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OVERVIEW

The notion of amenability lies in the heart of the study of von Neumann algebras. In
this thesis we consider a question about amenable extensions inside certain II1 factors.

The paper is consist of five chapters. The first chapter gives a brief introduction on
the basics of von Neumann algebras. The second chapter introduces amenability, starting
from amenable groups then to amenable von Neumann algebras. We also discuss amenable
extensions and maximal amenable subalgebras. The third chapter states the main theorems
of this paper and discuss the strategy. The last two chapters are devoted to the proofs of the
main theorems.

iv



TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Chapter

1 Introduction to von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Bounded operators on Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . 2
1.2 von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Type decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Type II1 factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Ultraproducts of II1 factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Amenable subalgebras and extensions . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Amenable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Amenable von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Amenable extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Maximal amenable subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Unique maximal amenable extensions . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Strong AOP and maximal amenable extensions . . . . . . . . . . . . . . . . . 23

4 Unique maximal extension for the radial masa . . . . . . . . . . . . . . . . . . . . 25
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Unique maximal extension for the cup . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Planar algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Construction of a II1 factor . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 The cup subalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



Chapter 1

Introduction to von Neumann algebras

In this chapter, we will collect the basics of von Neumann algebras. von Neumann

algebras were introduced by John von Neumann in order to establish the mathematical

foundations for quantum mechanics. As we shall see, the theory has close connections

with many branches of mathematics such as measure theory, group representations, ergodic

theory, etc. The treatment is brief and most of proofs in this chapter are omitted, as they

can be found in many standard textbooks in this field, [Dix81, KR97a, KR97b, Tak03].
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1.1 Bounded operators on Hilbert spaces

Throughout this paper, we always assume a linear space is over the complex numbers

C, unless explicitly stated otherwise.

An inner product space is a linear vector space V equipped with a map 〈·, ·〉 : V×V →C

satisfying the following

• 〈x,x〉 ≥ 0 and 〈x,x〉= 0 if and only if x = 0;

• 〈ax+by,z〉= a〈x,z〉+b〈y,z〉;

• 〈x,y〉= 〈y,x〉,

for any x,y,z ∈V and a,b ∈ C. Such a map 〈·, ·〉 is called an inner product on V .

An inner product space automatically becomes a normed space with the norm given by

‖x‖ :=
√
〈x,x〉.

Definition 1.1.1. A Hilbert space is an inner product space (H ,〈·, ·〉) such that with the

norm induced by the inner product as above, H is a complete norm space (i.e. a Banach

space).

A map between two vector spaces T :V1→V2 is called a linear operator if T (ax+by)=

aT (x)+bT (y), for any x,y ∈V1 and a,b ∈ C.

Definition 1.1.2. A linear map T : H1→H2 between two Hilbert spaces is bounded if

‖T‖ := sup
x∈H1:‖x‖=1

‖T (x)‖< ∞.

The quantity defined above is called the operator norm or the uniform norm for T . We

denote by B(H1,H2) the space of all bounded linear operators from H1 to H2. In the case

of H1 = H2 = H , we simply write B(H ).
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One also defines a conjugate linear map called the adjoint, ∗ : B(H )→ B(H ) by

〈T (x),y〉= 〈x,T ∗(y)〉 ,∀x,y ∈H .

It is easy to see that B(H ) is closed under taking composition, addition, scalar multipli-

cation and adjoint. Moreover, (B(H ),‖ · ‖) is a Banach space with ‖T S‖ ≤ ‖T‖‖S‖ and

‖T ∗T‖= ‖T‖2 = ‖T ∗‖2 for all T,S ∈ B(H ). We call such an algebra with a norm and a ∗

operation satisfying all the above properties an abstract C∗-algebra.
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1.2 von Neumann algebras

The operator norm gives B(H ) a nice topology which is locally convex. However in

order to define von Neumann algebras, we need more topologies on B(H ).

Definition 1.2.1. Let H be a Hilbert space, {Ti}i∈I ⊂ B(H ) a net of bounded operators

and T ∈ B(H ).

We say that Ti→ T in the weak operator topology (WOT), if

〈Ti(x),y〉 → 〈T (x),y〉 ,∀x,y ∈H .

We say that Ti→ T in the strong operator topology (SOT), if

‖Ti(x)−T (x)‖→ 0,∀x ∈H .

Remark 1.2.2. The closed unit ball (B(H ))1 is compact under the weak operator topology.

Remark 1.2.3. When dimH = ∞, the weak operator topology is strictly weaker than the

strong operator topology and the latter is strictly weaker than the uniform norm topology.

When dimH < ∞, all three topologies coincide.

Definition 1.2.4. A self-adjoint subalgebra M of B(H ) is called a von Neumann algebra

if M is closed under the weak operator topology and it contains the identity operator.

Given a subset A⊂ B(H ), we define the commutant of A by A′ := {B ∈ B(H ) : AB =

BA}. The bicommutant A′′ is given by A′′ := (A′)′.

Being WOT-closed allows one to carry out spectral calculus, polar decompositions and

taking the least upper bound within the algebra itself. This is the key different feature

compared to C∗-algebras. For example, projections are abundant in a von Neumann algebra

while there are unital C∗-algebras which only contains trivial projections (e.g. the reduced

C∗-algebra associated with a non-abelian free group). Why we prefer the WOT over the
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uniform topology can be further explained by the following theorem, the first fundamental

result in the development of the theory. It was shown, of course, by John von Neumann:

Theorem 1.2.5 (Bicommutant Theorem). Let M be a unital self-adjoint subalgebra of

B(H ), for some Hilbert space H . Then the following statements are equivalent:

1. M is SOT-closed;

2. M is WOT-closed;

3. M = M′′.

Another fundamental theorem is due to Kaplansky:

Theorem 1.2.6 (Kaplansky Density Theorem). Let M ⊂ B(H ) be a self-adjoint algebra

which contains the identity. Then any self-adjoint element in the closed unit ball of the SOT

(equivalently, WOT) closure of M, is in the SOT closure of the self-adjoint elements in the

closed unit ball of M.

Example 1.2.7. Here we give some examples of von Neumann algebras.

• B(H ) is a von Neumann algebra. In particular, when H = Cn, B(H ) = Mn×n(C).

• Let (X ,µ) be a standard Borel probability space and let H = L2(X ,µ). Each a ∈

L∞(X ,µ) can be viewed as an element in B(H ) by point-wise multiplication: La( f )(x)=

a(x) f (x), for all f ∈H and x ∈ X . L∞(X ,µ) is an abelian von Neumann algebra.

• If A1 ⊂ B(H1),A2 ⊂ B(H2) are two von Neumann algebras. One can form the direct

sum A1⊕A2 ⊂ B(H1⊕H2) in the obvious way.

• The tensor product A1⊗A2 is the von Neumann algebra on H1⊗H2 generated by

A1⊗1 and 1⊗A2.

• Let M ⊂ B(H ) be a von Neumann algebra and let p ∈ M, p′ ∈ M′ be projections.

Then the reduced (resp. induced) von Neumann algebra pMp (resp. Mp′) is the von
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Neumann algebra on pH (resp. p′H ) generated by pMp (resp. Mp′). One has the

nice relation that (pMp)′ = M′p.

Example 1.2.8 (The group-measure-space construction). Let (X ,µ) be a standard mea-

sure space and Γ y (X ,µ) be a measure-class preserving action of a countable discrete

group Γ. Then this induces an automorphism α of the von Neumann algebra L∞(X ,µ) by

αg(a)(x) = a(g−1 · x).

Define H := L2(X ,µ)⊗`2(Γ) and consider the representations π : L∞(X ,µ)→ B(H ) and

the unitary representation u : Γ→U(H ) given by

π(a)( f ⊗δh) = α
−1
h (a) f ⊗δh,

ug( f ⊗δh) = f ⊗δg−1h,

(1.2.1)

where {δg : g ∈ Γ} is the canonical orthonormal basis of `2(Γ).

We denote by L∞(X ,µ)oΓ the von Neumann algebra generated by π(L∞(X ,µ)) and

u(Γ). This is the group-measure space construction due to Murray and von Neumann.

Example 1.2.9 (Group von Neumann algebras). As a special case of the above example,

if we take X to be a one-point space, then the resulting von Neumann algebra is called the

(left) group von Neumann algebra associated with Γ and we denote it by L(Γ).
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1.3 Type decompositions

The spectral theorem implies that the set P(M) of a von Neumann algebra generates

M. In fact, P(M) is a complete lattice. One of the main achievement in the early stage of

the theory is the type decomposition of von Neumann algebras, which is obtained by the

comparison theory of projections.

Definition 1.3.1. Two projections p1, p2 of a von Neumann algebra M are said to be equiv-

alent in M, if there is a partial isometry v ∈ M, such that v∗v = p1 and vv∗ = p2. In this

case, p1 is called the initial projection of v, and p2 is called the final projection of v. When

p1, p2 are equivalent, we denote it as p1 ∼M p2 or simply p1 ∼ p2, if there is no confusion

on which von Neumann we are talking about.

If there is a projection p3 ∈ M such that p3 ≤ p2 and p1 ∼ p3, then we say that p2

majorizes p1 and we write p1 - p2. We write p1 ≺ p2 if p1 - p2 but p1 � p2.

For a von Neumann algebra M, we denote by Z(M) := M∩M′ the center of M. M is

called a factor if Z(M) = C. By a result of von Neumann, each separable von Neumann

algebra can be written as a direct integral of factors.

Definition 1.3.2. A projection p ∈M is said to be finite, if p ∼ q ≤ p implies that q = p.

Otherwise, it is said to be infinite. p is said to be abelian, if pMp is abelian.

Remark 1.3.3. It is easy to see that abelian projections are finite.

Definition 1.3.4. A von Neumann algebra M is said to be of type I, if any nonzero central

projection in M majorizes a nonzero abelian projection in M. If M has no nonzero abelian

projections and if every nonzero central projection majorizes a nonzero finite projection in

M, it is said to be of type II. If M is of type II and 1 is finite, then M is said to be of type II1.

If M is of type II with no nonzero finite central projections, then M is said to be of type II∞.

If M does not have finite projections, then it is of type III.

Now we are ready to state the main theorem.

7



Theorem 1.3.5. Each von Neumann algebra can be uniquely decomposed into the direct

sum of von Neumann algebras of type I, type II1, type II∞ and type III.

Example 1.3.6. Now we exhibit examples of von Neumann algebras of each type.

• B(H ) is of type I since it is generated by minimal projections;

• L∞(X ,µ) is of type I, since it is obviously abelian;

• All other examples of type II1, II∞ and III can be obtained via the group-measure-

space construction. However we omit the details here.
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1.4 Type II1 factors

Our primary interest lies in the study of type II1 factors. One thing that makes them

particularly nice is the existence of a finite faithful normal trace.

Theorem 1.4.1. A factor M is of type II1 if and only if dimM = ∞ and there exists a linear

functional τ : M→ C satisfying the following properties:

• Finite: τ(1)< ∞;

• Tracial: τ(xy) = τ(yx),∀x,y ∈M;

• Positive: τ(x∗x)≥ 0,∀x ∈M;

• Faithful: τ(x∗x) = 0 implies that x = 0;

• Normal: if {ai} ⊂M is an increasing net of positive elements such that ai→ a ∈M

in SOT, then τ(ai)→ τ(a).

Such a τ is called a trace on M.

Remark 1.4.2. • M is finite is equivalent to the existence of a trace on M.

• The trace τ on a factor is unique up to a multiplicative scalar. It is said to be normal-

ized if τ(1) = 1. In this paper we always assume that the trace is normalized.

• A trace τ on M gives rise to an inner product on M by

〈x,y〉 := τ(y∗x).

We let L2(M,τ) to be the Hilbert completion of M with this inner product. Then,

M can be faithfully represented on L2(M) by left multiplication. Thus, under this

representation, elements of M can be both treated as vectors in the Hilbert space

L2(M) and as bounded operators acting on L2(M). Given x ∈M, we will write ‖x‖

for the operator norm and ‖x‖2 =
√

τ(x∗x) for the norm in L2(M).

9



Example 1.4.3 (II1 factors coming from groups). In previous sections we introduced the

construction due to Murray and von Neumann called the group von Neumann algebras.

Note that for any countable discrete group Γ, there is a natural trace on L(Γ) given by

τ(x) := 〈xδe,δe〉 ,

where e ∈ Γ is the identity element.

Moreover, each element x∈ L(Γ) can be write formally as an infinite linear combination

of the canonical unitary elements ug,g ∈ Γ: x = ∑g∈Γ agug and we have that

τ(x∗x) =
√

∑
g
|ag|2.

A group Γ is ICC if any non-trivial element has infinite conjugacy class. It is not hard

to see that for an infinite group Γ, Γ is ICC if and only if L(Γ) is a II1 factor.

Now we are ready to give the two examples of II1 factors that are of particular interest:

• The hyperfinite II1 factor: Let Sn be the group of permutations on {1, · · · ,n} and

let S∞ to be the inductive limit of all Sn’s. It is easy to see that S∞ is an ICC group

thus L(S∞) is a II1 factor.

Moreover, notice that L(Sn) ⊂ L(S∞) is isomorphic to Mn×n(C) and
⋃

n≥1 L(Sn) is

dense in L(S∞) in the WOT. In other words, L(S∞) is the WOT closure of an in-

creasing sequence of finite dimensional algebras. We denote it by R and call it the

hyperfinite II1 factor.

• The free group factor: Let Fn be the free group with n generators. If 2 ≤ n ≤ ∞,

then Fn is ICC. The corresponding II1 factor L(Fn) is called the free group factor.

The fundamental question of the theory of II1 factors is to decide the isomorphism

problem of factors. As the first two examples introduced by the co-founders of the theory,

it is known that the hyperfinite II1 factor and free group factors are not isomorphic.
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1.5 Ultraproducts of II1 factors

In the last section of the chapter, we recall the construction of ultraproducts of II1

factors.

Definition 1.5.1. Let N be the set of positive integers. An ultrafilter on N is a set ω

consisting of subsets of N, such that

• /0 6∈ ω;

• If A,B⊂ N and B ∈ ω , B⊂ A, then A ∈ ω;

• If both A and B are in ω , then A∩B ∈ ω;

• For any A⊂ N, either A or N\A is in ω .

ω is said to be non-principal or free if ω contains all the subset of the form {n∈N : n≥ n0}

for some n0.

Remark 1.5.2. In fact, the set of ultrafilters on N can be identified with the Stone-Čech

compactification β (N) of N. Free ultrafilters correspond to the points in β (N)\N.

Definition 1.5.3. Let X be a topological space. A sequence (xi)i≥1 in X is said to converge

along ω to x ∈ X , if for any open neighbourhood U of x, the set {i : xi ∈U} is in ω . We

usually write it as

lim
ω

xi = x.

Note that if X is Hausdorff, the such an x is unique.

Ultraproducts of general von Neumann algebras can be tricky to define. Fortunately in

the case of II1 factors, things are nice.

Definition 1.5.4. Let (M,τ) be a II1 factor and let ω ∈ β (N)\N be a free ultrafilter. Let

∏n∈NM be the set {(xn)n : supn ‖xn‖<∞}. Let Iω be the norm-closed ideal of ∏n M defined

11



by

Iω = {(xn)n ∈∏
n

M : lim
ω
‖xn‖2 = 0},

where ‖xn‖2 =
√

τ(x∗x). The ultraproduct of (M,τ) is defined to be Mω := ∏n M/Iω .

There is a natural trace τω on Mω given by

τω((xn)n) = lim
ω

τ(xn).

Here is the basic results that we will use

Theorem 1.5.5. Let (M,τ) be a II1 factor and let ω ∈ β (N)\N be a free ultrafilter. As

above we define the ultraproduct Mω . Then

• Mω is a type II1 factor;

• Each projection p ∈ Mω lifts to a sequence of projections (pn)n ∈ ∏n M. Similar

result also holds for every unitary in Mω .

12



Chapter 2

Amenable subalgebras and extensions

Amenable groups were first introduced by von Neumann in his attempt to understand

the Banach-Tarski paradox. There are many equivalent definitions for amenability of

groups, either geometric, combinatorial or analytic. Roughly speaking, an amenable group

is a “small” group which is similar to the group of integers. The first examples of non-

amenable groups are groups which contains non-abelian free groups as subgroups. How-

ever, the question that whether every non-amenable group contains a free subgroup, took

mathematicians many years to answer.

As we mentioned in Chapter 1, the hyperfinite II1 factor is one of the first examples

introduced by Murray and von Neumann. Gradually experts realize that it is closely re-

lated to other notions such semi-discreteness, Schwartz’s property P and injectivity. In-

deed, Connes’ fundamental work on the classification of injective von Neumann algebras

[Con76] shows that they are equivalent. Moreover, Connes’ result implies that for an ICC

group Γ, L(Γ) ∼= R if and only if Γ is amenable. Thus, he suggests the name amenability

for those von Neumann algebras. Thanks to Connes, amenable von Neumann algebras are

well understood. Thus, in order to study non-amenable von Neumann algebras, it is natural

to consider their amenable subalgebras.

In this chapter we discuss questions related to amenable extensions. In particular, we

give a brief review on the history of maximal amenable subalgebras.
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2.1 Amenable groups

Definition 2.1.1. (Amenable groups) Let Γ be a countable discrete group. Γ is amenable

if one of the following equivalent conditions are satisfied:

• There is a mean ϕ on X (that is, a finitely additive probability measure on 2X ) which

is invariant under left multiplication;

• The left regular representation λ : Γ→U(`2(Γ)) admits non-trivial almost-invariant

vectors;

• There is a net {Fi}i∈I of finite subsets of Γ, such that

lim
i

|Fi∆gFi|
|Fi|

= 0,∀g ∈ Γ,

where ∆ here means taking symmetric difference in set theory. Such a net is called a

Føner net.

• Any continuous action Γy X on some compact Hausdorff space X admits an invari-

ant Radon probability measure.

Example 2.1.2. (Examples of amenable groups) From the definition it is easy to see

that finite groups and abelian groups are amenable. Moreover, amenability is closed under

taking subgroups, quotients and inductive limits. In particular, S∞ is amenable. One can

also show that amenability is closed under extension, thus all solvable groups are amenable.

Example 2.1.3. (Paradoxical decomposition and non-amenable groups) A group Γ

is said to admit a paradoxical decomposition, if there exists group elements g1, · · · ,gn,

h1, · · ·hm in Γ, for some n,m ∈ N, and mutually disjoint subsets A1, · · · ,An,B1, · · · ,Bm of

Γ, such that
⋃

1≤i≤n giAi =
⋃

1≤ j≤m h jB j = Γ.

It is straightforward to see that existence of paradoxical decompositions is an obstruc-

tion for amenability. Tarski showed that being non-amenable is equivalent to the existence

14



of paradoxical decompositions.

Let’s now show that the free group with two generators is non-amenable. Suppose that

a,b are the generators for F2. Then let A+ be the set of elements which starts with an a on

the left, in its reduced form. Similarly we can define A−,B+,B−. Clearly these four sets

are mutually disjoint. Note that

F2 = A+∪aA− = B+∪bB−.

Therefore, F2 is non-amenable.
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2.2 Amenable von Neumann algebras

Definition 2.2.1. Let B⊂A be an inclusion of unital C∗-algebras. A conditional expectation

from A onto B is a complete positive map E : A→ B such that E(b1xb2) = b1E(x)b2, for all

x ∈ A,bi ∈ B, i ∈ {1,2}.

Let M be a finite von Neumann algebra acting on a Hilbert space H . M is called

hyperfinite, or approximately finitely dimentional (AFD), if M is the WOT closure of an

increasing net of finite dimentional von Neumann subalgebras. M is said to be injective, if

there is a conditional expectation from B(H ) onto M. A hypertrace for M is a state ϕ on

B(H ) such that ϕ(mx) = ϕ(xm), for all x ∈ B(H ) and m ∈M.

Theorem 2.2.2 (Connes, [Con76]). AFD, injectivity and the existence of a hypertrace (and

many other conditions) are equivalent for von Neumann algebras.

We follow Connes’ suggestion and call those von Neumann algebras amenable.

Remark 2.2.3. Type I von Neumann algebras are amenable. R is the unique separable

amenable II1 factor, up to isomorphism. In particular, all ICC amenable groups give rise to

the same II1 factor R.
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2.3 Amenable extensions

Now we consider the following question: given an amenable subalgebra A⊂M inside

a II1 factor, how can we amenably extend A within M? The following partial answer is

well-known:

Proposition 2.3.1. If M is a finite von Neumann algebra and A⊂M is an amenable subal-

gebra. If u is an element from the normalizer NM(A) = {u ∈U(M) : uAu∗ = A} of A inside

M, then the von Neumann algebra generated by u and A is amenable.

Proof. Since A is injective, there is a conditional expectation E : B(L2(M,τ))⇒ A which

extends the τ-preserving conditional expectation from M onto A. Define a state ϕ on

B(L2(M)) by

ϕ(x) = Limn
1
n ∑

0≤i≤n−1
τ(E(uixu∗i)),∀x ∈ B(L2(M)).

Then one checks that ϕ is a hypertrace for A and ϕ ◦Ad(u) = ϕ . Thus ϕ gives a hypertrace

for the von Neumann algebra generated by A and u.

Remark 2.3.2. Note that in the above amenable extension, one has to add normalizing

unitaries one at a time. However, that are cases when we can add the entire normalizer all at

once. Indeed, Ozawa and Popa [OP10] showed that the free group factors are strongly solid,

meaning that for any diffuse amenable subalgebra of a free group factor, its normalizer

again generators an amenable subalgebra. Many more examples are shown to be strongly

solid [Sin11, Hou10, HS10, Avs11].
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2.4 Maximal amenable subalgebras

Since amenable algebras are closed under inductive limits, Zorn’s lemma implies that

there always exists maximal amenable subalgebras. Fuglede and Kadison [FK51] showed

that for any II1 factor, there always exists a maximal hyperfinite subfactor, thus answered

a question of Murray and von Neumann about the double relative commutant. Later on,

during a conference at Baton Rouge in 1967, Kadison asked a series of famous questions

about von Neumann algebras (see for example [Ge03]). Among them is the following:

Question. Is every self-adjoint element in a II1 factor contained in a hyperfinite subfactor?

Popa answered this question in the negative, by showing that the generator masa in the

free group factor is maximal amenable, [Pop83a].

If (M,τ) is a finite von Neumann algebra with a faithful normal tracial state τ and ω

is a free ultrafilter, we’ll write Mω as the ultraproduct of (M,τ). The key insight of Popa

[Pop83a] is that the inclusion A ⊂ M, where M = L(Fn) with n ≥ 2 and A the generator

masa, satisfies the asymptotic orthogonality property, which we define below:

Since Popa, there are many results considering maximal amenable subalgebras. Ge

[Ge96, Theorem 4.5] showed that any diffuse amenable finite von Neumann algebra can be

realized as a maximal amenable subalgebra of the free group factor. Shen [She06] showed

that the
⊗

n∈NA is maximal amenable inside
⊗

n∈NM, where A is the generator masa in

the free group factor M, thus gave an example of a maximal masa in a McDuff-II1 factor.

Cameron, Fang, Ravichandran and White [CFRW10] proved that the radial masa in the

free group factor is maximal amenable. Brothier [Bro14] gave an example in the setting of

planar algebras. Boutonnet and Carderi [BC13] showed that the subalgebra coming from

a maximal amenable subgroup in a hyperbolic group, is maximal amenable. Houdayer

[Hou14a] showed that the factors coming from free Bogoljubov actions contains concrete

maximal amenable masa’s, see also [Hou15]. All these results use Popa’s AOP approach.

Very recently a new method via the study of centralizers of states, is developed by
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Boutonnet and Carderi [BC15]. In particular, they are able to show that the subalgebra

coming from the upper-triangular matrix subgroup of SL(3,Z), is maximal amenable inside

L(SL(3,Z)). See Ozawa’s remark [Oza15] for an application of this new approach.
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Chapter 3

Unique maximal amenable extensions

Given an amenable subalgebra inside a diffuse non-amenable II1 factor, how many

ways one can amenably extend it? In this direction, Jesse Peterson conjectures that there is

a unique maximal amenable extension for any diffuse amenable subalgebra in a free group

factor. At present this conjecture seems very far-fetched however we do get some partial

answers. In this chapter, we will state the main results in this thesis, that for the radial masa

in a free group factor and for the cup subalgebra in a planar II1 factor, unique amenable

extension results can be obtained. The main technique of the proofs will also be explained

and the proofs will occupy the last two chapters.
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3.1 Main results

One central theme in the theory is the study of the free group factors ([MvN43], [Voi96],

[Ge98], [Oza04], [OP10]). One of the motivating questions of this paper is a conjecture by

J. Peterson (see the end of [PT11]):

Conjecture. For the free group factor, any diffuse amenable subalgebra is contained in a

unique maximal amenable subalgebra.

Houdayer’s result on Gamma stability of free products [Hou15, Theorem 4.1] implies

that the generator masa satisfies Peterson’s conjecture. The proof again is relying on the

AOP. See also Ozawa’s proof [Oza15] via the centralizer approach.

One subalgebra of the free group factor under intense study is the radial masa. So let

M = L(FN) with 2 ≤ N < ∞ be the free group factor with finitely many generators and

denote by C the von Neumann subalgebra of M generated by ω1 := ∑g∈FN ,|g|=1 ug. Note

that ω1 is only well-defined for free groups with finitely many generators. It was proved by

Pytlik [Pyt81, Theorem 4.3] that C is a masa in M, called the radial masa or the Laplacian

masa. Moreover, Rădulescu [Răd91, Theorem 7] showed that C is singular and Cameron,

Fang, Ravichandra and White [CFRW10, Corollary 6.3] proved that it is maximal amenable

in M.

Recall that a result of Popa [Pop83b, Corollary 4.3] shows that generator masa’s coming

from different generators cannot be unitarily conjugate inside M. This implies that the

radial masa C cannot be unitarily conjugate with the generator masa A inside M. However,

whether they are conjugate via some automorphism, is still unknown.

One of the main results of this paper is the following:

Theorem A. [Wen16] Let M = L(FN) with 2≤ N < ∞ and let C ⊂M be the radial masa.

Then every amenable subalgebra of M having diffuse intersection with C, must be contained

in C.
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This is the first example of such disjointness for an maximal amenable subalgebra

which is not known to be in a free position.

Another new class of examples is constructed with Jones planar algebras [Jon99]. If

P is a subfactor planar algebra, then we can associate to it a II1 factor M [GJS10]. This

II1 factor is isomorphic to an interpolated free group factor L(Ft) where t is a linear com-

bination of the index and the global index of P [Dyk94, Rad94, GJS11, Har13]. This

factor admits a generic abelian subalgebra A⊂M that we call the cup subalgebra. Brothier

previously proved that the cup subalgebra is maximal amenable [Bro14].

Theorem B. [BW16] The cup subalgebrais the unique maximal amenable extension for

any diffuse subalgebra of itself.

22



3.2 Strong AOP and maximal amenable extensions

The approach taken in this paper is to show a stronger version of Popa’s AOP (see

[Pop83a]).

Definition 3.2.1 (s-AOP). Let A ⊂ M be an inclusion of finite von Neumann algebras.

We say that the inclusion satisfies the strong asymptotic orthogonality property (s-AOP

for short), if for any free ultrafilter ω on N and for any diffuse subalgebra B ⊂ A, (xn)n ∈

B′∩Mω 	Aω and y1,y2 ∈M	A, we have that y1(xn)n ⊥ (xn)ny2.

From s-AOP one can easily conclude unique maximal extension results, by the follow-

ing theorem. The proof is inspired by [Pop83a, Lemma 3.1, Theorem 3.2] and [CFRW10,

Lemma 2.2, Corollary 2.3]:

Theorem 3.2.2. Let M be a strongly solid II1 factor and A ⊂ M a singular masa in M.

Assume in addition that for any diffuse von Neumann subalgebra B ⊂ A and any free ull-

trafilter ω , the following holds:

for any (xk)k ∈B′
⋂

Mω	Aω and for any y1,y2 ∈M	A, we have that y1(xk)k⊥ (xk)ky2.

Then any amenable subalegbra of M containing B, must be contained in A.

Proof. As shown by [CFRW10, Lemma 2.2, Corollary 2.3], AOP and singularity imply

that A is maximal amenable in M.

Let B⊂ Q⊂M be an amenable subalgebra. By solidity of M, A⊂ B′
⋂

M is amenable.

Since A is maximal amenable, we conclude Q′
⋂

Q⊂ B′
⋂

M ⊂ A.

Let z be the maximal central projection of Q such that Qz is type II1. Now suppose that

z 6= 0.

Since Qz is amenable and of type II1, Popa’s intertwining theorem ([Pop06, Theorem

A.1]) easily implies that there is a unitary u ∈ (Qz)′
⋂
(Qz)ω , such that EAω (u) = 0. For a

proof, see [CFRW10, Lemma 2.2].

Now let C be a masa in Qz which contains Bz. Again by solidity and maximal injectivity,

C ⊂ Az. Since Qz is of type II1, there exists two non-zero projections p1, p2 ∈ C and a
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partial isometry v ∈ Qz, such that vv∗ = p1,v∗v = p2, p1 p2 = 0. Then we have EA(v) =

EA(p1vp2) = p1EA(v)p2 = 0 so that vu ⊥ uv. However we also know that vu = uv, hence

v = 0. This contradicts that p1, p2 6= 0.

Thus, Q has to be of type I. Let C be a masa in Q containing B. Again C ⊂ A. By

Kadison’s result [Kad84], C is regular in Q. Both A and Q lie in the normalizer of C, so

they together generate an amenable algebra containing A. By maximal amenability of A, it

follows that Q⊂ A.

Ozawa and Popa [OP10] showed that free group factors are strongly solid and singu-

larity for the subalgerbas are known. Therefore, our main task is to prove s-AOP for those

examples we mentioned in the last section. This will be achieved in the last two chapters.
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Chapter 4

Unique maximal extension for the radial masa

4.1 Preliminaries

This chapter is based on the paper [Wen16].

Let Γ = FN+1,N ∈ N. Write K := 2N +1 for later use. Denote by ωn = ∑g∈G,|g|=n ug,

for n = 1,2,3, · · · and let ω0 = ue. Let M = L(Γ) be the free group factor and let C =

{ω1}′′ ⊂M be the radial masa. {ωn}n≥0 forms an orthogonal basis for L2(C).

Let Ki be the finite-dimensional subspace of H := L2(M) spanned by all words of

length i and we denote by Qi the orthogonal projection from H onto Ki. For ξ ∈Ki and

n,m ∈ N
⋃
{0}, we define the following

ξn,m :=
Qi+m+n(ωnξ ωm)

K(n+m)/2
.

Rădulescu [Răd91] discovered that there is a nice decomposition of H 	 L2(C) =⊕
i≥1 Hi into a direct sum of C-C-bimodules, each Hi has a distinguished unit vector ξ i,

which is from Kl(i), for some l(i) ∈N, such that Hi is generated by ξ i as a C-C-bimodule.

Moreover, by [Răd91, Lemma 3, Lemma 6], for those i with l(i) ≥ 2, we have that

{ξ i
n,m}n,m≥0 forms an orthonormal basis for Hi. For those i with l(i) = 1 (there are finitely

many such i’s), {ξ i
n,m}n,m≥0 is no longer an orthonormal basis for Hi, however for any

i, j ≥ 1, the linear mapping Ti, j : Hi→H j, given by

Ti, j(ξ
i
n,m) = ξ

j
n,m,

extends uniquely to an invertible bounded operator. Furthermore, there is a universal con-

stant C1 > 0 such that

‖T±1
i, j ‖ ≤C1,∀i, j ≥ 1.
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Remark 4.1.1. Recall that in a separable Hilbert space, a sequence of vectors {vn} forms

a Riesz basis (for the basics of Riesz basis, see, e.g. [Chr01]), if {vi} is the image of

some orthonormal basis under some bounded invertible operator. It is also equivalent to

the fact that there exists some A,B > 0 such that for any (cn) ∈ `2, A∑ |cn|2 ≤ ‖∑cnvn‖ ≤

B∑ |cn|2. In this case, every vector x in the Hilbert space has a unique decomposition

x = ∑cnvn, for some (cn) ∈ `2. It follows that
{

ξ i
n,m
}

i≥1,n,m≥0 forms a Riesz basis for

L2(M)	L2(C). Consequently, for any x∈ L2(M)	L2(C), there is a unique decomposition

x = ∑i≥1,n,m≥0 ai
n,mξ i

n,m for some
(
ai

n,m
)

n,m,i ∈ `2. We call {ξ i
n,m}i≥1,n,m≥0 the Rădulescu

basis for L2(M)	L2(C).

Sometimes it will be convenient to use the following convention: we write ξ i
n,m for all

n,m ∈ Z, where we define ξ i
n,m = 0 whenever n < 0 or m < 0.

The key computation in [CFRW10] is that when considering the AOP in the case of

the radial masa, the Rădulescu basis plays the same role as the canonical basis for the

generator masa case. However, in our approach, the Rădulescu basis suffers from a lack of

right modularity. Instead, {ωnξ iωm}, after proper normalization, is the more natural basis

to work with.

We collect some relations between ωnξ iωm and ξ i
n,m’s, due to Rădulescu, in the follow-

ing lemma:

Lemma 4.1.2 (Lemma 2, 6 in [Răd91]). The following statements hold for all n,m≥ 0:

(1) If l(i)≥ 2, then ωnξ iωm = K
n+m

2 ξ i
n,m−K

n+m−2
2

(
ξ i

n,m−2 +ξ i
n−2,m

)
+K

n+m−4
2 ξ i

n−2,m−2;

(2) If l(i) = 1, then there is some σ = σ(i) ∈ {−1,1} such that

ωnξ
i
ωm = K

n+m
2 ξ

i
n,m−K

n+m−2
2
(
ξ

i
n,m−2 +ξ

i
n−2,m +σξ

i
n−1,m−1

)
+ ∑

k≥2
(−σ)kK

n+m−2k
2

(
σξ

i
n−k−1,m−k+1 +σξ

i
n−k+1,m−k−1 +2ξ

i
n−k,m−k

)
;
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(3) For all i, j ≥ 1, the linear mapping Si, j : Hi→H j given by

Si, j
(
ωnξ

i
ωm
)
= ωnξ

j
ωm,∀n,m≥ 0,

is well-defined and extends to an invertible bounded operator between the two subspaces,

with supi, j ‖S±1
i, j ‖ ≤C2, for some uniform constants 0 <C2 < ∞.

Lemma 4.1.3.
{

η i
n,m :=

ωnξ iωm

K(n+m)/2

}
i≥1,n,m≥0

forms a Riesz basis for L2(M)	L2(C).

Therefore, for any x∈L2(M)	L2(C), there is a unique decomposition x=∑i≥1,n,m≥0 bi
n,mη i

n,m

where
(
bi

n,m
)

i≥1,n,m≥0 ∈ `2.

Proof. By (3) of the previous lemma, it suffices to prove the conclusion for some fixed

i≥ 1 with l(i)≥ 2.

Fix i ≥ 1 with l(i) ≥ 2 and (an,m)n,m ∈ `2. We will omit the superscript i, since no

confusion will appear. Using part (1) of the previous lemma, we have

∑
n,m≥0

an,mηn,m = ∑
n,m≥0

an,m

(
ξn,m−

ξn,m−2

K
−

ξn−2,m

K
+

ξn−2,m−2

K2

)
= ∑

n,m

(
an,m−

an,m+2

K
−

an+2,m

K
+

an+2,m+2

K2

)
ξn,m

= ∑
n,m

((
an,m−

an,m+2

K

)
− 1

K

(
an+2,m−

an+2,m+2

K

))
ξn,m,

hence by repeated use of the triangle inequality, we have

∥∥∑an,mηn,m
∥∥

2 =

(
∑

n,m≥0

∣∣∣∣((an,m−
an,m+2

K

)
− 1

K

(
an+2,m−

an+2,m+2

K

))∣∣∣∣2
)1/2

≥

(
∑

n,m≥0

∣∣∣an,m−
an,m+2

K

∣∣∣2)1/2

− 1
K

(
∑

n,m≥0

∣∣∣an+2,m−
an+2,m+2

K

∣∣∣2)1/2

≥
(

1− 1
K

)(
∑

n,m≥0

∣∣∣an,m−
an,m+2

K

∣∣∣2)1/2

≥
(

1− 1
K

)2
(

∑
n,m≥0

|an,m|2
)1/2

.

27



The other side of the inequality is easy, since each an,m only appears at most four times.

Thus there is a B > 0, such that

∥∥∑an,mηn,m
∥∥2

2 ≤ B∑ |an,m|2 ,

So we are done.

Remark 4.1.4. Because both ‖T±1
i, j ‖ and ‖S±1

i, j ‖ are uniformly bounded, there is a C0 > 0

such that ‖T±1
i, j ‖ ≤C0,‖S±1

i, j ‖ ≤C0, and for any
(
ci

n,m
)
∈ `2,

1
C0

∑
i,n,m

∣∣ci
n,m
∣∣2 ≤ ‖ ∑

n,m≥0,i≥1
ci

n,mξ
i
n,m‖2

2 ≤C0 ∑
i,n,m

∣∣ci
n,m
∣∣2 ,

1
C0

∑
i,n,m

∣∣ci
n,m
∣∣2 ≤ ‖ ∑

n,m≥0,i≥1
ci

n,mη
i
n,m‖2

2 ≤C0 ∑
i,n,m

∣∣ci
n,m
∣∣2

For each k ∈ N, define Lk,L′k : L2(M)	L2(C)→ L2(M)	L2(C) as follows

Lk

(
∑

i≥1,n,m≥0
ai

n,mξ
i
n,m

)
:= ∑

i≥1,n≤k,m≥0
ai

n,mξ
i
n,m,

L′k

(
∑

i≥1,n,m≥0
bi

n,mη
i
n,m

)
:= ∑

i≥1,n≤k,m≥0
bi

n,mη
i
n,m,

i.e. Lk (resp. L′k) is the left “projection” onto the span of
{

ξ i
n,m
}

i,n,m (resp.
{

η i
n,m
}

i,n,m)

with the first subscript no larger than k. However one should be warned that they are merely

idempotents, instead of projections, due to the presence of those i’s with l(i) = 1. We can

also define Rk,R′k for the right “projections” in the similar fashion. All these idempotents

are bounded operators. Let Lk∨Rk := Lk +Rk−LkRk,L′k∨R′k := L′k +R′k−L′kR′k .

Lemma 4.1.5. L′k is right C-modular, ∀k ≥ 0.

Proof. Since {ωn}n≥0 forms an orthogonal basis for L2(C) and {η i
n,m}i≥1,n,m≥0 is a Riesz

basis for L2(M)	L2(C), it is sufficient to show that L′k(η
i
n,mωl) = L′k(η

i
n,m)ωl .
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The definition of the η i
n,m’s clearly implies that η i

n,mωl ∈ span{η i
n,k}k≥0, that is, mul-

tiplying ωl on the right does not change neither the upper nor left index of η i
n,m, thus

L′k(η
i
n,mωl) = L′k(η

i
n,m)ωl and the proof is complete.

We will need the following result from [CFRW10]:

Lemma 4.1.6 (Lemma 4.3, Theorem 6.2 in [CFRW10]). Given (xk)k ∈ Mω 	Cω , if for

every k0 ∈ N, we have that limk→ω

∥∥(Lk0 ∨Rk0)(xk)
∥∥

2 = 0, then for any y1,y2 ∈ L2(M)	

L2(C), y1(xk)k ⊥ (xk)ky2.
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4.2 Proof of Theorem A

Now we state the key technical result in this chapter.

Proposition 4.2.1. [s-AOP for the radial masa]

Let Γ = FN+1 be a non-abelian free group with finitely many generators and M = L(Γ)

the corresponding group von Neumann algebra. Denote by C the radial masa of M and

suppose that B⊂C is a diffuse von Neumann subalgebra. Then for any (xk)k ∈ B′
⋂

Mω 	

Cω and y1,y2 ∈ M	C, where ω is a free ultrafilter, we have that y1(xk)k ⊥ (xk)ky2 in

L2(Mω).

We will break the proof into several lemmas.

Let (xk)k ∈ B′
⋂

Mω	Cω and y1,y2 ∈M	C be given. For each k, we can assume xk ∈

M	C⊂L2(M)	L2(C), ||xk|| ≤ 1 and write its decompositions with respect to
{

ξ i
n,m
}

i≥1,n,m≥0

and
{

η i
n,m
}

i≥1,n,m≥0, respectively:

xk = ∑
i≥1,n,m≥0

ai,k
n,mξ

i
n,m = ∑

i≥1,n,m≥0
bi,k

n,mη
i
n,m,

where both
(

ai,k
n,m

)
i≥1,n,m≥0

and
(

bi,k
n,m

)
i≥1,n,m≥0

are from `2.

Since B is diffuse, we can choose a sequence {uk}k in the unitary group of B, which

converges to 0 weakly. Recall that
{

ωi

||ωi||2

}
i≥0

is an orthonormal basis for L2(C). More-

over, for any fixed N0 ≥ 0, ωnωm will be supported on those ωi’s with i > N0, provided that

|m−n|> N0. We first need to approximate each uk using finite linear combinations of ωi’s.

Lemma 4.2.2. For each fixed N0, there exists a sequence {Sk}k≥1 of non-empty, disjoint,

finite subsets of N∪{0} and a sequence of strictly increasing natural numbers {nk}k≥1,

such that in the decomposition with respect to {ωi}i≥0, the supports of elements from

{ωmωn : m ∈ Si,n ≤ N0} and the supports of elements from {ωmωn : m ∈ S j,n ≤ N0}

are disjoint, whenever i, j ≥ 1, i 6= j. Moreover, there exists a sequence {vk}k in C, with

vk ∈ span{ωi : i ∈ Sk} such that ||vk|| ≤ 2 and ||vk−unk ||2 ≤
1
2k .
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Moreover, one can construct {vk},{Sk} such that there is a sequence {Fk} of strictly

increasing natural numbers such that L′N0
(vix) = L′N0

(
vi

(
L′Fi+1

−L′Fi

)
(x)
)

, for all x ∈

L2(M)	L2(C).

Proof. Throughout this lemma, for any x ∈ C, we always consider the Fourier expansion

of x with respect to {ωi}i≥0. Moreover, if x = ∑i≥0 aiωi and F ⊂ N∪{0}, we will use the

notation PF(x) := ∑i∈F aiωi.

We construct {Sk}, {nk} and {vk} inductively. Since span{ωn}n≥0 is a weakly dense *-

subalgebra of C, Kaplansky Density Theorem implies that there exists a sequence {zk}k of

elements in C, whose Fourier expansions are finitely supported, such that ||zk|| ≤ 3/2 and

||uk− zk||2 ≤
1
4k . For each k, suppose that zk is supported on {ωi}i∈Tk , where Tk ⊂ N∪{0}

is some finite subset. Let n1 = 1, v1 = z1 and S1 = T1. Then ||v1|| ≤ 2 and ||v1−un1||2≤ 1/2

and v1 ∈ span{ωi : i ∈ S1}.

Now suppose that S1, · · · ,Sk and n1, · · · ,nk have already been chosen. Then there exists

a finite subset Fk+1 ⊂ N∪{0}, such that
⋃

1≤i≤k Si ⊂ Fk+1 and for any S ⊂ N∪{0}\Fk+1,

we always have that in the decomposition with respect to {ωi}i≥0, the supports of elements

from {ωmωn : m∈∪1≤i≤kSi,n≤N0} and the supports of elements from {ωmωn : m∈ S,n≤

N0} are disjoint (for example, one can let Fk+1 = {0,1, · · · ,max∪1≤i≤k Si + 3N0}). Now

since uk→ 0 weakly, there is a natural number nk+1 > nk, such that with respect to the basis

{ωi}i≥0, the Fourier coefficient of znk+1 has absolute value less than
1

4k|Fk+1|||ωi||
, for each

0≤ i≤ Fk+1. Let Sk+1 := Tnk+1\Fk+1,vk+1 := PSk+1(znk+1). Then

‖vk+1−unk+1‖2 ≤
∥∥vk+1− znk+1

∥∥
2 +
∥∥znk+1−unk+1

∥∥
2

= ‖P(Tnk+1\Sk+1)(znk+1)‖2 +
∥∥znk+1−unk+1

∥∥
2

=
∥∥PFk+1(znk+1)

∥∥
2 +
∥∥znk+1−unk+1

∥∥
2

≤
(
|Fk+1|

22k |Fk+1|

)1/2

+
1

4k+1

≤ 1
2k+1 ,
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and an easy estimate of the `1-norm gives us

‖vk+1‖ ≤ ‖zk+1‖+
|Fk+1|

2k|Fk+1|
≤ 2.

The last statement can be achieved by letting the supports of {vk}k mutually far away.

For example, choose the gap between Si and S j to be greater than 3N0 and let Fk be the

collection of elements of N∪{0} between minn∈Sk |n|−N0 and maxn∈Sk |n|+N0.

Thus by taking a subsequence if necessary, we may assume that {vk} is a sequence in

C, such that vk ∈ span{ωi : i∈ Sk} for some finite subset Sk ⊂N, ||vk|| ≤ 2, ||vk−uk||2≤
1
2k

and viωk ⊥ v jωk, for all i, j ≥ 1, i 6= j and all 0 ≤ k ≤ N0 and there is a sequence {Fk} of

strictly increasing natural numbers such that L′N0
(vix) = L′N0

(
vi

(
L′Fi+1

−L′Fi

)
(x)
)

, for all

x ∈ L2(M)	L2(C).

Lemma 4.2.3. limk→ω

∥∥∥L′N0
(xk)

∥∥∥
2
= 0.

Proof. Fix a small ε > 0. First choose some large N1 < N2 such that 2∑
N2
i=N1
‖vi−ui‖2

2 ≤ ε

and
4
∥∥∥L′N0

∥∥∥2
C2

0 +1

N2−N1
≤ ε . Then we have

lim
k→ω

N2

∑
i=N1

〈
L′N0

(vixk),L′N0
(vixk)

〉
≥ lim

k→ω

N2

∑
i=N1

〈
L′N0

(uixk),L′N0
(uixk)

〉
− ε

= lim
k→ω

N2

∑
i=N1

〈
L′N0

(xkui),L′N0
(xkui)

〉
− ε

= lim
k→ω

N2

∑
i=N1

〈
L′N0

(xk)ui,L′N0
(xk)ui

〉
− ε

= (N2−N1) lim
k→ω

∥∥L′N0
(xk)

∥∥2
2− ε.

The second line uses the assumption that (xk)k ∈ B′ ∩Mω and the third line uses the fact

that L′N0
is a right-C modular map, i.e.

L′N0
(xa) = L′N0

(x)a,∀x ∈ L2(M)	L2(C),∀a ∈C.
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Meanwhile,

N2

∑
i=N1

〈
L′N0

(vixk) ,L′N0
(vixk)

〉
=

N2

∑
i=N1

〈
L′N0

(
vi

(
L′Fi+1

−L′Fi

)
(xk)

)
,L′N0

(
vi

(
L′Fi+1

−L′Fi

)
(xk)

)〉
≤
∥∥L′N0

∥∥2
N2

∑
i=N1

〈
vi

(
L′Fi+1

−L′Fi

)
(xk),vi

(
L′Fi+1

−L′Fi

)
(xk)

〉
≤

N2

∑
i=N1

∥∥L′N0

∥∥2 ‖vi‖2
∥∥∥(L′Fi+1

−L′Fi

)
(xk)

∥∥∥2

2

≤ 4
∥∥L′N0

∥∥2
N2

∑
i=N1

C0 ∑
j≥1,Fi+1≤n≤Fi+1,m≥0

∣∣∣b j,k
n,m

∣∣∣2
≤ 4

∥∥L′N0

∥∥2C0 ∑
j≥1,0≤n≤FN2 ,m≥0

∣∣∣b j,k
n,m

∣∣∣2
≤ 4

∥∥L′N0

∥∥2C2
0 ‖xk‖2

2 ≤ 4
∥∥L′N0

∥∥2C2
0 .

Therefore, we conclude that limk→ω

∥∥∥L′N0
(xk)

∥∥∥2

2
≤

4||L′N0
||2C2

0 +1
N2−N1

≤ ε can be made arbi-

trarily small. Thus the proof for Lemma 4.2.3 is complete.

Lemma 4.2.4. limk→ω ‖LN0(xk)‖2 = 0.

Proof. We use the relations between η i
n,m and ξ i

n,m, as stated above in Lemma 4.1.2 and

Lemma 4.1.3.

First, since xk = ∑i≥1,l(i)≥2,n,m≥0 ai,k
n,mξ i

n,m⊕∑i≥1,l(i)=1,n,m≥0 ai,k
n,mξ i

n,m, it suffices to con-

sider separately the part with i’s such that l(i)≥ 2 and the part with i’s such that l(i) = 1.

For the i’s with l(i)≥ 2, recall that η i
n,m = ξ i

n,m−K−1
(

ξ i
n,m−2 +ξ i

n−2,m

)
+K−2ξ i

n−2,m−2

so that ai
n,m = bi

n,m−
bi

n,m+2

K
−

bi
n+2,m

K
+

bi
n+2,m+2

K2 . Therefore

33



∥∥∥∥∥LN0

(
∑

i≥1,l(i)≥2,n,m≥0
ai,k

n,mξ
i,k
n,m

)∥∥∥∥∥
2

2

= ∑
i≥1,l(i)≥2,N0≥n≥0,m≥0

∣∣∣ai,k
n,m

∣∣∣2

= ∑
i≥1,l(i)≥2,N0≥n≥0,m≥0

∣∣∣∣∣bi,k
n,m−

bi,k
n,m+2

K
−

bi,k
n+2,m

K
+

bi,k
n+2,m+2

K2

∣∣∣∣∣
2

≤ 16 ∑
i≥1,l(i)≥2,N0+2≥n≥0,m≥0

∣∣∣bi,k
n,m

∣∣∣2
≤ 16C0

∥∥∥∥∥L′N0+2

(
∑

i≥1,l(i)≥2,n,m≥0
bi,k

n,mη
i,k
n,m

)∥∥∥∥∥
2

2

,

and the last term goes to 0 as k→ ω , by the previous lemma.

Now consider the i’s with l(i) = 1. As there are only finitely many such i’s, we may

restrict our attention to a single fixed i.

For some σ ∈ {1,−1}, we have that

∑
n,m≥0

bi,k
n,mη

i,k
n,m = ∑

n,m
bi,k

n,m

(
ξ

i,k
n,m−

ξ
i,k
n−2,m

K
−

ξ
i,k
n,m−2

K
+σ

ξ
i,k
n−1,m−1

K

+ ∑
l≥2

(−σ)l

Kl

(
σξ

i,k
n−l−1,m−l+1 +σξ

i,k
n−l+1,m−l−1 +2ξ

i,k
n−l,m−l

))

= ∑
n,m

(
bi,k

n,m−
bi,k

n+2,m

K
−

bi,k
n,m+2

K
+

σbi,k
n+1,m+1

K

+ ∑
l≥2

(−σ)l

Kl

(
σbi,k

n+l+1,m+l−1 +σbi,k
n+l−1,m+l+1 +2bi,k

n+l,m+l

))
ξ

i,k
n,m.

Therefore, for any fixed ε > 0,N0 ≥ 0, we find a large integer N1� N0, to be specified
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later, and we let K0 = N1−N0. By the triangle inequality,

(
∑

n≤N0,m≥0
|ai,k

n,m|2
)1/2

≤

 ∑
n≤N0,m≥0

∣∣∣∣∣bi,k
n,m−

bi,k
n+2,m

K
−

bi,k
n,m+2

K
+

σbi,k
n+1,m+1

K

∣∣∣∣∣
21/2

+ ∑
2≤l≤K0

1
Kl

(
∑

n≤N0,m≥0

∣∣∣σbi,k
n+l+1,m+l−1 +σbi,k

n+k−1,m+k+1 +2bi,k
n+k,m+k

∣∣∣2)1/2

+ ∑
l≥K0+1

1
Kl

(
∑

n≤N0,m≥0

∣∣∣σbi,k
n+l+1,m+l−1 +σbi,k

n+l−1,m+l+1 +2bi,k
n+l,m+l

∣∣∣2)1/2

.

We estimate the third term in the above inequality first:

∑
l≥K0+1

1
Kl

(
∑

n≤N0,m≥0

∣∣∣σbi,k
n+l+1,m+l−1 +σbi,k

n+l−1,m+l+1 +2bi,k
n+l,m+l

∣∣∣2)1/2

≤ ∑
l≥K0+1

1
Kl

(
∑

n,m≥0

∣∣∣σbi,k
n+l+1,m+l−1 +σbi,k

n+l−1,m+l+1 +2bi,k
n+l,m+l

∣∣∣2)1/2

≤ ∑
l≥K0+1

1
Kl 4

(
∑

n,m≥0

∣∣∣bi,k
n,m

∣∣∣2)1/2

≤ ∑
l≥K0+1

1
Kl 4C0 ‖xk‖2 ≤

4C0

KK0(K−1)
,

hence we can choose N1 large enough so that K0 is large, such that the third term is less

than ε/3, for any k.

Now we estimate the first and the second terms. To this end, we choose a large k0 =

k0(N1,ε), such that for any k ≥ k0, we have that 4C0K0

(
∑m≥0,n≤N1+1

∣∣∣bi,k
n,m

∣∣∣2)1/2

is less

than ε/3. Thus both the first and the second term can be bounded above by ε/3. Combine

all these pieces together, we conclude that

∥∥∥∥∥LN0

(
∑

n,m≥0
ai,k

n,mξ
i,k
n,m

)∥∥∥∥∥
2

≤C0

(
∑

n≤N0,m≥0
|ai,k

n,m|2
)1/2

≤C0ε,

when k is close enough to ω . Since ε > 0 is arbitrary, we are done.
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Proof of Proposition 4.2.1. The same proof for Lemma 4.2.4 shows that limk→ω ‖RN0(xk)‖2 =

0. So Lemma 4.1.6 applies.

Remark 4.2.5. In fact, the same conclusion as in Proposition 4.2.1 holds, if we replace the

assumption “B⊂C diffuse” by “B⊂Cω diffuse”.

Theorem 4.2.6. The radial masa satisfies Peterson’s conjecture.

Proof. It is shown in [OP10] that L(FN),N ≥ 2 is strongly solid, and the fact that the radial

masa is singular is shown in [Răd91](another proof can be found in [SS03]). Therefore,

Theorem 3.2.2 and Proposition 4.2.1 imply the result.

Remark 4.2.7. One can also use [Hou14b, Theorem 8.1] and Proposition 4.2.1 to conclude

Theorem 4.2.6.
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4.3 Some remarks

In fact, one can state a more general structural result for the inclusion C ⊂ L(FN+1).

Theorem 4.3.1. Let M = L(FN+1) be a free group factor with 1 ≤ N < ∞ and let C ⊂M

be the radial masa. If Q⊂M is a von Neumann subalgebra that has a diffuse intersection

with C, then there exists a sequence of central projections en ∈ Z(Q),n≥ 0 such that

• e0Q⊂C;

• For all n≥ 1, enQ is a non-amenable II1 factor such that en(Q′∩Mω) = en(Q′∩M)

is discrete and abelian (even contained in C).

Proof. Let e0 ∈ Z(Q) be the maximal projection such that e0Q is amenable. Then Qe0⊕

C(1− e0) is amenable and has a diffuse intersection with C so it is contained in C by

Theorem 4.2.6. Moreover, Q(1− e0) has a discrete center, by solidity of M. This gives a

sequence of central projections {en}n≥1 such that for all n ≥ 1, enQ is a non-amenable II1

factor.

Now fix n ≥ 1. By [Ioa15, Lemma 2.7], one can find a central projection e ∈ Z((enQ)′∩

enMen) such that

• e((enQ)′∩ enMen) = e((enQ)′∩ (enMen)
ω) is discrete;

• (en− e)((enQ)′∩ (enMen)
ω) is diffuse.

By [Pet09, Proof of Theorem 4.3], the fact that (en− e)((enQ)′ ∩ (enMen)
ω) is diffuse

implies that (en− e)Q is amenable. Since enQ has no direct summand, this forces e = en.

Finally, (Q∩C)′∩M is amenable, again by solidity. As it contains C, it has to be equal

to C. In particular Q′∩M ⊂ (Q∩C)′∩M∩C. So the last part of the theorem is true.

Remark 4.3.2. In [Hou15, Theorem 3.1], Houdayer showed the general situation for free

products of σ -finite von Neumann algebras, which contains the strong-AOP for the gen-

erator masa in a free group factor as a special case. Also, the strong-AOP as in Proposi-

tion 4.2.1 means that for any diffuse subalgebra B of the radial masa C, the inclusion C⊂M
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has the AOP relative to B, in the sense of [Hou14b, Definition 5.1]. The unique maximal

injective extension for any diffuse subalgebra of the generator masa is first shown by Hou-

dayer [Hou15, Theorem 4.1]. A proof via the study of centralizers is obtained by Ozawa

[Oza15].

Remark 4.3.3. Note that the disjointness result as in Theorem 4.2.6 is not true for arbitrary

maximal amenable masa of a II1 factor. For instance, if the inclusion A⊂M has some nice

decomposition, then A does not have the uniqueness property as the generator masa in the

above corollary. We give some such examples:

• Let M =A1∗A0 A2 be the amalgamated free product with Ai amenable, and A0 diffuse,

A0 6= Ai, i = 1,2, then A0 can be contained in different maximal amenable subalge-

bras.

• Let M1,M2 both be the free group factor and Ai ⊂ Mi the corresponding gener-

ator masa, i = 1,2. Then A = A1⊗A2 is a maximal injective subalgebra inside

M = M1⊗M2. However, many other injective subalgebras could contain the diffuse

subalgebra A1⊗1.

• Let Λ < Γ be a singular subgroup in the sense of Boutonnet and Carderi ([BC15,

Definition 1.2]) and suppose Γ acts on a finite diffuse amenable von Neumann al-

gebra Q. Then QoΛ is maximal injective inside QoΓ, by [BC15, Theorem 1.3].

However again there are lots of different injective subalgebras containing Q but are

not contained in QoΛ.

Remark 4.3.4. We would like to mention an example in the ultra-product setting. Let A⊂

M be a singular masa inside a separable II1 factor. Then for any free ultrafilter ω , A := Aω

is a maximal injective masa in M := Mω , a result due to Popa ([Pop14, Theorem 5.2.1]).

However, it is well known that any two separable abelian subalegebras in a ultraproduct of

II1 factors are unitarily conjugate ([Pop83b, Lemma 7.1]). In particular, A is both contained

in a maximal injective masa and a maximal hyperfinite subfactor of M .
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Chapter 5

Unique maximal extension for the cup

5.1 Preliminaries

This chapter is based on the joint work with Arnaud Brothier [BW16].

5.1.1 Planar algebras

A planar algebra is a collection of complex ∗-algebras P = (P±
n : n > 0) on which the

set of shaded planar tangles acts. See [Jon99, Jon12] for more details. We follow similar

conventions that was used in [CJS14] for drawing a shaded planar tangle. We decorate

strings with natural numbers to indicate that they represent a given number of parallel

strings. The distinguished interval of a box is decorated by a dollar sign if it is not at the

top left corner. We do not draw the outside box and will omit unnecessary decorations. The

left and right traces of a planar algebra are the maps τl : P±
n −→P∓

0 and τr : P±
n −→P±

0

defined for any n > 0 such that

τl(x) = x and τr(x) = x for any x ∈P±
n .

Suppose that P±
0 =C. The planar algebra is called spherical if the two traces agree on each

element of P. We say that P is non-degenerate if the sesquilinear forms (x,y) 7→ τl(xy∗)

and (x,y) 7→ τr(xy∗) are positive definite. A subfactor planar algebra is a planar algebra such

that each space P±
n is finite dimensional, P±

0 = C, P is spherical and non-degenerate.

The modulus of a subfactor planar algebra is the value of a closed loop.

39



5.1.2 Construction of a II1 factor

We recall a construction due to Jones et al. [JSW10]. Consider the direct sum GrP =⊕
n>0 P+

n that we equipped with the following Bacher product and involution:

xy =
min(2n,2m)

∑
a=0

x y

a

, and x† = x∗
$

,where x ∈P+
n and y ∈P+

m .

Consider the linear form τ : GrP −→ C that sends x ∈P+
0 to itself and 0 to any element

in P+
n if n 6= 0. The vector space GrP endowed with those operation is an associative

∗-algebra with a faithful tracial state. Let H be the completion of GrP for the inner

product (x,y) 7→ τ(xy∗). The left multiplication of GrP on H is bounded and defines a

∗-representation [GJS10, JSW10]. Let M be the von Neumann algebra generated by GrP

inside B(H). It is an interpolated free group factor [GJS11, Har13]. We define another

multiplication on GrP by requiring that if x ∈Pn and y ∈Pm, then

x• y = x y ∈P+
n+m.

Denote by x•n the n-th power of x for this multiplication. Remark, ‖a • b‖2 = ‖a‖2‖b‖2,

for all a ∈Pn and b ∈Pm. Therefore, this multiplication is a continuous bilinear form for

the L2-norm ‖ · ‖2 of M. We extend this operation on L2(M)×L2(M) and still denote it by

•.

5.1.3 The cup subalgebra

Let ∪ be the unity of the ∗-algebra P+
1 , viewed as an element of M [GJS10]. Let A⊂M

be the von Neumann subalgebra generated by ∪. We call it the cup subalgebra.
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5.2 Proof of Theorem B

Proposition 5.2.1. Let (A,τ) be a tracial von Neumann algebra and B⊂ A a diffuse subal-

gebra. Denote by L2(A) the Gelfand-Naimark-Segal completion of A for the trace τ . Con-

sider a sequence ξ = (ξn : n > 0) of unit vectors of the coarse bimodule L2(A)⊗L2(A).

Suppose that for any b ∈ B we have limn→∞ ‖b ·ξn−ξn ·b‖2 = 0. Then, if p ∈ B(L2(A)) is

a finite rank projection, then limn→∞ ‖(p⊗1)ξn‖2 = limn→∞ ‖(1⊗ p)ξn‖2 = 0.

Proof. Let A,B,ξ , and p as above. It is sufficient to prove the proposition when p is a rank

one projection. Let η ∈ L2(A) be a unit vector such that p = pη is the rank one projection

onto Cη . Consider 0 < ε < 1 and a natural number I such that 16/(I + 1) < ε. Denote

by εn the quantity ε

2n+4(2n+1) for any n > 0. Since B is diffuse, there exists a sequence of

unitaries (un)n in B such that limn→∞〈un · ζ1,ζ2〉 = 0 for any ζ1,ζ2 ∈ L2(A). Hence, there

exists a subsequence (vn)n such that |〈vn ·η ,vm ·η〉| 6 εmax(n,m) for any natural numbers

n 6= m. By [? , Proposition 2.3] and by taking a subsequence if necessary we have,

2 = 2‖ξn‖2 >
I

∑
i=0
‖(pvi·η ⊗1)ξn‖2−2

I

∑
i, j=0
|〈vi ·η ,v j ·η〉|, for any n > 0.

Hence,

I

∑
i=0
‖(pvi·η ⊗1)ξn‖2 6 2+2

I

∑
i, j=0

εmax(i, j) 6 2+2
I

∑
i=0

(2i+1)εi 6 2+ ε/4, for any n > 0.

Let λ : B −→ B(L2(A)⊗ L2(A)) be the left action of B on the coarse bimodule L2(A)⊗

L2(A). Observe, pvi·η ⊗ 1 = λ (vi) ◦ (pη ⊗ 1) ◦ λ (vi)
∗ and vi is a unitary, for any i > 0.

Therefore, ‖(pvi·η ⊗1)ξn‖= ‖(pη ⊗1)v∗i ·ξn‖ for any n, i > 0. By assumption, there exists
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N > 0 such that for any n > N and i 6 I we have ‖v∗i ·ξn−ξn · v∗i ‖< ε/4. Therefore,

‖(pη ⊗1)ξn‖= ‖(pη ⊗1)(ξn · v∗i )‖

6 ‖(pη ⊗1)(v∗i ·ξn−ξn · v∗i )‖+‖(pη ⊗1)(v∗i ·ξn)‖

6 ε/4+‖(pvi·η ⊗1)ξn‖ for any n > N, i 6 I.

We obtain

I

∑
i=0
‖(pη ⊗1)ξn‖2 6

I

∑
i=0

(ε2/16+ ε/2‖(pvi·η ⊗1)ξn‖+‖(pvi·η ⊗1)ξn‖2)

6 (I +1)(ε/16+ ε/2)+(2+ ε/4) for any n > N.

Therefore, ‖(pη ⊗ 1)ξn‖2 6 ε/16+ ε/2+(2+ ε/2)ε/16 6 ε for any n > N. The same

proof shows that there exists M > 0 such that for any n > M we have ‖(1⊗ pη)ξn‖2 6 ε.

This proves the proposition.

Fix a subfactor planar algebra P with modulus δ > 1 and denote by A ⊂M its asso-

ciated cup subalgebra. Consider the subspace Vn ⊂P+
n ,n > 0 of elements that vanishes

when they are capped off on the top left corner and vanished when they are capped off on

the top right corner. Let V ⊂ L2(M) be their orthogonal direct sum. By [JSW10, Theorem

4.9], the following map is an isomorphism of A-bimodules:

φ : L2(A)⊕ (L2(A)⊗V ⊗L2(A))−→ L2(M),a+b⊗ v⊗ c 7−→ a+b• v• c.

This implies that the A-bimodule L2(M)	L2(A) is isomorphic to an infinite direct sum of

the coarse bimodule. We identify L2(M) with φ−1(L2(M)).

Consider the finite dimensional subspace Lm = Span(∪•k : k 6 m)⊂ A for m > 0, where

∪•0 = 1∈P+
0 . Denote by L⊥m the orthogonal complement of Lm inside L2(A) for any m> 0.

Lemma 5.2.2. Let m > 0 and x ∈ M ∩ L⊥m ⊗V ⊗ L⊥m , y ∈ M ∩ Lm⊗V ⊗ Lm. Then xy ∈
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L⊥m⊗V ⊗Lm and yx ∈ Lm⊗V ⊗L⊥m . In particular, xy⊥ yx.

Proof. Consider x = ∪•k • v•∪•l and y = ∪•s •w•∪•t , where s, t < m+1 6 k, l and v,w ∈

V ∩GrP. We have that

xy =
s+1

∑
i=0

δ
[i/2]∪•k •v•∪•(l+s−i) •w•∪•t ,

where [i/2] = i/2 if i is even and i/2−1/2 if i is odd. Observe, L⊥m is equal to the closure of

Span(∪•k : k > m+1). Therefore, xy ∈ L⊥m⊗V ⊗Lm and similarly yx ∈ Lm⊗V ⊗L⊥m . The

space M∩L⊥m⊗V ⊗Lm (resp. M∩Lm⊗V ⊗L⊥m) is the weak closure of Span(∪•k •v•∪•l :

k, l > m + 1,v ∈ V ∩GrP) (resp. Span(∪•s •w • ∪•t : s, t 6 m,w ∈ V ∩GrP)). This

concludes the proof by a density argument.

We are ready to prove the s-AOP of the inclusion of the cup subalgebra.

Proposition 5.2.3. The inclusion of the cup subalgebra A⊂M has s-AOP.

Proof. Let P be a subfactor planar algebra, A ⊂ M its associated cup subalgebra, and

B ⊂ A a diffuse subalgebra. Consider x ∈ Mω 	Aω in the relative commutant of B and

y ∈M	A, where ω is a free ultrafilter on N. Let us show that xy ⊥ yx. Observe, GrP is

a weakly dense ∗-subalgebra of M. Therefore, we can assume that y ∈GrP by Kaplansky

density theorem. This implies that there exists m > 0 such that y ∈ GrP ∩Lm⊗V ⊗Lm.

Let (xn)n be a representative of x in the ultrapower Mω . We can assume that for any n > 0

we have xn ∈ L2(M)	L2(A). Let p ∈ B(L2(A)) be the orthogonal projection onto Lm. It is

a finite rank projection. Therefore, by Proposition 5.2.1, (p⊗1)x = (1⊗ p)x = 0. Hence,

we can assume that xn ∈ L⊥m ⊗V ⊗L⊥m for any n > 0. Lemma 5.2.2 implies that xny ⊥ yxn

for any n > 0. This implies that xy⊥ xy.

Thus, by Theorem 3.2.2, we complete the proof of Theorem B.
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[Răd91] Florin Rădulescu, Singularity of the radial subalgebra of L (FN) and the
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