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ABSTRACT 

 

Neuronal protein refolding and degradation in response to stress is largely mediated by the 

HSP70 chaperone complex and is critical for maintaining cell function and survival. While 

some components of the triage machinery have been identified, we lack both a fundamental 

understanding of the triage responses that neurons evoke in response to an acute, ischemic 

stress and an ability to leverage this response to improve protein triage. In this work we have 

identified changes in known and novel molecules that are part of the chaperone machinery in 

response to oxygen and glucose deprivation (OGD) that may represent new targets for 

therapeutic intervention. We find that immediately following a short period of OGD, neurons 

endogenously attempt to refold damaged proteins but are unable to maintain these increased 

folding rates. Using an allosteric modulator of the HSP70 complex, 115-7c, which promotes 

protein refolding, we were able to improve both neuronal protein and lipid integrity. 

Additionally, cholesterol biosynthesis, bioenergetic status and membrane architecture were 

all improved by 115-7c while levels of oxidized and ubiquitinated proteins were decreased. 

Priming naive neurons with 115-7c mimics the endogenous response to low level stress and 

neuroprotective effects of ischemic preconditioning (PC) in the absence of new protein 

synthesis. Taken together with our proteomic and metabolic data, we hypothesize that the 

endogenous response to acute injury is to promote protein refolding and that pharmacological 

augmentation of this response will allow neurons to better maintain proteostasis, decrease 

cell injury and maximize energetic capacity in order to survive ischemic stress. Given that 

stroke is a leading cause of death worldwide, and that there is currently only one FDA-

approved treatment for the ischemic stroke, these data are particularly compelling and 

warrant continued exploration. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Stroke: A Statistical Overview1 

According to the American Heart Association (AHA), stroke is the 5th leading cause of 

fatality in the United States, accounting for 1 in every 20 deaths. Current projections predict 

that in 2018 alone, roughly 800,000 people will suffer from a stroke, resulting in the death of 

130,000 individuals (Benjamin, 2017). As global life expectancy increases, an additional 3.4 

million people over the age of 18 years are expected to have a stroke by 2030, a 20.5% 

increase from 2012 (Benjamin, 2017).  

Stroke survivors often experience lasting and extensive medical complications making 

stroke the leading cause of long-term disability. One in every four people whom have had a 

stroke will have another without intervention. Best practices dictate that clinicians manage the 

most common risk factors of stroke including: controlling blood pressure and cholesterol 

levels, normalizing glucose levels, increasing activity, eating well, losing weight, refraining 

from smoking and adding low aspirin or other medical therapies (Benjamin, 2017).  

Ischemic strokes account for 87% of all strokes and occur when a vessel supplying 

blood to the brain is obstructed, resulting in the loss of oxygen and glucose and neuronal cell 

death. Despite being so devastating, there is only one FDA-approved treatment for ischemic 

stroke, intravenous (IV) administration of the thrombolytic agent, tPA (tissue plasminogen 

activator).  However, treatment rates are low with only 3.4% of patients receiving IV tPA due 

                                                
1 In presenting these statistics during a 3 Minute Thesis competition I was informed that these data were, 
“extremely compelling.” I chose to begin my thesis with these same stats for just that reason. 
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to the narrow therapeutic time window (administration within 3.5 hours of stroke onset) 

(Adeoye, 2011). This narrow treatment window makes delays in activating emergency 

medical services, suboptimal hospital infrastructure, poor communication and transportation 

real risks to positive patient outcomes (Cheng and Kim, 2015).  

Both the National Institutes of Heath (NIH) and the AHA are committed to expanding 

the number of stroke centers throughout the US. The unmet needs of rural Americans are 

now being met with telemedicine to triage and treat the most critically ill patients. As of 2012, 

there were 56 tele-stroke programs across the US (Silva, 2012). Increased access to these 

centers has resulted in increased treatment rates (14%-15.5%) and fewer hospital transfers 

(down from 44% to 19%) (Cheng and Kim, 2015; Hess, 2005). There are also numerous 

clinical trials in place to determine whether the treatment window for tPA can be effectively 

and safely extended (Benjamin, 2017; Del Zoppo, 2009; Hacke, 2008). 

One of the biggest gaps in neurotherapeutics lies in our ability to not just reperfuse the 

brain, as tPA does, but to protect the tissue that was without oxygen and glucose from 

reperfusion injury. Our team works diligently to identify new therapies, understand which 

factors limit cell survival and to improve neuronal viability and functional outcomes following 

stroke. Within this body of work, I hope to convey my role in the research and discovery 

efforts highlighting the cellular and molecular cues that contribute to determining cell fate 

following oxygen and glucose deprivation.    

 

1.2 The Molecular Underpinnings of Ischemic Stroke 
The classical framework in which we dissect the molecular mechanisms associated 

with stroke are by evaluating the energetic changes resulting from glucose deprivation and 
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oxidative imbalances. As such, both energetic and oxidative2 stressors have been found to 

result in an increasingly well-understood pathway of ‘excitotoxic’ cell death (Hayashi, 1954; 

Olney, 1969; Watkins and Jane, 2006).  

 

Energetic Stress 

The brain constitutes only 2% of the body’s weight yet accounts for 20% of oxygen 

consumption and 25% of glucose utilization (Hofmeijer and van Putten, 2012; Kety, 1963). 

Glucose is the main substrate for cerebral energy production. Following transport across the 

blood brain barrier (BBB) and cell membrane, glucose is converted into pyruvate via the 

anaerobic glycolytic pathway in the cytosol producing 2 ATP. Pyruvate is then transported 

into the mitochondria and converted into acetyl-CoA, which can then enter the Krebs cycle. In 

subsequent steps, and following oxidative phosphorylation, an additional 30 molecules of 

ATP are produced. Loss of glucose supply / consumption as during an ischemic event 

consequently results in a rapid (within 5 minutes) decrease in ATP levels (Folbergrova, 1992; 

Kalogeris, 2012; Sims and Muyderman, 2010).  

Depleted bioenergetic stores result in failure of ATPase-dependent ion transporters 

which contribute to increased intracellular and mitochondrial calcium (Ca2+) levels and 

consequent mitochondrial failure (Kalogeris, 2012). When oxygen and glucose levels are 

restored, ischemia-damaged mitochondria are unable to immediately couple oxidative 

phosphorylation with ATP production resulting in a surge in the generation of reactive oxygen 

species (ROS) (Quarrie, 2014). 

 

 
                                                
2 A key McLaughlin lab publication isolated the oxidative and energetic components of ischemia as a means to 
identify the potentially neuroprotective role of the Krebs cycle intermediate, isocitrate dehydrogenase (IDH) 
(Grelli, 2013). 
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Oxidative Stress 

Oxidative stress is defined as a rapid and excessive generation of ROS and a 

decrease in the detoxifying and scavenging activities of intracellular antioxidants (Halliwell 

and Gutteridge, 2007; Mehta, 2007). Excessive generation of ROS occurs not only during the 

initial insult of an ischemic event but also during the subsequent return of blood flow 

(reperfusion) (Rodrigo, 2013). Post-mitotic neurons are particularly susceptible to attack by 

ROS, which can damage macromolecular structures including proteins, lipids and nucleic 

acids, ultimately activating downstream signaling pathways that result in cell death (Halliwell 

and Gutteridge, 2007). 

Under physiological conditions, cells are equipped with robust antioxidant defenses to 

scavenge and remove ROS, all while maintaining cellular integrity. There are numerous 

antioxidants, including those that are synthesized in vivo, such as glutathione (GSH), 

catalase and superoxide dismutase (SOD), and those that are supplemented by diet, such as 

ascorbic acid (Vitamin C) and alpha-tocopherol (Vitamin E) (Halliwell and Gutteridge, 2007). 

During ischemia, while ROS levels rise, antioxidant levels decrease drastically as a function 

of time (Mizui, 1992). For example, the most abundant cellular antioxidant, glutathione, is 

typically maintained at ~5 to 10 mM but can drop by up to 90% following focal ischemia (An, 

2012; Maher, 2005).  

 

The Excitotoxic Cascade 

The combined effects of the energetic and oxidative stressors described above 

ultimately result in activation of the ‘excitotoxic cascade’ a term first described in 1954 by Dr. 

T. Hayashi (Hayashi, 1954) and later coined by Dr. J. Olney (Olney, 1969). Briefly, loss of 

blood supply during an ischemic event means that critical components necessary for neurons 

to maintain energetics (particularly ATP) within and around the stroke lesion are depleted. 
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Ultimately unable to maintain ion homeostasis (Doyle, 2008) cytosolic sodium (Na+) 

increases and potassium (K+) decreases resulting in depolarization of neuronal membranes 

(Onteniente, 2003). The loss of membrane potential triggers opening of voltage gated Ca2+ 

channels, a rapid influx of Ca2+ (Mehta, 2007; Onteniente, 2003) and release of the major 

excitatory neurotransmitter, glutamate, into the synaptic cleft (Lipton, 1999).  

Synaptic glutamate is normally maintained between 1-5 µM (Doyle, 2008; Mehta, 

2007). However, within minutes following an ischemic insult, glutamate levels can reach as 

high as 30 µM causing excessive activation of members of the ionotropic glutamate receptor 

family, namely N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors (Brouns and De Deyn, 2009; Greene and 

Greenamyre, 1996; Lakhan, 2009). 

 

1.3  The Mitochondria – Not Just a Powerhouse 

Mitochondria are integral organelles responsible for maintaining bioenergetic reserves 

but are also being increasingly recognized as mediators of neuronal cell signaling and health. 

Intra-mitochondrial GTPases, chaperones, kinases and phosphatases, have a broad range of 

roles in cell mobility, architectural integrity, cell division, cell signaling and survival. 

Mitochondria are continuously produced by neurons and remodeled by fusion and fission 

events (Cagalinec, 2013). The ability to relocate within cells allows mitochondria to rapidly 

perform regulatory roles in response to changes in electrical stimulation, environmental cues 

and intracellular nutrient sensing (McBride, 2006; Niescier, 2016). 

 

Mitochondrial Signaling in Response to Ischemia 

Mitochondria continuously produce reactive oxygen species as by-products of aerobic 

respiration. These ROS are essential for maintaining the redox state of a cell. Any ischemic 
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event leads to alterations of the mitochondrial electron transport chain complexes (ETC) and 

decreased antioxidants (Consolini, 2017); however, the severity of the ischemic attack can 

result in drastically different mitochondrial responses. Ischemic insults of short duration will 

increase the electronegativity of the ETC complexes and result in some leakage of electrons 

but it is often times not significant enough of a stress to alter antioxidant systems allowing the 

ROS produced to be scavenged. 

If however, the ischemic event is of lasting duration, neuronal mitochondria experience 

decreased activity of the ETC (particularly at complex I and complex IV) that ultimately 

impairs overall bioenergetics (Consolini, 2017). This impairment results in uncoupling of the 

ETC from ATP production and causes not just electron leak but also the subsequent 

formation of damaging oxygen radicals as antioxidant system are depleted. Other detrimental 

events in cases of severe ischemia include increased mitochondrial membrane permeability 

as calcium accumulates within the matrix, a switch to anaerobic metabolism with a 

subsequent buildup of lactic acid3 and therefore a significant alteration of mitochondrial pH 

(Consolini, 2017; Jassem and Heaton, 2004).  

 
Mitophagy: Separating the Good, the Bad and the Ugly 

Mitochondria form a dynamic network controlled by a range of cellular mechanisms 

including: fission and fusion, de novo mitochondrial biogenesis, and the elimination of 

unwanted mitochondria by mitophagy, to guarantee an appropriate population of healthy 

mitochondria (Martinez-Vicente, 2017; Ploumi, 2017). Proper maintenance of this 

mitochondrial pool is necessary for cellular homeostasis, but is particularly important for post-

                                                
3  Lactic acid is often used in the clinic as a metric of survival. However, using real-time 
microphysiometry, we were able to demonstrate that the greatest single predictor of neuronal survival 
is extracellular acidification with neurons fated to die experiencing rapid and significantly increased 
acid generation (McKenzie, 2012). 
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mitotic neurons that must maintain basal turnover to eliminate old and inefficient organelles 

even under physiological conditions.  

In addition, mitophagy can be induced as a stress-response to eliminate selectively 

damaged mitochondria following depolarization, which occurs during ischemia. Mitophagic 

processing typically involves a receptor-mediated mechanism whereby mitochondria are 

physically connected to LC3-II, the major component of autophagosomes. The nature and 

origin of mitophagy receptors can vary depending on the type of mitophagy; some are 

proteins or lipids localized in the mitochondrial membrane, others are non-mitochondrial 

proteins that recognize and simultaneously bind ubiquitinated chains on the mitochondrial 

surface (Wild, 2014).  

The most well studied mechanism of mitophagy is the PINK1/Parkin pathway. PTEN-

induced putative kinase 1 (PINK1) is a serine-threonine kinase containing a mitochondrial 

targeting sequence (MTS) that is constitutively synthesized and imported into all 

mitochondria. In properly polarized, ‘healthy’ mitochondria, PINK1 is cleaved by inner 

mitochondrial membrane (IMM) proteases (Greene, 2012). In damaged mitochondria that fail 

to maintain membrane potential, PINK1 accumulates on the outer mitochondrial membrane 

(OMM) exposing a catalytic kinase domain that can recruit and activate the E3 ligase Parkin 

(Narendra, 2010).  Once activated, Parkin can either phosphorylate or ubiquitinate other 

specific OMM proteins (Durcan and Fon, 2015). Most commonly, ubiquitination followed by 

proteasomal degradation of OMM proteins such as mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), 

for example, results in fragmentation of the mitochondria and recruitment of the mitophagic 

receptor, p62 (Narendra, 2010).  

While removing damaged mitochondria from the cellular milieu seems like a 

reasonable means to support cell health, the literature regarding the role of mitophagy in 

response to ischemia varies (Tang, 2016). In some studies it has been shown to be 
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protective (Carloni, 2010; Lizama, 2018), while in others, destructive (Koike, 2008) depending 

on the model system used and the extent / severity of the ischemic insult.  

 

1.4 The Preconditioning Paradox 

What Doesn’t Kill You Makes You Stronger 

In the above sections, I described the molecular events that occur after ischemia with 

a slight bend towards detrimental signaling pathways and damaged cellular components. 

However, overall outcome following an ischemic event depends highly upon the magnitude 

and duration of the initial insult. In fact, there exists a phenomenon known as ischemic 

preconditioning (PC) in which a brief bout of ischemia results in neuroprotection from a 

subsequent and typically lethal exposure (Barone, 1998; Lizama, 2018; McLaughlin, 2003). 

Importantly, many seemingly detrimental events elicited following an ischemic attack such as 

the generation of ROS and caspase activation are also required for PC to be effective 

(McLaughlin, 2003). This means that our brains have endogenous mechanisms for 

responding to insults that, if understood better, may be harnessed to inform future therapeutic 

directives. 

There are numerous in vivo and in vitro models of PC that have revealed specific 

windows during which neuroprotection is maximal and that have demonstrated key shared 

features regardless of the exact model employed. These hallmarks include: new protein 

synthesis, induction of heat shock proteins, activation of mitochondrial KATP channels, and 

spatially and temporally limited activation of caspases (McLaughlin and Gidday, 2013; 

McLaughlin, 2003). Researchers have increasingly come to appreciate that signaling 

pathways commonly associated with apoptosis and cell death can also be triggered (to some 

extent) during non-lethal, preconditioning events (Brown, 2010; McLaughlin, 2003).  
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The Connection to the Clinic4 

In the clinic, roughly 300,000 patients present annually with a transient ischemic attack 

(TIA) (Zhan, 2011). By classic definition, these ischemic events involve a sudden, focal 

neurological deficit that lasts for less that 24 hours, and does not result in permanent damage 

(Albers, 2002). In 2009, the AHA refined this definition as up to 50% of TIA patients exhibited 

brain injury via magnetic resonance imaging (MRI) well after the event (Easton, 2009). 

Although TIA symptoms resolve, these events are far from benign. In fact, following a TIA, a 

patient’s risk of stroke, myocardial infarction, and death are as high as 25% within 90 days 

following the initial insult (Easton, 2009). And herein lies the paradox. While the overall risk of 

future ischemic stroke after a TIA is increased, studies have shown that patients whom have 

suffered a TIA prior to a full-blown stroke have improved functional recovery and survival 

compared to first time stroke patients (Bejot, 2011; McLaughlin and Gidday, 2013; Wang, 

2017).  

 

1.4 Timing Is Everything 

 The clinical mantra for stroke, ‘Time Is Brain,’ underscores the importance of drug 

delivery, clot or stenosis disruption and reperfusion of oxygen and glucose to neuronal tissue. 

Indeed, the importance of timing in stroke cannot be overstated. 

 

A Brief Look into Failed Clinical Trials 

Despite a wealth of basic molecular knowledge regarding the pathology of neuronal 

cell death following ischemic stroke, clinical trials for drugs targeting ‘excitotoxic’ and 

                                                
4 Participating in the Clinical Neuroscience Scholars Program was one of the most rewarding aspects 
of my graduate training. Under the joint mentorship of Dr. McLaughlin and Dr. Lori Jordan, I was able 
to gain insights into the reality of stroke in infants, children and adolescents that not only guided, but 
constantly fueled my passion for my thesis work. 
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oxidative stress signaling pathways have been extremely disappointing. The National Institute 

of Neurological Disorders and Stroke (NINDS) invested more than $200 million on clinical 

trials from 1977-2002 (Ravina, 2004) during which time not a single therapy decreased 

morbidity or mortality (Doyle, 2008).  

These failures may be explained by the fact that despite recognizing ischemic stroke 

as a heterogeneous disease, many trials focus on the role of a single molecular pathway that 

occurs upstream of clinical presentations. Additionally, prior trials have targeted early events 

such as oxidative and energetic dysfunction in neurons by attempting to block glutamate 

neurotransmission, calcium entry and resultant ionic imbalance. These studies were 

marginally successful at best mostly because therapeutics were administered much too late 

following target activation.  

Our goals are to continue to refine the characterization of excitotoxicity, oxidative 

stress and proteotoxicity and evaluate molecules and proteins that act as dual stress sensors 

using time scales that are clinically relevant (Stankowski and Gupta, 2011). We seek to 

investigate molecular pathways that may be elicited early following an ischemic event but are 

known to continue for days and may provide more relevant sites for intervention. Our data 

suggests that upregulation of HSP70 blocks necrosis, apoptosis and autophagy and targets 

both early and late events in ischemic cell death (Beere, 2004; Beere and Green, 2001; 

Lizama, 2018; Stankowski and Gupta, 2011) making chaperone regulation more appealing 

clinically than agents that exclusively block early events in the ischemic cascade.  

 

1.5 The Chaperone Response to Ischemic Stress 

The proteotoxic accumulation of damaged, denatured, misaligned and mal-adducted 

proteins is an essential hallmark of a host of chronic and acute neurodegenerative conditions 
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including ischemia (Gestwicki and Garza, 2012; Kalmar and Greensmith, 2009; Kalmar and 

Greensmith, 2017; Leak, 2014; Liu, 2005; Pratt, 2010). While increased chaperone 

expression is a common response to injury (Liu, 2005; Magrane, 2004; McLean, 2004; Wang, 

2013), important gaps exist in our understanding of which chaperone-mediated activities are 

most beneficial to neuronal survival and how to recapitulate the endogenous protective 

response mediated by chaperones when exposed to low-level stress (as in preconditioning).  

HSP70 

One of the major consequences of ischemic stroke is rapid modification of neuronal 

proteins that can result in maladaptive changes in both structure and function. Buildup of 

these damaged proteins can overwhelm the protein triage system spearheaded by heat 

shock protein (HSP) chaperone complex (Li, 2005). HSPs are a highly conserved and 

functionally interactive family of chaperone proteins. While some HSPs are constitutively 

expressed, others are inducible in response to chemical, environmental and physiological 

stressors. Notably, increased expression of both the inducible form of heat shock cognate 

proteins (HSC70), heat shock protein 70 (HSP70), and its co-chaperone, c-terminus of 

HSP70 interacting protein (CHIP), occur following OGD (Lizama, 2018; Palubinsky, 2015; 

Stankowski, 2011).  

HSP70 is a cytosolic, stress-inducible chaperone that binds to multiple co-chaperones 

to form a protein triage complex that can disaggregate, degrade, refold, or re-nature proteins 

in order to avoid otherwise fatal consequences. Ultimately, whether client proteins are 

degraded or refolded depends on interactions with co-chaperones as well as the bioenergetic 

status of the cell. The “pro-folding” state of the complex involves HSP70-HSP40 binding to 

HSP70 interacting protein (HIP) and HSP70 organizing protein (HOP) while the “pro-

degradation” state requires instead the recruitment of BCL2 associated athanogene 1 (BAG1) 
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and CHIP to the core HSP70-HSP40 complex (Hohfeld, 2001; Jinwal, 2009). Under 

degradative conditions, the co-chaperone CHIP also works as an E3 ligase, ubiquitinating the 

client protein to signal for proteasomal degradation.  

The HSP70 complex plays a critical role in overall neuronal proteostasis and has been 

suggested as a potential therapeutic for multiple neurodegenerative diseases (Kalia, 2010; 

Pratt, 2015; Zuiderweg, 2017). While HSP70 overexpression aids in survival in many chronic 

disease models (Broer, 2011; Cummings, 2001; Ebrahimi-Fakhari, 2013; Hoshino, 2011; 

Magrane, 2004), genetically manipulating the chaperone complex is a poor long-term clinical 

strategy as sustained expression of chaperones is associated with both initiation and 

progression of precancerous and cancerous states (Murphy, 2013; Sherman and Gabai, 

2015). 

 

CHIP 

CHIP is a 35kDa E3 ubiquitin ligase that can target misfolded or damaged proteins to 

the proteasome for degradation. CHIP appears to be unique amongst the dozen of other 

eukaryotic E3 ligases in brain in that it can also can also act as an autonomous molecular 

chaperone to block proteotoxic stress (Lee, 2013; Rosser, 2007), control HSP70 expression 

(Qian, 2006) and regulate cellular processes including signaling, development, DNA damage 

repair, immunity and aging (Joshi, 2016). This broad range of activities, as well the fact that 

CHIP participates in the degradation of protein inclusions and aggregates formed in common 

neurodegenerative diseases has made CHIP a unique target for drug discovery. 

Overexpression of CHIP was found to compensate for failure of other ubiquitin ligases 

(Imai, 2002), resulting in enhanced protein turnover and survival under chronic stress 

conditions (Lee, 2013), yet the role of CHIP in response to acute neurological stress was not 

evaluated in these studies. Previous data from our lab provided the first evidence that CHIP 
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was indeed upregulated in postmortem human tissue from patients whom had suffered from 

a TIA or stroke. However, unlike chronic stress disorders, CHIP overexpression impaired 

neuronal survival in in vitro models of OGD and was associated with loss of proteasome 

activity in response to oxidative stress (Stankowski, 2011). Additionally, siRNA silencing of 

CHIP increased neuronal tolerance to oxidative injury (Stankowski, 2011). Lastly, CHIP 

knockout (KO) mice have severe phenotypic and behavioral dysfunction (Dai, 2003; 

McLaughlin, 2012; Sahara, 2005; Schisler, 2016; Shi, 2014; Wu, 2018).5 Taken together, 

these data suggest an essential role for the HSP70 chaperone machinery in response to 

acute neurological injury.  

   
1.6 Rationale 

Ischemic stroke is the leading cause of death and disability worldwide yet we have 

only one FDA-approved therapeutic for patients with limited efficacy beyond ~3 hours. By 

leveraging the power of proteomics and drug screening and coupling them with exceptional 

platforms to measure biochemical responsiveness, we can identify new neuroprotective 

molecules and pathways.   

1.7 Hypothesis 

The neuronal HSP70 chaperone machinery triages proteins damaged by ischemia. 

HSP70 client proteins can either be degraded or refolded. We hypothesize that small 

molecule modulators of the chaperone complex can be used to improve neuronal survival 

following oxygen and glucose deprivation. 

 

 

                                                
5 For our analysis we compared wild-type (WT) to heterozygous (Het) mice because the frailty phenotype of 
CHIP KO mice was so severe that they could not complete routine behavioral tasks. 



 14 

1.8 Thesis Specific Aims 

Research Plan: The goal of this research program is to further understand of the role of the 

HSP70 chaperone machinery in response to ischemia. By exposing primary neuronal 

cultures to varying degrees of oxygen and glucose deprivation, we can monitor the activity of 

the chaperone machinery to determine which aspects differ between a survivable and a lethal 

stressor. Such experiments will allow us to identify endogenous protective pathways 

employed by neurons that survive an ischemic event, and allow us to target these pathways 

to augment neuronal survival.   

 

Aim 1: Determine the function of the HSP70 chaperone machinery in response to 

varying durations of oxygen and glucose deprivation. Our preliminary data demonstrate 

that following mild, non-toxic OGD, there is a rapid increase in the expression levels of 

HSP70 and its co-chaperone, CHIP. Given that this OGD is non-toxic, we hypothesize that 

this upregulation is part of an adaptive survival response and that the expression patterns of 

the chaperone machinery and therefore overall protein environment will be altered with 

increased stress. In this Aim, we will utilize primary neuronal cultures under mild (15’), 

moderate (45’) and lethal (90’) durations of OGD in order to determine if fundamental 

components of cell stress including lipid peroxidation, protein oxidation, protein 

ubiquitination and protein aggregation vary based on severity of the insult. We will then 

examine the molecular makeup, sub-cellular localization and activity of the HSP70 

chaperone complex in OGD-tolerant neurons versus those destined to die. 

Aim 2: Assess the neuroprotective potential of HSP70 chaperone complex modulation 

in response to oxygen and glucose deprivation. Our preliminary data suggests that when 

compounds that promote protein refolding are administered following moderate (45’) OGD 
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there is an increase in neuronal survival. We therefore hypothesize that OGD-tolerant 

neurons drive the chaperone complex towards protein refolding. In this Aim, the 

neuroprotective potential of allosteric modulators of the HSP70 complex will be assessed 

using primary neuronal cultures subject to varying durations of OGD. Critical windows of 

protection will be determined using cell survival assays.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 16 

CHAPTER 2 

 

CHIP IS AN ESSENTIAL DETERMINENT OF NEURONAL MITOCHONDRIAL STRESS 

SIGNALING 

 

2.1 Abstract 

Aims: Determine the mechanism by which CHIP induction alters neuronal survival under 

conditions of mitochondrial stress induced by oxygen and glucose deprivation. 

Results: We report that animals deficient in the E3 ubiquitin ligase, CHIP, have high baseline 

levels of CNS protein oxidation and lipid peroxidation, reduced antioxidant defenses and 

decreased energetic status. Stress-associated molecules typically linked to Parkinson’s 

disease such as the mitochondrial kinase PINK1 and another E3 ligase, Parkin, are 

upregulated in brains from CHIP KO animals. Utilizing a novel biotin-avidin capture 

technique, we found that the oxidation status of Parkin and the mitochondrial fission protein, 

Drp1 are altered in a CHIP-dependent manner. We also found that following oxygen glucose 

deprivation (OGD) the expression of CHIP, PINK1 and the autophagic marker LC3 are 

increased and there is activation of the redox sensitive kinase p66shc. Under conditions of 

OGD, CHIP relocalizes from the cytosol to mitochondria. Mitochondria from CHIP KO mice 

have profound impairments in stress response induced by calcium overload resulting in 

accelerated permeability transition activity. While CHIP deficient neurons are morphologically 

intact, they are more susceptible to OGD consistent with a previously unknown 

neuroprotective role for CHIP in maintaining mitochondrial homeostasis. 
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Innovation: CHIP relocalization to the mitochondria is essential for the regulation of 

mitochondrial integrity and neuronal survival following OGD.  

Conclusions: CHIP is an essential regulator of neuronal bioenergetics and redox tone. 

Altering the expression of this protein has profound effects on neuronal survival when cells 

are exposed to OGD.  

2.2 Introduction 

E3 ubiquitin ligases and mitochondrial dysfunction have been increasingly implicated 

in neurological disease, suggesting that the CNS has a conserved group of signaling 

molecules that participate in mitochondrial quality control and the regulation of neural cell fate 

(Huang, 2011; Khandelwal, 2011). The identification of genetic mutations in the E3 ligase 

Parkin, which can result in inherited forms of Parkinson’s disease (PD), provided compelling 

evidence linking neuronal mitochondrial function to protein ubiquitination (Kitada, 1998; 

Lücking, 2000). Members of the E3 ligase family are thought to protect cells by tagging 

damaged proteins for proteasomal degradation (Di Napoli and McLaughlin, 2005).  

Parkin controls mitochondrial dynamics via its interaction with the mitochondrial redox 

sensor and serine-threonine kinase, PTEN-inducible putative kinase 1 (PINK1) (Matsuda, 

2010; Matsuda and Tanaka, 2010; Narendra, 2008; Poole, 2008; Ziviani, 2010), mutations in 

which result in an autosomal-recessive, inherited form of PD (Valente, 2004). Although E3 

ligases often interact with substrates in a redundant manner, they can also impact protein 

folding and transcription independent of their ubiquitinating activities, and can participate in 

the autophagy-dependent clearance of damaged mitochondria (mitophagy) (Fu, 2013; 

Lokireddy, 2012; Matsuda, 2010). 

We recently reported that CHIP haploinsufficiency results in mild behavioral 

impairments and profound changes in motor function in young animals (McLaughlin, 2012). 
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These data are particularly striking given that deletion of Parkin has a benign phenotype 

(Perez and Palmiter, 2005) whereas loss of CHIP is catastrophic early in life resulting in the 

death of ~30% of animals by post-natal day (PND) 40 (Dai, 2003; Min, 2008).  

In the current study, we report that CHIP relocalizes to damaged mitochondria 

following injury, and that CHIP positive materials are engulfed in autophagic bodies. We also 

report that in the absence of CHIP, young animals (PND35) have significantly increased 

baseline levels of protein oxidation and lipid peroxidation and undergo accelerated stress-

induced mitochondrial permeability transition activity. Using a novel biochemical capture 

methodology, we found that Drp1, a key protein associated with mitochondrial homeostasis, 

and Parkin, are oxidized in WT and Het but not CHIP KO animals. Lastly, we note that while 

neuronal cultures generated from CHIP KO mice appear intact, they are much more 

vulnerable to OGD than WT control cells. Taken together, this work suggests that CHIP is a 

critical determinate of mitochondrial integrity, function and homeostasis in response to acute 

injury.  

2.3 Materials and Methods 

Reagents 

Commercial vendors of chaperone antibodies as well as reagents and supplies used 

for immunoblotting, immunofluorescence and cell culture experiments are the same as 

previously described (Brown, 2010; Stankowski, 2011). Additional primary antibodies used for 

immunoblotting in this study include p66shc (566807, EMD), VDAC, COX IV and Parkin (4866, 

4850 and 2132, respectively; Cell Signaling), PINK1, Mfn1 and Drp1 (BC100-494, NB110-

58853, and NB110-55288, respectively; Novus Biologicals), polyclonal CHIP (PC711;  

Calbiochem), LC3 (PD014;  MBL International) and Cytochrome c (556433, BD Pharmingen). 

For immunocytochemistry, the following secondary antibodies were used: anti-rabbit Cy2 

(711-225-152), anti-mouse Cy2 (715-225-150) and anti-rabbit Cy3 (711-165-152), all 
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purchased from Jackson ImmunoResearch. Coverslips were mounted using ProLong Gold 

(P36934) from Invitrogen. Commercially available kits that were used include the DC Protein 

Assay kit (500-0112, Bio-Rad), the OxyBlot™ Protein Oxidation Detection Kit (Millipore, 

S7150) and an ATP/ADP Ratio Assay Kit (Z5030042, BioChain). Reagents and materials 

required for the biotin-avidin-capture methodology were obtained from the same companies 

as previously described (Stankowski, 2011). All cell culture medium and supplements were 

purchased from Invitrogen. Unless otherwise stated, all other chemicals were purchased from 

Sigma-Aldrich.  

Animals 

The Institutional Animal Care and Use Committee at Vanderbilt University approved all 

animal husbandry and experiments. Parent mouse lines used in this study were previously 

described (Dai, 2003). All mice are maintained on a mixed background of C57BL/6 and 

129SvEv as backcrossing unto a pure genetic background exacerbates the early lethality of 

CHIP KO animals with a less than 5% survival at birth. As CHIP KO mice are sterile, 

heterozygous matings are used to maintain the colony. Genotyping is performed by PCR with 

DNA from tail clippings using primers for the CHIP allele. Primers were purchased from 

XXIDT and the sequences of the reverse and forward primers used are 5' TGA CAC TCC 

TCC AGT TCC CTG AG 3' and 5' AAT CCA CGA GGC TCC GCC TTT 3', respectively. 

Unless otherwise noted, all experiments were completed and tissue samples harvested at 

PND35 to ensure proper age-matched controls. 

  

OxyBlot™ Methodology 

Derivatization of oxidized proteins was performed as previously described 

(Stankowski, 2011). Briefly, whole brains from PND35 WT, Het and CHIP KO mice were 
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removed and immediately treated with 50 mM DTT to prevent auto-oxidation of proteins. 

Samples were homogenized and then equally divided into derivatization reaction (DR) 

solution containing 2,4-dinitrophenylhydrazine or negative control (NC) solution. Samples 

were stored at 4°C and processed further within seven days. Equal protein concentrations 

were separated using Criterion Bis-Tris gels and processed as described in the 

Immunoblotting section below. The manufacturer provided antibodies specific for the 

detection of oxidized proteins.  

 

Lipid Oxidation 

Lipid peroxidation was assessed through quantification of F2tIsoprostanes (F2t-IsoPs), 

prostaglandin-like molecules generated from free radical-mediated, non-enzymatic 

peroxidation of arachidonic acid. F2tIsoPs are considered the gold standard in detecting 

oxidative stress and are measured using gas chromatography–mass spectrometry as 

previously described (Milne, 2005). Briefly, whole brains of PND35 WT, Het and CHIP KO 

mice were removed and immediately treated with methanol containing 0.05% (v/v) butylated 

hydroxy-toluene to prevent auto-oxidation of lipids. F2t-IsoPs esterified to phospholipids were 

hydrolyzed by chemical saponification, after which total isoprostanes were extracted using C-

18 and silica Sep-Pak cartridges, purified by thin-layer chromatography, converted to 

pentaflurobenzyl ester trimethylsilyl ether derivatives, and quantified by stable isotope dilution 

techniques using gas chromatography/negative ion chemical ionization mass spectrometry. 

[2H4]-8-iso-PGF2 (m/z 573) was used as an internal standard. F2t-IsoPs detected at m/z 569. 

 

Glutathione Measurement  

Reduced (GSH) and oxidized (GSSG) glutathione concentrations were measured by 

HPLC as previously described (Stankowski, 2011). Briefly, PND35 WT, Het and CHIP KO 
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animals were anesthetized and cervically dislocated. Brains were quickly removed and a 1-

cm2 piece of cortex was dissected. Cortical tissue then underwent extraction with 5% (v/v) 

perchloric acid/0.2 M boric acid. Acid soluble thiols were derivatized with iodoacetic acid and 

dansyl chloride and were analyzed by HPLC using a propylamine column (YMC Pack, NH2, 

Waters) and an automated HPLC system (Alliance 2695, Waters). GSH and GSSG 

concentrations were normalized to protein content. 

 

Assessing ATP:ADP ex vivo 

Intracellular ATP and ADP concentrations were assessed using a bioluminescent 

assay. PND35 WT, Het and CHIP KO animals were anesthetized and cervically dislocated. 

Brains were quickly removed, placed in LN2 and pressed to form a fine powder. The powder 

was then reconstituted in assay buffer, homogenized and sonicated. Samples were incubated 

in ATP reagent mix in the presence of luciferase and the light generated was measured via a 

luminometer with the intensity representing the intracellular concentration of ATP. ADP 

Reagent was added and allowed to incubate during which time ADP is converted to ATP, 

which again reacts with D-luciferin and the generation of light is then measured. 

Luminescence from the initial ATP reading is stable over time and by subtracting the relative 

light units of the first read from that of the second read, we determined the intracellular 

concentration of ADP. The remaining lysate was used for the determination of protein 

concentrations. 

 

Primary Rat Neuronal Culture 

Primary neuronal forebrain cultures were prepared from embryonic day 18 Sprague-

Dawley rats as previously described (Stankowski, 2011). Briefly, cortices were digested in 

trypsin and dissociated. Resultant cell suspensions were adjusted to 335,000 cells/mL and 
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plated 2 mL/well in 6-well tissue culture plates containing five 12mm or one 25mm poly-L-

ornithine-coated glass coverslip(s). Cultures were maintained at 37oC, 5% CO2 in growth 

media composed of a volume to volume mixture of 84% (v/v) DMEM, 8% (v/v) Ham’s F12-

nutrients, 8% (v/v) fetal bovine serum, 24 U/mL penicillin, 24 µg/mL streptomycin, and 80 µM 

L-glutamine. Glial proliferation was inhibited after two days in culture via the addition of 1 µM 

cytosine arabinoside, after which cultures were maintained in Neurobasal medium containing 

2% B27 (v/v), 2x N2 and 4% NS21 (v/v) supplements (Chen, 2008) with antibiotics for 2 

weeks. One week before experiments, neurons are maintained in Neurobasal medium 

containing 4% (v/v) NS21 and antibiotics only. All experiments were conducted 21-25 days 

following dissociation.   

 

Primary Mouse Neuronal Culture 

Primary neuronal forebrain cultures were prepared from embryonic day 18 mice 

generated by heterozygous matings. Upon dissection, mice were decapitated and the entire 

brain was stored individually in 10 mL of Hibernate E Medium (Brain Bits, Springfield IL;  HE-

Pr) at 4oC while tails were processed for genotyping. Once genotype was known, WT, Het 

and KO brains were pooled accordingly and dissection continued with cortical tissue 

digestion in 0.025% trypsin for 20 min at room temperature followed by dissociation. 

Resultant cell suspensions were adjusted to 700,000 cells/mL and plated 2 mL/well in 6-well 

tissue culture plates containing five 12 mm or one 25 mm poly-L-ornithine-coated glass 

coverslip(s). Cultures were maintained at 37oC, 5% CO2 in growth media composed of a 

volume to volume mixture of 84% (v/v) DMEM, 8% (v/v) Ham’s F12-nutrients, 8% (v/v) fetal 

bovine serum, 24 U/mL penicillin, 24 µg/mL streptomycin, 80 µM L-glutamine, 2x N2 and 4% 

NS21 (v/v) supplements. Glial proliferation was inhibited after two days in culture via the 

addition of 1 µM cytosine arabinoside, after which cultures were maintained in Neurobasal 
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medium containing 2% B27 (v/v), 2x N2 and 4% NS21 (v/v) supplements (Chen, 2008) with 

antibiotics for 2 weeks. One week before experiments, neurons are maintained in Neurobasal 

medium containing 4% (v/v) NS21 and antibiotics only. All experiments were conducted 21-

25 days following dissociation.   

 

Oxygen Glucose Deprivation  

Oxygen glucose deprivation (OGD) experiments were performed between day in vitro 

(DIV) 21 through DIV25, at which time neurons represent at least 95% of the population as 

assessed by NeuN and GFAP staining (McLaughlin, 2001). OGD was performed as 

previously described (Stankowski, 2011) by complete exchange of media with deoxygenated, 

glucose-free Earle’s balanced salt solution (150 mM NaCl, 2.8 mM KCl, 1 mM CaCl2 and 10 

mM HEPES;  pH 7.3), bubbled with 10% H2/85% N2/5% CO2. Cultures were exposed to OGD 

in an anaerobic chamber (Billups-Rothberg) for 90 min at 37°C. Upon OGD termination, cells 

were washed with MEM/BSA/HEPES (0.01% (w/v) BSA and 25 mM HEPES) and then 

maintained in MEM/BSA/HEPES/N2 (0.01% (w/v) BSA, 25 mM HEPES and 2X N2 

supplement) for various recovery times at the completion of which protein extracts were 

prepared for immunoblotting, or cells were fixed for immunofluorescence. 

 

Lactate Dehydrogenase Assays 

Neuronal viability was determined 24 hr following OGD exposure by measuring lactate 

dehydrogenase (LDH) release with the LDH in vitro toxicology assay kit (Sigma Aldrich, 

Tox7). Forty microliter samples of medium were assayed spectrophotometrically (490 nm 

absorbance) in triplicate according to the manufacturer’s protocol to obtain a measure of 

cytoplasmic LDH released from dead and dying neurons (Hartnett, 1997). LDH results were 
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confirmed qualitatively by visual inspection of the cells and, in several instances, 

quantitatively by cell counts using our previously described method (McLaughlin, 2003). 

Immunoblotting 

 Western blots were performed as previously described (Brown, 2010; McLaughlin, 

2001; Stankowski, 2011). For in vivo lysates, the tissue of interest was dissected and 

immediately placed into ice-cold TNEB lysis buffer (50 mM Tris-Cl, pH 7.8, 2 mM EDTA, 150 

mM NaCl, 8 mM β-glycerophosphate, 100 µM sodium orthovanadate 1% (v/v) Triton X-100, 

and protease inhibitor diluted 1:1000) followed by homogenization (on ice) in a 7 mL glass 

dounce and sonication. For in vitro lysates, all cell lysis and harvesting steps took place on 

ice. Cells were washed twice with ice-cold 1x PBS and following the second wash, 250–500 

µL of TNEB was added.  

 Approximately 100-200 µL of lysate was saved for the determination of protein 

concentrations and the remaining lysate was re-suspended in an equal volume of Laemmle 

buffer with β-mercaptoethanol (1:20). Protein samples were heated to 95°C for 10 min, and 

stored at -20°C. Protein concentrations were determined via the Dc Protein Assay Kit II and 

equal protein concentrations were separated using 4-12% Bis-Tris gels followed by transfer 

onto PVDF membranes and then blocked in methanol for 5min. Once dry, the membranes 

were incubated at 4°C overnight in primary antibody prepared in 5% (w/v) nonfat dry milk in a 

Tris-buffered saline solution containing 0.1% Tween 20 (TBS-Tween). All primary antibodies 

were diluted 1:1000 (v/v). Following incubation in primary antibodies, membranes were 

washed and incubated for 1 hr at room temperature in a 1:5000 (v/v) dilution of horseradish 

peroxidase–conjugated secondary antibodies prepared in 5% (w/v) nonfat dry milk in TBS-

Tween. After additional washes in, protein bands were visualized using a chemiluminescent 

substrate and exposed to autoradiography film. 
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MitoTracker™ Labeling and Immunofluorescence  

MitoTracker™ Orange was added 45 min before termination of recovery using a final 

concentration of 790 nM. Following this incubation, neuronal coverslips were washed with 1x 

PBS and fixed with 4% (v/v) formaldehyde. Cells were permeabilized with 0.1% Triton X-100, 

washed with 1x PBS, and blocked with 8% (w/v) BSA diluted in 1x PBS. After 25 min of 

blocking, coverslips were incubated in either anti-CHIP (1:500) or anti-PINK1 (1:500) primary 

antibodies diluted in 1% (w/v) BSA overnight at 4°C. Following primary antibody incubation, 

cells were washed in 1x PBS for a total of 30 min and incubated in Cy2 secondary antibody 

(1:500) in 1% BSA for 1 hr. Cells were next washed for a total of 30min in 1x PBS and 

incubated in 1.4 µM DAPI for 10 min. After 30min of additional washing, coverslips were 

mounted via Prolong Gold.   

 For immunofluorescence experiments done without MitoTracker™, neurons were 

prepared as described above starting with fixation. In these cases, anti-LC3 and anti-CHIP 

primaries (both diluted 1:500) were added simultaneously and incubated overnight at 4°C. 

Incubation in appropriate fluorescent secondary antibodies (1:500) was also done 

simultaneously. 

 Fluorescence was visualized using a Zeiss Axioplan microscope equipped with an 

Apotome (63X). Nine fields of view were imaged from 4 separate neuronal preps and 

subsequent experiments, totaling 36 imaged fields. The fluorescent images within the 

manuscript are representative of these fields.  

 

Subcellular Fractionation 

 Neuronal cultures were exposed to 90 min OGD and cell lysates were prepared 6 

hrs later. Subcellular fractionation via differential centrifugation was used to isolate nuclear, 

mitochondrial and cytosolic compartments. Briefly, neurons were washed with ice cold 1X 
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PBS. Following PBS wash, sucrose buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 1 

mM EGTA, 1 mM EDTA, 1 mM DTT, 250 mM sucrose, protease inhibitor, pH 7.5) was added 

and neurons were collected on ice via scraping and placed into a pre-cooled Sorval tube that 

was centrifuged at 3000 x g for 15 min at 4oC. Pellets were re-suspended in fresh HB and 

incubated in ice for 30 min. Cells were then transferred to a homogenizer and dounced for 

roughly 40 strokes followed by centrifugation at 50 x g for 10 min at 4oC. Following this spin, 

the supernatant was transferred to a new tube and centrifuged at 800 x g for 10 min at 4oC. 

The supernatant was transferred to a new tube and the resultant nuclear pellet re-suspended 

in TNEB lysis buffer. The remaining supernatant is centrifuged at 13,000 x g for 10 min at 

4oC. The resultant mitochondrial pellet is re-suspended in TNEB lysis buffer. A second 

centrifugation of the initial supernatant at 13,000 x g for 10 min at 4oC is carried out to pull 

down any remaining mitochondria. Following this spin, the supernatant is transferred to a new 

tube and the mitochondrial pellet is re-suspended in the same TNEB containing the 

mitochondria from the first spin. The remaining supernatant from the previous spin is then 

centrifuged at 100,000 x g for 1 hr at 4oC. This cytosolic pellet is then re-suspended in TNEB 

lysis buffer. To test for fraction purity, following a protein assay, all three fractions were 

equally loaded and analyzed for Ku70 (nucleus), Cytochrome c (mitochondria) and β-tubulin 

(cytosol) via Western blot (Data not shown). 

 

Mitochondrial Isolation for Swelling Assay  

 Mitochondrial homogenates were generated from PND40 WT, Het and CHIP KO 

mice. Briefly, the liver was removed, washed in ice-cold 1x PBS and weighed. The liver was 

then homogenized in ice-cold isolation media (250 mM sucrose, 10 mM Tris and 2 mM EGTA 

at pH 7.4) using a 7 mL glass dounce homogenizer at 10 mL/g of tissue. Homogenates were 

spun at 500 x g for 10 min at 4°C and the supernatant was removed and placed into a new 
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tube. Supernatants were then spun at 9,500 x g for 10 min. The pellet was washed with 10 

mL of isolation media (without EGTA) and spun again at 9,500 x g for 10 min. The remaining 

pellets were either re-suspended in 1 mL of TNEB lysis buffer with protease inhibitors 

(1:1000), subjected to protein assay and further processed for immunoblotting or biotin-

avidin-capture methodology (described below) or re-suspended in 1 mL of EGTA free 

isolation media, subjected to protein assay and analyzed for mitochondrial permeability 

transition activities (described below).  

   

Mitochondrial Permeability Transition Assay 

Briefly, isolated mitochondria were re-suspended in 1 mL of assay buffer (40 mM 

HEPES, 195 mM mannitol, 25 mM sucrose, 5 mM succinate and 1 µM rotenone at pH 7.2). 

Following a 2 min equilibration period, either 50 µM or 100 µM Ca2+ was added and the 

absorbance was measured at 535 nm over a 20 min period at 37°C. Lag time before the 

onset of mitochondrial swelling was measured by determining the time when the maximal 

rate of change in absorbance was evident following Ca2+ addition (Landar, 2006). Time to 

mitochondrial swelling was normalized to that of WT animals. Statistical significance was 

determined by two-tailed t test assuming unequal variances. 

 

Biotin-Avidin-Capture Methodology 

Derivatization of specific protein targets of oxidative stress was performed using the 

biotin-avidin-capture methodology as previously described (Stankowski, 2011). Briefly, liver 

mitochondrial extracts from PND35-40 WT, Het and CHIP KO animals were prepared as 

described in the mitochondrial preparation section. Equal protein concentrations (2 mg/mL) 

were incubated with biotin hydrazide (5 mM) while rotating in the dark for 2 hrs at RT after 

which samples were incubated with sodium borohydride (50 mM) for 30 min at RT. Samples 



 28 

were then transferred into Amicon Ultra Centrifuge Filter Devices (UFC 801024, Millipore), 

and washed three times via addition of 1x PBS followed by centrifugation for 30 min at 2,500 

x g. Following the last wash, a 100 µl aliquot was removed to prepare an input sample (In) via 

addition of DTT (50 mM) and NuPage Sample buffer (4x; NP0007, Invitrogen). The remainder 

of the sample was added to Streptavidin Sepharose High Performance Beads (17-5113-01, 

GE Healthcare) and incubated while rotating overnight at 4°C. The next day, samples were 

centrifuged briefly at 2,500 x g. The supernatant of the first spin was saved and a 100 µl 

aliquot of this sample was used to prepare a flow through sample (FT) via addition of DTT 

and sample buffer. Sample elution was initiated by treating twice with each of the following 

reagents: SDS (1% w/v), urea (4 M), NaCl (1 M) and 1x PBS. Eluate samples (E) were then 

prepared in sample buffer with DTT, heated for 10 min at 95°C and stored at -20°C. Equal 

protein concentrations were separated on SDS-PAGE gels as described in the 

immunoblotting section above and probed with antibodies specific to Mfn1, VDAC, 

Cytochrome c, Drp1, Parkin and COX IV.  

 

Analysis and Statistics 

Except where otherwise noted, data were summarized and are represented as mean ± 

SEM. The statistical significance of differences between means was assessed using one-way 

analysis of variance (ANOVA) at the 95% confidence interval, followed by Bonferroni multiple 

comparison post hoc testing using GraphPad Prism software. Semi-quantitative analyses of 

immunoblot results were generated to determine the mean relative densities of each protein 

band in comparison to control conditions or WT genotype (NIH Image, Scion Image J).  
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2.4 Results 

CHIP Deficient Animals have Increased Protein Oxidation and Lipid Peroxidation, Impaired 

Antioxidant Defenses and Experience Energetic Stress in the CNS Early in Development 

 We previously reported that CHIP expression is increased in post-mortem human 

tissue samples in patients following ischemic stroke as well as in an in vitro model of 

neuronal ischemia (Stankowski, 2011). In contrast to the benefits associated with transiently 

increased CHIP expression in blocking cell death induced by PD mutant genes (Tetzlaff, 

2008), prolonged overexpression of CHIP worsens outcome following acute injury and 

causes proteasomal uncoupling (Stankowski, 2011), suggesting that a fine balance exists in 

the temporal expression of CHIP that affords protection.  

 
 To identify the mechanisms by which CHIP alters neuronal responsiveness to stress, 

we compared baseline levels of total oxidized proteins in CNS samples from post-natal day 

35 (PND35) WT, Het and CHIP KO mice. A robust increase in total protein oxidation was 

evident in CHIP KO animals compared to age-matched WT and Het littermates (Figure 1A). 

In addition, comparing F2t-Isoprostanes (F2t-IsoPs), the gold standard for assessing oxidative 

injury (Kadiiska, 2005), across genotypes, we found that CHIP KO animals exhibit significant 

increases in the non-enzymatic oxidation of arachidonic acid (Figure 1B) and depletion of 

antioxidants reflected by the ratio of reduced GSH to oxidized GSSG being decreased in 

CHIP KO animals (Figure 1C). This decrease in the reduced form of GSH that occurs when 

CHIP is absent could either be attributed to antioxidant depletion as cells attempt to clear the 

large number of oxidized substrates or due to an inherent energetic deficit in the animals, as 

the synthesis of GSH requires both ATP and NADPH.  
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To determine if variations in energetic status may account for the decreased levels of 

GSH in CHIP KO mice, the ratio of ATP to ADP was determined via a bioluminescent assay. 

There is significantly lower ATP in CHIP KO animals and a trend towards decreased ATP in 

Het animals while no changes in the absolute levels of ADP were noted between or within 

Figure 1. CHIP Deficient Animals have Increased Protein Oxidation and Lipid Peroxidation, 
Impaired Antioxidant Defenses and Energetic Stress Early in Development. (A) Whole brain 
lysates from PND35 CHIP KO animals exhibit higher levels of total oxidized proteins in comparison 
to WT and Het littermates. Immunoblots are representative of results from four independent 
OxyBlot™ experiments where “DR” denotes Derivatization Reactions and “NC” denotes Negative 
Controls. (B) PND35 CHIP KO animals have higher baseline levels of lipid peroxidation in 
comparison to WT and Het littermates. MS data were normalized to protein (µg/mg) and represent 
the mean ± SEM from three independent experiments where *** denotes p < 0.001. (C) Cortical 
tissue samples from PND35 CHIP KO animals demonstrate decreased amounts of the major 
antioxidant, glutathione, compared to WT and Het counterparts. HPLC data were normalized to 
protein (nmol/mg) and represent the mean ± SEM from six independent experiments where * 
denotes p < 0.05. (D) PND35 cortical tissue samples demonstrate (via a bioluminescent reporter 
assay) that CHIP KO animals have a significantly lower ATP:ADP. Data were normalized to protein 
(µg/µL) and represent the mean ± SEM from four independent experiments where * denotes p < 
0.05.  
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any groups. The resulting decreased ATP to ADP ratio (Figure 1D) suggests that CHIP 

deficiency results in impaired brain energetic status. 

 

 

CHIP Deficiency Increases the Expression of Mitochondrial Proteins Associated with PD  

The increase in oxidized proteins and lipids in in the absence of an exogenous 

stressor observed in Het and CHIP KO animals suggests that either more reactive oxygen 

species (ROS) are generated, that ROS are poorly converted to nonreactive species by 

antioxidants, or a combination of these two events. A growing body of evidence in the 

Parkinson’s disease literature suggests a role for two genes associated with familial PD, 

PINK1 and Parkin, in mitochondrial stress handling. Expression of the redox sensor, PINK1, 

and the E3 ligase Parkin were both increased in brain extracts from CHIP KO animals 

(Figure 2A & B).  

 
 

Figure 2. CHIP Deficiency Results in 
the Increased Expression of 
Mitochondrial Stress-Associated 
Proteins. (A) Whole brain lysate from 
PND35 CHIP KO animals exhibit 
increased expression of the stress-
associated kinase PINK1 as well as the 
E3 ligase, Parkin. HSC70 was used as a 
loading control. (B) Western blots were 
analyzed using NIH Image (Scion Image 
J) to determine the mean relative 
densities of each protein band and fold 
changes were calculated using WT 
littermates as controls. Data represent 
results from four independent 
experiments. Statistical significance is 
noted within the table where * denotes p 
< 0.05, ** denotes p < 0.01 and *** 
denotes p < 0.001. 
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OGD Increases Mitochondrial Stress-Associated Protein Expression  

  We next used an OGD model in neurons to determine if convergent signaling 

molecules between OGD and CHIP deficiency could be identified. We have previously shown 

that 90 min OGD results in membrane rupture and greater than 80% cell death evidenced as 

Figure 3. Oxygen Glucose Deprivation Increases the Expression of CHIP and Markers of 
Autophagy. Whole cell extracts of neuronal rat cultures (DIV 21-25) were harvested 
immediately (0hr), 1hr, 3hr, 4hr, 5hr, 6hr or 24hr following exposure to OGD. Equal protein 
concentrations were separated on SDS-PAGE gels and probed with antibodies specific to 
CHIP, PINK1, p66shc, LC3 and the loading control, HSC70. (A) While p66shc and LC3 
expressions levels are increased immediately following the insult, CHIP and PINK1 expression 
increase more robustly starting 1hr following the stress. Arrows denote the p66shc isoform and 
the lipidated form of LC3. (B) Alterations in protein expression were analyzed via NIH Image 
(Scion Image J) and fold changes were calculated using untreated neuronal cultures as 
controls. Immunoblots are representative of results from three independent experiments. 
Statistical significance is noted within the table where * denotes p < 0.05, ** denotes p < 0.01 
and *** denotes p < 0.001.   
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LDH release commencing 10 hrs after the onset of stress (Zeiger, 2010). Neuron-enriched 

cultures from rats were exposed to 90 min OGD to analyze levels and trafficking of redox 

sensitive molecules including CHIP. PINK1 and CHIP expression increase as early as 1 hr 

following the insult and remain elevated for 24 hrs. Increased expression of the redox-

sensitive kinase p66shc, as well as the unlipidated (LC3-I) and lipidated (LC3-II, noted with an 

arrow) forms of the autophagic marker, LC3 were also observed from 2-6 hrs after OGD 

(Figure 3A & B).  

The early redox sensors upregulated by OGD, p66shc and PINK1, associate with 

mitochondria in response to stress (Brown, 2010; Matsuda, 2010). Prior studies have only 

evaluated CHIP distribution in cytosolic and nuclear fractions, the latter of which likely 

contained mitochondria as the centrifugation speeds noted in the methods are not sufficient 

enough to efficiently separate these organelles (Anderson, 2010; Sengupta, 2011). Our 

immunocytochemical analysis revealed a very different pattern of distribution following OGD 

where CHIP relocates from cytosolic and perinuclear sites to mitochondria. After 90 min 

OGD, mitochondria (shown in red) underwent morphological reorganization and CHIP 

became more punctate, increasingly co-localizing with these organelles (Figure 4, Left vs 

Right). Subcellular fractionation experiments 6 hrs following 90 min OGD revealed that there 

was no nuclear CHIP signal with all CHIP associated with mitochondria in response to 90 min 

OGD. Control blots were run for KU70, β-Tubulin and cytochrome oxidase to confirm the 

purity and integrity of the organelles and showed no cross contamination (data not shown). 

Stabilization of PINK1 (green) at MitoTracker labeled organelles (red) was also detected 6 

hrs following OGD whereas in control cells, PINK1 levels were barely detectable in keeping 

with immunoblot data (Figure 4C Left vs. Right).  
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Mitochondrial accumulation of PINK1 leads to the recruitment of the E3 ligase Parkin 

and subsequent autophagic degradation of mitochondria via mitophagy (Geisler, 2010; 

Geisler, 2010; Narendra and Youle, 2011). We detected no change in Parkin or VDAC 

Figure 4. Oxygen Glucose Deprivation Results in the Association of CHIP and PINK1 with 
Mitochondria. Neuron-enriched primary rat cultures (DIV 21-25) were exposed to OGD for 90min 
and allowed to recover for 6hrs at which time cells were fixed and further processed for 
immunocytochemistry. (A) In control neurons, CHIP (green) is primarily cytosolic, however, 6hrs 
following OGD exposure, CHIP (green) becomes punctate and is found to colocalize with 
MitoTracker Orange (red). (B) Subcellular fractionation of cultures revealed that CHIP is both 
mitochondrial and cytosolic, but that 6hrs after OGD, almost all CHIP associates with the 
mitochondrial fraction. CHIP is not present in nuclear fractions in either control or stressed 
conditions. Cytochrome c was used to demonstrate that the mitochondria are still structurally and 
biochemically intact 6hrs after OGD as well as to show fraction purity. KU70 and β-Tubulin were also 
used to verify purity of the nuclear and cytosolic fractions, respectively (data not shown). (C) In 
control neurons, PINK1 (green) levels are extremely low, however 6hrs following exposure to OGD, 
PINK1 (green) is increased and exhibits colocalization with MitoTracker Orange (red). Fluorescence 
was visualized using a Zeiss Axioplan microscope equipped with an Apotome (63X). Nine fields of 
view were imaged from 4 separate neuronal preps and subsequent experiments, totaling 36 imaged 
fields. The fluorescent images within the manuscript are representative of these fields. 
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expression in response to OGD in vitro, which is in keeping with results from other labs which 

 

 

 

Figure 5. CHIP Positive Organelles are Degraded by Autophagy Following OGD. (A) 
Primary rat neuronal cultures were exposed to 90min of OGD and fixed 6hrs later for 
immunofluorescent staining of LC3.  Control cultures had low levels of well-dispersed LC3 
staining (green) throughout the soma and processes.  Neuronal nuclei were stained with DAPi 
(blue). Staining was uniform with no signs of nuclear condensation or chromatin reassembly. 
Six hours following OGD, LC3 staining was much more pronounced (Second panel; top), 
particularly in the soma.  Small, vacuolar structures were present in the parenchyma (red 
highlighted box) that is magnified in the top right box. This staining revealed highly regular 
circular structures. (B) Cultures stained with LC3 (green) and CHIP (red) reinforce the 
morphological dysfunction caused by severe OGD exposure (middle panel) as evidence by 
poorly defined neuronal soma and discontinuous processes. Again, small circular patterns 
were observed in processes that were magnified in the red box shown in the far right panel. 
This staining revealed that CHIP (red) is present in LC3 positive vacuoles. Nine fields of view 
were imaged from 4 separate neuronal preps and subsequent experiments, totaling 36 imaged 
fields. The fluorescent images within the manuscript are representative of these fields. 
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demonstrate that Parkin is poorly inducible in cortical neuronal cultures exposed to 

endoplasmic reticulum stress (Mengesdorf, 2002). We did, however, observe increases in 

LC3-I and LC3-II, the major component of autophagosomes (Figure 3A & B; Figure 5A & 

B). These data could reflect the induction of autophagy, reduction in autophagosome 

turnover, or the inability of turnover to keep pace with increased autophagic processing 

(Klionsky, 2008).  

Immunofluorescent staining of cultures 6hrs after exposure to 90 min OGD revealed 

many fields of small, circular LC3 positive structures (Figure 5). Upon closer inspection of the 

fields (shown in red boxes magnified in the bottom panels), these structures were 

morphologically consistent with autophagosomes. Subsequent immunofluorescent staining 

revealed that many of the structures had CHIP engulfed within these autophagic bodies 

(Figure 5; Bottom Right). 

 

CHIP Deficient Cultures Appear Morphologically Intact and Exhibit Extensive Neuronal 

Processes and Mitochondrial Networks  

Given the relocalization of CHIP to the mitochondria and the stress associated with 

CHIP deficiency in vivo, we sought to generate primary cultures from transgenic animals to 

determine if neurons develop and respond normally to stress in the absence of CHIP. Live 

cell micrographs (20X) of WT, Het and CHIP KO cultures demonstrate that regardless of the 

genotype, neurons are viable, with phase bright somas and extensive neuronal processes 

after three weeks in culture (Figure 6A). Immunocytochemical analyses using the neuronal 

marker, MAP2 (green), the glial marker, GFAP (red) and the nuclear marker, DAPI (blue) 

revealed that genotype has no effect on neuronal survival as these cells constituted 85% of 

the culture in every genotype (Figure 6B). Using the live cell dye, MitoTracker Orange, which 
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is taken up into healthy mitochondria based on their membrane potential, no changes in the 

mitochondrial morphology or networks were evident across genotype (Figure 6C).   

 

Figure 6. Visual Characterization of Primary Neuronal Cultures Generated from CHIP 
Deficient Mice Demonstrate no Apparent Deviations from WT or Het Sister Cultures. (A) 
Phase bright (20X), live cell images of WT, Het and CHIP KO mouse cultures at DIV20 
demonstrate no obvious differences in overall neuronal morphology between genotypes at 
baseline. (B) Cultures fixed at DIV20 were probed with antibodies for the neuronal marker MAP2 
(green), the glial marker GFAP (red) and the nuclear marker DAPI (blue). Cell counts revealed that 
these cultures are roughly 85% neuronal and 15% glial. (C) MitoTracker Orange labeling (red) 
demonstrates extensive and continuous mitochondrial networks at baseline across all three 
genotypes. Nine fields of view were imaged from 4 separate neuronal preps and subsequent 
experiments, totaling 36 imaged fields. The fluorescent images within the manuscript are 
representative of these fields. 
 



 38 

Taken together, these data suggest that while CHIP deficiency has profound effects on 

baseline protein oxidation, lipid peroxidation, antioxidants and energetics, neurons derived 

from CHIP KO animals are morphologically indistinguishable from WT and Het sister cultures.  

 

CHIP Deficiency Affects the Oxidation of Mitochondrially-Associated Proteins and 

Mitochondrial Transition Activity 

Given the changes in redox and energetic status associated with CHIP deficiency in 

vivo, we sought to determine if proteins involved in mitochondrial homeostasis are altered as 

a result of CHIP deficiency. Expression of VDAC and COX IV, proteins associated with 

mitochondrial integrity and function, remained unchanged in brains from CHIP KO animals 

(Figure 7A & B) but there were high levels of both LC3-I and LC3-II (Figure 7A & B). 

Analyses of further proteins essential for maintaining mitochondrial dynamics and 

homeostasis (Figure 7A & B) revealed that CHIP KO animals have increased expression of 

the fission protein, dynamin related protein 1 (Drp1), with no change in the mitochondrial 

fusion protein Mitofusin 1 (Mfn1). As increased fission and subsequent formation of 

fragmented mitochondria has been linked to the induction of mitophagy (Twig, 2008), this 

may contribute to the pattern of LC3 expression observed in these animals. 

Novel biotin-avidin-capture methodology on freshly isolated mitochondria was used to 

determine if the baseline redox stress in CHIP deficient animals causes specific oxidative 

modifications of proteins involved in mitochondrial integrity, function and homeostasis. Given 

that CHIP KO animals had high levels of total protein oxidation (Figure 1A), we anticipated 

that many essential regulators of mitochondrial function would be oxidized. We were 

surprised to find that both Drp1 and Parkin were subject to carbonyl adduction in WT and Het 

animals (the presence of a band in the eluate (E) fraction lane), but not in CHIP KO mice 

(Figure 7C).  
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Protein oxidation, energetic status and production of free radicals have all been linked 

to altered stress-induced calcium buffering and mitochondrial permeability transition. Using 

isolated mitochondria, we found that the lag time of Ca2+-induced mitochondrial swelling 

(Figure 8A & B) was much more rapid and profound in CHIP KO animals, indicative of poor  

 

Figure 7. CHIP Deficiency Causes Changes in the Expression of Proteins Key to Maintaining 
Mitochondrial Dynamics. (A) Whole brain lysates from PND35 CHIP KO animals demonstrate 
increased expression of the autophagic marker, as well as increases in the mitochondrial fission 
protein, Drp1. Arrow denotes the lipidated form of LC3. (B) Western blots were analyzed using NIH 
Image (Scion Image J) to determine the mean relative densities of each protein band and fold 
changes were calculated using WT littermates as controls. Statistical significance is noted within the 
table where * denotes p < 0.05, ** denotes p < 0.01 and *** denotes p < 0.001. (C) Purified 
mitochondrial extracts were prepared from PND35 WT, Het or CHIP KO mice and further subjected 
to biotin-avidin-capture methodology. Protein extracts of whole cell “inputs” (denoted as In), proteins 
in the “eluate” fraction that have undergone oxidative modifications followed by chemical isolation 
and pull down (denoted as E) and oxidatively modified proteins that were able to “flow through” and 
escape isolation (denoted as FT) were separated on SDS-PAGE. WT and Het mice express high 
levels of oxidized Drp1, as well as oxidation of the E3 ligase, Parkin while CHIP KO animals do not. 
Immunoblots are representative of results from three independent experiments.  
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ion buffering capability. Taken together, these data suggest that CHIP is a regulator of 

mitochondrial integrity under conditions of stress and that CHIP deficiency is associated with 

altered stress induced mitophagy. 

 

CHIP Deficiency Results in Increased Neuronal Death Following OGD  

In order to test the hypothesis that CHIP deficient neurons have impaired stress 

responsiveness, neuronal cultures were exposed to varying durations of OGD and cell 

viability was assessed. OGD is a well-appreciated mitochondrial stress mediated by NMDA 

receptors and cell death can be observed after neuron enriched cultures are exposed to > 30 

min of deprivation (Zeiger, 2010). In these experiments, OGD caused an increase in cell 

death in all genotypes in a time dependent manner (one-tailed ANOVA p<0.01;  Note: time 

dependence of this effect is not shown with asterisks so as to highlight gene vs. time effects). 

Post hoc analysis of time points across genotypes reveled that primary cultures derived from 

CHIP KO animals faired worse following either 60 or 90 min of OGD when cell death was 

assessed 24 hr later (p<0.05; Bonferroni post-hoc testing). These data suggest that loss of 

CHIP is detrimental to neuronal survival following an ischemic event (Figure 8C).  

 

2.5 Discussion 

Biochemically and energetically intact mitochondria are essential determinants of cell 

viability in response to stress. These organelles play a critical role in ion homeostasis, metal 

sequestration and oxidative stress signaling. It has become increasingly evident that 

mitochondrial dysfunction is associated with a multitude of CNS diseases. In turn, neurons 

have evolved powerful mechanisms to remove injured organelles from the cell including 

mitophagy, a process that is an essential regulator of mitochondrial quality control and 

neuronal survival (Brown, 2010; Krebiehl, 2010; Michiorri, 2010; Twig, 2008).  The role of 



 41 

mitophagy has come under particular scrutiny lately as an increasing number of proteins 

have linked neurodegeneration with aberrant mitophagy (Chakrabarti, 2009; Chen and Dorn, 

2013; Su and Qi, 2013; Yang, 2013). Acute overexpression of CHIP is neuroprotective 

against a number of acute and chronic stressors and we recently reported that CHIP KO mice 

 

Figure 8. CHIP Deficiency Increases Mitochondrial Permeability Transition Activity and 
Increases Neuronal Death Following OGD. (A) Purified mitochondria from PND40 WT, Het or 
CHIP KO mice were incubated in the presence of increasing concentrations of Ca2+ (50µM or 
100µM) while mitochondrial permeability transition activity was assessed. CHIP KO animals were 
found to undergo changes in mitochondrial permeability much faster than WT animals. (B) The rate 
of mitochondrial swelling was determined by assessing the maximal change in absorbance over time 
and was normalized to the corresponding WT mitochondria. Data represent the maximal rate of 
change in absorbance ± SEM from four independent experiments. Statistical significance was 
determined by two-tailed t test assuming unequal variances where ** denotes p < 0.01 and *** 
denotes p < 0.001 when compared to WT mitochondria treated with corresponding Ca2+ 
concentrations. Data were collected from four independent experiments. (C) CHIP KO neuronal 
cultures exhibit significantly greater amounts of cell death following exposure to both 60min and 
90min OGD as assessed by lactate dehydrogenase release in comparison to WT cultures. Data 
represent the mean ± SEM from four independent experiments where *** denotes p < 0.001. 
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are uniquely impaired by the loss of this ligase, which dramatically decreases life span (Dai, 

2003), impairs motor skills (McLaughlin, 2012; Min, 2008) and alters anxiety responses 

(McLaughlin, 2012). We show in the current work that these mice also present with atypical 

CNS protein oxidation and lipid peroxidation, decreased antioxidant responses and impaired 

bioenergetic status at baseline. Additionally, loss of CHIP results in changes in redox tone, 

energetic status and stress handling as well as increased vulnerability to acute stress. Taken 

together, these findings suggest that CHIP plays a non-redundant and previously 

unrecognized role in governing mitochondrial signaling in response to stress. 

The observation that prompted these studies was the dramatically shortened life span 

and neurological impairments that are unique to CHIP deficiency. Other E3 ligase deficient 

animals, such as Parkin KO mice, are neurologically intact. Surprisingly, even triple 

transgenic KO of PINK1, Parkin and DJ1 fails to produce an overt phenotype (Dai, 2003; 

Dawson, 2010; Kitada, 2009; Min, 2008; Varcin, 2012). The motor phenotype and oxidative 

stress we observed in CHIP KO animals occur in the CNS of relatively young animals 

(PND35) suggesting that CHIP deficiency has a major impact early in life. We now 

demonstrate that these changes in physiology are accompanied by high levels of CNS 

protein oxidation and lipid peroxidation and decreased antioxidant responses which are far 

more profound than those observed in PINK1, DJ1 or Parkin deficient animals (Palacino, 

2004; Varcin, 2012).  

Previous studies suggest that the neuroprotective potential of CHIP lies in its role in 

protein triage, refolding, transcription of stress response genes and degradation of a growing 

list of proteins associated with cystic fibrosis, Alzheimer’s disease and other disorders 

(Ballinger, 1999; McDonough and Patterson, 2003; Meacham, 2001; Miller, 2005; Sahara, 

2005). CHIP is both cytoprotective (Zhang, 2011) and can inhibit apoptosis by increasing 

ubiquitination and degradation of pro-apoptotic proteins (Woo, 2010). Our data are the first to 
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demonstrate that CHIP is a direct regulator of mitochondrial homeostasis and cellular 

energetic status. These data are particularly intriguing given that CHIP appears to be one of 

only a handful of the approximately 500 mammalian E3 ligases in the CNS that responds to 

ischemia (Lackovic, 2012; Mengesdorf, 2002).  

Support for a role of CHIP in response to ischemia comes from proteomic analysis of 

human post-mortem CNS samples from patients who suffered transient ischemic attacks 

(TIA) or ischemic strokes where increased levels of CHIP and loss of VDAC were noted 

(Stankowski, 2011). The close association of CHIP with stressed mitochondria would suggest 

that the upregulation of CHIP during stroke acts as a negative regulator of mitochondrial 

permeability transition activity, maintaining organelle homeostasis until mitophagy can be 

initiated. Future experiments will allow us to determine if this is a conserved stress signaling 

mechanism or one that is unique to Ca2+ overload following ischemia.  

In this work, we demonstrate that the increased expression of CHIP observed in post-

mortem human samples following ischemic events (Stankowski, 2011) can be recapitulated 

in an in vitro model of stroke. This allowed us to demonstrate that CHIP relocalization to 

mitochondria is an early event in response to OGD much like PINK1 stabilization and p66shc 

relocalization (Brown, 2010). Parkin’s concerted action with PINK1 to promote mitophagy is a 

novel function of E3 ligases (Geisler, 2010; Geisler, 2010; Matsuda, 2010; Narendra, 2008; 

Narendra and Youle, 2011; Poole, 2008) and our data support the importance of these 

molecules in mitochondrial homeostasis as both CHIP and PINK1 colocalize with 

mitochondria following OGD, a feature not associated with PD. These data suggest that 

signaling pathways similar to those observed in PD may also mediate responses to ischemia. 

Conservation of mitochondrial stress signaling has also recently been noted in a mouse 

model of Alzheimer’s disease where Parkin overexpression decreases both amyloid-beta 

(Aβ) accumulation and the number of damaged mitochondria (Khandelwal, 2011), as well as 
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in cardiomyocyte ischemic preconditioning studies where Parkin translocation to mitochondria 

precedes the removal of damaged organelles (Huang, 2011). 

We have previously shown that phosphorylation and relocalization of the redox-

sensitive kinase p66shc occurs within 30 min of OGD and is essential to evoke mitophagy 

(Brown, 2010). The importance of redox signaling in autophagic processes is underscored by 

the role of ROS’ in autophagosome formation where redox modifications of specific cysteine 

residues in autophagy-related genes can regulate their bioactivity (Scherz-Shouval, 2007). 

Given that we observed increases in the ROS sensor PINK1 1 hr after a lethal OGD, we 

hypothesize that PINK1 may promote CHIP relocalization to damaged mitochondria in a 

manner similar to that of PINK1 recruitment of Parkin in PD. This is supported by our 

observation that mitochondria from CHIP KO animals have increased PINK1 stabilization, 

which may, in turn, recruit the E3 ligase, Parkin in the absence of CHIP.  

Using a novel and powerful biotin-avidin-capture methodology, we demonstrate that 

Drp1 is specifically oxidized in both WT and Het animals but not CHIP KO animals. Our data 

support a model in which the balance between mitochondrial fission, fusion and mitophagy 

are impaired in CHIP deficient animals as there is a substantial increase in the baseline 

expression of the fission protein Drp1 yet no change in the fusion protein Mfn1. 

Overexpression of a Drp1-K38A which blocks mitochondrial fission was recently shown to 

restore mitochondrial morphology and dopamine release defects in PINK1 mutant mice 

(Rappold, 2014), supporting a model in which the observed increase in Drp1 in CHIP KO 

animals is indicative of stress.  

Post-translational modifications of Drp1 are thought to play an essential role in 

regulation of mitochondrial fission (Otera and Mihara, 2011). Twig and colleagues have 

recently shown that in cells deficient in mitochondrial fission, there is an increase in 

oxidatively modified proteins (Twig, 2008), which is supported by our OxyBlot™ and F2t-IsoP 
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data. If oxidation promotes degradation of Drp1, the lack of oxidation in KO animals would be 

predicted to promote Drp1 accumulation and potentially uncontrolled fission to the point of 

metabolite and mitochondrial DNA depletion - a scenario supported by our data 

demonstrating impaired energetics, altered autophagy, and increased Parkin and PINK1 in 

the brains of very young CHIP deficient animals.  

We also found that the high molecular weight Parkin complex (Van Humbeeck, 2008) 

was oxidized in a gene dose-dependent manner. WT and Het animals express an oxidized 

form of Parkin whereas CHIP KO animals do not. The fusion promoting protein, Mfn1, is a 

substrate of Parkin, yet even increased Parkin expression was insufficient to alter baseline 

expression of Mfn1 across the genotypes examined (Poole, 2010). This suggests that 

oxidative modification of Parkin may be important for promoting its E3 ligases activity. These 

data are supported by reports of both S-nitrosylation and oxidation of Parkin leading to 

impairment in Parkin bioactivity (Chung, 2004; Meng, 2011; Yao, 2004). Taken together 

these data support a unique and non-recoverable role for the E3 ligase CHIP in the CNS 

response to stress. 

In conclusion, we demonstrate that CHIP deficiency results in dramatic motor 

impairments and an early lethal phenotype which we show are associated with increased 

levels of protein and lipid oxidation, decreases in antioxidants, significant declines in CNS 

ATP, upregulation of a number of redox and stress-associated mitochondrial proteins and 

alterations in specific protein oxidation events. Moreover, acute ischemic stress reveals a 

unique mechanism whereby CHIP is an essential regulator of redox tone that, when absent, 

results in increased neuronal death in response to stroke-like insults. In combination with our 

previous data demonstrating that chronic CHIP overexpression is associated with decreased 

neuronal survival (Stankowski, 2011), these results underscore the importance of maintaining 

an exquisite balance of CHIP as a means of efficiently responding to acute injury.  
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CHAPTER 3 

 

CHAPERONE MEDIATED PROTEIN REFOLDING FOLLOWING ACUTE ISCHEMIC 

STRESS INCREASES NEURONAL SURVIVAL 

 

3.1 Abstract 

Neuronal protein refolding and degradation in response to stress is largely mediated 

by the HSP70 chaperone complex and is critical for maintaining cell function. While some 

components of the triage machinery have been identified, we lack both a fundamental 

understanding of protein triage mechanisms evoked by neurons in response to stress and an 

ability to leverage this response to improve survival. In this work, we analyzed tissue from 

male rats given a transient middle cerebral artery occlusion (tMCAO) to identify changes in 

known and novel molecules that are part of the chaperone machinery and may represent 

essential regulators of chaperone function and expression. Luciferase-based reporter assays 

reveal that immediately following a short period of non-lethal oxygen and glucose deprivation 

(OGD), neurons attempt to refold proteins. Using an allosteric modulator of the HSP70 

complex, 115-7c, we were able to improve neuronal protein and lipid integrity. Additionally, 

cholesterol biosynthesis, bioenergetic status and membrane integrity were all improved by 

115-7c and levels of oxidized and ubiquitinated proteins were decreased. Priming naive 

neurons with 115-7c, mimicked the endogenous response to low-level stress and the 

neuroprotective effects of ischemic preconditioning (PC) in the absence of new protein 

synthesis. Taken together with our proteomic and metabolic data, we propose a model in 

which the endogenous response to acute injury is to promote protein refolding and that 

pharmacological augmentation of this response allows neurons to better maintain 
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proteostasis, decrease cell injury and maximize energetic capacity in order to survive 

subsequent stressors. 

3.2 Introduction 

Proteotoxicity is widely considered to mediate neuronal vulnerability in both chronic 

conditions such as Parkinson’s and Alzheimer’s disease and in acute injuries, such as 

ischemia (Gestwicki and Garza, 2012; Kalmar and Greensmith, 2009; Kalmar and 

Greensmith, 2017; Leak, 2014; Liu, 2005; Pratt, 2010). HSP70 binds to damaged proteins 

and is a critical determinant of cell fate in response to stress. While increased chaperone 

expression is a common response to injury (Liu, 2005; Magrane, 2004; McLean, 2004; Wang, 

2013), important gaps exist in our understanding of which chaperone-mediated activities are 

most beneficial to neuronal survival and how to recapitulate the endogenous protective 

response mediated by chaperones when exposed to low-level stress.  

The core components of the chaperone machinery, HSP70 and HSP40, work jointly to 

mediate folding, refolding, degradation and trafficking of proteins. The substrate-binding 

domain of HSP70, comprised of a beta sheet and a distal alpha helix that acts as a gate, 

allows for the binding and release of damaged proteins. This mechanism of action requires 

switching between a low-affinity/ATP bound state and a high-affinity/ADP bound state 

(Zuiderweg, 2017). Aside from bioenergetics, the clamping and release of substrates is also 

highly dependent upon chaperone interactions at multiple sites. This interaction include 

associations with HSP40, ubiquitin ligases, nucleotide-exchange factors, and other co-

chaperones and has been shown in silico to alter binding kinetics and substrate triage 

(Kampinga and Craig, 2010; Radons, 2016). 

The ability to leverage these interactions in a clinically meaningful way to develop 

treatments for bioenergetic crises such as stroke and ischemia has been limited (Kim, 2018; 

Stankowski and Gupta, 2011). While HSP70 over-expression aids in survival in many chronic 
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disease models (Cummings, 2001) (Broer, 2011) (Magrane, 2004) (Hoshino, 2011) 

(Ebrahimi-Fakhari, 2013), genetically manipulating the chaperone complex is a poor long-

term clinical strategy to treat diseases associated with abnormal protein triage. Sustained 

expression of many of the protein chaperone proteins is associated with both initiation and 

progression of precancerous and cancerous states (Murphy, 2013; Sherman and Gabai, 

2015). Pharmacological modulators targeting the chaperone complex have increasingly been 

recognized as a potentially valuable strategy for acute and chronic neurodegenerative 

diseases (Assimon, 2013; Kim, 2018; Pratt, 2015).   

Allosteric modulators of the HSP70 complex have been developed which specifically 

target the HSP40/HSP70 interacting site as well as the ATP/ADP substrate-binding domain of 

HSP70 (Wisen, 2010; Wisen and Gestwicki, 2008). HSP70 activators bind to the IIA 

subdomain of the nucleotide-binding domain (NBD), promoting formation and stabilization of 

the HSP40/70 complex. This interaction results in the constant clamping and release of 

HSP70 bound substrates, ultimately increasing client protein refolding. HSP70 inhibitors 

interact at the NBD, blocking ATP turnover and driving the complex to release denatured 

proteins for subsequent ubiquitination and proteasomal degradation (Pratt, 2015).   

In the context of chronic neurodegenerative diseases, promoting substrate 

degradation, as opposed to refolding, has proven effective in diminishing cytotoxicity and 

neuropathology (Abisambra, 2013; Chafekar, 2012; Fontaine, 2015; Guzhova, 2011; 

Howarth, 2009; Jinwal, 2013; Jinwal, 2009; Miyata, 2013; Wang, 2013). Until now, however, 

the specific pharmacological promotion of protein degradation or refolding, has not been 

studied with regards to acute ischemic injury. Given the rapid changes in bioenergetic status 

associated with oxygen and glucose deprivation (OGD), the extent and duration of short 

periods of ischemia may, in fact, recruit unique chaperones and triage strategies. When faced 

with acute bioenergetic crises, neurons employ a chaperone dependent signaling system 
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known as ischemic preconditioning (PC) that may not be deployed under conditions of 

chronic stress (Barone, 2004; Kim, 2007; Lizama, 2018; McLaughlin, 2003).  

In this work, we couple high powered proteomic screening platforms with targeted 

pharmacology to both identify proteins altered by acute neurological injury, and assess the 

efficacy of small molecule modulators of the HSP70 complex which either promote HSP70 

mediated substrate degradation or refolding (Pratt, 2015; Wisen and Gestwicki, 2008). In 

doing so, we sought to: 1) Identify critical chaperone substrates damaged as a result of 

transient ischemia 2) Identify factors that limit protein triage in response to OGD 3) Leverage 

allosteric modulators of the chaperone complex to improve neuronal survival in response to 

OGD and 4) Determine if profolding drugs can mimic the endogenous neuroprotective 

response known as ischemic preconditioning. 

3.3 Materials and Methods 

Reagents 

Commercial vendors of chaperone antibodies as well as reagents and supplies used 

for immunoblotting, immunofluorescence and cell culture experiments are the same as 

previously described (Lizama, 2018; Palubinsky, 2015). Additional primary antibodies used 

for immunoblotting in this study include: CHIP (PC711;  Calbiochem) ubiquitin - clone Fk2 

(BML-PW8810-0500, Enzo), HSC70 (ADI-SPA-816, Enzo), HSP70 (ADI-SPA-811, Enzo), 

HSP40 (ADI-SPA-400, Enzo), BAG1 (ADI-AAM-400, Enzo), HOP (ADI-SRA-1500, Enzo), 

and HIP (ADI-SPA-766, Enzo). For immunocytochemistry, the following secondary antibodies 

were used: anti-rabbit Cy2 (711-225-152), anti-mouse Cy2 (715-225-150) and anti-rabbit Cy3 

(711-165-152), all purchased from Jackson ImmunoResearch. Coverslips were mounted 

using ProLong Gold (P36934) from Invitrogen. Commercially available kits that were used 

include the DC Protein Assay kit (500-0112, Bio-Rad), the OxyBlot™ Protein Oxidation 
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Detection Kit (Millipore, S7150) and an ATP Assay Kit (Z5030042, BioChain). Reagents and 

materials required for biotin-avidin-capture methodology were obtained from the same 

companies as previously described (Stankowski, 2011). All cell culture medium and 

supplements were purchased from Invitrogen. Unless otherwise stated, all other chemicals 

were purchased from Sigma-Aldrich.  

Animals 

The Institutional Animal Care and Use Committee at Vanderbilt University approved all 

animal husbandry and experiments.  

 

Transient Middle Cerebral Artery Occlusion (tMCAO) 

Spontaneously hypertensive male Sprague Dawley rats were obtained from Charles 

River at 18 weeks of age and housed for 2 weeks prior to surgery with unlimited access to 

food and water prior to and after surgery. Rats were weighed (250-300 g in weight) and 

randomly assigned to 1 of 3 groups: Sham controls (surgery but no MCAO - 2 animals for 

proteomic analysis), tMCAO group 1 (10 minute MCAO followed by 2 days of recovery - 10 

animals: 2 for proteomic analysis, 8 for WB) or tMCAO group 2 (10 minute MCAO followed by 

14 days of recovery - 10 animals: 2 for proteomic analysis, 8 for WB). tMCAO surgery was 

conducted as previously described (Barone, 1998; Khan, 2016). Body temperature was 

maintained at 37°C using a heating pad throughout the surgical procedure. Briefly, once 

deeply anesthetized (2% Isoflurane), the right-sided common, internal, and external carotid 

arteries were exposed and their tributaries cauterized. An intraluminal suture (Doccol Corp.) 

was routed into the internal carotid artery (ICA) via the external carotid artery and pushed 

through to occlude the MCA. After 10 minutes of occlusion, the suture was removed and 

animals were allowed to re-equilibrate. For the tMCAO groups, only rats with left-sided 
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weakness on upright tests were included in the remainder of this study. For the sham group, 

the dura was opened over the right carotid artery but the artery was not occluded.  

 

Proteomics  

Sample Preparation:  

Brains were removed from untreated control and 2 day post-tMCAO animals and 

immediately placed onto dry ice. Hemispheres were separated and motor cortex was 

removed from the ipsilateral side for tMCAO samples and sham-treated controls. Samples 

were then placed into a glass dounce containing 1 ml of ice-cold TNEB lysis buffer. Brains 

were homogenized on ice (35 strokes), sonicated at 6 watts for 10 seconds and passed 

through a 40-micron cell strainer then through a 0.2-micron filter affixed to a 10 mL syringe. 

Samples were precipitated by adding 3 mL of ice-cold ethanol, vortexing and incubating on 

ice for 3 minutes. Following incubation, samples were spun at 3000 x rpm (1819 g) for 10 

minutes at 4°C. Upon removal of the supernatant, lysates were incubated in a 2:1 mixture of 

chloroform and ice-cold methanol for 3 minutes and centrifuged at 3000 x rpm (1819 g) for 10 

minutes. Following the spin, lysates were washed 3 times in 1 ml of ice-cold methanol. After 

the third wash, lysates were re-suspended in 1 ml of 0.5% SDS and sonicated at 6 watts for 

10 pulses. Following sonication, 10 µl of sample was added to 8 µl of 4X sample buffer and 2 

µl of 1 M DTT. This portion of the sample was heat denatured at 95°C for 10 minutes while 

the rest of the sample was used for protein assay. 

 

Peptide Preparation: 

Equal protein concentrations of each sample were loaded onto a 10% Bis-Tris gel with 

empty lanes in between samples and separated at 180V for 30 minutes. Simply Blue Safe 

Stain was used to visualize all protein bands and allow for each sample to be cut horizontally 
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into ~13 fractions. Each horizontal fraction was then cut vertically into ~1 mm cubes and 

placed in a microcentrifuge tube. One hundred µl of 100 mM ammonium bicarbonate (AmBic) 

was added to each fraction tube. 

Samples were reduced with 5 mM DTT in AmBic for 30 minutes at 60°C with shaking. 

Samples were then alkylated with 10 mM iodoacetamide in AmBic for 20 minutes in the dark 

at RT. Any remaining Safe Stain dye was removed with additional 100 µl washes in 50 mM 

AmBic /acetonitrile (1:1, v/v).  Once clear of all dye, gel pieces were dehydrated in 100% 

acetonitrile. Next, samples were rehydrated in 200 µl of 25 mM AmBic containing 300 ng of 

trypsin gold (Promega) and incubated at 37oC overnight. Following trypsinization, peptides 

were extracted from the gel via 3, 20 minute washed in 200 µl of 60% aqueous acetonitrile 

containing 1% formic acid and evaporated to dryness in vacuo. Lastly, peptides were re-

suspended in 30% aqueous acetonitrile containing 0.1% formic acid and stored at -80oC. 

 

Proteomics Database search and assembly:  

Data from shotgun LC-MS/MS runs were converted to mzml format using 

Proteowizard version 3.0.5211 (Kessner, 2008). The mzml files were searched using 

MyriMatch version 2.1.132 (Tabb, 2007) against the human Refseq database. A semi-tryptic 

search was employed with a maximum of four missed cleavages allowed. A target-decoy 

search was employed using a reverse sequence database to allow calculation of FDR for 

peptide-spectrum matches (Elias and Gygi, 2007). Protein-level FDR was calculated by 

dividing the number of reverse sequence proteins identified by the total number of proteins 

identified, multiplying by two and converting to a percent. All search result files were 

parsimoniously assembled in IDPicker version 3.1.643.0 (Ma, 2009). p values were 

calculated based on unequal variance  in a two-tailed Student’s t-test with alpha set to 0.05. 
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Immunoblotting 

Western blots were performed as previously described (Lizama, 2018; Palubinsky, 

2015). Briefly, neuronal cultures were placed on ice and washed twice with ice-cold 1X PBS. 

Following the second wash, 500µL of TNEB lysis buffer (50 mM Tris-Cl, pH 7.8, 2 mM EDTA, 

150 mM NaCl, 8mM β-glycerophosphate, 100µM sodium orthovanadate 1% Triton X-100, 

and protease inhibitor diluted 1:1000) was added.  

Approximately 100µL of lysate was saved for the determination of protein 

concentrations and the remaining lysate was re-suspended in an equal volume of Laemmli 

buffer with β-mercaptoethanol (1:20). Protein samples were heated to 95°C for 10 minutes, 

and stored at -20°C. Protein concentrations were determined via the Dc Protein Assay Kit II 

and equal protein concentrations were separated using 4-12% Bis-Tris gels followed by 

transfer onto PVDF membranes and then blocked in methanol for 5 minutes.  

Once dry, the membranes were incubated at 4°C overnight in primary antibody 

prepared in 5% nonfat dry milk in a Tris-buffered saline solution containing 0.1% Tween 20 

(TBS-Tween). All primary antibodies were diluted 1:1000. Following incubation in primary 

antibodies, membranes were washed and incubated for 1hr at room temperature in a 1:5000 

dilution of horseradish peroxidase–conjugated secondary antibodies prepared in 5% nonfat 

dry milk in TBS-Tween. After additional washes in, protein bands were visualized using a 

chemiluminescent substrate and exposed to autoradiography film. All experiments were 

performed using cultures from at least four independent dissections. 

 

Primary Rat Neuronal Culture 

Primary neuronal forebrain cultures were prepared from embryonic day 18 Sprague-

Dawley rats similar to as previously described (Palubinsky, 2015). Briefly, cortices were 

digested in trypsin and dissociated. Resultant cell suspensions were adjusted to 750,000 
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cells/mL and plated 2 mL/well in 6-well tissue culture plates containing five 12mm or one 

25mm poly-L-ornithine-coated glass coverslip(s). Cultures were maintained at 37oC, 5% 

CO2in growth media composed of a volume to volume mixture of 84% DMEM, 8% Ham’s 

F12-nutrients, 8% fetal bovine serum, 24U/mL penicillin, 24µg/mL streptomycin, and 80µM l-

glutamine.  

Glial proliferation was inhibited after two days in culture via the addition of 1µM 

cytosine arabinoside, after which cultures were maintained in Neurobasal medium containing 

2% B27, 2x N2 and 4% NS21 supplements (Chen, 2008) with antibiotics for 2 weeks. One 

week before experiments, neurons are maintained in Neurobasal medium containing 4% 

NS21 and antibiotics only. All experiments were conducted 21-25 days following 

dissociation.   

 

Oxygen Glucose Deprivation  

Oxygen glucose deprivation (OGD) experiments were performed between day in vitro 

(DIV) 21 through DIV 25, at which time neurons represent at least 95% of the population as 

assessed by NeuN and GFAP staining. OGD was performed as previously described 

(Lizama, 2018) complete exchange of media with deoxygenated, glucose-free Earle’s 

balanced salt solution (150mM NaCl, 2.8mM KCl, 1 mM CaCl2 and 10 mM HEPES;  pH 7.3), 

bubbled with 10% H2/85% N2/5% CO2. Cultures were exposed to OGD in an anaerobic 

chamber (Billups-Rothberg) at 37°C. Upon OGD termination, cells were washed with 

MEM/BSA/HEPES (0.01% BSA and 25mM HEPES) and then maintained in 

MEM/BSA/HEPES/N2 (0.01% BSA, 25mM HEPES and 2X N2 supplement) for various 

recovery times at the completion of which neurons were prepared for immunoblotting, 

biochemical assessments or fixed for immunofluorescence. 
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Lactate Dehydrogenase Toxicity Assay 

Twenty-four hours following the final OGD, 40 µl of culture media was removed in 

triplicate from each well, placed in a 96 well plate and incubated in assay buffer for 20 

minutes at room temperature. During this time, NAD is reduced to NADH by lactate 

dehydrogenase (LDH) during the stoichiometric conversion of a tetrazolium dye present in 

the buffer.  Following the incubation, absorbance is read at 490 nm as a measure of the 

amount of LDH released by dead and dying neurons. In order to account for variation in total 

LDH content, raw LDH values were normalized to the toxicity caused by exposure to a lethal, 

90 minute OGD insult. All experiments were performed using cultures from at least four 

independent dissections. In addition, LDH results were confirmed qualitatively by visual 

inspection and live cell imaging of the cells and, in several instances, quantitatively by cell 

counts. 

 

Sterol Analysis 

Folch solution was added to 30 µg of protein from neuronal cells to extract lipids 

followed by the addition of an equal volume of 0.9% NaCl. Folch solution (2:1 chloroform: 

methanol) contained 0.25 mg/mL TPP, 0.005% BHT, and the internal standards d7-7-DHC 

(118 ng), 13C3-Des (116 ng), d7-Chol (1.18 µg). Note: all natural and isotopically labeled 

sterols are available from Kerafast, Inc. The resulting mixture was vortexed and centrifuged. 

The lower organic phase was recovered and dried under vacuum. To increase sensitivity, the 

lipid extract was derivatized with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). 100 µL of freshly 

prepared 2 mg/mL PTAD solution in MeOH was added to each sample and incubated for 30 

minutes at room temperature with occasional shaking then transferred into sample vials. The 

sterol samples (10 µL injection) were analyzed on an UPLC C18 column (Acquity UPLC BEH 

C18, 1.7 µm, 2.1 mm × 50 mm) with 100% MeOH (0.1% v/v acetic acid) mobile phase at a 
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flow rate of 500 µL/min and runtime of 1.2 min. A TSQ Quantum Ultra tandem mass 

spectrometer (ThermoFisher) was used for MS detections, and data were acquired with 

Finnigan Xcalibur software. Selected reaction monitoring (SRM) of the PTAD derivatives was 

acquired in the positive ion mode using atmospheric pressure chemical ionization (APCI). MS 

parameters were optimized for the 7-DHC-PTAD adduct and were as follows: auxiliary 

nitrogen gas pressure at 55 psi and sheath gas pressure at 60 psi; discharge current at 22 µA 

and vaporizer temperature at 342°C. Collision induced dissociation (CID) was optimized at 12 

eV under 1.0 mTorr of argon. The monitored transitions included: Chol 369→369, d7-Chol 

376→376, 7-DHC 560→365, d7-7-DHC 567→372, Des 592→365, and 13C3-Des 595→368. 

Data was then normalized to protein. 

 

Primary Neuronal Transfection and Assessment of Protein Folding 

Primary neuronal cultures in a 6 well plate were transfected via LipoJet (SL100468, 

SignaGen) with a plasmid containing both Firefly and Renilla luciferase reporters (E1910, 

Promega) according to manufacturer’s protocols. Briefly, cultures underwent a 100% media 

change to fresh growth media 1 hour prior to the addition of lipid-based transfection reagents 

including 5µg of plasmid. After a 6-hour incubation, culture media was aspirated, fresh growth 

media was returned and cultures were used for subsequent OGD experiments at 48 hours 

post transfection and folding assays at 72 hours post-transfection.  

Protein folding was assessed using a dual luciferase reporter assay. Cultures were 

washed twice with 1X PBS then placed in 500µL of passive lysis buffer with gentle shaking 

for 15 minutes at room temperature. Following lysis, 100µL of lysate was collected for protein 

assay determination and the remaining lysate was divided into triplicate wells (20µL each) of 

a 96 well plate. One hundred microliters of luciferase assay reagent was added to the 

samples, mixed well and luminescence was immediately read over a 10 second period to 
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obtain a Firefly luciferase reading. Following this first reading, 100µL of Stop & Glo reagent 

was added to each sample, mixed well and luminescence was again read to obtain a Renilla 

luciferase reading.  

Firefly luciferase is rapidly denatured and refolded via the HSP70 complex and is 

subject to CHIP-mediated ubiquitination Renilla luciferase is appreciably smaller, more stable 

(in its commercialized form) and resistant to denaturation. As such, the Firefly luciferase 

signal (a measure of protein refolding) can be normalized to the total Renilla luciferase 

activity.  

 

OxyBlot™ Methodology 

Derivatization of oxidized proteins was performed as previously described (Palubinsky, 

2015; Stankowski, 2011). Briefly, whole cell lysates were harvested and immediately treated 

with 50mM DTT to prevent auto-oxidation of proteins. Samples were homogenized and then 

equally divided into derivatization reaction (DR) solution containing 2,4-

dinitrophenylhydrazine or negative control (NC) solution. Samples were stored at 4°C and 

processed further within seven days. Equal protein concentrations were separated using 

Criterion Bis-Tris gels and processed as described in the Immunoblotting section below. The 

manufacturer provided antibodies specific for the detection of oxidized proteins. All 

experiments were performed using cultures from at least four independent dissections. 

 

Immunofluorescence  

Briefly, neuronal coverslips were washed with 1X PBS and fixed for 10 minutes in 4% 

formaldehyde. Cells were permeabilized for 5 minutes with 0.1% Triton X-100, washed with 

1X PBS, and blocked with 8% BSA diluted in 1X PBS. After 25 minutes of blocking, 

coverslips were incubated in anti-MAP2 (1:500) and anti-Fk2 (1:500) primary antibodies 
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diluted in 1% BSA overnight at 4°C. Following primary antibody incubation, cells were 

washed in 1X PBS for a total of 30 minutes and incubated in Cy2 and Cy3 secondary 

antibodies (1:500) in 1% BSA for 1 hour. Cells were next washed for a total of 30 minutes in 

1X PBS and mounted with Prolong Gold + DAPi. Fluorescence was visualized using a Zeiss 

Axioplan microscope equipped with an Apotome optical sectioning slider. Nine fields of view 

were imaged from 4 separate neuronal preps and subsequent experiments, totaling 36 

imaged fields per condition. The fluorescent images within the manuscript are representative 

of these fields. 

 

ATP Measurement 

The concentration of intracellular ATP was assessed using bioluminescence. Neuronal 

cultures were washed twice with 1X PBS then incubated in ATP reagent mix in the presence 

of luciferase. The light generated was measured via a luminometer with the intensity 

representing the intracellular concentration of ATP. Sister cultures undergoing the same 

treatments were used for the determination of protein concentrations. All experiments were 

performed using cultures from at least four independent dissections. 

 

Analysis and Statistics 

Unless otherwise noted, data were summarized and are represented as mean ± SEM. 

The statistical significance of differences between means was assessed using one-way 

analysis of variance (ANOVA) at the 95% confidence interval, followed by the specified post 

hoc testing using GraphPad Prism software. 
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3.4 Results 

The protein triage complex rapidly and robustly responds to short periods of oxygen and 

glucose deprivation: An in vivo model of ischemic preconditioning 

Adult male rats were given a brief, 10-minute period of ischemia induced by transient 

middle cerebral artery occlusion (tMCAO), which is equivalent to a transient ischemic attack 

(TIA). The ipsilateral and contralateral motor cortices were harvested 24 hours later for next 

generation global proteomic profiling. One hundred and seventy eight proteins were 

significantly altered (greater than 2 fold) by tMCAO. Eighty-three demonstrate increased 

expression and 95 exhibit decreased expression profiles. Moreover, 10.8% of the proteins 

with increased expression (9 of 83) and 7.4% of the proteins with significant decreases in 

expression (7 of 95) were identified as chaperone-related molecules. A subset of these 

proteins are listed in Figure 9A.  

To confirm these proteomic hits, the ipsilateral and contralateral motor cortices from 

animals subjected to tMCAO were collected at 2 or 14 days post-ischemia. Tissue harvested 

at 2 days is considered to be within a preconditioned (PC) window where neurons are 

protected from subsequent lethal ischemic events, while those harvested at two weeks are no 

longer within the protected window. Western blot analysis corroborates results from our 

proteomics screen within the PC (2 day) samples (Fig. 9B). Increased HSP70 expression, a 

hallmark of the PC effect, is evident only in samples harvested during the protected window 

(2 day). Many of the identified chaperone components are key in either the degradation 

(CHIP, HIP, DJ1) or refolding of ischemia-damaged proteins (HSP90, HOP, HSP60).  

 

Protein refolding increases neuronal survival in response to OGD 

Mild to moderate OGD increases reactive oxygen species (ROS) to form oxidized 

proteins and lipids, while limiting the capacity of mitochondrial respiration for sustained ATP 
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synthesis during stress (Brown, 2010; Ravati, 2000; Zeiger, 2010). To determine whether 

promoting protein degradation or refolding could afford neuroprotection, primary neuronal 

cultures were exposed to various durations of OGD in the presence or absence of allosteric 

modulators of the HSP70 complex during recovery (Fig. 10A). The HSP70 inhibitor, MKT-

077, binds to the nucleotide binding domain of HSP70, blocking ATP turnover and driving the 

complex to release denatured proteins for subsequent ubiquitination (Pratt, 2015; Rousaki, 

2011). MKT-077 (10 µM) is non-toxic to control cultures but offers no beneficial effects on 

Figure 9: Integral components of the HSP70 molecular chaperone complex are altered in an 
in vivo model of ischemia. Next generation proteomic analysis (A) identified molecules closely 
associated with the chaperone machinery that undergo expression changes (at least 2 fold) 48hr 
following a 10 minute tMCAO in comparison to control rat brains. (B) Western blot analysis 
confirms several essential signaling changes observed in the proteomic data set. (Con = 
Contralateral hemisphere, Ip = Ipsilateral hemisphere). 
 



 61 

neuronal survival when assessed 24 hours following various durations of OGD via lactate 

dehydrogenase (LDH) assays (Fig. 10B). The HSP70 activator, 115-7c, promotes substrate 

refolding by acting as an HSP40 mimetic and increasing the ATPase activity of the HSP70 

complex, resulting in the constant clamping and release of HSP70 substrates required for 

refolding (Jinwal, 2009). Addition of 115-7c (25µM) following OGD significantly improved 

neuronal viability, with 21.5% increased survival following 30 minute OGD and 29.2% 

following 60 minute OGD (Fig. 10C).  
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Figure 10: Promoting protein refolding improves cell survival in response to OGD. Novel 
allosteric modulators of the HSP70 complex can direct HSP70 chaperone activity towards degradation 
or refolding of ischemia-damaged proteins (A). Treatment with the pro-degradation compound, MKT-
077, while not detrimental has no benefit on neuronal survival following various durations of OGD 
when analyzed via lactate dehydrogenase toxicity assay (B). Immediate administration of the pro-
folding compound, 115-7c following varying durations of OGD increases neuronal survival (C). Data 
were compiled from five independent cultures and analyzed via one-way ANOVA using Tukey’s post-
hoc testing where p < 0.05 = * and p < 0.01 = **. 
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Promoting protein folding improves cell membrane and lipid integrity 

Any number of processes can be affected by an ischemic event, including damage to 

DNA, lipids and proteins within different cellular compartments. Given that our measurement 

of lactate dehydrogenase released into culture media requires leaky cell membranes and that 

we saw remarkable decreases in this release with 115-7c treatment, we sought to examine 

whether 115-7c could play a role in preserving neuronal membranes. As the essential 

biomolecule, cholesterol, plays numerous roles in cellular homeostasis including 

maintenance of membrane integrity (Costello, 2016; Fuller and Futerman, 2018; Zhang and 

Liu, 2015), we sought to determine whether cholesterol biosynthetic pathways were affected. 

Our data show that neurons subjected to OGD have an increase in the 

desmosterol:cholesterol ratio (Fig. 11C) suggesting weakened membrane integrity. However, 

when the neuroprotective agent 115-7c is added immediately following OGD, the ratio of 

desmosterol:cholesterol returns to baseline (Fig. 11C) which may be a biological response to 

ultimately re-stabilize membranes potentially through refolding of key players in cholesterol 

biosynthesis. This hypothesis is supported by data demonstrating that in the presence of 115-

7c (with or without OGD), neurons have increased overall levels of cholesterol (Fig. 11A). We 

also observe increases in 7DHC levels upon 115-7c administration, but only with a 

concomitant OGD stress (Fig. 11D). This finding is interesting in that not only is 7DHC a 

precursor to cholesterol, but also a precursor to vitamin D (Annweiler, 2010; Mark, 2016). 

Vitamin D is neuroprotective and in some studies argued to activate the cellular stress 

response, so the observation that 7DHC increases in OGD-treated neurons with 115-7c may 

represent a more responsive population of cells to the ischemic stress. Even though this 

increase of 7DHC may be beneficial, it is also known that 7DHC is highly oxidizable and is 

associated with neurodevelopmental diseases like SLOS suggesting the inverse. However,  
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this data in conjunction with the previous findings support the former, that 7DHC is possibly 

neuroprotective in this specific scenario by serving as an increased pool of precursor to 

synthesize vitamin D.  

HO
Cholesterol

HO
Desmosterol

HO
7-Dehydrocholesterol

DHCR24

DHCR7

A	 B	

C	 D	

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0.000

0.025

0.050

0.075

*
***

*

7-
D

H
C

/C
ho

le
st

er
ol

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0.000

0.025

0.050

0.075

**

***

***
***
***

D
es

m
os

te
ro

l/C
ho

le
st

er
ol

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0

50

100

150

*
**

ug
 C

ho
le

st
er

ol
/m

g 
Pr

ot
ei

n

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0.000

0.025

0.050

0.075

*
***

*

7-
D

H
C

/C
ho

le
st

er
ol

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0.000

0.025

0.050

0.075

**

***

***
***
***

D
es

m
os

te
ro

l/C
ho

le
st

er
ol

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0

50

100

150

*
**

ug
 C

ho
le

st
er

ol
/m

g 
Pr

ot
ei

n

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0.000

0.025

0.050

0.075

*
***

*
7-

D
H

C
/C

ho
le

st
er

ol

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0.000

0.025

0.050

0.075

**

***

***
***
***

D
es

m
os

te
ro

l/C
ho

le
st

er
ol

CON

CON+1
15

-7c OGD

OGD+1
15

-7c
0

50

100

150

*
**

ug
 C

ho
le

st
er

ol
/m

g 
Pr

ot
ei

n

Figure 11: Treatment with 115-7c improves lipid biosynthetic pathway profiles.  In the 
presence of 115-7c (with or without OGD), neurons have increased overall levels of cholesterol 
(A). When subjected to OGD neurons exhibit an increase in the desmosterol:cholesterol ratio 
that returns to baseline levels when 115-7c is administered immediately following OGD (C). 
Increases in 7DHC levels upon 115-7c administration are noted, but only with a concomitant 
OGD stress (D). Data were compiled from eight independent cultures and analyzed via one-
way ANOVA using Tukey’s post-hoc testing where p < 0.05 = * and p < 0.01 = **. 
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Protein refolding rates are maximized by treatment with 115-7c  

Based on these data, we hypothesized that a protein refolding failure may limit survival 

following OGD. To test this, we transfected a bi-cistronic Firefly/Renilla dual luciferase 

reporter into primary neurons 24 hours prior to 15 minutes of OGD. Firefly luciferase is rapidly 

denatured and refolded via the HSP70 complex as a result of OGD (Bonomo, 2010; Wisen 

and Gestwicki, 2008) while Renilla luciferase remains resistant to denaturation and can be 

used as an internal control. Endogenous folding activity increases slightly above control by 1 
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Figure 12: 115-7c allows neurons to maintain increased levels of folding activity for a longer 
duration than PC alone. (A) One hour following 15’ (PC) OGD, neuronal cultures exhibit a roughly 
1.5 fold increase in protein folding whether untreated (gray line) or in the presence of 115-7c (solid, 
black line) when normalized to control cultures (black, hashed line). At later time points (3hr and 6hr) 
following PC OGD, untreated and treated cultures diverge where untreated cultures begin to lose 
their ability to refold (slowly returning to near baseline levels) while 115-7c treated cultures continue 
an upward trend in folding, peaking at 6hr with a nearly 3 fold increase in protein folding. Twenty-
four hours following PC OGD, folding rates in untreated cultures return to baseline while those 
treated with 115-7c maintain at least a 0.5 fold increase. Data were conducted in neurons from four 
independent cultures and analyzed via one-way ANOVA with Tukey’s post hoc testing where p < 
0.05 = *. Western blot analysis (B) of major components of the HSP70 chaperone complex 
demonstrate that HOP expression is unchanged with 15’ PC OGD alone, but increases in the 
presence of 115-7c. Representative data shown is based on analysis from 5 independent cultures.  
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hour (1.5 fold) following OGD but is not maintained thereafter (Fig. 12A - dark gray line) 

falling below untreated control levels (dashed black line) by 24 hours. Administration of 115-

7c immediately following 15 minute OGD results in increased folding (1.6 fold at 1 hour, 2 fold 

by 3 hours and 2.7 fold by 6 hours) that remains elevated above untreated control and 15 

minute OGD levels, even at 24 hours (1.5 fold, solid black line). Taken together, these data 

demonstrate that neurons subjected to OGD in the presence, or absence, of 115-7c begin 

folding on the same trajectory (within 1 hour), but only cultures treated with 115-7c are able to 

sustain and maximize this folding capacity.  

To determine which chaperone components are limiting in the cellular milieu that 

would explain diminished endogenous folding capabilities, primary neuronal cultures were 

subject to 15 minute OGD in the presence or absence of 115-7c, harvested for Western blot 

24 hours later and probed for chaperone components known to shift the complex towards 

degradation or refolding. Expression of the pro-folding protein and HSP70 co-chaperone, 

HOP (HSP70 Organizing Protein), is increased by 186% [ImageJ densitometry 

measurements (n of 5)] in the presence of 115-7c but not with OGD alone (Fig. 12B). 

Treatment with 115-7c can therefore increase luciferase refolding and drive expression of a 

key-folding molecule, HOP, while untreated neurons are unable to maximize endogenous 

folding capabilities.  

 

Protein oxidation and poly-ubiquitination decrease following mild bioenergetic stress when 

protein folding is promoted 

Mild OGD alone increases the amount of proteins with carbonyl adducts that could 

benefit from refolding and levels of these endogenous substrates decrease with 115-7c 

treatment (Fig. 13A). While the mono-ubiquitin pool remains steady across conditions, poly-

ubiquitinated proteins increase 24 hours following 15 minute OGD. Treatment with 115-7c 
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returns the poly-ubiquitinated protein pool back to baseline levels, comparable to untreated 

control (Fig. 13B). These data are also confirmed using immunocytochemistry. The intensity 

and localization of poly-ubiquitinated proteins appear similar between untreated controls (Fig. 

13C) and 15 minute OGD neurons treated with 115-7c when neurons are stained for Fk2 

(magenta), MAP2 (green) and DAPi (blue) (Fig. 13E).  In neurons treated with 15 minute 

OGD alone, increased Fk2 staining can be visualized within the soma and in neuronal 

processes (Fig. 13D). Taken together, these data show that protein oxidation and 

subsequent ubiquitination of endogenous protein substrates resulting from mild stress can be 

restored to baseline levels by augmenting protein refolding capabilities using 115-7c.   

115-7c promotes the refolding of key Krebs cycle intermediates to maintain neuronal 

bioenergetic profiles   

Proteomics data of our in vivo tMCAO model revealed a high level of changes 

associated with neuronal bioenergetic proteins. That is, 16 of the 83 proteins that decreased 

greater than 2 fold and seven of 95 of the proteins with significantly increased expression 

have key roles in maintaining neuronal energetics. Based on these proteomic ‘hits’ in Figure 

14A, we hypothesized that Krebs cycle enzymes that are decreased with ischemia would be 

first-line indicators of damage and may be preferentially refolded in the presence of 115-7c. 

We therefore examined the protein expression profiles of IDH3α and αKGDH in our in vitro 

neuronal model in the absence and presence of 115-7c (25µM) and the protein synthesis 

inhibitor, cycloheximide (CHX, 1 µM). We found that the expression of both enzymes were 

decreased 24 hours following 15 minute OGD, as predicted by our proteomics but were 

replenished by 115-7c treatment, even in the absence of new protein synthesis (Fig. 14B). At 

the 1 hour time point we observed no significant change in neuronal bioenergetics between 

control cultures, cultures subjected to OGD or those subjected to OGD followed by immediate 
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administration of 115-7c (white bars) (Fig. 14C). By 3 hours post-OGD (light gray bars) 

neurons undergo a 0.7-fold decrease in ATP while those treated with 115-7c experience a 

1.7-fold increase and at 24 hours (dark gray bars) ATP levels in untreated OGD cultures 

rebound above controls (1.6-fold) as do those treated with 115-7c, but to a much greater 

extent (3.0-fold). These data suggest that essential, early components of the Krebs cycle 
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Figure 13: 115-7c decreases protein oxidation and ubiquitination in vitro after 15’ OGD. 
Analysis of protein oxidation status via OxyBlot™ technology (A) reveals an increase in total 
carbonyl formation above control levels with 15’ OGD that is alleviated when 115-7c is on board. 
Fifteen minute OGD also causes an increase in poly-ubiquitinated proteins as measured via WB 
for ubiquitin (B) that decreases to near control levels with 115-7c treatment. Notably, the mono-
ubiquitin pool is not depleted in any case (band at ~8 kDa). Immunocytochemical analysis (40X) 
for ubiquitin (Fk2 - magenta) and DAPi (blue) reveals little to no poly-ubiquitin aggregates in 
control neurons (C) 15’ OGD cultures demonstrate an increase in ubiquitin staining that can be 
seen near the nucleus and spreading within neuronal processes. Fifteen minute OGD neurons 
immediately treated with 115-7c (E) demonstrate decreased protein aggregation compared to 15’ 
OGD alone. All samples were harvested or fixed 24hrs following the OGD stress and 
representative data comes from four independent cultures. For ICC, images, 9 fields of view 
were imaged from 4 separate neuronal preps and subsequent experiments, totaling 36 imaged 
fields per condition.  
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undergo a rapid decrease in expression that can be overcome by addition of 115-7c and that 

this rescue allows neurons to better maintain their bioenergetics status in response to a mild 

ischemic event.  
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Figure 14: 115-7c promotes the refolding of IDH3α and αKGDH, positively impacting neuronal 
bioenergetics following 15’ OGD. A schematic diagram depicting proteomic hits (A) identifies novel 
molecules closely related to neuronal energetics that undergo expression changes (at least 2 fold) 48hrs 
following a 10 minute tMCAO in comparison to control rat brains. Decreases in key Krebs cycle 
intermediates (IDH3α and αKGDH) identified by our proteomics screen were corroborated via WB 
analysis in our in vitro model of 15’ OGD (B). Expression of these proteins is rescued when 115-7c is 
onboard in the presence of cycloheximide (CHX) demonstrating that increased expression is the result of 
protein refolding as opposed to new protein synthesis. Bioluminescent reporter assays of intracellular 
ATP levels (C) reveal no significant change between control cultures, cultures subjected to OGD or those 
subjected to OGD followed by administration of 115-7c 1hr following the neuronal stress (white). 3hrs 
following OGD (light gray), neurons subjected to OGD without treatment undergo a roughly 0.5 fold 
decrease in ATP, while those treated with 115-7c experience a 0.5 fold increase in ATP levels. At 24hrs 
(dark gray), ATP levels in untreated OGD cultures rebound above controls (1 fold) as do those treated 
with 115-7c, but to a much greater extent (3 fold). All data was compiled from four independent cultures 
and subsequent assays and was analyzed via one-way ANOVA with Tukey’s post hoc testing where p < 
0.05 = * and p < 0.001 = ***.  
 



 69 

Preconditioning neuroprotection increases in the absence of new protein synthesis when 

protein folding is promoted  

We hypothesized that the sustained bioenergetics profile afforded by 115-7c treatment 

following OGD would augment the neuroprotective effects of PC by alleviating the typical 

early decrease in ATP levels (Brown, 2010; Zeiger, 2010). For these experiments, 115-7c 

and/or CHX was added to primary neuronal cultures immediately following a 15 minute OGD, 

followed 24 hours later by a lethal, 90 minute OGD. Live cell images, cell counts and LDH 

assays were then performed 24 hours later. Control neurons (Fig. 15A) and neurons 

subjected to 15 minute OGD (Fig. 15B) are virtually indistinguishable with phase bright soma 

and extensive neuronal networks that were completely abolished in neurons subject to 90 

minute OGD (Fig. 15C). Preconditioned neurons demonstrate some phase bright soma and 

intact neuronal processes as well as some somal shrinkage and blebbing (Fig. 15D) which 

are alleviated when 115-7c is present as neuronal processes again appear to be 

indistinguishable from untreated controls (Fig. 15E). A 21.2% increase in cell survival 

resulted when neurons were preconditioned and 115-7c was administered (Fig. 15H – 

diagonal hash versus horizontal hash) as assessed by LDH assay. As expected, the PC 

effect was lost when neurons were treated with CHX (Fig. 15F & H) but concomitant 

treatment of 115-7c and CHX alleviates the need for new protein synthesis and neurons are 

again able to undergo preconditioning (Fig. 15G & H). Taken together, we have developed a 

model (Fig. 16) in which protein refolding is an endogenous response to mild OGD that can 

be augmented by the addition of HSP70 modulators that further promote the folding activities 

of the complex. Driving this expression allows neurons to refold ischemia-damaged proteins, 

particularly and perhaps preferentially, those important for maintaining energetics such as 

IDH3α and αKGDH, key players in the Krebs cycle. All of these actions together result in 

increased neuroprotection from OGD in the presence of a pro-folding compound that is 
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administered after an ischemic event. These data speak to the clinical relevance of this type 

of therapeutic and the need for further studies.  
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Figure 15: The pro-folding compound 115-7c augments neuroprotection in an in vitro model 
of PC independent of new protein synthesis. Control (A) and 15’ OGD (PC) neurons (B) are 
virtually indistinguishable, demonstrating phase bright somas and extensive neuronal processes in 
comparison to 90’ (lethal) OGD neurons (C) which exhibit somal shrinkage and devastation of the 
neuronal network. Live cell images of cultures exposed to 15’ PC OGD 24hr prior to 90’ OGD in 
the absence (D) or presence (E) of 115-7c reveal a population of surviving neurons with phase 
bright somas and intact neuronal connections. Treatment with CHX results in somal shrinkage and 
a discontinuous neuronal network (F) while co-treatment with 115-7c and CHX (G) results in 
cultures indistinguishable from controls. Lactate dehydrogenase assays (H) demonstrate that 15’ 
PC OGD is non-toxic, 90’ OGD alone is lethal and PC prior to 90’ OGD decreases neuronal cell 
death by roughly 50%. PC neuroprotection is augmented an additional ~20% by treatment with 
115-7c. The protein synthesis inhibitor, cycloheximide (CHX) blocks the neuroprotection typically 
seen with PC but concomitant treatment with 115-7c is able to overcome this loss of protection. 
Data were compiled from 5 independent cultures and experiments and subjected to one-way 
ANOVA analysis with Tukey’s post hoc testing where p < 0.05 = * and p < 0.001 = ***.  
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3.5 Discussion 

The protective effect of preconditioning has historically been thought to require 

increased HSP70 expression (Barone, 2004; Barone, 1998; Tirapelli, 2010), KATP channel 

opening (Cohen, 2000; Tani, 2001; Teshima, 2003), caspase 3 activation (McLaughlin, 

2003), ROS formation (Ravati, 2000) and new protein synthesis (Burda, 2003; Matsuyama, 

2000; Rowland, 1997). Our ability to leverage these pathways to evoke well-tolerated 

protection in the context of hypoxia and ischemia has been limited by a lack of understanding 

of the primary role of chaperone proteins in PC as well as a dearth of reagents that can 

specifically modulate chaperone activity. 

Figure 16: Overall Schematic. The protein refolding compound, 115-7c increases neuronal 
survival following OGD by rescuing damaged mitochondrial proteins which affords maintenance of 
neuronal bioenergetic status. In addition, 115-7c can overcome the loss of the preconditioning 
hallmark of increased new protein synthesis perhaps by instead fueling neurons with properly 
refolded proteins put on hold during times of stress.   
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Here we show that driving chaperone-mediated protein refolding augments PC 

neuroprotection in the absence of new protein synthesis. The HSP70 complex can either 

degrade or refold client proteins dependent upon cellular bioenergetics and the co-

chaperones with which HSP70 interacts (Hohfeld, 2001; Zuiderweg, 2017). HSP70 itself 

forms the backbone of this triage complex, interacting with a number of co-chaperones to 

dictate protein fate. For example, when bound to the co-chaperones CHIP and BAG1, the 

HSP70 chaperone machinery targets client proteins for proteasomal degradation. When 

interacting with HIP and HOP, client proteins instead undergo refolding. The fate of HSP70 

client proteins also depends upon ATP binding, duration of substrate interaction and strength 

of substrate affinity (Zuiderweg, 2017).   

In this study, we find that endogenous protein refolding increases rapidly in response 

to OGD, but drops precipitously after 3 hours. We have previously reported that the 3-hour 

time point is also that of maximal ATP/ADP depletion in response to ischemic 

preconditioning. These data are consistent with the decrease we observe in the rate-limiting 

enzymes of the Krebs cycle, IDH3a and aKGDH. Other factors that might limit refolding, such 

as diminished HOP expression were not observed in either the in vitro or in vivo PC models.  

By driving the refolding activity of the chaperone complex with the pro-folding agent, 

115-7c, we observe decreased protein oxidation and poly-ubiquitination and increases in 

neuronal survival even in the absence of new protein synthesis. These data support the 

importance of developing short acting pharmacological tools to improve neuronal survival in 

response to acute CNS injuries.  

These data are interesting in that other HSP70 modulators have been shown to 

compete with co-chaperones. For example, YM-01 outcompetes HIP for binding to the 

complex (Abisambra, 2013; Fontaine, 2015) while 115-7c appears to work cooperatively with 

HOP allowing more protein substrates to undergo refolding following OGD. These data are 
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further supported by previous work by Howarth and colleagues who demonstrated that 

overexpression of HIP alleviated inclusion formation in in vitro models of Spinal Bulbar 

Muscular Atrophy and polyQ expansion disease by facilitating the refolding cycle of the 

HSP70 complex (Howarth, 2009). In these studies, it is important to note that the beneficial 

effects of refolding are not observed unless there is also an increase in HSP70, again 

suggesting that temporal expression of the chaperone is key.  

Because refolding is heavily dependent upon energetics, we examined ATP levels in 

the presence or absence of 115-7c and found that preconditioned neurons do not undergo 

the previously described early drop in ATP levels (Brown, 2010; Kalogeris, 2012; Zeiger, 

2010), but instead maintain ATP at levels higher than baseline even at 24 hours. We sought 

to understand the ATP levels by referencing proteomic data of rats that were exposed to 

tMCAO. Validation of our proteomic data via WB analysis demonstrates that in the presence 

of 115-7c, the expression of proteins essential to energetic status are increased, suggesting 

that they may be preferentially refolded during ischemia in order to maintain energetics. 

Reports of mitochondrial IDH (Yoshida 2014) and α-KGDH (Humphries, 2006; Shi, 2011) 

undergoing oxidative or nitrative modifications and subsequent inactivation, combined with 

studies demonstrating target-focused refolding of proteins with oxidation events on cysteine 

residues (Sardiu, 2007), further support this hypothesis. In this case, ischemia-damaged 

proteins are refolded as opposed to having to be generated de novo, utilizing neuronal 

energetics and resources. Importantly, the neuroprotective effect of 115-7c was observed in 

the presence of cycloheximide, a protein synthesis inhibitor supporting a model whereby 

promoting protein recycling evokes both immediate and long-lasting changes in chaperone 

complex activity. These data support a model whereby preferential refolding of ischemia-

damaged mitochondrial client proteins essential for maintaining neuronal energetics results in 

increased survival.  
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The literature robustly demonstrates the benefits of promoting client protein 

degradation in chronic models of neurodegeneration (Abisambra, 2013; Fontaine, 2015; 

Howarth, 2009; Jinwal, 2013; Jinwal, 2009; Kilpatrick, 2013; Wang, 2013). Yet until now, 

these compounds have been untested in the context of an acute event such as an ischemic 

stroke. In chronic model systems, increases in protein aggregates, whether of a-synuclein, 

Tau, or HTT, may result in a preference for protein degradation in these environments where 

persistent aggregation renders proteins insoluble and no longer viable substrates for 

refolding. While an acute ischemic event also results in protein aggregation (Hu, 2001) [29], 

these aggregates may still be salvageable and therefore protein refolding still an option.  

A pharmacological modulator that can enhance neuroprotection following a mild 

ischemic event is especially exciting in regards to treating patients who experience a TIA. 

While transient ischemic attacks are known to result in the upregulation of endogenous 

protective pathways, this protection is short-lived and a TIA often precedes a large-scale 

stroke (Wu, 2007). There are currently no neuroprotective therapeutics offered to high-risk 

stroke patients who have suffered a TIA. The data presented here suggest that introducing a 

profolding compound following an acute ischemic event may improve outcome for this patient 

cohort. In addition, and of particular interest when thinking of these compounds as 

therapeutics, is our finding that administration of 115-7c as late as 6 hours following a 

moderate (30 minute) ischemic insult still provides significant neuroprotection for up to at 

least 72 hours (Fig. 17A & B). More studies of this nature are essential since there is only 

one FDA approved drug (tissue plasminogen activator: tPA) currently available for ischemic 

stroke. Of the patients eligible to receive tPA, less than 5% do (Adeoye, 2011) mainly as a 

result of the small window of effectiveness, with administration within 3 to 4.5 hours of stroke 

onset (Cheng and Kim, 2015). 
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Figure 17: Administration of 115-7c exceeds the current standard of IV tPA. 115-7c can be 
administered 6hrs following OGD and still result in increased viability as measured by LDH release 
24hrs post-treatment (A). The beneficial effect of administering 115-7c 6hrs following OGD can still 
be seen as far out as 72hrs in terms of neuronal viability (B). 
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CHAPTER 4 

 

SUMMARY 

 

Increased HSP70 expression in response to OGD has been well established, yet the 

role of the chaperone machinery and the precise activities employed by this complex to 

ensure neuronal survival following an ischemic event remain unknown and were the main 

goals of this thesis work.  

4.1 CHIP Relocalizes to Damaged Mitochondria 

HSP70 and CHIP expression are increased in human post-mortem samples from 

patients whom had suffered from a TIA or stroke (Stankowski, 2011). These increased 

expression profiles can be recapitulated in a highly reproducible in vitro model system. Using 

primary forebrain neuronal cultures subjected to OGD, we found that indeed both HSP70 and 

CHIP are increased in a time-dependent fashion following a lethal ischemic event 

(Palubinsky, 2015). Using immunocytochemistry we also discovered, for the first time, that 

CHIP relocates from the cytosol to damaged mitochondria following acute stress where it acts 

as an essential mediator of redox tone and energetics (Palubinsky, 2015). 

Once at the mitochondria, CHIP associates with LC3-II labeled mitochondria providing 

the first data that it may be essential for the removal of damaged mitochondria from the 

cellular milieu via mitophagy. Further studies in the McLaughlin lab by Dr. Britney Lizama 

revealed that in the context of ischemic preconditioning, loss of CHIP not only prevents 

mitophagy but also negates the neuroprotective responses of PC all together (Lizama, 2018). 

The literature provides a strong connection between mitochondrial dysfunction and 

neurodegeneration (Beal, 2003; Burchell, 2010; Burchell, 2010; Cozzolino, 2013; Cui, 2006; 

Johri and Beal, 2012; Khandelwal, 2011). As such, we continued to focus on the link between 
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CHIP and the mitochondria. Utilizing whole brains from WT, Het and CHIP KO mice, we were 

able to show that loss of CHIP results in severe mitochondrial deficits including: energetic 

scarcity (decreased ATP:ADP), insufficient antioxidant response (decreased GSH:GSSG), an 

inability to properly respond to calcium challenge and homeostatic imbalance of key 

mitochondrial proteins (example: increased expression and subsequent oxidation of Drp1) 

(Palubinsky, 2015).   

4.2 Loss of CHIP is Detrimental to a Host of Cellular Processes 

In addition to severe gross physiological and motor impairments, cardiovascular 

abnormalities, stress sensitivity and early lethality observed in CHIP deficient animals 

(McLaughlin, 2012; Min and Patterson, 2011; Palubinsky, 2015), our data provides molecular 

evidence for increased protein oxidation and lipid peroxidation in brain, deficits in 

bioenergetics and antioxidant response mechanisms and mitochondrial failure (Palubinsky, 

2015). To further uncover the relationship between loss of CHIP and these molecular 

insufficiencies, we have established 3 proteomic libraries (Figure 18 & Table 1).  

The first encompasses all proteins that are differentially expressed based on the 

presence or absence of CHIP (WT vs CHIP KO mouse brain), many of which are involved in 

bioenergetics and mitochondrial quality control (Lizama, 2018; Lizama, 2018). The second 

library contains brain proteins that are oxidatively modified in a CHIP dependent manner. And 

the third is a library specifically composed of mitochondrial proteins that are oxidatively 

modified in a CHIP dependent manner and thus provide a further link between CHIP and 

overall mitochondrial homeostasis (Lizama, 2018). We have also interrogated the 

ultrastructure of mitochondria obtained from WT versus CHIP KO mice and found that loss of 

CHIP increases mitochondrial number and significantly alters mitochondrial morphology 

(Lizama, 2018). These data correlate well with the increased expression of the pro-fission 

protein, Drp1, we have found in CHIP KO brain (Palubinsky, 2015).  
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Table 1 

Oxidized Proteins 
Neurodegenerative Diseases:  

Parkinson’s/Huntington’s/Alzheimer’s/ALS 
ATP-Synthase Voltage Dependent Anion Channel 1 * 
ADP/ATP Translocase Voltage Dependent Anion Channel 2 
Ubiquinol-Cytochrome C Reductase Voltage Dependent Anion Channel 3 * 
NADH Dehydrogenase  Fused in Sarcoma * 
Succinate Dehydrogenase  Dynamin Related Protein 1  
Hydroxysteroid Dehydrogenase Parkin 
Clathrin Superoxide Dismutase 1 * 
Adenine Nucleotide Translocator * Superoxide Dismutase 2 

Metabolism and Energetics: 
Krebs Cycle/Oxidative Phosphorylation/Glycolysis 

Aconitase Alpha Ketoglutarate Dehydrogenase 
Citrate Synthase Isocitrate Dehydrogenase 1 * 
Fumarate Dehydrogenase Isocitrate Dehydrogenase 2 * 
Malate Dehydrogenase Isocitrate Dehydrogenase 3 
Succinate Dehydrogenase Pyruvate Dehydrogenase 
Aldehyde Dehydrogenase Pyruvate Carboxylase 
Lactate Dehydrogenase Glucose-6-phosphate Isomerase 
Fumarate Hydratase * Hexokinase 2 * 
Cytochrome c Oxidase IV Fatty acid synthase * 
Glycerol-3-phosphate Dehydrogenase  

Antioxidants: 
Production and Degradation 

Glutamate Dehydrogenase Glutathione S-transferase 
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Figure 18: Generation of Whole Brain 
& Oxidized Mitochondrial Proteomes. 
Brains from PND35 WT and CHIP KO 
mice underwent lipid extraction 
followed by mitochondrial isolation. 
Mitochondrial lysates were then 
subjected to biotin avidin capture of 
oxidized species. Following pull-down, 
oxidized proteins were separated via 
gel electrophoresis. Peptides were 
extracted from the gel, tryptically 
digested and analyzed by MS.  
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Acetyl-coA Acyltransferase Glutathione peroxidase 1 
Carbamyl-phosphate Synthetase Peroxiredoxin (1 through 6) 
Glutamate Oxaloacetate Transaminase Thioredoxin * 
Aminobutyrate Aminotransferase All-trans-retinol 13,14-reductase 
Alanine-Glycoxylate Aminotranferase Glutamic Pyruvate Transaminase  
Arginosuccinate Synthetase  

Oxidized Proteins Continued 
Chaperone Response / Ubiquitin Proteasome System 

Protein Disulfide Isomerase  Chaperonin * 
Peptidylprolyl Isomerase Cullin 3 * 
Hypoxia Upregulated Protein Heat Shock Protein 5 
Leucine Aminopeptidase Heat Shock Protein 8 
Ubiquitin Heat Shock Protein 27 
Ubiquitin Specific Peptidase * Heat Shock Protein 10 * 
Ubiquitin-conjugating enzyme E2L Heat Shock Protein 40 
Ubiquitin-conjugating enzyme E2N Heat Shock Protein 60 
Ubiquitin-like activating enzyme 1 * Heat Shock Protein 70 * 
Proteasome Subunit alpha 6 * Heat Shock Protein 75 * 
Proteasome Subunit beta (5-7) * Heat Shock Protein 90 alpha 
Proteasome 26S subunit (1,2,3,5 and 6) * Heat Shock Protein 105/110 * 
Microtubule-associated Protein 1A Microtubule-associated Protein 1B 

Calcium Signaling 
Neurocalcin * ATPase, Ca++ Transporting Protein * 
Ca++/calmodulin-Dependent Protein Kinase  Calmodulin 1 Phosphorylase Kinase 
Calbindin 2 Calnexin * 
S100 Calcium Binding Protein * Solute Carrier 8 (Na++ /Ca++ Exchanger) 
Ca++-dependent Secretion Activator  

Synaptic Proteins and Neurotransmission 
Neural Cell Adhesion Molecule 1 * Syntaxin 
Synaptotagmin Synaptophysin 

Other Proteins of Interest 
Programmed Cell Death Interacting Protein Translocase of Outer Mito Membrane 70 
Neural Cell Adhesion Molecule 2 Optic Atrophy 1 * 
Doublecortin-like Kinase 1 * Glia Maturation Factor 
Estradiol Dehydrogenase Protein Kinase C 

 

 

4.3 To Fold or Not to Fold 

While increased chaperone expression is a common response to injury (Liu, 2005; 

Magrane, 2004; McLean, 2004; Wang, 2013), important gaps remain in our understanding of 

which chaperone-mediated activities would be most beneficial to neuronal survival following 
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an ischemic event. By monitoring protein dynamics following an ischemic stress, we find that 

the endogenous neuronal response is to refold ischemia-damaged proteins.  

These findings were particularly interesting to us in that our previous data 

demonstrating increased CHIP expression would support a model in which protein 

degradation is favored. However, if we take into account the extremely broad range of 

activities that CHIP has the potential to participate in (Joshi, 2016) and the fact that following 

stress CHIP relocalizes to the mitochondria (Lizama, 2018; Palubinsky, 2015), it may be that 

upregulation of this vital protein has more to do with maintaining mitochondria than 

participating in chaperone duties, particularly in an environment of acute stress.  

By utilizing newly developed small molecule modulators of HSP70 for the first time in 

the setting of an acute neuronal stress, we were able to determine that promoting the 

refolding of ischemia-damaged proteins significantly increases neuronal survival. Additionally, 

by analyzing the expression profiles of the chaperone machinery in response to treatment 

with a profolding drug, we were also able to identify new potential targets for therapeutic 

intervention, which is the focus of the following chapter. 
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CHAPTER 5 

FUTURE DIRECTIONS 

1) Specific Aims  

A major consequence of ischemia is neuronal protein damage that can overwhelm the 

essential protein triage unit, the HSP70 molecular chaperone complex. The aim of this 

proposal is to further understand the role of protein refolding in response to ischemia. 

 

Specific Aim I: Determine a treatment paradigm that results in maximal neuroprotection and 

the corresponding protein profile of the HSP70 chaperone machinery. Proteasomal inhibition 

has been shown to be beneficial in the context of ischemia. Our preliminary data are in 

agreement, demonstrating that the addition of the pro-folding compound (115-7c) following 

OGD increases neuronal survival (Figure 10C). We hypothesize that co-treatment with the 

proteasomal inhibitor (lactacystin) and 115-7c will further augment neuronal survival and that 

the expression profiles of the major HSP70 chaperone complex components will be altered to 

reflect an adaptive survival response. 

 

Aim 1A: Assess neuronal survival following OGD in the presence of a proteasomal 

inhibitor and a pro-folding compound. In this aim we will subject mature, primary 

neuronal cultures to mild OGD followed by the administration of the proteasomal 

inhibitor, lactacystin, the pro-folding compound, 115-7c or both. Lactate 

dehydrogenase (LDH) released from dead and dying neurons will be measured to 

assess neuronal survival in the absence versus presence of compound(s). 
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Aim 1B: Determine changes in the expression of the HSP70 molecular chaperone 

complex in response to OGD in the presence of lactacystin and/or 115-7c. Primary 

neuronal cultures will be subjected to mild OGD followed by the administration of 

lactacystin, 115-7c or both during a 24hr recovery period. Western blot samples will be 

harvested and proteomics run to determine changes in the protein profiles of the major 

components of the HSP70 chaperone complex including, HSP70, HSC70, HSP90, 

HSP40, CHIP, BAG1, HIP and HOP. 

 

Specific Aim 2: Determine the real-time metabolic and folding profiles of neurons following 

OGD in a pro-folding environment. OGD results in significant changes in neuronal energetics 

that, in turn, can affect the co-chaperones with which the HSP70 complex interacts. Our 

preliminary data demonstrate that post-OGD treatment with 115-7c allows neurons to better 

maintain ATP levels (Figure 14C). We hypothesize that in response to OGD, neurons 

preferentially attempt to refold, as opposed to degrade, damaged proteins because folding is 

more energetically advantageous. 

 

Aim 2A: Determine the energetic profile of neurons in the presence of 115-7c. For this 

aim, primary neuronal cultures will be subjected to OGD in the presence or absence of 

115-7c during recovery and metabolic profiles will be assessed via the Seahorse XF‐

24 analyzer. 

 

Aim 2B: Determine the rate of neuronal protein refolding following oxygen and glucose 

deprivation. In this aim we will utilize mature, primary neurons transfected with a dual 

Firefly / Renilla luciferase reporter and subjected to mild OGD +/- 115-7c and +/- 
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proteasome inhibitors during recovery to track, in real time, the refolding of Firefly 

luciferase. 

 

Specific Aim 3: Assess the neuroprotective potential and localization of HSP70 Organizing 

Protein (HOP). Our preliminary data demonstrate that post-OGD treatment with 115-7c 

results in a significant increase in the expression of the co-chaperone, HSP70 Organizing 

Protein (HOP) (Figure 12B). We hypothesize that in response to OGD, the expression of 

HOP is limiting for neurons that do not survive ischemic stress. 

 

Aim 3A: Determine if overexpression of HOP is sufficient to support neuronal survival 

following ischemia. Neural cell lines as well as primary neuronal cultures will be 

transfected with a HOP overexpression plasmid prior to OGD. LDH survival assays will 

be completed to determine whether this overexpression results in levels of neuronal 

survival similar to those noted with 115-7c treatment.  

 

Aim 3B: Assess the levels and localization of HOP in the presence or absence of 115-

7c following ischemia. Neurons will be subjected to mild ischemia in the presence or 

absence of 115-7c during recovery. Quantum Dot labeled HOP will be visualized in 

order to determine changes in expression as well as localization patterns in response 

to ischemia.   

 

2) Background & Significance  
 

There is a critical need to develop better therapies to protect the brain following an 

ischemic event. Currently, there is only one FDA-approved treatment for ischemic stroke, 
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thrombolysis via administration of tissue plasminogen activator (tPA) within a very short 

temporal window (~3.5 hours following stroke onset). Additionally, the use of tPA is often 

associated with the risk of life-threatening bleeding in the brain. As such, less than 3% of 

ischemic stroke patients in the US are eligible to receive tPA as a treatment (Adeoye, 2011). 

A major consequence of ischemic stroke is protein damage that persists well after 

blood flow has been restored (Stankowski and Gupta, 2011). To combat this damage, 

neurons rely heavily upon the Heat Shock Protein 70 (HSP70) molecular chaperone complex, 

which acts as a triage system influencing the fate of damaged proteins by either initiating 

proteasomal degradation or refolding. While depletion of HSP70 increases vulnerability to 

physical and environmental stressors and decreases lifespan (Daugaard, 2007; Lee, 2004), 

overexpression has routinely been found to provide neuroprotection (Kalia, 2010; Pratt, 2015; 

Shiber and Ravid, 2014). However, while overexpression can protect neurons from stroke-like 

injuries in vitro, this chronic strategy is not clinically feasible, and our lab and others have 

shown that long-term overexpression of HSP70 family members and co-chaperones can be 

cytotoxic (Shimshek, 2010; Stankowski, 2011; Tanaka, 2014; Yaglom, 2007). Therefore, to 

be beneficial as a therapeutic, modulation of the chaperone complex must be more refined. 

Our lab and others have shown that the expression of HSP70 is upregulated in human and 

rodent models of ischemic stroke as well as in neuronal cultures in response to oxygen and 

glucose deprivation (OGD) (Stankowski, 2011; Tirapelli, 2010; Turturici, 2011).  

There is a large body of literature demonstrating that the activity of the proteasome is 

impaired during ischemia as a result of decreased energy availability (Ge, 2007; Keller, 2000; 

Stankowski, 2011). These data together with the fact that proteasomal inhibition is beneficial 

in ischemic model systems (Kandilis, 2014; van Leyen, 2005) support a hypothesis whereby 



 85 

increased HSP70 expression following OGD may play an important role in the refolding of 

damaged proteins and suggests that refolding may be more energetically favorable than 

proteasomal degradation during times of limited ATP. Our colleague, Dr. Jason Gestwicki, 

has recently developed specific allosteric modulators of the HSP70 complex that can either 

promote protein refolding or degradation (Jinwal, 2013; Li, 2013; Miyata, 2013). Utilizing 

these compounds alone or in combination with proteasomal inhibitors already available and in 

use in the clinic for other disorders (Kandilis, 2014), we aim to uncover the mechanisms of 

this substantial neuroprotection and leverage these findings to develop more efficient and 

practical therapies for stroke.   

To define the neuroprotective potential of the chaperone complex we will leverage the 

power of highly-reproducible models of OGD that have been used extensively by our lab and 

others to demonstrate an essential role of chaperones in stroke biology. Briefly, primary 

cortical neurons will be grown in culture until they express the proper complement of NMDA 

receptor subunits necessary for ischemic excitotoxicity (DIV20-25). Once mature, these 

neurons will be subjected to OGD in the presence or absence of the HSP70 modulator and 

profolding compound, 115-7c during recovery and then used for biochemical analyses. Our 

lab has used these cultures for roughly 20 years to model chaperone dysfunction, 

excitotoxicity, oxidative stress and developmental changes in vulnerability to environmental 

and genetic dysfunction. This rigorous and reproducible model maximizes future success in 

moving from in vitro to in vivo testing.  

3) Preliminary Studies  

The overall goal of this research program is to further understand role of the HSP70 

chaperone complex in mediating protein refolding in response to ischemia in order to 
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determine whether targeting this chaperone activity via neurotherapeutics is a potential new 

avenue for stroke treatment. Preliminary data demonstrate that neurons exposed to varying 

durations of OGD have increased survival when the HSP70 modulator/profolding compound, 

115-7c, is administered following the ischemic insult (Figure 10C). In Aim 1, we will 

administer 1.) The proteasomal inhibitor lactacystin, which has also been shown to improve 

neuronal survival in the face of ischemia, (Kandilis, 2014) 2.) 115-7c or 3.) A combination of 

lactacystin and 115-7c to determine which compound or combination results in maximal 

neuroprotection. Additionally, we will analyze time courses of the expression of the HSP70 

chaperone complex components via Western blot and proteomics across treatment 

conditions in order to correlate maximum neuroprotection with a corresponding protein 

expression profile. These experiments will allow us to identify the components of the 

chaperone machinery that change in response to OGD when a profolding environment is 

favored.   

In addition to the increased neuronal survival observed with post-OGD administration 

of 115-7c, our preliminary data also suggests that when this profolding compound is on 

board, neuronal ATP levels are better maintained (Figure 14C). Depletion of ATP during 

OGD results in ion gradient and mitochondrial dysfunction, membrane depolarization, 

significant calcium influx and ultimately, excitotoxicity (Martin, 1994). Much research has 

focused on ways to prevent or limit ATP loss during ischemia as well as ways to enhance the 

recovery of ATP following ischemia (Galeffi, 2000). Given that 115-7c does just this, suggests 

that perhaps the profolding environment is more energetically favorable than that of 

degradation. In Aim 2 we propose to investigate this hypothesis further by generating 

complete metabolic profiles of neurons subjected to OGD in the presence or absence of 115-
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7c using a Seahorse XF-24 analyzer. Simultaneous experiments will be carried out on sister 

neuronal cultures transfected with a dual Firefly / Renilla luciferase reporter plasmid which will 

allow us to track protein refolding in real time. Correlations can then be made regarding the 

amount of refolding that is occurring and the energetic profile during those same specific time 

points. 

While we know that some amount of protein refolding occurs following OGD, being 

able to identify a chaperone component(s) that is both sufficient and essential for this process 

and in turn the neuroprotection noted could be a paramount finding. Our preliminary data 

(Figure 12B) demonstrate that a 24hr treatment with 115-7c after a mild OGD (50% neuronal 

survival and 50% neuronal death) results in a significant increase in the expression of the co-

chaperone, HOP. Intriguingly, levels of HOP are unchanged between control and mild OGD 

treatments where we also see no significant increases in folding (Figure 12A). These data 

suggest that increasing HOP may be essential for the neuroprotection afforded by refolding. 

To test this, in Aim 3 we plan to overexpress HOP without addition of compound and see if 

overexpression alone can increase neuronal survival following ischemia. This type of 

protection has been seen in chronic neurodegenerative models (Song, 2009; Wolfe, 2013), 

however it has not been assessed in models of acute stress such as ischemia. Notably, loss 

of HOP has also been shown to increase susceptibility to stress and decrease lifespan in C. 

elegans (Song, 2009) suggesting this protein is essential for overall survival. Lastly, we plan 

to determine the localization of HOP using Quantum Dot technology which will allow for 3D 

reconstruction of neurons and superior morphological and spatiotemporal resolution above 

that of typical immunocytochemistry (Tokumasu and Dvorak, 2003). These experiments are 

essential in that where HOP localizes intracellularly following OGD with or without 115-7c on 
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board can provide insight into the mechanisms of protein refolding that neurons undergo in 

response to ischemia. Our lab has recently found that the E3 ligase, C-terminus of HSP70 

Interacting Protein (CHIP), another HSP70 co-chaperone, relocalizes to the mitochondria 

following OGD where it plays a role in autophagic processing of damaged organelles 

(Palubinsky, 2015). If CHIP is important for removing damaged mitochondria, perhaps HOP is 

responsible for maintaining (via refolding) mitochondrial proteins that allow for the 

maintenance of  bioenergetics noted when HOP expression is increased.      

 In spite the impressive neuroprotective potential of many of the HSP70 family 

members, major disparities still exist in our understanding of chaperone biology that limit our 

ability to develop practical therapies that capitalize on this system. This program aims to gain 

a clearer understanding of these molecules in the context of a protein profolding environment. 

Given the critical balance of HSP70 and its co-chaperones in mediating protein triage, and 

subsequently cell survival, we hypothesize that the changes we uncover will be essential to 

understanding protective pathways in response to ischemia.  

 

4) Research Design & Methods  

Specific Aim I: Determine a treatment paradigm that results in maximal neuroprotection and 

the corresponding protein profile of the HSP70 chaperone machinery. 

Rationale: Following OGD, both proteasomal inhibition and compounds that promote 

damaged protein refolding have been found to be neuroprotective, yet a combination therapy 

has not yet been assessed as specific HSP70 modulators have only recently become 

available. Our goal is to test if this combinatorial treatment can potentially augment the 

positive impact these singular compounds have on neuronal cell fate and to determine the 
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expression profiles of the HSP70 chaperone machinery under conditions of maximal 

neuroprotection.   

Strategy: We will utilize neuronal cultures exposed to 30’ OGD for these studies. Primary 

cultures will be prepared from embryonic day 18 Sprague-Dawley rats as previously 

described (Palubinsky, 2015). Briefly, cortices will be digested in trypsin and dissociated. 

Resultant cell suspensions will be adjusted to 750,000 cells/mL and plated. OGD experiments 

will be conducted 20-25 days following dissociation at which time neurons express the mature 

complement of NMDA receptors necessary for proper excitotoxicity in response to ischemia 

(Sinor, 1997). To induce ischemia, cultures will be moved into glucose-free Earle’s balanced 

salt solution bubbled with nitrogen to deplete O2 and sealed in a humid 37oC anaerobic 

chamber. At the termination of OGD, cells will be returned to glucose replete media in the 

presence of the proteasomal inhibitor, lactacystin, the pro-folding compound, 115-7c or a 

combination of the two for the appropriate recovery periods. All experiments will be repeated 

from cultures prepared from at least four independent dissections. 

 Twenty-four hours following the final OGD, levels of lactate dehydrogenase (LDH) 

released into the culture media from dead and dying neurons will be assessed by toxicity 

assay. Briefly, NAD reduction to NADH via LDH results in a stoichiometric conversion of 

tetrazolium dye present in the buffer that can be analyzed spectrophotometrically at 490nm. 

In order to account for variation in total LDH content, raw LDH values will be normalized to 

the toxicity caused by exposure to a lethal, 90’ OGD insult. Additionally, LDH results will be 

confirmed by visual inspection and live cell imaging of the neurons and, in several instances, 

quantitatively by cell counts. 
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 Once the treatment paradigm that results in maximal neuroprotection is identified, 

neurons will be harvested over a time course (0, 1, 3, 6, 9, 12, 18, 24hrs) for Western blot 

and proteomic analysis in order to determine the expression profiles of components of the 

HSP70 chaperone machinery including: HSP70, HSC70, HSP90, HSP40, CHIP, BAG1, HIP 

and HOP. WB analysis will be carried out as previously described (Palubinsky, 2015). For 

proteomic analysis, we will utilize a targeted MS approach in order to quantify protein 

stoichiometry of the HSP70 chaperone complex (Joel D. Federspiel, 2016). 

Potential Pitfalls & Alternative Strategies: We recognize that WB analysis is not quantitative, 

which is why we have also proposed proteomics analysis via mass spectrometry. Our lab has 

collaborated extensively and I have trained with Dr. Dan Liebler in order to carry out these 

experiments although I have not yet delved into the light and heavy labeling for PRM, I am 

excited to learn this powerful new technique.   

Summary: Upon completion of Aim 1, we will have 1) determined a post-OGD treatment 

paradigm that results in maximal neuroprotection and 2) quantitatively determined the 

composition and expression profiles of the HSP70 chaperone machinery that correlate with 

maximal neuroprotection. 

 

Specific Aim 2: Determine the real time metabolic and folding profiles of neurons following 

OGD in a pro-folding environment.  

Rationale: OGD results in significant changes in neuronal energetics (Galeffi, 2000; Martin, 

1994) that, in turn, can affect the co-chaperones with which the HSP70 complex interacts 

(Mayer and Bukau, 2005). Our preliminary data demonstrate that post-OGD treatment with 

115-7c allows neurons to better maintain ATP levels at times concomitant with increased 



 91 

folding activities (Figure 12 A & B). While protein degradation via the proteasome and 

protein refolding both require ATP, it is unclear from the current literature which of these 

processes is most energetically favorable during times when oxygen, glucose and ultimately 

ATP are limiting such as during an ischemic stroke. To address this issue, we propose to 

utilize the power of real time metabolic profiling via Seahorse technology. In addition, we will 

analyze levels of protein refolding via a dual Firefly / Renilla luciferase construct. Given that 

115-7c increases neuronal survival following OGD, we hypothesize that neurons 

preferentially attempt to refold, as opposed to degrade, damaged proteins because folding is 

more energetically advantageous. 

Strategy: We will again take advantage of the OGD induced vulnerability of mature neuronal 

primary cultures for these studies as described in Aim 1. Briefly, neurons will be plated in 

multi-well XF24 Analyzer plates and cultured to maturity. Cultures will undergo 30’ OGD plus 

or minus 115-7c and the oxygen consumption rate (OCR), indicative of mitochondrial 

respiration and the extracellular acidification rate (ECAR), indicative of glycolysis, will be 

analyzed every 30 minutes over a 24hr period. At the completion of analysis, neurons will be 

harvested and total protein content determined in order to normalize data.  

For folding analysis, neuronal cultured will undergo lipid based transfection using 

LipoJet (SignaGen) with a dual Firefly / Renilla luciferase plasmid (Addgene) and GFP. Forty-

eight hours later, cultures will be subjected to OGD then recovered in media plus or minus 

115-7c and harvested at various time points as per Promega’s Dual Luciferase Reporter 

Assay System. While Firefly luciferase is rapidly denatured and refolded as a result of OGD 

via the HSP70 complex (Kudo, 2008; Wisen and Gestwicki, 2008), Renilla luciferase remains 

resistant to denaturation. As such, we are able to normalize the Firefly luciferase activity to 
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the total Renilla luciferase present across experiments and within conditions to determine a 

refolding rate.  

Potential Pitfalls & Alternative Strategies: We are confident that the experiments in this Aim 

will further our understanding of the energetics consumption involved in protein refolding 

processes. Both Seahorse technology and luciferase reporter assays are biologically relevant 

and highly sensitive tools that will allow us to assess protein triage activities that impact 

neuronal health. We propose to utilize Seahorse, as our preliminary data regarding ATP 

levels is limited in that it is only one component of the overall metabolic changes that occur 

following ischemic events. One issue we face is recapitulating our results when growing 

neurons on the XF Analyzer plates, which may or may not be compatible with the substrate 

we currently use. However, The VICB core at Vanderbilt, which houses the XF24 analyzer, 

includes on site technicians adept at troubleshooting these types of problems. In addition, we 

may need to reduce the number of sample readings taken over the 24hr window to prevent 

false results based on media withdrawal. We were also initially concerned about the poor 

efficiency and variability of primary neuronal transfections, which could limit our ability to 

detect a luciferase-refolding signal. However, in preliminary experiments (Figure 12A), we 

were able to overcome this obstacle using a combination of next generation lipid-based 

transfection reagents and we are consistently observing ~25% neuronal transfection 

efficiency which provides ample luciferase signal detection above background / untransfected 

neurons. 

Summary:  Upon completion of Aim 2 we will have 1) determined the metabolic profile of 

neurons when a pro-folding environment is promoted and 2) correlated the rate of folding that 

occurs with the energetics (ATP) available.  
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Specific Aim 3: Assess the neuroprotective potential and localization of HSP70 Organizing 

Protein (HOP).  

Rationale: HOP deficiency results in increased susceptibility to stress and decreased 

lifespan(Song, 2009) suggesting its potential importance in response to ischemia. Our 

preliminary data demonstrate that OGD itself does not increase HOP levels but that post-

OGD treatment with 115-7c results in a significant increase HOP expression (Figure 12B). 

As a major player in the HSP70 chaperone complex when protein folding activity is online, we 

hypothesize that overexpression of HOP itself may prove beneficial for neuronal survival 

following OGD and that its relocalization from the nucleus may be key in this protection. 

Strategy: Primary neuronal cultures will be transfected with a plasmid in order to transiently 

overexpress HOP. These cultures will then be subjected to 30’ OGD and the culture media 

will be analyzed via LDH toxicity assay (Described in detail in Aim 1) 24hrs later to determine 

if overexpression of HOP alone can promote neuronal survival, suggesting that its expression 

may be a limiting factor in neurons that do not survive the ischemic insult. Additionally, 

cultures will be subjected to mild OGD in the presence of absence of 115-7c and Quantum 

Dot labeled HOP will be assessed via immunocytochemistry to analyze its intracellular 

localization using a Zeiss Axioplan microscope equipped with an Apotome sectional slider 

(63X). 

Potential Pitfalls & Alternative Strategies: Although we propose to use a Zeiss Axioplan 

microscope fit with an Apotome sectioning slider, should this resolution not be definitive 

enough we also have access to confocal microscopy as well as stochastic optical 

reconstruction microscopy (STORM) through the Vanderbilt Cell Imaging Shared Resource 
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(CISR), which can generate images with a 10-fold increase in resolution (detecting overlap 

within 20 nm). 

Summary: Upon completion of Aim 3 we will have: 1) determined if overexpression of HOP is 

sufficient to produce levels of neuroprotection similar to those seen with 115-7c treatment, 2) 

determined the intracellular localization of HOP via 3D reconstruction of neurons in the 

presence or absence of OGD and plus or minus 115-7c.  
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