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ABSTRACT

This work will focus on giving a perceptual system the ability to detect changes 

while maintaining its understanding of the environment.  Most change detection systems 

can only perceive the change in the environment.  They are not capable of processing the 

other objects in the environment.  Nor are they capable of understanding what type of 

change they have just detected.  This system aims to detect the difference between a 

novel object introduced to the environment and a known object moved within the 

environment while still segmenting the image. 

The image segmentation will use very high dimensional feature vectors.  These 

will be obtained from multiple training images, and each percept will be given a specific 

label.  The feature vectors will then be converted into sparse vectors and arranged in an 

approximate nearest neighbor (NN) search tree.  The new image’s sparse vectors will 

scale the tree based on the Euclidian distances of the current sparse vector to the tree leaf 

nodes.  The label from the leaf nodes will be selected as the representation of the percept 

in the new image.  The novel objects will be detected based on a threshold distance from 

the leaf leave node.  If this distance exceeds the threshold the object will be considered 

novel.   The moved objects  will  be determined by a  previously trained  look up table 

(LUT).   The LUT will  hold a list  of  acceptable  labels  in for each pixel,  and will  be 

created from a series of training images.  

The results from the experiments show that this system is capable of learning the 

objects in an environment and understanding how the environment changes.
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CHAPTER I

INTRODUCTION

Change-Detection has much interest  and multiple  applications in a widespread 

group of disciplines.  Some of those applications are video surveillance [13] [14] [24], 

medical  applications  [29]  [30],  and  roadside  observation  [21]  [22].   The  video 

surveillance applications refer to security issues.  These systems focus on finding changes 

in an environment and tracking the source of those changes.  An example would be a 

person dropping a bag in an in a crowded environment [24].  The bag would be detected 

and associated to that individual.  He would then be tracked around the environment. 

The medical applications are looking for differences over the course of time with respect 

to a patient.  A specific example of this would be observing the evolution of lesions due 

to multiple sclerosis [29].  The third application includes automatically finding illegally 

parked cars [22] or finding vehicles that are stopped in traffic [21].  

There are two limitations that are consistent throughout these applications.  The 

first is that there is no situational awareness.  This means that the system has no idea what 

it is actually looking at.  All it can recognize is that there has been a change from one 

image to another.  The objects throughout the rest of the image are not observed.  For 

specific  applications  this  is  acceptable,  however  a  general  change-detection  scheme 

should be capable of understanding it’s surrounding and also understanding the type of 

change.  
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This brings up the second limitation in of these systems. There is no means of 

understanding the type of changes.  Because all of the previous examples are very task 

specific, assumptions are made as to the type of change.  This means that they may not 

understand if  a novel object  has been introduced or an object  in the background has 

simply moved.

The goal of this work is to build upon the perceptual system designed by Tugcu 

[1] and Wang [2] and add the appropriate change-detection features, removing the stated 

limitations.  The final goal is a system capable of understanding its environment, and able 

to provide useful feedback to the users.  An example would be, but is not limited to, 

airport security.  All of the features in the quiet environment should be understood, and 

their proper locations known (e.g., plants, paintings, and benches). A quiet environment 

constitutes a situation with little to no movement.  This would be when the airport is 

closed or early mornings when only a few people are present.  When the environment 

changes,  the  system  should  understand  how  it  has  changed.   It  should  be  able  to 

determine and understand the difference between a package being left and a plant simply 

being moved.  

Furthermore, the system should be capable of determining transient high activity 

times of the day (e.g., heavy crowds walking through the terminal) as well as quiet times. 

When the area is going through rapid changes the information should be considered as 

largely unimportant because of the large amount of change.  Even humans have a lot of 

trouble with this.  When the crowd dissipates the scene should be processed again and 

any new objects found or previous ones removed should be detected.
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Another  feature is  to incorporate  a  priority to the objects  being detected.   An 

example would be the wall of the terminal.  Because it does not move, it does not change 

and thus the only information it provides is a boundary to the room.  The system should 

be able to learn and understand these basic elements of the environment allowing it to 

process them faster.  The opposite ides to this would be short term temporal changes, 

such as people walking by, or objects moved.

  The short term changes should be the main focus and have the highest priority. 

An example of this would be a briefcase left behind.  In an airport, security would want 

to be made aware of this immediately.   

The  short  term  detection  should  be  able  to  determine  the  importance  of  the 

change.  If an unidentifiable object has been left then the system should notify the users 

with a message marked with high importance.   However if a plant or chair  has been 

moved or removed, there is no need to sound alarms.  The system should simply notify 

the users of these detected changes with a message marked with lower importance.

The final characteristic should be the ability to incorporate the changes over time. 

If a plant is moved and it is determined not to be significant, it should be incorporated 

into the background, i.e., associated with the background.

This  work will  focus on adding the novel  object  detection  feature and moved 

object feature to the system built in [1], and how to discriminate between the two types of 

changes.  
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CHAPTER II

RELATED WORK

True autonomous robotic vision has not yet been achieved.  Many of the methods 

previously created are very specific and non-robust.  Often it is very difficult to teach 

those  systems  new  percepts.   Because  of  this  limitation,  they  will  fail  in  new 

environments.   The  ultimate  goal  of  this  system is  to  be generally  applicable  in  any 

environment,  and  to  have  the  ability  to  discern  the  difference  between  novel  object 

changes and moved object changes in the environment.  The perception system created 

by Tugcu [1] and Wang [2] has been chosen as the starting point for this project.

Origin of this Perceptual System

Tugcu [1] created a very robust and capable visual system and combined it with 

the working memory toolkit  [5] in order  to  perceive the environment  and decide the 

proper action.  Because perception is the priority of this work only that aspect of the 

system will be discussed.  

The perception system begins with training.  The user must select each percept 

and give it a label.  The pixel values are then used to create a high dimension feature 

vector of 10,001 bins.  The first 10,000 bins are a histogram representation of the hue, 

saturation, and values in a small region of the image.  The last bin is a texture feature that 

provides  contrast  and  is  calculated  from  a  filtering  technique  based  on  Laplacian 

operators.  Because of the small size of the image region, the majority of the elements in 
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the feature vector are zero's.  This allows a sparse vector representation to be used.  From 

the sparse vector database a 3-way approximate nearest  neighbor (NN) search tree is 

created.  The nodes of the NN search tree are clustered based on the Euclidian distances 

of the sparse vectors from each other.  

Once a NN search tree is created, a new image is captured. This image is then 

converted into feature vectors in the same way as the training data.  The feature vector 

then chooses the child nodes of the tree based on the Euclidian distance of the feature 

vector to the centroid of the node.  Once a leaf node is reached, if the node is made up of 

feature vectors of the same label, that label will be used to classify that area of the image. 

If the leaf node is made up of more then one label, an exact NN comparison is done with 

each feature vector  in the node.  The label  of the feature  vector that  is  closest  to the 

current  feature  vector  is  then  selected  to  represent  that  part  of  the  image.  This 

implementation  will  be  described  in  more  detail  in  Chapter  3.   Figure  1  shows  an 

example of this segmentation.
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Figure 1[1] Example of a segmented hallway image

The features of the hallway are segmented and represented in the bottom right. 

The end of the hallway has a bright reflection in it causing the noise.  Because this system 

is based on color that much of a change is expected to impact the results.  What makes 

this system particularly desirable is its potential for expandability.  

Currently, one limitation on this system is that when a new object is trained, it is 

not efficiently added to search tree.  The new information will be added into a leaf node. 

This creates the possibility of very large leaf nodes that can greatly increase search times. 

The first change implemented will be to adjust the tree so that it can expand properly in 

real time.  This will allow for immediate results after training without having reduced 

speeds or having to completely rebuild the tree.

Another constraint  is that  there is no change detection.   If a new object were 

presented in the environment the percept the object is closest to will represent it in the 

segmented image.  This will require two new features.  The first feature is the ability to 

detect  novel  objects;  the second feature is  the ability  to  detect  subtle  changes  in  the 

present objects.  The novel object detection has been implemented on a similar system 

created by Wang [2].

Wang [2] created  a  similar  tree structure.   The differences  are  that  in  [2] the 

texture features are calculated differently,  and the percepts are decided autonomously 

from a training set of images.  The texture features are calculated based on Gabor filter. 

The  Gabor  filter  used  in  [4]  is  based  on  a  complex  exponentials  with  a  Gaussian 
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envelope.  This calculation provides 40 texture feature bins creating a total feature vector 

size of 10,040.  

The training method in [2] is also different.  A series of images are presented to 

the system and the clustering of percepts and decision tree creation are all done without 

user intervention.  Figure 2 shows the performance of this system.

Figure 2 Example of the performance of [2]

This shows that this system is comparable to the performance of [1].  The main 

percepts in the hallway have been segmented out and can be discerned in the image.    

The application of this system that is of most interest is novel object detection. 

This was accomplished by using distances from both an approximate nearest neighbor 

(NN) search  tree  and  a  minimum  spanning  tree  (MST)  [2].   The  first  process  finds 

percepts in the NN search tree.  The feature vectors are then processed through the MST 
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and a “low pass” filter is used. If the distances from the nodes in the MST are below a 

threshold the percept from the NN tree will represent that pixel.  If the distance is greater 

than the threshold the feature vector is kept as a possible novel object.  Once possible 

novel  feature  vectors  are  found,  erosion  with  an  8-connected  struture  element  is 

performed twice.  Figure 3 shows the novel object detection’s performance.

Figure 3[2] (top left) the original image, (top right) processed image 
with NN tree, (bottom) processed images after learning with MST.

This  is  an  example  of  the  system  detecting  a  novel  object  and 

autonomously adding that object to the list of percepts.  This ability is nice but not 

desired in the system being created.  The novel object detection in this work will 

find the novel objects and alert the user to their presence.  It will operate under 

similar a threshold principle, however it will not automatically accept and learn 

the  novel  object.   Another  difference  is  that  [2]  assumes  that  only one novel 
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object has been introduced to the scene.  This work will allow for multiple novel 

objects to be detected simultaneously.

Related work in Change-Detection

The  first  and  most  obvious  application  of  change-detection  is  video 

surveillance.   The  first  application  which  has  been  done  multiple  times  is 

detecting an abandoned object [14] [24].  In all of these applications the object is 

attached to the owner before it is dropped.  The owner and object are then tracked 

by the system.

The  system  in  [24]  has  broken  down  the  process  of  detecting  an 

unattended package into four steps.  The first step is moving object detection, 

tracking and classification.  The moving objects are detected using a static change 

detection method (SCD) from [25].  This method uses a threshold to determine if 

an  area  based  on  a  sliding  window  is  moving.   If  the  area  is  moving  it  is 

represented as a blob on a binary image.  

Eigen-features  are  then  extracted  for  object  classification.   The  Eigen-

features are used because they provide more shape-based information and are a 

more compact representation.   These vectors are used to represent the original 

image in a lower dimensional space. 

A support vector machine (SVM) is trained with five classes of human 

motion:  walking  human  with  a  bag,  walking  human  without  a  bag,  bending 

human, human separating from bag, and unknown class.  This will be applied to 

the real-time tracked objects detected for classification.
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It is also desired to track multiple objects with and keep track of them. 

The method created by [26], was extended using Kalman filters and shape and 

color matching.  The Kalman filter predicts the position, dimension, and changes 

of each moving object from noise of occlusion.   In the case of occlusion,  the 

shape and color of previous images is used for matching.  The SVM is applied to 

these results to generate a symbol tracking the human motions.

The second step in this process is assigning ownership to the packages 

detected.  This is done using hidden Markov models (HMM).  The Baum-Welch 

algorithm [27] is used to optimize the parameters for training the HMM.  One 

HMM is created for each of the activities of interest.  Then when the sequences 

are  observed the HMM that it  matches  most  closely is  selected  as the human 

activity that lead to the unattended package.

The  third  process  is  determining  the  object  location  for  a  distance 

relationship to the human.  The Ray Tracing [28] technique originally devised to 

project  a  three-dimensional  world  into  a  two-dimensional  representation  was 

inverted for this process.  The image is already in a two-dimensional world so it 

needed  to  be  projected  into  a  three-dimensional  world  in  order  to  obtain  the 

distance relations.  Once the distance from the human owner to the package was 

determined the final step was performed.

The  final  step  is  determining  that  a  package  is  unattended.   This  is 

performed by determining package ownership, the spatial distance, and the time 

distance.  The system tracks every moving object.  When a package is determined 

stationary  all  humans  nearby  are  considered  possible  owners.   The  symbol 
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sequences previously processed are run though the HMMs to recognize which of 

the humans dropped the bad.  Once an owner has been established the distance is 

checked for a 10m threshold.  If the owner does not return within the threshold 

distance in 15s an alarm will sound.  The 10m and 15s were predefined values 

given to the system.  

This system was tested and worked well with four humans in the image 

and one bag.  There was no report on how well the system would perform with 

multiple bags.  Also the system works well in light traffic areas, however if heavy 

traffic were to travel through the visual field this system would likely fail.  The 

use of immediate difference images would make it very difficult to determine if 

one  individual  in  a  crowd  left  a  bag  even  after  the  crowd  dissipated.   Our 

proposed system will be able to handle this event.

The next system to review was created for determining illegally parked 

cars  in  the road [22].   This system also uses four  processes:  one-dimensional 

projection,  segmentation,  tracking,  and  reconstruction.   The  one-dimensional 

projection is used to convert the no parking zones into one-dimensional vectors. 

These one-dimensional vectors are a means of representing the curved no parking 

areas in a straight line.  This will allow simpler assessment of whether a car is 

parked there or moving through.  

The segmentation is performed by combining background subtraction and 

differencing frames in a temporal sequence.  To initialize the background it is 

assumed there are no cars parked.   Then the sequence of images  is  processed 

performing morphological operations to remove noise.  
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The third step is tracking the objects.  Tracking is performed by matching 

feature  distances.   The features  are  length,  location,  RGB color,  and velocity. 

These features are used and projected onto another image to represent the tracked 

object.  

The  final  process  is  the  reconstruction  of  the  image  from  the  one-

dimensional representation.  This is done to verify that the cars are parked in the 

no parking zone.  

This system performed very well  in detecting the illegally parked cars. 

However, once again this system is dedicated to only one process.  Because the no 

parking  zones  of  the  image  need  to  first  be  mapped,  this  system  is  severely 

limited  in  practice.   Many of  the  systems  discovered  during  the  survey were 

similarly  limited  in  generality.   They use similar  background subtraction  with 

some temporal function to determine a change and then perform various mean of 

tracking.  These systems work very well in a single environment, but they cannot 

easily be applied anywhere else.     
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CHAPTER III

IMPLEMENTATION

Overview

The proposed system will have numerous parts. Various parts of the initial system 

are also covered in Tugcu’s [1] and Wang’s [2] works.  It  begins with the very high 

dimensional feature space used to discern the different objects.  The feature vectors are 

then  classified  using  a  decision  tree,  which  greatly  reduces  the  search  times  for 

classification.  The system then determines if the objects segregated are novel objects and 

if they are expected to be in their locations.  The data flow for this system is shown in 

Figure 4.

Image 
Acquisition

Feature 
Extraction Segmentation

Database (LTM)

Feature 
Vectors

Perceptual 
Classes

Locate the 
percepts in the 

image

User Evaluation

Tr
ai

ni
ng

 p
at

h

Output
(Segmented 

Image + Object 
Locations) Look for novel 

percepts

Figure 4[1] Flowchart of Perceptual System
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This flow chart shows that initially the user will teach the system the labels and 

percepts.  The system will then identify the important information to learn the percepts. 

This  process  is  repeated  until  there  is  sufficient  information  to  classify  each  of  the 

percepts.  The robot will then capture a new image and segment it resulting in an image 

with its regions classified.  If the robot has determined there to be a novel object or an 

object  out  of  place  the  image  will  contain  that  information.   The  human  user  then 

determines if the percepts have been identified, and if the novel objects or moved objects 

need to be learned by the robot.  If it  is determined that the robot should learn more 

information, it can be trained additionally at that time.  

Very High Dimensional Feature Space

The system is chosen to have a very high dimensional feature space in order to 

allow for a high capacity to learn.  In this case the feature vector will represent the color 

distribution in a small region.  This allows for subtle discrimination amongst colors to 

deal with shadows, patterns, and lighting variations.

A very high dimensional feature space does not come without its drawbacks.  The 

first problem is the size of the database required.  The rule proposed in [32] suggests that 

five times the size of the feature vector is a sufficient amount of data.  This is not a major 

problem for this system because it is easy to obtain the required amount of training data 

through the images.

Another  problem  with  high  dimensional  feature  spaces  is  that  parametric 

classifiers become less useful as the number of dimensions rises [1].  These parametric 

techniques  include  calculating  Eigen-values,  Eigen-vectors,  covariance  matrices, 
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acquiring covariance matrices,  or forming large data matrices and calculating singular 

value decompositions [1].  The calculations to perform any of these techniques with very 

high dimensional feature spaces are very difficult and very expensive.   This leads to the 

use  of  the  nearest  neighbor  (NN)  classification  technique,  which  only  requires  the 

distance calculations in order to be effective.  

The drawback to using NN classification is that if the data is simply collected and 

exhaustively searched it  will take too long and be too computationally expensive.   In 

order  to  speed the processing  up an approximate  NN search tree was applied.   This 

provided robust performance at a greatly reduced processing speed.  Another benefit of 

the  search  tree  is  that  the  system can  be  trained  in  real  time  much  easier  then  for 

parametric approaches.

In order  to deal  with the computational  expense of the large feature vector,  a 

sparse vector representation is used.  For this system color histograms are used which, 

when extracted from small regions of the image, can be very well modeled with sparse 

vectors.   This both simplifies the calculations  to be performed and reduces the space 

required for storage.  

As mentioned, the high dimensional feature space is a representation of the color 

in the image.  The system will first grab the image and obtain the red, green, and blue 

(RGB) pixel values.  These values are then converted into Hue, Saturation, and Value 

(HSV).  The HSV coordinate system is shown in Figure 5. 
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Figure 5 [1].  HSV color domain representation.
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Once  the  HSV  values  are  computed  a  probability  density  function  of  the 

distribution  is  made.   The  hue  of  the  histogram  is  broken  into  100  bins  while  the 

saturation and value are each broken down into 10 bins.    By combining these results, the 

total number of color features is 10,000.  The HSV values of small regions are then taken 

and broken down in to 15x15 regions to form each feature vector.  This leaves a large 

part of the feature vector filled with zeros.  Because of this, a sparse vector is an efficient 

representation of the vector.

The sparse vector has two parts.  The first is a value vector.  The value vector 

provides the number of pixels read that contained that value.  The second part is the index 

vector.   This vector contains the indices of the locations of the values in the original 

feature vector.   These vectors combined represent all  of the relevant data in the high 

dimensional  feature  space.   This  representation  reduces  the  computational  cost  of 

calculating the distance between the feature vectors.  

The reason for this is because the norm of the vector can be calculated with only 

non-zero elements.   Also, the inner products of the two vectors only need the values 

where both vectors have non-zero elements.  Therefore as long as the number of non-zero 

elements is held close to constant, the calculations will not grow.  The system restricts the 

area searched to an N x N region.  Thus, the maximum number of non-zero elements is 

going to be 2N2 + 1.  The one comes from the texture feature included.

The  texture  feature  is  included  to  provide  a  measure  of  “roughness”  vs. 

“smoothness” in the image.  To calculate this value a spatial filtering technique, based on 

a Laplacian operator, is used [1].  The Laplacian operator will highlight the edges in the 

image.
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Search Tree

In the previous systems [1] [2], a large training database had to be created and the 

search tree was then created from this database.  When new feature vectors were added to 

the tree, the leaf node that they were closest to was found and then the feature vectors 

were added to that node.  The problem with this is that as more feature vectors are added 

the larger the population in the leaf node would become.  As the node became larger the 

speed benefits of the approximate NN search tree were mitigated.  The way around this 

was to create a whole new tree from the entire new database.  For the proposed system it 

was desired to have the robot learn from a top down approach.  This means that the 

database and tree expand at the same time.  The first vectors trained became the top node 

of the tree.  As new feature vectors and percepts were trained, they were immediately 

added to the tree.  The structural means by which the tree is broken down is still the same 

as in [1] [2]. The difference is that the current tree will provide immediate feedback to the 

new training.

The tree is structured into a 3-way approximate NN search tree.  It will start at the 

root node and when the new training vectors are added, the system will cluster the vectors 

accordingly and create three child nodes around the centroid of the three clusters. The 

general form of the tree is shown in Figure (6) [2].

Figure 6 [2] Illustration of database tree structure

18

Centeroid
Centeroid

Centeroid

Centeroid



The clusters are decided based on proximity calculations.  According to [31], the 

best  approximation for invariant  relations  between data  and distances  for HSV is  the 

Euclidian distance.  The K-dimensional space Euclidian distance is calculated by: 

2
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1
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


 −= ∑

=

K

k
jkikij xxd                                               [1]

As mentioned, the number of dimensions K will be 10001 in the system.  

When an image is being segmented it will calculate the distance from the current 

image feature vector to the center of each of the child node clusters.  It will then follow 

the path of the node closest to the feature vector, down the tree until it reaches a pure 

node or it reaches a node with no children.  A pure node is a node that has only one label 

associated to it.  If this node is selected then no further calculations are necessary.  The 

label  corresponding to  this  node is  taken.   If  the process  reaches  a  leaf  node that  is 

impure, it will perform a NN search in this node.  It is because of this NN search that 

simply placing new feature vectors in nodes without expansion of the tree can increase 

search time.   

A maximum likelihood estimator (MLE) decision process has also been recently 

implemented in the tree structure.  An MLE is a probabilistic determination of which 

class the current feature vector should be placed in when at impure nodes.  The class that 

has the highest  number  of feature vectors in the impure node will  be selected as the 

current feature vector.  The progression through the tree remains the same, however when 

an impure node is selected this will save calculation time over the NN search.  This also 

opens up the possibility for the system to provide more useful feedback regarding the 

reasons for its selections.  The further investigation of this system will be left for future 

work.
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Novel Object Detection

The novelty detection in this system is based on a threshold applied to the K-

dimensional Euclidian distance with the current feature vector and the centroid of the 

node that it is determined to be closest to.  The threshold was determined by taking 10 

sample images and calculating the mean and standard deviations of the distance from the 

pixels to their closest nodes in the tree.  Then two times the standard deviation was added 

to the mean to get threshold value. This threshold was then fine tuned for the system 

through trial and error experimentation.  

The problem with this novelty detection scheme is the amount of noise produced 

in the image.  If one pixel is determined to be noise, it is undesirable for the system to 

continually  respond.   It  should  only  respond  if  there  is  a  new object  present.   The 

technique used to rid the image of noise was a size constraint.  If a pixel is determined to 

be outside of the threshold all of its neighbors are checked.  If a total of seven connected 

pixels  are determined to be outside of the set threshold then a novel object has been 

detected and the user is notified.  

Moved-Object Detection

The primary difference between this feature and novel object detection is that this 

should  recognize  if  an  object  the  system  already  knows  has  been  moved  in  the 

background.  This should operate similarly to a surveillance system.  If an object in the 

image that the system knows has been moved, the system should be able to understand 

that it has moved.  It should then notify the user of the movement.  
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The  purpose  of  this  ability  is  to  provide  context  to  the  environment.   When 

humans enter a room with a desk and a chair it does not matter if the chair is at the desk 

or beside the desk.  However if the chair has been moved to the wall on the other side of 

the room, this would be considered odd.  Also if the chair were to be completely removed 

from the room, humans would notice.  

This function is performed using a look up table (LUT).  For each pixel a list of 

acceptable labels are placed in the LUT.  This is done by using a series of training images 

with objects in acceptable locations.  Multiple images are used for the training to reduce 

the effect of noise and allow objects to be slightly shifted.  Then when the new image is 

segmented,  the  pixels  are  compared  to  the  acceptable  values.   If  a  pixel  has  an 

unacceptable value its surrounding pixels will also be checked to determine if they are 

new values.  If seven or more of them are new values it is determined that an object is 

moved.  Because of the presence of transient noise for this system, it must process the 

next image and if the same pixels are determined to have unacceptable values then an 

object is determined as moved.  
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CHAPTER IV

EXPERIMENTS AND RESULTS

The system described has been implemented on the stationary humanoid robot 

(ISAC) at Vanderbilt University.  A camera has been mounted in front of ISAC to see the 

room directly in front of it.  A series of 10 images were taken of the environment and the 

percepts  to train  on were decided.   The 10 images  were taken over multiple  days  at 

different  times.   This  was  an  attempt  to  mitigate  the  effects  of  shadows  changing 

throughout the day.  Figure 6 shows the environment the system will be learning.  

Figure 7.  Image directly in front of ISAC taken at 3pm.

The features chosen are the wall, floor, power strip, white erase boards, trash can, 

printer and chair.  The other objects, e.g., the table, are not selected because they are not 

large  enough  to  train  on.   For  the  training  images  all  of  the  objects  were  reliably 
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segmented.  However when the system was run outside of the training images, it was 

found that the white nature of the wall, white-boards, and printer and the black nature of 

the chair and trash can were indistinguishable throughout the day.  The accuracy of the 

system was dependant lighting variations on each of these objects.  The decision was 

made to combine the white objects into one percept and the black objects into another 

percept.  This left four identifiable percepts in the environment: the white object, black 

object, power strip and the floor.  Table 1 lists the colors that will represent the features 

in the segmented image.

Table 1: List of percepts and representative colors
Object(s) Color Representation

Wall, White Erase Boards, Printer Gray
Floor Black

Trash Cans, Chair Green
Power Strip Orange

Novel Objects White
Moved Objects Red

Experiment 1

The first experiment will demonstrate the novel object detection.  This will show how 

the system responds when various objects are introduced into the scene.  The first object 

that will be placed in the scene is a red tool chest.  The image and results are shown in 

Figure 7.
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Figure 8 Processed image with novel object introduced.

The processed area shown in white is the area detected as novel.  It is shown at the 

center of mass of the object.  The surrounding is green because of the erosion.  During 

the process the eroded areas are classified as the object they are closest to.  In this case 

and many others it  is the trashcan/chair  percepts.   Another thing to note is the novel 

object detected at the bottom of the white wall.  This phenomenon will be discussed later.

Another example of novel object detection is shown in Figure 8.
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Figure 9 Multiple novel objects

In this example both the green ball and red shirt of the individual holding the ball 

are detected.  The rest of the body has been highlighted as closest to trashcan/chair again. 

A  series  of  objects  have  been  tried.   Those  that  had  color  not  appearing  in  the 

environment normally were recognized while those that had colors similar to the normal 

environment  were detected as moved objects.  An example is the blue jeans worn in 

Figure 8.  They are not perceived to be novel. However if the individual remains in that 

location long enough to be processed again, they would be reported as a moved object. 

The second process is necessary because moved objects are only reported after  being 

detected in two consecutive images.  

An interesting event repeatedly happened during this process.  That event was that 

no matter how much the white areas were trained they would randomly be detected as 

novel objects.  The reason for this was determined to be the lack of saturation throughout 

the  image.   As mentioned  in  Chapter  3,  the  hue was given  the  most  bins  with 100. 
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Therefore, it  has the highest impact on the distance calculations.  The problem is that 

when there is no saturation and high value the image will still appear white regardless of 

the hue.  This means that the distances may be relatively far away even if they appear to 

be the same colors.   A possible  solution to  this  would be to  increase the number of 

saturation bins in the histogram.  This will be left for future work. 

Experiment 2

The second experiment will demonstrate the surveillance capabilities of the system.  The 

first test will be moving the printer.  Figure 9 shows the results.

Figure 10 The printer moved to the floor.

The printer has been highlighted in red instead of the typical gray that defines it.  A 

message has also been printed in the text area to let the user know of the moved object.  
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The next test, Figure 10, shows what happens when the trash cans have been moved. 

To demonstrate that the system can handle moved objects and novel objects at the same 

time, a pink object has been added.

Figure 11 The trash cans have been moved and a pink box has been added.

This image shows the system handling both events simultaneously.  Also the issue 

previously mentioned of a false reaction to the white wall can be seen more clearly here.

The third possibility is the complete removal of an object from the image.  This is 

shown in Figure 11.
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Figure 12 White erase board removed.

This example shows the moved object noticed in the power strip.  Because the 

wall and white board were combined into one object, it is not expected to be detected 

anywhere else.

The final example is  one in which the system will  fail.   Because of the large 

amount of combining percepts in this environment, it became easier to trick the system. 

Figure 12 shows this failure.
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Figure 13 Printer moved in the image and the chair removed from image

This shows that when the printer is moved against another white background, the 

movement goes undetected.  Also, the extremely dark shadows under the table allow the 

absence of the chair to go undetected.  This failure shows that in a relatively colorless 

image, change is difficult to detect.  

These are four examples of cases where objects were moved in the image.  As 

more tests were performed, the objects that were novel objects and not detected as novel 

were still noticed by the surveillance system.  The system believed that they were in the 

trashcan/chair category but realized that they were in a location not expected.  

Experiment 3

The purpose of creating the MLE decision tree is to speed the system up and 

allow the tree representation to be smaller. To run a single iteration of the approximate 
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NN search tree takes 12 seconds.   Also,  the current  tree structure exceeds  100mb of 

space.  It is believed that the MLE representation can greatly reduce both of these.  

Three different tests are compared with the MLE tree.  The first is how long and 

accurately the system performs with the full MLE tree.  The second test performed is 

with only 45 levels of the tree.  The final tests performed, goes down 30 levels of the tree. 

The results of the first test, i.e., the full tree, are shown in figure 13.

Figure 14 Processed image with full MLE tree.

The system took 5 seconds to process this image.  This result shows that the process took 

less then half the time of the  NN search, but the loss of quality is evident in the trash can 

and chair.  The NN search was able to more reliably detect the percepts under the table.

The results of the tree going only down to the 45th level are shown in Figure 14.
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Figure 15 Processed image with 45 levels of the MLE tree.

These results were obtained in 4 seconds.  They also provided results consistently more 

accurate than the full MLE tree.  However compared to the NN search the power strip is 

nearly nonexistent.  

The third experiment with an MLE tree is shown in Figure 15.
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Figure 16 Processed image with 30 levels of the MLE tree.

This result was obtained in 3 seconds and was very noticeably different from the full tree 

result.  

The various results demonstrate the speed up of the system along with the varying 

accuracy.  Using the tree to the 45th level was repeatedly the most accurate representation 

while providing the 2nd fastest results.  The purpose of demonstrating the MLE tree at 30 

levels is to give an idea of the usefulness of this tree in a very simple environment.  The 

wall  and  floor  are  represented  reasonably  well  in  only  3  seconds.   This  provides 

reasonable results if speed is more important than accuracy.  
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CHAPTER V

CONCLUSION

This  work has  shown the flexibility  of  using a  very high dimensional  feature 

space  representation  for  change-detection  in  vision.   The  distinction  between  novel 

objects and moved objects was shown.  These changes were also detected within the 

context of the image.  The knowledge of the background was not sacrificed in order to 

pick up the changes.  

The  novel  object  detection  was  performed  using  a  threshold  based  on  the 

distances of the feature vectors to the tree nodes.  A size constraint was then applied to 

remove noise.  This worked well except for the areas with very low saturation.  As was 

mentioned because of the lack of saturation the hue, which carries the highest weight in 

distance calculations, became meaningless.

The moved object detection was performed via comparison to a LUT.  The LUT 

gave a sense of objects that belonged in an area.  This allows chairs to be moved under a 

table without issue, but would detect a chair in the middle of the room where one is not 

expected.  One possible next step of this detection scheme is to have the system learn to 

understand objects that cannot move so that they may be considered less important and 

have less processing time devoted to them.

A  number  of  improvements  can  still  be  made  to  this  system.   The  first 

improvement would be autonomous clustering.  The ability to place the system in any 

environment and have it reliably figure out what is important would be very useful.  This 

33



process was started in [2].  A random feature vector was selected and declared to be the 

centroid and from there a minimum spanning tree was generated.  The results from the 

experiments indicate that this could be a good starting point for this addition.

Another  addition  to  this  work  would  be  the  concept  of  time.   There  are  two 

notions of time that relate to this system.  The first learns when the transient times of day 

are, i.e., the times of day when the environment undergoes the most rapid changes.  The 

system is capable of determining when a transient time is by the number of changes that 

are constantly happening.  During this time the quickly changing areas of the room do not 

need to be processed.  When the area is quiet again, the room should be processed for all 

of  the changes.  The second idea of time is  when an object  has been left  in  a single 

location for a long time.  An example would be a picture on the wall.  The picture does 

not tell you anything new about the environment and it is therefore undesirable to spend a 

lot of time processing it.  The significance of the picture should drop and it should be 

integrated into the background.

The next means  of improving  this  system is  a coarse vision combined with a 

focused vision system.  The coarsely segmented image is a result of the 15x15 windows 

used  in  creating  the  feature  vectors.  The  focused  segmentation  would  use  a  smaller 

window size and provide more details in a select area of the image. By including these 

functions, the processing of the irrelevant background can be sped up while the focused 

section can provide more detail on the areas of interest in the image. 

Another addition will be to fix the issues with the low saturation areas.  One idea 

as a solution is to increase the weight of the saturations.  It currently only has 10 bins 

associated to it.  If this were increased to 100 bins the saturations could be analyzed much 
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closer.  This solution will also not affect the speed of the system.  The processing speed is 

based on the 15x15 moving window not the total size of the feature vector.  

The final improvements to be worked on are the MLE trees.   The purpose of 

creating them is speed and size.  The next step with them is to reduce the trees while 

retaining  the appropriate  information.   This  will  determine  how they can  be applied. 

Ideally the tree will be reduced enough that the tree will be able to fit on the graphics 

processing units (GPUs) on video cards.  This will greatly increase processing speed, 

making this system closer to real time video processing.  
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