, alternative methods of pyrrole formation would need to be 

explored.  

 

Scheme 2.97. Summary of unsuccessful intermolecular alkyne-alkyne coupling/hydroamination 

route. 
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2.10.4. Model Synthesis of the Fully-Functionalized Core of Marineosin A. 

Due to the challenge of installing the pyrrolophane C-ring of marineosin A, we 

decided to exclude this moiety and complete a model synthesis of marineosin A based on 

the acid-catalyzed spirocyclization strategy. Completion of a model synthesis of the fully-

functionalized spiroiminal core of marineosin A will provide a chance to optimize the 

reaction sequence for the total synthesis of marineosin A once the pyrrolophane moiety is 

completed. A model system will also enable investigation of the late-stage 

spirocyclization in order to determine the viability of our current route to achieve the total 

synthesis of marineosin A. The marineosin A model (2.331) will not contain the 

macrocycle or the C-ring pyrrole, but will contain functional group handles that enable 

their installation. 2.331 will be prepared by the acid-mediated spirocyclization from 

hydroxyketoaminde 2.332, which will be obtained from the stereocehmically advanced 

alcohol 2.321. 

 
Scheme 2.98. Retrosynthetic analysis of marineosin A model 2.331 from previously synthesized 

TIPS alcohol 2.321. 
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The TIPS-protected alcohol 2.321 was utilized for initial model studies. Pivalate 

reductive removal with DIBAL-H proceeded smoothly to give the primary alcohol 2.333, 

which was oxidized with Parikh-Doering conditions to give aldehyde 2.334. Pinnick 

oxidation rapidly provided carboxylic acid 2.335, which was coupled to ammonium 

chloride with traditional amide coupling conditions to provide the primary amide 2.336.
96

 

Hydrogenolyisis of the benzyl ether and concomitant hydrogenation of the double bond 

provided alcohol 2.337, which was oxidized to the hydroxyketoamide (2.338) with Ley 

conditions. 

 

Scheme 2.99. Completion of the synthesis of the fully-functionalized sprioiminal core of 

marineosin A. 
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Keeping in mind the undesired deprotection of the TBDPS ether (Scheme 2.95), 

0.01 M HCl in MeOH was chosen to facilitate the cyclization. Unfortunately, the TIPS 

ether was hydrolyzed under these conditions and replaced by a methyl ether, as 

confirmed by 1D and 2D NMR experiments. The major product was obtained as a single 

diastereomer in 81 % yield. HMBC, HSQC, COSY, and NOESY experiments confirmed 

the absolute structure of the product as the marineosin A isomer based on the 

stereochemistry relative to the axial methyl group within the pyran ring, which was 

incorporated from (S)-methyl oxirane in our synthetic route.  

 

Figure 2.12. Key NOESY and HMBC correlations of marineosin model 2.340 confirming 

connectivity and absolute stereochemistry. 
 

 

Suspension of the spirocyclic lactam 2.340 in pyrrole and treatment with 

phosphorous oxychoride, provided the spiroiminal core 2.240.
97

 However, the product 

was unable to be separated from the pyrrole solvent by chromatography due to the 

considerable polarity of the two components and the instability of the product to reverse-

phase chromatography. Once appreciable material has been prepared, this reaction will be 

attempted on a larger scale (> 1.5 mg) to enable additional purification efforts and full 

characterization. 
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Lactam 2.339 will also be treated with triflic anhydride to provide triflate 2.341, 

which can be coupled to 1-Boc-2-pyrrole boronic acid and other boronic acids to generate 

a library of unnatural analogs for biological testing (Scheme 2.100). 
 

 

Scheme 2.100. Planned synthesis of unnatural analogs of marineosin A. 

 

In order to prevent ionization of the TIPS ether and reaction with methanol, we 

decided to replace this protecting group with the more stable p-methoxyphenyl (PMP) 

ether. This way the PMP group can be selectively removed to incorporate additional 

derivatization (Scheme 2.101). 

After optimizing conditions for the Mitsunobu reaction to incorporate the PMP 

protecting group, PMP ether 2.342 was carried through the same reaction sequence as 

TIPS ether 2.321 to successfully prepare the required hydroxyketoamide 2.348 (Scheme 

2.101).  
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Scheme 2.101. Synthesis of the sprioiminal core of marineosin A with a PMP primary alcohol 

protecting group. 

 
 

Exposure to acidic methanol gave surprising results. Pyran 2.350 was formed as 

the exclusive product. The PMP group was removed by the acidic reaction conditions, 

and the intermediate ion was quenched by methanol. The primary amide underwent 

methanolysis to provide a methyl ester and the oxonium ion was quenched by an 
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elimination reaction in the absence of a primary amide moiety to capture the electrophilic 

intermediate. It is unclear why the two very stable protecting groups (TIPS and PMP) are 

removed in such dilute acidic conditions and why these two very similar substrates 

produce very different products through divergent reaction pathways. Clearly, in order to 

generate a stable and predictable marineosin A model for derivatization and biological 

evaluation, we will need to incorporate an alcohol substituent that it not designed for 

subsequent removal as a protecting group. 

 

2.11 Future Work. 

 

2.11.1 Completion of Marineosin A Macrocyclic Model System. 

In light of the difficulties encountered with protecting groups in the acid-mediated 

spirocyclization, we plan to alkylate the primary alcohol 2.322 with a substituent that is 

not designed for removal as a protecting group (Scheme 2.102). After preparing allylic 

iodide 2.351, this electrophile will be used to alkylate primary alcohol 2.322. Alkylation 

with commercially-available 7-bromo-1-heptene was unsuccessful, but the allylic iodide 

2.351 should be considerably more reactive, as we have observed in previous 

experiments with the alkylation of lactones (Chapter 2, Scheme 2.69).  

After O-alkylation to form ether 2.352, a 12-membered ring containing the alkyl 

ether will be formed by RCM (Scheme 2.102). Macrocycle 2.353 will then undergo the 

series of optimized reactions to provide hydroxyketoamide 2.357 for the acid-mediated 

spirocyclization to provide lactam 2.358. Acylation of lactam 2.358 with pyrrole will 

provide the fully derivatized model core 2.359 of marineosin A. 
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Scheme 2.102. Planned route for completion of the model system of marineosin A. 

 

Hopefully, the alkyl group/macrocycle will prove more stable than the TIPS and 

PMP protecting groups and will provide the desired marineosin A isomer. We then plan 

to make unnatural analogs as previously described in Scheme 2.100 and hope to identify 

the minimal pharmacophore for biological activity. In this model system, the only 

missing piece will be the pyrrole moiety within the macrocycle. The oxygen within the 



152 
 

macrocyclic ring is still a hydrogen bond acceptor and could have the same role in cells 

as the pyrrole. Of course the pyrrole can function as a hydrogen bond donor or acceptor, 

so these macrocyclic ethers could highlight the role of the C-ring pyrrole in the observed 

biological activity. If the macrocyclic ethers prove completely inactive, this could 

indicate that the C-ring pyrrole serves primarily as a hydrogen bond donor. Retained 

activity with ether replacements could indicate the C-ring pyrrole is primarily a hydrogen 

bond acceptor.  Either result will reveal interesting information about the SAR of these 

structurally-complex natural product analogs. SAR studies have implicated that the 

pyrrole A ring is key for activity; 
29

 however, numerous prodigiosins with alternative C-

rings have maintained or improved biological activity and these derivatives have been 

used to tune the activity to favor one biological process over another.
29,98

 We are hopeful 

that our macrocyclic etherlibrary will also possess anticancer, antimalarial, antibacterial, 

or immunosuppressive activity as so many of the prodigiosin alkaloids do and that we 

will be able to identify derivatives to modulate these potential, variable activities.  

 

 

2.11.2 Total Synthesis of Marineosin A 

 In addition to our plans to complete a model system of the fully-derivatized 

spiroiminal core of marineosin A (Scheme 1.102), we also plan to complete the total 

synthesis of this intriguing natural product and to synthesize derivatives with various 

nitrogen-containing heterocycles as the A-ring. Our plan for the completion of the 

synthesis will include an intermolecular Stetter reaction as a key carbon-carbon bond 

forming reaction (Scheme 2.103).
99 

In the Stetter reaction, triazolium salt 2.360 is deprotonated to form a Wittig-type 
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reagent (2.361), which then adds into the aldehyde component to give alkoxy 

intermediate 2.362. A hydride shift then occurs to give the acyl anion intermediate 2.363.  

 

Scheme 2.103.The mechanism of the Stetter reaction. 

 

This is an example of umpolung chemistry, where the activity of a functional 

group is reversed. In this case, the electrophilic aldehyde is transformed into a 

nucleophilic acyl anion (2.363), which then adds to a -unsaturated carbonyl through a 

conjugate addition to provide the 1,4 dione (2.365) following collapse of the tetrahedral 

intermediate (2.364) and regeneration of the Wittig salt 2.361. 

The Stetter reaction will be incorporated into the conjugate addition/aldol route 

(Scheme 2.85) starting from aldehyde 2.324. Addition of vinyl magnesium bromide and 

subsequent oxidation of the resulting allylic alcohol with manganese dioxide will provide 

enone 2.366 (Scheme 2.103). Intermolecular Stetter reaction with enone 2.366  and 
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aldehyde 2.367 will provide 1,4-dione 2.368, which can then undergo a ring-closing 

metathesis reaction to form macrocyclic 1,4-dione 2.369. 

 
 

Scheme 2.103. The intermolecular Stetter reaction will be a key carbon-carbon bond forming 

reaction for the completion of the total synthesis of marineosin A. 

 

Dione 2.369 can then be utilized in a Paal-Knorr condensation reaction with 

ammonium acetate to provide the 2,5-disubstituted pyrrole 2.370 (Scheme 2.104).
100-102

  

 

Scheme 2.104. Paal-Knorr pyrrole synthesis to provide the  2,5-disubstituted pyrrole 2.370 of 
marineosin A. 
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Performing the RCM prior to pyrrole synthesis will circumvent any undesirable 

interaction between the ruthenium catalyst and the electron-rich pyrrole, which has been 

known to poison the metathesis catalyst and prevent the desired ring-closing reaction 

from occurring (Chapter 2, Scheme 2.19 and 2.62). Following pyrrole formation, the 

resulting pyrrolophane 2.370 will be subjected to the same series of reactions optimized 

in our model studies to generate marineosin A as a single diastereomer (Scheme 2.105).  

 

Scheme 2.105. Completion of the total synthesis of marineosin A.   

 

With marineosin A in hand, we plan to generate unnatural A-ring analogs through 

triflate formation and Suzuki cross-coupling with various commercially-available 
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heterocyclic boronic acids as outlined in Scheme 2.100 for library generation around the 

model system. These compounds will be tested in viability, proliferation, and invasion 

assays in the HCT-116 colon cancer cell line, as well as various other cell lines. We are 

also interested in the immunosuppressive and antimalarial properties of prodigiosin 

analogs and will investigate these activities through various collaborations. Hopefully, 

future studies will enable identification of a minimal pharmacophore and the design and 

optimization of a second-generation, simplified synthesis for the preparation of this 

pharmacophore. A simplified synthesis could provide rapid access to larger libraries of 

unnatural analogs for optimization of various biological properties and mechanism of 

action studies. 
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CHAPTER  3 

 

TOTAL SYNTHESIS AND BIOLOGICAL EVALUATION OF TAMBJAMINE K 

AND A LIBRARY OF UNNATURAL ANALOGS 

 

 

3.1. Tambjamine Alkaloids. 

 

The tambjamines A–J (3.1–3.10) are a 2,2’-bipyrrolic class of cytotoxic alkaloids 

with diverse aliphatic termini isolated from marine invertebrates, such as bryozoans, 

nudibranchs, and ascidians, and are related to the prodigiosin 3.11 family of alkaloids 

(Figure 3.1).
1–8

  

 

Figure 3.1. Structures of the tambjamines A–J (3.1–3.10), prodigiosin (3.11).
1-8 
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Figure 3.2. Structures of the tambjamine alkaloid relatives BE-18591 (3.12) and YP1 (3.13).
 

 

BE-18591 (3.12) and YP1 (3.13) are the only tambjamine alkaloids not isolated 

from marine invertebrates, but are instead produced by bacterial strains.
9
 

Pseudoalteromonas tunicata, is a marine bacterium that produces a range a biologically 

active products, including YP1 (3.13). BE-18591 (3.12) is the only tambjamine alkaloid 

isolated from a terrestrial bacterium, Streptomyces BA18591.  

 

 3.2. Identification of the Tam Biosynthetic Pathway. 

The gene cluster encoding for the biosynthesis of tambjamine YP1 (3.13) has 

been identified, and this knowledge proves that the prodigiosin alkaloids and tambjamine 

alkaloids share similar biosynthetic pathways.
9
 Proline, malonyl Co-A, and serine are 

incorporated into the synthesis of MBC as described by Williamson and co-workers in 

the biosynthesis of prodigiosin.
10

 AfaA activates dodecenoic acid, TamT introduces the 

double bond between the and  carbons, and TamH transfers an amino group from an 

amino acid.
9
 The resulting dodec-3-en-1-amine is condensed with MBC by TamQ to 

form YP1 (3.13).  
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Scheme 3.1. Biosynthetic pathway for the production of tambjamine alkaloid YP1 

(3.13).
9
 (adapted from Burke 2007). 
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Of the 19 proteins encoded in the Tam cluster, 12 were found to have high 

sequence homology to the Red proteins responsible for undecylprodigiosin synthesis in 

Streptomyces coelicolor A3(2) and Pig proteins involved in the biosynthesis of 

prodigiosin in Serratia sp. Table 3.1 highlights the Tam  proteins with sequence 

similarity to the Red and Pig proteins.
9-11

 The Red and Pig proteins involved in MBC 

biosynthesis are marked by and (M). The relationship between these two families of 

natural products is evident in the biosynthetic origins of these alkaloids. 

 

Table 3.1. Tam proteins, predicted functions, and Pig and Red proteins that possess sequence 

homology.
9
 (adapted from Burke 2007). 

 

 

3.3. Biological Activity of the Tambjamine Alkaloids. 

Members of the tambjamine class of alkaloids have demonstrated a wide range of 

biological activities including antitumor, antimicrobial, and immunosuppressive 
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properties. For tambjamines D (3.4) and E (3.5), the antitumor properties have been 

correlated with DNA intercalation and oxidative cleavage of single-strand DNA.
12

 Much 

like the prodigiosin family of alkaloids, this DNA cleavage is induced in the presence of 

copper without activation by an external reductant. This implies that Cu (I) is formed 

reductively through the concomitant oxidation of the tambjamine to a -radical cation. 

This species may damage DNA through an electron transfer mechanism with the DNA 

bases, resulting is apoptosis.
13 

Tambjamine C (3.3), E-J (3.5-3.10), BE-18591 (3.12), and YP1 (3.13) have 

shown useful antimicrobial and cytotoxic effects, and SAR studies have revealed that the 

more lipophilic compounds show greater potency in both settings.
14

 Unfortunately, none 

of the significantly cytotoxic compounds showed selectivity for the cancer cell lines over 

non-transformed cell lines. However, this limitation may be overcome by generating 

unnatural analogs for biological testing in an attempt to ‘dial out’ this undesirable lack of 

selectivity. 

The tambjamines have also shown activity as ionophores.
15,16

 Although they have 

been shown to induce apoptosis by oxidative DNA damage, they can effectively increase 

intracellular pH, which can also lead to apoptosis. BE-18591 (3.12) has displayed 

especially interesting activity.
16

 This compound shows reversible inhibition of the 

lysosomal proton pump (V-ATPase), the mitochondrial proton pump (F-ATPase), and the 

ATP-dependent proton pump (P-ATPase) in rabbit gastric mucosa with IC50 values from 

1-80 nM. Coupled to its antibacterial activity against Heliobacter pylori, this alkaloid 

could prove highly useful in the treatment of stomach ulcers. BE-18591 (3.12) has also 

shown immunosuppressive activity at nanomolar concentrations. However the selectivity 
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for T-cell proliferation over B-cell proliferation was less than the selectivity of 

prodigiosin.
16

 However, the potential for developing unnatural compounds with desirable 

biological activity based on the structure of the tambjamine alkaloids is very promising.  

 

3.4. Isolation of Tambjamine K. 

In early 2010, Gavagnin and co-workers described the isolation and 

characterization of a new member of the tambjamine family, tambjamine K (3.14), 

isolated from the Azorean nudibranch Tambja ceutae.
17 

Like other members of this 

family, 3.14 displayed antiproliferative and cytotoxicity against tumor (CaCo-2, IC50 

=3.5 nM, HeLa IC50 = 14.6 M, C6 IC50 = 14 M, H9c2 IC50 = 2.7 M, and 3T3-L1 IC50 

= 19 M) and non-tumor cell lines. Interestingly, 3.14 displayed differential effects 

across these tumor cell lines with a variance of >5000-fold (CaCo-2 vs 3T3-L1).
10

 Based 

on these data and our own efforts in related areas, we initiated an effort for the total 

synthesis and biological evaluation of 3.14 along with a library of unnatural analogs with 

unprecedented diversity in the eastern C7 position to survey moieties other than aliphatic 

alkyl chains.  

 

Figure 3.3. Structure of newly isolated tambjamine alkaloid, tambjamine K (3.14).
17
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3.5. Total Synthesis of Tambjamine K. 

Interest in the tambjamine family originated in our evaluation
18

 of Fenical’s 

biosynthetic proposal
19 

for the synthesis of marineosin A via an intramolecular inverse-

electron-demand Diels–Alder reaction with prodigiosin analog 3.15 (Figure 3.4). Like 

3.1–3.14, marineosin A displayed potent cytotoxic activity against HCT116 cells (IC50 = 

500 nM).
18,19  

 

Figure 3.4. Proposed biosynthesis of Marineosin A via and inverse electron-demand Diels-Alder 

reaction with prodigiosin analog 3.15. 
 

Our synthetic approach to access 3.12 was similar to that which we employed for 

the synthesis of 3.13.
18,20

 As shown in Scheme 3.2, a Vilsmeier–Haack haloformylation 

was performed on 4-methoxy-3-pyrrolin-2-one 3.16 to provide bromoenamine 3.17 in 

59% yield. Suzuki cross-coupling with Boc-1H-pyrrol-2yl boronic acid 3.18 delivered the 

Boc-protected analog 3.19 in 48% yield. Finally, an acid mediated condensation between 

3.19 and isopentyl amine
16

 afforded tambjamine K (3.14) in 65% yield and 18% overall 

yield for the three step sequence. Synthetic 3.14 was identical in all aspects to the natural 

product (Table 3.2). 
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Scheme 3.1. Total synthesis of tambjamine K.
20

 

 

 

Table 3.2. Comparison of NMR data from natural product isolate to synthetic natural product. 
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3.6. Biological Activity of Tambjamine K and Prodiginine Unnatural Analogs. 

While 3.14 was studied in a number of tumor cell lines, it was not evaluated in 

cell viability assays with HCT116 colorectal carcinoma or MDA-MB-231 breast 

carcinoma cell lines—tumor lines of interest to our lab.
21 

Moreover, we had not yet 

evaluated 3.15 or another related prodigiosin analog 3.20 we employed as a template for 

an intermolecular inverse-electron demand Diels–Alder (IEDDA) reaction to access the 

marineosin A core.
18

 Concentration-response curves (CRCs) were generated for viability 

of the HCT116 and MDA-MB231 cell lines upon treatment with compounds 3.14, 3.15, 

and 3.20 (Figure 3.5).  

 

Figure  3.5. Viability  concentration -response  curves for tambjamine K (3.14) and prodigiosin 

alkaloids 3.15 and 3.20  in HCT116 colonrectal cancer cell line (left) and MDA-MB-231 breast 

cancer cell line (right). 

 
 

As summarized in Table 3.3, tambjamine K (3.14) displayed weak cytotoxicity 

against HCT116 (IC50 =13.7 M) and MDA-MB-231 (IC50 = 15.3 M). In contrast, the 

Intramolecular IEDDA prodigiosin analog 3.15 was more potent with IC50 values of 3.5 

M for both tumor lines. The intermolecular IEDDA prodigiosin analog 3.20 was found 
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to be extremely potent, with IC50 values of 146 nM and 362 nM, for HCT116 and MDA-

MB-231 cell lines, respectively.  

 

Table 3.3.  Structures and activities of tambjamine K and unnatural analogs. 

 
a
 8000 cells/well in 96 well plate followed by 24 h for attachment. Added vehicle or compounds 

in RPMI 1640 plus 10% FBS + penicillin-streptomycin. Cells allowed to grow for 48 h, then 
viability was assessed. 

 

Figure 3.6 shows the HCT-116 cellular populations for the vehicle, and 

compounds 3.14, 3.15, 3.20 after 48 hour treatment at two concentrations. 
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Figure 3.6. HCT116 cell populations after 48 h treatment with vehicle (left), and 

compounds 3.14, 3.15 and 3.20 (center and right). 

 

3.7. Synthesis of a Library of Unnatural Tambjamine Analogs. 

These data prompted us to synthesize and evaluate a library of unnatural 

tambjamine analogs
 
to capitalize on the SAR observed for this class of natural products 

akin to our earlier work developing unnatural analogs with activities beyond the natural 

product.
22-24

  

Importantly, Quinn and co-workers
25

 previously prepared a combinatorial library 

of 10 unnatural tambjamine analogs, but all possessed limited R diversity and aliphatic 

side chains dominated. Our library was designed to incorporate functionalized benzyl, 

heteroaryl moieties and other previously undescribed analogs with varying degrees of 
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lipophilicity and basicity to further develop SAR.  

The library was prepared as shown in Scheme 3.2, and differed from the route to 

access 3.14 only in extended reaction time, as several amines proved sluggish in their 

conversion to unnatural tambjamine analogs 3.21; however, all analogs were successfully 

prepared in yields ranging from 35% to 88%. 

 

Scheme 3.2. Library synthesis of tambjamine unnatural analogs 3.21. 

 

3.8. Biological Activity of a Library of Unnatural Tambjamine Analogs.  

We triaged the library of analogs 3.21 by a employing a 10 M single point 

screen in the standard 48 hour viability assay using both HCT116 and MDA-MB-231 

cells.
21 

The majority of analogs, especially the benzyl congeners, 3.21m–3.21w, had no 
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effect on viability in either tumor cell line. Figures 3.7 and 3.8 show the single point data 

for the analogs 3.21 in these assays, and it is important to note that differential activity 

was observed between the two tumor cell lines (Figure 3.7 and 3.8). The most potent 

analog was 3.21b, a racemic 1,2,3,4-tetrahydronaphthalene congener, which significantly 

decreased HCT116 viability (<10% viability) while having only marginal effect on 

MB231 (40% viability). Other unnatural analogs 3.21c, 3.21e, 3.21f, and 3.21g decreased 

HCT116 cell viability to less than 20%, with minimal effect on MB231 viability. Clearly, 

constraining the benzyl amine moiety in 3.21b, 3.21e, and 3.21f into a bicyclic ring 

system is important for activity relative to the inactive benzyl derivatives 3.21m–3.21w.  

 

Figure 3.7. Single point (10 M) screen of library of analogs 3.21. 48 h cell viability assay with 
HCT116 colorectal carcinoma line 
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Figure 3.8. S ingle point (10 M) screen of library of analogs 3.21. 48 h cell viability assay with 

MDA-MB-231 breast carcinoma line. 

 

Based on the promising single point data, we then determined IC50 values for 

3.21b in both cell lines. 3.21b displayed moderately potent cytotoxicity against HCT116 

cells (IC50 = 1.8 M) with the CRC reaching baseline (0% viability at 10 M dose) 

(Figure 3.9). In contrast, 3.21b displayed weak cytotoxicity in the MDA-MB-231 cells 

(IC50 = 4.0 M) with the CRC only achieving ~50% decrease in cell viability at the 

highest (10 M) dose; therefore, the calculated IC50 is for a partial response. The results 

of the CRCs are summarized in Table 3.10. Most importantly, in our standard 

cytotoxicity assay in non-transformed cells, 3.21b displayed no toxicity.  
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Figure 3.9. Viability concentration-response curves for tambjamine unnatural analog 

3.21b in the HCT116 cell line (left) and the MDA-MB-231 cell line (right). 

 

 

Table 3.4. Structure and activity of tambjamine unnatural analog 3.21b. 

 

 

 

Based on these data, we then evaluated select unnatural analogs with activity in 

the HCT116 cell viability assay and evaluated them in standard 48 hour cell proliferation 

assays (Figure 3.10) using another colorectal line (SW620) and a non-small cell lung 

carcinoma (NSCLC) line (H520). Interestingly, 3.20, the most potent tambjamine analog 

in both the HCT116 (IC50 = 146 nM) and MDA-MB-231 (IC50 = 362 nM) viability 

assays, had no effect on proliferation in either the SW620 or the H520 cell lines. 
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However, unnatural analog 3.21b, displayed a significant effect on inhibiting 

proliferation in both tumor cell lines, while other analogs showed varying effects.  

 

Figure 3.10. Single point (10 M) screen of select unnatural tambjamine analogs in 48 h cell 
proliferation assays. (A) Proliferation assay with SW620 colorectal carcinoma line; (B) 

proliferation assay with H520 NSCLC line. 

 

As both unnatural tambjamine analogs 3.20 and 3.21e displayed minimal to no 

effect on proliferation (viability) in SW620 cells, we examined their ability to block 

invasion in this tumor line, as the ability of tumor cells to invade into the surrounding 

microenvironment is the defining step in tumor progression.
 
As shown in Figure 3.11, 

both 3.20 and 3.21e significantly blocked invasion, with 3.20 completely inhibiting 
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invasion. Moreover, both analogs displayed minimal or no cytotoxicity in this colorectal 

tumor cell line, further highlighting the value of unnatural analog synthesis.  

 

         

Figure 3.11. Single point (10 M) screen of select unnatural tambjamine analogs in 24 h cell 
invasion assay in the SW620 colorectal carcinoma line. 

 

 

3.9. Conclusions and Future Work. 

In summary, we completed the first total synthesis of tambjamine K (3.14) in 18% 

overall yield coupled with evaluation in viability assays in both colon (HCT116) and 

breast cancer (MDA-MB-231) cell lines. We also prepared a library of unnatural 

tambjamine analogs with unprecedented diversity and improved biological activity 

against a number of tumor cell lines in viability, proliferation and invasion assays. This 

effort demonstrated that subtle changes to the tambjamine core afford varying degrees of 

selectivity against different tumor cell lines. These data argue for further exploration of 

the tambjamine scaffold coupled with evaluation (viability, proliferation, and invasion) in 

additional human tumor cell lines. Current efforts are focused on synthesizing a second-
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generation library including the discrete enantiomers of 3.21b and 3.21e, chiral -methyl 

congers of the benzylic analogs 3.21m–3.21w and more focused analogs based on 3.20. 

In parallel, we are working to identify the molecular target(s) for these unnatural analogs 

by evaluating 3.20, 3.21b, and 3.21e against large panels of kinases, growth factors, and 

phosphatases as a primary approach. After investigating the SAR of the selective 

anticancer activity, we also plan to test our unnatural analogs for immunosuppressive 

properties, since this activity has been observed in tambjamine and prodiginine alkaloids. 

Resent literature has shown that prodiginine unnatural analogs possess potent antimalarial 

activity, but suffer from problems with general cytotoxicity.
26

 We plan to test our 

tambjamine unnatural analogs that show insignificant general toxicity for the ability to 

eradicate the Plasmodium falciparum parasite that is responsible for nearly all malaria 

deaths. Hopefully, this scaffold will prove as rich in tunable biological activity as the 

closely-related prodiginine alkaloids. 
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CHAPTER 4 

 

TECHNOLOGY ENABLED SYNTHESIS AND BIOLOGICAL EVALUATION 

OF 3,6-DISUBSTITUTED-[1,24]-TRIAZOLO[4,3-b]PYRIDAZINES AS M1 

ANTAGONISTS FOR TREATMENT OF DYSTONIAS. 

 

4.1. Introduction. 

 

4.1.1. Dystonias. 

 4.1.1.1. Symptoms. 

Dystonia is a movement disorder in which sustained muscle contractions cause 

twisting and repetitive movements or abnormal postures.
1
 While not widely known, 

dystonia affects an estimated 300,000 people in North America alone.
2
  

Two major categories of dystonias exist, primary and secondary.
1
 Primary 

dystonias develop spontaneously in the absence of any associated disease or apparent 

cause and show no other neurological symptoms, except tremor and myoclonus.
1
 These 

dystonias have a genetic component, and symptoms are typically irreversible once they 

appear. Early onset primary dystonias are rare, frequently have a genetic basis, and can 

progress to affect multiple body parts, which is known as generalized dystonia. Late-

onset dystonias are much more common and are typically focal in nature, meaning they 

affect one specific body part. Hand dystonia (writer’s cramp) and cervical dystonia 

(torticollis) are two of the most common examples of focal dystonias. These late-onset 

cases can also have a heritable predisposition.  

Secondary dystonias occur when dystonic symptoms result from other disease 

states or a brain injury.
1
 Many neurodegenerative diseases have dystonic symptoms, 
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including Huntington’s disease, Parkinson’s disease, and Rett syndrome. Brain lesions 

caused by trauma, vascular injury, viral infection or demyelination can also result in 

dystonic symptoms.  

Since dystonias are not one disease with one cause, but multiple diseases and even 

symptoms of other diseases, it would prove very difficult to determine the cause of each 

dystonia and design treatments to address each cause. In the case of dytonias, it would be 

much more reasonable to develop a symptomatic treatment that addresses the dystonic 

symptoms and successfully alleviates these symptoms in patients. Such a therapeutic 

could then be utilized to ameliorate all primary dystonias and even secondary dystonias 

resulting from a completely unique brain injury. 

4.1.1.2. Current Treatment Options. 

While symptomatic treatment is the currently available method, there are many 

negative aspects of these treatments.
3,4

 Most pharmacological treatments, such as anti-

cholinergics, GABA agonists, and dopaminergic agents, have severe dose-limiting side 

effects due to lack of selectivity. Botulinum toxin (Botox) injection works very well for 

focal dystonias. However, the toxin has to be directly injected into the affected area, so 

this is not an effective treatment for generalized dystonia. The effects are only temporary 

and multiple injections will be required. Also, immunity to the toxin develops overtime, 

rendering it useless as a treatment over time. Some neurosurgical treatments have proven 

very effective. Deep Brain Stimulation (DBS) of the globus pallidus is an option for 

generalized dystonias, but is not effective in all cases. Also, this is a highly invasive brain 

surgery that places electrodes in the patient’s brain to stimulate certain neurons to relieve 

symptoms. Ideally, an effective pharmacotherapy could be designed that is orally 
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available and capable of treating a wide range of dystonic symptoms with minimal side 

effects.  

 

4.1.2. Muscarinic Acetylcholine Receptor (mAChR) Subtype 1 (M1) as a target for 

treatment of dystonias 

 

 4.1.2.1. The Role of Acetycholine as a Neurotransmitter. 

 

  Acetylcholine (ACh) is a non-amino acid derived small molecule that plays 

essential roles in both the mammalian central nervous system (CNS) and peripheral 

nervous system (PNS) as a neurotransmitter.
5-10

 Cholinergic signaling within the 

autonomic arm of the PNS occurs at the pre-ganglionic sympathetic and parasympathetic 

synapses, the post-ganglionic parasympathetic synapses, and at a subset of postganglionic 

sympathetic synapses in skin and sweat glands. ACh is also released at the skeletal 

neuromuscular junction, where it stimulates muscle contraction. In the CNS, Cholinergic 

neuronal signaling also plays a key role; its release controls a multitude of integral brain 

functions, motor control and regulation, reward behavior, sleep/wake cycles, metabolism, 

learning and memory, and attention. 

 4.1.2.2. Muscarinic Acetylcholine Receptors. 

mAChRs are Type I rhodopsin-like G-protein coupled receptors (GPCRs) that 

exist as five distinct subtypes (M1-M5) and share a high degree of homology, especially 

among the orthosteric Ach-binding sites.
6,9,12-14

 M1, M3, and M5 exhibit higher homology 

to each other than to M2 and M4, which share the highest homology with each other.
6,9

  

Synaptic localization patterns as well as downstream signaling pathways are generally 

similar for M1, M3, and M5 subtypes versus M2 and M4.
13,14

 The former three are 

considered stimulatory or excitatory due to predominantly post-synaptic localization and 
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coupling to the Gαq/phospholipase-C (PLC)/inositol triphosphate (IP3)/Ca
2+

 pathway, 

while the latter two are regarded as inhibitory with predominantly pre-synaptic 

localizations and coupling to the Gαi/adenylyl cyclase (AC)/cyclic adenosine 

monophosphate (cAMP)/protein kinase A (PKA) effector system.
13,14

 M1, M4, and M5 

subtypes are predominantly localized within the CNS, while the M2 and M3 subtypes are 

expressed throughout the CNS and the periphery.
 

4.1.2.3. M1 as a Potential Target for Dystonia Therapy. 

M1 has been implicated as a potential target for dystonia therapy due to its post-

synaptic expression on medium spiny GABA-ergic neurons (MSNs) of the dorsal 

striatium (Figure 4.1).
15-17

 Activation of M1 receptors on the MSNs leads to increased 

excitation of these neurons, which ultimately results in increased muscle contraction.  

Antagonism of striatal M1 receptors by selective small molecules would lead to decreased 

excitation of the MSNs, which could ultimately alleviate the motor dysfunction present in 

patients with dystonia. However, no subtype selective antagonists for the M1 receptor 

have been reported, and therefore discovery of such ligands is clearly required in order to 

pharmacologically test this therapeutic hypothesis. Current pharmacological treatments 

for dystonia commonly display off-target activity at multiple mAChR subtypes.
3,4

 If a 

therapeutic agent could be designed that selectively targets one subtype over all of the 

others, it could potentially ameliorate dystonic symptoms without complications from 

dose-limiting side effects. 
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Figure 4.1. Localization of M1 and other receptors within the CNS.
15 

 

4.2. Discovery of an HTS lead for M1 Antagonism. 

In the course of our program in small molecule probe development for the 

Molecular Library Screening Center Network (MLSCN),
18

 a high-throughput screen 

identified the 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazine scaffold 4.1 as an 

attractive hit for muscarinic receptor subtype 1 (M1) antagonism (Figure 1.1). While 

numerous reports describe syntheses of 1.1, yields are typically moderate (<50%) with 

prolonged reaction times at high temperatures (steps requiring 18 to >60 h at reflux).
19-22

 

In order to employ an iterative analog library synthesis approach for the lead optimization 

of 4.2, a weak, but selective muscarinic acetylcholine receptor antagonist (M1 IC50 = 22 

M, M4 IC50 >150 M), significant refinements were required in the synthetic protocols 

for delivering analogs 4.1, with diversity at both C3 and C6.
19-22
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Figure 4.2. Generic structure of 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazine 4.1 and our M1 

antagonist screening lead 4.2. 

 

As many of the leads identified from HTS campaigns are small heterocyclic 

compounds, our laboratory has devoted significant effort to develop efficient protocols 

for the preparation of diverse heterocyclic templates employing microwave-assisted 

organic synthesis (MAOS).
23-29

 In recent reports, we have described general, high-

yielding MAOS protocols for the expedient synthesis of 1,2,4-triazines 4.3,
23

 imidazoles 

4.4,
24

 quinoxalines 4.5,
25

 pyrazinone 4.6,
26

 5-aminooxazoles 4.7,
27

 quinoxalinones 4.8,
28 

pyrazolo[1,5-a]pyrimidines 4.9,
29

 and pyrazolo[3,4-d]pyrimidines 4.10
30

 from simple 

starting materials (Figure 4.3). Therefore, application of MAOS to develop a general, 

high-yielding, and expedient synthesis of the 3,6-disubstituted-[1,2,4]triazolo[4,3-

b]pyridazine scaffold 4.1 seems warranted (Scheme 4.1). 

 

Figure 4.3. Heterocyclic templates accessed through MAOS in our laboratory.
23-30 
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4.3. Methodology Development for Expedited Library Synthesis. 

Classical conditions for the synthesis of 3,6-disubstituted-[1,2,4]triazolo[4,3-b] 

pyridazines 4.1 involve refluxing 3,6-dichloropyridazine 4.11 with an acylhydrazide 4.12 

in toluene for 16 h, or more typically for 60 h, to provide the 3-aryl-6-chloro-

[1,2,4]triazolo[4,3-b]pyridazine 4.13 in yields less than 50% (Scheme 1.1).
20-22 

Introduction of the amino moiety in the 6-position was accomplished through an SNAr 

reaction employing either neat or steel bomb conditions at 100–140
o
C for 8–30 h to 

deliver analogs 4.1 in yields ranging from 40% to 70%.
21-23

 Moreover, previous efforts 

were focused on traditional medicinal chemistry approaches and the development of 

structure–activity relationships (SARs), with little concern for achieving high chemical 

yields or reaction generality for either the heterocycle synthesis or the SNAr reaction. 

Indeed, the 3,6-disubstituted-[1,2,4]triazolo[4,3-b]pyridazine scaffold 4.1 has been an 

important pharmacophore for the development of GABAA receptor agonists at the 2/3-

subunit.
20-22 

 Interestingly, microwave-assisted organic synthesis has never before been 

applied to this heterocyclic system, and even more surprising when one considers a 1–6 

day reaction time to deliver a single derivative of 4.1. 

 

Scheme 4.1. Classical synthesis of 3,6-disubstituted-[1,2,4]triazolo 4,3-b]pyridazines 4.1. 
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By varying solvent and temperature parameters, microwave conditions were 

rapidly developed to accelerate and generalize the synthesis of the 3-phenyl-6-chloro-

[1,2,4]triazolo[4,3-b]pyridazine 4.13 core employing 3,6-dichloropyridazine 4.11 and 

acylhydrazide 4.12 (Table 4.1). When acetic acid was employed as a solvent or catalyst, a 

corresponding acetylated phenyl acylhydrazide 4.14 was obtained in varying quantities. 

Optimal acetic acid conditions employed 5% HOAc/EtOH at 150 
o
C for 10 min to afford 

the desired 4.13, along with 4.14 in an 85:15 ratio (Table 4.1, entry 9). Despite the side 

product, the conversion to 4.13/4.14 was quantitative and isolated yields of 4.13 exceeded 

82%. Application of the same MAOS conditions, but replacement of acetic acid with 5% 

4 N HCl in dioxane, afforded 100% conversion to 4.13 in 95% isolated yield without 

producing 4.14 (Table 1.1, entry 13). Thus, a reaction that previously required up to 60 h 

of conventional heating to provide <50% yield,
20-22

 now afforded 95% yield of the 

desired product 4.13 in 10 minutes by virtue of MAOS—a 360-fold reduction in reaction 

time.  
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Table 4.1. Optimization of MAOS conditions to produce 4.13. 

 

 

Entry T (
o
C) Solvent Time (min) 4.13:4.14

a 

1 
140 HOAc 10 42:58 

2 160 HOAc 10 28:72 

3 180 HOAc 10 24:76 

4 200 HOAc 10 13:87 

5 150 50% HOAc/EtOH 10 78:22 

6 170 50% HOAc/EtOH 10 64:36 

7 150 10% HOAc/EtOH 10 79:21 

8 170 10% HOAc/EtOH 10 74:26 

9 150 5% HOAc/EtOH 10 85:15 

10 170 5% HOAc/EtOH 10 77:23 

11 135 5% HOAc/EtOH 20 80:20 

12 135 EtOH
b 

10 -- 

13 150 5% HCl/EtOH
c 

10 100:0 

a
 Ratio determined by analytical LCMS and 

1
H NMR; conversion >95%. 

b
 No product formed without acid catalysis. 

c
 5% 4 N HCl/dioxane. 
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Attention was now directed at the application of these new MAOS conditions to a 

diverse array of acylhydrazides to ensure that this new protocol would indeed be general. 

As shown in Table 4.2, the MAOS protocol, employing either catalytic HOAc (Method 

A) or HCl (Method B), proved to be general with respect to a wide range of electron-rich 

(entry 4.13g), electron-deficient (entry 4.13f), and hindered acylhydrazides (entry 4.13a) 

as well as heterocyclic congeners (entries 4.13h, 4.13i) affording the desired 3-

aryl/heteroaryl-6-chloro-[1,2,4]-triazolo-[4,3-b]pyridazines 4.13 in isolated yields 

ranging from 74% to 97% in 10 min at 150 
o
C. 
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Table 4.2. Generality of the MAOS protocol to deliver analogs 4.13. 

 

 
Compound            R Yield

a
 (%) Yield

b
 (%) 

 

4.13a 

 

 

79 

 

92 

 

4.13b 

 

 

77 

 

93 

 

4.13c 
 

 

81 

 

91 

 

4.13d 

 

 

87 

 

96 

 

4.13e 

 

 

80 

 

95 

 

4.13f 

 

 

75 

 

97 

 

4.13g 
 

 

74 

 

96 

 

4.13h 
 

 

70 

 

88 

 

4.13i 
 

 

72 

 

86 

            a
 5% HOAc/EtOH, remaining mass balance congeners or 4.14. 

            b 
5% 4 N HCI/dioxane. All yields for isolated, analytically pure materials. 
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Developing a general MAOS-mediated SNAr protocol for the reaction of diverse 

amines with analogs 4.13 to deliver 3-aryl, 6-amino-[1,2,4]triazolo[4,3-b]pyridazines 4.1 

proved more difficult. Nucleophilic amines (benzyl, aliphatic, piperidines, and 

piperazines) reacted smoothly in EtOH at 170 
o
C for 10 min to produce analogs 4.1 in 

yields ranging from 73% to 92% (Scheme 4.2). Less nucleophilic amines, such as 

anilines, required K2CO3 in DMF with microwave irradiation for 15 min at 180
o
C to 

produce analogs 4.1 in yields exceeding 65%. Furthermore, analogs 4.13 readily 

participated in general microwave-assisted Sonogashira and Suzuki cross-coupling 

reactions to afford analogs 4.15 and 4.16 in yields exceeding 80% in every case examined 

(Scheme 4.2). 
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Scheme 4.2. MAOS protocols to functionalize 3-aryl-6-chloro-[1,2,4]-triazolo-[4,3-b]pyridazine. 

4.13. 

  

 

4.4. Resynthesis of the Lead Compound and Plan for Library Synthesis  

Utilizing these new MAOS protocols, we resynthesized the M1 versus M4 

selective antagonist HTS hit 4.2 (Scheme 4.3). Beginning with 4.13, delivered in 95% 

yield (Table 4.1), an SNAr reaction with Boc-piperazine provided 4.17, which was then 

deprotected using 1:1 TFA:DCM to afford 4.18 in 80% yield for the two steps. 4.18 was 

then acylated employing standard polymer-supported reagents and scavengers to generate 
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the original HTS hit 4.2 in 70% yield.
13

 Evaluation of 4.2 against M1–M5 in a functional 

cell-based assay indicated that 4.2 was indeed a weak but selective M1 antagonist (M1 

IC50 = 22 M, M2–M5 IC50 >> 50 M). Prior to this discovery there was only one other 

M1 selective small molecule antagonist,
30

 and prior to its discovery, the only M1 selective 

antagonist was MT7, a 71 amino acid peptide toxin from the green mamba snake.
31

 

Encouraged by this result, we employed an iterative parallel synthesis approach, 

employing our new MAOS protocols, to rapidly develop structure–activity relationships 

in an attempt to improve the M1 antagonist potency while maintaining selectivity for M2–

M5. 

 

Scheme 4.3. Application of MAOS protocols for the resynthesis of the M1 antagonist HTS hit 

4.2. 

 

As shown in Figure 4.4, we plan to vary the substituents at the C-3 and C-6 

positions, synthesizing small 12- to 24-member libraries employing the synthetic routes 

depicted in Scheme 4.3 and Figure 4.4. We will incorporate alternative aryl moieties into 

the eastern portion of the molecule by utilizing various aryl acylhydrazides in the initial 

condensation reaction. Alternative amides will be synthesized by acylation of the 
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secondary amine with acid chloride and activated carboxylic acids or anhydrides. Finally, 

we plan to replace the amide linkage with a non-hydrolysable bond through incorporation 

of different amines in the SNAr reaction.  

 

Figure 4.4. Synthetic plan to optimize 4.2 for M1 antagonist potency, while maintaining 
selectivity versus M2–M5. 

 

 

4.5. Biological Activity of Analog Libraries  

The first library was prepared by variation of the eastern portion of the molecule 

through incorporation of various electron-rich, electron-poor, and electron-neutral aryl 

acylhydrazides (4.2A-I). Analogs of 4.2 were triaged in a cell-based functional single-

point (10 M) screen for the compounds’ ability to decrease the response to an EC80 

concentration of acetylcholine (Figure 4.5). Three compounds (4.2C, 4.2G, 4.2I) were 

found to have greater M1 antagonist efficacy than the original HTS lead (4.2B) in the 

single point assay.  
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Figure 4.5. Single point 10 M screen for M1 antagonism.by analogs 4.2A-I. 

 

Concentration-response curves (CRCs) were generated for these three compounds 

to determine the potency of the analogs (Figure 4.6). 4.2C and 4.2I displayed IC50 values 

of 4.1 M and 3.6 M, respectively. 4.2G was determined to have an IC50 of 10 M. 

Further library development will be performed with the meta-methoxy analog 4.2I, since 

SAR indicates that it is the most active compound. 
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Figure 4.6. Concentration-response curves for M1 antagonism by analogs 4.2C, 4.2G, and 4.2I in 

a calcium mobilization mobilization assay using recombinant M1-expressing CHO cells. 

 

 

We next investigated the selectivity of our compounds for the M1 receptor over 

the other subtypes (M2-M5). Cell lines individually expressing M2-M5 were treated with 

various concentrations of compounds 4.2B, 4.2C, and 4.21 followed by an EC80 of ACh 

in order to generate CRCs (Figure 4.7).  
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Figure 4.7. Selectivity for M1versus M2-M5 for analogs 4.2B, 4.2C, and 4.2I. 

 

In light of these promising results, we began to generate additional libraries with 

various appendages in the western portion. Alternative amides were prepared according 

to Figure 4.8 by acylation with various acid chloride with diversity at R1. We also 

prepared various pyridyl and pyramidyl piperazines by performing the SNAr reaction with 

these piperazines.   
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Figure 4.8. Single point 10 M screen for M1 antagonism.by analogs 4.2J-AA. 
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SAR for this series was rather ‘flat’, with subtle changes leading to a complete 

loss of M1 inhibitory activity. Out of all of the analogs, only four demonstrated 

significant M1 antagonism; however, we managed to improve upon HTS hit 4.2. As 

summarized in Figure 4.9, exploration of the C3 position identified both the 3-OMe 

phenyl derivative 4.2I and the 4-Me phenyl congener 4.2C as engendering more potency 

(M1 IC50 = 3.59 M and 4.09 M, respectively), while maintaining selectivity (M2–M5 

IC50 >> 50 M). When holding the 3-OMe phenyl moiety constant at C3 and exploring 

alternatively functionalized piperazines for the bromofuranoic amide at C6, we identified 

two pyridyl piperazine analogs, 4.2J and 4.2L, which maintained M1 antagonism (M1 

IC50 = 3.99 M and 6.64 M, respectively) and selectivity (M2–M5 IC50 >> 50 M). 

Moreover, these latter analogs, with basic amines, afforded improved solubility and 

physiochemical characteristics. 
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Figure 4.9 Optimized analogs of 4.2 as highly selective M1 antagonists with improved M1 

inhibitory activity as compared to HTS hit 4.2. 

 

4.6. Summary.  

We have applied MAOS to the preparation of 3,6-disubstituted-[1,2,4]-triazolo-

[4,3-b]pyridazines 4.1, and developed general and high-yielding protocols with over a 

360-fold acceleration in reaction rate. For both the heterocyclic synthesis and the 

subsequent SNAr steps, reaction time, yield, and overall reaction generality were 

dramatically improved under these MAOS protocols; more importantly, these new 

protocols allow for an iterative analog library synthesis approach for lead optimization to 

be employed for the rapid synthesis of large numbers of analogs of 4.2. Employing these 

new MAOS protocols, a lead optimization campaign centered on the selective, but weak 

M1 antagonist hit 4.2 (M1 IC50 = 22 M) delivered two analogs, 4.2J and 4.2L, with over 
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a 6-fold increase in M1 inhibitory activity (M1 IC50 = 3.99 M and 6.64 M, respectively) 

while maintaining selectivity versus M2–M5 (IC50 >> 50 M). These compounds 

represent a novel chemotype of selective, small molecule M1 antagonists, and hold 

promise as leads for potential new therapeutic agents for dystonias.
33

  

 

Figure 4.10 Optimized analogs of 4.2 as highly selective M1 antagonists with improved M1 

inhibitory activity as compared to HTS hit 4.2.
34 

 

While further derivatization around the triazolopyridazine scaffold did not 

provide a significant increase in potency, the SAR mapping of our scaffold led to the 

development of a much more potent M1 orthosteric anatagonist, VU0255035, (Figure 

4.10) with the Vanderbilt Center for Neuroscience Drug Discovery (VCNDD).
34

 This 

scaffold maintains the 4-pyridylpiperazine moiety evident in one of our most potent 
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compounds. It also incorporates a bicyclic nitrogen-containing heterocyclic moiety 

reminiscent of the triazolopyridazine core. VU0255035 is highly selective for M1 with an 

IC50 of 133 nM at M1 and greater than 75x selectivity versus the other four muscarinic 

acetylcholine receptor subtypes. VU0255035 is the first highly selective M1 antagonist 

with nanomolar potency and will serve as a very important tool compound for the study 

of selective M1 antagonism, the role this activity plays within the nervous system, and the 

potential of this receptor as a therapeutic target for the treatment of dystonias and other 

movement disorders.  

 

4.7. Future Work. 

 Future work could include the development of an in vitro phenotypic assay for   

dystonia subtypes with known genetic mutations responsible for the errant phenotype. 

Once an assay is developed these compounds could be tested for their ability to alleviate 

the cellular phenotype. In vivo mouse models could also be developed and could provide 

excellent insight into the potential of these compounds to treat dystonic symptoms in an 

intact nervous system.  

 In addition to dystonia, these selective M1 antagonists could be utilized to study 

the role of M1 in other disease states, such as Parkinson’s disease. Until now, there have 

been no means to selectively antagonize M1 over the other receptor subtypes, therefore, 

when M1 has been implicated in disease states, its involvement has been unable to be 

definitively determined.
16,17

 The availability of these compounds will not only aid future 

research within our lab and the VCNDD, but also within the greater scientific community 

of neurological research.  



205 
 

References  

1. Breakfield, X. O.; Blood, A. J.; Li, Y.; Hallet, M.; Hanson, P.I.; Standaert, D.G.  

Nature Rev. Neurosci. 2008, 9, 222. 

 

2. The Dystonia Foundation: http://www.dystonia-foundation.org (accessed January 

3, 2009).  

 

3. Jankovic, J. Lancet Neurol. 2006, 5, 864-872. 

 

4. Tarsey, D.; Simon, D. K.  N. Engl. J. Med. 2006, 355, 818-829 

 

5. Csillik, B. Int Rev Neurobiol 1975, 18, 69-140. 

 

6. Bonner, T.I., Buckley, N.J., Young, A.C. & Brann, M.R. Science 1987, 237, 527-

532. 

 

7. Woolf, N.J. & Butcher, L.L. Behav. Brain. Res. (2010). 

 

8. Tansey, E.M. Henry Dale and the discovery of acetylcholine. C R Biol 2006, 

329, 419-425. 

 

9. Bonner, T.I., Young, A.C., Brann, M.R. & Buckley, N.J. Neuron 1988, 1, 403-

410. 

 

10. Woolf, N.J. Prog. Neurobiol. 1991, 37, 475-524. 

 

11. Mesulam, M.M., Mufson, E.J., Wainer, B.H. & Levey, Neuroscience 1983, 10, 

1185-1201. 

 

12. Eglen, R.M. Prog. Med. Chem. 2005, 105-36. 

 

13. Wess, J. Crit. Rev. Neurobiol. 1996, 10, 69-99.  

 

14. Caulfield, M.P. Pharmacol. Ther. 1993, 58, 319-79 (1993). 

 

15. For information on the Molecular Library Screening Center Network (MLSCN) 

see: http://nihroadmap.nih.gov/molecularlibraries. 

 

16. Druey, J.; Ringler, B. H. Helv. Chim. Acta 1951, 34, 195. 

 

17.  Carling, R. W.; Moore, K. W.; Street, L. J.; Wild, D.; Isted, C.; Leeson, P. D.; 

Thomas, S.; O’Connor, D.; McKernan, R. M.; Quirk, K.; Cook, S. M.; Atack, J. 

R.; Wafford, K. A.; Thompson, S. A.; Dawson, G. R.; Ferris, P.; Castro, J. L. J. 

Med. Chem. 2004, 47, 1807. 

 



206 
 

 

18. Cox, J. M.; Harper, B.; Mastracchio, A.; Leiting, B.; Roy, R. S.; Patel, R. A.; 

Wu, J. K.; Lyons, K. A.; He, H.; Xu, S.; Zhu, B.; Thornberry, N. A.; Weber, A. 

E.; Edmondson, S. D. Bioorg. Med. Chem. Lett. 2007, 17, 4579. 

 

19. Tarzia, G.; Occelli, E.; Toja, E.; Barone, D.; Corsico, N.; Gallico, L.; Luzzani, F. 

J. Med. Chem. 1988, 31, 1115. 

 

 

20. Zhao, Z.; Leister, W. H.; Strauss, K. A.; Wisnoski, D. D.; Lindsley, C. W. 

Tetrahedron Lett. 2003, 44, 1123–1127. 

 

21. Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Zhao, Z.; Wang, Y.; 

Lindsley, C. W. Org. Lett. 2004, 6, 1453–1456. 

 

 

22. Zhao, Z.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W.; Wang, Y.; Lindsley, 

C. W. Tetrahedron Lett. 2004, 45, 4873–4876. 

 

23. Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; 

Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; 

Duggan, M. E. Bioorg. Med. Chem. Lett. 2005, 15. 

 

 

24.  Nolt, M. B.; Smiley, M. A.; Varga, S. L.; McClain, R. T.; Wolkenberg, S. E.; 

Lindsley, C. W. Tetrahedron 2006, 62, 4698. 

 

25. Shipe, W. D.; Yang, F.; Zhao, Z.; Wolkenberg, S. E.; Nolt, M. B.; Lindsley, C. 

W. Heterocycles 2006, 70, 665. 

 

 

26. Daniels, R. N.; Kim, K.; Hughes, M. A.; Lebois, E. P.; Muchalski, H.; Lindsley, 

C. W. Tetrahedron Lett. 2008, 49, 305. 

 

27. Kennedy, J. P.; Williams, L.; Bridges, T. M.; Daniels, R. N.; Weaver, D.; 

Lindsley, C. W. J. Comb. Chem. 2008, 10, 345. 

 

 

28. Lewis, L. M.; Sheffler, D.; Williams, R.; Bridges, T. A.; Kennedy, J. P.; Brogan, 

J. T.; Mulder, M. J.; Williams, L.; Nalywajko, N. T.; Niswender, C.; Weaver, C. 

D.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett. 2008, 18, 885. 

 

29. Frontiersin: www.frontiersin.org/neuroanatomy/10.3389/fnana.2011.000006/full 

(accessed April 10, 2011.) 

 

 



207 
 

30. Bradley, K. N. Pharmacol. Ther. 2000, 85, 87–109. 

 

31. Bymaster, F.P. et al. Eur J Neurosci 2003, 17, 1403-1410. 

 

 

32. Langmead, C.J., Watson, J. & Reavill, C. Pharmacol Ther 2008, 117, 232-243.  

33. Aldrich, L. N.; Lebois, E. P.; Lewis, L. M.;  Nalywajko, N. T.; Niswender, C. 

M.; Weaver, C.D.; Conn, P. J.; Lindsley, C. W. Tetrahedron Lett., 2009, 50, 212. 

 

34. Sheffler, D. J.; Williams, R.; Bridges, T. M.; Xiang, Z.; Kane, A. S.; Byun, N. 

E.; Jadhav, S.; Mock, M. M.; Zheng, F.; Lewis, L. M.; Jones, C. J.; Niswender, 

C. M.; Weaver, C. D.; Lindsley, C. W.; Conn, P .J. Mol. Pharma. 2009, 76, 356-

368. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



208 
 

 

CHAPTER 5 

 

EXPERIMENTAL METHODS 

 

5.1. General  

All 
1
H & 

13
C NMR spectra were recorded on Bruker DRX-500 (500 MHz), 

Bruker AV-400 (400 MHz) or Bruker AV-NMR (600 MHz) instrument. Chemical shifts 

are reported in ppm relative to residual solvent peaks as an internal standard set to δH 

7.26 or δC 77.0 (CDCl3) and δH 3.31 or δC  49.0 (CD3OD). Data are reported as follows: 

chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m 

= multiplet), integration, coupling constant (Hz). IR spectra were recorded as thin films 

and are reported in wavenumbers (cm
-1

). Low resolution mass spectra were obtained on 

an Agilent 1200 LCMS with electrospray ionization. High resolution mass spectra were 

recorded on a Waters Qtof-API-US plus Acquity system. The value Δ is the error in the 

measurement (in ppm) given by the equation Δ = [(ME – MT)/ MT] × 106, where ME is 

the experimental mass and MT is the theoretical mass. The HRMS results were obtained 

with ES as the ion source and leucine enkephalin as the reference. Optical rotations were 

measured on a Perkin Elmer-341 polarimeter. Analytical thin layer chromatography was 

performed on 250 μM silica gel 60 F254 plates. Visualization was accomplished with UV 

light, and/or iodine chamber and the use of ninhydrin, anisaldehyde ceric ammonium 

molybdate, and potassium permanganate solutions followed by charring on a hot-plate. 

Chromatography on silica gel was performed using Silica Gel 60 (230-400 mesh) from 
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Sorbent Technologies. Analytical HPLC was performed on an Agilent 1200 analytical 

LCMS with UV detection at 214 nm and 254 nm along with ELSD detection. Solvents 

for extraction, washing and chromatography were HPLC grade. All reagents were 

purchased from Aldrich Chemical Co. and were used without purification. All polymer-

supported reagents were purchased from Biotage, Inc. Flame-dried (under vacuum) 

glassware was used for all reactions. All reagents and solvents were commercial grade 

and purified prior to use when necessary. Mass spectra were obtained on a Micromass Q-

Tof API-US mass spectrometer was used to acquire high-resolution mass spectrometry 

(HRMS) data. 
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5.2. Progress Toward the Total Synthesis of Marineosins A & B. 

 

 

(E)-N-((5-bromo-3-methoxy-2H-pyrrol-2-ylidene)methyl)-N-ethylethanamine (2.56). 

A 100 mL round bottom flask was charged with N,N-diethylformamide (2.86 g, 28.29 

mmol) and 23 mL of dichloromethane. The solution cooled to 0 
o
C in an ice bath, and a 

solution of phosphorous oxybromide (10.14 g, 35.36 mmol) in dichloromethane (7 mL) 

was added slowly over 20 minutes. After addition was complete, the reaction mixture 

was stirred for an additional 20 minutes. A solution of 4-methoxy-3-pyrrolin-2-one (2.00 

g, 17.68 mmol) in dichloromethane (18 mL) was added dropwise over 10 minutes, and 

the mixture was stirred for an additional 20 minutes. The flask was then removed from 

the ice bath, transferred to an oil bath, and refluxed (42
o
C) for 3.5 hours. The reaction 

mixture was then transferred to a 500 mL round bottom flask and cooled to 0
o
C in an ice 

bath. Water (20 mL) was added dropwise over 10 minutes, followed by 15 wt% sodium 

hydroxide (230 mL) over 40 minutes. The reaction was stirred for an additional 20 

minutes and then transferred to a separatory funnel. The layers were separated and the 

aqueous layer was extracted with dichloromethane (3 x). The combined organic layers 

were dried over sodium sulfate and concentrated in vacuo. The resulting yellow oil was 

subjected to flash chromatography (4:1 Hex:EtOAc) to give 2.56 as an oil that solidified 

upon standing at 20 
0
C to give a tan solid (2.67 g, 59%). 
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1
H NMR (CDCl3, 400 MHz)  (ppm): 1.29 (t, J = 7.2 Hz), 1.30 (t, J = 7.2 Hz), 3.40 (q, J 

= 7.2 Hz, 2H), 3.76 (s, 3H), 4.13 (q, J = 7.2 Hz, 2H), 5.59 (s, 1H), 6.99 (s, 1H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 12.4, 14.5, 44.5, 51.0, 57.9, 96.4, 120.7, 133.6, 138.5, 165.3. 

IR (KBr) max 2975, 2934, 1629, 1529, 1408, 1290, 1264, 1195, 1116, 1072, 906, 737 

cm
-1

. HRMS: C10H16N2OBr, Calculated: [M+H]+, 259.0446, Found: [M+H]+, 259.0448. 

 

tert-butyl 5'-formyl-4'-methoxy-1H,1'H-2,2'-bipyrrole-1-carboxylate (2.64). 

Pd(PPh3)4 was generated in situ by adding triphenylphosphine (1.22 g, 4.64 mmol) to a 

magnetically stirred suspension of Palladium II Acetate (0.23 g, 1.03 mmol) in degassed 

toluene (5.0 mL) then heating the ensuing mixture at 70 
o
C for 20 minutes under at 

atmosphere of argon. A solution of N-Boc-pyrrole-2-boronic acid (3.26 g, 15.46 mmol) 

and bromoenamine 2.56 (2.67 g, 10.31 mmol) in H2O/1,4-dioxane (1:9 v/v, 86 mL) was 

degassed, purged with argon gas and added to the solution of Pd(PPh3)4 in toluene. 

Anhydrous sodium carbonate (3.28 g, 30.93 mmol) was added and the reaction mixture 

stirred at 85
o
C. After 3 hours, the mixture was cooled and poured into water (150 mL). 

The mixture was reduced to pH 7 using 2 M HCl and transferred to a separatory funnel. 

The solution was partitioned with dichloromethane and extracted (4 x). The organic 

layers were combined, dried over sodium sulfate, and condensed in vacuo to give a 

brown residue that was purified by flash chromatography (4:1 Hex:EtOAc) affording 

aldehyde 2.64 as an orange solid (1.44 g, 48%). 
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1
H NMR (CDCl3, 400 MHz)  (ppm): 1.61 (s, 9H), 3.88 (s, 3H), 6.07 (d, J = 3.5 Hz, 1H), 

6.24 (t, J = 3.5 Hz, 1H) 6.66 (dd, J = 3.5 Hz, 1.76 Hz, 1H), 7.33 (dd,  J = 3.4, 1.80 Hz, 

1H), 9.53 (s, 1H), 10.73 (bs, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 27.8, 57.8, 85.7, 

94.7, 111.4, 116.8, 118.2, 124.5, 125.9, 130.2, 149.6, 157.6, 174.3. IR (KBr) max 3221, 

2979, 2833, 1735, 1623, 1549, 1502, 1433, 1370, 1330, 1287, 1255, 1140, 1021 cm
-1

. 

HRMS: C15H19N2O4, Calculated: [M+H]+,.291.1345, Found: [M+H]+,.291.1345. 

 

1-(oct-7-enyl)pyrrolo[1,2-c]oxazol-3(1H)-one (2.75). Magnesium ribbon (54.8 mg, 2.25 

mmol) was flame-dried in a 50 mL round bottom flask fit with a reflux condenser. 

Anhydrous THF (10 mL) and a small crystal of iodine were then added to the flask. 8-

bromo-1-octene (352.4 mg, 1.84 mmol) was added dropwise at room temperature, and 

then the solution was heated to reflux. After 2 hours, the mixture was cooled to 0
o
C and a 

prepared solution of N-Boc-pyrrole-2-carboxaldehyde (0.1 M in THF, 10 mL) was added 

to the prepared Grignard reagent. The solution was stirred at room temperature for 1 

hour, cooled to 0 
o
C, and quenched with 1M HCl until the pH was neutral. The mixture 

was extracted with dichloromethane (3x), washed with brine, dried over sodium sulfate, 

and condensed in vacuo to give a brown residue. The residue was purified by flash 

chromatography (10:1 Hex:EtOAc) and condensed under reduced pressure to give 2.75 as 

a clear yellow oil (185 mg, 78%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.31-1.40 (m, 6H), 1.44-1.50 (m, 2H), 1.86-1.92 

(m, 2H), 2.03 (q, J = 7.0 Hz, 2H) 4.93 (dt, J = 10.2, 1.0 Hz, 1H), 4.99 (ddd,  J = 17.1, 3.5, 
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1.6 Hz, 1H), 5.43 (t, J = 6.4 Hz, 1H), 5.74-5.84 (m, 1H),  6.00 (dd, J = 1.8, 1.3 Hz, 1H), 

6.43 (t, J = 3.1 Hz, 1H), 7.04 (d, J = 3.0 Hz, 1H) 
13

C NMR (CDCl3, 100 MHz)  (ppm): 

24.0, 28.6, 28.7, 28.9, 33.6, 34.5, 79.3, 102.4, 112.2, 114.3, 118.1, 136.6, 138.8, 150.0. 

IR (KBr) max 2927, 2856, 1797, 1467, 1416, 1404, 1322, 1267, 1096, 906, 754, 712 cm
-

1
. LRMS: m/z = 234.1 [M+H]+.  

 

1-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)non-8-en-1-ol (2.82). Magnesium ribbon (2.07 g, 

85 mmol) was cut into small pieces, placed in a 500 mL, 2-neck schlenk flask fit with a 

reflux condenser, and flame-dried under vacuum. A small crystal of iodine was added 

and the flask was flushed with argon. The magnesium was suspended in anhydrous THF 

(250 mL) and vigorously stirred. 8-bromo-1-octene (11.78 g, 61.6 mmol) was added to 

the solution dropwise at room temperature. The resulting mixture was then heated to 

reflux (65 
o
C) for 2 hours. 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde (10.0 g, 42.5 

mmol) was added to a 500 mL flame-dried, schlenk flask. Anhydrous THF (105 mL) was 

added and the mixture was stirred and cooled to 0 
o
C in an ice bath. After refluxing for 2 

hours, the prepared Grignard reagent was cooled to room temperature and cannulated into 

the aldehyde solution over a 30 minute period. The resulting brown slurry was stirred at 0 

o
C for an additional 30 minutes and was then allowed to warm to room temperature. After 

3 hours, 2 M HCl was slowly added to the vigorously stirred solution until it reached pH 

7. The mixture was then transferred to a separatory funnel, diluted with water, partitioned 

with dichloromethane, and extracted (4 x). The combined organic layers were combined, 
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dried over sodium sulfate, and condensed under reduced pressure to give a brown 

residue. This residue was purified by flash chromatography (3:1 Hex:EtOAc) and dried in 

vacuo to afford alcohol 2.82 as a viscous, orange oil (9.08 g, 62%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.21-1.26 (m, 4H), 1.29-1.36 (m, 4H), 1.71-1.84 

(m, 2H), 2.01 (q, J = 7.2 Hz, 2H), 2.72 (d, J = 4.0 Hz, 1H), 4.80 (td, J = 7.2, 4.0 Hz, 1H), 

4.93 (dt, J = 10.4, 1.2 Hz, 1H), 4.98 (ddd, J = 17.2, 3.6, 1.6 Hz, 1H), 5.74-5.85 (m, 1H), 

6.26 (t, J = 3.2 Hz, 1H), 6.28 (dd J = 5.2, 3.2 Hz, 1H), 7.31 (dd J = 3.2, 2.0 Hz, 1H), 7.51 

(t, J = 8.0 Hz, 2 H), 7.61 (tt J = 8.0 Hz, 1.2 Hz, 1H), 7.79 (d J = 8.0 Hz, 2H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 26.0, 28.8, 28.9, 29.1, 33.7, 35.0, 65.2, 111.7, 112.4, 114.2, 

123.5, 126.5, 129.4, 133.9, 138.3, 139.1, 139.3. IR (KBr) max 3567, 2928, 2856, 1448, 

1366, 1177, 1152, 1090, 1056, 726, 685 cm
-1

. HRMS: C19H26NO3S, Calculated: 

[M+H]+,.348.1633, Found: [M+H]+,.348.1632. 

 

1-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)non-8-en-1-one (2.83). TPAP (0.84 g, 2.39 

mmol) was added to a 250 mL flame-dried round bottom flask containing a stirred and 

cooled (0
o
C) solution of alcohol 2.82 (8.3 g, 23.9 mmol), NMO (5.6 g, 47.8 mmol), and 4 

amgstrom molecular sieves (12 g) in dichloromethane (100 mL). The reaction was 

warmed to room temperature and stirred for 4 hours. The reaction mixture was filtered to 

remove the molecular sieves, diluted with dichloromethane, and partitioned with water. 

The mixture was washed with 1 M HCl (1 x) and water (2 x). The organic layer was dried 

over sodium sulfate and condensed under reduced pressure to give a black oil. The oil 
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was purified by flash chromatography (4:1 Hex:EtOAc) and dried in vacuo to afford 2.83 

as a clear, colorless oil (7.08 g, 86%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.24-1.27 (m, 4H), 1.31-1.36 (m. 2H), 1.59 (quin. 

J = 7.2 Hz, 2H), 2.00 (q, J = 6.8 Hz, 2H), 2.66 (t, J = 7.2 Hz, 2H), 4.92 (d, J =10.0 Hz, 

1H), 4.97 (dd, J =16.8, 2.0 Hz, 1H), 5.73-5.83 (m. 1H) 6.34 (t, J = 3.6 Hz, 1H), 7.31 (dd, 

J = 3.6, 1.6 Hz, 1H) 7.52 (t, J = 7.6 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.80 (dd, J = 3.2, 

1.6 Hz, 1H), 8.00 (dd, J = 7.2 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 24.7, 28.6, 

28.7, 28.9, 33.6, 39.3, 110.3, 114.2, 123.2, 128.0, 128.6, 130.0, 133.4, 133.5, 138.9, 

139.0, 188.9. IR (KBr) max 2928, 2856, 1676, 1448, 1440, 1367, 1175, 1144, 1089, 

1062, 751, 726, 684 cm
-1

. HRMS: C19H24NO3S, Calculated: [M+H]+,.346.1477, Found: 

[M+H]+, .346.1481.  

 

2-(non-8-enyl)-1H-pyrrole (2.69).  Sodium borohydride (3.1 g, 81.88 mmol) was added 

to a flame-dried, 500 mL round bottom flask fit with a reflux condenser. The flask was 

purged with argon and anhydrous 2-propanol (150 mL) was added. Acylpyrrole 2.83 

(5.64 g, 16.29 mmol) was suspended in 120 mL of anhydrous 2-propanol, and this 

solution was added dropwise to the sodium borohydride solution at room temperature. 

After addition was complete, the mixture was heated to reflux (82 
o
C) for 24 hours. The 

reaction was cooled to room temperature and the excess sodium borohydride was 

quenched by slowly adding water to the stirring solution. When no more hydrogen gas 

evolved, the reaction was partitioned with dichloromethane, and extracted (3 x). The 
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organic layers were combined, dried over sodium sulfate, and concentrated under reduced 

pressure to give a yellow oil. This oil was purified by flash chromatography (5:1 

Hex:EtOAc) and concentrated in vacuo to afford 2.69 as a clear, yellow oil (2.94 g, 94%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.32-1.41 (m, 8H), 1.62 (quin, J = 7.6 Hz, 2H), 

2.04 (dd, J =7.6 Hz, 6.8 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 4.93 (dt, J = 10.0 Hz, 1.2 Hz, 

1H), 4.99 (ddd, J = 17.0 Hz, 4.0 Hz, 1.6 Hz, 1H), 5.76-5.86 (m, 1H), 5.91 (d, J = 0.8 Hz, 

1H), 6.13 (dd, J = 5.6 Hz, 3.2 Hz, 1H), 6.66 (dd, J = 4.4 Hz, 2.8 Hz, 1H), 7.89 (bs, 1H). 

13
C NMR (CDCl3, 100 MHz)  (ppm): 27.7, 28.9, 29.0, 29.2, 29.3, 29.6, 33.8, 104.8, 

108.2, 114.1, 115.9, 132.8, 139.2. IR (KBr) max 3391, 2927, 2855, 1640, 1569, 1465, 

1438, 1095, 1025, 994, 910, 784, 712 cm
-1

. HRMS: C13H22N, Calculated: [M+H]+, 

192.1752, Found: [M+H]+, 192.1752.  

 

4-(5-(non-8-enyl)-1H-pyrrol-2-yl)butan-2-one (2.84). 3-buten-2-one (100 mg, 1.44 

mmol) was added to a flame-dried, 100 mL round bottom flask containing alkylpyrrole 

2.69 (125 mg, 0.65 mmol) and dichloromethane (3.5 mL). Grubb’s second-generation 

catalyst (28 mg, 0.033 mmol) was added in one portion at room temperature. The mixture 

was stirred for 12 hours at reflux, condensed in vacuo, and immediately purified by flash 

chromatography (3:1 Hex:EtOAc) affording 2.84 as a pale yellow oil (73 mg, 43%).
1 

1
HNMR (CDCl3, 400 MHz)  (ppm): 1.28-1.39 (m, 8H), 1.55-1.62 (m, 2H), 2.04 (q, J = 

6.8 Hz, 2H), 2.16 (s, 3H), 2.52 (t, J = 7.6 Hz, 2H), 2.76-2.83 (m, 4H), 4.03 (s, 3H), 4.93 

                                                        
1
 A 4:2:1 mixture of 2.84:2.5:2.85 was formed by this reaction. The major isomer 2.84 and 

desired product 2.5 were isolated and fully characterized. The identity and ratio of 2.85 were 
determined by crude 

1
HNMR of 2.84:2.85 mixture and LRMS. 
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(dt, J = 10.4 Hz, 1.2 Hz, 1H), 4.99 (ddd, J = 17.2 Hz, 3.6 Hz, 1.6 Hz 1H), 5.71-5.75 (m, 

2H), 5.74-5.87 (m, 1H), 8.14 (s, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 21.4, 27.8, 

28.9, 29.0, 29.2, 29.3, 29.6, 30.1, 33.8, 44.3, 104.2, 105.0, 114.1, 129.8, 132.0, 139.2, 

209.7. LRMS: m/z = 262.2 [M+H]+. 

 

(E)-11-(1H-pyrrol-2-yl)undec-3-en-2-one (2.5). 3-buten-2-one (1.21 g, 17.25 mmol) 

was added to a flame-dried, 100 mL round bottom flask containing alkylpyrrole 2.69 (1.5 

g, 7.84 mmol) and dichloromethane (60 mL). Grubbs’ second-generation catalyst (2 g, 

2.35 mmol) was added in one portion at room temperature. The mixture was stirred for 6 

hours, condensed in vacuo, and immediately purified by flash chromatography (3:1 

Hex:EtOAc) affording 2.5 as a clear colorless oil (725 mg, 40%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.31-1.33 (m, 6H), 1.46 (quin, J =2.4 Hz, 2H), 

1.62 (quin, J = 2.8 Hz, 2H), 2.22 (q, J = 7.2 Hz, 2H), 2.25 (s, 3H), 2.60 (t, J = 7.6 Hz, 

2H), 5.91 (d, J = 0.8 Hz, 1H), 6.07 (dt, J = 16 Hz, 1.6 Hz, 1H), 6.13 (dd, J = 5.6 Hz, 2.8 

Hz, 1H), 6.67 (dd, J = 4.0 Hz, 2.4 Hz, 1H), 6.80 (dt, J =16 Hz, 6.8 Hz, 1H), 7.95 (bs, 1H). 

13
C NMR (CDCl3, 100 MHz)  (ppm): 26.8, 27.7, 28.0, 29.0, 29.1, 29.2, 29.6, 32.4, 

104.9, 108.2, 116.0, 131.3, 132.7, 148.5, 198.8. IR (KBr) max 3383, 2928, 2855, 1670, 

1624, 1457, 1429, 1362, 1257, 1024, 977, 784, 713 cm
-1

. HRMS: C15H24NO, Calculated: 

[M+H]+, 234.1858, Found: [M+H]+, 234.1856. 
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(E)-11-(5-((E)-(3-methoxy-5-(1H-pyrrol-2-yl)-2H-pyrrol-2-ylidene)methyl)-1H-

pyrrol-2-yl)undec-3-en-2-one (2.6).  Aldehyde 2.64 (627 mg, 2.16 mmol) was 

suspended in anhydrous methanol (21 mL) in a flame-dried, 100 mL round bottom flask 

and cooled to 16 
o
C in a tap water bath. Pyrrolylenone 2.5 (605 mg, 2.59 mmol) was 

suspended in anyhydrous methanol (26 mL) and added to the aldehyde solution, followed 

by 0. 87 M HCl in methanol (3.73 mL, 3.24 mmol). The reaction mixture immediately 

turned a deep red color, and LCMS showed that the reaction had reached completion in 

less than 15 minutes. Ammonium hydroxide (6 mL) was added and the reaction was 

stirred for 2 hours. 2 M HCl was added until the solution reached pH 7 and then the 

mixture was transferred to a separatory funnel, diluted with water, partitioned with 

dichloromethane, and extracted (3 x). The combined organic layers were then filtered 

through a phase separator to remove any excess water and condensed in vacuo to give a 

black residue. This residue was purified by reverse phase chromatography using 

acetonitrile and 0.1% TFA/water (gradient: 35:65 to 85:15) to afford 2.6 as a viscous, 

deep red oil (805 mg, 92%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.31-1.38 (m, 6H), 1.49 (quin, J = 6.8 Hz, 2H), 

1.72 (quin, J = 7.2 Hz, 2H), 2.23 (q, J = 7.2 Hz, 2H), 2.25 (s, 3H), 2.81 (t, J = 7.8 Hz, 

2H), 4.03 (s, 3H),  6.06 (d, J = 16 Hz, 1H), 6.13 (s, 1H), 6.22 (d, J = 3.6 Hz, 1H), 6.39 (t, 

J = 1.8 Hz, 1H), 6.79 (dt, J = 16 Hz, 7.0 Hz, 1H), 6.87 (s, 1H), 6.99 (s, 1H), 7.03 (s, 1H), 
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7.29 (s, 1H). 
13

C NMR (MeOD, 100 MHz)  (ppm): 25.2, 27.6, 28.58, 28.61, 28.63, 

28.7, 32.0, 58.6, 93.6, 111.8, 112.3, 113.8, 114.4, 116.6, 117.4, 121.7, 123.2, 126.3, 

126.5, 127.6, 130.6, 149.6, 150.4, 167.7, 200.0. IR (KBr) max 3250, 3127, 2929, 2856, 

1674, 1630, 1604, 1549, 1517, 1457, 1411, 1374, 1288, 1254, 1201, 1184, 1138, 1043, 

990, 960, 837, 800, 748, 720 cm
-1

. HRMS: C25H32N3O2, Calculated: [M+H]+, 406.2495, 

Found: [M+H]+, 406.2494. 

 

1-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)oct-7-en-1-ol (2.92). Magnesium ribbon (0.88 g, 

36.3 mmol) was cut into small pieces, placed in a 250 mL, 2-neck schlenk flask fit with a 

reflux condenser, and flame-dried under vaccum. A small crystal of iodine was added and 

the flask was flushed with argon. The magnesium was suspended in anhydrous THF (112 

mL) and vigorously stirred. 7-bromo-1-heptene (5.00 g, 28.24 mmol) was added to the 

solution dropwise at room temperature. The resulting mixture was then heated to reflux 

(65 
o
C) for 2 hours. 1-(phenylsulfonyl)-2-pyrrolecarboxaldehyde (4.75 g, 20.17 mmol) 

was added to a 250 mL flame-dried, schlenk flask. Anhydrous THF (50 mL) was added 

and the mixture was stirred and cooled to 0 
o
C in an ice bath. After refluxing for 2 hours, 

the prepared Grignard reagent was cooled to room temperature and cannulated into the 

aldehyde solution over a 30 minute period. The resulting brown slurry was stirred at 0 
o
C 

for an additional 30 minutes and was then allowed to warm to room temperature. After 3 

hours, 2 M HCl was slowly added to the vigorously stirred solution until it reached pH 7. 

The mixture was then transferred to a separatory funnel, diluted with water, partitioned 
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with dichloromethane, and extracted (4 x). The combined organic layers were combined, 

dried over sodium sulfate, and condensed under reduced pressure to give a brown 

residue. This residue was purified by flash chromatography (3:1 Hex:EtOAc) and dried in 

vacuo to afford alcohol 2.92 as a viscous, light orange oil (4.15 g, 62%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.20-1.36 (m, 6H), 1.74-1.83 (m, 2H), 1.99 (dd, J 

= 14.2 Hz, 6.8 Hz, 2H) 2.73 (d, J = 4.2 Hz, 1H), 4.80 (m, 1H), 4.92 (dt, J = 10.2 Hz, 1.0 

Hz, 1H), 4.97 (ddd, J = 17.1 Hz, 3.4 Hz, 1.8 Hz, 1H), 5.72-5.83 (m, 1H), 6.26 (t, J = 3.4 

Hz, 1H), 6.27 (dd, J = 5.0 Hz, 3.4 Hz, 1H), 7.30 (dd, J = 4.0 Hz, 1.8 Hz, 1H), 7.50 (t, J = 

7.4 Hz, 2H), 7.60 (tt, J = 7.4 Hz, 1.0 Hz, 1H), 7.78 (d, J =7.4 Hz, 2H). 
13

C NMR (CDCl3, 

100 MHz)  (ppm): 25.8, 28.7, 33.6, 35.0, 65.1, 111.6, 112.3, 114.2, 123.4, 126.5, 129.4, 

133.9, 138.3, 138.9, 139.3.  

 

1-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)oct-7-en-1-one (2.93). TPAP (0.42 g, 1.19 mmol) 

was added to a 100 mL flame-dried round bottom flask containing a stirred and cooled (0 

o
C) solution of alcohol 2.92 (3.95 g, 11.85 mmol), NMO (2.78 g, 23.69 mmol), and 4 A 

molecular sieves (6 g) in dichloromethane (60 mL). The reaction was warmed to room 

temperature and stirred for 4 hours. The reaction mixture was filtered to remove the 

molecular sieves, diluted with dichloromethane, and partitioned with water. The mixture 

was washed with 1 M HCl (1 x) and water (2 x). The organic layer was dried over 

sodium sulfate and condensed under reduced pressure to give a black oil. The oil was 

purified by flash chromatography (4:1 Hex:EtOAc) and dried in vacuo to afford 2.93 as a 
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clear, colorless oil (3.36 g, 86%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.24-1.31 (m, 2H), 1.35 (quin, J = 7.2 Hz, 2H), 

1.60 (quin, J = 7.4 Hz, 2H), 2.00 (q, J = 7.2 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 4.92 (dt, J 

= 10.0 Hz, 1.0 Hz, 1H), 4.97 (ddd, J = 7.1 Hz, 3.4 Hz, 1.6 Hz, 1H), 5.71-5.82 (m, 1H), 

6.34 (t, J = 3.5 Hz, 1H), 7.03 (dd, J = 3.8 Hz, 1.7 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.59 

(tt, J = 7.4 Hz, 1.2 Hz, 1H), 7.80 (dd, J = 3.2 Hz, 1.7 Hz, 1H), 7.99 (d, J =7.3 Hz, 2H). 

13
C NMR (CDCl3, 100 MHz)  (ppm): 24.6, 28.50, 28.53, 33.4, 39.3, 110.3, 114.3, 

123.2, 128.0, 128.6, 130.0, 133.4, 133.5, 138.8, 139.0, 188.9. 

 

 2-(oct-7-enyl)-1H-pyrrole (2.87). Sodium borohydride (2.95 g, 44.50 mmol) was added 

to a flame-dried, 250 mL round bottom flask fit with a reflux condenser. The flask was 

purged with argon and anhydrous 2-propanol (135 mL) was added. Acylpyrrole 2.23 

(2.96 g, 8.90 mmol) was suspended in 40 mL of anhydrous 2-propanol, and this solution 

was added dropwise to the sodium borohydride solution at room temperature. After 

addition was complete, the mixture was heated to reflux (82 
o
C) for 24 hours. The 

reaction was cooled to room temperature and the excess sodium borohydride was 

quenched by slowly adding water to the stirring solution. When no more hydrogen gas 

evolved, the reaction was transferred to a separatory funnel, partitioned with 

dichloromethane, and extracted (3 x). The organic layers were combined, dried over 

sodium sulfate, and concentrated under reduced pressure to give a yellow oil. This oil 

was purified by flash chromatography (5:1 Hex:EtOAc) and concentrated in vacuo to 

afford 2.24 as a clear, yellow oil (1.48 g, 94%). 
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1
H NMR (CDCl3, 400 MHz)  (ppm): 1.33-1.42 (m, 6H), 1.64 (quin, J = 7.6 Hz, 2H), 

2.05 (q, J = 7.0 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 4.94 (dt, J = 10.2 Hz, 1.0 Hz, 1H), 5.00 

(ddd, J = 17.1 Hz, 3.5 Hz, 1.6 Hz, 1H), 5.76-5.87 (m, 1H), 5.92 (d, J = 0.6 Hz, 1H), 6.14 

(dd, J = 5.7 Hz, 2.8 Hz, 1H), 6.67 (dd, J = 4.1 Hz, 2.6 Hz, 1H), 7.90 (bs, 1H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 27.6, 28.7, 28.8, 29.1, 29.5, 33.7, 104.8, 108.2, 114.2, 115.9, 

132.7, 139.0. 

 

8-(1H-pyrrol-2-yl)octan-1-ol (2.94). To a 100 mL, flame-dried round bottom flask, was 

added alkylpyrrole 2.87 (600 mg, 3.39 mmol) and 34 mL of anhydrous THF. The 

solution was cooled to 0 
o
C in an ice bath and a solution of 9-BBN (17.6 mL, 0.5M in 

THF) was slowly added. After 1 hour, the ice bath was removed and the mixture stirred 

overnight. After 24 hours, the reaction mixture was cooled to 0
o
C, and 3 M NaOH (5.5 

mL) was added dropwise, followed by dropwise addition of hydrogen peroxide (5.5 mL). 

The reaction was slowly warmed to room temperature after 1 hour and stirred 24 hours. 

The reaction was transferred to a separatory funnel and slowly diluted with water. The 

solution was partitioned with dichloromethane, extracted (5 x), dried over sodium sulfate, 

and condensed under reduced pressure to give a brown oil. This oil was purified by flash 

chromatography (6:1 Hex:EtOAc) and condensed in vacuo  to afford 2.94 as a pale 

yellow oil (635 mg, 96%).    

1
HNMR (CDCl3, 400 MHz)  (ppm): 1.28-1.39 (m, 10H), 1.53-1.64 (m, 4H), 2.59 (t, J 

=7.6 Hz, 2H), 3.64 (t, J =6.6 Hz, 2H), 5.91 (d, J =0.6 Hz, 1H), 6.13 (dd, J = 5.7 Hz, 2.8 
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Hz, 1H), 6.66 (dd, J = 4.1 Hz, 2.6 Hz), 7.95 (bs, 1H). 
13

C NMR (CDCl3, 100 MHz)  

(ppm): 25.6, 27.6, 29.18, 29.22, 29.3, 29.5, 32.7, 63.0, 104.8, 108.1, 115.9, 132.7. 

 

8-(1H-pyrrol-2-yl)octanal (2.86). TPAP (113 mg, 0.32 mmol) was added to a 50 mL 

flame-dried round bottom flask containing a stirred and cooled (0 
o
C) solution of alcohol 

2.94 (625 mg, 3.20 mmol), NMO (750 mg, 6.40 mmol), and 4 A molecular sieves (3 g) in 

dichloromethane (25 mL). The reaction was warmed to room temperature and stirred for 

6 hours. The reaction mixture was filtered through a silica/celite plug that was liberally 

rinsed with dichloromethane. The filtrate was condensed under reduced pressure to give 

2.86 as a pale yellow liquid (580 mg, 88%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.24-1.29 (m, 6H), 1.49-1.52 (m, 4H), 1.80-1.86 

(m, 2H), 2.39 (td, J = 3.2 Hz, 1.8 Hz, 2H), 2.56 (t, J = 8.0 Hz, 2H), 5.87 (s, 1H), 6.08 (dd, 

J = 5.6 Hz, 2.8 Hz, 1H), 6.63 (d, J = 1.6 Hz, 1H), 8.07 (bs, 1H), 9.73 (t, J = 2.0 Hz, 1H).  

 

(5S)-5-methyl-3-(phenylthio)dihydrofuran-2(3H)-one (2.134). To a solution of 

diisopropylamine (21. 8 g, 215.3 mmol) in 145 mL of THF at -78 
o
C was added 160 mL 

(258.3 mmol) of a 1.6M solution of n-BuLi in hexanes. After stirring at -78 
o
C for 15 

min, (phenylthio)acetic acid (14.5 g, 86.1 mmol) in 43 mL of THF was added and the 

mixture was stirred for an additional 15 min. To the resulting solution was added (S)-(-)-
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propylene oxide (5 g, 86.1 mmol) in one portion. The mixture was allowed to warm to 

room temperature over a period of 3 h and was then stirred for 16 h. The reaction was 

quenched with 2M NaOH (100 mL0 and was extracted with Et2O (2 x). The organic 

phase was discarded and the aqueous phase acidified to pH = 3 with 2M HCl. The acidic 

solution was extracted with Et2O (3 x) and the organic phase washed with brine (1 x) and 

dried with MgSO4. Evaporation of the solvent gave a clear oil (18.11 g, 93%) which was 

carried on to the next step without further purification. The oil was dissolved in benzene 

(80mL) and a catalytic amount of p-toluenesulfonic acid (0.76 g, 3.98 mmol) was added 

at room temperature. The solution was stirred overnight, the solvent evaporated, and the 

crude product chromatographed (100% CH2Cl2) to afford 2.134 (12.6 g, 76%) as a 2.8:1 

mixture of stereoisomers. 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.34 (d, J = 6.4 Hz, 2.2H), 1.38 (d, J = 6.0 Hz, 

0.8H), 1.85 (ddd, J = 13.2 Hz, 10.8 Hz, 10.4 Hz, 0.75H), 2.26 (dt, J = 12.4 Hz, 8.4Hz, 

0.25H), 2.38 (ddd, J = 13.6 Hz, 6.2 Hz, 4.0 Hz, 0.25H), 2.74 (ddd, J = 13.2 Hz, 9.0 Hz, 

6.4 Hz, 0.75H), 3.91 (dd, J = 8.4 Hz, 3.6 Hz, 0.25H), 3.97 (dd, J = 10.8 Hz, 8.8 Hz, 

0.75H), 4.48-4.60 (m, 1H), 7.31-7.36 (m, 3H), 7.53-7.57 (m, 2H). 
13

C NMR (CDCl3, 100 

MHz)  (ppm): 174.7, 174.5, 133.4, 133.2, 132.3, 131.9, 129.2, 129.1, 128.6, 128.4, 75.4, 

74.8, 46.5, 45.4, 37.5, 37.3, 21.0, 20.8. 
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(S)-5-methyldihydrofuran-2(3H)-one (2.129). A solution of 2.134 (6.0 g, 28.81 mmol) 

in 30 mL of THF was added to a suspension of Raney nickel (30 g) in 230 mL of THF. 

The flask was purged with Ar (1 x), with H2 (3 x), and then kept under an atmosphere of 

H2. The mixture was vigorously stirred for 16 h at room temperature. The nickel was 

filtered off, the filtrate evaporated, and the crude product chromatographed (1:4 

Et2O/CH2Cl2) to give 2.48 g (86%) of 2.129 as a clear, colorless liquid. 

[]
23

D = -33.0
o
 (c = 10.0, CH2Cl2) 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.40 (d, J = 6.4 

Hz, 3H), 1.77-1.87 (m, 1H), 2.31-2.39 (m, 1H), 2.52-2.56 (m, 2H), 4.59-4.67 (m, 1H).  

 

(3S,5S)-3-allyl-5-methyldihydrofuran-2(3H)-one (2.135). LiHMDS (1.0M in THF, 

7.83 mmol) was added dropwise to a 0.15 M solution of 2.129 (0.8 g, 7.99 mmol) in THF 

at -78 
o
C. The mixture was stirred for 30 min, and then allyl iodide (1.48 g, 8.79 mmol) 

was added dropwise. The solution was stirred for 1.5 h while maintaining the temperature 

at -78 
o
C. The reaction was quenched by addition of saturated NH4Cl and allowed to 

warm to room temperature. The mixture was extracted with Et2O (3 x), dried over 

MgSO4, the solvent evaporated, and the crude product chromatographed (4:1 

Hex:EtOAc) to give 895mg (80%) of 2.135 as a 6:1 mixture of diastereomers.  
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1
H NMR (CDCl3, 400 MHz)  (ppm): 1.36 (d, J = 6.4 Hz, 2.6H) , 1.41 (d, J = 6.4 Hz, 

0.4H), 1.49-1.57 (m, 0.14H), 1.98 (ddd, J = 17.6 Hz, 0.86H), 2.13 (dt, J = 13.2 Hz, 7.2 

Hz, 0.86H), 2.197-2.30 (m, 1H), 2.40-2.47 (m, 0.14H), 2.52-2.59 (m, 0.84H), 2.60-2.66 

(m, 0.14H), 2.71-2.78 (m, 0.84H), 4.44-4.53 (m, 0.14H), 4.64 (sex, J = 6.4 Hz, 0.86H), 

5.1-5.14 (m, 2H), 5.72-5.82 (m, 1H).  

 

(S)-tert-butyldimethylsilyl 2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl) pent-4-

enoate  (2.137). Allyl lactone 2.135 (2.02 g, 14.41 mmol) was suspended in THF (84 

mL) and cooled to 0 
o
C. A solution of LiOH (0.4 g, 16.7 mmol) in H2O (12 mL) is added 

dropwise. When addition was complete, the resulting solution was stirred for 10 h at 0
o
C. 

The mixture was diluted with water (20 mL) and Et2O (30 mL) and the layers separated. 

The organic layer was discarded and the aqueous layer was carefully acidified (pH = 3) 

with 1M HCl. The aqueous layer was then extracted with ethyl acetate (5 x), dried over 

MgSO4, the solvent evaporated, and the crude product (2.136, 2.24 g, 98%) carried on to 

the next step without further purification. Crude 2.136 (2.24 g, 14.15 mmol) was 

resuspended in CH2Cl2 (58 mL) and the solution was cooled to 0
o
C. Imidazole (4.33 g, 

63.68 mmol) was added in one portion, followed by tert-butyldimethylsilylchloride 

(6.40g, 42.45 mmol). The resulting cloudy, white solution was stirred 16 h at room 

temperature. The reaction was quenched by addition of H2O (20 mL), and the solution 

was extracted with CH2Cl2 (3 x). The organic layer was dried over MgSO4, the solvent 

evaporated, and the crude product chromatographed (6:1 Hex:EtOAc) to give 2.137 
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(5.45g, 100%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.04 (s, 6H), 0.26 (s, 6H), 0.88 (s, 9H), 0.94 (s, 

9H), 1.13 (d, J = 6.0 Hz, 2.6H), 1.15 (d, J = 6.0 Hz, 0.4H), 1.41-1.48 (m, 0.86H), 1.49-

1.54 (m, 0.14H), 1.70-1.77 (m, 0.86H), 1.80-1.87 (m, 0.14H), 2.24-2.37 (m, 2H), 2.52-

2.56 (m, 0.14H), 2.63-2.70 (m, 0.86H), 3.78-3.86 (m, 1H), 5.01-5.08 (m, 2H), 5.69-5.79 

(m, 1H). 

 

(S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)pent-4-enoic acid (2.138). Silylester 

2.137 (1.00 g, 2.59 mmol) was suspended in a solution of MeOH (30 mL), THF (10 mL), 

and H2O (10 mL). K2CO3 (1.07 g, 7.76 mmol), was added in one portion at room 

temperature, and the reaction stirred for 1 h.  The mixture was diluted with Et2O (30 mL), 

the layers were separated and the organic layer discarded. The aqueous layer was 

carefully acidified (pH = 3) and extracted with EtOAc (5 x). The organic layer was dried 

with MgSO4, the solvent evaporated, and the crude product dried in vacuo to give 2.138 

(655 mg, 93%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.88 (s, 9H), 1.14 (d, J = 6.4 Hz, 

2.6H), 1.16 (d, J = 6.4 Hz, 0.4H), 1.50-1.59 (m, 1H), 1.76-1.83 (m, 0.86H), 1.83-1.91 (m, 

0.14H), 2.22-2.31 (m, 1H), 2.36-2.44 (m, 1H), 2.54-2.58 (m, 0.14H), 2.67-2.74 (m, 

0.86H), 3.87-3.94 (m, 1H), 5.04-5.11 (m, 2H), 5.71-5.81 (m, 1H).  
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(S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)-N-methoxy-N-methylpent-4-

enamide (2.139). Acid 2.138 was suspsended in CH2Cl2 (18 mL) and DCC (380 mg, 

1.84 mmol) was added at room temperature, followed by DMAP (22.4 mg, 0.184 mmol). 

The solution was stirred for 15 min, then N,O-dimethylhydroxylamine HCl (179 mg, 1.84 

mmol) and triethylamine (186 mg, 1.84 mmol) were added, and the resulting mixture 

stirred for 4 h at room temperature. The mixture was diluted with water (10 mL) and 

extracted with CH2Cl2 (3 x). The organic layer was dried over MgSO4, the solvent 

removed, and the crude product purified (4:1 Hex:EtOAc) to give 2.139 (498 mg, 86%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.02 (s, 3H), 0.04 (s, 3H), 0.88 (s, 9H), 1.13 (d, J 

= 6.4 Hz, 3H), 1.49-1.55 (m, 2H), 1.83-1.90 (m, 1H), 2.15-2.25 (m, 1H), 2.32-2.39 (m, 

1H), 3.18 (s, 3H), 3.70 (s, 3H), 3.77-3.83 (m, 1H), 4.98-5.07 (m, 2H), 5.70-5.80 (m, 1H).  

 

(S)-S-pyridin-2-yl 2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)pent-4-enethioate 

(2.141). To a solution of acid 2.138 (376 mg, 1.38 mmol) in toluene (7 mL), was added 

PPh3 (435 mg, 1.66 mmol) and 2,2’-bisdipyridyldisulfide (365 mg, 1.66 mmol) at room 

temperature. The solution was stirred for 3 h and then diluted with water (5mL), extracted 

with EtOAc (3 x), and dried over MgSO4. The solvent was evaporated and the crude 
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product purified (2:1 Hex:EtOAc) to give 2.141 (465 mg, 92%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.07 (s, 3H), 0.11 (s, 3H), 0.90 (s, 9H), 1.15 (d, J 

= 6.0 Hz, 3H). 1.54-1.61 (m, 1H), 1.87-1.98 (m, 1H), 2.30-2.37 (m, 1H), 2.49-2.56 (m, 

1H), 2.98-3.05 (m, 1H), 3.87-3.94 (m, 1H), 5.07-5.14 (m, 2H), 5.73-5.84 (m, 1H), 7.25-

7.28 (m, 1H), 7.61 (d, J =8.0 Hz, 1H), 7.70-7.75 (td, J = 8.0 Hz, 2.0 Hz, 1H), 8.60-8.62 

(m, 1H).   

 

(S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)-1-(5-(hex-5-en-1-yl)-1H-pyrrol-2-

yl)pent-4-en-1-one (2.140). MeMgCl (3.0M in THF, 2.11 mmol) was added to a solution 

of alkylpyrrole 2.108 (336 mg, 2.25 mmol) in toluene (11mL) at -45 
o
C. The solution was 

stirred for 0.5 h and then cannulated into a solution of thioester 2.141 (350 mg, 0.957 

mmol) in toluene (9.5mL) at -78 
o
C. The resulting mixture was stirred at -78 

o
C for 0.5 h 

and was then allowed to slowly warm to room temperature and stirred for 1 h. The 

reaction was quenched with saturated NH4Cl, extracted with EtOAc (3 x), and dried over 

MgSO4. The solvent was evaporated and the crude product purified (9:1 Hex:EtOAc) to 

give 2.140 (328 mg, 85%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): -0.11 (s, 3H), -0.03 (s, 3H), 0.84 (s, 9H), 1.12 (d, J 

= 6.0 Hz, 3H), 1.44 (quin, J = 7.6 Hz, 2H), 1.52-1.58 (m, 1H), 1.66 (quin, J =7.6 Hz, 2H), 

1.89-1.99 (m, 1H), 2.08 (q, J = 7.2 Hz, 2H), 2.20-2.27 (m, 1H), 2.40-2.47 (m, 1H), 2.62 

(t, J = 7.6 Hz, 2H), 3.28-3.34 (m, 1H), 3.75-3.79 (m, 1H), 4.93-5.04 (m, 4H), 5.69-5.83 
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(m, 2H), 5.98 (t, J = 3.2 Hz, 1H), 6.83 (t, J = 2.8 Hz, 1H), 9.04 (bs, 1H).  

 

(S)-4-((tert-butyldimethylsilyl)oxy)-1-(5-ethyl-1H-pyrrol-2-yl)pentan-1-one (2.146). 

To a solution of acid 2.137 (363 mg, 1.56 mmol) in toluene (4 mL), was added PPh3 (449 

mg, 1.71 mmol) and 2,2’-bisdipyridyldisulfide (377 mg, 1.71 mmol) at room 

temperature. The solution was stirred for 3 h. MeMgCl (3.0M in THF, 1.79 mmol) was 

added to a solution of 2-ethylpyrrole (192 mg, 2.02 mmol) in toluene (7 mL) at -45
o
C. 

The solution was stirred for 0.5 h and then cannulated into the of solution acid 2.137 at -

78 
o
C. The resulting mixture was stirred at -78 

o
C for 0.5 h and was then allowed to 

slowly warm to room temperature and stirred for 1 h. The reaction was quenched with 

saturated NH4Cl, extracted with EtOAc (3 x), and dried over MgSO4. The solvent was 

evaporated and the crude product purified (9:1 Hex:EtOAc) to give 2.146 (425 mg, 88%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 3H), 0.06 (s, 3H), 0.90 (s, 9H), 1.16 (d, J 

= 6.0 Hz, 3H), 1.26 (t, J = 7.6 Hz, 3H), 1.72-1.89 (m, 2H), 2.66 (q, J =6.8 Hz, 2H), 2.68-

2.75 (m, 1H), 2.81-2.89 (m, 1H), 3.86-3.93 (m, 1H), 6.00 (t, J = 3.6 Hz, 1H), 6.82 (dd, J 

= 3.6 Hz, 2.4 Hz, 1H), 9.05 (bs, 1H). 

 

(S)-1-(1-benzyl-5-ethyl-1H-pyrrol-2-yl)-4-((tert-butyldimethylsilyl)oxy)pentan-1-one 

(2.147). NaH (60% in mineral oil, 2.05 mmol) was suspended in DMF (14 mL) and 
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acylpyrrole 2.146 (425 mg, 1.37 mmol) was added at room temperature. The mixture was 

stirred for 0.5 h, then benzylbromide (351 mg, 2.05 mmol) was added and the resulting 

solution stirred for 2 h. The reaction was quenched with H2O, extracted with CH2Cl2 (3 

x), washed with 5% LiCl, dried over MgSO4, and the solvent evaporated. The crude 

product was purified to give 2.147 (520 mg, 95%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.03 (s, 3H) 0.04 (s, 3H), 0.90 (s, 9H), 1.13 (d, J = 

6.0 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H), 1.65-1.83 (m, 2H), 2. 51 (q, J = 7.6 Hz, 2H), 2.72-

2.79 (m, 1H), 2.86-2.94 (m, 1H), 3.80-3.88 (m, 1H), 5.68 (d, J = 3.6 Hz, 2H), 6.05 (d, J = 

4.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H), 7.18-7.27 (m, 5H).  

 

4-((tert-butyldimethylsilyl)oxy)-1-(1-(phenylsulfonyl)-1H-pyrrol-2-yl)butan-1-ol 

(2.155). Diol 2.154 (400 mg, 1.35 mmol) was suspended in CH2Cl2 (14 mL) and cooled 

to 0 
o
C. Imidazole (138 mg, 2.03 mmol) was added followed by tert-

butyldimethylsilylchloride (224 mg, 1.49 mmol) and the resulting cloudy solution was 

stirred for 4 h at room temperature. The reaction was quenched with H2O and extracted 

with CH2Cl2 (3 x). The organic extract was dried over MgSO4, the solvent evaporated, 

and the crude product purified (3:1 Hex:EtOAc) to give  2.155 (494 mg, 89%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.04 (s, 3H), 0.05 (s, 3H), 0.89 (s, 9H), 1.52-1.66 

(m, 2H), 1.81-1.97 (m, 2H), 3.34 (bs, 1H), 3.62 (t, J = 6.0 Hz, 2H), 4.87-4.90 (m, 1H), 

6.26 (t, J =3.2 Hz, 1H), 6.30-6.32 (m, 1H), 7.29 (dd, J = 3.2 Hz, 2.0 Hz, 1H), 7.49 (t, J = 

7.6 Hz, 2H), 7.59 (t, J =7.6 Hz, 1H), 7.78 (d, J =8.0 Hz, 2H).  
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1-(phenylsulfonyl)-2-(tetrahydrofuran-2-yl)-1H-pyrrole (2.156).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.90 (m, 3H), 2.24-2.29 (m, 1H), 3.75-3.81 (m, 

1H), 3.87-3.92 (m, 1H), 5.25-5.28 (m, 1H), 6.22-6.25 (m, 2H), 7.26-7.28 (m, 1H), 7.47 (t, 

J = 7.2 Hz, 2H), 7.57 (t. J = 7.2 Hz, 1H), 7.81 (d, J = 7.6 Hz, 2H).  

 

(E)-2-(4-((tert-butyldimethylsilyl)oxy)but-1-en-1-yl)-1-(phenylsulfonyl)-1H-pyrrole 

(2.161). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.89 (s, 9H), 2.38 (q, J = 7.0 Hz, 2H), 

3.66 (t, J =6.4 Hz, 2H), 5.85-5.97 (m, 1H), 6.20-6.27 (m, 1H), 6.79 (d, J = 15.6 Hz, 1H), 

7.26-7.29 (m, 2H), 7.45-7.50 (m, 2H), 7.45-7.60 (m, 1H), 7.76-7.81 (m, 2H).  

 

(S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)pent-4-en-1-ol (2.180). Silylester 

2.137 (18.8 g, 48.72 mol) was suspended in CH2Cl2 (200 mL), cooled to -78 
o
C, and 

DIBAL-H (1.0M in CH2Cl2) was added dropwise. After addition was complete, the 

mixture was stirred for 1.5 h at  -78 
o
C. MeOH (5 mL) was added very slowly at -78 

o
C 
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until H2 evolution had ceased. The mixture was then warmed to room temperature and a 

saturated solution of Rochelle’s salt (150 mL) was added with vigorous stirring. After 2 

h, the solution had become clear, so was extracted with CH2Cl2 (5 x), dried over MgSO4, 

and the solvent was evaporated to give crude product which was purified (2:1 

Hex:EtOAc) to give 2.180 (11.65 g, 93%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.08 (s, 3H), 0.09 (s, 3H), 0.91 (s, 9H), 1.18 (d, J 

= 4.4 Hz, 3H), 1.43 (m, 1H), 1.60 (m, 1H), 1.88 (m, 1H), 1.96 (m, 1H), 2.08 (m, 1H), 

3.41 (dd, J = 11.0 Hz, 7.2 Hz), 3.55-3.60 (m, 1H), 4.04-4.09 (m, 1H), 5.00-5.07 (m, 2H), 

5.72-5.82 (m, 1H).  

 

(S)-2-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)pent-4-enal (2.174). Alcohol 2.180 

(2.00 g, 7.74 mmol) was suspended in DMSO (10 mL) and CH2Cl2 (30 mL) and cooled 

to 0 
o
C. Triethylamine (7.83 g, 77.37 mmol) was added, followed by sulfur trioxide 

pyridine complex (4.93 g, 30.95 mmol) and the mixture was stirred for 6 h at 0 
o
C. The 

solution was diluted with H2O (20 mL), extracted with CH2Cl2 (3 x), and washed with 5% 

LiCl solution (1 x). The organic layer was dried over MgSO4, the solvent was evaporated, 

and the crude product purified (4:1 Hex:EtOAc) to give 2.174 (1.60 g, 81%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 3H), 0.07 (s, 3H), 0.90 (s, 9H), 1.17 (d, J 

= 6.0 Hz, 3H), 1.55-1.62 (m, 1H), 1.81-1.87 (m, 1H), 2.19-2.24 (m, 1H), 2.44-2.49 (m, 

1H), 2.59-2.63 (m, 1H), 3.92-3.96 (m, 1H), 5.07-5.12 (m, 2H), 5.70-5.79 (m, 1H), 9.66 

(d, J = 2.4 Hz, 1H). 
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7-iodohept-1-en-6-yne (2.176). 6-bromo-1-hexene (15.0 g, 92.0 mmol) was added 

dropwise to a stirred slurry of lithium acetylide –ethylene-diamine complex (14.1 g, 138 

mmol) in DMSO (40 mL) cooled to 0
o
C. When addition was complete, the mixture was 

allowed to warm to room temperature and stirred for 2 h. The reaction was quenched with 

H2O, extracted with Et2O (3 x), washed with 5% LiCl (2 x), and dried over MgSO4. The 

solvent was carefully removed under reduced pressure and the crude product 2.181 

carried on to the next step without further purification. Crude 2.181 was suspended in 

THF (115 mL), cooled to -78 
o
C, and n-BuLi (2.5M in hexanes, 87.9 mmol) was added 

dropwise. After addition was complete, the mixture was stirred for 0.5 h. To the stirred, 

cooled solution was added iodine (23.0 g, 90.4 mmol) in THF (115 mL). After addition 

was complete, the resulting solution was allowed to slowly warm to room temperature 

and stir for 1 h. The reaction was quenched with a saturated NH4Cl solution and extracted 

with Et2O (3 x). The organic layer was dried over MgSO4
 
, the solvent evaporated, and 

the crude product purified (silica, hexanes) to yield 12.7 g of 2.176 (59% over 2 steps). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.48-1.54 (m, 4H), 2.06 (q, J = 7.2 Hz, 2H), 2.37 

(t, J = 6.8 Hz, 2H), 4.94-5.04 (m, 2H), 5.75-5.85 (m, 1H). 

 

Trimethyl(nona-8-en-1,3-diyn-1-yl)silane (2.182). Alkynyl iodide 2.176 (2.0 g, 8.54 

mmol) was suspended in piperidine (13 mL) and cooled to 0 
o
C. Ethynyltrimethylsilane 

(2.18 g, 22.2 mmol) was added, followed by cuprous iodide (146 mg, 0.769 mmol). The 
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solution was stirred at 0 
o
C for 2 h. The reaction was then quenched with saturated NH4Cl 

and extracted with CH2Cl2 (3 x). The extract was washed with brine (2 x), dried over 

MgSO4, and the solvent evaporated. The crude product was purified (silica, hexanes) to 

give 2.182 (1.55 g, 89%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.18 (s, 9H), 1.47-1.59 (m, 4H), 2.06 (q, J = 7.2 

Hz, 2H), 2.28 (t, J = 6.8 Hz, 2H), 4.94-5.03 (m, 2H), 5.73-5.84 (m, 1H).  

 

Nona-8-en-1,3-diyne (2.175). K2CO3 (10.0 g, 72.61 mmol) was added to a solution of 

TMS-diyne 2.182 (3.71 g, 18.15 mmol) in THF/MeOH (23 mL/23 mL) at 0 
o
C, and the 

mixture was stirred for 3 h. The reaction was diluted with H2O (25 mL) and extracted 

with Et2O (3 x). The organic extract was dried over MgSO4, the solvent evaporated, and 

the crude product purified (silica, hexanes) to give 2.175 (2.28 g, 95%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.46-1.60 (m, 4H), 1.96 (t, J =1.2 Hz, 1H), 2.04-

2.09 (m, 2H), 2.27 (td, J = 6.8 Hz, 1.2 Hz, 2H), 4.95-5.04 (m, 2H), 5.74-5.84 (m, 1H). 

 

(4S,5S)-4-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)pentadeca-1,14-dien-6,8-diyn-

5-ol (2.183). Diyne 2.175 1.33 g, 10.06 mmol) was suspended in THF (50 mL), cooled to 

0 
o
C, and treated with EtMgBr (1.0M in THF, 9.93 mmol). The mixture was stirred for 

0.5 h, and then a solution of aldehyde 2.174 (1.72 g, 6.71 mmol) was added dropwise at 0 

o
C. After 1 h, the reaction was quenched with saturated NH4Cl, extracted with Et2O (3 x), 
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and dried over MgSO4. The solvent was evaporated and the crude product purified (silica, 

19:1 Hex:EtOAc) to give 2.183 (2.22g, 85%) as a 1:1 mixture of diastereomers (cis, cis, 

trans : cis, cis, cis). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.07 (s, 3H), 0.12 (s, 1.5H), 0.15 (s, 1.5H), 0.89 (s, 

4.5H), 0.93 (s, 4.5H), 1.15 (d, J = 6.0 Hz, 1.5H), 1.18 (d, J = 6.8 Hz, 1.5H), 1.46-1.57 (m, 

6H), 1.89-1.99 (m, 1.5H), 2.06 (q, J = 7.2 Hz, 2H), 2.11-2.16 (m, 1H), 2.28 (t, J = 6.8 Hz, 

2H), 2.41-2.44 (m , 0.5H), 3.96-4.01 (m, 0.5H), 4.09-4.16 (m, 0.5H), 4.36-4.44 (m, 1H), 

4.94-5.12 (m, 4H), 5.67-5.80 (m, 2H).  

 

(((2S,4S)-4-allyl-5-bromopentadeca-14-en-6,8-diyn-2-yl)oxy)(tert-butyl)dimethyl 

silane (2.173). To a solution of alcohol 2.183 (1.50 g, 3.86 mmol) in CH2Cl2 (40 mL) 

was added CBr4 (2.56 g, 7.72 mmol) followed by pyridine (1.22 g, 15.44 mmol). PPh3 

(2.03 g, 7.72 mmol) was then added and the solution was stirred at room temperature for 

1 h. The reaction was quenched with sat. NaHCO3, extracted with CH2Cl2 (3 x), dried 

over MgSO4, condensed in vacuo, and purified by flash chromatography (19:1 Hex: 

EtOAc) to give 2.173 (1.43 g, 82%) as a clear, colorless, viscous oil. 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.07 (s, 6H), 0.89 (s, 9H), 1.15 (d, J = 6.0 Hz, 3H), 

1.48-1.57 (m, 5H), 1.58-1.66 (m, 1H), 1.72-1.81 (m, 1H) 2.05-2.09 (m, 2H), 2.15-2.27 

(m, 1H), 2.96-2.33 (m, 2H), 3.39-2.46 (m, 1H), 3.88-3.97 (m, 1H), 4.84 (dd, J =14.6 Hz, 

3.2 Hz, 1H), 4.95-5.15 (m, 4H), 5.66-5.84 (m, 2H). 
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(S)-4-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)pentadeca-1,14-dien-6,8-diyn-5-one 

(2.198). Propargyl alcohol 2.183 (1.13 g, 2.92 mmol) was suspended in CH2Cl2 (20 mL) 

with 4 angstrom molecular sieves (3.0 g) and cooled to 0
o
C. NMO (683 mg, 5.83 mmol) 

was added in one portion, followed by TPAP (103 mg, 0.292 mmol). The mixture was 

warmed to room temperature and stirred for 1.5 h. The reaction was filtered, the solvent 

evaporated, and the resulting black residue immediately purified (19:1 Hex:EtOAc) to 

give pure 2.198 (938 mg, 83%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.03 (s, 3H), 0.04 (s, 3H), 0.88 (s, 9H), 1.13 (d, J 

= 6.0 Hz, 3H), 1.48-1.64 (m, 5H), 1.86-1.93 (m, 1H), 2.08 (q, J = 7.2 Hz, 2H), 2.26 (quin, 

J =7.2 Hz, 1H), 2.38 (t, J = 7.2 Hz, 2H), 2.46 (quin, J = 7.2 Hz, 1H), 2.82-2.89 (m, 1H), 

3.78-3.85 (m, 1H), 4.96-5.10 (m, 4H), 5.64-5.74 (m, 1H), 5.74-5.84 (m, 1H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): -4.8, -4.3, 18.0, 19.5, 24.2, 25.9, 27.2, 27.9, 33.1, 36.3, 40.0, 

50.2, 64.1, 66.4, 72.0, 90.2, 114.9, 117.4, 134.7, 138.1, 190.0. 

 

(E)-ethyl 4-(diethoxyphosphoryl)but-2-enoate (2.199). Triethylphosphite (3.13 g, 

18.84 mmol) was added to ethyl-4-bromocrotonate (80%) (5.0 g, 20.72 mmol) at room 

temperature. The solution was stirred at 85 
o
C for 24 h, cooled to room temperature, and 

purified (1:2 Hex:EtOAc) to give 2.199 (5.40 g, 92%).  
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1
H NMR (CDCl3, 400 MHz)  (ppm): 1.27 (t, J = 6.8 Hz, 3H), 1.31 (t, J = 7.2 Hz, 6H), 

2.72 (ddd, J = 24.0 Hz, 8.0 Hz, 1.2 Hz, 2H), 4.06-4.14 (m, 4H), 4.17 (q, J = 7.2 Hz, 2H), 

5.94 (ddd, J = 14.8 Hz, 5.0 Hz, 1.2 Hz, 1H), 6.85 (sex, J = 8.0 Hz, 1H).  

 

(2E,4E)-ethyl-5-((4S,6S)-6-((tert-butyldimethylsilyl)oxy)hept-1-en-4-yl)pentadeca-

2,4,14-trien-6,8-diynoate (2.197). To a solution of phsophonate 2.199 (974 mg, 3.89 

mmol) in THF (40 mL) cooled to -78 
o
C, was added n-BuLi (2.5M in hexanes, 3.46 

mmol) dropwise. The mixture was stirred at -78 
o
C for 10 min then warmed to 0

o
C and 

stirred for 50 min. The mixture was re-cooled to -78 
o
C and a pre-cooled (-78

o
C) solution 

of ketone 2.198 (836 mg, 2.16 mmol) in THF (15 mL) was added dropwise. The mixture 

was allowed to warm to room temperature over 1 h and stir overnight. The reaction was 

quenched with saturated NH4Cl, extracted with EtOAc (3 x), washed with brine, and 

dried over MgSO4. The solvent was removed and the crude product purified (19:1 

Hex:EtOAc) to give 2.197 (324 mg, 31%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): -0.01 (s, 3H), 0.02 (s, 3H), 0.88 (s, 9H), 1.12 (d, J 

= 6.0 Hz, 3H), 1.31 (t, J =6.8 Hz, 3H), 1.51-1.63 (m, 6H), 2.10 (q, J =6.8 Hz, 2H),  2.13-

2.23 (m, 2H), 2.39 (t, J = 6.8 Hz, 2H), 2.47-2.54 (m, 1H), 3.66-3.72 (m, 1H), 4.22 (q, J = 

6.8 Hz, 2H), 4.96-5.05 (m, 4H), 5.64-5.71 (m, 1H), 5.76-5.86 (m, 1H), 5.91 (d, J  = 15.2 

Hz, 1H), 6.42 (d, J = 11.6 Hz, 1H), 7.69 (dd, J = 15.2 Hz, 11.6 Hz, 1H).  
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(2E,4E)-5-((4S,6S)-6-((tert-butyldimethylsilyl)oxy)hept-1-en-4-yl)pentadeca-2,4,14-

trien-6,8-diyn-1-ol (2.200). Ester 2.197 (225 mg, 0.466 mmol) was suspended in CH2Cl2 

(5 mL) and cooled to -78 
o
C. DIBAL-H (1.0M in CH2Cl2, 1.40 mmol) was added 

dropwise to the cooled solution. After addition was complete, the reaction was stirred at  

-78 
o
C for 1.5 h. MeOH (0.5 mL) was added very slowly until H2 evolution had ceased, 

then the mixture was warmed to room temperature and a saturated solution of Rochelle’s 

salt (15 mL) was added with vigorous stirring. After 15 min the solution had become 

clear, so the product was extracted with CH2Cl2 (3 x), dried over MgSO4, and the solvent 

evaporated to give crude product which was purified (8:1 Hex:EtOAc) to give 2.200 (162 

mg, 81%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.01 (s, 3H), 0.03 (s, 3H), 0.88 (s, 9H), 1.12 (d, J 

= 6.0 Hz, 3H), 1.50-1.61 (m, 6H), 2.08 (q, J = 6.8 Hz, 2H), 2.12-2.24 (m, 2H), 2.37 (t, J = 

6.8 Hz, 2H), 2.39-2.45 (m, 1H), 3.70-3.76 (m, 1H), 4.25 (d, J = 5.2 Hz, 2H), 4.96-5.05 

(m, 4H), 5.63-5.74 (m, 1H), 5.76-5.86 (m, 1H) 5.93 (dt, J = 15.2 Hz, 5.6 Hz, 1H), 6.35 

(d, J = 11.2 Hz, 1H), 6.73 (dd, J = 15.2 Hz, 11.2 Hz, 1H).  
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(S)-5-((S)-2-((tert-butyldimethylsilyl)oxy)propyl)-2-(cyclohex-1-en-1-ylethynyl) 

cyclopent-2-enone (2.207). Ketone 2.198 (100 mg, 0.259 mmol) was suspended in 

CH2Cl2 (86 mL) and Grubbs second-generation catalyst (22 mg, 0.026 mmol) was added 

in one portion. The mixture was heated to reflux and stirred for 16 h. The solvent was 

evaporated and the crude product purified (15:1: Hex:EtOAc) to give 2.207 (63 mg, 

68%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.06 (s, 3H), 0.07 (s, 3H), 0.88 (s, 9H), 1.14 (d, J 

= 6.0 Hz, 3H), 1.42 (dt, J =14.0 Hz, 8.0 Hz, 1H), 1.55-1.67 (m, 5H), 1.91 (dt, J = 13.6 

Hz, 4.8Hz, 1H), 2.10-2.14 (m, 2H), 2.16-2.19 (m, 2H) 2.45-2.49 (m, 1H), 2.88-2.97 (m, 

1H), 4.01-4.15 (m, 1H), 6.21-6.23 (m, 1H), 7.64 (t, J = 2.8 Hz, 1H). 

 

3-(benzyloxy)propan-1-ol (2.219). Sodium hydride (5.52 g, 137.98 mmol, 60% 

dispersion in mineral oil) was suspended in anhydrous THF (175 mL) in a flame-dried 

500 mL round bottom flask. The solution was cooled to 0 
o
C and 1,3-propanediol (10.0 g, 

131.41 mmol) was added dropwise. The resulting mixture was stirred for 30 min at 0 
o
C 

at which time benzyl bromide (23.6 g, 137.98 mmol) was added dropwise followed by 

addition of tert-butyl ammonium iodide (4.85 g, 13.14 mmol). The mixture was warmed 

to room temperature and stirred for 4 h. The reaction was quenched by dropwise addition 

of saturated NH4Cl solution. The resulting mixture was extracted with ethyl acetate (3 x), 



241 
 

dried over Na2SO4, and concentrated under reduced pressure. The resulting oil was 

purified by flash chromatography (1:1 Hex:EtOAc) to give alcohol 2.219 as a clear, 

colorless oil (12.25 g, 56%). 

 1
H NMR (CDCl3, 400 MHz)  (ppm): 1.87 (quin, J = 5.8 Hz, 2H), 3.67 (t, J = 5.8 Hz, 

2H), 3.79 (t, J = 5.8 Hz, 2H), 4.53 (s, 2H), 7.27-7.38 (m, 5H). 

 

3-(benzyloxy)propanal (2.220). Alcohol 2.219 (6.0 g, 36.10 mmol) was suspended in 

anhydrous dichloromethane and dimethyl sulfoxide (3:1 v/v, 144 mL). The solution was 

cooled to 0 
o
C and triethylamine (50.2 mL, 360.97 mmol), was added followed by sulfur 

trioxide pyridine complex (23.0 g, 144. 39 mmol) in 4 portions. The resulting mixture 

was warmed to room temperature and stirred for 4 h. The reaction was quenched with 

water and extracted with dichloromethane (3x), dried over sodium Na2SO4, and 

condensed under reduced pressure. The crude oil was purified by flash chromatography 

(2:1 Hex:EtOAc) to provide aldehyde 2.220 as a clear, colorless oil (4.21 g, 72 %).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 2.70 (td, J = 6.1, 1.8 Hz, 2H), 3.82 (t, J = 6.1 Hz, 

2H), 4.54 (s, 2H), 7.27-7.38 (m, 5H), 9.80 (t, J = 1.8 Hz, 1H). 

 

5-(benzyloxy)pent-1-en-3-one (2.216). Aldehyde 2.220 (3.50 g, 21.32 mmol) was 

suspended in anhydrous THF (85 mL) in a 250 mL flame-dried round bottom flask and 

the solution was cooled to -78 
o
C. Vinylmagnesium bromide (1.0 M in THF, 25.58 mmol, 
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25.6 mL) was added dropwise and the resulting solution was stirred for 1 h at -78 
o
C. The 

reaction was quenched by addition of saturated NH4Cl solution and warmed to room 

temperature. The mixture was extracted with dichloromethane (2x), dried over anhydrous 

Na2SO4, and condensed in vacuo to provide a pale yellow residue. This residue was 

carried on without further purification and suspended in anhydrous dichloromethane (49 

mL) with 4 angstrom molecular sieves (7.0 g) and cooled to 0 
o
C. N-methylmorpholine-

N-oxide (3.46 g, 29.54 mmol) was added, followed by tetrapropylammonium 

perruthenate (260 mg, 0.74 mmol). The reaction was warmed to room temperature and 

stirred until complete conversion was evident by TLC. The solution was filtered through 

celite and condensed in vacuo to give a dark green residue. This residue was purified by 

flash chromatography (4:1 Hex:EtOAc) to provide enone 2.216 as a clear colorless oil 

(3.12 g, 77%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 2.91 (t, J = 6.5 Hz, 2H), 3.80 (t, J = 6.4 Hz, 2H), 

4.53 (s, 2H), 5.87 (dd, J = 10.5, 1.0 Hz, 1H), 6.24 (dd, J = 17.6, 1.0 Hz, 1H), 6.38 (dd, J = 

17.6, 10.5 Hz, 1H),  7.26-7.36 (m, 5H). 

 

1-(((8-iodooctyl)oxy)methyl)-4-methoxybenzene (2.221). Sodium hydride (1.44 g, 35.9 

mmol, 60% dispersion in mineral oil) was suspended in anhydrous THF/DMF (9:1 v/v, 

(120 mL) in a flame-dried 250 mL round bottom flask. The solution was cooled to 0 
o
C 

and 1,8-octanediol (5.0 g, 34.2 mmol) was added dropwise. The resulting mixture was 

stirred for 30 min at 0 
o
C at which time p-methoxybenzyl chloride (5.62 g, 4.87 mmol) 

was added dropwise followed by addition of tert-butyl ammonium iodide (1.26 g, 3.42 
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mmol). The mixture was warmed to room temperature and then heated to 65 
o
C and 

stirred for 18 h. The reaction was quenched by dropwise addition of saturated NH4Cl 

solution. The resulting mixture was extracted with ethyl acetate (3 x), dried over Na2SO4, 

and concentrated under reduced pressure. The resulting oil was purified by flash 

chromatography (1:1 Hex:EtOAc) to give mono-PMB alcohol as a clear, colorless oil 

(4.81 g, 53%). This alcohol was then carried on to the subsequent reaction. The alcohol 

(2.0 g, 7.51 mmol) was suspended in anhydrous THF (38 mL) and triphenylphosphine 

(2.96 g, 11.3 mmol), pyridine (1.84 g, 23.3 mmol), and iodine (2.67 g, 10.5 mmol) were 

added successively and the mixture was stirred at room temperature for 2 h. The reaction 

was quenched by addition of Na2S2O3, and extracted with Et2O (3x). The organic layers 

were combined, dried over anhydrous Na2SO3, and condensed in vacuo to give an orange 

residue. This residue was purified by flash chromatography (5:1 Hex:EtOAc) to give 

iodide 2.221 a clear, colorless oil (2.16 g, 77%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.28-1.40 (m, 8H), 1.59 (quin, J = 7.2 Hz, 2H), 

1.81 (quin, J = 7.2 Hz, 2H), 3.18 (t, J = 7.1 Hz, 2H), 3.43 (t, J = 6.6 Hz, 2H), 3.80 (s, 

3H), 4.43 (s, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H). 
13

C NMR (CDCl3, 

100 MHz)  (ppm): 7.41, 26.22, 28.59, 29.34, 29.83, 30.54, 33.63, 55.39, 70.22, 72.63, 

113.85, 129.32, 130.88, 159.20.  
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(3S,5S)-3-(8-((4-methoxybenzyl)oxy)octyl)-5-methyldihydrofuran-2(3H)-one (2.222). 

To a stirring solution of LDA (2.0 M in THF/heptane, 1.05 mL, 2.10 mmol) in anhydrous 

THF (2.0 mL) at 0 
o
C, was added DMPU (960 mg, 7.49 mmol)  dropwise and the 

resulting mixture was stirred for 15 min and then cooled to -78 
o
C. Lactone 2.129 (200 

mg, 2.00 mmol) in THF (5.0 mL) was added dropwise over a 0.5 h period. The reaction 

was stirred for anadditional 0.5 h at -78 
o
C. Iodide 2.221 (902 mg, 2.40 mmol) in THF 

(2.0 mL) was added dropwise and the reaction mixture was stirred at -78 
o
C for 18 h. The 

reaction was quenched by addition of saturated NH4Cl and warmed to room temperature. 

The mixture was extracted with EtOAc (3x), dried over Na2SO4, concentrated under 

reduced pressure, and purified by flash chromatography (5:1 Hex/EtOAc) to give alkyl 

lactone 2.222 as a clear, colorless oil (272 mg, 39 %, 7:1 dr).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.24-1.38 (m, 11H), 1.37 (d, J = 6.5 Hz, 3H), 1.55-

1.62 (m, 3H), 1.78-1.86 (m, 1H), 1.97-2.11 (m, 2H), 2.56-2.65 (m, 1H), 3.43 (t, J = 6.6 

Hz, 2H), 3.80 (s, 3H), 4.43 (s, 2H), 4.65 (sex, J = 6.4 Hz, 1H), 6.87 (d, J = 8.6 Hz, 2H), 

7.26 (d, J = 8.6 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 21.43, 26.34, 27.53, 

29.46, 29.54, 29.92, 30.87, 35.26, 39.51, 55.46, 70.36, 72.69, 75.11, 113.92, 129.40, 

1130.97, 159.27, 179.62. 
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(S)-2-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-10-((4-methoxybenzyl)oxy)decan-1-

ol (2.223). Alkyl lactone 2.222 ( 220 mg, 0.63 mmol) was suspended in THF (10.5 mL) 

and cooled to 0
 o

C. Lithium hydroxide (38 mg, 1.59 mmol) was dissolved in H2O (1.5 

mL) and this solution was added dropwise to the THF solution with vigorous stirring. 

The resulting mixture was stirred for 16 h at 0 
o
C and was then carefully acidified to pH = 

4. The acidified solution was extracted with EtOAc (4x), dried over Na2SO4, and 

condensed in vacuo. The resulting pale yellow oil was carried on without further 

purification. The crude acid  was suspended in dichloromethane (12 mL) Imidazole ( 160 

mg, 2.35 mmol) was added, followed by TBDPSCl (518 mg, 1.88 mmol) at room 

temperature. The resulting mixture was stirred at rt for 4 h at which time the reaction was 

quenched by addition of water and extracted with dichloromethane (3x), dried over 

Na2SO4, and condensed in vacuo to give the TBDPS ether/ester as a pale yellow oil that 

was carried on without further purification. The TBDPS ether/ester (530 mg, 0.63 mmol) 

was suspended in anhydrous dichloromethane (9 mL) and the resulting solution was 

cooled to -78 
o
C. DIBAL-H (1.0 M in CH2Cl2, 2.5 mL, 2.5 mmol) was added dropwise 

and the solution stirred for 2 h at -78 
o
C. The reaction was quenched by addition of a 

saturated aqueous solution of sodium potassium tartrate, warmed to room temperature, 

and stirred for 0.5 h. The mixture was extracted with dichloromethane (3x), dried over 

Na2SO4, condensed in vacuo and purified by flash chromatography (4:1 Hex/EtOAc) to 

provide alcohol 2.223 as a clear, colorless oil (186 mg, 50% over 3 steps).  
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1
H NMR (CDCl3, 400 MHz)  (ppm): 1.06 (s, 9H), 1.08 (d, J = 6.5 Hz, 3H), 1.17-1.28 

(m, 10H), 1.30-1.38 (m, 2H), 1.40-1.53 (m, 2H), 1.59 (quin, J = 7.2 Hz, 2H), 1.63-1.70 

(m, 1H), 3.33-3.48 (m, 2H), 3.43 (t, J = 6.6 Hz, 2H), 3.80 (s, 3H), 4.00 (sex, J = 5.6 Hz, 

1H), 4.43 (s, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.36-7.43 (m, 6H), 

7.67-7.70 (m, 4H).  

 

(S)-2-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-10-((4-methoxybenzyl)oxy)decanal 

(2.224). Alcohol 2.223 (150 mg, 0.254 mmol) was suspended in DCM/DMSO (3:1 v/v, 

5.0 mL) and cooled to 0 
o
C. Triethylamine (257 mg, 2.54 mmol) was added, followed by 

sulfur trioxide pyridine complex (162 mg, 1.02 mmol). The resulting mixture was 

warmed to room temperature and stirred for 4 h. The reaction was auenched by addition 

of water, extracted with dichloromethane (3x), dried over Na2SO4, and condensed in 

vacuo to give a yellow oil. This oil was purified by flash chromatography (5:1 

Hex/EtOAc) to provide aldehyde 2.224 as a clear, colorless oil (135 mg, 90%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.04 (s, 9H), 1.06 (d, J = 4.0 Hz, 3H), 1.19-1.28 

(m, 10H), 1.28-1.35 (m, 2H), 1.47-1.55 (m, 2H), 1.55-1.60 (m, 2H), 1.79-1.90 (m, 1H) 

2.39-2.46 (m 1H), 3.33-3.48 (m, 2H), 3.43 (t, J = 6.6 Hz, 2H), 3.80 (s, 3H), 3.92 (sex, J = 

6.0 Hz, 1H), 4.43 (s, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.35-7.44 

(m, 6H), 7.64-7.69 (m, 4H). 9.44 (d, J = 3.0 Hz, 1H).  
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tert-butyl(((2S,4S)-12-((4-methoxybenzyl)oxy)-4-vinyldodecan-2-yl)oxy)diphenyl 

silane (2.217). Methyltriphenylphosphonium bromide (100 mg, 0.28 mmol) was 

suspended in anhydrous THF (3.0 mL) and the solution cooled to 0 
o
C. KHMDS (0.5 M 

in toluene, 0.52 mL, 0.26 mmol) was added dropwise and the resulting mixture was 

stirred at 0 
O
C for 1h. Aldehyde 2.224 (27 mg, 0.22 mmol) was suspended in anhydrous 

THF (2.2 mL) and added dropwise to the solution of Wittig salt, and then the mixture was 

slowly warmed to room temperature and stirred 2h. The reaction was quenched by 

addition of saturated aqueous NH4Cl, extracted with EtOAc (3x), dried over Na2SO4, and 

condensed in vacuo to give a yellow oil. This oil was purified by flash chromatography 

(6:1 Hex/EtOAc) to give alkene 2.217 as a clear, colorless oil (107 mg, 85%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.02 (d, J = 6.2 Hz, 3H), 1.04 (s, 9H), 1.13-1.34 

(m, 13H), 1.55-1.62 (m, 4H), 2.12-2.19 (m, 1H), 3.43 (t, J = 6.7 Hz, 2H), 3.80 (s, 3H), 

3.82-3.87 (m, 1H), 4.43 (s, 2H), 4.70-4.77 (m, 1H), 4.83 (dd, J  = 10.4, 2.0 Hz, 1H), 5.35-

5.44 (m, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 7.34-7.43 (m, 6H), 7.65-

7.70 (m, 4H).  

 

Methyl 3-(benzyloxy)propanoate (2.228). K2Cr2O7 (2.9 g, 9.9 mmol) was dissolved in 

H2O (5.0 mL). Conc. H2SO4 (2.0 mL) was added dropwise with vigorous stirring. The 
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reaction was cooled to 0 
o
C (15 min) and then a solution of alcohol 2.219 (1.5 g, 9.0 

mmol) in acetone (18.0 mL) was added dropwise to the prepared Jone’s reagent. The 

mixture was then stirred for 2 h. The reaction mixture was diluted with EtOAc and water 

and then extracted with EtOAc (3x). The combined organic layers were dried over 

Na2SO4, condensed in vacuo and carried on to the next step without further purification. 

The crude acid was suspended in methanol (100 mL) and conc. HCl (0.2 mL) was added. 

The reaction was heated to 60 
o
C and stirred for 12 h. The mixture was allowed to cool to 

room temperature and saturated aqueous NaHCO3 was slowly added. The solution was 

diluted with ethyl acetate and water, extracted with EtOAc (3x), dried over Na2SO4, and 

condensed in vacuo to give a yellow-green residue. This residue was purified by flash 

chromatography (2:1 Hex/EtOAc) to provide ester 2.228 as a clear, colorless oil (980 mg, 

54% over 2 steps).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 2.63 (t, J = 6.4 Hz, 2H), 3.70 (s, 3H), 3.75 (t, J = 

6.4 Hz, 2H), 4.54 (s, 2H), 7.27-7.37 (m, 5H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 

35.10, 51.83, 65.69, 73.24, 127.81, 128.52, 138.18, 172.18. 

 

Dimethyl (4-(benzyloxy)-2-oxobutyl)phosphonate (2.225). To a solution of dimethyl 

methylphosphonate (2.40 g, 19.4 mmol) in anhydrous THF (16.0 mL) was added n-BuLi 

(2.5 M in hexanes, 7.65 mL, 19.1 mmol) dropwise at -78 
o
C. The white suspension was 

stirred 1 h at -78 
o
C at which time ester 2.228 (940 mg, 4.84 mmol) in THF (8.0 mL) was 

added dropwise. The reaction was stirred for an additional 1 h at -78 
o
C and was then 
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quenched with saturated NH4Cl and warmed to room temperature. The mixture was 

extracted with ethyl acetate (3x), dried over Na2SO4, condensed in vacuo, and purified by 

flash chromatography (1:9 Hex/EtOAc) to provide phosphonate 2.225 as a clear, 

colorless oil (970 mg, 70%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 2.90 (t, J = 6.2 Hz, 2H), 3.12 (s, 1H), 3.17 (s, 1H), 

3.75 (t, J = 6.2 Hz, 2H), 3.75 (s, 3H), 3.78 (s, 3H), 4.50 (s, 2H), 7.27-7.36 (m, 5H). 

 

(S,E)-1-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-14-((4-methoxy 

benzyl)oxy)tetradec-4-en-3-one (2.215). Phosphonate 2.225 (512 mg, 1.79 mmol) was 

suspended in THF (3.3 mL). Ba(OH)2 (262 mg, 1.53 mmol) was added at room 

temperature, and the resulting mixture was stirred for 1 h. Aldehyde 2.224 (902 mg, 1.53 

mmol) in THF/H2O (40:1 v/v, 5.1 mL) was added dropwsie at room temperature and the 

reaction was stirred 4 h. The reaction mixture was diluted with ethyl acetate and water 

and neutralized by addition of 1.0 M HCl. The mixture was extracted with EtOAc (3x), 

dried over Na2SO4, and condensed in vacuo. The crude product was purified by flash 

chromatography (4:1 Hex:EtOAc) to provide enone 2.215 as a clear, colorless oil (529 

mg, 46%, 58% brsm). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.03 (s, 12H), 1.12-1.37 (m, 12H), 1.55-1.70 (m, 

4H), 2.31-2.37 (m, 1H), 2.72 (td, J = 6.6, 2.4 Hz, 2H), 3.43 (t, J = 6.6 Hz, 2H), 3.72-3.76 
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(m, 3H), 3.80 (s, 3H), 4.43 (s, 2H), 4.50 (s, 2H), 5.79 (d, J = 15.9 Hz, 1H), 6.44 (dd, J = 

15.9, 9.1 Hz, 1H), 6.87 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.30-7.40 (m, 11H), 

7.63-7.67 (m, 4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.38, 24.47, 27.16, 27.20, 

29.59, 29.62, 29.64, 29.90, 35.01, 39.24, 40.32, 44.94, 55.39, 65.63, 67.98, 70.34, 72.64, 

73.35, 113.88, 127.54, 127.61, 127.71, 127.76, 127.82, 128.51, 129.36, 129.63, 129.76, 

130.24, 130.92, 134.21, 134.78, 136.03, 136.06, 138.35, 152.29, 159.23, 198.43. 

 

tert-butyl(hept-6-en-1-yloxy)dimethylsilane (2.227). 6-hepten-1-ol (10 g, 87.6 mmol), 

was suspended in anhydrous dichloromethane (175 mL) in a flame-dried 250 mL round 

bottom flask. Imidazole (8.94 g, 131.4 mmol) was added followed by TBSCl (15.84 g, 

105.1 mmol). The reaction was stirred at room temperature for 4 h and was quenched by 

the addition of water, extracted with dichloromethane (3x), dried over Na2SO4, and 

condensed in vacuo to give a clear oil. This oil was purified by flash chromatography (6:1 

Hex:EtOAc) to provide TBS ether 2.227 as a clear, colorless oil (19.24 g, 96 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.89 (s, 9H), 1.29-1.44 (m, 4H), 1.49-

1.56 (m, 2H), 2.05 (q, J = 7.2 Hz, 2H), 3.60 (t, J = 6.6 Hz, 2H),  4.93 (dm, J = 10.2 Hz, 

1H), 4.99 (ddd, J  = 17.2, 3.6, 1.7 Hz, 1H), 5.81 (ddt,  J = 17.2, 10.2, 6.6 Hz, 1H).  

 

(E)-ethyl 8-((tert-butyldimethylsilyl)oxy)oct-2-enoate (2.228). TBS ether 2.227 (19.24 

g, 82.82 mmol) was suspended in anhydrous CH2Cl2 (207 mL) in a flame-dried 500 mL 
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round bottom flask fit with a reflux condenser under an atmosphere of argon. Ethyl 

acrylate was added (33.2 g, 331.3 mmol), followed by Grubbs’ second generation catalyst 

(703 mg, 0.83 mmol), and the resulting dark red solution was heated to 40 
o
C for 12 

hours. At this time, the dark green solution was exposed to air, condensed under reduced 

pressure, purified by flash chromatography (5:1 Hex/EtOAc), and concentrated in vacuo 

to give ester 2.228 as a clear, colorless oil (24.2 g, 97%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.04 (s, 6H), 0.89 (s, 9H), 1.28 (t,  J = 7.0 Hz, 3H), 

1.32-1.39 (m, 2H), 1.44-1.54 (m, 4H),  2.20 (q, J = 7.0 Hz, 2H), 3.60 (t, J = 6.6 Hz, 2H),  

4.18 (q, J = 7.2 Hz, 2H), 5.81 (d, J  = 15.6 Hz, 1H), 5.81 (dt,  J = 15.6, 7.0 Hz, 1H). 
13

C 

NMR (CDCl3, 100 MHz)  (ppm): -5.10, 14.46, 25.49, 26.15, 28.00, 32.30, 32.67, 60.35, 

62.99, 121.64, 149.23, 166.93.  

 

(E)-8-((tert-butyldimethylsilyl)oxy)oct-2-en-1-ol (2.229). Ester 2.228 (24.2 g, 80.70 

mmol) was suspended in anhydrous dichloromethane (161 mL) in a flame dried 1 L 

round bottom flask and cooled to -78 
o
C. DIBAL-H (1.0 M in CH2Cl2, 201.7 mmol, 

201.7 mL) was added dropwise. The resulting mixture was stirred for 2 h until complete 

conversion was evident by TLC. The reaction was quenched by addition of sodium 

potassium tartrate, warmed to room temperature, and stirred for 2 h until the organic layer 

was clear. The mixture was extracted with dichloromethane (3 x), dried over Na2SO4, and 

condensed in vacuo to give a clear oil. This oil was purified by flash chromatography (4:1 

Hex:EtOAc) to provide allylic alcohol 2.229 as a clear, colorless oil (18.9 g, 91%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.04 (s, 6H), 0.89 (s, 9H), 1.31-1.43 (m, 4H), 1.51 
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(quin,  J  = 7.0 Hz, 2H), 2.05 (q,  J  = 7.0 Hz, 2H), 3.60 (t,  J = 6.6 Hz, 2H),  4.08 (d, J = 

5.4 Hz, 2H), 5.60-5.73 (m, 2H).
13

C NMR (CDCl3, 100 MHz)  (ppm): -5.10, 18.53, 

25.51, 26.14, 29.06, 32.34, 32.83, 63.36, 63.91, 129.15, 133.43. 

 

(E)-tert-butyl((8-iodooct-6-en-1-yl)oxy)dimethylsilane (2.230). Imidazole (2.81 g, 41.3 

mmol) was suspended in dichloromethane (61 mL). Triphenylphosphine (3.97 g, 15.2 

mmol) was added followed by iodine (3.85 g, 15.2 mmol) and the resulting mixture was 

stirred at room temperature for 0.5 h.  Allylic alcohol 2.229 (3.56 g, 13.8 mmol) in 

dichloromethane (55 mL) was slowly added, and the resulting reaction stirred for 1.5 h at 

which time TLC indicated complete conversion. The reaction was quenched by addition 

of saturated NaHCO3 extracted with DCM (3x), dried over Na2SO4, and condensed in 

vacuo to give a yellow oil. This oil was purified by flash chromatography (9:1 Hex: 

EtOAc) to give iodide 2.230 as a clear, colorless oil (3.84 g, 76%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.04 (s, 6H), 0.89 (s, 9H), 1.29-1.42 (m, 4H), 1.51 

(quin,  J  = 7.2 Hz, 2H), 2.03 (q,  J  = 5.2 Hz, 2H), 3.59 (t,  J = 6.4 Hz, 2H), 3.87 (d, J = 

6.4 Hz, 2H), 5.70-5.73 (m, 2H). 

 

(3S,5S)-3-((E)-8-((tert-butyldimethylsilyl)oxy)oct-2-en-1-yl)-5-methyldihydrofuran-

2(3H)-one (2.231). Lactone 2.129 (949 mg, 9.48 mmol) was suspended in anhydrous 
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THF (63.0 mL) in a flame-dried 250 mL round bottom flask and cooled to -78 
o
C. 

LiHMDS (1.0 M in THF, 9.38 mL, 9.38 mmol) was added dropwise over a 0.5 h period. 

The reaction was stirred for an additional 1 h at -78 
o
C. Iodide 2.230 (3.84 g, 10.42 

mmol) in THF (17.0 mL) was added dropwise and the reaction mixture was stirred at -78 

o
C for 2 h. The reaction was quenched by addition of saturated NH4Cl and warmed to 

room temperature. The mixture was extracted with EtOAc (3x), dried over Na2SO4, 

concentrated under reduced pressure, and purified by flash chromatography (5:1 

Hex/EtOAc) to give allyl lactone 2.231 as a clear, colorless oil (2.62 g, 82 %, 8:1 dr).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.04 (s, 6H), 0.89 (s, 9H), 1.31-1.43 (m, 4H), 1.37 

(d,  J  = 6.3 Hz, 3H), 1.51 (quin,  J  = 7.1 Hz, 2H), 1.92-2.03 (m, 3H), 2.08-2.16 (m, 1H), 

2.18-2.25 (m, 1H), 2.45-2.51 (m, 1H), 2.64-2.74 (m, 1H), 3.60 (t,  J = 6.6 Hz, 2H),  4.63 

(sex, J = 6.2 Hz, 1H), 5.44 (dm,  J = 67.9 Hz, 2H). 
13

C NMR (CDCl3, 100 MHz)  

(ppm): -5.10, 18.53, 21.50, 25.50, 26.13, 29.32, 32.65, 32.84, 33.75, 33.35, 39.70, 63.35, 

75.23, 125.83, 134.29, 179.08. 

 

(S,E)-10-((tert-butyldimethylsilyl)oxy)-2-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl) 

dec-4-enal (2.234). Allyl lactone 2.231 (2.52 g, 7.40 mmol) was suspended in THF (64.8 

mL) and cooled to 0
 o

C. Lithium hydroxide (354 mg, 14.8 mmol) was dissolved in H2O 

(9.3 mL) and this solution was added dropwise to the THF solution at 0 
o
C with vigorous 

stirring. The resulting mixture was stirred for 24 h at 0 
o
C and was then carefully 
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acidified to pH = 4. The acidified solution was extracted with EtOAc (4x), dried over 

Na2SO4, and condensed in vacuo. The resulting pale yellow oil was carried on without 

further purification. The crude acid was suspended in dichloromethane (87 mL) 

Imidazole (2.02 g, 29.6 mmol) was added, followed by TBDPSCl (6.10 g, 22.2 mmol) at 

room temperature. The resulting mixture was stirred at rt for 4 h at which time the 

reaction was quenched by addition of water and extracted with dichloromethane (3x), 

dried over Na2SO4, and condensed in vacuo to give the TBDPS ether/ester as a pale 

yellow oil that was carried on without further purification. The TBDPS ether/ester was 

suspended in anhydrous dichloromethane (118 mL) and the resulting solution was cooled 

to -78 
o
C. DIBAL-H (1.0 M in CH2Cl2, 29.6 mL, 29.6 mmol) was added dropwise and 

the solution stirred for 2 h at -78 
o
C. The reaction was quenched by addition of a 

saturated aqueous solution of sodium potassium tartrate, warmed to room temperature, 

and stirred for 0.5 h. The mixture was extracted with dichloromethane (3x), dried over 

Na2SO4, condensed in vacuo and purified by flash chromatography (4:1 Hex/EtOAc) to 

provide alcohol 2.233 as a clear, colorless oil (3.81 g, 88% over 3 steps).  

Alcohol 2.233 (3.81 g, 6.54 mmol) was suspended in DCM/DMSO (3:1 v/v, 65  mL) and 

cooled to 0 
o
C. Triethylamine (6.61 g, 65.4 mmol) was added, followed by sulfur trioxide 

pyridine complex (4.16 g, 26.1 mmol). The resulting mixture was stirred for 6 h at 0 
o
C. 

The reaction was quenched by addition of water, extracted with dichloromethane (3x), 

dried over Na2SO4, and condensed in vacuo to give a yellow oil. This oil was purified by 

flash chromatography (5:1 Hex/EtOAc) to provide aldehyde 2.234 as a clear, colorless oil 

(3.08 g, 72%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.90 (s, 9H), 1.04 (m, 12H), 1.26-
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1.35 (m, 4H), 1.49-159 (m, 3H), 1.79-1.89 (m, 1H), 1.90-2.00 (m, 2H), 2.02-2.14 (m, 

1H), 2.23 (quin, J  = 6.8 Hz, 1H), 2.49-2.55 (m, 1H), 3.60 (t,  J = 6.6 Hz, 2H),  3.95 (sex, 

J = 6.0 Hz, 1H), 5.33 (dm,  J = 65.4 Hz, 2H), 7.35-7.45 (m, 6H), 7.65-7.70 (m, 4H), 9.47 

(d, J = 2.4 Hz, 1H).  

 

(S)-10-((tert-butyldimethylsilyl)oxy)-2-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl) 

decanal (2.235). Aldehyde 2.234 (2.17 g, 3.74 mmol) was suspended in anhydrous ethyl 

acetate (37 mL) in a 50 mL round bottom flask. 10% palladium on activated carbon (199 

mg, 0.19 mmol), was added and the flask was sealed and evacuated then filled with argon 

(3 x). The flask was then evacuated and refilled with hydrogen (3 x) from a balloon. The 

reaction was stirred for 12 h at room temperature until reaction was complete by TLC. 

The mixture was filtered through celite and washed through liberally with ethyl acetate. 

The filtrate was condensed in vacuo to give aldehyde 2.235 as a clear colorless oil that 

was carried on to the next step without further purification (2.16 g, 99%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.90 (s, 9H), 1.04 (m, 12H), 1.23-

1.31 (m, 12H), 1.47-1.55 (m, 3H),  1.63-1.70 (m, 2H), 1.83 (ddd,  J  = 14.2, 9.0, 4.6 Hz, 

1H), 2.41-2.47 (m, 1H), 3.60 (t,  J = 6.6 Hz, 2H), 3.92 (sex, J = 5.8 Hz, 1H), 7.32-7.44 

(m, 6H), 7.63-7.68 (m, 4H), 9.44 (d, J = 2.9 Hz, 1H).  
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(S,E)-1-(benzyloxy)-14-((tert-butyldimethylsilyl)oxy)-6-((S)-2-((tert-butyldiphenyl 

silyl)oxy)propyl)tetradec-4-en-3-one (2.236). Phosphonate 2.225 (1.46 g, 5.11 mmol) 

was suspended in THF (9.3 mL). Ba(OH)2 (845 mg, 4.93 mmol) was added at room 

temperature, and the resulting mixture was stirred for 1 h. Aldehyde 2.235 (2.13 g, 3.65 

mmol) in THF/H2O (40:1 v/v, 12.2 mL) was added dropwsie at room temperature and the 

reaction was stirred 4 h. The reaction mixture was diluted with ethyl acetate and water 

and neutralized by addition of 1.0 M HCl. The mixture was extracted with EtOAc (3x), 

dried over Na2SO4, and condensed in vacuo. The crude product was purified by flash 

chromatography (4:1 Hex:EtOAc) to provide enone 2.236 as a clear, colorless oil (1.22 g, 

45%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.90 (s, 9H), 1.04 (m, 12H), 1.15-

1.37 (m, 16H), 1.46-1.54 (m, 2H), 1.67 (ddd,  J  = 14.2, 8.2, 4.2 Hz, 1H), 2.31-2.40 (m, 

1H), 2.73 (td, J = 6.6, 2.4 Hz, 2H), 3.60 (t,  J = 6.6 Hz, 2H), 3.72-3.75 (m, 3H), 4.51 (s, 

2H), 5.79 (d, J = 16.0 Hz, 1H), 6.44 (dd, J = 16.0, 9.2 Hz, 1H), 7.27-7.42 (m, 11H), 7.63-

7.67 (m, 4H).  
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(3S,6S,E)-1-(benzyloxy)-14-((tert-butyldimethylsilyl)oxy)-6-((S)-2-((tert-butyl 

diphenylsilyl)oxy)propyl)tetradec-4-en-3-ol (2.237). Enone 2.236 (984 mg, 1.32 mmol) 

was suspended in anhydrous THF (13 mL) in a flame-dried 50 mL round bottom flask. 

The solution was cooled to -20 
o
C and R-(+)-2-methyl-CBS oxazaborolidine (367 mg, 

1.32 mmol) in toluene (1.3 mL) was added, followed by dropwsie addition of BH3 THF 

complex (1.0 M in THF, 4.1 mmol, 4.1 mL). The resulting mixture was stirred for 3 h 

and then quenched by addition of water, extracted with ethyl acetate (3x), dried over 

Na2SO4, and condensed in vacuo. The crude product was purified by flash 

chromatography (4:1 Hex:EtOAc) to give alcohol 2.237 as a clear, colorless oil (927 mg, 

94%, >20:1 dr).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.90 (s, 9H), 1.04 (m, 12H), 1.18-

1.29 (m, 14H), 1.47-1.54 (m, 2H), 1.59 (ddd,  J  = 13.8, 8.0, 4.2 Hz, 1H), 1.67-1.73 (m, 

2H), 2.11-2.19 (m, 1H), 3.51-3.65 (m, 2H), 3.60 (t,  J = 6.6 Hz, 2H), 3.79-3.84 (m, 1H), 

4.48 (d,  J = 3.4 Hz, 2H), 5.13 (dd, J = 15.6, 6.0 Hz, 1H), 5.24 (dd, J = 15.6, 8.5 Hz, 1H),  

7.28-7.41 (m, 11H), 7.63-7.69 (m, 4H).  
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(S)-3-(benzyloxy)-1-((2S,3S)-3-((5S,7S)-2,2,5,17,17,18,18-heptamethyl-3,3-diphenyl-

4,16-dioxa-3,17-disilanonadecan-7-yl)oxiran-2-yl)propan-1-ol (2.242). Into a 100 mL 

flame-dried round bottom flask was placed 4 angstrom molecular sieves (1.8 g) and 

anhydrous dichloromethane (11.2 mL). The solution was cooled to -20 
o
C and (+)-

diethyltartrate (276 mg, 1.34 mmol) and titanium (IV) isopropoxide (317 mg, 1.12 mmol) 

were added successively. After 10 min, tert-butyl hydrogenperoxide (5.5 M in decane, 

0.41 mL, 2.23 mmol) was added dropwise. After 30 min, allylic alcohol 2.237 (831 mg, 

1.12 mmol) in anhydrous dichloromethane (11.2 mL) was added dropwise. The reaction 

was stirred at -20 
o
C for 36 h. The reaction was quenched by dropwise addition of 

saturated sodium chloride solution and warmed to room temperature. The mixture was 

extracted with dichloromethane (3x), dried over Na2SO4, and filtered through celite. The 

filtrate was condensed in vacuo to give a yellow oil which was purified by flash 

chromatography (3:1 Hex:EtOAc) to provide epoxide 2.242 as a clear colorless oil (761 

mg, 90%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.05 (s, 6H), 0.90 (s, 9H), 1.03 (s, 9H), 1.05 (d,  J 

= 6.4 Hz, 3H),  1.13-1.30 (m, 14H), 1.46-1.54 (m, 4H), 1.72-1.90 (m, 2H), 2.64 (d, J  = 

6.0 Hz, 2H), 3.59 (t,  J = 6.6 Hz, 2H), 3.68 (dm,  J = 30.0 Hz, 2H), 3.75-3.78 (m, 1H), 

3.99 (q, J  = 6.2 Hz, 1H), 4.52 (s, 2H),  7.27-7.42 (m, 11H), 7.65-7.70 (m, 4H).  
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(5S,7S)-7-((2S,3S)-3-((R)-3-(benzyloxy)-1-methoxypropyl)oxiran-2-yl)-2,2,5,17,17, 

18,18-heptamethyl-3,3-diphenyl-4,16-dioxa-3,17-disilanonadecane (2.244). Epoxide 

2.242 (374 mg, 0.49 mmol) was suspended in anhydrous THF (10.0 mL). The reaction 

was cooled to 0 
o
C and triphenylphosphine (322 mg, 1.23 mmol), 4-nitrobenzoic acid 

(197 mg, 1.18 mmol0, and DIAD (229 mg, 1.13 mmol) were added successively. The 

reaction was warmed to room temperature and stirred for 4 h then quenched with water, 

extracted with ethyl acetate (3x), dried over Na2SO4, and condensed in vacuo to give a 

pale yellow oil. This oil was suspended in THF (1.6 mL) and MeOH (2.0 mL). 2.0 M 

NaOH (1.98 mmol, 1.5 mL) was added, and the resulting mixture was stirred for 1 h at 

which time TLC indicated complete conversion to the hydrolysis product, alcohol 2.243. 

The mixture was diluted with EtOAc and quenched with 1.0 M HCl then extracted with 

EtOAc (3x), dried over Na2SO4, condensed in vacuo, and purified by flash 

chromatography (3:1 Hex/EtOAc) to give alcohol 2.243 as a clear, colorless oil (311 mg, 

83%) 

Alcohol 2.243 (60 mg, 0.079 mmol) was suspended in anhydrous dicholoromethane (1.6 

mL) and powdered 4 angstrom molecular sieves (51 mg) were added. Proton sponge 

(50.7 mg, 0.24 mmol) was added, followed by trimethyloxonium tetrafluoroborate (29 

mg, 0.20 mmol). The resulting mixture was stirred for 2 h at room temperature and then 
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quenched with water, extracted with DCM (3x), dried oer Na2SO4, and condensed in 

vacuo. The crude product was purified by flash chromatography (4:1 Hex:EtOAc) to give 

ether 2.244 as a clear, colorless oil (53 mg, 87 %).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.06 (s, 6H), 0.91 (s, 9H), 1.04 (m, 12H), 1.09-

1.32 (m, 14H), 1.47-1.58 (m, 4H), 1.76 (q,  J  = 6.1 Hz, 2H), 1.67 (ddd,  J  = 14.2, 8.2, 

4.2 Hz, 1H), 2.38 (dd,  J = 7.6, 2.1 Hz, 1H), 2.63 (dd, J = 6.6, 2.2 Hz, 1H), 3.05 (q,  J = 

6.6 Hz, 1H), 3.43 (s, 3H), 3.53-3.57 (m, 1H), 3.60 (t,  J = 6.6 Hz, 2H), 4.00 (sex,  J  = 6.4 

Hz, 1H), 4.49 (s, 2H), 7.27-7.41 (m, 11H), 7.67-7.72 (m, 4H). 
13

C NMR (CDCl3, 100 

MHz)  (ppm): -5.05, 18.57, 19.44, 24.02, 26.00, 26.18, 27.20, 27.29, 29.66, 29.71, 

30.03, 31.85, 32.78, 33.08, 37.48, 43.22, 58.22, 58.70, 63.50, 66.37, 68.20, 73.26, 78.97, 

127.54, 127.59, 127.63, 127.76, 127.80, 127.88, 128.56, 129.55, 129.65, 134.53, 135.07, 

136.05, 136.12, 136.15, 138.57. 

 

(3R,4S,5R,6S)-1-(benzyloxy)-14-((tert-butyldimethylsilyl)oxy)-6-((S)-2-((tert-

butyldiphenylsilyl)oxy)propyl)-5-chloro-3-methoxytetradecan-4-ol (2.245). Epoxide 

2.244 (42 mg, 0.054 mol) was suspended in anhydrous toluene (0.45 mL) and cooled to   

-78 
o
C. Et2AlCl (1.0 M in toluene, 0.16 ml, 0.16 mmol) was added dropwsie and the 

solution was stirred for 10 min. TMS-acetylide in toluene {prepared by addition of n-Buli 

(2.5 M n hexanes, 0065 mL, 0.16 mmol) to TMS-acetylene (17.6 mg, 0.179 mmol) at -78 
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o
C in toluene (0.9 mL) with 0.5 h stirring}was added dropwise to the epoxide solution. 

After 6 h, the reaction was warmed to 0 
o
C, stirred for an additional 6 h, and then warmed 

to room temperature and stirred 12 h. Additional Et2AlCl (0.54 mmol, 0.54 mL) was 

added and the reaction was stirred for 6 h at which time, TLC indicated that complete 

conversion had occurred. The reaction was quenched by addition of NaHCO3, extracted 

with DCm (3x), dried over Na2SO4, and condensed in vacuo. The crude product was 

purified by flash chromatography (2:1 Hex:EtOAc) to provide alcohol 2.245 as the only 

isolated product. 

1
H NMR (CDCl3, 600 MHz)  (ppm): 0.05 (s, 6H), 0.90 (s, 9H), 1.03 (d, J = 3.8 Hz, 3H), 

1.04 (s, 9H), 1.21-1.34 (m, 13H), 1.40-1.44 (m, 1H), 1.51 (quin, J  = 7.0 Hz, 2H), 1.61 

(ddd,  J  = 14.3, 9.3, 3.8 Hz, 1H), 1.68 (ddd,  J = 14.3, 7.8, 3.8 Hz, 1H), 1.86-1.92 (m, 

1H), 1.94-2.00 (m 1H), 2.40-2.43 (m 1H), 3.37 (s, 3H), 3.54-3.63 (m, 4H),  3.89 (t,  J = 

6.4 Hz, 1H), 3.91-3.99 (m, 1H), 4.13 (dd,  J  = 10.2, 1.7 Hz, 1H), 4.52 (d, J = 2.2 Hz, 

2H), 7.27-7.43 (m, 11H), 7.67-7.72 (m, 4H). 
13

C NMR (CDCl3, 150 MHz)  (ppm): -

5.05, 18.58, 19.40, 24.28, 26.03, 26.19, 27.21, 27.24, 27.67, 28.75, 29.70, 29.85, 29.89, 

30.19, 31.12, 33.11, 34.77, 41.35, 58.72, 63.55, 66.40, 66.76, 67.84, 73.28, 73.51, 76.88, 

127.50, 127.53, 127.71, 127.80, 127.90, 128.59, 128.62, 129.57, 129.75, 134.40, 135.18, 

136.07, 136.11, 136.18, 138.42. 
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(3R,5R,6S)-1-(benzyloxy)-14-((tert-butyldimethylsilyl)oxy)-6-((S)-2-((tert-butyl 

diphenylsilyl)oxy)propyl)-5-chloro-3-methoxytetradecan-4-one (2.246). Alcohol 

2.245 (10 mg, 0.0114 mmol) was suspended in anhydrous dichloromethane (1.5 mL). 4 

angstrom molecular sieves (5 mg) were added, followed by 4-methylmorpholine N-oxide 

(2.7 mg, 0.023 mmol) and tetrapropylammonium perruthenate (0.4 mg, 0.0011 mmol) 

and the reaction was stirred for 2 h at rt. The mixture was filtered through celite and 

washed through liberally with dichloromethane. The filtrate was condensed in vacuo to 

give a dark green residue that was purified by flash chromatography (2:1 Hex:EtOAc) to 

give ketone 2.246 as a clear, colorless oil. 

1
H NMR (CDCl3, 600 MHz)  (ppm): 0.06 (s, 6H), 0.90 (s, 9H), 1.03 (s, 9H), 1.05 (d, J 

= 6.5 Hz, 3H), 1.19-1.30 (m, 6H), 1.47-1.58 (m, 8H), 1.78-1.85 (m, 1H), 2.03-2.11 (m, 

1H), 2.26-2.32 (m, 1H), 3.35 (s, 3H), 3.92 (sex, J = 5.8 Hz, 1H), 4.14 (dd,  J = 8.4, 4.0 

Hz, 1H), 4.50 (dd,  J = 27.0, 12.0 Hz, 2H), 4.83 (d,  J  = 4.6 Hz, 1H), 7.28-7.43 (m, 11H), 

7.62-7.69 (m, 4H).  

 

 (S)-tert-butyl(pent-4-en-2-yloxy)diphenylsilane (2.258). A flame-dried 250 mL round 

bottom flask was charged with cuprous iodide (1.64 g, 8.61 mmol) under an atmosphere 
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of argon. Anhydrous THF (17.5 mL) was added and the resulting solution was cooled to -

20 
o
C with vigorous stirring. Vinyl magnesium bromide (1.0 M in THF, 100 mL) was 

cannulated under a positive stream of argon into the stirring cuprous iodide over a 20 

minute period. The resulting black solution was stirred for 30 minutes and a solution of 

(S)-propylene oxide (3.02 g, 43.04 mmol) in anhydrous THF (5.5 mL) was added 

dropwise. The reaction mixture was stirred for 20 hours at -20 
o
C. At this time, the 

reaction was quenched by dropwise addition of saturated NH4Cl and warmed to room 

temperature. The mixture was extracted with diethyl ether (4 x), dried over sodium 

sulfate, and filtered through celite. The organic layer was carefully concentrated under 

reduced pressure to avoid evaporation of the volatile homoallylic alcohol 2.257. The 

remaining solvent was removed by gently blowing air across the surface of the solvent. 

After 20 minutes, the remaining yellow liquid was carried on to the next step without 

further purification. The crude homoallylic alcohol was suspended in dichloromethane 

(108 mL) and imidazole (5.86 g, 86.1 mmol) was added followed by TBDPS-Cl (16.5 

mL, 64.6 mmol) at room temperature. The reaction stirred for 2 hours at room 

temperature and was quenched by the addition of water. The mixture was extracted with 

dichloromethane (3 x), dried over sodium sulfate, and concentrated in vacuo to give a 

thick yellow oil. The crude oil was purified by flash chromatography (9:1 Hex:EtOAc) 

and condensed under reduced pressure to give 2.258 as a clear yellow oil (11.9 g, 85% 

over 2 steps).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.14 (s, 9H), 1.145 (d, J = 3.0 Hz, 3H), 2.22-2.33 

(m, 2H), 3.98 (sex, J = 6.0 Hz, 1H), 5.01-5.06 (m, 2H), 5.84 (dddd, J = 17.0, 11.2, 10.4, 

7.6 Hz, 1H), 7.41-7.49 (m, 6H), 7.75-7.78 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  
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(ppm): 19.38, 22.97, 27.15, 44.08, 69.34, 116.92, 127.57, 127.62, 129.58, 129.64, 134.58, 

134.86, 135.23, 136.00, 136.02. HRMS: C21H28ONaSi, Calculated: [M+H]+, 347.1807, 

Found: [M+H]+, 347.1804. 

 

(S,E)-ethyl 5-((tert-butyldiphenylsilyl)oxy)hex-2-enoate (2.259). Homoallylic alcohol 

2.258 (11.2 g, 34.5 mmol) was suspended in anhydrous CH2Cl2 (138 mL) in a flame-

dried 250 mL round bottom flask fit with a reflux condenser under an atmosphere of 

argon. Methyl acrylate was added (10.8 mL), followed by Grubbs’ second generation 

catalyst (580 mg, 0.69 mmol), and the resulting dark red solution was heated to 40 
o
C for 

12 hours. At this time, the dark green solution was exposed to air, condensed under 

reduced pressure, purified by flash chromatography (17:3 Hex/EtOAc), and concentrated 

in vacuo to give a 2.259 as a clear, colorless oil (12.8 g, 97%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.05 (s, 9H), 1.09 (d, J = 6.0 Hz, 3H), 2.29-2.33 

(m, 2H), 3.72 (s, 3H), 3.96 (sex, J = 5.9 Hz, 1H), 5.76 (ddd, J = 15.7, 1.3, 1.2 Hz, 1H), 

6.92 (ddd, J = 15.7, 7.8, 7.6 Hz, 1H), 7.35-7.45 (m, 6H), 7.65-7.67 (m, 4H).
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 19.32, 23.30, 27.10, 42.27, 51.52, 68.59, 123.16, 127.65, 

127.74, 129.73, 129.81, 134.13, 134.45, 135.99, 145.97, 166.94. HRMS: C23H30O3NaSi, 

Calculated: [M+H]+, 405.1862, Found: [M+H]+, 405.1859. 
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(R)-4-benzyl-3-((S,E)-5-((tert-butyldiphenylsilyl)oxy)hex-2-enoyl)oxazolidin-2-one 

(2.253). Ester 2.259 (11.85 g, 30.97 mmol) was suspended in THF/H2O (7:1 v/v, 155 

mL) in a 250 mL round bottom flask fit with a reflux condenser. Lithium hydroxide (7.42 

g, 309.7 mmol) was added in three portions, and the resulting solution was heated to 55 

o
C for 18 hours. After hydrolysis was complete, the mixture was cooled to room 

temperature and acidified to pH = 2 by dropwise addition of concentrated HCl. The 

acidic solution was extracted with ethyl acetate (3 x), dried over sodium sulfate, and 

condensed in vacuo to give crude carboxylic acid 2.260 (11.4 g, 100%) as a viscous clear, 

yellow oil that was carried on without further purification. 

Carboxylic acid 2.260 (14.26 g, 39.77 mmol) was suspended in anhydrous THF (200 mL) 

in a 500 mL flame-dried round bottom flask under an atmosphere of argon. The solution 

was cooled to -78 
o
C and triethylamine (6.65 mL, 47.73 mmol) was added, followed by 

dropwise addition of pivaloyl chloride (5.48 mL, 44.54 mmol). The resulting milky white 

solution was stirred at -78 
o
C for 15 min, then it was warmed to 0 

o
C and stirred for 45 

min, followed by cooling to -78 
o
C. The solution was cannulated dropwise at -78 

o
C to a 

preformed solution of (R)-(-)-4-benzyl-2-oxazolidinone (7.4 g, 41.76 mmol), n-BuLi (2.5 

M in Hexanes, 41.76 mmol), and anhydrous THF (104 mL) (n-BuLi added to 

oxazolidinone in THF at -78 
o
C and stirred for 25 min). The resulting suspension was 

stirred at -78 
o
C for 20 min and then warmed to room temperature and stirred for 2 hours. 

The reaction was quenched by addition of saturated NH4Cl, extracted with ethyl acetate 
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(3 x), dried over sodium sulfate, and condensed in vacuo to give an orange oil. The 

resulting oil was purified by flash chromatography (3:1 Hex/EtOAc) to yield 

acyloxazolidinone 2.253 as a viscous, pale, yellow oil (17.13 g, 82%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.07 (s, 9H), 1.13 (d, J = 6.2 Hz, 3H), 2.43 (q, J = 

5.6 Hz, 2H), 2.78 (dd, J = 13.0, 9.6 Hz, 1H), 3.33 (dd, J = 13.5, 3.2 Hz, 1H), 4.03 (sex, J 

= 5.9 Hz, 1H), 4.19-4.23 (m, 2H), 4.73 (ddd, J = 13.2, 7.2, 3.4 Hz, 1H), 7.19-7.43 (m, 

14H), 7.68-7.70 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.35, 23.42, 26.49, 

27.12, 38.03, 42.69, 55.42, 66.21, 68.66, 122.49, 127.45, 127.67, 127.77, 129.09, 129.60, 

129.72, 129.80, 134.12, 134.46, 135.54, 135.99, 136.02, 148.22, 153.49, 164.85. HRMS: 

C32H37NO4NaSi, Calculated: [M+H]+, 550.2390, Found: [M+H]+, 550.2393. 

 

(R)-4-benzyl-3-((S)-3-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)hex-5-enoyl) 

oxazolidin-2-one (2.261). Recrystallized CuBr-S(CH3)2 complex (22.2 g, 108.00 mmol) 

was suspended in dimethylsulfide and THF (1:2 v/v, 216 mL) in a flame-dried 500 mL 

round bottom flask and cooled to -78 
o
C. This solution was cannulated into a cooled 

solution (-78 
o
C) of allylmagnesium bromide (1.0 M in Et2O, 86.86 mmol) in a second 

flame-dried 500 mL round bottom flask. The resulting, thick, black solution was 

vigorously stirred for 1 hour at -78 
o
C and then acyloxazolidinone 2.253 (11.46 g, 21.72 

mmol) in anhydrous THF (72 mL) was slowly added over 20 min. The reaction mixture 

was stirred for an additional 1.5 hours at -78 
o
C and was then quenched with saturated 

NH4Cl and warmed to room temperature. The black mixture was extracted with diethyl 
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ether (4 x), dried over sodium sulfate, the solvent volume reduced to approximately 200 

mL by rotary evaporation, and the resulting solid/oil mixture filtered through a celite plug 

with liberal diethyl ether washes. The resulting solution was condensed in vacuo to give a 

turquoise oil that was purified by flash chromatography (5:1 Hex/EtOAc) to provide the 

desired conjugate addition adduct 2.261 as a clear, colorless oil (10.48 g, 85%) and a 

single diastereomer by 
1
HNMR (>20:1).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.05 (s, 9H), 1.12 (d, J = 6.1 Hz, 3H), 1.41 (quin, J 

= 7.0 Hz, 1H), 1.60 (quin, J = 7.0 Hz, 1H), 1.91-2.03 (m, 2H), 2.22 (quin, J = 6.1 Hz, 

1H), 2.63 (dd, J = 17.9, 5.8 Hz, 1H), 2.68 (dd, J = 13.0, 10.0 Hz, 1H), 2.87 (dd, J = 17.9, 

7.2 Hz, 1H), 3.28 (dd, J = 13.4, 3.3 Hz, 1H), 3.92 (sex, J = 6.2 Hz, 1H), 4.10-4.20 (m, 

3H), 4.65 (ddd, J = 13.4, 6.9, 3.2 Hz, 1H), 4.92-4.91 (m, 2H), 5.62 (dddd, J = 16.7, 10.2, 

9.0, 7.2 Hz, 1H), 7.20-7.43 (m, 11H), 7.66-7.70 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  

(ppm): 19.34, 23.57, 26.50, 27.19, 30.43, 38.08, 38.38, 39.53, 43.77, 55.29, 66.19, 67.70, 

77.37, 116.95, 127.48, 127.55, 127.66, 129.04, 129.10, 129.56, 129.63, 134.40, 134.92, 

135.49, 136.09, 136.11, 136.32, 153.49, 172.53. HRMS: C35H43NO4NaSi, Calculated: 

[M+H]+, 592.2859, Found: [M+H]+, 592.2854. 

 

((But-3-en-1-yloxy)methyl)benzene (2.266). Sodium hydride (3.88 g, 97.07 mmol, 60% 

dispersion in mineral oil) was suspended in anhydrous THF (140 mL) in a flame-dried 

250 mL round bottom flask. The solution was cooled to 0 
o
C and But-3-en-1-ol (5.0 g, 

69.34 mmol) was added dropwise. The resulting mixture was stirred for 30 min at 0 
o
C at 

which time benzyl bromide (17.79 g, 104.01 mmol) was added dropwise followed by 
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addition of tert-butyl ammonium iodide (2.56 g, 6.93 mmol). The mixture was warmed to 

room temperature and stirred for 18 h. The reaction was quenched by dropwise addition 

of saturated NH4Cl solution. The resulting mixture was extracted with ethyl acetate (3 x), 

dried over Na2SO4, and concentrated under reduced pressure. The resulting oil was 

purified by flash chromatography (1:1 Hex:EtOAc) to give benzyl ether 2.266 (8.62 g, 

77%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 2.39 (q, J = 6.8 Hz, 2H), 3.54 (t, J = 6.8 Hz, 2H), 

4.53 (s, 2H), 5.06 (d, J = 10.2 Hz, 1H), 5.12 (ddd, J = 17.2, 3.5, 1.5 Hz, 1H), 5.86 (ddt, J 

= 17.2, 10.3, 6.8 Hz, 1H), 7.27-7.38 (m, 5H)..
13

C NMR (CDCl3, 100 MHz)  (ppm): 

34.40, 69.78, 73.06, 116.53, 127.71, 127.81, 135.44, 138.63. 

 

(E)-ethyl 5-(benzyloxy)pent-2-enoate (2.267). Benzyl ether 2.266 (8.62 g, 53.13 mmol) 

was suspended in anhydrous dichloromethane (106 mL) under an atmosphere of argon in 

a flame-dried 250 mL round bottom flask fit with a reflux condenser. Ethyl acrylate 

(21.28 g, 212.54 mmol) was added to the solution followed by Grubbs second generation 

catalyst (902 mg, 1.06 mmol) in one portion. The resulting mixture was heated to 40 
o
C 

and stirred for 12 h. The reaction was cooled to room temperature and concentrated under 

reduced pressure to provide a brown oil which was purified by flash chromatography (2:1 

Hex:EtOAc) to give ester 2.267 a clear, colorless oil (10.46 g, 84 %).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.29 (t, J = 7.2 Hz, 3H), 2.51 (ddd, J = 13.8, 6.6, 

1.5 Hz, 2H), 3.59 (t, J = 6.6 Hz, 2H), 4.19 (q, J = 7.2 Hz, 2H), 4.52 (s, 2H), 5.89 (dt, J = 
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15.7, 1.5 Hz, 1H), 6.98 (dt, J = 15.7, 6.8 Hz, 1H), 7.28-7.37 (m, 5H)..
13

C NMR (CDCl3, 

100 MHz)  (ppm): 14.41, 32.77, 60.36, 68.44, 73.20, 123.09, 127.83, 128.57, 138.24, 

145.70, 166.58. 

 

(E)-5-(benzyloxy)pent-2-en-1-ol (2.268). Ester 2.267 (1.80 g, 7.68 mmol) was 

suspended in anhydrous dichloromethane (31 mL) in a 100 mL round bottom flask. The 

solution was cooled to -78 
o
C and DIBAL-H (1.0 M in CH2Cl2, 19.21 mL, 19.21 mmol) 

was added dropwise. The reaction was stirred for 1 h at -78 
o
C and was then quenched by 

addition of sodium potassium tartrate, warmed to room temperature, and stirred for 1 h 

until the organic layer was clear. The mixture was extracted with dichloromethane (3 x), 

dried over Na2SO4, and condensed in vacuo to give a clear oil. This oil was purified by 

flash chromatography (1:1 Hex:EtOAc) to provide allylic alcohol 2.268 as a clear, 

colorless oil (1.25 g, 85%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 2.36-2.40 (m, 2H), 3.52 (t, J = 6.7 Hz, 2H), 4.08-

4.09 (m, 2H), 4.52 (s, 2H), 5.71-5.74 (m, 2H), 7.27-7.37 (m, 5H). 
13

C NMR (CDCl3, 100 

MHz)  (ppm): 32.57, 63.53, 69.54, 72.85, 127.54, 127.63, 128.32, 129.15, 130.93, 

138.26. 

 

((2S,3S)-3-(2-(benzyloxy)ethyl)oxiran-2-yl)methanol (2.269). Into a 100 mL flame-

dried round bottom flask was placed 4 angstrom molecular sieves (650 mg) and 

anhydrous dichloromethane (32.5 mL). The solution was cooled to -20 
o
C and (+)-
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diethyltartrate (135 mg, 0.66 mmol) and titanium (IV) isopropoxide (130 mg, 0.46 mmol) 

were added successively. After 10 min, tert-butyl hydrogenperoxide (5.5 M in decane, 

2.36 mL, 13.00 mmol) was added dropwise. After 30 min, allylic alcohol 2.268 (1.26 g, 

6.56 mmol) in anhydrous dichloromethane (13 mL) was added dropwise. The reaction 

was stirred at -20 
o
C for 48 h. The reaction was quenched by dropwise addition of 

saturated sodium chloride solution and warmed to room temperature. The mixture was 

extracted with dichloromethane (3 x), dried over sodium sulfate, and filtered through 

celite. The filtrate was condensed in vacuo to give a yellow oil which was purified by 

flash chromatography (1:2 Hex:EtOAc) to provide epoxide 2.269 as a clear colorless oil 

(1.16 g, 86%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.78-1.86 (m, 1H), 1.89-1.98 (m, 1H), 2.97 (quin, 

J =2.4 Hz, 1H), 3.08-3.11 (m, 1H), 3.58-3.62 (m, 3H), 3.88 (dd, J = 12.4, 2.8 Hz, 1H), 

4.52 (s, 2H), 7.27-7.37 (m, 5H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 31.98, 53.67, 

58.44, 61.67, 66.78, 73.02, 127.58, 127.61, 128.35, 138.11. 

 

(2S,3R)-5-(benzyloxy)-3-methoxypentane-1,2-diol (2.270). Epoxide 2.269 was 

suspended in anhydrous methano1 (10 mL) in 25 mL round bottom flask fit with a reflux 

condensor. 2,6-di-tert-butyl-4-methylpyridine (79 mg, 0.38 mmol) was added followed 

by addition of europium (III) triflate (230 mg, 0.38 mmol), and the reaction was heated to 

70 
o
C. After 19 h, the reaction mixture was diluted with water and ethyl acetate, extracted 

with ethyl acetate (3x), dried over Na2SO4, and condensed in vacuo. The crude oil was 
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purified by flash chromatography (1:1 Hex:EtOAc to 100% EtOAc) to give diol 2.270 as 

a clear, colorless oil (430 mg, 93 %, > 20:1 1,3:1,2 diol). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.89 (q, J = 5.2 Hz, 2H), 3.36 (s, 3H), 3.39-3.44 

(m, 1H), 3.54-3.59 (m, 1H), 3.63-3.73 (m, 4H), 4.52 (dd, J = 21.2, 11.6 Hz, 2H), 7.27-

7.37 (m, 5H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 29.68, 57.82, 63.69, 66.13, 72.35, 

73.27, 80.17, 127.72, 127.77, 128.42, 137.68. 

 

(R)-4-(benzyloxy)-2-methoxybutanal (2.271). Diol 2.270 (100 mg, 0.416 mmol) was 

suspended in dichloromethane: pH 7 buffer (1:1 v/v, 5.2 mL). The biphasic mixture was 

vigorously stirred and cooled to 0 
o
C, then NaIO4 (534 mg, 2.50 mmol) was added in 3 

portions and the resulting solution was stirred at 0
 o

C for 4 h. The reaction mixture was 

diluted with water and dichloromethane, extracted with dichloromethane (2x), dried over 

Na2SO4, and condensed under reduced pressure. The product was purified by flash 

chromatography (1:3 Hex:EtOAc) to give aldehyde 2.271 as a clear, colorless oil (83 mg, 

96 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.90-1.98 (m, 1H), 2.00-2.08 (m, 1H), 3.45 (s, 

3H), 3.55-3.64 (m, 2H), 3.76-3.79 (m, 1H), 4.49 (dd, J = 21.0, 11.8 Hz, 2H), 7.27-7.37 

(m, 5H), 9.67 (d, J = 1.5 Hz, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 30.80, 58.53, 

65.22, 73.16, 83.18, 127.83, 128.58, 138.32, 203.35. 
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(Z)-4-((4-methoxybenzyl)oxy)but-2-en-1-ol (2.297). Sodium hydride (3.81 g, 95.34 

mmol, 60% dispersion in mineral oil) was suspended in anhydrous THF (185 mL) in a 

flame-dried 500 mL round bottom flask. The solution was cooled to 0 
o
C and 1,4-cis-

buten-1-ol (8.0 g, 90.80 mmol) was added dropwise. The resulting mixture was stirred for 

30 min at 0 
o
C at which time p-methoxybenzyl chloride (15.64 g, 99.88 mmol) was added 

dropwise followed by addition of tert-butyl ammonium iodide (3.35 g, 9.08 mmol). The 

mixture was warmed to room temperature and stirred for 12 h. The reaction was 

quenched by dropwise addition of saturated NH4Cl solution. The resulting mixture was 

extracted with ethyl acetate (3 x), dried over Na2SO4, and concentrated under reduced 

pressure. The resulting oil was purified by flash chromatography (2:3 Hex:EtOAc) to 

give  PMB ether 2.297 ( 13.15 g, 70%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 3.80 (s, 3H), 4.05 (d, J = 6.0 Hz, 2H), 4.15 (d, J = 

6.3 Hz, 2H), 4.45 (s, 2H), 5.76 (dm, J = 35.0 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 7.27 (d, J 

= 8.5, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 55.20, 58.60, 65.28, 72.06, 113.78, 

128.21, 129.43, 129.86, 132.28, 159.24. HRMS: C12H16O3Na, Calculated: [M+H]+, 

231.0997, Found: [M+H]+, 231.0995. 

 

(E)-4-((4-methoxybenzyl)oxy)but-2-enal (2.298). PMB ether 2.297 (8.78 g, 42.16 

mmol) was suspended in dichloromethane (135 mL). Manganese dioxide (73.3 g, 843.18 

mmol) was added in 5 portions and the resulting heterogenous mixture was vigorously 
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stirred for 24 h at room temperature. Additional manganese dioxide (36.65 g, 421.59 

mmol) was added in 3 portions and the reaction was stirred for 12 h. The mixture was 

filtered through celite and condensed in vacuo to give a pale yellow oil. The oil was 

purified by flash chromatography (3:2 Hex:EtOAc) to provide aldehyde 2.298 as a clear, 

colorless oil (5.36 g, 62 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 3.83 (s, 3H), 4.28 (dd, J = 4.1, 1.9 Hz, 2H), 4.54 

(s, 2H), 6.41 (ddt, J = 15.9, 8.0, 1.9 Hz, 1H), 6.86 (dt, J = 15.9, 4.1 Hz, 1H), 6.92 (d, J = 

8.4 Hz, 2H), 7.29 (d, J = 8.2 Hz, 2H), 9.60 (d, J = 7.7 Hz, 1H). 
13

C NMR (CDCl3, 100 

MHz)  (ppm): 55.42, 68.40, 72.83, 114.06, 129.52, 129.58, 131.94, 153.37, 159.59, 

193.48. HRMS: C12H14O3Na, Calculated: [M+H]+, 229.0841, Found: [M+H]+, 

229.0841. 

 

(R)-4-benzyl-3-((2R,3S,E)-2-((4S,6S)-6-((tert-butyldiphenylsilyl)oxy)hept-1-en-4-yl)-

3-hydroxy-6-((4-methoxybenzyl)oxy)hex-4-enoyl)oxazolidin-2-one (2.299). To a 

flame-dried 500 mL round bottom flask was added acyloxazolidinone 2.261 (11.5 g, 

20.18 mmol) and anhydrous dichloromethane (200 mL). After cooling to 0 
o
C, Titanium 

chloride (2.32 mL, 21.19 mmol) was added dropwise and the resulting yellow solution 

was stirred for 15 minutes. At 0 
o
C, diisopropylethylamine (3.87 mL, 22.20 mmol) was 

slowly added and the dark red mixture was stirred for 40 minutes while maintaining the 
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temperature at 0 
o
C. N-methylpyrrolidinone (1.95 mL, 20.18 mmol) was added dropwise 

and the solution stirred for 10 additional minutes. Aldehyde 2.298 (4.35 g, 21.09 mmol) 

in anhydrous dichloromethane (81 mL) was added dropwise at 0 
o
C. After addition was 

complete, the solution was stirred for 1.5 h at 0 
o
C, quenched with saturated NH4Cl, and 

warmed to room temperature. The dark orange solution was extracted with 

dichloromethane (3 x) and filtered through a celite plug. The solvent was removed under 

reduced pressure at rt, and the resulting orange oil was purified by flash chromatography 

(3:2 Hex/EtOAc)  to provide the syn aldol adduct 2.299 (10.15 g, 65%, 10:1 dr). 

 1
H NMR (CDCl3, 400 MHz)  (ppm): 1.05 (s, 9H), 1.07 (d, J = 6.0 Hz, 3H), 1.49-1.56 

(m, 1H), 1.61-1.67 (m, 1H), 1.80-1.86 (m, 2H), 2.01-2.09 (m, 1H), 2.11-2.18 (m, 1H), 

2.48 (dd, J = 13.0, 10.7 Hz, 1H), 3.30 (dd, J = 13.2, 3.2 Hz  1H), 3.79 (s, 3H), 3.97-4.04 

(m, 5H), 4.27 (t, J = 7.5 Hz, 1H), 4.43 (s, 3H), 4.46-4.50 (m, 1H), 4.60-4.66 (m, 1H), 

4.83 (d, J = 17.1 Hz, 1H), 4.90 (d, J = 10.0 Hz, 1H), 5.55 (dddd, J = 16.8, 9.9, 7.2, 5.0 

Hz, 1H), 5.81-5.83 (m, 2H), 6.85 (d, J = 8.6 Hz, 2H), 7.17-7.43 (m, 14H), 7.66-7.71 (m, 

4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.33, 23.12, 27.14, 34.68, 35.21, 38.42, 

40.85, 50.64, 55.40, 55.74, 65.97, 67.65, 69.83, 72.02, 113.90, 117.11, 127.43, 127.60, 

127.72, 129.09, 129.43, 129.46, 129.62, 129.68, 130.17, 130.40, 131.88, 134.52, 134.81, 

135.52, 136.05, 153.84, 159.33, 173.41. HRMS: C47H58NO7Si, Calculated: [M+H]+, 

776.3983, Found: [M+H]+, 776.3982. 
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(2S,3S,E)-2-((4S,6S)-6-((tert-butyldiphenylsilyl)oxy)hept-1-en-4-yl)-6-((4-methoxy 

benzyl)oxy)hex-4-ene-1,3-diol (2.301). Aldol adduct 2.299 (10.4 g, 13.40 mmol) was 

suspended in anhydrous tetrahydrofuran (136 mL) and split into 6 separate 40 mL 

scintillation vials. Methanol (0.36 mL, 8.93 mmol) was added to each of the 6 vials and 

they were cooled to 0 
o
C. LiBH4 was slowly added to each vial (4.53 mL, 2.0 M in THF), 

and the reaction mixtures were stirred for 3 h until the reaction was complete by TLC. 

Water was added dropwise to each vial and all 6 vials were combined and extracted with 

ethyl acetate (4 x), dried over Na2SO4, condensed in vacuo, and purified by flash 

chromatography (1:1 Hex/EtOAc) to give diol 2.299 as a clear, colorless oil  (3.21 g, 

40%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.05 (s, 12H), 1.37-1.44 (m, 1H), 1.55-1.64 (m, 

1H), 1.68-1.74 (m, 2H), 1.90 (quin, 4.0 Hz, 1H), 2.03-2.09 (m, 1H), 2.28-2.35 (m, 1H), 

3.58-3.61 (m, 1H), 3.67-3.72 (m, 1H), 3.80 (s, 3H), 3.93 (sex, J = 6.1 Hz, 1H), 3.99 (d, J 

= 4.2 Hz, 2H), 4.24 (bs, 1H), 4.46 (s, 2H), 4.88-4.93 (m, 2H), 5.56 (dddd, J = 17.0, 10.4, 

9.0, 6.4 Hz, 1H), 5.82-5.85 (m, 2H), 6.88 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 

7.35-7.44 (m, 6H), 7.67-7.70 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.31, 

23.54, 27.15, 33.30, 35.22, 41.85, 47.61, 53.39, 61.67, 68.15, 69.86, 72.19, 74.32, 113.93, 

116.36, 127.56, 127.68, 129.00, 129.47, 129.51, 129.60, 129.69, 130.32, 133.39, 134.44, 
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134.79, 136.03, 137.13, 159.35. HRMS: C37H50O5NaSi, Calculated: [M+H]+, 625.3325, 

Found: [M+H]+, 625.3325. 

 

(5S,7S,8S,9S)-7-allyl-11,11-diethyl-9-((E)-3-((4-methoxybenzyl)oxy)prop-1-en-1-yl)-

2,2,5-trimethyl-3,3-diphenyl-8-(((triethylsilyl)oxy)methyl)-4,10-dioxa-3,11-

disilatridecane (2.303). Diol 2.299 (433 mg, 0.718 mmol) was suspended in anhydrous 

dichloromethane (7.2 mL) in a 25 mL flame-dried round bottom flask. Imidazole (245 

mg, 3.59 mmol) was added followed by TESCl (325 mg, 2.15 mmol). The resulting 

mixture was stirred at room temperature for 4 h and then quenched by addition of water, 

extracted with dichloromethane (2x), dried over Na2SO4, and condensed in vacuo to give 

a clear oil. This oil was purified by flash chromatography (9:1 Hex:EtOAc) to provide 

bis-TES ether 2.303 as a clear colorless oil (573 mg, 96%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.51-0.60 (m, 12H), 0.90-0.96 (m, 18H), 1.01 (d,  

J = 6.0 Hz, 3H), 1.03 (s, 9H), 1.44-1.51 (m, 1H), 1.57-1.67 (m, 2H), 1.77 (dt,  J = 14.0, 

7.8 Hz, 1H), 1.85-1.92 (m, 1H), 2.26 (dm, J  = 14.0 Hz, 1H), 3.54 (dd,  J  = 10.2, 5.6 Hz, 

1H), 3.63 (dd,  J  = 10.2, 5.6 Hz, 1H), 3.81 (s, 3H), 3.91 (sex,  J = 6.2 Hz, 1H), 3.95 (d,  J 

= 2.7 Hz, 2H), 4.32-4.35 (m, 1H), 4.42 (s, 2H), 4.82 (s, 1H), 4.86 (d,  J = 5.6 Hz, 1H), 

5.50-5.60 (m, 1H), 5.69 (d,  J  = 3.4 Hz, 2H), 6.88 (d,  J  = 8.6 Hz, 2H), 7.25 (d,  J  = 8.6 

Hz, 2H), 7.33-7.42 (m, 6H), 7.67-7.72 (m, 4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 

4.60, 5.30, 7.06, 7.14, 19.37, 23.46, 27.22, 32.69, 35.86, 42.78, 49.86, 55.46, 60.04, 
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68.85, 70.27, 71.69, 72.78, 113.93, 115.40, 127.41, 127.55, 127.63, 129.34, 129.51, 

29.58, 130.78, 134.86, 135.28, 135.90, 136.07, 138.39, 159.30.  

 

(4S,5S,6S,E)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-4-((triethylsilyl)oxy)-5-

(((triethylsilyl)oxy)methyl)nona-2,8-dien-1-ol (2.304). Bis-TES ether 2.303 (533 mg, 

0.641 mmol) was suspended in dichloromethane/ pH 7 phosphate buffer (7:1 v/v, 16 mL). 

The solution was cooled to 0
 o
C and DDQ (153 mg, 0.673 mmol) was added in 2 portions 

and the resulting mixture was stirred for 4 h at 0
 o

C. The reaction was quenched by 

addition of saturated NaHCO3, extracted with dichloromethane (4x), dried over Na2SO4, 

and condesned in vacuo to give a yellow residue. This residue was purified by flash 

chromatography (6:1 Hex:EtOAc) to give allylic alcohol 2.304 as a clear, colorless oil 

(346 mg, 76%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.55 (quin, J = 7.6 Hz, 12H), 0.93 (t, J = 8.0 Hz, 

18H), 1.01 (d,  J = 6.2 Hz, 3H), 1.03 (s, 9H), 1.46 (quin, J  = 6.7 Hz, 1H), 1.59-1.66 (m, 

2H), 1.75 (dt,  J = 14.1, 8.0 Hz, 1H), 1.84-1.92 (m, 1H), 2.25 (dm, J  = 14.1 Hz, 1H), 3.54 

(dd,  J  = 10.2, 5.4 Hz, 1H), 3.62 (dd,  J  = 10.2, 5.4 Hz, 1H), 3.91 (sex,  J = 6.1 Hz, 1H), 

4.07 (d,  J = 4.5 Hz, 2H), 4.33 (t, J = 5.8 Hz, 1H), 4.42 (s, 2H), 4.83 (s, 1H), 4.86 (d,  J = 

3.8 Hz, 1H), 5.50-5.60 (m, 1H), 5.63-5.76 (m, 2H), 7.34-7.43 (m, 6H), 7.67-7.69 (m, 4H). 

13
C NMR (CDCl3, 100 MHz)  (ppm): 4.60, 5.30, 7.05, 7.12, 19.38, 23.52, 27.21, 32.63, 
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35.78, 42.68, 49.82, 59.94, 63.48, 68.83, 72.71, 115.47, 127.56, 127.63, 129.51, 129.55, 

129.60, 134.79, 134.91, 135.21, 136.06, 138.57.  

 

(5S,6S,E)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-5-(hydroxymethyl)-1-((4-

methoxybenzyl)oxy)nona-2,8-dien-4-one (2.306). Diol 2.299 (643 mg, 1.06 mmol) was 

suspended in dichloromethane (18 mL) and manganese dioxide (1.85 g, 21.33 mmol) and 

the resulting heterogenous solution was stirred for 24 h at room temperature. The mixture 

was filtered through celite and condensed under reduced pressure to give a clear oil. This 

oil was purified by flash chromatography (2:1 Hex:EtOAc) to provide enone 2.306 as a 

clear colorless oil (460 mg, 72%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.02 (s, 9H), 1.06 (d,  J = 6.1 Hz, 3H), 1.46 (dt, J  

= 14.0, 6.3 Hz, 1H), 1.58 (quin, J = 6.8 Hz, 1H), 1.82-1.94 (m, 2H), 2.03-2.11 (m, 1H), 

2.83-2.88 (m, 1H), 3.59 (dd,  J  = 11.6, 3.2 Hz, 1H), 3.81 (s, 3H), 3.86 (dd,  J  = 11.6, 7.6 

Hz, 1H), 3.93 (sex,  J = 6.1 Hz, 1H), 4.13 (dd, J = 4.2, 1.8 Hz, 2H), 4.50 (s, 2H), 4.88-

4.94 (m, 2H), 5.46 (ddt, J = 17.0, 10.0 7.1 Hz, 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.84-6.90 

(m, 3H), 7.27 (d,  J = 8.0 Hz, 2H), 7.34-7.43 (m, 6H), 7.66-7.69 (m, 4H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 19.35, 23.34, 27.19, 33.80, 35.10, 41.24, 54.15, 55.48, 

60.35, 68.08, 68.69, 72.78, 114.09, 117.29, 127.66, 127.79, 128.96, 129.58, 129.72, 

129.80, 129.84, 135.94, 136.04, 143.63, 159.58, 203.62.  
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(2S,3S,E)-2-((4S,6S)-6-((tert-butyldiphenylsilyl)oxy)hept-1-en-4-yl)-3-hydroxy-6-((4-

methoxybenzyl)oxy)hex-4-en-1-yl Pivalate (2.308). Diol 2.299 (300 mg, 0.498 mmol) 

was suspended in anhydrous dichloromethane (10 mL) in a flame-dried 25 mL round 

bottom flask. Pyridine (71 mg, 0.897 mmol) was added, followed by pivaloyl chloride 

(63 mg, 0.523 mmol). The reaction was stirred at room temperature for 3 h and then 

quenched by the addition of water and extracted with dichloromethane (3x), dried over 

Na2SO4, and condensed in vacuo to give a pale yellow oil. This oil was purified by flash 

chromatography (3:1 Hex:EtOAc) to provide pivalate 2.308 as a clear, colorless oil (318 

mg, 93%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.04 (m, 12H), 1.15 (s, 9H), 1.43 (dt, J  = 14.0, 6.4 

Hz, 1H), 1.64 (dt, J = 14.0, 6.2 Hz, 1H), 1.72 (dt,  J = 14.4, 8.0 Hz, 1H), 1.84-1.89 (m, 

1H), 1.95-2.01 (m, 1H), 2.22 (dm,  J = 14.0 Hz, 1H), 3.80 (3, 3H), 3.90 (q,  J  = 6.2 Hz, 

1H), 3.97 (dd, J = 9.2, 5.6 Hz, 2H),  3H), 4.06 (dd,  J  = 11.5, 5.6 Hz, 1H), 4.14-4.18 (m, 

1H), 4.43 (s, 2H), 4.90-4.94 (m, 2H), 5.55-5.64 (m, 1H), 5.68-5.82 (m, 2H), 6.87 (d,  J  = 

8.5 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H), 7.34-7.42 (m, 6H), 7.66-7.70 (m, 4H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 19.36, 23.56, 27.21, 27.36, 32.93, 35.62, 38.84, 41.71, 

45.70, 55.45, 62.66, 68.27, 69.90, 72.05, 72.19, 113.97, 116.27, 127.59, 127.72, 129.04, 

129.52, 129.64, 129.74, 130.42, 133.96, 134.49, 134.92, 136.10, 137.81, 159.39, 178.64.  
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(S,E)-2-((4S,6S)-6-((tert-butyldiphenylsilyl)oxy)hept-1-en-4-yl)-6-((4-methoxybenzyl) 

oxy)-3-oxohex-4-en-1-yl pivalate (2.309). Pivalate 2.308 (110 mg, 0.160 mmol) was 

suspended in dichloromethane (8 mL) and manganese dioxide (348 mg, 4.00 mmol) was 

added in 2 portions. The resulting heterogenous solution was vigorously stirred for 24 h, 

then filtered through celite, condensed in vacuo, and purified by flash chromatography 

(4:1 Hex:EtOAc) to provide enone 2.309 as a clear colorless oil (93 mg, 85 %). 

 
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.34, 23.18, 27.19, 27.27, 34.31, 34.91, 38.82, 

40.94, 51.17, 55.47, 62.79, 68.13, 68.68, 72.73, 113.95, 114.07, 114.51, 117.49, 127.65, 

127.77, 127.89, 129.17, 129.53, 129.69, 129.77, 129.82, 129.87, 132.53, 134.33, 134.77, 

135.65, 136.04, 143.12, 159.56, 178.41, 200.31. 

 

(4S,5S,6S,E)-5-(((tert-butyldimethylsilyl)oxy)methyl)-6-((S)-2-((tert-butyldiphenyl 

silyl)oxy)propyl)-1-((4-methoxybenzyl)oxy)nona-2,8-dien-4-ol (2.310). Diol 2.299 

(670 mg, 1.11 mmol), was suspended in anhydrous dichloromethane in a flame-dried 25 

mL round bottom flask. Imidazole (114 mg, 1.67 mmol) was added followed by TBSCl 
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(176 mg, 1.17 mmol). The reaction was stirred at room temperature for 4 h and was 

quenched by the addition of water, extracted with dichloromethane (3x), dried over 

Na2SO4, and condensed in vacuo to give a clear oil. This oil was purified by flash 

chromatography (3:1 Hex:EtOAc) to provide TBS ether 2.310 as a clear, colorless oil 

(762 mg, 96 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.02 (d,  J = 1.4 Hz, 6H), 0.87 (s, 9H),  1.04 (m, 

12H), 1.42-1.49 (m, 1H), 1.58-1.62 (m, 1H), 1.68-1.75 (m, 1H), 1.81-1.86 (m, 1H),  2.08 

(dm, J = 14.4 Hz, 1H), 3.13 (d,  J = 7.0 Hz, 1H), 3.66 (d,  J  = 6.5 Hz, 2H), 3.80 (3, 3H), 

3.89 (sex,  J  = 6.2 Hz, 1H), 4.01 (d,  J  = 3.8 Hz, 2H), 4.23-4.27 (m, 1H), 4.45 (s, 2H), 

4.85-4.91 (m, 2H), 5.52 (ddt,  J  = 17.0, 9.9, 7.0 Hz, 1H), 5.80-5.82 (m, 2H), 6.87 (d,  J  = 

8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.34-7.43 (m, 6H), 7.66-7.69 (m, 4H). 
13

C NMR 

(CDCl3, 100 MHz)  (ppm): -5.47, -5.45, 18.21, 19.36, 23.43, 26.02, 27.21, 33.32, 35.35, 

41.96, 47.36, 55.45, 62.75, 68.28, 70.13, 71.85, 73.66, 113.93, 116.33, 127.61, 127.73, 

128.40, 128.83, 129.43, 129.50, 129.62, 129.73, 130.64, 133.62, 134.51, 134.94, 136.08, 

137.09, 159.32. 

 

(1R,2S,3S)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3-((S)-2-((tert-butyldiphenyl 

silyl)oxy)propyl)-1-((2S,3S)-3-(((4-methoxybenzyl)oxy)methyl)oxiran-2-yl)hex-5-en-

1-ol (2.311). TBS ether 2.311 (325 mg, 0.45 mmol) was suspended in anhydrous 

dichloromethane (4.5 mL) in a flame-dried 25 mL round bottom flask. The solution was 
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cooled to 0 
o
C and vanadyl acetylacetonate (6.0 mg, 0.023 mmol) was added in one 

portion followed by dropwise addition of tert-butyl hydrogen peroxide (0.25 mL, ~5.5 M 

in decane). The resulting dark red solution was stirred at 0 
o
C for 4 h until reaction was 

determined complete by TLC. The crude reaction mixture was transferred directly to a 

silica column that had been equilibrated with 1% Et3N in hexane and was purified using 

4:1 Hex/EtOAc to give oxirane 2.311 as a clear, colorless oil and a single diastereomer 

by 
1
HNMR (315 mg, 95%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.02 (d,  J = 2.0 Hz, 6H), 0.87 (s, 9H),  1.03 (s, 

9H), 1.04 (d,  J  = 3.0 Hz, 3H),  1.42-1.48 (m, 1H), 1.59-1.65 (m, 1H), 1.68-1.75 (m, 1H), 

1.80-1.86 (m, 1H),  1.88-1.92 (m, 1H), 2.22 (dm, J  = 14.0 Hz, 1H), 2.63 (d,  J = 4.2 Hz, 

1H), 3.05 (dd,  J  = 4.2, 2.4 Hz, 1H), 3.23 (dt,  J  = 6.2, 2.4 Hz, 1H), 3.37 (dd, J = 11.6, 

6.2 Hz, 1H), 3.69-3.73 (s, 2H), 3.76 (dd,  J  = 11.6, 2.4 Hz, 1H), 3.80 (s, 3H), 3.85 (q,  J  

= 4.2 Hz, 1H), 3.91 (sex,  J  = 6.2 Hz, 1H), 4.50 (dd,  J  = 25.4, 11.6 Hz, 2H), 4.86-4.90 

(m, 2H), 5.49-5.59 (m, 1H), 6.87 (d,  J  = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.33-7.43 

(m, 6H), 7.66-7.69 (m, 4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): -5.42, 18.28, 19.35, 

23.36, 25.92, 26.04, 27.21, 33.01, 35.53, 41.99, 46.81, 54.34, 55.45, 56.71, 61.99, 68.45, 

69.92, 70.05, 73.05, 113.98, 116.14, 127.59, 127.70, 129.61, 129.69, 130.19, 134.53, 

135.00, 136.09, 137.62, 159.45. 
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(5R,6S,7S,9S)-7-allyl-6-(((tert-butyldimethylsilyl)oxy)methyl)-5-((2R,3S)-3-(((4-

methoxybenzyl)oxy)methyl)oxiran-2-yl)-2,2,3,3,9,12,12-heptamethyl-11,11-diphenyl-

4,10-dioxa-3,11-disilatridecane (2.312). Oxirane 2.311 (230 mg, 0.31 mmol) was 

suspended in anhydrous dichloromethane (6 mL) in a flame-dried 25 mL round bottom 

flask. Pyridine was added (99 mg, 1.26 mmol) followed by TBSOTf (248 mg, 94 mmol). 

The reaction was stirred at room temperature for 1.5 h and quenched with water once 

TLC indicated complete conversion. The mixture was extracted with dichloromethane 

(3x), dried over Na2SO4, and condensed in vacuo to give a clear oil. The oil was purified 

by flash chromatography (6:1 Hex:EtOAc) to provide bis-TBS ether (263 mg, 99 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.01 (d,  J = 1.6 Hz, 6H), 0.02 (s, 3H), 0.04 (s, 

3H), 0.86 (s, 9H), 0.87 (s, 9H), 1.01-1.02 (m, 12H), 1.45-1.52 (m, 1H), 1.59-1.75 (m, 

3H), 1.88-1.94 (m, 1H), 2.32 (dm, J  = 14.0 Hz, 1H), 2.80 (dd,  J = 4.8,  2.2 Hz, 1H), 3.09 

(dt,  J  = 6.4, 2.2 Hz, 1H), 3.20 (dd,  J  = 11.5, 6.4 Hz, 1H),  3.63 (d,  J  = 6.4 Hz, 2H), 

3.70 (dd,  J  = 11.5, 2.2Hz, 1H), 3.80 (s, 3H), 3.90 (dd,  J  = 5.0, 3.6 Hz, 1H), 3.96 (sex,  

J  = 6.2 Hz, 1H), 4.47 (dd,  J  = 30.2, 11.5 Hz, 2H), 4.84-4.88 (m, 2H), 5.48-5.58 (m, 

1H), 6.86 (d,  J  = 8.6 Hz, 2H), 7.25 (d, J = 8.6 Hz, 2H), 7.32-7.41 (m, 6H), 7.66-7.71 (m, 

4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): -5.20, -4.79, -4.19, 18.32, 18.38, 19.33, 

23.50, 26.10, 26.11, 27.19, 32.49, 35.61, 43.23, 48.23, 55.45, 55.67, 56.72, 59.77, 68.87, 
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70.32, 70.57, 73.02, 113.96, 115.77, 127.62, 127.64, 129.55, 129.58, 130.31, 134.99, 

135.08, 136.09, 138.05, 159.40. 

 

((2S,3R)-3-((5R,6S,7S,9S)-7-allyl-6-(((tert-butyldimethylsilyl)oxy)methyl)-2,2,3,3,9, 

12,12-heptamethyl-11,11-diphenyl-4,10-dioxa-3,11-disilatridecan-5-yl)oxiran-2-

yl)methanol (2.313). Bis-TBS ether 2.312 (248 mg, 0.30 mmol) was suspended in 

dichloromethane/ pH 7 phosphate buffer (9:1 v/v, 10 mL) and the reaction was cooled to 

0 
o
C. DDQ (75mg, 0.33 mmol) was added in one portion and the biphasic mixture was 

vigorously stirred for 4 h at 0
 o

C. The reaction was quenched by addition of saturated 

NaHCO3 and extracted with dichloromethane (4x), dried over Na2SO4, and condensed 

under reduced pressure to provide a yellow oil. This oil was purified by flash 

chromatography (5:1 Hex:EtOAc) to provide alcohol 2.313 as a clear, colorless oil (180 

mg, 83%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.02 (s, 6H), 0.03 (s, 3H), 0.05 (s, 3H), 0.87 (s, 

9H), 1.04 (s, 9H), 1.05 (d,  J  = 6.1 Hz, 3H), 1.48-1.77 (m, 5H), 1.85-1.91 (m, 1H), 2.29 

(dm, J  = 14.0 Hz, 1H), 2.96 (dd,  J = 4.6, 2.2 Hz, 1H), 3.08 (quin,  J  = 2.2 Hz, 1H), 

3.46-3.52 (m, 1H), 3.63-3.65 (m, 2H), 3.85 (ddd,  J  = 12.5, 5.0, 2.4 Hz, 1H), 3.94-3.98 

(m, 2H), 4.84-4.87 (m, 2H), 5.45-5.56 (m, 1H), 7.35-7.44 (m, 6H), 7.68-7.70 (m, 4H). 

13
C NMR (CDCl3, 100 MHz)  (ppm): -5.21, -4.76, -4.23, 18.34, 18.38, 19.34, 23.42, 

26.09, 27.18, 32.53, 35.48, 43.02, 48.26, 56.62, 57.19, 59.77, 61.83, 68.87, 70.31, 115.93, 
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127.62, 127.65, 129.62, 134.93, 135.03, 136.06, 137.79. 

 

(4S,5S,6S,E)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-1-((4-methoxybenzyl)oxy-

5(((triisopropylsilyl)oxy)methyl)nona-2,8-dien-4-ol (2.315). Diol 2.301 (2.16 g, 3.58 

mmol) was suspended in anhydrous dichloromethane (36 mL) in a flame-dried 100 mL 

round bottom flask. Imidazole (1.22 g, 17.91 mmol) was added in one portion, followed 

by dropwise addition of chlorodiisopropylsilane (1.53 mL, 7.17 mmol) at room 

temperature. After 1 h, an additional 1.22 g of imidazole and 1.53 mL of 

chlorodiisopropylsilane were added. After 1 h, 1.53 mL of chlorodiisopropylsilane was 

added and the solution was stirred for an additional 1 h and quenched by addition of 

water after the reaction was determined to be complete by TLC. The mixture was 

extracted with dichloromethane (3 x), dried over Na2SO4, condensed in vacuo, and 

purified by flash chromatography (2:1 Hex/EtOAc) to give triisopropylsilyl ether 2.315 

as  clear, colorless oil (2.39 g, 88%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.04 (s, 33H), 1.44-1.49 (m, 1H), 1.55-1.63 (m, 

1H), 1.71 (quin, J = 7.2 Hz, 1H), 1.87-1.93 (m, 1H), 2.03-2.09 (m, 1H), 3.45 (d, J = 7.2 

Hz, 1H), 3.76 (d, J = 6.8 Hz, 2H), 3.80 (s, 3H), 3.90 (sex, J = 6.2 Hz, 1H), 4.00 (d, J = 

3.0 Hz, 2H), 4.25-4.29 (m, 1H), 4.45 (s, 2H), 4.84-4.91 (m, 2H), 5.49 (dddd, J = 16.9, 

9.8, 7.2, 7.0 Hz, 1H), 5.84-5.85 (m, 2H), 6.87 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.6 Hz, 

2H), 7.34-7.43 (m, 6H), 7.66-7.69 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 11.86, 
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18.12, 19.32, 23.36, 27.16, 33.28, 35.12, 41.90, 47.45, 55.41, 63.42, 68.17, 70.11, 71.79, 

73.87, 113.88, 116.43, 127.58, 127.70, 128.46, 129.37, 129.58, 129.69, 130.64, 133.35, 

134.45, 134.88, 136.03, 136.70, 159.26. HRMS: C46H71O5Si2, Calculated: [M+H]+, 

759.4840, Found: [M+H]+, 759.4836. 

 

(1R,2S,3S)-3-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-1-((2S,3S)-3-(((4-

methoxybenzyl)oxy)methyl) oxiran-2-yl)-2-(((triisopropylsilyl)oxy)methyl)hex-5-en-

1-ol (2.316). Triisopropylsilyl ether 2.315 (2.35 g, 3.10 mmol) was suspended in 

anhydrous dichloromethane (16 mL) in a flame-dried 50 mL round bottom flask. The 

solution was cooled to 0 
o
C and vanadyl acetylacetonate (41.0 mg, 0.155 mmol) was 

added in one portion followed by dropwise addition of tert-butyl hydrogen peroxide (1.70 

mL, ~5.5 M in decane). The resulting dark red solution was stirred at 0 
o
C for 4 h until 

reaction was determined complete by TLC. The crude reaction mixture was transferred 

directly to a silica column that had been equilibrated with 1% Et3N in hexane and was 

purified using 4:1 Hex/EtOAc to give oxirane 2.316 as a clear, colorless oil and a single 

diastereomer by 
1
HNMR (2.36 g, 98%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.03 (s, 33H), 1.46 (quin, J = 6.4 Hz, 1H), 1.64 

(quin, 7.2 Hz, 1H), 1.72 (quin, J = 7.2 Hz, 1H), 1.86-1.89 (m, 2H), 2.13-2.18 (m, 1H), 

2.85 (d, J = 4.7 Hz, 1H), 3.08 (dd, J = 4.4, 2.3 Hz, 1H), 3.20 (dt, J = 6.1, 2.2 Hz, 1H), 

3.38 (dd, J = 11.6, 6.2 Hz, 1H), 3.76-3.86 (m, 4H), 3.80 (s, 3H), 3.92 (sex,  J = 6.4 Hz, 
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1H), 4.50 (dd, J = 25.6, 11.6 Hz, 2H), 4.86-4.90 (m, 2H), 5.53 (dddd, J = 19.6, 9.8, 9.2, 

7.4 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 7.33-7.43 (m, 6H), 7.67-

7.69 (m, 4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 11.90, 18.13, 19.30, 23.31, 27.15, 

32.92, 35.39, 42.06, 46.96, 54.47, 55.39, 56.52, 62.68, 68.33, 69.86, 70.57, 72.99, 113.91, 

116.18, 127.53, 127.64, 129.54, 129.63, 130.14, 134.47, 134.94, 136.02, 137.34, 159.38. 

HRMS: C46H71O6Si2, Calculated: [M+H]+, 775.4789, Found: [M+H]+, 775.4785. 

 

(5S,7S,8S)-7-allyl-8-((R)-(benzyloxy)((2S,3S)-3-(((4-methoxybenzyl)oxy)methyl) 

oxiran-2-yl)methyl)-11,11-diisopropyl-2,2,5,12-tetramethyl-3,3-diphenyl-4,10-dioxa-

3,11-disilatridecane (2.317). Sodium hydride (60% dispersion in mineral oil) (248 mg, 

6.19 mmol) was suspended in anhydrous tetrahydrofuran (34 mL) in a flame-dried 100 

mL round bottom flask, and the solution was cooled to 0 
o
C.  A solution of oxirane 2.316 

(2.40 g, 3.10 mmol) in THF (10 mL) was slowly added to the sodium hydride solution, 

followed by immediate addition of benzyl bromide (1.47 mL, 12.38 mmol) and tert-

butylammonium iodide (229 mg, 0.619 mmol). The solution was warmed to room 

temperature and stirred for 9 h. The reaction was quenched by the addition of saturated 

NH4Cl, extracted with ethyl acetate (3 x), dried over Na2SO4, and condensed in vacuo to 

give a yellow oil that was purified by flash chromatography (17:3 Hex/EtOAc) to provide 

benzyl ether 2.317 as a clear, colorless oil (2.43 g, 91%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.02 (d, J = 5.4 Hz, 33H), 1.48 (quin, J = 6.7 Hz, 
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1H), 1.61-1.68 (m, 1H), 1.68-1.74 (m, 1H), 1.84-1.91 (m, 2H), 1.96-2.02 (m, 1H), 2.22-

2.29 (m, 1H), 2.91 (dd, J = 5.2, 2.0 Hz, 1H), 3.17 (dt, J = 6.1, 2.4 Hz, 1H), 3.30 (dd, J = 

10.9, 6.5 Hz, 1H), 3.55-3.60 (m, 2H), 3.69 (dd, 10.0, 5.5 Hz,  1H), 3.73-3.78 (m, 1H), 

3.80 (s, 3H), 3.81-3.81 (m, 1H), 3.95 (sex, J = 6.4 Hz, 1H), 4.47 (dd, J = 27.9, 11.9 Hz, 

2H), 4.56 (dd, J= 85.2, 11.5 Hz, 2H), 4.82-4.86 (m, 2H), 5.54 (dddd, J = 17.8, 10.6, 7.8, 

7.6 Hz, 1H), 6.86 (d, J = 8.6 Hz, 2H), 7.22-7.40 (m, 13H), 7.66-7.69 (m, 4H).
13

C NMR 

(CDCl3, 100 MHz)  (ppm): 12.05, 18.21, 19.29, 23.51, 27.13, 32.83, 35.97, 42.83, 

47.51, 55.40, 55.66, 56.39, 60.64, 68.65, 70.21, 73.01, 73.54, 113.91, 115.60, 127.44, 

127.53, 127.59, 128.33, 129.51, 129.54, 134.81, 135.04, 136.02, 138.45, 139.07, 159.37.  

HRMS: C53H77O6Si2, Calculated: [M+H]+, 865.5259, Found: [M+H]+, 865.5259. 

 

((2S,3S)-3-((1R,2S,3S)-1-(benzyloxy)-3-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-2-

(((triisopropylsilyl) oxy)methyl)hex-5-en-1-yl)oxiran-2-yl)methanol (2.318). Benzyl 

ether 2.317 (1.70 g, 1.96 mmol) was suspended in dichloromethane: pH 7 phosphate 

buffer (7:1 v/v, 40 mL) in a 100 mL round bottom flask. The solution was cooled to 0 
o
C 

and vigorously stirred. 2,3-Dichloro-5,6-Dicyanobenzoquinone (535 mg, 2.36 mmol) was 

added in 3 portions and the resulting biphasic solution was vigorously stirred for 2 h at 0 

o
C. An additional 107 mg of DDQ was added and the solution was stirred 2 h at 0 

o
C. The 

reaction was quenched by addition of saturated NaHCO3, extracted with dichloromethane 

(4 x), dried over Na2SO4, and condensed in vacuo to provide a yellow residue that was 
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purified by flash chromatography (5:1 Hex/EtOAc) to provide alcohol 2.318 as a clear, 

colorless oil (1.11 g, 76%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.02-1.05 (m, 33H), 1.44-1.53 (m, 2H), 1.62-1.67 

(m, 1H), 1.68-1.75 (m, 1H), 1.84-1.91 (m, 1H), 1.94-2.01 (m, 1H), 2.21-2.27 (m, 1H), 

3.05 (dd, J = 4.88, 2.2 Hz, 1H), 3.11 (quin, J = 2.3 Hz, 1H), 3.44 (ddd, J = 12.7, 7.4, 5.0 

Hz, 1H), 3.63 (t, J = 5.1 Hz, 1H), 3.68-3.82 (m, 3H), 3.95 (sex, J = 6.2 Hz, 1H), 4.52 (dd, 

J = 55.6, 11.8 Hz, 2H), 4.83-4.87 (m, 2H), 5.54 (dddd, J = 15.3, 10.2, 7.2, 6.2 Hz, 1H), 

7.25-7.42 (m, 11H), 7.68 (d, J = 7.2 Hz, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 

12.07, 18.22, 19.31, 23.50, 27.14, 32.92, 35.94, 42.76, 47.47, 56.72, 56.79, 60.71, 61.77, 

68.65, 73.81, 77.36, 115.73, 127.52, 127.55, 127.60, 128.39, 129.55, 129.58, 134.83, 

135.02, 136.04, 138.32, 139.11.  HRMS: C45H69O5Si2, Calculated: [M+H]+, 745.4684, 

Found: [M+H]+, 745.4681. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-5-

(((triisopropylsilyl)oxy) methyl)non-8-ene-1,3-diol (2.319). Alcohol 2.318 (1.07 g, 1.44 

mmol) was suspended in anhydrous tetrahydrofuran (96 mL) in a 250 mL flame-dried 

round bottom flask and cooled to 0 
o
C. Sodium bis(2-methoxyethoxy)aluminum hydride 

(65% wt in toluene, 2.68 mL, 8.62 mmol) was added dropwise and the resulting solution 

was warmed to room temperature and stirred for 5 h, until the reaction neared completion 

and the free primary alcohol resulting from TIPS deprotection began to form. At this 
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time, saturated sodium potassium tartrate was added dropwise and the resulting cloudy 

emulsion was diluted with 50 mL of ethyl acetate and stirred for 30 min until the organic 

layer became clear. The product was extracted by ethyl acetate (3 x), dried over Na2SO4, 

and condensed in vacuo to give a thick, clear oil. This oil was purified by flash 

chromatography (7:3 Hex:EtOAc) to provide the desired 1,3-diol 2.319 (670 mg, 63%, 

70% based on recovered starting material) as the only product (
1
HNMR >20:1 1,3 

diol:1,2 diol). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.04-1.09 (m, 33H), 1.49-1.56 (m, 1H), 1.60-1.67 

(m, 1H), 1.74-1.82 (m, 3H), 1.89-1.95 (m, 1H), 2.04-2.12 (m, 1H), 2.16-2.21 (m, 1H), 

2.94 (bs, 1H), 3.51 (t, J = 6.0 Hz, 1H), 3.74-3.89 (m, 5H), 3.95-4.02 (m, 2H), 4.52 (s, 

2H), 4.83-4.87 (m, 2H), 5.37-5.47 (m, 1H), 7.26-7.44 (m, 11H), 7.68-7.71 (m, 4H).
13

C 

NMR (CDCl3, 100 MHz)  (ppm): 12.04, 18.12, 18.15, 19.29, 23.17, 27.12, 31.99, 34.83, 

34.95, 42.33, 46.24, 60.94, 62.56, 68.73, 73.45, 74.56, 82.31, 116.48, 127.56, 127.63, 

127.75, 127.84, 128.50, 129.55, 129.60, 134.72, 134.96, 136.00, 136.79, 138.51.  

HRMS: C45H71O5Si2, Calculated: [M+H]+, 747.4840, Found: [M+H]+, 747.4843. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

hydroxy-5-(((triisopropylsilyl)oxy)methyl)non-8-en-1-yl Pivalate (2.320). 1,3 diol 

2.319 (540 mg, 0.723 mmol) was suspended in anhydrous dichloromethane (36 mL) in a 

100 mL flame-dried round bottom flask. Pyridine was added (0.59 mL, 7.23 mmol) 
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followed by addition of pivaloyl chloride (0.53 mL, 4.34 mmol) at room temperature, and 

the resulting solution was stirred for 2 h. The reaction was quenched by addition of 

saturated NaHCO3, extracted with dichloromethane (3 x), dried over Na2SO4, and 

condensed in vacuo to give a cloudy, white residue. This residue was purified by flash 

chromatography (4:1 Hex:EtOAc) to give pivalate ester 2.320 as a clear, colorless oil 

(596 mg, 99%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.02-1.08 (m, 33H), 1.18 (s, 9H), 1.57 (dquin, J = 

59.8, 6.8 Hz, 2H), 1.69-1.82 (m, 3H), 1.96-2.04 (m, 1H), 2.05-2.12 (m, 1H), 2.16-2.22 

(m, 1H), 3.18 (d, J = 4.9 Hz, 1H), 3.50 (t, J = 6.0 Hz, 1H), 3.73 (dd, J = 10.5, 6.8 Hz, 

1H), 3.81 (dd, J = 10.6, 3.1 Hz, 1H), 3.84-3.88 (m, 1H), 3.97 (sex, J = 6.1 Hz, 1H), 4.16-

4.26 (m, 2H), 4.53 (s, 2H), 4.81-4.85 (m, 2H), 5.38-5.48 (m, 1H), 7.24-7.43 (m, 11H), 

7.67-7.70 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 12.07, 18.17, 18.20, 19.31, 

23.27, 27.14, 27.36, 32.17, 32.70, 35.13, 38.83, 42.65, 46.20, 60.98, 62.35, 68.73, 70.44, 

73.54, 77.36, 82.55, 116.24, 127.57, 127.64, 127.73, 128.47, 129.55, 129.62, 134.77, 

135.03, 136.02, 137.28, 138.74, 178.73.  HRMS: C50H79O6Si2, Calculated: [M+H]+, 

831.5415, Found: [M+H]+, 831.5417. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-(((triisopropylsilyl)oxy)methyl)non-8-en-1-yl Pivalate (2.321). Pivalate 

ester 2.320 (440 mg, 0.53 mmol) was suspended in anhydrous dichloromethane (52 mL) 
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in a 100 mL flame-dried round bottom flask. 1,8-Bis(dimethylamino) naphthalene (680 

mg, 3.18 mmol) was added followed by addition of trimethyloxonium tetrafluoroborate 

(392 mg, 2.65 mmol) in 3 portions at room temperature. The resulting solution was 

stirred at room temperature for 1.5 h until TLC indicated that the reaction was complete. 

The reaction was quenched by addition of saturated NaHCO3, extracted with 

dichloromethane (3 x), dried over Na2SO4, and condensed in vacuo to give a pale yellow 

residue. This residue was purified by flash chromatography (17:3 Hex:EtOAc) to provide 

the desired methyl ether 2.321 as a clear, colorless oil (430 mg, 96%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.00-1.07 (m, 33H), 1.19 (s, 9H), 1.45 (quin, J = 

6.8 Hz, 1H), 1.61-1.74 (m, 3H), 1.82-1.94 (m, 1H), 1.95-2.05 (m, 1H), 2.07-2.13 (m, 1H), 

2.14-2.21(m, 1H), 3.36 (s, 3H), 3.55 (d, J = 9.2 Hz, 1H), 3.60-3.68 (m, 2H), 3.80 (dd, J = 

8.4, 1.7 Hz, 1H), 3.92 (sex, J = 6.1 Hz, 1H), 4.11-4.17 (m, 1H), 4.21-4.27 (m, 1H), 4.70 

(dd, J = 143.5, 11.4 Hz, 2H), 4.78-4.82 (m, 2H), 5.42-5.52 (m, 1H) 7.22-7.41 (m, 11H), 

7.65-7.67 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 12.09, 18.27, 19.30, 23.41, 

27.13, 27.39, 28.89, 32.98, 35.82, 38.81, 43.12, 46,22, 57.49, 61.90, 62.53, 68.69, 74.02, 

77.36, 78.35, 81.37, 115.44, 127.33, 127.50, 127.60, 127.82, 128.27, 129.46, 129.55, 

134.67, 135.15, 136.01, 138.82, 139.21, 178.67.  HRMS: C51H80O6NaSi2, Calculated: 

[M+H]+, 867.5391, Found: [M+H]+, 867.5389. 
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(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-hydroxypropyl)-3-methoxy-5-(((triisopropyl 

silyl)oxy)methyl)non-8-en-1-yl Pivalate (2.323). Ether 2.321 (35.0 mg, 0.041 mmol) 

was suspended in anhydrous dichloromethane (1.0 mL) and added to a solution of 0.01 M 

HCl in methanol (25 mL) at room temperature. The reaction was stirred for 24 h and was 

then diluted with dichloromethane and partitioned with water. The solution was extracted 

with dichloromethane (3x), dried over Na2SO4, and condensed under reduced pressure to 

give a clear residue. This residue was purified by flash chromatography (3:1 Hex:EtOAc) 

to provide the free secondary alcohol 2.323 as a clear colorless oil (22.5 mg, 91 %).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.03-1.06 (m, 21H), 1.16 (d, J = 6.1 Hz, 3H), 1.20 

(s, 9H), 1.25-1.36 (m, 1H), 1.49 (ddd, J = 13.8, 10.4, 3.2 Hz, 1H), 1.61-1.70 (m, 1H), 

1.76-1.83 (m, 1H), 1.85-1.94 (m, 2H), 2.19-1.25 (m, 1H), 2.58 (dm, J = 13.8 Hz, 1H), 

3.08 (s, 1H), 3.46 (s, 3H), 3.61 (t, J = 9.5 Hz, 1H), 3.69 (dd, J = 9.5, 4.6 Hz, 2H), 3.78 (t, 

J = 3.0 Hz, 1H), 3.89-3.97 (m, 1H), 4.12-4.23 (m, 2H),  4.65 (dd, J = 94.6, 11.8 Hz, 2H), 

4.90-4.95 (m, 2H), 5.64-5.74 (m, 1H), 7.27-7.36 (m, 5H).
13

C NMR (CDCl3, 100 MHz)  

(ppm): 12.06, 18.21, 18.25, 23.25, 27.38, 29.86, 30.31, 31.85, 35.98, 38.88, 41.80, 42.13, 

58.31, 61.20, 61.83, 64.47, 73.43, 79.86, 80.17, 115.61, 127.14, 127.75, 127.83, 128.31, 

128.54, 138.70, 138.85, 178.59.  
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(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-5-

(hydroxymethyl)-3-methoxynon-8-en-1-yl Pivalate (2.322). Methyl ether 2.321 (212 

mg, 0.251mmol) was suspended in anhydrous dichloromethane (25 mL) in 50 mL flame-

dried round bottom flask. Boron trifluoride diethyl etherate (46.5% BF3, 0.133 mL, 0.502 

mmol) was added dropwise at room temperature and the resulting mixture was stirred at 

room temperature for 0.5 h until TLC showed that the reaction had reached completion. 

The reaction was quenched by addition of saturated NaHCO3, extracted with 

dichloromethane (3x), dried over dried over Na2SO4, and condensed in vacuo to give a 

clear oil. This oil was purified by flash chromatography (7:3 Hex:EtOAc) to give the free 

primary alcohol 2.322 as a clear, colorless oil (162 mg, 94%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.02 (s, 9H), 1.03 (d, J = 6.2 Hz, 3H), 1.20 (s, 9H), 

1.46 (quin, J = 6.6 Hz, 1H), 1.61-1.71 (m, 2H), 1.77-1.83 (m, 1H), 1.85 (t,  J = 5.3 Hz, 

1H), 1.88-1.97 (m, 1H), 1.99-2.05 (m, 1H), 2.06-2.12 (m, 1H), 3.39 (s, 3H), 3.51-3.65 

(m, 3H), 3.74 (dd, J = 8.3, 2.2 Hz, 1H), 3.93 (sex, J = 6.1 Hz, 1H), 4.20 (dd, J = 7.7, 5.5 

Hz, 1H), 4.63 (dd, J = 115.4, 11.6 Hz, 2H), 4.84-4.87 (m, 2H), 5.40-5.50 (m, 1H), 7.25-

7.42 (m, 11H), 7.65-7.68 (m, 4H).
13

C NMR (CDCl3, 150 MHz)  (ppm): 19.30, 23.15, 

27.17, 27.40, 29.56, 33.07, 35.46, 38.88, 42.26, 45.96, 57.98, 60.81, 61.97, 68.79, 73.66, 

77.36, 78.98, 80.56, 116.08, 127.55, 127.61, 127.65, 127.98, 128.40, 129.57, 129.65, 

134.56, 134.92, 136.03, 137.92, 138.74, 178.70.  HRMS: C42H60O6NaSi, Calculated: 
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[M+H]+, 711.4057, Found: [M+H]+, 711.4055. 

 

(3R,4R,5R,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-5-

formyl-3-methoxynon-8-en-1-yl pivalate (2.324). Alcohol 2.322 (170 mg, 0.247 mmol) 

was suspended in CH2Cl2/DMSO (4:1 v/v, 12.5 mL) in a 25 mL flame-dried round 

bottom flask and cooled to 0 
o
C. Triethylamine (0.34 mL, 2.47 mmol) was added 

followed by addition of sulfur trioxide pyridine complex (157 mg, 0.987 mmol) in 2 

portions. The resulting solution was allowed to warm to room temperature and stirred for 

6 h. Additional portions of triethylamine (0.34 mL, 2.47 mmol) and sulfur trioxide 

pyridine complex (157 mg, 0.987 mmol) were added. The reaction was stirred for 10 h 

and then quenched by addition water, extracted with dichloromethane (3x), dried over 

Na2SO4, and condensed in vacuo to give a pale yellow oil. This oil was purified by flash 

chromatography (5:1 Hex:EtOAc) to provide aldehyde 2.322 as a clear, colorless oil (127 

mg, 75%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.99 (s, 9H), 1.01 (d, J = 6.4 Hz, 3H), 1.18 (s, 9H), 

1.50 (ddd, J = 14.4, 7.6, 5.6 Hz, 1H), 1.68-1.78 (m, 2H), 1.80-1.85 (m, 1H), 2.26 (dm,  J  

= 14.0 Hz, 1H), 2.34-2.41 (m, 1H), 2.71 (dt,  J  = 9.8, 2.8 Hz, 1H), 3.19-3.23 (m, 1H), 

3.36 (s, 3H), 3.99 (sex, J = 6.0 Hz, 1H), 4.11-4.20 (m, 3H), 4.66 (dd, J = 123.6, 11.6 Hz, 

2H), 4.90-4.97 (m, 2H), 5.53 (ddt,  J = 23.0, 9.8, 7.2 Hz, 1H), 7.27-7.41 (m, 6H), 7.64-

7.67 (m, 4H), 9.62 (d,  J  = 2.4 Hz, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.34, 
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23.44, 27.17, 27.41, 29.35, 32.88, 35.63, 38.90, 41.37, 56.02, 58.04, 61.48, 68.11, 73.99, 

75.54, 81.26, 117.09, 127.59, 127.75, 127.99, 128.48, 129.63, 129.76, 134.31, 134.87, 

136.06, 136.08, 137.03, 138.38, 178.61, 202.94.  

 

(3R,6S,Z)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-5-formyl-3-methoxynona-

4,8-dien-1-yl Pivalate (2.326). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.03 (d, J = 6.2 Hz, 3H), 1.04 (s, 9H), 1.18 (s, 9H), 

1.69 (quin, J = 7.0 Hz, 1H), 1.79-1.87 (m, 2H), 1.97-2.04 (m, 1H), 2.11-2.17 (m, 1H), 

2.22-2.30 (m, 1H), 2.52-2.59 (m, 1H), 3.18 (s, 3H), 3.84 (sex, J = 6.2 Hz, 1H), 4.10-4.22 

(m, 3H), 4.86-4.90 (m, 2H), 5.47 (ddt,  J = 16.2, 10.6, 7.2 Hz, 1H), 6.24 (d,  J = 8.8 Hz, 

1H), 7.36-7.44 (m, 6H), 7.66-7.68 (m, 4H), 9.34 (d,  J  = 1.6 Hz, 1H). 
13

C NMR (CDCl3, 

100 MHz)  (ppm): 19.33, 23.64, 27.22, 27.38, 29.90, 34.20, 36.35, 37.65, 38.88, 44.03, 

57.13, 60.66, 68.86, 73.94, 116.80, 127.68, 127.77, 127.92, 129.72, 129.79, 134.53, 

134.91, 136.02, 136.52, 136.93, 145.12, 170.52, 178.48.  
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(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-(((triisopropylsilyl)oxy)methyl)non-8-en-1-ol (2.333). Pivalate ester 2.321 

(240 mg, 0.284 mmol) was suspended in anhydrous dichloromethane (28 mL) in a 50 mL 

flame-dried round bottom flask and cooled to -78 
o
C. Diisobutylaluminum hydride (1.0 

M in dichloromethane, 0.85 mL, 0.852 mmol) was added dropwise, and the resulting 

solution was stirred for 1 h until TLC indicated the reaction was complete. The reaction 

was quenched by addition of sodium potassium tartrate, warmed to room temperature, 

and stirred for 0.5 h until the organic layer was clear. The mixture was extracted with 

dichloromethane (3 x), dried over Na2SO4, and condensed in vacuo to give a clear oil. 

This oil was purified by flash chromatography (2:1 Hex:EtOAc) to provide the desired 

free primary alcohol 2.333 as a clear, colorless oil (200 mg, 93%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.00 (s, 9H), 1.02 (d, J = 6.1 Hz, 3H), 1.05 (s, 

21H), 1.43 (quin, J = 6.8 Hz, 1H), 1.57-1.63 (m, 1H), 1.65-1.74 (m, 2H), 1.75-1.81 (m, 

1H), 1.98-2.07 (m, 1H), 2.10-2.16 (m, 2H), 2.87 (d, J = 6.3 Hz, 1H), 3.41 (s, 3H), 3.58 

(dd, J = 10.5, 6.2 Hz, 1H), 3.66 (dd, J = 10.7, 3.6 Hz, 1H), 3.71-3.82 (m, 4H), 3.91 (sex, J 

= 6.1 Hz, 1H), 4.69 (dd, J = 156.8, 11.4 Hz, 2H), 4.81-4.85 (m, 2H), 5.42-5.52 (m, 1H) 

7.23-7.41 (m, 11H), 7.65-7.68 (m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 12.05, 

18.24, 19.29, 23.45, 27.11, 31.31, 33.03, 35.55, 42.94, 46.47, 57.01, 61.44, 62.08, 68.64, 
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74.19, 78.20, 84.97, 115.58, 127.46, 127.49, 127.60, 127.97, 128.31, 129.47, 129.56, 

134.62, 135.14, 136.01, 138.62, 138.95.   

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-(((triisopropylsilyl)oxy)methyl)non-8-enal (2.334). Alcohol 3.333 (200 mg, 

0.263 mmol) was suspended in CH2Cl2/DMSO (4:1 v/v, 13 mL) in a 50 mL flame-dried 

round bottom flask and cooled to 0 
o
C. Triethylamine (0.37 mL, 2.63 mmol) was added 

followed by addition of sulfur trioxide pyridine complex (167 mg, 1.05 mmol) in 2 

portions. The resulting solution was stirred for 4 h at 0 
o
C, quenched by addition water, 

extracted with dichloromethane (3 x), dried over Na2SO4, and condensed in vacuo to give 

a pale yellow oil. This oil was purified by flash chromatography (4:1 Hex:EtOAc) to 

provide aldehyde 2.334 as a clear, colorless oil (185 mg, 93%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.99 (s, 9H), 1.02 (d, J = 6.1 Hz, 3H), 1.04-1.06 

(m, 21H), 1.41 (quin, J = 6.7 Hz, 1H), 1.57-1.71 (m, 3H), 2.04-2.11 (m, 2H), 2.54 (dd, J 

= 16.7, 1.5 Hz, 1H), 2.74 (dd, J = 16.7, 3.0 Hz, 1H), 3.39 (s, 3H), 3.57 (dd, J = 10.9, 6.8 

Hz, 1H), 3.66 (dd, J = 10.8, 3.3 Hz, 1H), 3.82 (dd, J = 9.0, 1.8 Hz, 1H), 3.90 (sex, J = 6.2 

Hz, 1H), 4.12 (ddd, J = 8.2, 3.7, 2.1 Hz, 1H), 4.67 (dd, J = 134.0, 11.4 Hz, 2H), 4.80-

4.84 (m, 2H), 5.38-5.48 (m, 1H) 7.22-7.41 (m, 11H), 7.63-7.67 (m, 4H), 9.78 (dd, J = 

2.8, 1.5 Hz, 1H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 11.96, 18.22, 19.28, 23.43, 

27.09, 32.84, 35.33, 42.82, 43.86, 46.77, 57.19, 61.83, 68.50, 74.30, 78.85, 80.12, 115.76, 
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127.50, 127.62, 127.95, 128.34, 129.50, 129.60, 134.53, 135.04, 135.99, 138.36, 138.74, 

202.05.   

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-(((triisopropylsilyl)oxy)methyl)non-8-enoic acid (2.335). To a stirring 

solution of aldehyde 2.334 (182 mg, 0.240 mmol) in tert-butanol (9 mL) was added 2-

methyl-2-butene (0.26 mL, 2.40 mmol). In a separate vial, monobasic sodium phosphate 

(252 mg, 1.82 mmol) was dissolved in water (9 mL) and sodium chlorite (163 mg, 1.80 

mmol) was added in 2 portions. The tert-butanol solution was cooled to 0 
o
C and the 

chlorite/phosphate solution in water was added dropwise. The resulting yellow solution 

was stirred at 0 
o
C for 0.5 h and was then quenched with saturated sodium thiosulfate and 

acidified to pH = 3. The aqueous solution was then extracted with ethyl acetate (4 x), 

dried over Na2SO4, and concentrated in vacuo to give a clear oil. This oil was purified by 

flash chromatography (1:1 Hex:EtOAc) yielding carboxylic acid 2.335 as a clear, 

colorless oil (180 mg, 97%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.00 (s, 9H), 1.02 (d, J = 6.3 Hz, 3H), 1.04-1.06 

(m, 21H), 1.43 (quin, J = 6.7 Hz, 1H), 1.59-1.73 (m, 3H), 2.05-2.14 (m, 2H), 2.59 (dd, J 

= 16.5, 3.0 Hz, 1H), 2.73 (dd, J = 16.3, 8.7 Hz, 1H), 3.60 (s, 3H), 3.57 (dd, J = 10.4, 6.4 

Hz, 1H), 3.67 (dd, J = 10.9, 3.9 Hz, 1H), 3.83 (dd, J = 9.0, 1.8 Hz, 1H), 3.90 (sex, J = 6.1 

Hz, 1H), 4.05 (dt, J = 8.2, 2.2 Hz, 1H), 4.68 (dd, J = 141.9, 11.4 Hz, 2H), 4.81-4.85 (m, 
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2H), 5.41-5.51 (m, 1H) 7.23-7.41 (m, 11H), 7.64-7.67 (m, 4H).
13

C NMR (CDCl3, 100 

MHz)  (ppm): 12.02, 18.22, 19.27, 23.42, 27.11, 32.94, 35.08, 35.55, 42.86, 46.51, 

57.47, 61.78, 68.56, 74.49, 77.35, 78.42, 80.90, 115.73, 127.50, 127.54, 127.63, 127.99, 

128.34, 129.49, 129.61, 134.55, 135.08, 135.99, 136.01, 138.43, 138.67, 176.17.   

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-(((triisopropylsilyl)oxy)methyl)non-8-enamide (2.336). Carboxylic acid 

2.335 (225 mg, 0.290 mmol) was suspended in N,N-dimethylformamide (1.5 mL). 1-

Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (83.4 mg, 0.44 mmol) and 

1-Hydroxybenzotriazole (58.8 mg, 0.44 mmol) were added subsequently at room 

temperature, followed by addition of diisopropylethylamine (0.20 mL, 1.16 mmol) and 

ammonium chloride (31 mg, 0.580 mmol). The resulting solution was stirred for 6 h at 

room temperature until TLC indicated complete conversion. The reaction was quenched 

by addition of water, extracted with dichloromethane (3 x), dried over Na2SO4, and 

condensed in vacuo to give a pale yellow residue. This residue was purified by flash 

chromatography (1:1 Hex/EtOAc then 1:3 Hex/EtOAc) to give amide 2.336 as a clear 

colorless oil (180 mg, 80%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.00 (s, 9H), 1.02 (d, J = 6.1 Hz, 3H), 1.04-1.07 

(m, 21H), 1.44 (quin, J = 6.8 Hz, 1H), 1.63-1.73 (m, 3H), 2.01-2.08 (m, 1H), 2.16-2.22 

(m, 1H), 2.43 (dd, J = 15.8, 3.0 Hz, 1H), 2.53 (dd, J = 15.8, 8.4 Hz, 1H), 3.41 (s, 3H), 
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3.62-3.71 (m, 2H), 3.86-3.95 (m, 3H), 4.67 (dd, J = 124.8, 11.5 Hz, 2H), 4.79-4.84 (m, 

2H), 5.16 (bs, 1H), 5.42-5.52 (m, 1H), 5.98 (bs, 1H),  7.23-7.41 (m, 11H), 7.64-7.66 (d, J 

= 7.6 Hz, 4H).
 13

C NMR (CDCl3, 100 MHz)  (ppm): 12.04, 18.28, 19.30, 23.46, 27.11, 

33.06, 35.82, 36.42, 43.08, 46.05, 57.21, 61.71, 68.63, 74.32, 78.21, 81.02, 115.63, 

127.48, 127.53, 127.63, 127.76, 128.36, 129.51, 129.58, 134.68, 135.03, 136.00, 138.64, 

138.90, 174.12.   

 

(3R,4R,5S,6S,8S)-8-((tert-butyldiphenylsilyl)oxy)-4-hydroxy-3-methoxy-6-propyl-5-

(((triisopropylsilyl)oxy)methyl)nonanamide (2.337). Amide 2.336 (180 mg, 0.232 

mmol) was suspended in anhydrous ethyl acetate (23 mL) in a 50 mL round bottom flask. 

10% palladium on activated carbon (62 mg, 0.058 mmol), was added and the flask was 

sealed and evacuated then filled with argon (3 x). The flask was then evacuated and 

refilled with hydrogen (3 x) from a balloon. The reaction was stirred for 8 h at room 

temperature until reaction was complete by TLC. The mixture was filtered through celite 

and washed through liberally with ethyl acetate. The filtrate was condensed in vacuo to 

give alcohol 2.337 as a clear colorless oil that was carried on to the next step without 

further purification (158 mg, 99%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.77 (t, J = 7.2 Hz, 3H), 0.83-0.92 (m, 2H), 1.03-

1.08 (m, 33H), 1.33-1.40 (m, 1H),  1.41-1.47 (m, 1H), 1.59-1.65 (m, 2H), 1.84-1.90 (m, 

1H), 2.51 (d, J = 5.5 Hz, 2H), 2.68 (d, J = 2.7 Hz, 1H), 3.39 (s, 3H), 3.66-3.74 (m, 2H), 



302 
 

3.82  (dd, J = 10.9, 5.1 Hz, 1H), 3.88  (dd, J = 13.5, 6.1 Hz, 1H), 3.93-3.97 (m, 1H), 5.20 

(bs, 1H), 6.01 (bs, 1H),  7.35-7.44 (m, 6H), 7.67-7.72 (m, 4H). 

 

(3R,5S,6S,8S)-8-((tert-butyldiphenylsilyl)oxy)-3-methoxy-4-oxo-6-propyl-5-

(((triisopropylsilyl)oxy)methyl)nonanamide (2.338). Alcohol 2.337 (152 mg, 0.222 

mmol) was suspended in anhydrous dichloromethane (22 mL) in a flame-dried 50 mL 

round bottom flask with 4 angstrom molecular sieves (100 mg). The reaction was cooled 

to 0 
o
C and 4-methylmorpholine N-oxide (52 mg, 0.443 mmol) was added followed by 

tetrapropylammonium perruthenate (15.6 mg, 0.044 mmol). The reaction was warmed to 

room temperature and stirred for 2 h. Upon complete conversion as indicated by TLC, the 

mixture was filtered through celite and washed through liberally with dichloromethane. 

The filtrate was condensed in vacuo to give a dark green residue that was purified by 

flash chromatography (1:3 Hex/EtOAc) to give hydroxyketoamide 2.338 as a clear, 

colorless oil (129 mg, 85 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.67 (t, J = 6.8 Hz, 3H), 0.79-0.93 (m, 3H), 1.02 

(s, 30H), 1.09 (d, J = 6.1 Hz, 3H), 1.25 (ddd, J = 13.7, 8.1, 4.1 Hz, 2H), 1.41 (ddd, J = 

13.7, 8.9, 4.6 Hz, 1H), 1.65-1.73 (m, 1H), 2.37 (dd, J = 14.8, 8.1 Hz, 1H), 2.59 (dd, J =  

15.3, 4.1 Hz, 1H), 3.00 (ddd, J = 8.7, 6.8, 4.8 Hz, 1H), 3.38 (s, 3H), 3.70 (dd, J = 9.5, 4.7 

Hz, 1H), 3.78-3.83 (m, 2H), 4.17 (dd, J = 8.1, 4.0 Hz, 1H), 5.27 (bs, 1H), 5.86 (bs, 1H),  

7.34-7.43 (m, 6H), 7.65-7.68 (m, 4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 11.97, 
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14.52, 18.10, 18.76, 19.28, 22.83, 27.11, 32.26, 33.98, 37.04, 42.26, 53.06, 58.29, 63.55, 

68.24, 83.87, 127.67, 127.70, 129.68, 134.65, 135.98, 136.02, 171.99, 212.41. HRMS: 

C39H66NO5Si2, Calculated: [M+H]+, 684.4480, Found: [M+H]+, 684.4485. 

 

 

(4R,5R,7S,9S,10S)-4-methoxy-10-(methoxymethyl)-7-methyl-9-propyl-6-oxa-1-

azaspiro[4.5]decan-2-one (2.339).  Hydroxyketoamide 2.338 (68 mg, 0.099 mmol) was 

suspended in anhydrous methanol (30 mL). Concentrated HCl (0.026 mL, 0.3 mmol) was 

added at room temperature and the reaction was allowed to stir for 10 h. After this time 

the reaction was quenched by dropwise addition of NaHCO3 and extracted with ethyl 

acetate (3 x) The organic layers were combined, dried over Na2SO4, and condensed in 

vacuo to give a clear, colorless residue. The crude residue was purified by flash 

chromatograpy (1:6 Hex:EtOAc) to yield the desired marineosin model stereoisomer 

2.339 as a clear, colorless oil (22 mg, 82%).  
1
H NMR (CDCl3, 400 MHz)  (ppm): 0.89-

0.94 (m, 5H), 1.14-1.16 (m, 3H), 1.20 (d, J = 6.6 Hz, 3H), 1.93-1.96 (m, 1H), 2.34-2.37 

(m, 1H) 2.52 (m, 2H) 3.22 (dd, J = 10.4 , 4.4 Hz, 1H), 3.28-3.31 (m, 1H), 3.31  (s, 3H), 

3.44 (s, 3H), 3.74-3.79 (m, 1H), 4.15 (dd, J = 9.6, 8.0 Hz, 1H), 6.23 (bs, 1H). ). 
13

C 

NMR (CDCl3, 150 MHz)  (ppm): 14.0, 22.2, 26.0, 30.6, 35.2, 40.6, 55.9, 58.2, 62.0, 

65.4, 70.4, 72.7, 79.2, 90.3, 175.3.  
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(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-((4-methoxyphenoxy)methyl)non-8-en-1-yl Pivalate (2.342). A 15-20 mL 

microwave vial was charged with triphenylphosphine (298 mg, 1.14 mmol) in anhydrous 

tetrahydrofuran (18 mL) and cooled to 0 
o
C. 4-methoxy phenol (195 mg, 1.57 mmol) was 

added followed by dropwise addition of diisopropylazodicarboxylate (0.21 mL, 1.07 

mmol). The resulting solution was stirred at 0 
o
C for 15 min and alcohol 2.322 (300 mg, 

0.435 mmol) was added dropwise as a solution in tetrahydrofuran (1.8 mL). The reaction 

was warmed to room temperature, stirred for 15 minutes, and then transferred to a heating 

mantle preheated to 80 
o
C. After 0.5 h, the reaction was determined to be complete by 

TLC and was then cooled to room temperature and quenched with saturated NaHCO3. 

The mixture was extracted with ethyl acetate (3 x), dried over Na2SO4, and condensed in 

vacuo to give a pale yellow oil. This oil was purified by flash chromatography (13:7 

Hex:EtOAc) to provide the desired p-methoxyphenyl ether 2.342 as a clear, colorless oil 

(300 mg, 87%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.01 (s, 9H), 1.04 (d, J = 10.5 Hz, 3H), 1.12 (s, 

9H), 1.46 (quin, J = 6.9 Hz, 1H), 1.85-1.94 (m, 1H), 1.95-2.02 (m, 1H), 2.04-2.08 (m, 

1H), 2.18-2.29 (m, 2H), 3.35 (s, 3H), 3.49 (d, J = 9.4 Hz, 1H), 3.77 (s, 3H), 3.78-3.82 (m, 

1H), 3.87-3.97 (m, 1H), 3.99 (d,  J = 9.3 Hz, 1H), 4.20 (dd, J = 7.6, 5.4 Hz, 2H), 4.71 

(dd, J = 143.5, 11.6 Hz, 2H), 4.84-4.90 (m, 2H), 5.46-5.56 (m, 1H), 6.78 (dd, J =  28.8, 
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9.1 Hz, 4H), 7.24-7.40 (m, 11H), 7.65-7.68 (m, 4H).
13

C NMR (CDCl3, 150 MHz)  

(ppm): 19.29, 23.17, 27.16, 27.33, 28.88, 33.14, 35.71, 38.80, 42.25, 43.21, 55.92, 57.70, 

62.08, 66.39, 68.80, 74.11, 77.50, 80.70, 114.81, 115.29, 115.84, 127.46, 127.52, 127.64, 

127.97, 128.33, 129.52, 129.61, 134.55, 134.98, 136.05, 138.49, 139.08, 152.83, 154.04, 

178.67. HRMS: C49H66O7NaSi2, Calculated: [M+H]+, 817.4476, Found: [M+H]+, 

817.4479. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-((4-methoxyphenoxy)methyl)non-8-en-1-ol (2.343). p-Methoxyphenyl 

ether 2.342 (290 mg, 0.365 mmol) was suspended in anhydrous dichloromethane (36.5 

mL) in a 100 mL flame-dried round bottom flask and cooled to -78 
o
C. 

Diisobutylaluminum hydride (1.0 M in dichloromethane, 1.10 mL, 1.094 mmol) was 

added dropwise, and the resulting solution was stirred for 0.5 h until TLC indicated the 

reaction was complete. The reaction was quenched by addition of sodium potassium 

tartrate, warmed to room temperature, and stirred for 0.5 h until the organic layer was 

clear. The mixture was extracted with dichloromethane (3 x), dried over Na2SO4, and 

condensed in vacuo to give a clear oil. This oil was purified by flash chromatography 

(13:7 Hex:EtOAc) to provide the desired free primary alcohol 2.343 as a clear, colorless 

oil (240 mg, 93%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.00 (s, 9H), 1.04 (d, J = 10.1 Hz, 3H), 1.45 (quin, 
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J = 7.0 Hz, 1H), 1.62-1.70 (m, 2H), 1.77-1.84 (m, 1H), 1.98-2.10 (m, 2H), 2.19-2.25 (m, 

2H), 2.59 (dd, J = 7.1, 4.0 Hz, 1H), 3.38 (s, 3H), 3.61 (d, J = 8.6 Hz, 1H), 3.73-3.83 (m, 

4H), 3.77 (s, 3H), 3.92-3.98 (m, 2H), 4.70 (dd, J = 146.2, 11.6 Hz, 2H), 4.85-4.90 (m, 

2H), 5.46-5.56 (m, 1H), 6.79 (dd, J =  33.3, 9.2 Hz, 4H), 7.24-7.41 (m, 11H), 7.65-7.68 

(m, 4H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.29, 23.22, 27.14, 31.59, 33.05, 35.53, 

42.12, 43.35, 55.90, 57.22, 61.37, 66.59, 68.79, 74.15, 77.35, 84.28, 114.84, 115.27, 

115.94, 127.52, 127.55, 127.62, 128.05, 128.36, 129.52, 129.59, 134.55, 134.96, 136.04, 

138.29, 138.84, 152.70, 154.09. HRMS: C44H59O6Si, Calculated: [M+H]+, 711.4081, 

Found: [M+H]+, 711.4080. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-((4-methoxyphenoxy)methyl)non-8-enal. Alcohol 3.343 (220 mg, 0.309 

mmol) was suspended in CH2Cl2/DMSO (4:1 v/v, 15.5 mL) in a 50 mL flame-dried 

round bottom flask and cooled to 0 
o
C. Triethylamine (0.43 mL, 3.09 mmol) was added 

followed by addition of sulfur trioxide pyridine complex (197 mg, 1.24 mmol) in 2 

portions. The resulting solution was stirred for 5 h at 0 
o
C, quenched by addition water, 

extracted with dichloromethane (3 x), dried over Na2SO4, and condensed in vacuo to give 

a pale yellow oil. This oil was purified by flash chromatography (3:1 Hex:EtOAc) to 

provide aldehyde 2.344 as a clear, colorless oil (200 mg, 91%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.01 (s, 9H), 1.04 (d, J = 6.7 Hz, 3H), 1.45 (quin, J 
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= 6.9 Hz, 1H), 1.62-1.71 (m, 2H), 2.01-2.06 (m, 1H), 2.15-2.20 (m, 2H), 2.55-2.63 (m, 

1H), 2.78 (ddd, J = 16.8, 8.0, 2.6 Hz, 1H), 3.35 (s, 3H), 3.73 (dd, J = 10.0, 6.3 Hz, 1H), 

3.77 (s, 3H), 3.84 (dd, J = 10.0, 3.2 Hz, 1H), 3.90-3.98 (m, 3H), 4.69 (dd, J = 126.4, 11.6 

Hz, 2H), 4.83-4.89 (m, 2H), 5.42-5.52 (m, 1H), 6.79 (dd, J =  35.2, 9.0 Hz, 4H), 7.24-

7.41 (m, 11H), 7.64-7.68 (m, 4H), 9.79 (t, J = 2.0 Hz, 1H).
13

C NMR (CDCl3, 150 MHz) 

 (ppm): 19.30, 23.16, 27.16, 32.85, 35.36, 41.92, 43.58, 44.24, 55.91, 57.39, 66.32, 

68.75, 74.31, 78.44, 79.65, 114.85, 115.31, 116.14, 127.55, 127.64, 127.65, 128.05, 

128.40, 129.57, 129.64, 134.56, 134.90, 136.04, 137.93, 138.63, 152.61, 154.13, 201.81. 

HRMS: C44H56O6NaSi, Calculated: [M+H]+, 731.3744, Found: [M+H]+, 731.3745. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-((4-methoxyphenoxy)methyl)non-8-enoic acid (2.345). To a stirring 

solution of aldehyde 2.344 (195 mg, 0.275 mmol) in tert-butanol (14 mL) was added 2-

methyl-2-butene (0.29 mL, 2.75 mmol). In a separate vial, monobasic sodium phosphate 

(289 mg, 2.09 mmol) was dissolved in water (14 mL) and sodium chlorite (187 mg, 2.06 

mmol) was added in 2 portions. The tert-butanol solution was cooled to 0 
o
C and the 

chlorite/phosphate solution in water was added dropwise. The resulting yellow solution 

was stirred at 0 
o
C for 1 h and was then quenched with saturated sodium thiosulfate and 

acidified to pH = 3. The aqueous solution was then extracted with ethyl acetate (4 x), 

dried over Na2SO4, and concentrated in vacuo to give a clear oil. This oil was purified by 
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flash chromatography (1:1 Hex:EtOAc) yielding carboxylic acid 2.345 as a clear, 

colorless oil (188 mg, 96%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.00 (s, 9H), 1.02 (d, J = 6.2 Hz, 3H), 1.42-1.49 

(m, 2H), 1.62-1.71 (m, 2H), 2.01-2.07 (m, 1H), 2.15-2.20 (m, 2H), 2.66 (dd, J = 16.3, 3.3 

Hz, 1H), 2.78 (dd, J = 16.2, 8.6 Hz, 1H), 3.40 (s, 3H), 3.73 (dd, J = 9.8, 6.0 Hz, 1H), 3.77 

(s, 3H), 3.85 (dd, J = 9.8, 3.1 Hz, 1H), 3.88-3.99 (m, 3H), 4.70 (dd, J = 131.4, 11.6 Hz, 

2H), 4.85-4.90 (m, 2H), 5.42-5.53 (m, 1H), 6.79 (dd, J =  25.7, 9.0 Hz, 4H), 7.27-7.41 

(m, 11H), 7.65 (d, J = 7.6 Hz, 4H). 
13

C NMR (CDCl3, 150 MHz)  (ppm): 19.28, 23.17, 

29.85, 32.86, 34.83, 35.37, 41.97, 43.49, 55.90, 57.58, 66.19, 68.70, 74.57, 77.85, 80.78, 

114.83, 115.36, 116.20, 127.56, 127.67, 127.74, 128.13, 128.44, 129.58, 129.67, 134.51, 

134.88, 136.03, 136.05, 137.90, 138.39, 152.59, 154.16, 173.69. HRMS: C44H57O7Si, 

Calculated: [M+H]+, 725.3874, Found: [M+H]+, 725.3874. 

 

(3R,4R,5S,6S)-4-(benzyloxy)-6-((S)-2-((tert-butyldiphenylsilyl)oxy)propyl)-3-

methoxy-5-((4-methoxyphenoxy)methyl)non-8-enamide (2.346). Carboxylic acid 

2.345 (170 mg, 0.234 mmol) was suspended in N,N-dimethylformamide (2.5 mL). 1-

Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (135 mg, 0.703 mmol) and 

1-Hydroxybenzotriazole (95 mg, 0.703 mmol) were added subsequently at room 

temperature, followed by addition of diisopropylethylamine (0.33 mL, 1.875 mmol) and 

ammonium chloride (50 mg, 0.937 mmol). The resulting solution was stirred for 6 h at 
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room temperature until TLC indicated complete conversion. The reaction was quenched 

by addition of water, extracted with dichloromethane (3 x), dried over Na2SO4, and 

condensed in vacuo to give a pale yellow residue. This residue was purified by flash 

chromatography (1:1 Hex/EtOAc then 1:3 Hex/EtOAc) to give amide 2.346 as a clear 

colorless oil (156 mg, 92%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.01 (s, 9H), 1.03 (d, J = 6.2 Hz, 3H), 1.45 (quin, J 

= 6.7 Hz, 1H), 1.64-1.72 (m, 2H), 2.00-2.05 (m, 1H), 2.13-2.25 (m, 2H), 2.47 (dd, J = 

15.7, 2.8  Hz, 1H), 2.56 (dd, J = 15.6, 8.5 Hz, 1H), 3.39 (s, 3H), 3.74-3.78 (m, 1H), 3.77 

(s, 3H), 3.83-3.90 (m, 2H), 3.93 (sex, J = 6.1 Hz, 1H), 4.00 (dd, J = 8.9, 1.6 Hz, 1H), 

3.88-3.99 (m, 3H), 4.70 (dd, J = 127.3, 11.6 Hz, 2H), 4.84-4.88 (m, 2H), 5.20 (bs, 1H), 

5.45-5.55 (m,  1H), 5.90 (bs, 1H), 6.80 (dd, J =  18.1, 9.2 Hz, 4H), 7.26-7.41 (m, 11H), 

7.64-7.66 (m, 4H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 19.31, 23.31, 27.17, 33.16, 

35.64, 36.81, 42.38, 43.40, 55.90, 57.47, 66.39, 68.74, 74.25, 77.37, 77.72, 81.19, 114.84, 

115.46, 116.02, 127.56, 127.61, 127.66, 127.96, 128.41, 129.56, 129.63, 134.63, 134.95, 

136.04, 138.19, 138.77, 152.70, 154.12, 174.19. HRMS: C44H58NO6Si, Calculated: 

[M+H]+, 724.4033, Found: [M+H]+, 724.4032. 

 

(3R,4R,5S,6S,8S)-8-((tert-butyldiphenylsilyl)oxy)-4-hydroxy-3-methoxy-5-((4-

methoxyphenoxy)methyl)-6-propylnonanamide (2.347). Amide 2.346 (154 mg, 0.213 

mmol) was suspended in anhydrous ethyl acetate (16 mL) in a 15-20 mL microwave vial. 
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10% Palladium on activated carbon was added and the vial was sealed and evacuated 

then filled with argon (3 x). The vial was then evacuated and refilled with hydrogen (3 x) 

from a balloon fit with a needle adapter and needle to pierce the septum. The reaction 

was stirred for 8 h at room temperature until reaction was complete by TLC. The mixture 

was filtered through celite and washed through liberally with ethyl acetate. The filtrate 

was condensed in vacuo to give alcohol 2.347 as a clear colorless oil that was carried on 

to the next step without further purification (132 mg, 98%).  

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.83 (t, J = 7.32 Hz, 3H), 1.04 (s, 9H), 1.07 (d, J = 

6.1 Hz, 3H), 1.37-1.49 (m, 2H), 1.63 (dt, J = 13.4, 5.6 Hz, 1H), 1.89-1.94 (m, 1H), 2.08-

2.15 (m, 1H), 2.32 (d, J = 2.6 Hz, 1H), 2.47 (dd, J = 14.8, 8.8 Hz, 1H), 2.57 (dd, J = 15.2, 

2.9 Hz, 1H), 2.38 (s, 3H), 3.69 (dd, J = 9.7, 7.5 Hz, 1H), 3.73-3.77 (m, 1H), 3.76 (s, 1H),  

3.87 (dd, J = 9.9, 3.0 Hz, 1H), 3.91 (sex, J = 6.2 Hz, 1H), 4.01 (dt, J = 9.4, 2.8 Hz, 1H),  

(quin, J = 6.7 Hz, 1H), 5.23 (bs, 1H), 5.81 (bs, 1H), 6.80 (s, 4H), 7.34-7.42 (m, 6H), 

7.67-7.72 (m, 4H). 
13

C NMR (CDCl3, 150 MHz)  (ppm): 14.64, 19.35, 21.31, 23.77, 

27.17, 29.84, 32.79, 32.82, 35.61, 42.64, 43.52, 55.89, 57.31, 66.73, 68.82, 70.44, 80.45, 

114.82, 115.31, 127.51, 127.63, 129.53, 129.62, 134.50, 135.05, 136.09, 136.14, 152.74, 

154.10, 174.09. HRMS: C37H54NO6Si, Calculated: [M+H]+, 636.3720, Found: [M+H]+, 

636.3723. 

 

(3R,5S,6S,8S)-8-((tert-butyldiphenylsilyl)oxy)-3-methoxy-5-((4-methoxyphenoxy) 
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methyl)-4-oxo-6-propylnonanamide (2.348) Alcohol 2.347 (128 mg, 0.201 mmol) was 

suspended in anhydrous dichloromethane (20 mL) in a flame-dried 50 mL round bottom 

flask with 4 angstrom molecular sieves (150 mg). The reaction was cooled to 0 
o
C and 4-

methylmorpholine N-oxide (48 mg, 0.403 mmol) was added followed by 

tetrapropylammonium perruthenate (7.1 mg, 0.0201 mmol) and the reaction was stirred 

for 1 h at 0 
o
C. After 1 h, the solution was warmed to room temperature and stirred for 3 

h when complete conversion was indicated by TLC. The mixture was filtered through 

celite and washed through liberally with dichloromethane. The filtrate was condensed in 

vacuo to give a dark green residue that was purified by flash chromatography (1:3 

Hex/EtOAc) to give hydroxyketoamide 2.348 as a clear, colorless oil (112 mg, 88 %). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.71 (t, J = 7.1 Hz, 3H), 0.85- 0.98 (m, 3H), 1.03 

(s, 9H), 1.09-1.20 (m, 2H), 1.12 (d, J = 6.1 Hz, 3H), 1.37-1.49 (m, 2H), 1.34 (ddd, J = 

13.7, 7.8, 5.2 Hz, 1H), 1.49 (ddd, J = 13.4, 8.3, 5.2 Hz, 1H), 1.82-1.90 (m, 1H), 2.45 (dd, 

J = 14.7, 7.8 Hz, 1H), 2.62 (dd, J = 15.0, 4.6 Hz, 1H), 3.35- 3.43 (m, 1H), 3.38 (s, 3H), 

3.75 (s, 1H), 3.85-3.91 (m, 2H), 4.06 (t, J = 8.8 Hz, 1H),  4.24 (dd, J = 7.5, 4.7 Hz, 1H),  

5.25 (bs, 1H), 5.80 (bs, 1H), 6.76 (dd, J = 23.0, 8.4 Hz, 4H), 7.34-7.42 (m, 6H), 7.66-

7.68 (m, 4H). 
13

C NMR (CDCl3, 150 MHz)  (ppm): 14.50, 19.03, 19.26, 22.84, 27.10, 

27.14, 32.37, 34.11, 37.00, 42.06, 49.94, 55.84, 58.28, 68.18, 68.30, 83.50, 114.78, 

115.59, 127.66, 127.71, 129.70, 129.71, 134.55, 135.98, 136.00, 152.61, 154.26, 171.86, 

211.75. HRMS: C37H52NO6Si, Calculated: [M+H]+, 634.3564, Found: [M+H]+, 

634.3560. 
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(R)-methyl 3-methoxy-3-((2S,4S)-5-(methoxymethyl)-2-methyl-4-propyl-3,4-dihydro 

-2H-pyran-6-yl)propanoate (2.350). Hydroxyketoamide 2.348 was suspended (53 mg, 

0.0836 mmol) in anhydrous methanol (25 mL) in a 100 mL round bottom flask. 

Concentrated hydrochloric acid (0.041 mL, 0.502 mmol) was added dropwise at room 

temperature and the resulting solution was stirred for 16 h until TLC confirmed complete 

conversion. The mixture was quenched with NaHCO3 and extracted with 

dichloromethane (3 x). The organic layers were combined, dried over Na2SO4, and 

condensed in vacuo to give a pale yellow oil. The crude oil was purified by flash 

chromatograpy (1:2 Hex:EtOAc) to yield the undesired elimination product 2.250 as a 

clear, colorless oil (19.3 mg, 77%).   

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.91 (t, J = 7.2 Hz, 3H), 1.09-1.25 (m, 2H), 1.29 

(d, J = 6.0 Hz, 3H), 1.37-1.49 (m, 2H), 1.51-1.58 (m, 1H), 1.71 (dt, J = 13.7, 2.0 Hz, 

1H), 2.14-2.19 (m, 1H), 2.57 (dd, J = 15.1, 5.5 Hz, 1H), 2.78 (dd, J = 15.1, 8.0 Hz, 1H) 

3.30 (s, 3H), 3.32 (s, 3H),  3.66 (s, 3H), 3.84-3.90 (m, 1H), 3.95 (dd, J = 33.1, 11.5 Hz, 

2H),  4.54 (dd, J = 8.0, 5.7 Hz, 1H). 
13

C NMR (CDCl3, 150 MHz)  (ppm): 14.33, 20.46, 

21.32, 32.76, 33.29, 36.58, 38.86, 51.75, 56.38, 57.95, 67.83, 69.69, 73.60, 112.64, 

149.07, 171.88. 
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5.3. Total Synthesis of Tambjamine K and a Library of Unnatural Analogs. 

 

 

(E)-N-((5-bromo-3-methoxy-2H-pyrrol-2-ylidene)methyl)-N-ethylethanamine (3.17). 

A 100 mL round bottom flask was charged with N,N-diethylformamide (2.86 g, 28.29 

mmol) and 23 mL of dichloromethane. The mixture was cooled to 0 
o
C, and a solution of 

phosphorous oxybromide (10.14 g, 35.36 mmol) in dichloromethane (7 mL) was added 

slowly over 20 minutes. After addition was complete, the reaction mixture was stirred for 

an additional 20 minutes. A solution of 4-methoxy-3-pyrrolin-2-one (7) (2.00 g, 17.68 

mmol) in dichloromethane (18 mL) was added dropwise over 10 minutes, and the 

mixture was stirred for an additional 20 minutes. The flask was then removed from the 

ice bath, transferred to an oil bath, and refluxed (42 
o
C) for 3.5 hours. The reaction 

mixture was then transferred to a 500 mL round bottom flask, cooled to 0 
o
C, and 

quenched by dropwise addition of water (20 mL). Sodium hydroxide (3.0 M in H2O, 230 

mL) was slowly added and the mixture was stirred for an additional 20 minutes. The 

layers were separated and the aqueous layer was extracted with dichloromethane (3 x). 

The combined organic layers were dried over sodium sulfate and concentrated in vacuo. 

The resulting yellow oil was subjected to flash chromatography (4:1 Hex:EtOAc) to give 

3.16 as a tan solid (2.67 g, 59%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.29 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 

3.40 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 4.13 (q, J = 7.2 Hz, 2H), 5.59 (s, 1H), 6.99 (s, 1H). 
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13
C NMR (CDCl3, 100 MHz)  (ppm): 12.4, 14.5, 44.5, 51.0, 57.9, 96.4, 120.7, 133.6, 

138.5, 165.3. IR (KBr) max 2975, 2934, 1629, 1529, 1408, 1290, 1264, 1195, 1116, 

1072, 906, 737 cm
-1

.  HRMS: C10H16N2OBr, Calculated: [M+H]+, 259.0446, Found: 

[M+H]+, 259.0448. 

     

tert-butyl 5'-formyl-4'-methoxy-1H,1'H-2,2'-bipyrrole-1-carboxylate (3.19). 

Pd(PPh3)4 was generated in situ by adding triphenylphosphine (1.22 g, 4.64 mmol) to a 

magnetically stirred suspension of Palladium II Acetate (0.23 g, 1.03 mmol) in degassed 

toluene (5.0 mL) then heating the ensuing mixture at 70 
o
C for 20 minutes under an 

atmosphere of argon. A solution of N-Boc-pyrrole-2-boronic acid (3.26 g, 15.46 mmol) 

and bromoenamine 3.17 (2.67 g, 10.31 mmol) in H2O/1,4-dioxane (1:9 v/v, 86 mL) was 

degassed, purged with argon gas and added to the solution of Pd(PPh3)4 in toluene. 

Anhydrous sodium carbonate (3.28 g, 30.93 mmol) was added and the reaction mixture 

stirred at 85 
o
C. After 3.5 hours, the mixture was cooled and poured into water (150 mL). 

The solution was reduced to pH 7 using 2 M HCl, partitioned with dichloromethane, and 

extracted (4 x). The organic layers were combined, dried over sodium sulfate, and 

condensed in vacuo to give a brown residue that was purified by flash chromatography 

(4:1 Hex:EtOAc) affording aldehyde 3.19 as an orange solid (1.44 g, 48%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 1.61 (s, 9H), 3.88 (s, 3H), 6.07 (d, J = 3.5 Hz, 1H), 

6.24 (t, J = 3.5 Hz, 1H) 6.66 (dd, J = 3.5 Hz, 1.76 Hz, 1H), 7.33 (dd, J = 3.4, 1.80 Hz, 

1H), 9.53 (s, 1H), 10.73 (bs, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 27.8, 57.8, 85.7, 
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94.7, 111.4, 116.8, 118.2, 124.5, 125.9, 130.2, 149.6, 157.6, 174.3. IR (KBr) max 3221, 

2979, 2833, 1735, 1623, 1549, 1502, 1433, 1370, 1330, 1287, 1255, 1140, 1021 cm
-1

. 

HRMS: C15H19N2O4, Calculated: [M+H]+ 291.1345, Found: [M+H]+ 291.1345. 

 

Tambjamine K (3.14).  Isopentylamine (36.0 mg, 0.414 mmol) was added to a stirred 

suspension of aldehyde 3.19 (100 mg, 0.345 mmol) in methanol (5.0 mL) at room 

temperature, followed by 0.87 M HCl in methanol (0.6 mL). After 6 hours, the reaction 

was quenched with saturated sodium bicarbonate, extracted with dichloromethane (3 x), 

and washed with brine (1 x). The organic layers were combined, dried over anhydrous 

sodium sulfate, and concentrated in vacuo to give a dark brown residue. This residue was 

purified by reverse phase chromatography using acetonitrile and 0.1% TFA/water 

(gradient: 15:85 to 55:45) to give Tambjamine K as an orange oil that solidified upon 

standing (58 mg, 65%). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 0.95 (d, J = 6.8 Hz, 6H), 1.62 (q, J = 6.8 Hz, 2H), 

1.71 (m, 1H), 3.48 (q, J = 6.8 Hz, 2H), 3.93 (s, 3H), 5.98 (d, J = 2.4 Hz, 1H), 6.28 (m, 

1H), 6.75 (m, 1H), 7.09 (m, 1H), 7.33, (d, J = 15.2 Hz), 9.93 (s, 1H). 
13

C NMR (CDCl3, 

100 MHz)  (ppm): 22.1, 25.2, 38.7, 49.2, 58.3, 91.5, 110.5, 110.6, 113.6, 122.2, 124.5, 

140.0, 143.2, 164.0. IR (KBr) max 3234, 2960, 2917, 1674, 1605, 1529, 1463, 1428, 

1368, 1203, 1137, 968, 728, 721 cm
-1

. HRMS: C15H22N3O, Calculated: [M+H]+, 

260.1763, Found: [M+H]+, 260.1764. 
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General method for the synthesis of tambjamine unnatural analogs (3.21): primary 

amine (0.517 mmol) was added to a stirred suspension of aldehyde 16 (30 mg, 0.103 

mmol) in methanol (2.0 mL) at room temperature. 0.87 M HCl in methanol (0.6 mL) was 

subsequently added, and the reaction was stirred for 24 h. Reactions that had not reached 

completion by this time were stirred at 50 
o
C for an additional 24 h period. Reaction 

mixtures were concentrated, and crude compounds were purified by reverse phase 

chromatography using acetonitrile and 0.1% TFA/water to give tambjamine unnatural 

analogs 3.21 in yields ranging from 35–88%. 

 

 

 

 (Z)-N-benzyl-1-(4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene)methanamine (3.21u). 

1
H NMR (CDCl3, 400 MHz)  (ppm): 3.91 (s, 3H), 4.61 (d,  J = 6.0 Hz, 2H), 5.97 (d,  J 

= 1.9 Hz, 1H), 6.28-6.30 (m, 1H), 6.76 (s, 1H), 7.10 (s, 1H), 7.33-7.42 (m, 6H), 10.44 

(bs, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 54.11, 58.56, 91.93, 110.91, 111.39, 

114.36, 122.41, 125.04, 128.18, 128.67, 129.35, 135.88, 139.83, 144.18, 164.68. IR 

(KBr) max 3235, 3116, 3034, 2931, 1683, 1603, 1532, 1203, 1163, 1137, 1119, 749 cm
-1

. 

HRMS: C17H18N3O, Calculated: [M+H]+ 280.1450, Found: [M+H]+ 280.1450. 
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(Z)-N-((4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene)methyl)-1,2,3,4-tetrahydro 

naphthalen-1-amine (3.21b). 
1
H NMR (CDCl3, 400 MHz)  (ppm): 1.83-1.91 (m, 2H), 

1.94-2.00 (m, 2H), 2.12-2.17 (m, 2H), 2.75-2.82 (m, 1H), 2.88-2.96 (m, 1H), 3.89 (s, 

3H), 4.75 (q,  J = 5.8 Hz, 1H), 5.97 (d,  J = 1.9 Hz, 1H), 6.26-6.28 (m, 1H), 6.74-6.75 (m, 

1H), 7.09-7.10 (m, 1H), 7.18-7.30 (m, 6H), 10.09 (bs, 1H). 
13

C NMR (CDCl3, 100 MHz) 

 (ppm): 18.54, 28.66, 30.56, 58.24, 91.62, 110.51, 110.73, 113.83, 122.19, 124.73, 

126.46, 128.44, 129.05, 129.73, 132.28, 138.08, 138.31, 143.44, 164.16. HRMS: 

C20H22N3O, Calculated: [M+H]+ 320.1763, Found: [M+H]+ 320.1760. 

 

(Z)-1-cyclopropyl-N-((4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene)methyl) 

methanamine (3.21d). 
1
H NMR (CDCl3, 400 MHz)  (ppm): 0.36 (q. J = 5.6 Hz, 2H), 

0.67 (q, J = 5.6 Hz, 2H), 1.07-1.17 (m, 1H), 3.32 (t, J = 6.4 Hz, 2H), 3.93 (s, 3H), 5.98 

(d,  J = 1.8 Hz, 1H), 6.27-6.29 (m, 1H), 6.75 (s, 1H), 7.10 (s, 1H), 7.39 (d,  J = 15.0 Hz, 

1H), 10.04 (bs, 1H). 
13

C NMR (CDCl3, 100 MHz)  (ppm): 3.90, 11.13, 55.68, 58.54, 

91.80, 110.75, 110.88, 113.90, 122.51, 124.73, 139.87, 143.51, 164.34. IR (KBr) max 

3243, 3013, 2932, 1682, 1606, 1531, 1429, 1245, 1204, 1165, 1138, 967, 834, 720 cm
-1

. 

HRMS: C14H18N3O, Calculated: [M+H]+ 244.1450, Found: [M+H]+ 244.1442. 
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(Z)-N-((4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene)methyl)-2,3-dihydro-1H-

inden-2-amine (3.21e). 
1
H NMR (CDCl3, 400 MHz)  (ppm): 3.21 (dd,  J = 15.7, 7.0 

Hz, 2H), 3.36 (dd,  J  =15.7, 7.0 Hz, 2H), 3.93 (s, 3H), 4.37 (sex,  J  = 7.0 Hz, 1H), 5.98 

(d,  J = 2.4 Hz, 1H), 6.27-6.29 (m, 1H), 6.76 (s, 1H), 7.10 (s, 1H), 7.20-7.26 (m, 5H), 

7.42 (d,  J  = 15.0 Hz, 1H), 10.13 (bs, 1H).
13

C NMR (CDCl3, 100 MHz)  (ppm): 39.80, 

58.58, 61.39, 91.92, 110.86, 111.29, 114.31, 122.40, 124.85, 125.09, 127.42, 138.57, 

139.72, 144.06, 164.51. IR (KBr) max 3237, 3027, 2924, 1685, 1684, 1601, 1530, 1431, 

1363, 1293, 1201, 1135, 1119, 966, 752, 721 cm
-1

. HRMS: C19H20N3O, Calculated: 

[M+H]+306.1606, Found: [M+H]+ 306.1598. 

 

(Z)-N-((4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene)methyl)-2-(pyridin-2-yl) 

ethanamine (3.21i) 
1
H NMR (CDCl3, 400 MHz)  (ppm): 3.23 (t, J  = 7.0 Hz, 2H), 3.88 

(s, 3H), 3.98 (t,  J = 7.0 Hz, 2H), 5.91 (s, 1H), 6.26 (s, 1H), 6.72 (s, 1H), 7.05 (s, 1H), 

7.15 (dd,  J  = 7.4, 5.0 Hz, 1H), 7.28 (s, 1H), 7.61 (td,  J = 7.5, 1.6 Hz, 1H), 8.56 (d,  J = 

5.0 Hz, 1H), 9.63 (bs, 1H), 10.84 (bs, 1H).  13
C NMR (CDCl3, 100 MHz)  (ppm): 38.18, 

50.07, 58.59, 91.33, 110.88, 110.99, 113.45, 122.14, 122.78, 124.38, 124.48, 136.98, 

140.85, 142.76, 149.70, 157.20, 164.13. IR (KBr) max 3184, 3098, 2926, 2850, 1662, 
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1601, 1528, 1550, 1457, 1312, 1186, 1136, 747 cm
-1

. HRMS: C17H19N4O, Calculated: 

[M+H]+ 295.1559, Found: [M+H]+ 295.1555. 

 

(Z)-N-(2,3-difluorobenzyl)-1-(4'-methoxy-1H,5'H-[2,2'-bipyrrol]-5'-ylidene) 

methanamine (3.21t). 
1
H NMR (CDCl3, 400 MHz)  (ppm): 3.93 (s, 3H), 4.67 (d,  J = 

6.0 Hz, 2H), 5.98 (d,  J  = 2.2 Hz, 1H), 6.28-6.30 (m, 1H), 6.77-6.79 (m, 1H), 7.10-7.22 

(m, 4H), 7.39 (d,  J  = 14.6 Hz, 1H), 10.32 (bs, 1H). 
13

C NMR (CDCl3, 100 MHz)  

(ppm): 47.45, 58.66, 92.06, 111.06, 111.66, 114.79, 117.86, 118.03, 122.31, 125.18, 

125.34, 139.62, 144.78, 165.10. IR (KBr) max 3236, 3117, 3017, 2933, 1683, 1601, 

1533, 1494, 1202, 1138, 957, 756, 748, 721 cm
-1

. HRMS: C17H16N3OF2, Calculated: 

[M+H]+ 316.1261, Found: [M+H]+ 316.1263. 

 

 

Viability assay method: SW620 and H520 cells (2.5 x 10
4
/100 l) were seeded in 96-well 

microtiter plates prior to treatment. Cells were treated with 10 M concentration of 

synthesized compound in quadruplicate for 24 h and 48 h in RPMI 1640 Supplemented 

media and 100 g/ml penicillin–streptomycin. The Quick Cell Proliferation Assay Kit 

from BioVision (Mountain View, CA) was used to measure proliferation. The RPMI 

media is removed and replaced with 100 l of the WST-1/ECS reagent diluted 1:10 in 

RPMI Supplemented media. The plates are incubated for 1 h at 37
o
C in 5% CO2 in the 
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air. The change in proliferation is quantified by measuring the absorbance of the dye 

solution at 450 nm on a microtiter plate reader.  

 

Invasion assay method: SW620 cells (1.0 x 10
6
/ml) were seeded in 6 mm round dish prior 

to treatment. Cells were treated with 10 M concentration of synthesized compound for 

24 h in RPMI 1640 supplemented media and 100 g/ml penicillin–streptomycin. 40 l 

(2.5 mg/ml) of BD Matrigel Basement Membrane Matrix (BD Biosciences, Bedford, 

MA) was added to the top of insert of 24-well transwell permeable support plates with 

polycarbonate membrane (Corning Inc, Corning, NY). Then the cells were trypsinized 

and 3 x 10
5
/250 l cells were added to the top of the chamber in serum free RPMI media, 

and 1 ml of RPMI media with 10% FBS was added to the bottom of the well. Then the 

plates were incubated for 72 h at 37
o
C in 5% CO2 in the air. Then the wells were stained 

with 1% crystal violet in 50% methanol for 1 h and washed in PBS. The membrane was 

cut off, adhered to a slide with glycerol, and analyzed in 20x field via microscopy. 3–20x 

fields were quantified per membrane. 

 

 

 

 

 

 

 

 



321 
 

5.4. Technology Enabled Synthesis and Biological Evaluation of 3,6-disubstituted-  

       [1,24]-triazolo[4,3-b] pyridazines as M1 Antagonists for Treatment of Dystonias 

 

Typical MAOS experimental for 6-chloro-3-p-tolyl-[1,2,4]-triazolo-[4,3-b] pyridazine 

(4.13e). (Method A) To a 5 mL microwave reaction vessel were added 3,6-

dichloropyridazine (100 mg, 0.671 mmol) and p-toluic hydrazide (111 mg, 0.738 mmol) 

in a 3.0 mL solution of 5% AcOH/EtOH. The vial was irradiated in a microwave 

synthesizer at 150 
o
C for 10 min. LCMS (single peak, 2.91 min, m/e, 245.1 (M+1)) 

indicated that all starting material had been consumed affording 131 mg (80%) of 6-

chloro-3-p-tolyl-[1,2,4]triazolo[4,3-b]-pyridazine as a white solid following column 

purification. (Method B) To a 5 mL microwave reaction vessel were added 3,6-

dichloropyridazine (100 mg, 0.671 mmol) and p-toluic hydrazide (111 mg, 0.738 mmol) 

in a 3.0 mL solution of 5% 4 N HCl/EtOH. The vial was irradiated in a microwave 

synthesizer at 150 
o
C for 10 min. LCMS (single peak, 2.91 min, m/e, 245.1 (M+1)) 

indicated that all starting material had been consumed affording 156 mg (95%) of 6-

chloro-3-p-tolyl-[1,2,4]triazolo[4,3-b]pyridazine as a white solid following a silica plug 

and concentration in vacuo.  

1
H NMR  (DMSO-d6, 600 MHz)   (ppm):  2.41 (s, 3H), 7.43 (d, J = 8 Hz, 2H), 7.53 (d, 

J = 9.7 Hz, 1H), 8.19 (d, J = 8.2 Hz, 2H), 8.52 (d, J = 9.7 Hz, 1H); 
13

C NMR (DMSO-d6, 

150 MHz)  (ppm): 21.1, 122.5, 122.8, 127.1, 127.3, 129.5, 140.3, 143.8, 146.8, 149.1; 

LC–MS: single peak, 2.91 min, m/e, 245.1 (M+1). 

 

Typical MAOS experimental for N-(4-methoxybenzyl)-3-p-tolyl-[1,2,4]triazolo[4,3-

b]pyridazin-6-amine. To a 5 mL microwave reaction vessel were added 6-chloro-3-p-
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tolyl- [1,2,4]-triazolo-[4,3-b]pyridazine (50 mg, 0.205 mmol) and 4-methoxy-benzyl 

amine (35 L 6 mmol) in 3.0 ml of ethanol. The vial was heated in a microwave 

synthesizer to 170 
o
C for 25 min. Preparative LCMS afforded 51.6 mg (73%) of N-(4-

methoxybenzyl)-3-p-tolyl-[1,2,4]-triazolo-[4,3-b]pyridazin-6-amineas a white solid.  

1
H NMR (DMSO-d6, 600 MHz)  (ppm): 2.38 (s, 3H), 3.71 (s, 3H), 4.41 (d, J = 5.5 Hz, 

2H), 6.88 (d, J = 9.9 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 6.7 Hz, 2H), 7.36 (d, 

J = 8.5 Hz, 2H), 7.97 (d, J = 9.8 Hz, 1H), 8.21 (d, J = 8.2 Hz, 2H). 
13

C NMR (DMSO-d6, 

150 MHz)  (ppm): 21.5, 44.7, 55.5, 114.2, 117.0, 124.4, 124.6, 127.0, 129.3, 129.6, 

130.9, 139.4, 143.8, 146.3, 154.1, 158.8; LC–MS: single peak, 3.00 min, m/e, 346.2 

(M+1). 
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Appendix A1: 

 

Spectra Relevant to Chapter 2 
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Appendix A2: 

 

Spectra Relevant to Chapter 3 

 

 

 

 

 






































