
A HIGH-ORDER IMMERSED-BOUNDARY METHOD

FOR SIMULATION OF INCOMPRESSIBLE FLOWS

BY

Chi Zhu

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Mechanical Engineering

August, 2014

Nashville, Tennessee

Approved:

Haoxiang Luo, Ph.D.

D. Greg Walker, Ph.D.

Prodyot K. Basu, Ph.D.

ACKNOWLEDGMENTS

I have had two wonderful years at Vanderbilt University. I would like to use this

chance to express my gratitude to those who have helped me during this period of time.

First, I want to thank my advisor, Dr. Haoxiang Luo. His support and wealth of

knowledge guided me through the obstacles in my research. He was also willing to

share his experience as a graduate student with me to help me choose the best career

path. When I was making one of hardest decisions in my life, switching from the PhD

program to the Master program, he was there providing suggestions and support. I

really appreciate this. For the same reason, I would like to thank Dr. Jon Edd, Dr. Deyu

Li and Dr. Douglas LeVan for their great advice.

As a foreigner, it was not easy for me to fit in the life here. But I was lucky to have

Suzanne Weiss and my friend Qian Zhang with me all the way. Moreover, I owe my

gratitude to all my previous and current labmates Bo Yin, Hu Dai, Fangbao Tian, Guibo

Li, Jialei Song, Shiyuan Chang and Casey Brock. They not only helped me with my

research, but also made my life easier.

Being a teaching assistant for two years was a wonderful experience. I am sin-

cerely appreciative to the Mechanical Engineering Department for the finical support.

Also, thanks all my course supervisors, Dr. Ahad Nasab, Dr. Greg Walker, Dr. Jason

Valentine, and Dr. Amrutur Anilkumar, for their help.

I also want to thank my committee members, Dr. Haoxiang Luo, Dr. Greg Walker

and Dr. Prodyot Basu for their critiques and time commitment.

Last but not least, I offer my most sincere thanks to my parents and my sister. Their

love and support means the world to me!

ii

CONTENTS

Page

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . iv

Chapter

I Introduction . 1

1.1 Background . 1

1.2 Objectives . 5

1.3 Outline . 5

II Numerical approach . 7

2.1 Governing equations and the time-marching scheme 7

2.2 Compact finite-difference scheme . 8

2.3 Rate of convergence . 10

2.4 Immersed-boundary treatment . 11

2.5 A high-order method for the pressure Poisson equation 15

III One-dimensional tests . 21

3.1 One-dimensional advection-diffusion equation 21

3.2 One-dimensional Poisson equation . 27

3.3 Conclusion . 31

IV Two-dimensional numerical tests . 32

4.1 Least squares treatment . 32

4.2 A high-order Poisson solver for the interior points 35

4.3 Kovasznay flow . 36

4.4 Flow past a circular cylinder . 37

4.5 Conclusion . 42

V Conclusions . 43

5.1 Summary of present work . 43

5.2 Contributions of present work . 43

5.3 Directions for future work . 44

5.3.1 Improve some details of the program 44

5.3.2 Utilize the program to solve flapping wing problems 45

REFERENCES . 50

iii

LIST OF FIGURES

Figure Page

1.1 A 2D schematic showing a solid body immersed in the fluid region. . . . 2

2.1 A 2D schematic describing the previous second-order ghost-cell ap-

proach for treating the immersed boundary [9, 17]. 11

2.2 A 2D schematic describing the current least squares method for the im-

mersed boundary. 12

3.1 1D schematic describing the extrapolation method. 23

3.2 Steady state solution of the 1D advection-diffusion equation with N=99,

and compact finite-difference scheme along with quadratic polynomial

extrapolation. 24

3.3 Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: second-order central-difference scheme. Immersed boundary:

quadratic polynomial extrapolation. 25

3.4 Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: compact finite-difference scheme. Immersed boundary: N/A

(body-fitted grid and the one-sided scheme are used). 25

3.5 Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: compact finite-difference scheme. Immersed boundary: quadratic

polynomial extrapolation, m = 2. 26

3.6 Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: compact finite-difference scheme. Immersed boundary: cubic

polynomial extrapolation, m = 3. 26

3.7 Solution of the 1D Poisson equation with N=99, compact finite-difference

scheme and cubic polynomial extrapolation. 28

3.8 The reference case, of which the rate of convergence is shown. Interior

nodes: compact finite-difference scheme. Immersed boundary: N/A

(body-fitted grid). 29

3.9 Convergence rate the 1D Poisson equation test. Interior nodes: com-

pact finite-difference scheme. Immersed boundary: cubic polynomial

extrapolation, m = 3. 29

3.10 Convergence rate of the 1D Poisson equation test. Interior nodes: com-

pact finite-difference scheme. Immersed boundary: extrapolation with

a polynomial of fifth degree, m = 5. 31

4.1 The computational domain used to test the least squares immersed-

boundary treatment; the circle surrounding the grey area defines the

immersed boundary. 33

4.2 Rate of convergence of the least squares interpolation of function (4.1)

when the Dirichlet boundary condition is applied at the interior bound-

ary points. 34

4.3 Rate of convergence of the least squares interpolation of function (4.1)

when the Neumann boundary condition is applied at the interior bound-

ary points. 35

iv

4.4 Rate of convergence of the new Poisson solver with correction terms for

solving Eq. (4.4). 36

4.5 (a) Flow pattern of Kovasznay flow at Re=40. (b) L1, L2 and L∞ norms

of the error for the streamwise velocity u and transverse velocity v ver-

sus the grid spacing. 38

4.6 Convergence of the compact scheme combined with a previous second-

order immersed-boundary method where a linear extrapolation is used

to treat the immersed boundary. Plotted are the L1 and L2 norms of the

error for the streamwise velocity u and transverse velocity v versus the

grid spacing. 39

4.7 Error distribution of different velocity components on the 160 × 160

grid. (a) u-velocity; (b) v-velocity. The results from the 640 × 640 grid

are chosen as references. 40

4.8 Convergence of the high-order immersed-boundary method, where the

least squares method is applied at the immersed boundary. Plotted are

the L1, L2 and L∞ norms of the error for the streamwise velocity u and

transverse velocity v versus the grid spacing. 41

5.1 Rate of convergence of the incomplete least squares interpolation of

function (4.1) when the Dirichlet boundary condition is applied at the

interior boundary points. 46

5.2 Rate of convergence of the incomplete least squares interpolation of

function (4.1) when the Neumann boundary condition is applied at the

interior boundary points. 46

5.3 A schematic of the rigid wing during hovering flight. 47

5.4 Vorticity field of the domain with a flapping wing in one cycle. (a)

t = T ; (b) t = 5T

4
; (c) t = 6T

4
; (d) t = 7T

4
; (e) t = 2T 49

v

CHAPTER I

INTRODUCTION

1.1 Background

Fluid-structure interaction problems are very common in nature and in engineering

applications. Examples include blood flow, biological flying/swimming, morphing air-

planes, and parachute deployment, etc. One major obstacle of simulating such problems

is how to handle the fluid/solid interface. The most common method for such problems

is called Arbitrary Lagrangian-Eulerian (ALE) method, in which the governing equa-

tions are discretized on body-fitted grids that conform to the instantaneous geometry of

the solid surface. However, this method may require massive computational time spent

on coordinate transformation and grid-regenerating [1]. Worse still, for complex ge-

ometries and moving boundaries, quality control of the body-fitted mesh often becomes

a significant issue. A particular example is the unsteady aerodynamics involved in the

flapping wings of insects, birds, bats, and more recently, the biomimetic unmanned

aerial vehicles. Such wings typically involve complex kinematics, and the wing shape

is time-dependent and consists of important three-dimensional features due to active

and/or passive flexibility of the wing structure. Even though the Reynolds numbers

of these wings are several orders of magnitude lower than that of typical aircraft, the

numerical modeling of their aerodynamics often requires direct numerical simulations

(DNS) and is thus highly demanding. For this type of flow, the immersed-boundary

method has been popularly used [2, 3]. Here, we give a brief review of the immersed-

boundary method. Take the simulation of flow around a solid body shown in Fig. 1.1

for example. There are two boundaries defining the computational domain, the exterior

boundary, which surrounds the fluid region, and the interior boundary, which encloses

1

Figure 1.1: A 2D schematic showing a solid body immersed in the fluid region.

the solid body. The fluid/solid interface could be represented and traced explicitly by

a set of Lagrangian points, or implicitly by approaches like level-set method [4]. In

this work, we will use the Lagrangian points approach, as it is more commonly used

in fluid-structure interaction problems. In addition to the interface points, a structured

grid, typically a Cartesian grid, is defined on the whole domain, on which the governing

equation will be discretized and solved in an Eulerian fashion.

Since the immersed boundary generally does not coincide with the grid, the bound-

ary conditions at the interior boundary should be included in an unconventional way.

These boundary conditions are imposed through adding a source term or forcing func-

tion in the governing equations around the immersed boundary. According to Mittal &

Iaccarino’s definition in [3], the immersed-boundary method can be divided into two

categories based on how these source terms are applied. In the so-called “continuous

forcing approach”, the source term usually takes the form of a continuous distribution

2

function defined in a narrow region surrounding the physical boundary [2, 5], making

the boundary conditions “diffused” into the fluid region. The other type is called “dis-

crete forcing approach”, because the forcing terms are incorporated, after the governing

equations are discretized, at selected nodes only. In this type of implementations of

immersed-boundary method, the computational stencil around the immersed boundary

is modified according to the required boundary conditions, so that the interface still re-

mains “sharp”, without any ambiguity. One major advantage of the “sharp” interface is

that high-order local accuracy can be achieved around the immersed boundary. There

are several implementations of the sharp-interface approach. One of them is the cut-cell

finite-volume approach, which is designed to meet the conservation laws for the cells

around the immersed boundary. This is achieved by employing a finite-volume scheme

to treat cells cut through by the immersed boundary, while the bulk fluid region is still

discretized by the finite-difference scheme. Some of the work using this method are

Ye et al. [6] and Udaykumar et al. [7]. Another method that falls into this category is

the ghost-cell finite-difference approach. The ghost cell refers to a cell that is inside

the solid region but is also included in the computational stencil. The source terms

are added implicitly through a local flow reconstruction near the immersed boundary.

Usually, the reconstruction is realized by building a polynomial using the nodal values

in the fluid region and the boundary conditions at the interface as the input. Examples

of previous work that employed this method are Tseng et al. [8], Mittal et al. [9] and

Yang et al. [10].

Generally speaking, based on a fixed, structured grid (typically a Cartesian grid), the

immersed-boundary method can deal with complex and moving boundaries without the

need to regenerate the mesh. In addition, computing can be done efficiently on the grid,

thanks to the simple mesh structure. However, most of existing immersed-boundary

methods are of second-order accuracy. For many applications, and even in the case of

low-Re flapping wing aerodynamics, Reynolds numbers can be well beyond the limit

for increasing the resolution in the simulation. In such situations, using a high-order

3

approach could greatly extend the capability of the immersed-boundary.

There have been several recent efforts in developing high-order immersed-boundary

methods. For example, in the work of Seo et al. [11] the compact finite-difference

scheme and a high-order immersed-boundary method are combined to solve the lin-

earized compressible equations. Laizet et al. [12] managed to solve the incompressible

flow with the help of compact schemes and spectral methods. However, the immersed-

boundary method they applied is still second-order accurate. Zeng et al. [13] used a

third-order upwind finite-difference scheme along with a high-order immersed-boundary

method to solve inviscid flows. In their method, the flow variables at the ghost cells are

determined by coupling the interpolation and the state equation. An overall third-order

accuracy is achieved for 2D advection problems. Zhou et al. [14] developed a so-called

high-order matched interface and boundary method for elliptic equations with discon-

tinuous coefficients and singular sources. In this method, they introduced multiple ghost

nodes along each spatial direction to treat the jump conditions across the immersed in-

terface. Their method can be combined with an explicit high-order finite-difference

method to discretize the entire domain. Gibou & Fedkiw [15] developed a fourth-order

immersed-boundary method for the Laplace and heat equations, in which the Lapla-

cian is discretized using a five-point finite-difference stencil. To treat the immersed-

boundary, one-dimensional polynomial extrapolations are used to determine the values

of the variables at the two layers of ghost nodes. Finally, Linnick & Fasel [16] presented

a fourth-order immersed-boundary method based on the compact scheme. To treat the

boundary, they introduced high-order correction terms for the jump conditions across

the interface. Since the method is applied to two-dimensional incompressible Navier-

Stokes equations in the streamfunction-vorticity formulation, they avoided solving the

Poisson equation with the high-order approach.

4

1.2 Objectives

In this work, we aim to develop an efficient high-order program to solve incom-

pressible flow problems with immersed boundaries by combining the compact scheme

and a compatible high-order immersed-boundary method. The compact scheme is cho-

sen because it can provide better resolution at small spatial scales, due to the high

accuracy, low-dispersion, and low-dissipation properties. The compact scheme also

utilizes shorter stencils than some other high-order schemes, e.g., the explicit finite-

difference method, and it is based on structured grids and can thus take advantage of

efficient computations. For the immersed-boundary treatment, an extended idea based

on the second-order ghost-cell method described in Mittal et al. [9] and Luo et al. [17]

is adopted. Specifically, the second-order forcing scheme based on linear interpola-

tion/extrapolation is replaced by the least squares method in Luo et al. [18] to ensure

the accuracy of the overall program.

1.3 Outline

The structure of this thesis is organized as follows.

Chapter 1 introduces the background information, giving a brief overview of the

field to provide context to the study. Here, various studies by other researchers are also

reported. In this introduction, we intend to detail the background of the present study

and also to clarify the objectives of this work as well as the organization of the thesis.

Chapter 2 elaborates the theories behind this study. We first introduce the mathe-

matical model of the fluid problem solved in the work and the structure of the program.

Thereafter, the compact scheme that is used to discretize the bulk flow region is de-

tailed. Next, a least-squares based high-order immersed-boundary method is presented.

Finally, an efficient, high-order Poisson solver developed as part of this study is de-

scribed.

Chapter 3 consists of several fundamental one-dimensional studies. The high-order

5

immersed-boundary method is implemented to solve one-dimensional problems to test

its accuracy and stability. Both an advection-diffusion equation and a Poisson equation

are solved in these tests. The results are compared with both results from a second-order

method and the exact solutions.

Chapter 4 provides several tests of two-dimensional implementation of the high

-order immersed-boundary method. The Navier-Stokes equations are solved in this

chapter. In particular, Kovasznay flow is used to assess the performance of the program

when there is no immersed boundary present. Flow past a circular cylinder case is

solved to evaluate the performance of the complete 2D program.

Chapter 5 serves as a summary to the thesis. In this chapter the overall conclusions

and contributions of current work and suggested future work are presented.

6

CHAPTER II

NUMERICAL APPROACH

This chapter is used to elaborate the numerical methods used in the work. In section

2.1, we describe the governing equations as well as a step-by-step description of how

the three-step projection method is combined with a fourth-order Runge-Kutta method

for time advancement. Section 2.2 explains the compact schemes used to discretize the

bulk flow region. Section 2.3 includes both a brief introduction of the original second-

order immersed-boundary treatment and a detailed description of the high-order one. In

section 2.4, a high-order, efficient pressure Poisson solver is presented.

2.1 Governing equations and the time-marching scheme

The following viscous, incompressible, unsteady Navier-Stokes equations are solved

in our study:

∂V

∂t
+ (V · ∇)V = −∇p +

1

Re
∇2V (2.1)

∇ · V = 0 (2.2)

where V is the velocity vector, p is the pressure with the density incorporated , and Re

represents the Reynolds number. A three-step projection method is used to decouple

the pressure and velocity components in the temporal discretization.

V∗ − Vn

∆t
+ (V · ∇V)n =

1

Re
(∇2V)n (2.3)

∇2 pn+1 =
1

∆t
∇V∗ (2.4)

Vn+1 = V∗ − ∆t∇pn+1 (2.5)

7

where n denotes nth time step, and a star (*) represents the intermediate velocity. To

ensure the overall accuracy, a fourth-order Runge-Kutta (RK) method [19] is applied

for time marching. The procedure is:

1) For the first sub-step, i = 1,

V(1)
= Vn

k(1) = −(V(1)
· ∇)V(1) + 1

Re
∇2V(1),

where n means nth time step, and (i) represents the RK step level.

2) For the RK sub-step i = 2 to 4, we use the following projection method to get

(V(i), p(i)):

V∗ = V(i−1) + αi∆tk(i−1)

∇2 p(i) = 1
αi∆t
∇ · V∗

V(i) = V∗ − αi∆t∇p(i)

k(i)
= −(V(i)

· ∇)V(i)
+ 1

Re
∇2V(i),

where αi =
1
2
, 1

2
, and 1 for i = 2, 3, and 4, respectively.

3) At the end of a complete step:

V∗ = Vn + ∆t

6
(k(1) + 2k(2) + 2k(3) + k(4))

∇2 pn+1 = 1
∆t
∇ · V∗

Vn+1 = V∗ − ∆t∇pn+1.

2.2 Compact finite-difference scheme

The compact finite-difference scheme is one of the most widely used high-order

schemes. Thanks to its low-dissipation and low-dispersion properties, the compact

scheme can resolve very short length scales [20]. Compact schemes can have either

symmetric or asymmetric stencils. What is more, they can be applied on both uniform

grid [20] and non-uniform grid [21]. In our study, symmetric schemes are used to solve

8

the bulk flow and asymmetry schemes are used to treat the exterior boundaries. For the

sake of simplicity, uniform Cartesian grids will be adopted in all the cases in this work.

The general form of the symmetric compact-scheme for the first-order derivative of

function f (x) is:

β f ′i−2 + α f ′i−1 + f ′i + α f ′i+1 + β f ′i+2 = c
fi+3 − fi−3

6h
+ b

fi+2 − fi−2

4h
+ a

fi+1 − fi−1

2h
(2.6)

where fi is the nodal value at node i, and h is the grid spacing. Using the Taylor series

to expand the equation and matching coefficients to different orders will lead to the

relationship between a, b, c, and α, β. By satisfying different constraints, we can get

finite-difference schemes of different order of accuracy. Some of the commonly used

schemes are:

1

4
f ′i−1 + f ′i +

1

4
f ′i+1 =

3

2

fi+1 − fi−1

2h
(4th-order) (2.7)

1

3
f ′i−1 + f ′i +

1

3
f ′i+1 =

14

9

fi+1 − fi−1

2h
+

1

9

fi+2 − fi−2

4h
(6th-order) (2.8)

At the exterior boundary, say i = 1, the following one-sided compact scheme can be

used:

f ′1 + 2 f ′2 =
1

h
(−

5

2
f1 + 2 f2 +

1

2
f3) (3rd-order) (2.9)

For the second-order derivatives, f ′′, we have similar equations:

1

10
f ′′i−1 + f ′′i +

1

10
f ′′i+1 =

6

5

fi+1 − 2 fi + fi−1

h2
(4th-order) (2.10)

9

2

11
f ′′i−1 + f ′′i +

2

11
f ′′i+1 =

12

11

fi+1 − 2 fi + fi−1

h2
+

3

11

fi+2 − 2 fi + fi−2

4h2
(6th-order) (2.11)

and at the exterior boundary, i = 1,

f ′′1 + 11 f ′′2 =
1

h2
(13 f1 − 27 f2 + 15 f3 − f4) (3rd-order) (2.12)

2.3 Rate of convergence

Several tests will be presented in this thesis to show the feasibility and effectiveness

of using the compact finite-difference scheme and the high-order immersed-boundary

method to solve problems with interior boundaries. In order to compare the results in a

more rigorous way, we choose problems with an exact solution to do most of these tests.

Also, different error-norms are adopted to help quantitatively evaluate the performance

of the simulations. Assume φ represents a general function. These norms are defined

as:

L1 =
1

N + 1

N
∑

i=0

∣

∣

∣φi,numerical − φi,exact

∣

∣

∣ , (2.13)

L2 =

√

√

1

N + 1

N
∑

i=0

(

φi,numerical − φi,exact

)2
, (2.14)

L∞ = max
(∣

∣

∣φi,numerical − φi,exact

∣

∣

∣

)

. (2.15)

There norms can be put into two categories. L1 and L2 are good approximations of the

global error, while L∞ can capture the local error effectively, especially that around the

immersed boundaries.

Accordingly, the rate of convergence can be defined in terms of different error-

10

Figure 2.1: A 2D schematic describing the previous second-order ghost-cell approach

for treating the immersed boundary [9, 17].

norms:

rate = −
log(err1/err2)

log(N1/N2)
, (2.16)

where err1 and err2 are the error-norms of tests with (N1 + 1) nodes and (N2 + 1) nodes.

Usually, a log-log plot of error-norms versus grid spacing will be provided instead of

the numeric rate of convergence. According to Eq. (2.16), the slope of the plot equals

the rate of convergence.

2.4 Immersed-boundary treatment

Here we extend a previous sharp-interface, second-order immersed boundary method

by Mittal et al. [9] and Luo et al. [17] to higher-order accuracy. The previous low-order,

ghost-cell method, shown in Fig. 2.1, is divided into the following four steps:

1) Identify the so-called “ghost cells" (GC), which refer to solid nodes that are in-

11

Figure 2.2: A 2D schematic describing the current least squares method for the im-

mersed boundary.

cluded in the finite-difference stencils of fluid nodes in the vicinity of the im-

mersed boundary.

2) Find the corresponding image point (IP) in the fluid for each GC, which makes

the line connecting an IP and a GC perpendicular to the immersed boundary; the

intercept point is called the boundary intercept (BI).

3) Locate the four nodal points surrounding the IP, and use a bilinear interpolation

to get the value at the IP.

4) Determine the value at the GC through a second-order extrapolation using the

values at the IP and the boundary condition at the BI.

To extend the boundary treatment to higher order, we adopt the least squares method

developed by Luo et al. [18]. Some modifications are made during the implementation.

First, instead of extrapolating the functions at the ghost cells outside of the fluid domain,

we directly interpolate at the first fluid node next to the solid boundary. These nodes

12

will be called hybrid cells, since they are under the direct influence of both the fluid

region and the solid region. Second, in the previous second-order method an image

point is required along with the body intercept to determine the flow variable at the

ghost cell. In the current method, the boundary conditions will be incorporated through

including some boundary points in the least square scheme. Thus, the image point is no

longer needed.

To ensure at least fourth-order accuracy of the new interpolation method, a multi-

dimensional, third-degree polynomial, Φ, will be introduced to estimate the general

function φ around the boundary intercept point (BI) at (x0,y0)

φ(x̂, ŷ) ≈ Φ(x̂, ŷ) =

3
∑

j=0

3
∑

i=0

ci j x̂
iŷ j, i + j ≤ 3, (2.17)

where x̂ = x− x0 and ŷ = y− y0 are local coordinates, and ci j, of which the total number

is ten, are the coefficients to be determined. These coefficients will be calculated by

the least squares method. First, sufficient number of nodes (N ≥ 10) will be selected

by a circle centered at BI with radius R, as is shown in Fig. 2.2. There are two types

of data points will be used to do the interpolation. One of them is the fluid nodes that

reside in the circle, and the other type is the boundary points that lie on the interface,

through which the boundary conditions will be applied. Then, ci j are determined so that

the following error function

ǫ =

N
∑

n=1

w2
n[Φ(x̂n, ŷn) − φ(x̂n, ŷn)]2 (2.18)

reaches its minimum. In Eq. (2.18), (x̂n, ŷn) is the nth node, and wn is the weight func-

tion, which is chosen basing on Li’s work [22] and has the form:

wn =
1

2

[

1 + cos

(

πdn

R

)]

. (2.19)

dn is the distance between (x̂n, ŷn) and (x0, y0).

13

If the Dirichlet boundary condition is applied at the interface, the weight matrix, W,

and Vandermonde matrix, V, derived from Eq. (2.19) and Eq. (2.17), respectively, are:

W =



























































w1

w2

. . .

wN



























































(2.20)

V =











































































1 x̂1 ŷ1 x̂2
1

x̂1ŷ1 ŷ2
1
· · ·

...
...
...
...

...
...
...

1 x̂i ŷi x̂2
i x̂iŷi ŷ2

i · · ·

...
...
...
...

...
...
...

1 x̂N ŷN x̂2
N

x̂N ŷN ŷ2
N
· · ·











































































(2.21)

However, if the Neumann boundary condition,∂φ/∂n = g, is provided at the immersed

boundary point (x̂B, ŷB), the V matrix will have the form:

V =



























































1 x̂1 ŷ1 x̂2
1 x̂1ŷ1 ŷ2

1 · · ·

...
...

...
...

...
...

...

1 x̂N−1 ŷN−1 x̂2
N−1

x̂N−1ŷN−1 ŷ2
N−1

· · ·

0 x̂n ŷn 2x̂n x̂B (x̂nŷB + x̂Bŷn) 2ŷnŷB · · ·



























































(2.22)

where (x̂n, ŷn) is the surface norm at (x̂B, ŷB). Using the Vandermonde matrix, the coef-

ficients ci j can be calculated by:

c = V⊥φ = (VT V)−1VTφ (2.23)

where an ⊥ denotes pseudoinverse, which is a generalization of the inverse matrix.

14

2.5 A high-order method for the pressure Poisson equation

Typically solving the pressure Poisson equation (Eq. (2.4)) is the most time con-

suming part when simulating the incompressible flow. Because of the implicit nature

of the derivatives in the compact scheme, additional challenges arise when it comes to

solving the two- or three-dimensional Poisson equation. Previously, in order to apply

the compact scheme, some researchers have added a pseudo-temporal term in the pres-

sure Poisson equation [23, 24]. However, this method typically has a slow convergence

speed. Some other researchers simply avoid this equation by solving a weakly com-

pressible flow instead, and incorporate the equation of state [25]. Instead of applying

the compact scheme directly, here we present an efficient, high-order Poisson solver

developed based on the work of Singer et al. [26]. In this method, the discrete Lapla-

cian maintains a three-point stencil in each direction, and therefore, the whole linear

system can still take advantage of the high efficiency of tridiagonal solvers. The basic

idea of this method is to attach some explicit correction terms to the standard second-

order scheme so that we can achieve both high-order accuracy and the simplicity of the

stencil.

To first illustrate this idea in 1D, we solve the equation

p′′(x) = F(x), (2.24)

We write down the standard second-order central difference scheme for the second

derivative:

p′′(xi) ≈ Dxx p(xi) =
pi+1 − 2pi + pi−1

∆x2
, (2.25)

where p′′(xi) and p(xi) represent the exact value of the second derivative and nodal value

at xi, and Dxx is the second-order numerical operator. We use pi to represent p(xi). If

function p is smooth enough, the error of Eq. (2.25) is

p′′(xi) = Dxx p(xi) + O(∆x2). (2.26)

15

A more accurate approximation of Eq. (2.26) is

Dxx p(xi) = p′′(xi) +
∆x2

12
p(4)(xi) + O(∆x4), (2.27)

which can be easily shown using the Taylor expansion. Applying the operator Dxx to

p′′ term, we can get

p(4)(xi) = Dxx p′′(xi) + O(∆x2). (2.28)

Substituting Eq. (2.28) into Eq. (2.27) we have:

Dxx p(xi) = (1 +
∆x2

12
Dxx)p′′(xi) + O(∆x4). (2.29)

This equation is essentially the same as the fourth-order compact scheme in Eq. (2.10).

Using the original differential equation (Eq. (2.24)), Eq. (2.29) becomes

Dxx p(xi) = F(xi) +
∆x2

12
DxxF(xi) + O(∆x4). (2.30)

or

Dxx pi = Fi +
∆x2

12
DxxFi + O(∆x4).

This discretization is therefore fourth-order accurate, and the left side maintains the

second-order discrete form. Compared with the second-order discretization, Eq. (2.30)

has an extra term on its right-hand side, ∆x2

12
DxxF(xi), which is a high-order, explicit

correction term.

Rearranging Eq. (2.29), we can get a fourth-order, implicit expression for p′′(xi):

p′′(xi) = (1 +
∆x2

12
Dxx)

−1Dxx p(xi) + O(∆x4). (2.31)

This expression will be use to derive the 2D formula.

16

For the 2D problem, we want to solve the following equation:

∂2 p

∂x2
+
∂2 p

∂y2
= F(x, y). (2.32)

Of course, there will also be proper boundary conditions attached. If the problem de-

grades to 1D, from Eq. (2.30) we already know the fourth-order discretization is

Dxx pi =
Fi+1 + 10Fi + Fi−1

12
. (2.33)

The operator Dxx has the same definition as above. For the 2D problem, we use the

expression in Eq. (2.31). Therefore, Eq. (2.32) becomes

(1 +
∆x2

12
Dxx)

−1Dxx pi, j + (1 +
∆y2

12
Dyy)

−1Dyy pi, j = Fi, j, (2.34)

at point (i, j). Expanding this equation, we have:

(1 +
∆y2

12
Dyy)Dxx pi, j + (1 +

∆x2

12
Dxx)Dyy pi, j = (1 +

∆x2

12
Dxx)(1 +

∆y2

12
Dyy)Fi, j. (2.35)

Rearranging this equation, we get:

Dxx pi, j + Dyy pi, j = RHS i, j −
∆x2 + ∆y2

12
DxxDyy pi, j, (2.36)

where

RHS i, j = Fi, j +
∆x2

12
DxxFi, j +

∆y2

12
DyyFi, j +

∆x2∆y2

144
DxxDyyFi, j.

Like its 1D counterpart, this discretization has also fourth-order accuracy.

As we can see, the left-hand side of the equation still have the same shape as the

standard second-order discretization scheme. So all the efficient solvers developed for

the previous scheme can be applied here with relative ease. Attention is needed for

the terms on the right-hand side of Eq. (2.36). The last term in RHS i, j is at least one

17

magnitude smaller than any other terms in it, so we can ignore this term during ac-

tual implementation, which leads to further efficiency. To calculate DxxDyy pi, j, we first

define two expressions:

δc = pi+1, j+1 + pi−1, j+1 + pi+1, j−1 + pi−1, j−1,

δs = pi+1, j + pi−1, j + pi, j−1 + pi, j+1,

where c and s represent corner nodes and side nodes respectively. Then, we have

DxxDyy pi, j =
δc − 2δs + 4pi, j

∆x2∆y2
. (2.37)

This explicit formula involves nine nodes on the Cartesian grid.

After the right-hand side is explicitly calculated, Eq. (2.36) can be solved in the

same manner as that for the standard second-order discretization. Therefore, the advan-

tage of this method is that the structure of the original second-order program is retained.

We only need to add some explicit correction terms, and the computational cost is not

significantly increased. For the numerical tests described in this work, we will apply the

ADI method to solve the linear system generated by discretizing the Poisson equation.

Extension to 3D is straightforward. Following the same procedure, for the 3D Pois-

son equation:

∂2 p

∂x2
+
∂2 p

∂y2
+
∂2 p

∂z2
= F(x, y, z), (2.38)

we apply Eq. (2.31) to each derivatives

(1+
∆x2

12
Dxx)

−1Dxx pi, j,k+(1+
∆y2

12
Dyy)

−1Dyy pi, j,k+(1+
∆z2

12
Dzz)

−1Dzz pi, j,k = Fi, j,k. (2.39)

18

Multiply (1 + ∆x2

12
Dxx)(1 +

∆y2

12
Dyy)(1 +

∆z2

12
Dzz) on both sides, we have

(1 +
∆y2

12
Dyy)(1 +

∆z2

12
Dzz)Dxx pi, j,k + (1 +

∆x2

12
Dxx)(1 +

∆z2

12
Dzz)Dyy pi, j,k + (2.40)

(1 +
∆x2

12
Dxx)(1 +

∆y2

12
Dyy)Dzz pi, j,k = (1 +

∆x2

12
Dxx)(1 +

∆y2

12
Dyy)(1 +

∆z2

12
Dzz)Fi, j,k.

Expand the above equation, we can get

Dxx pi, j,k +
∆y2Dyy + ∆z2Dzz

12
Dxx pi, j,k +

∆y2∆z2

144
DxxDyyDzz pi, j,k + (2.41)

Dyy pi, j,k +
∆x2Dxx + ∆z2Dzz

12
Dyy pi, j,k +

∆x2∆z2

144
DxxDyyDzz pi, j,k +

Dzz pi, j,k +
∆x2Dxx + ∆y2Dyy

12
Dzz pi, j,k +

∆x2∆y2

144
DxxDyyDzz pi, j,k =

(1 +
∆x2

12
Dxx)(1 +

∆y2

12
Dyy)(1 +

∆z2

12
Dzz)Fi, j,k.

Move all the extra terms to the right-hand side, we have

Dxx pi, j,k + Dyy pi, j,k + Dzz pi, j,k = RHS i, j,k − (2.42)

∆x2∆y2 + ∆y2∆z2 + ∆x2∆z2

144
DxxDyyDzz pi, j,k −

∆y2Dyy + ∆z2Dzz

12
Dxx pi, j,k −

∆x2Dxx + ∆z2Dzz

12
Dyy pi, j,k −

∆x2Dxx + ∆y2Dyy

12
Dzz pi, j,k,

where

RHS i, j,k = Fi, j,k +
∆x2

12
DxxFi, j,k +

∆y2

12
DyyFi, j,k +

∆z2

12
DzzFi, j,k +

∆x2∆y2

144
DxxDyyFi, j,k +

∆y2∆z2

144
DyyDzzFi, j,k +

∆z2∆x2

144
DzzDxxFi, j,k +

+
∆x2∆y2∆z2

1728
DxxDyyDzzFi, j,k.

The basic idea is still evaluating all the terms on the right-hand side of Eq. (2.42)

explicitly. Similar to the 2D case, the last term of the RHS i, j,k can be ignored during

application, because it is one-order smaller than other terms. Also, the expression of

19

operator DxxDyyDzz can be derived in the same way, except there will be twenty-seven

points included in the stencil.

20

CHAPTER III

ONE-DIMENSIONAL TESTS

This chapter will focus on the one-dimensional tests. These tests are designed as

preliminary studies of the feasibility of combining the compact scheme and the high-

order immersed-boundary method. Both an advection-diffusion equation and a Poisson

equation are solved using the aforementioned combination. Although 1D implementa-

tion of the method is straightforward and only elementary numerical skills are required

to solve these equations, these tests are nevertheless valuable, because from them we

will learn the rate of convergence as well the numerical stability of the new method.

3.1 One-dimensional advection-diffusion equation

The time-dependent advection-diffusion equation solved in this section is:

∂u

∂t
+
∂u

∂x
−

1

Re

∂2u

∂x2
= 0, x ∈ [−1.0,−0.3] ∪ [0.3, 1.0]. (3.1)

Re = 50.0 is a constant in the above equation. Given the following boundary conditions:

u = 1.0 at x = −1.0

u = 0.0 at x = −0.3

u = 0.0 at x = 0.3

u = −1.0 at x = 1.0,

21

we can get the steady state solution of the problem

u(x) =
eRex − e−0.3Re

e−Re − e−0.3Re
, −1.0 ≤ x ≤ −0.3,

u(x) = −
eRex − e0.3Re

eRe − e0.3Re
, 0.3 ≤ x ≤ 1.0.

Fig. 3.1 shows the grid we use in this test. The computational domain is from -1 to 1,

with (N + 1) evenly distributed nodes. To simplify the problem, we treat xL = −0.3 and

xR = 0.3 as immersed boundaries. xL is used as the example to explain the extrapolation

strategy. As is shown in the figure, node xi+1 is the GC in this case. The value at the

GC is calculated by the extrapolation using the following m-th degree polynomial. If a

general function φ is defined on this domain, this equation will be written as:

φ =

m
∑

i=0

cix
i. (3.2)

The coefficients ci, i = 0, 1, . . . ,m, are determined by nodal values at xi−m+1, xi−m+2,

. . . , xi and xL. If we want to apply the Dirichlet boundary condition at xL, the following

equation is used to solve ci:











































































xm
i−m+1

xm−1
i−m+1

. . . xi−m+1 1

xm
i−m+2

xm−1
i−m+2

. . . xi−m+2 1

...
...

...
...

...

xm
i

xm−1
i

. . . xi 1

xm
L

xm−1
L

. . . xL 1





















































































































































cm

cm−1

...

c1

c0











































































=











































































φi−m+1

φi−m+2

...

φi

φ|x=xL











































































(3.3)

Otherwise, if the boundary condition at xL is the Neumann boundary condition, the

22

Figure 3.1: 1D schematic describing the extrapolation method.

equation below is solved:











































































xm
i−m+1

xm−1
i−m+1

. . . xi−m+1 1

xm
i−m+2

xm−1
i−m+2

. . . xi−m+2 1

...
...

...
...

...

xm
i

xm−1
i

. . . xi 1

mxm−1
L

(m − 1)xm−2
L

. . . 1 0





















































































































































cm

cm−1

...

c1

c0











































































=











































































φi−m+1

φi−m+2

...

φi

∂φ

∂x
|x=xL











































































(3.4)

Using different values of m will provide different level of accuracy for the extrapolation.

The immersed boundary at xR is treated in a similar way as above. The only differ-

ence is that the nodal values at x j+m−1, x j+m−2, . . . , x j and xR are used to evaluate the

value at the GC, x j−1.

If the immersed boundary coincide with the nodal points (i.e., body-fitted grid),

say xL and xi, the immersed boundaries can be treated in the same way as the exterior

boundaries at x0 and xN are treated, using one-sided schemes like (2.9) and (2.12).

Different combinations of methods are used to get the numerical solutions of the

problem. On one hand, if the interior boundaries don’t lie on the nodal points (Fig. 3.1),

the extrapolation method introduced above will be used to treat the interior boundaries,

namely the immersed boundaries. Meanwhile, the interior nodes will be solve by either

high-order schemes or second-order central-difference schemes. On the other hand,

by manipulating the grid, we can also make the interior boundaries and grid nodes

overlap with each other. Under these circumstances, there is no immersed boundary

and the interior boundaries will be solved by one-sided schemes (2.9) and (2.12), which

are third-order accurate. The high-order schemes will be adopted to solve the interior

23

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

u

Num. solution
Exact solution

Figure 3.2: Steady state solution of the 1D advection-diffusion equation with N=99,

and compact finite-difference scheme along with quadratic polynomial extrapolation.

nodes. Then, the results from different combinations will be compared with each other

to assess the performance of both the compact scheme and the extrapolation method.

Fig. 3.2 shows the numerical solution with N = 99 and the exact solution. Fig. 3.3

to 3.6 are the log-log plots of the L2 error-norm versus the grid spacing. The slope of

these plots is the corresponding rate of convergence. We first verify that the method

is second-order if a second-order central difference scheme is used for the interior dis-

cretization. The result is shown in Fig. 3.3, which shows that the combinations the

second-order central difference scheme with a quadratic polynomial will give second-

order rate of convergence. In Fig. 3.4, the interior boundaries overlap with the grid,

so that the one-sided compact scheme will be used to discretize the internal boundary

points while the symmetric compact scheme is used to solve the interior nodes. In

Fig. 3.5, the grid no longer coincide with the internal boundaries. A quadratic polyno-

mial will be used to extrapolate the value at the GCs. Comparing Fig. 3.4 and Fig. 3.5,

we can find that both of them have nearly third-order rate of convergence, indicating

that using quadratic polynomial to perform the extrapolation is just as efficient as us-

24

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

Grid spacing

N
or

m

L2
3rd order
2nd order

Figure 3.3: Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: second-order central-difference scheme. Immersed boundary: quadratic poly-

nomial extrapolation.

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid spacing

N
or

m

L2
3rd order
2nd order

Figure 3.4: Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: compact finite-difference scheme. Immersed boundary: N/A (body-fitted grid

and the one-sided scheme are used).

25

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid spacing

N
or

m

L2
3rd order
2nd order

Figure 3.5: Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: compact finite-difference scheme. Immersed boundary: quadratic polynomial

extrapolation, m = 2.

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid spacing

N
or

m

L2
4th order
3rd order

Figure 3.6: Convergence rate of the 1D advection-diffusion equation test. Interior

nodes: compact finite-difference scheme. Immersed boundary: cubic polynomial ex-

trapolation, m = 3.

26

ing the one-sided schemes, which requires that the grid has to conform to the internal

boundary. More importantly, when it comes to two-dimensional and three-dimensional

problems, the immersed boundaries rarely coincide with the grid nodes, and extrapola-

tion/interpolation will be a more convenient choice.

Increasing the degree of the polynomial will help to increase the accuracy of the

extrapolation. In Fig. 3.6, the cubic polynomial is used to replace the quadratic polyno-

mial, and an overall fourth-order rate of convergence is achieved. From these results, we

can tell the advantage of the current high-order scheme over the second-order scheme

is obvious, since Fig. 3.3 shows that the latter scheme has only second-order rate of

convergence.

3.2 One-dimensional Poisson equation

When using the projection method to solve the Navier-Stokes equations, finding the

proper way to handle the Poisson equation is always a major problem, as this step is

usually the most costly procedure. Thus, it is very critical to evaluate the performance

of the current immersed-boundary algorithm on solving the Poisson equation. The test

problem solved in this part can be described as

d2 p

dx2
= (cos2 x − sin x)esin x, x ∈ [−1.0,−0.3] ∪ [0.3, 1.0], (3.5)

with following boundary conditions:

p = 1.0 at x = −1.0

dp

dx
= 0.0 at x = −0.3

dp

dx
= 0.0 at x = 0.3

p = −1.0 at x = 1.0.

27

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

p

Num. solution
Exact solution

Figure 3.7: Solution of the 1D Poisson equation with N=99, compact finite-difference

scheme and cubic polynomial extrapolation.

The exact solution is given by:

p(x) = esin x − (1 + x)e− sin 0.3 cos 0.3 + 1 − e− sin 1, −1.0 ≤ x ≤ −0.3,

p(x) = esin x + (1 − x)esin 0.3 cos 0.3 − 1 − esin 1, 0.3 ≤ x ≤ 1.0.

The problem has mixed Dirichlet and Neumann boundary conditions. The compact

scheme discretization of the second derivative can be written as

Ap′′ = Bp. (3.6)

Matrices A and B are banded matrices formed by the coefficients of the right-hand side

and left-hand side of Eq. (2.6), respectively. Since we already know the exact value of

p′′, which is (cos2 x− sin x)esin x, we can substitute it into Eq. (3.6) and solve for p. The

most critical problem is how to add the GCs into the matrix system.

Fig. 3.7 shows the shape of the solution of the Poisson equation. The boundary-

conformal case, in which the interior boundaries are overlapped with the grid nodes

28

10
−2

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Grid spacing

N
or

m

L2
3rd order
2nd order

Figure 3.8: The reference case, of which the rate of convergence is shown. Interior

nodes: compact finite-difference scheme. Immersed boundary: N/A (body-fitted grid).

10
−2

10
−1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Grid spacing

N
or

m

L2
3rd order
4th order

Figure 3.9: Convergence rate the 1D Poisson equation test. Interior nodes: compact

finite-difference scheme. Immersed boundary: cubic polynomial extrapolation, m = 3.

29

(i.e., the body-fitted grid), will be solved as a reference. To incorporate the Neumann

boundary condition at the interior boundary in the body-fitted grid, the following one-

sided third-order schemes are used:

d f

dx

∣

∣

∣

∣

∣

i=0

=
1

6h
[18(f1 − f0) − 9(f2 − f0) + 2(f3 − f0)],

d f

dx

∣

∣

∣

∣

∣

i=N

=
1

6h
[18(fN − fN−1) − 9(fN − fN−2) + 2(fN − fN−3)].

As we can see in Fig. 3.8, even though a fourth-order compact scheme is used to dis-

cretize the interior nodes, the overall rate of convergence is limited to third-order. This

is expected since the third-order one-sided schemes and the interior boundaries have

dominated the error.

When it comes to cases with immersed boundaries, special treatments are also re-

quired to take care of the GCs. In these situations, the following extrapolation scheme

is used to represent the nodal value at the GC, xi+1, instead of Eq. (3.2):

pGC =

m−1
∑

0

c′i pi−m+1 + c′m
dp

dx

∣

∣

∣

∣

∣

x=xL

. (3.7)

In this equation, pi is the nodal values at i-th node. With the help of this equation, we

can include the GC into the matrix from Eq. (3.6). Fig. 3.9 is the L2 error-norm of the

solution using a cubic polynomial, m = 3. We can tell that the cubic polynomial in gen-

eral gives us a third-order rate of convergence, which is comparable to the performance

of the body-fitted grid discussed in Fig. 3.8. There are some oscillations in the conver-

gence history, which are expected because as the grid is refined, the distance of the GC

to the physical boundary is varying randomly and the accuracy of the extrapolation thus

varies.

One advantage of using polynomial to do the extrapolation is that we can extend it

to higher-order easily. Fig. 3.10 shows the convergence performance if we replace the

cubic polynomial with a fifth degree polynomial (m = 5). The result shows that the rate

30

10
−2

10
−1

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

Grid spacing

N
or

m

L2
3rd order
4th order

Figure 3.10: Convergence rate of the 1D Poisson equation test. Interior nodes: compact

finite-difference scheme. Immersed boundary: extrapolation with a polynomial of fifth

degree, m = 5.

of convergence is increased to fourth-order accordingly.

3.3 Conclusion

In this chapter we have presented a one-dimensional formulation of the high-order

immersed-boundary method, and we have applied it to the one-dimensional advection-

diffusion problem and one-dimensional Poisson equation to test the method’s conver-

gence and stability. The results indicate that the high-order immersed-boundary treat-

ment does not affect the stability of the compact scheme. Moreover, proper choice of

the extrapolation or forcing scheme can be used to achieve the desired convergence rate.

These results have shown the promise of the current immersed-boundary method.

31

CHAPTER IV

TWO-DIMENSIONAL NUMERICAL TESTS

In the previous chapter, one-dimensional tests have shown promising results. How-

ever, we cannot jump to the conclusion that the new methodology will still work per-

fectly for the Navier-Stokes equations, as the equations are nonlinear and stiff in gen-

eral. In this chapter, we first test the performance of the two-dimensional least squares

approximation described in Chapter II. Then, the efficiency and accuracy of the high-

order Poisson solver will also be evaluated. After that, two more numerical experiments

are conducted to assess the performance of the complete program. The first study is de-

signed to evaluate the performance of the compact scheme when there is no immersed

boundary in the computational domain. The second test is used to test the combina-

tion of the compact scheme with the high-order immersed-boundary treatment. Results

from both the second-order immersed-boundary method and the high-order one are pre-

sented.

4.1 Least squares treatment

Generally speaking, using cubic polynomials in the least squares method can give us

at least fourth-order rate of convergence. However, if there is a immersed boundary in

the domain, the data points will gather on one side of the interface. How this will affect

the convergence rate is unclear. Moreover, when applying this least squares forcing

treatment into fluid problems, we need to handle both the Dirichlet boundary condition

from the velocity components and the Neumann boundary condition from the pressure

term. Hence, it is also a problem to determine whether different boundary conditions

will influence the performance of the lease squares method. In this section, a test is

32

Figure 4.1: The computational domain used to test the least squares immersed-boundary

treatment; the circle surrounding the grey area defines the immersed boundary.

designed to answer both questions.

A function and its derivatives,

φ = ex+xy+y (4.1)

∂φ

∂x
= (1 + y)ex+xy+y (4.2)

∂φ

∂y
= (1 + x)ex+xy+y (4.3)

are defined in the blank region of a 2 × 2 domain with a circular immersed boundary

at the center (Fig. 4.1). Since we already know the exact function, we can get both the

nodal values and the derivatives at the interior boundary points and the grid points. We

can get the nodal values at the hybrid cells through three different ways. First, we can

calculate them through the function directly. Second, we can use the interpolation based

on Eq. (2.21), which assumes a Dirichlet boundary condition at the boundary points.

33

0.0125 0.025 0.05
10

−10

10
−8

10
−6

10
−4

10
−2

Grid spacing

N
or

m
s

L
1

L
2

L
inf

5th order
4th order

Figure 4.2: Rate of convergence of the least squares interpolation of function (4.1) when

the Dirichlet boundary condition is applied at the interior boundary points.

Finally, we can also obtain those values through Eq. (2.22), which assumes a Neumann

boundary condition at the boundary points. The interpolations will be conducted on a

series of grids (N ×N = 21×21, 41×41, 61×61 and 81×81). Results from the second

and third method will be compared with the exact values, giving us the two convergence

plots shown in Fig. 4.2 and Fig. 4.3. In these tests, the polynomial has degree of three,

and the interpolate radius is large enough to make sure there are at least ten data points

selected for each interpolation.

From both Fig. 4.2 and 4.3, we can see that the high-order feature is still remained

when there is immersed boundary present. When the Dirichlet condition is applied

(Fig. 4.2), this method shows a nearly fifth-order rate of convergence. Even though this

high-order accuracy is not maintained that well when the Neumann boundary condi-

tion at the boundary points is used, a consistent fourth-order convergence rate is still

observed in Fig. 4.3.

34

0.0125 0.025 0.05
10

−10

10
−8

10
−6

10
−4

10
−2

Grid spacing

N
or

m
s

L
1

L
2

L
inf

5th order
4th order

Figure 4.3: Rate of convergence of the least squares interpolation of function (4.1) when

the Neumann boundary condition is applied at the interior boundary points.

4.2 A high-order Poisson solver for the interior points

When solving the multi-dimensional Poisson equation, we borrow the theory from

Singer et al. [26] and use it in an innovative way to avoid the significant computational

overhead. We manage to keep the structure of left-hand side of the equation the same

as the standard central-difference schemes, so that all the efficient solvers developed

to solve such kind of matrix systems can be applied easily in the current high-order

approach. In this section, the new Poisson solver is combined with an ADI solver to

solve the following problem.

∂2 p

∂x2
+
∂2 p

∂y2
= −5 sin x sin 2y, (4.4)

p(0, y) = p(π, y) = p(x, 0) = p(x, π) = 0.

The exact solution is:

p = sin x sin 2y.

35

More details about the method used to solve the equation is described in Section 2.2.5.

There will be no immersed boundary inside the domain in this test. Results from

different grids, N × N = 21 × 21, 41 × 41, 61 × 61 and 81 × 81, will be compared with

the exact solution to compute the error norms. Fig. 4.4 shows that a fourth-order rate

of convergence is achieved by the new solver as desired. More importantly, since the

current method only requires calculations of a few extra explicit terms, no significant

overhead is observed when compared with the second-order solver.

10
−1

10
−8

10
−7

10
−6

10
−5

10
−4

Grid spacing

N
or

m
s

L
1

L
2

L
inf

4th order
3rd order

Figure 4.4: Rate of convergence of the new Poisson solver with correction terms for

solving Eq. (4.4).

4.3 Kovasznay flow

Kovasznay flow [27] represents the flow behind a two-dimensional grid. Since its

exact solution has already been found, it is often used to test the performance of CFD

programs. In our study, exact solutions are applied at the exterior boundaries as the

Dirichlet boundary condition. The domain is −0.5 ≤ x ≤ 1.0 and −0.5 ≤ y ≤ 0.5. The

36

streamlines of this flow are plotted in Fig. 4.5(a). There is no immersed boundary in

this test. To get the convergence rate of the program, the same problem is solved using

a hierarchy of grids of 30× 20, 60× 40, 120× 80, and 240× 160 points. The results are

compared with the exact solution:

1 + u = 1 − eλx cos 2πy, (4.5)

v =
λ

2π
eλx sin 2πy, (4.6)

λ =
Re

2
−

√

Re2

4
+ 4π2, (4.7)

where u and v are the velocity components, and Re is the Reynolds number, chosen

to be 40 here. Fig. 4.5(b) shows the general trend of L1, L2 and L∞ error norms of

the solution on different grids. Two reference lines, denoting second-order and third-

order convergence rate respectively, are also included in the figure. The results indicate

that an overall fourth-order convergence rate can be achieved by this program, which is

exactly what we expected.

4.4 Flow past a circular cylinder

The second test is about flow past a circular cylinder. The fourth-order compact

scheme for the interior flow is combined with both the previous second-order immersed-

boundary treatment and the current higher-order treatment to solve the entire domain.

We want to use this study to assess the overall influence of the immersed-boundary

method on the compact scheme. We set Re = U∞d/ν = 100 in all the tests, where

U∞ is the free stream velocity, d is the diameter of the cylinder, and ν is the kinematic

viscosity. Again, uniform Cartesian grids are employed in the study. The same problem

is solved on a series of grids with 40×40, 80×80, 160×160, 320×320, and 640×640

points. Since the exact solution of this problem does not exist, we use the result from

the 640 × 640 grid as the reference. Results from other coarser grids will be compared

37

(a)

(b)

0.0063 0.0125 0.025 0.05
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Grid spacing

E
rr

or
 n

or
m

L1
u

L1
v

L2
u

L2
v

Linf
u

Linf
v

3rd order
4th order

Figure 4.5: (a) Flow pattern of Kovasznay flow at Re=40. (b) L1, L2 and L∞ norms of

the error for the streamwise velocity u and transverse velocity v versus the grid spacing.

38

0.0063 0.0125 0.025 0.05
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Grid spacing

E
rr

or
 n

or
m

L1
u

L1
v

L2
u

L2
v

3rd order
2nd order

Figure 4.6: Convergence of the compact scheme combined with a previous second-

order immersed-boundary method where a linear extrapolation is used to treat the im-

mersed boundary. Plotted are the L1 and L2 norms of the error for the streamwise

velocity u and transverse velocity v versus the grid spacing.

with this reference to compute errors. The time step is ∆t = 0.0001d/U∞, and the

computational domain is −d ≤ x ≤ d and −d ≤ y ≤ d. Results at 2000th time step will

be analyzed in the same way we showed in Section 4.3.

Fig. 4.6 shows the log-log plots of error norms versus grid spacing for the second-

order immersed-boundary method. The overall convergence rate of the program is

nearly second order. An important conclusion from this result is that the immerse-

boundary treatment does not cause any particular problem to the compact scheme used

for the interior. The result also means the immersed-boundary treatment plays a domi-

nant role in determining the total convergence rate. Fig. 4.7 shows the error distribution

in the domain. As is shown in the figure, errors are concentrated around the immersed

boundary for both velocity components. This is another evidence that indicates how the

immersed boundary is treated is very crucial. So our next step is to use the least squares

method introduced earlier to improve the overall accuracy.

Using the same set-up as described earlier, we change the second-order extrapola-

39

(a)

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.005

0.01

0.015

0.02

0.025

0.03

(b)

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 4.7: Error distribution of different velocity components on the 160×160 grid. (a)

u-velocity; (b) v-velocity. The results from the 640× 640 grid are chosen as references.

40

0.0063 0.0125 0.025 0.05
10

−4

10
−3

10
−2

10
−1

10
0

Grid spacing

E
rr

or
 n

or
m

L1
u

L1
v

L2
u

L2
v

Linf
u

Linf
v

3rd order
2nd order

Figure 4.8: Convergence of the high-order immersed-boundary method, where the least

squares method is applied at the immersed boundary. Plotted are the L1, L2 and L∞
norms of the error for the streamwise velocity u and transverse velocity v versus the

grid spacing.

tion into high-order least squares method described in Chapter II. Fig. 4.8 shows the

new convergence plot after increasing the accuracy of the immersed-boundary treat-

ment. The result from the finest grid (640 × 640) is still chosen as the baseline. As is

shown in this figure, an overall third-order rate of convergence is achieved. The accu-

racy is reduced from the fourth-order likely because of the low-order treatment at the

exterior boundaries.

In terms of the efficiency, the program has better performance than the original

all second-order program. A lot of optimizations, such as using faster matrix system

solver, finding the best sequence of loops, have been applied into the final code. The

same flow past a circular cylinder case is solved using both the high-order program

and the second-order program on the same platform (Ubuntu 12.04, Intel FORTRAN

compiler, Intel Core i5-2400 CPU @ 3.10GHz). The computational time of 2000 time

steps is recorded to evaluate the performance of these two programs. When the problem

size is small, the high-order program spends most of the time doing the optimizations,

41

so that the second-order program still runs much faster. For example, for a 40×40 grid,

it takes the high-order program 1393s to reach 2000 time steps, whereas it only takes

the second-order one 724s. However, if the size of the problem increases, the time

spent on solving the algebraic equations, instead of the optimizations, will dominate

the computational time, leading to a better performance of the high-order program. For

instance, when a 160 × 160 grid is adopted, to reach the same time step, the high-order

one uses only 5416s, and the second-order one takes 8527s. For the fluid-structure

interaction problems we are interested in, a relatively fine mesh is usually required to

resolve the complex geometries; thus, the high-order program will still be very efficient.

4.5 Conclusion

In this chapter we have presented the method combining the compact finite-difference

scheme and two immersed-boundary treatments. Kovasznay flow and flow past a cir-

cular cylinder are used to evaluate the performance of the method. In the cylinder test,

even though the second-order immersed-boundary method limits the rate of conver-

gence to second-order, the results are promising since the immersed-boundary treatment

does not appear to affect the stability or accuracy of the compact scheme. Then after

we apply the high-order least squares method, the rate of convergence of the program

is raised to third-order. Furthermore, in terms of computational costs, we did not notice

any obvious overhead caused by these high-order schemes.

42

CHAPTER V

CONCLUSIONS

5.1 Summary of present work

In this work, we aim to develop a high-order program to solve incompressible flow

with interior boundaries by combining the compact scheme and a high-order immersed-

boundary method. The body of this thesis can be divided into three parts. In Chapter II,

the theory behind this work, including the compact scheme, the least squares treatment,

as well as the high-order Poisson solver are detailed. Chapter III focuses on the one-

dimensional tests of both the advection-diffusion equation and the Poisson equation.

The results indicate that the high-order immersed-boundary method and the compact

scheme are compatible with each other to provide a high-order rate of convergence.

At the beginning of Chapter IV, two separate tests are designed to test if the proposed

high-order immersed-boundary method and the high-order Poisson solver can achieve

desired accuracy. Then our complete 2D code is utilized to conduct more benchmark

tests. The Kovasznay flow test proves that the program is indeed fourth-order accurate if

there is no immersed boundary present. The simulations of flow past a circular cylinder

show the advantage of the high-order immersed-boundary treatment over the original

second-order one.

5.2 Contributions of present work

The objective of this work was to develop an overall high-order immersed-boundary

method code. In achieving this goal, we have made the following contributions.

• We have developed the 2D and 3D formulations for the fourth-order Poisson

solver. These formulations can be used to develop the program to solve the

43

viscous incompressible Navier-Stokes equations without introducing significant

computational overhead.

• We have developed a nominally fourth-order immersed-boundary method by com-

bining the compact scheme and the least-squares based immersed-boundary method.

• We have performed both 1D and 2D tests to study the convergence of the high-

order immersed-boundary method.

5.3 Directions for future work

5.3.1 Improve some details of the program

The program shows a lot of promise in dealing with problems with interior bound-

aries. Yet, there are several details in the program that can be improved. The first one

is the exterior boundary treatment. According to our study, the program itself is limited

to third-order convergence rate by the exterior boundary treatment, despite the fourth-

order compact scheme and the least squares treatment. To achieve a truly fourth-order

performance, high-order one-sided schemes for both Dirichlet boundary condition and

Neumann boundary condition at the exterior boundaries need to be incorporated into

the program.

Apart from the exterior boundary issue, when it comes to fluid-structure interac-

tion and moving-boundary problems, it has been known that sharp-interface based

immersed-boundary method may introduce artificial oscillations in the pressure [28, 29,

30, 31]. The issue will become more serious in our problem, since the low-dissipation,

low-dispersion properties come with the high-order schemes. Fortunately, it has been

addressed in several previous publications where different approaches were implemented

to suppress the oscillation[17, 32, 33]. In our future work, some of these approaches

may be incorporated in the current method.

44

5.3.2 Utilize the program to solve flapping wing problems

Recent interest in biomimetic micro air vehicles has motivated the study of the aero-

dynamics of flapping wings in nature. However, such wings typically involve com-

plex kinematics, and the wing shape is time-dependent and consists of important three-

dimensional features due to active and/or passive flexibility of the wing structure. Even

though the Reynolds number of these biological wings is several orders of magnitude

lower than typical aircraft, the numerical modeling often requires direct numerical sim-

ulations and is thus highly demanding. One of the major applications of the complete

program is to solve such problems. However, the current program has some conver-

gence issues when dealing with thin structures. Because of the special geometry of the

thin structures, the data points for the interpolation will be biased towards certain direc-

tions, causing troubles in the least squares treatment. We find a way to circumvent this

problem. Instead of using the complete form of the two-dimensional cubic polynomial,

we keep the one that only contains 1, x, y, xy, x2y, and xy2 terms. As are shown in

Fig. 5.1 and 5.2, however, if we redo the tests done in Section 2.1, we can find that this

incomplete polynomial lower the rate of convergence of the least squares treatment by

at least one. The impact of this incomplete polynomial on the program will be studied

in the future, but we still manage to do several preliminary tests with it.

One of the tests is the flapping wing described in Yin et al. [34]. As is shown in Fig.

5.3, the wing movement is still controlled by the following prescribed translational and

rotational motion at the leading edge, except that the wing is rigid in this test.

x0(t) =
A0

2
cos(2π f t), (5.1)

α(t) = α0 + β sin(2π f t). (5.2)

x0(t) indicates the horizontal position of the leading edge, α(t) measures the angle be-

tween the wing and the x direction in the counterclockwise direction, A0 is the stroke

45

0.0125 0.025 0.05
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid spacing

N
or

m
s

L
1

L
2

L
inf

4th order
3rd order

Figure 5.1: Rate of convergence of the incomplete least squares interpolation of func-

tion (4.1) when the Dirichlet boundary condition is applied at the interior boundary

points.

0.0125 0.025 0.05
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Grid spacing

N
or

m
s

L
1

L
2

L
inf

4th order
3rd order

Figure 5.2: Rate of convergence of the incomplete least squares interpolation of func-

tion (4.1) when the Neumann boundary condition is applied at the interior boundary

points.

46

Figure 5.3: A schematic of the rigid wing during hovering flight.

distance of the leading edge, α0 determines the initial angle of the wing, β is the am-

plitude of the rotation angle and f is the flapping frequency. In the current test, we set

A0/c = 2.5, α0 = −π/2, β = π/4, and Re = πA0 f c/ν f = 30, where c is the cord length

and ν f the fluid viscosity. Fig. 5.4 (a) to (e) show the vorticity field of the flapping wing

in one cycle.

More carefully designed numerical experiments will be conducted in the future, and

results will be compared with those from the original second-order program to evaluate

the performance of the high-order program.

47

(a)

(b)

(c)

48

(d)

(e)

Figure 5.4: Vorticity field of the domain with a flapping wing in one cycle. (a) t = T ;

(b) t = 5T

4
; (c) t = 6T

4
; (d) t = 7T

4
; (e) t = 2T .

49

REFERENCES

[1] Joel H Ferziger and Milovan Perić. Computational methods for fluid dynamics,

volume 3. Springer Berlin, 1996.

[2] C. S. Peskin. Flow patterns around heart valves: a numerical method. J. Comput.

Phys., 10:252–271, 1972.

[3] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech.,

37:239–261, 2005.

[4] James Albert Sethian. Level set methods and fast marching methods: evolving

interfaces in computational geometry, fluid mechanics, computer vision, and ma-

terials science, volume 3. Cambridge university press, 1999.

[5] D Goldstein, R Handler, and L Sirovich. Modeling a no-slip flow boundary with

an external force field. Journal of Computational Physics, 105(2):354–366, 1993.

[6] Tao Ye, Rajat Mittal, HS Udaykumar, and Wei Shyy. An accurate cartesian grid

method for viscous incompressible flows with complex immersed boundaries.

Journal of Computational Physics, 156(2):209–240, 1999.

[7] HS Udaykumar, R Mittal, P Rampunggoon, and A Khanna. A sharp interface

cartesian grid method for simulating flows with complex moving boundaries.

Journal of Computational Physics, 174(1):345–380, 2001.

[8] Yu-Heng Tseng and Joel H Ferziger. A ghost-cell immersed boundary method for

flow in complex geometry. Journal of computational physics, 192(2):593–623,

2003.

[9] R. Mittal, H. Dong, M. Bozkurttas, F. M. Najjar, A. Vargas, and A. von Loebbeck.

A versatile sharp interface immersed boundary method for incompressible flows

with complex boundaries. J. Comput. Phys., 227(10), 2008. 4825-4852.

[10] Jianming Yang and Elias Balaras. An embedded-boundary formulation for large-

eddy simulation of turbulent flows interacting with moving boundaries. Journal

of Computational Physics, 215(1):12–40, 2006.

[11] Jung Hee Seo and Rajat Mittal. A High-Order Immersed Boundary Method for

Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Com-

plex Geometries. Journal of computational physics, 230:1000–1019, 2011.

[12] Sylvain Laizet and Eric Lamballais. High-order compact schemes for incompress-

ible flows: A simple and efficient method with quasi-spectral accuracy. Journal of

Computational Physics, 228(16):5989–6015, September 2009.

[13] Xianyi Zeng and Charbel Farhat. A systematic approach for constructing higher-

order immersed boundary and ghost fluid methods for fluid-structure interaction

problems. Journal of Computational Physics, 231(7):2892–2923, April 2012.

50

[14] Y.C. Zhou, Shan Zhao, Michael Feig, and G.W. Wei. High order matched interface

and boundary method for elliptic equations with discontinuous coefficients and

singular sources. Journal of Computational Physics, 213(1):1–30, March 2006.

[15] F Gibou and Ronald Fedkiw. A fourth order accurate discretization for the Laplace

and heat equations on arbitrary domains, with applications to the Stefan problem.

Journal of Computational Physics, pages 1–40, 2005.

[16] Mark N. Linnick and Hermann F. Fasel. A high-order immersed interface method

for simulating unsteady incompressible flows on irregular domains. Journal of

Computational Physics, 204(1):157–192, March 2005.

[17] Haoxiang Luo, Hu Dai, Paulo J.S.a. Ferreira de Sousa, and Bo Yin. On the nu-

merical oscillation of the direct-forcing immersed-boundary method for moving

boundaries. Computers & Fluids, 56:61–76, March 2012.

[18] Haoxiang Luo, Rajat Mittal, Xudong Zheng, Steven a Bielamowicz, Raymond J

Walsh, and James K Hahn. An immersed-boundary method for flow-structure

interaction in biological systems with application to phonation. Journal of com-

putational physics, 227(22):9303–9332, November 2008.

[19] J.M.C. Pereira, M.H. Kobayashi, and J.C.F. Pereira. A Fourth-Order-Accurate

Finite Volume Compact Method for the Incompressible Navier-Stokes Solutions.

Journal of Computational Physics, 167(1):217–243, February 2001.

[20] Sanjiva K. Lele. Compact finite difference schemes with spectral-like resolution.

Journal of Computational Physics, 103(1):16–42, November 1992.

[21] Ratnesh K. Shukla, Mahidhar Tatineni, and Xiaolin Zhong. Very high-order com-

pact finite difference schemes on non-uniform grids for incompressible Navier-

Stokes equations. Journal of Computational Physics, 224(2):1064–1094, June

2007.

[22] Zhilin Li. A Fast Iterative Algorithm for Elliptic Interface Problems. SIAM Jour-

nal on Numerical Analysis, 35:230–254, 1998.

[23] Y Hoarau, D Faghani, and M Braza. Direct numerical simulation of the three-

dimensional transition to turbulence in the incompressible flow around a wing.

Flow, turbulence and combustion, pages 119–132, 2003.

[24] P Ferreira de Sousa and JCF Pereira. Fourth- and tenth-order compact fnite dif-

ference solutions of perturbed circular vortex fows. International journal for nu-

merical methods in fluids, (December 2004):603–618, 2005.

[25] Raymond E Gordnier and Miguel R Visbal. Compact difference scheme applied to

simulation of low-sweep delta wing flow. AIAA journal, 43(8):1744–1752, 2005.

[26] I. Singer and E. Turkel. High-order finite difference methods for the Helmholtz

equation. Computer Methods in Applied Mechanics and Engineering, 163(1-

4):343–358, September 1998.

51

[27] L. I. G. Kovasznay and Geoffrey Taylor. Laminar flow behind a two-dimensional

grid. Mathematical Proceedings of the Cambridge Philosophical Society,

44(01):58, October 2008.

[28] Petter A Berthelsen and Odd M Faltinsen. A local directional ghost cell approach

for incompressible viscous flow problems with irregular boundaries. Journal of

computational physics, 227(9):4354–4397, 2008.

[29] Dartzi Pan and Tzung-Tza Shen. Computation of incompressible flows with im-

mersed bodies by a simple ghost cell method. International journal for numerical

methods in fluids, 60(12):1378–1401, 2009.

[30] Markus Uhlmann. An immersed boundary method with direct forcing for the

simulation of particulate flows. Journal of Computational Physics, 209(2):448–

476, 2005.

[31] Chuan-Chieh Liao, Yu-Wei Chang, Chao-An Lin, and JM McDonough. Simulat-

ing flows with moving rigid boundary using immersed-boundary method. Com-

puters & Fluids, 39(1):152–167, 2010.

[32] Jung Hee Seo and Rajat Mittal. A sharp-interface immersed boundary method

with improved mass conservation and reduced spurious pressure oscillations.

Journal of computational physics, 230(19):7347–7363, 2011.

[33] Jongho Lee, Jungwoo Kim, Haecheon Choi, and Kyung-Soo Yang. Sources of

spurious force oscillations from an immersed boundary method for moving-body

problems. Journal of computational physics, 230(7):2677–2695, 2011.

[34] Bo Yin and Haoxiang Luo. Effect of wing inertia on hovering performance of

flexible flapping wings. Physics of Fluids, 22(11):111902, 2010.

52

