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CHAPTER 1 

 

INTRODUCTION 

 

 Colorectal cancer (CRC) remains the third leading cause of cancer incidence and death in 

the USA, accounting for 49,700 deaths in 2015.1 A key therapeutic dilemma in the treatment of 

CRC is whether patients with stage II and stage III disease require adjuvant chemotherapy after 

surgical resection. While patients with stage II CRC have an overall survival (OS) of 70 – 80% 

after surgical resection, 20% will experience disease recurrence.2 Adjuvant chemotherapy 

significantly improves survival for patients with stage III disease, although historical data 

indicates that 50 – 60% of these treated patients would not experience disease recurrence after 

surgical resection alone.3-5  

 These statistics demonstrate that current treatment strategies both under and over treat 

patients with CRC. Equivocal results from clinical trials exploring this question underscore the 

need for improved prognostic models to aid clinicians in the decision to use adjuvant therapy in 

stage II and stage III CRC.6-8  Attempts to identify molecular signatures predictive of recurrence 

in patients with stage II CRC resulted in 5 commercialized gene expression assays, none of 

which are recommended in practice guidelines.9-16   

First, a historical perspective on the use of adjuvant therapy in stage II and stage III CRC 

is provided. Next, the concept of high-risk disease is reviewed. Then, novel approaches to 

prediction are discussed. Finally, our research questions are presented.  
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Adjuvant therapy for stage II disease 

 The management of stage II CRC has been among the most challenging and controversial 

problems in oncology over the past 20 years. Efforts by the Gastrointestinal Intergroup (INT) 

and National Surgical Adjuvant Breast and Bowel Project (NSABP) to resolve this controversy 

in the 1990s led to conflicting results. Two INT trials – INT-0035 and INT-0089 – provided 

evidence that OS was similar with or without adjuvant chemotherapy, while data pooled from 

four NSABP trials – C-01, C-02, C-03, and C-04 – demonstrated a 30% reduction in overall 

mortality with adjuvant chemotherapy.3,5,17-21 A meta-analysis performed by the International 

Multicentre Pooled Analysis of B2 Colon Cancer (IMPACT B2) group failed to demonstrate 

significant increases in disease-free survival (DFS) or OS.4,22,23 While these studies failed to 

clarify the treatment for stage II CRC, they did clearly demonstrate that patients with stage III 

CRC benefitted significantly from adjuvant chemotherapy; as a result, 5-Fluoruracil (5-FU) and 

leucovorin became the standard treatment for stage III CRC. 

 A study of the treatment patterns of oncologists during this period revealed that 27% of 

Medicare patients with stage II CRC received adjuvant chemotherapy. In this population 

treatment led to a 5-year OS of 78% vs. 75% with surgical resection alone, a marginal survival 

benefit that was not statistically significant.24 The Cancer Care Ontario Practice Guideline 

Initiative Gastrointestinal Cancer Disease Site Group (CCPOGI) performed a meta-analysis that 

included 37 randomized, controlled trials and 11 meta-analyses. This study determined that 

adjuvant therapy did improve DFS 5-10%, but this decrease in recurrence rate was not associated 

with any improvement in OS.  Additionally, adjuvant chemotherapy was found to have a 

mortality ratio of 0.87.25,26 Based on CCPOGI study, the American Society of Clinical Oncology 

(ASCO) recommended against routine adjuvant chemotherapy for stage II CRC.26 Instead, they 
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advised that disease with high-risk features should prompt a discussion between the patient and 

oncologist to consider the use of adjuvant therapy.  

 The Multi-center International Study of Oxaliplatin/5-fluoruracil/Leucovorin in the 

Adjuvant Treatment of Colon Cancer (MOSAIC) trial demonstrated that the addition of 

oxaliplatin to 5-FU/leucovorin based adjuvant chemotherapy significantly improved 3-year DFS 

compared to control among patients with stage III CRC (72.2% vs. 65.3%), but not for patients 

with stage II CRC (87.0% vs. 84.3%).4 As a result, 5-FU/Leucovorin/Oxaliplatin (FOLFOX) 

became the standard of care for patients with stage III CRC.  Updated data from this trial 

confirmed the lack of survival benefit for patients with stage II disease (78% vs. 79% 10-year 

OS).27 The Quick and Simple and Reliable (QUASAR) trial compared adjuvant chemotherapy 

against observation in patients with “uncertain indication for adjuvant therapy”. Patients with 

stage II disease (91% of the study population) demonstrated only a trend towards improved OS 

(hazard ratio 0.86, 95% CI -.54-1.19, 5-year OS 83.9% vs. 81.5%), resulting in an approximately 

3% survival benefit in the face of toxicity that resulted in deaths in approximately 0.5% of 

patients.28    

 Taken together, we see that the decision to administer adjuvant chemotherapy requires a 

patient and physician to weigh complex information in the face of a great deal of uncertainty. 

While there is clear evidence demonstrating a survival benefit for adjuvant chemotherapy in 

stage III cancer, a review of practice patterns demonstrated that only 57% of Medicare patients 

with stage III disease received adjuvant treatment.29 While some of these trials have shown a 

trend towards improved OS in stage II disease, other trials that specifically looked at the role of 

adjuvant chemotherapy in stage II disease failed to demonstrate a significant benefit.  Decision 
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making in the treatment of stage II and III CRC remains complex, and so improving the ability of 

physicians to perform risk stratification remains a high priority.  

 

Clinicopathologic and molecular risk stratification 

 Current guidelines recommend consideration of adjuvant chemotherapy to treat stage II 

CRC if high-risk features are present. However, there is no clear evidence that this strategy 

improves survival, and even the definition of high-risk features is inconsistent between ASCO, 

the National Comprehensive Cancer Network (NCCN), or the European Society for Medical 

Oncology (ESMO) (Table 1).  This has resulted in wide practice variation in the treatment of 

stage II disease.30,31 

  
 ASCO NCCN ESMO 
T4 Primary Tumor + + + 
Inadequately sampled 
lymph nodes 

+ + + 

Poorly differentiated 
histology 

+ + + 

Bowel perforation + + + 
Bowel obstruction  + + 
Lymphovascular 
invasion 

+ + + 

Perineural invasion + + + 
Close/positive 
margins 

 +  

Table 1: Definitions of high-risk stage II CRC by expert group 
 

 While patients with high-risk disease may theoretically benefit from adjuvant 

chemotherapy, patients with microsatellite instability (MSI) clearly do not.32,33 Even patients 

with high-risk clinicopathologic features (e.g. poorly differentiated histology) have a favorable 

prognosis if their tumors test positively for MSI or deficient mismatch repair (dMMR) status. 

While characterizing MSI status helps guide patients and clinicians towards observation over 
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chemotherapy, this cohort only represents approximately 15% of patients with stage II disease. 

This finding does demonstrate, however, that molecular features may potentially stratify patients 

at higher risk for recurrence with greater precision than previously possible with only 

clinicopathologic data.  

The advent of accessible transcriptomic sequencing resulted in the creation of a multitude 

of gene expression signatures focused on identifying patients with stage II CRC that are at high-

risk for recurrence.9-16,34-38 Five of these prognostic signatures were commercialized in an 

attempt to allow clinicians to utilize molecular information while making treatment decisions: 

Oncotype Dx Colon Cancer (Genomic Health, Inc.), ColonPRS (Signal Genetics LLC), 

ColoPrint (Agendia NV), GeneFx Colon (Precision Therapeutics, Inc), and OncoDefender-CRC 

(Everist Genomics, Inc.). While the overlap between genes used in each of these signatures is 

minimal (Figure 1), many of these signatures have demonstrated promising results. However, 

only two of these tests have been validated externally, and none are able to predict which 

patients with stage II CRC benefit from adjuvant chemotherapy.39 In fact, the prediction 

accuracy of the two validated assays – Oncotype Dx and ColoPrint – has been shown to be very 

poor for identifying high-risk patients (22% and 22-26%, respectively).10,40,41 As a result, none of 

these tests are recommended for clinical use by the NCCN or ESMO clinical practice guidelines, 

and none are approved by the US Food and Drug Administration.  
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Figure 1. Overlap in gene predictors between commercialized recurrence prediction assays. 

 

Ensemble learning 

While the generation of molecular data through genomic, transcriptomic, epigenomic, 

and proteomic sequencing becomes more feasible and affordable, the role of this data in 

prognostic prediction remains unrealized.  Additionally, previously constructed and validated 

predictive models may rely upon technology that becomes outdated as newer modalities arise. 

For example, microarray sequencing has largely been replaced with whole transcriptome 

sequencing (RNA-seq), yet all the commercialized recurrence prediction assays discussed above 

are based on microarray or qRT-PCR expression levels.  Previous work has demonstrated that 

integrating clinical and molecular data can significantly improve prediction performance.42  

Despite the additive effect of integrating molecular data with clinicopathologic data, Yuan et al. 

found that gains in performance were limited, with clinicopathologic characteristics remaining 

the most informative features.  
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The ability to individualize prognosis and treatment for patients hinges on the effective 

use of genomic data. To promote progress towards the development of precision medicine, The 

National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and 

Methods (DREAM) project held a competition to predict drug sensitivity across 53 breast cancer 

cell lines using multi-omics data.43 The two top performing entries utilized nonlinear models and 

integrated data through multi-view learning and ensemble learning, respectively. In multi-view 

learning, the original data sets (e.g. gene expression microarray) can be turned into multiple 

knowledge-enhanced data representations, also known as views, and integrated into a single 

model. Ensemble learning also allows the integration of prediction models, and this strategy was 

shown to enhance prediction performance in a previous DREAM project effort.44 

An ensemble is a collection of prediction models that are combined in some manner (e.g. 

majority vote or weighted averaging). Different ensemble learning techniques are differentiated 

by how the ensemble members, or base learners, are selected and how training data is partitioned 

to train these base learners. One of these methods – stacked generalization - was famously used 

in the two top performing entries of the Netflix Prize and it remains a successful technique in 

many winning data science competition entries. In stacked generalization, also known as 

stacking, a diverse set of base learners is trained using cross-validation.45 The predictions of the 

hold-out sets are integrated into a second training dataset that is then used to train a new 

classifier that is called a meta-learner (Figure 2). As long as the number of base learners is 

polynomial with regard to the sample size, this framework guarantees that the ensemble will 

perform at least as well as the top performing base learner.46 
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Figure 2. Framework for stacking. 

Based on the insights from data science competitions and the machine learning literature, 

we propose a multiple-view multiple-learner framework to improve recurrence prediction in 

stage II/III CRC. The problem is formulated as a binary classification problem, and we use a 

supervised learning approach. Our hypothesis is that integration of models and multiple data 

views (clinical, transcriptomic, discretized, gene set, and network-based views) through stacking 

will generate a robust predictive framework that enhances therapeutic decision-making in CRC. 

We first determine whether predictions made using clinical and microarray data can be improved 

through stacking. Next, we generate multiple views of the molecular data in order to encompass 

prior biologic knowledge.  After the views are generated we evaluate whether these additional 

views improve the prediction performance of the stacking framework and systematically 

evaluate model performance.   
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CHAPTER 2 

 

CREATING AN ENSEMBLE FRAMEWORK 

 

Introduction 

 To determine if an ensemble framework provides an additive benefit in the prediction of 

CRC recurrence we assembled a large dataset from publically available microarray data. We 

utilize a normalization methodology that allows for individual accrual of samples, and employ 

feature selection methodology that is informed by results from the Neural Information 

Processing Systems (NIPS) feature selection challenge. Finally, we curate a diverse set of base 

learners using stacked generalization and assess the effect on prediction performance when 

trained on clinical vs. microarray vs. integrated clinical and microarray datasets.  

 

Data curation and normalization 

 Data from six studies were curated from the Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/): GSE14333, GSE17538, GSE26906, GSE33113, GSE37892, 

and GSE39582.16,38,47-50. Studies were included if they contained patients with stage II and/or 

stage III CRC with clinical annotation that included the following features: age, sex, stage, 

recurrence status, and recurrence time. This set was further limited by microarray platform to 

include only those studies that utilized Affymetrix HG-U133 Plus 2.0 Array (Affymetrix, Santa 

Clara, CA). Previous studies indicate that 3-year DFS status is an effective surrogate for 5-year 

OS, so recurrence status at 3 years was chosen as the binary outcome of the classification task.51 

Disease free survival for all stage II and stage III patients prior to selection is shown in figure 3.  
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Figure 3. Disease free survival by stage. Vertical black line indicates 36 months.  

Patients were included if they met the following criteria: no recurrence with length of follow up 

of at least 3 years, or recurrence between 1 month and 36 months after resection. Patients were 

excluded if they recurred within 1 month as that was an event that could include 

misdiagnosis/incorrect staging. Table 2 contains a summary of patient characteristics for each 

dataset. While patient characteristics were similar across data sets for the most part, GSE14333 

contained significantly more recurrence events.  

 GSE14333 GSE17538 GSE26906 GSE33113 GSE37892 GSE39582 
N 58 101 72 68 109 370 
% Male 53.4% 49.5% 56.9% 54.4% 47.7% 46.8% 
Mean age (SD) 68.6 (12.9)  63.2 (13.4) 67.7 (12.5) 67.9 (12.8) 67.9 (13.2) 67.3 (13.2) 
Stage 2 32 44 72 68 60 199 
Stage 3 26 57 0 0 49 171 
Recurrence 
Events (Stage II/ 
Stage III) 

49 (30/19) 27 (9/18) 7 (7/0) 18 (18/0) 32 (6/26) 114 (42/72) 

Table 2. Patient characteristics by GEO dataset 
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 Training and validation sets were partitioned geographically in an attempt to increase the 

ability to assess the generalizability of the resulting predictive framework. Specifically, the 

samples were partitioned in an approximately 80:20 stratified split such that both sets contained 

data generated in the USA as well as Europe or Australia. The training set (n=624) was 

comprised of GSE39582, GSE33113, GSE37892, and the Moffitt Cancer Center patients from 

GSE17538, while the validation set (n=154) was comprised of GSE14333, GSE26906 and the 

Vanderbilt University Medical Center patients from GSE17538 (table 3). Recurrence events 

affected 30.4% of patients in the training set and 37.0% of patients in the validation set. 

 Training set  Validation set  
N 624 154 
% Male 48.2% 53.9% 
Mean age (SD) 67.0 (13.3) 67.2 (12.5) 
Stage 2 362 113 
Stage 3 262 41 
Recurrence Events  
(Stage II/Stage III) 

190 (75/115) 57 (37/20) 

Table 3. Training and validation set patient characteristics. 

 A principle drawback of many published molecular recurrence signatures is that the 

validation occurs on an entire cohort rather than on individual patients. This means that for an 

individual to be evaluated, their molecular data would need to be normalized within a cohort of 

patients. In order to predict the recurrence status of an individual patient, we utilize frozen robust 

multiarray analysis (fRMA). Frozen RMA is a novel method of microarray preprocessing that 

allows an individual array to be processed instead of being dependent on multiple arrays being 

analyzed simultaneously.52-54 By using fRMA we can generate the gene expression features for 

each individual sample in both the training and the validation sets individually instead of by 

batch. McCall et al. determined that fRMA outperformed RMA in the context of analyzing 
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multiple batches, and so we utilized this technique without further batch normalization methods. 

Data preprocessing steps are summarized in figure 4.  

 

Figure 4. Data preprocessing pipeline.  

 

Feature selection methodology 

The high dimensionality of molecular data makes prediction of clinical outcomes 

difficult, as the number of features dramatically exceeds the number of samples. In this study, we 

have curated a large data set comprised of 778 patients, yet an Affymetrix HG-U133 Plus 2.0 

Array contains over 50,000 probesets. Reducing the feature space theoretically decreases the risk 

of over fitting the data while also making the task computationally manageable, but there are 

myriad ways to do so. The 2003 NIPS feature selection challenge addressed this issue by 

organizing a competition to improve approaches to classification problems with high 

dimensional data.55  The top performing entry utilized simple univariate significance tests to 

reduce the feature space to a few hundred and then performed classification using methods based 

on Bayesian neural network learning. This approach demonstrated that simple feature selection 

methods work well with sophisticated classification approaches, and motivated our choice of 

feature selection strategy.   

To reduce the feature space to a manageable size we first mapped probesets to genes. 

When multiple probesets represented the same gene the average of the probesets was used as the 



	
   13	
  

feature value, and the resulting dataset had greater than 20,000 features. Those probesets that 

represented multiple genes were excluded. A univariate logistic regression model was 

constructed for each feature in the training test, and those features with significant Wald test (p < 

0.05) were retained. Next, the pre-selected features were limited to a feature set that was 

equivalent in size to the number of recurrence events in the training set by selecting those with 

lowest p values. Finally, regularization was performed using L1 penalized log partial likelihood 

(LASSO) to determine the final set of features for each molecular view.56 The R package 

“glmnet” was used to perform LASSO, with the penalty parameter λ chosen after fivefold cross-

validation on the training set.57 

 

Predictive power of clinical vs. microarray data 

 A diverse set of base learners was trained on each data set using ten repeats of tenfold 

cross-validation. Base learners were curated for diversity by underlying algorithm (e.g. linear vs. 

nonlinear) and tuning parameters, and models were trained using the “caret” R package.58 Model 

parameters were tuned using grid search over 10 random values for each model parameter (See 

Appendix A for the full list of models and parameters). In total, 27 base learners were trained on 

clinical and microarray data. Prior to training each model, the training dataset was partitioned 

into 10 disjoint sets, such that a sample in one partition is not in any other. Each of the base 

learners is then trained on 9 of those blocks, and predictions are made in the 1 block not used in 

training. At the end of model training and parameter selection, a dataset of predictions made on 

the 10 hold out sets comprises the training set for our meta-learner. While we repeat cross 

validation ten times, we use only the first repetition to create this new meta-learner training set. 

Since recurrences occur only in 1/3 of patients in this dataset, we optimize models on a metric 
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that is suited to class-imbalanced data: Area Under the ROC Curve (AUC). An AUC of 1 

indicates perfect prediction, whereas an AUC of 0.5 indicates that test results are equivalent to a 

random guess. To determine the performance of a model, predictions will be made using the 

testing dataset and then an ROC curve plot will be created. Classification thresholds will be 

determined for each model by calculating Youden’s index and selecting the threshold with 

maximum difference between sensitivity and specificity.59   

 The hold-out set predictions for each base learner are then utilized to train the meta-

learner. Logistic regression is a typical meta-learner in a stacking framework, although non-

linear models can also be used. We selected and evaluated a diverse group of meta-learner 

models to compare against the typical classifier used. After evaluation on the testing set, the base 

learners are then trained on all training data (training and testing datasets) and performance 

evaluated on the validation set (Figure 5).  

 

Figure 5. Stacked generalization training diagram. The training (1 – 4) and validation (0) 
processes are outlined in this diagram. RF = random forest, SVM = support vector machines, 

kNN = k-Nearest Neighbors, Y = binary outcomes of the data.  
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In our study, the training performance of microarray trained models was significantly 

better compared to models trained on clinical data (Paired Wilcoxon signed rank test, p = 1.49 x 

10-8) (Figures 6 and 7). 

 

Figure 6. Training performance of clinical vs. microarray models 

 

Figure 7. Performance of individual base learners on original view data. SD = standard deviation. 

The median training AUC for predictive models was 0.629 (SD 0.035) for those trained on 

clinical data vs. 0.75 (SD 0.068) for those trained on microarray data after feature selection. 
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Model performance was more homogenous between clinical models than between microarray 

models, as evidenced by the smaller standard deviation (0.035 vs. 0.068). The top performing 

clinical model was trained using the eXtreme Gradient Boosting (xgbTree) algorithm and had a 

training performance of 0.67.  For the microarray data, models trained on random forest (rf) 

based models performed markedly better than others. Review of the model training performances 

confirmed that non-linear classifiers (e.g. rf, support vector machines with radial kernels) often 

outperform linear classifiers (e.g. linear discriminant analysis, partial least squares), and that 

ensemble methods (e.g. rf) can also enhance performance.  

These findings contrast with those of Yuan et al., who found that clinical variables were 

the most informative data source across four cancer cohorts (renal clear cell carcinoma, ovarian 

serous cystadenocarcinoma, glioblastoma multiforme, and lung squamous cell carcinoma).42  

The difference in conclusion is most likely not attributable to differences in the clinical features 

between the datasets, as the data used by Yuan et al. was very similar, and instead may indicate 

that the current staging paradigm in CRC is poorly suited to determine risk of recurrence (Table 

4).  Additionally, these findings also contrast with the Cancer Genome Atlas (TCGA) analysis 

demonstrating that molecular subtypes of CRC cohorts did not correlate with clinical 

phenotypes, including patient survival.60 

 Age Sex Stage Grade Performance 
Status 

CRC + + +   
KIRC + + + +  
OV +  + +  
GBM + +   + 
LUSC + + +   

Table 4. Clinical data features. KIRC = renal clear cell carcinoma, OV = ovarian serous 
cystadenocarcinoma, GBM = glioblastoma multiforme, LUSC = lung squamous cell carcinoma 
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 Next, we determined if performance could be improved by stacking clinical or 

microarray models. First, we eliminated the worse performing models for clinical data (evTree, 

LogitBoost) and for microarray data (evtree, stepLDA, stepQDA), as they did not consistently 

have an AUC greater than 0.5. Next, we trained the level 2 stacker using a curated list of meta-

models. Logistic regression stackers were initially considered for the level 2 meta-learners, but 

due to poor performance we focused on four methods with good performance on training data: 

naïve bayes (nb), rf, k-Nearest Neighbors (knn), and partial least squares (pls). We compared all 

results against the best performing base learner from level 1, a strategy also known as selectBest. 

To perform ensemble model building we utilized the R package “caretEnsemble” to build level 2 

meta-learners shown in figure 2. The results of these ensembles on the clinical data are shown in 

table 5. 

 Training AUC (SD) Testing AUC 

selectBest (level 1) 0.6692 (0.075)	
   0.6034 

nb meta-learner (level 2) 0.6619 (0.08) 0.6613 

rf meta-learner (level 2) 0.6471 (0.11) 0.6265 

knn meta-learner (level 2) 0.7077 (0.085) 0.6212 

pls meta-learner (level 2) 0.6619 (0.092) 0.6095 

Table 5. Ensemble vs. selectBest performance on clinical data. glm = logistic regression.  

These results show that while training performance is similar between learners at all levels, the 

performance on testing data is notably better with level 2 meta-learners.  

 For molecular data, the performance is somewhat less impressive (Table 6). The best 

level 1 base learner (Oblique random forest with logistic regression discriminative node model - 

ORFlog) does have a higher AUC on the testing data. Comparison of the ROC curves between 
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the best base learner and the rf meta-learner reveals no significant difference (p = 0.1602).61 

Thus, while models trained on molecular data perform markedly better than those trained on 

clinical data, the use of an ensemble framework recapitulates the performance of the best base 

learner without necessarily exceeding it. 

 Training AUC (SD) Testing AUC 

selectBest (level 1) 0.8159 (0.055) 0.8032 

nb meta-learner (level 2) 0.7830 (0.059) 0.7677 

rf meta-learner (level 2) 0.8216 (0.043) 0.7690 

knn meta-learner (level 2) 0.8061 (0.055) 0.7341 

pls meta-learner (level 2) 0.8384 (0.061) 0.7616 

Table 6. Ensemble vs. selectBest performance on microarray data.  

 In this chapter we have described how the data was curated and normalized, how features 

were selected in the microarray dataset, and how model training was conducted. We have 

demonstrated clearly that molecular data is superior to clinical data in the prediction of CRC 

recurrence. Also, we demonstrated that stacking leads to better predictions from clinical data and 

equivalent predictions with microarray data. In the next chapter, we will explore different 

methods for incorporating biological knowledge into this predictive framework.  
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CHAPTER 3 

 

CREATING A MULTIPLE-VIEW MULTIPLE-LEARNER FRAMEWORK 

 

Introduction 

 While molecular data clearly outperforms clinical data in recurrence prediction, the 

original expression values do not leverage any expert knowledge or biological insights into the 

mechanisms of tumorigenesis and recurrence. One of the key insights from the drug sensitivity 

prediction DREAM challenge was that the application of prior knowledge (e.g. biological 

pathway knowledge) improved prediction performance.43 To build upon this insight we 

engineered four molecular views that integrate outside information, and then incorporated the 

models trained on these views into our ensemble framework. 

 

Discretized view 

 To determine if the relationship between tumor and non-tumor (normal adjacent or 

adenomatous tissue) samples could aid in recurrence prediction, 31 samples from non-tumor 

tissue (GSE33113 – n = 6, GSE17538 – n = 6, GSE39582 – n = 19) were fRMA normalized. 

Each value in the training, testing and validation sets was then compared against the distribution 

of non-tumor values for each gene and given one of three values based on the following 

algorithm: 

Algorithm Discretize(n,k,M) 
Input: n samples, k genes, n x k matrix of expression values M 
Output: n x k matrix of discretized values D 
1. For each sample i 
2.  For each gene j 
3.  Compare Mij against distribution of non-tumor sample expression values  
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4.   If Mij ≤ 1 SD below mean of non-tumor expression, then Dij = -1 
5.   If Mij ≥ 1 SD above mean of non-tumor expression, then Dij = 1 
6.   Else, Dij = 0   
7. endfor 
8. endfor 
9. return Dij 

 
 
 

Gene set view 

 Compiled gene sets from the Molecular Signatures Database (MSigDB) were utilized to 

incorporate biological pathway knowledge into the recurrence prediction framework. The 

MSigDB canonical pathways (CP) collection contains 1330 gene sets curated from nine online 

databases (http://software.broadinstitute.org/gsea/msigdb/collection_details.jsp#CP). To 

construct this view, the following algorithm was used: 

Algorithm: Geneset(n,k,j,M)  
Input: n samples, k genes, j gene sets, n x k matrix of expression values M 
Output: n x j matrix of gene set values G 
1. For each sample i 
2.  For each gene set j 
3.   Gij equals the average of expression values for each gene in gene set j 
4. endfor 
5.  endfor 
6. return Gij 

 
 

Network propagation view 

 Network-based stratification has been used to effectively subtype multiple tumor types 

using mutation data from TCGA patients.62 This approach successfully created subtypes 

predictive of clinical outcomes, and so we have adapted it to utilize gene expression data. The 

overall goal is to propagate an individual patient’s gene expression values onto a protein-protein 

interaction (PPI) network through the use of network propagation. The PPI was curated using 

iRefWeb, and genes were limited to those that were included in the gene expression dataset.63 
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The start probabilities are defined by normalized gene expression values. First, the gene 

expression data is z-score normalized by gene, and then it is rescaled so that the values of each 

gene range from 0 to 1. Each sample is then scaled so that the sum of all gene expression values 

for a given patient is equal to 1. Finally, a vector of gene weights is calculated through the use of 

random walk with restart, which is of the form:  

𝑝!!! = 1− 𝑟 𝑊𝑝! + 𝑟𝑝!. 

In the random walk with restart equation, r is restart probability, W is the column-normalized 

adjacency matrix derived from the PPI, and pt is a vector of gene weights such that the ith value is 

the probability of being at gene i at time t. The start probability p0 is initialized through the 

normalization steps outlined above, and we set r to 0.5.  This algorithm is run iteratively until 

convergence, which is defined as 

|!
!!! 𝑝!!!! − 𝑝!!| ≤ 10!!, 

where 𝑝!! is the probability for gene i at the tth iteration. After convergence of all samples, the 

rows of the resulting matrix are quantile normalized. 

  

Network-Expression-Mutation signature view 

 Thus far the molecular views have leveraged knowledge of non-tumor tissue expression 

patterns as well as gene set and PPI structure. To incorporate knowledge gained in previous 

signatures and also in the discovery of cancer driver mutations in CRC we modified our previous 

Network, Expression, and Mutation (NEM) signature. To create the updated NEM signature we 

utilize random walk with restart as defined above, but with start probabilities defined as follows: 

𝑝!! =
𝑠!

2 𝑠!!
!!!

+
𝑚!

2 𝑚!
!
!!!
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where si is defined as the number of CRC gene expression signatures that include gene i, and mi 

is defined as the number of times a mutation is identified as cancer driver or tumor suppressor 

mutation in CRC.64  Seven of the eight signatures used to create the previous NEM signature 

were utilized, and the signatures from the five commercialized assays were included as well. The 

signature from Smith et al. was removed since that dataset was used to train and validate the 

models.  Mutations were curated from intOGene (https://www.intogen.org/), COSMIC 

(http://cancer.sanger.ac.uk), and MutSigCV mutation analysis.65-67  

 After convergence was reached, individual gene scores were assessed by construction of 

1000 sets of randomly permuted start probabilities and 1000 sets of random scores. Local p 

values were obtained for each gene by comparing the actual score to the random scores. Global p 

values were obtained by comparing the actual score to random scores for all genes. Genes were 

selected if both the local and global p values were significant. The resulting updated NEM 

signature contained 547 genes compared to the 487 genes in the original NEM, with 122 genes 

overlapping. 

 

Performance of the multiple-learner multiple-view framework  

 After views were generated for the training and testing data sets, feature selection was 

applied to each view as outlined in chapter 1. The resulting performance is shown in figures 8 

and 9. Pairwise comparisons using a paired Wilcoxon signed rank test with a bonferroni 

correction (threshold p < 0.005) demonstrate that three views were superior to the microarray 

view during training: discretized (p = 6.35 x 10-5), network propagation (p < 0.003), and NEM (p 

= 4.75 x 10-5). The gene set view performed worse than microarray data (p = 1.49 x 10-7) as well 

as the remaining three views. The training profile of individual base learners revealed that 
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similarly to the microarray view, models using the evtree, stepLDA and stepQDA algorithms 

performed poorly. Additionally, the network view trained xgbTree model performed 

significantly worse compared to other xgbTree models. These poor performing models were not 

used for ensemble building as their AUCs were not consistently greater than 0.5.  

 

Figure 8. Training performance of molecular view models 

 

Figure 9. Training performance of base learners on molecular view data 
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 Just as the worst performing models for the molecular views were similar to those that 

performed poorly with microarray data, the best performing models were all random forest 

based. In fact, many of the top performing models during training were variants of oblique 

random forests. While random forests are decision tree ensembles generated from orthogonal 

trees, oblique random forests are built from trees that split using linear discriminative models, 

such as lda, ridge regression and logistic regression.68 The success of these models confirms the 

importance of including non-linear models in the prediction framework. 

 Next, we performed stacked generalization on the models within each view to determine 

if this strategy could enhance prediction performance. Additionally, we combined all views 

together and performed stacked generalization on this combined view. Performance results from 

predictions on the testing set data indicates that stacking can improve AUC compared to 

selectBest for the discretized and network views, but not the gene set and NEM views (Table 7).  

When the predictions from all models from all views are utilized, however, the performance is 

improved, with the random forest level 2 meta-learner exhibiting the best overall AUC.  

 Discretized 
View 

Gene set View Network 
View 

NEM View Combined 
View 

selectBest  
(level 1) 

0.7824 0.8034 0.7394 0.8022  

nb meta-learner 
(level 2) 

0.7739 0.7889 0.7659 0.7910 0.7913 

rf meta-learner 
(level 2) 

0.7829 0.7834 0.7154 0.7909 0.8146 

knn meta-learner 
(level 2) 

0.7740 0.7601 0.7550 0.7853 0.7976 

pls meta-learner 
(level 2) 

0.7965 0.7561 0.7228 0.7818 0.7521 

glm meta-learner 
(level 3) 

0.7904 0.7748 0.7243 0.7864 0.7913 

Table 7. Ensemble vs. selectBest performance on testing data. 
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For the molecular views, we also performed stacked generalization on the level 2 meta-learners 

by training a logistic regression classifier on the predictions from the meta-learners. The 

performance of these level 3 meta-learners was similar to the level 2 meta-learners. 

To further characterize the performance of these models we constructed a lift curve of the 

combined view ensemble models (Figure 10). This plot shows the number of events captured (y-

axis) as a function of the number of samples tested (x-axis). The left side of the gray shaded 

region represents the ideal model, while the right side of the region is a line going from bottom 

left to top right that is equivalent to random guessing.  While performance for most of the 

stackers is equivalent, we see that the pls and especially the level 3 glm stacker (called final in 

the plot) are worse.  

 

Figure 10. Lift curve for ensemble methods. The level 3 meta-learner “final” is a glm that 
stacks all 4 level 2 meta-learners. 
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We analyzed the probability calibration by constructing a calibration curve for the three 

models that appeared to perform the best based on the lift curve (Figure 11). This plot allows for 

visualization of the relationship between probability predictions and observed events. A properly 

calibrated model would track the diagonal line coursing from the bottom left to the top right of 

the plot.  This visualization reveals that the nb meta-learner is poorly calibrated, and knn stacker 

appears to have the best calibration.  Detailed comparison of performance metrics between the rf 

and knn stackers revealed the best overall performance with rf (Table 8). Of note, the selectBest 

model was the base learner that had the highest AUC on the testing data, rather than the training 

data, compared to all other base learners. 

 

Figure 11. Probability calibration plot for ensemble models. 
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 rf knn selectBest 
AUC 0.8146 0.7976 0.8161 
Sensitivity 0.9211 0.6842 0.7105 
Specificity 0.5698 0.7674 0.7791 
Accuracy 0.6774 0.7419 0.7581 
Positive Predictive 
Value 

0.4861 0.5652 0.5870 

Negative Predictive 
Value 

0.9423 0.8462 0.8590 

F Measure 0.6364 0.6190 0.6429 
Table 8. Detailed performance metrics of ensemble vs. selectBest methods on testing set. 

selectBest represents the top performing base learner on testing data: rf trained on 
microarray data.  

 
Detailed metrics reveal that the rf meta-learner performs similarly to selectBest, although 

accuracy is worse. The F measure and AUC are similar to selectBest, however. The F measure is 

the harmonic mean of the model precision (positive predictive value) and recall (sensitivity), and 

it is an important metric in binary classification. Based on these findings, we hypothesize that the 

ideal framework to predict recurrence status is to utilize a rf stacker to integrate the base learner 

predictions from all view models. 

Ensemble performance on the validation set was diminished in terms of AUC, although 

the best base learner did have a higher AUC than in the testing set (Table 9). Interestingly, while 

the best base learner on the testing data was a microarray data trained rf model, the best base 

learner on the validation set was a bagged classification and regression tree (treebag) model 

trained on NEM view data. The results in table 9 demonstrate that the rf ensemble performed 

slightly superiorly or equivalently to the best base learner in all metrics aside from AUC, and 

actually exceeded the performance demonstrated in the test set in terms of F measure and 

accuracy.  

 



	
   28	
  

 rf knn selectBest 
AUC 0.7860 0.7502 0.8388 
Sensitivity 0.9474 0.7719 0.9298 
Specificity 0.6495 0.6804 0.6598 
Accuracy 0.7597 0.7143 0.7597 
Positive Predictive 
Value 

0.6136 0.5867 0.6163 

Negative Predictive 
Value 

0.9545 0.8354 0.9412 

F Measure 0.7448 0.6667 0.7393 
Table 9. Detailed performance metrics of ensemble vs. selectBest methods on validation 

set.  selectBest represents the top performing base learner on validation data: treebag 
trained on NEM data. 

 

Classifications made by each of these three methods were used to plot DFS for the 

validation set patients, and compared to stratification by stage (Figure 12).  

Figure 12. DFS by predictive model compared to stage. 

 

The rf ensemble, knn ensemble and selectBest model all significantly separated a high and low 

risk recurrence population (log-rank test, p < 0.001 for each model), while stage failed to 
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discriminate against these two populations (p = 0.0529). The rf stacker performed similarly to the 

selectBest model, as expected. To further determine the utility of this prediction framework, we 

calculated Oncotype Dx scores by modifying the algorithm from Clark-Langone et al. to utilize 

microarray expression data.69  

Algorithm Oncotype(n,k,M) 
Input: n samples, k genes, n x k matrix of expression values M 
Output: n normalized recurrence scores 
1. For each sample i 
2.  Calculate mean of reference genes: UBB, ATP5E, PGK1, GPX1, VDAC2 
3. For genes BGN, MYC, FAP, GADD45B, INHBA, MKI67, MYBL2  
4.   Normalized value ß Divide gene value by mean of reference genes 
5.   Gene value ß mean of reference genes – normalized value + 10 
6. endfor   
7. endfor  
8. Subtract the lowest gene value from every gene value for every sample 
9. unscaled recurrence score ß 0.1263*(mean of gene values for BGN, FAP, INHBA) –   
      .3158*(mean of gene values for MYBL2, MKI67, MYC) + .3406*gene value for GADD45B 
10.  normalized recurrence score ß (unscaled recurrence score + 0.3) * 44.16 
11. Subtract the lowest recurrence score from the score for each sample 
12. return normalized recurrence scores 
 

 After applying this algorithm to the microarray validation dataset, scores ranged from 0 

to 77.84. According to the Oncotype Dx algorithm, patients are stratified into three risk groups 

by score: low risk if score < 30, intermediate risk if score is 30 to 40, and high risk if score is > 

40.  To compare these scores to the performance of our classification models, the recurrence 

score was turned into a binary predictor such that low risk corresponded to 0 and intermediate or 

high risk corresponded to 1. While a previous external validation of CRC prognostic genomic 

predictors found that Oncotype Dx demonstrated good performance in determining patients with 

poor prognosis, these findings are not reproduced in our validation cohort (Figure 13).70 Analysis 

of just the stage II patients also failed to demonstrate any significant discrimination by 

recurrence score. 
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Figure 13. DFS by Oncotype Dx recurrence score. The plot on the left contains patients from the 
validation set with stage II and stage III disease, while the plot on the right contains only patients 

with stage II disease. 
 

We have shown that an ensemble framework built from multiple views of molecular data 

using a diverse set of base learners can improve the performance of a predictive framework in 

comparison to the single best base learner.  The importance of the molecular views is evident 

when the variable importance of the two top ensemble methods is analyzed (Figure 14).  We see 

that the NEM view was particularly important for the both ensembles, and that other views, such 

as the discretized view, contributed more to prediction than either of the original views.  

 

Figure 14. Relative contribution of models by molecular view. 
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CHAPTER 4 

 

SUMMARY 

 

Conclusions 

 This work focuses on the construction of an ensemble framework to predict CRC 

recurrence. After demonstrating that molecular data is more useful for predicting CRC 

recurrence, we proposed and implemented a multiple-view multiple-learner framework. The 

benefits of this approach include:  

Incorporation of prior knowledge: While molecular data can improve prediction over 

clinicopathologic features, this improvement has not been translated into better predictions in the 

clinical setting. We demonstrate the views incorporating information from non-tumor tissue gene 

expression patterns, gene set structure, PPI structure, previously curated molecular signatures, 

and identified tumor suppressor/driver mutations improves prediction.  

Use of non-linear models: The top performing base learners and ensemble models were 

overwhelmingly non-linear, with random forest and related models performing particularly well. 

This confirms findings from the data science competitions that partially motivated this work.  

Feasible integration of multiple data types: The stacking framework we utilized can easily 

accommodate other types of molecular data (e.g. proteomic or methylation) data, and so we have 

provided a scalable and flexible framework.  

Finally, this work represents the first effort to use ensemble learning to predict CRC 

recurrence. The ability of ensemble learning to improve predictions, or at least perform as well 

as the single best base learner has been shown to apply to the problem of CRC recurrence 
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prediction. Going forward, it is our hope that the community of researchers focused on this task 

shares details of their predictive models and collaborates to see if ensemble learning can be used 

to further improve prediction performance. These results also highlight the importance of data 

sharing, as the prediction performance still needs much improvement if the goals of precision 

medicine are to be realized.  Finally, while our classification system can outperform staging, 

Oncotype Dx, we have not demonstrated that the high-risk population will benefit from the 

standard adjuvant chemotherapy regimens. Further improvements in predicting patients at high-

risk for recurrence will lead to the need to accurately identify the optimal therapeutic regimen.   
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APPENDIX A 

 

BASE LEARNERS 

Model Shorthand Type Packages Parameters 

Bagged CART treebag Dual Use 
ipred, plyr,, 

e1071 none 
Boosted Logistic 

Regression LogitBoost Classification caTools nIter 
Model Averaged 
Neural Network avNNet Dual Use nnet size, decay, bag 

Linear Discriminant 
Analysis lda Classification MASS None 

Linear Discriminant 
Analysis with Stepwise 

Feature Selection stepLDA Classification klaR, MASS 
maxvar, 
direction 

Naive Bayes nb Classification klaR 
fL, usekernel, 

adjust 
Neural Network nnet Dual Use nnet size, decay 

Neural Networks with 
Feature Extraction pcaNNet Dual Use nnet size, decay 

Oblique Random Forest ORFlog Classification obliqueRF mtry 
Oblique Random Forest ORFpls Classification obliqueRF mtry 
Oblique Random Forest ORFridge Classification obliqueRF mtry 

Partial Least Squares pls Dual Use pls ncomp 
Penalized Discriminant 

Analysis pda Classification mda lambda 
Penalized Multinomial 

Regression multinom Classification nnet decay 
Quadratic Discriminant 

Analysis qda Classification MASS None 
Quadratic Discriminant 
Analysis with Stepwise 

Feature Selection stepQDA Classification klaR, MASS 
maxvar, 
direction 

Random Forest rf Dual Use randomForest mtry 

Rotation Forest rotationForestCp Classification 
rpart, plyr, 

rotationForest K, L, cp 
Support Vector 

Machines with Linear 
Kernel svmLinear Dual Use kernlab C 

Support Vector 
Machines with Radial 
Basis Function Kernel 

svmRadial, 
svmRadialCost Dual Use kernlab sigma, C 
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Model Shorthand Type Packages Parameters 
Support Vector 

Machines with Class 
Weights svmRadialWeights Classification kernlab 

sigma, C, 
Weight 

Tree Models from 
Genetic Algorithms evtree Dual Use evtree alpha 

eXtreme Gradient 
Boosting xgbTree Dual Use xgboost, plyr 

nrounds, 
max_depth, eta, 

gamma, 
colsample_bytr

ee, 
min_child_wei

ght 
Regularized 

Discriminant Analysis rda Classification klaR gamma, lambda 
 

Base learners are listed in the tables above. Shorthand indicates the variable name for the 

model in the “caret” package. Type indicates the type of problem a model can be used for: 

classification, regression or both (Dual Use). The “caret” package acts as a wrapper around 

models from many different packages, and the specific package for each model is listed in the 

Packages column. Finally, the model parameters are listed in the Parameters column.  
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APPENDIX B 

The following R code was used to generate the training, testing and validation data sets. 

rm(list=ls()) 
setwd("/scratch/castelja/CEL/") 
library(glmnet) 
library(foreach) 
library(aod) 
library(pROC) 
library(caret) 
library("igraph") 
library("preprocessCore") 
library(randomForest) 
library("gsubfn") 
source("/dors/bioinfo/castelja/functions.R") 
 
#Processing GSE33113, GSE14333, GSE17538 
#GSE39582, GSE37892, and GSE26906 omitted 
#Aggregate into one table 
Complete<-
rbind(GSE14333,GSE17538,GSE26906,GSE33113,GSE37892,GSE39582) 
 
#Filter out based on selection criteria 
ones<-grep(TRUE,Complete[,"status"]=="1") 
zeroes<-grep(TRUE,Complete[,"status"]=="0") 
surv_ones<-grep(TRUE,as.numeric(Complete[ones,"time"])<=36) 
surv_zeroes<-grep(TRUE,as.numeric(Complete[zeroes,"time"])>=36) 
indices<-sort(c(ones[surv_ones],zeroes[surv_zeroes])) 
Complete<-Complete[indices,] 
 
# Load matrices with previously frma normalize expressiong data 
load("/scratch/castelja/CEL/test_expression.RData") 
load("/scratch/castelja/CEL/discretized.Rdata") 
#Identify samples for validation set 
trainIndex<-
c(grep("Ludwig",Complete[,6]),grep("Vanderbilt",Complete[,6]), 
              grep("STA",Complete[,6]),grep("IPC",Complete[,6]), 
              grep("CAL",Complete[,6]),grep("LAR",Complete[,6]), 
              grep("BER",Complete[,6])) 
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trainclass<-Complete[-trainIndex,4] 
testclass<-Complete[trainIndex,4] 
 
#Clinical data sets 
clin.train<-Complete[-trainIndex,] 
clin.val<-Complete[trainIndex,] 
 
#Microarray data sets 
micro.train<-Test_expression[-trainIndex,] 
micro.val<-Test_expression[trainIndex,] 
 
#Geneset data sets 
#create geneset score data sets based on average value of gene 
#set expression in the canonical pathways gene set in MSigDB 
cp<-read.csv("/dors/bioinfo/castelja/CRC/ 
 transposed_cp.csv",header=TRUE) 
cp<-as.matrix(cp) 
cp<-cp[-1,] 
 
geneset.train<-geneset(cp,micro.train) 
geneset.val<-geneset(cp,micro.val) 
 
#Discretized data sets 
micro.train.binary<-discretized[-trainIndex,] 
micro.val.binary<-discretized[trainIndex,] 
 
#Network propagation data sets 
#Create W – column normalized adjacency matrix 
library(igraph) 
iRef <- read.delim("/dors/bioinfo/castelja/CRC/iRef.net", 
header=FALSE) 
network<-graph.data.frame(iRef,directed=FALSE) 
adjMatrix <- get.adjacency(network) 
adjMatrix <- as.matrix(adjMatrix) 
de <- apply(adjMatrix,2,sum) 
#normalizing by column 
W <- t(t(adjMatrix)/de) 
 
#Micro - convert to include only nodes contained in ppi 
common<-intersect(colnames(W),colnames(micro.train)) 
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#find indexes in micro 
indices<-find_index(common,colnames(micro.train)) 
#truncate micro down to size 
micro.rw.train <-micro.train[,indices] 
micro.rw.train <-micro.rw.train[,sort(colnames(micro.rw.train))] 
micro.rw.val <-micro.val[,indices] 
micro.rw.val <-micro.rw.val[,sort(colnames(micro.rw.train))] 
diff<-setdiff(colnames(W),colnames(micro.rw.train)) 
#find indexes in W 
indices<-find_index(diff,colnames(W)) 
#truncate W down to size 
W<-W[,-indices] 
W<-W[-indices,] 
W<-W[,sort(colnames(W))] 
W<-W[sort(rownames(W)),] 
 
r<-0.5 
valRow<-rownames(micro.rw.val) 
 
#Scale the sets by Z score normalization 
micro.rw.val<-apply(micro.rw.val,2,scale) 
rownames(micro.rw.val)<-valRow 
 
#Rescale to be between 0 and 1 
micro.rw.val<-apply(micro.rw.val,2,function(x) ((x-
min(x))/diff(range(x)))) 
rownames(micro.rw.val)<-valRow 
 
#Ensure each row sums to 1 
micro.rw.val<-sum_to_one(micro.rw.val) 
network.val<-vary_restart(micro.rw.val,W,r) 
 
#NEM view 
nem<-read.csv("new_NEM.csv") 
common<-intersect(colnames(micro.train),as.character(nem[,1])) 
indices<-find_index(common,colnames(micro.train)) 
micro.train.NEM<-micro.train[,indices] 
micro.val.NEM<-micro.val[,indices] 
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save(trainclass,testclass,clin.train,clin.val,micro.train,micro.
val,trainIndex,micro.train.binary,micro.val.binary,geneset.train
,geneset.val,W,micro.rw.train,micro.rw.val,micro.train.NEM,micro
.val.NEM,file="/scratch/castelja/CEL/datasets.RData", 
     compress=FALSE) 
 
#save network data separately      
trainRow<-rownames(micro.rw.train) 
 
#Scale the sets by Z score normalization 
micro.rw.train<-apply(micro.rw.train,2,scale) 
rownames(micro.rw.train)<-trainRow 
 
#Rescale to be between 0 and 1 
micro.rw.train<-apply(micro.rw.train,2,function(x) ((x-
min(x))/diff(range(x)))) 
rownames(micro.rw.train)<-trainRow 
 
#Ensure each row sums to 1 
micro.rw.train<-sum_to_one(micro.rw.train) 
network.train<-vary_restart(micro.rw.train,W,r) 
save(network.train,network.val,file= 

"/scratch/castelja/CEL/network.RData")
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APPENDIX C 
 

The following R code contains functions for feature selection and network propagation. 

#Univariate feature selection with logistic regression 
feature_select<-function(x.train,y.train){ 
  pvalue.cutoff=0.05 
  top=sum(y.train) 
  feature.pvalue <- c() 
  feature.name <- c() 
  feature.col <- c() 
  #for (j in 1:ncol(x.train)) 
  result <- foreach 
(j=1:ncol(x.train),.errorhandling='remove',.combine=rbind) 
%dopar% 
  { 
    feature <- colnames(x.train)[j] 
    x <- x.train[,j] 
    if (length(which(table(x)> 0.8*length(x)))>0) # discard the 
flat values, e.g. zeros for RNAseq and miRNAseq 
    { 
      stop() 
    } 
    logistic<-glm(y.train~x,family=binomial(link="logit")) 
    p.value <- 
as.numeric(unlist(wald.test(b=coef(logistic),Sigma=vcov(logistic
),Terms=2))[[13]]) 
    list(p.value, feature, j) 
  } 
 
  feature.pvalue <- unlist(result[,1]) 
  print(paste("Total number of valid features (after removal of 
potential flat records):", length(feature.pvalue))) 
  feature.name <- unlist(result[,2]) 
  feature.col <- unlist(result[,3]) 
 
  names(feature.pvalue)=c() 
  names(feature.name)=c() 
  names(feature.col)=c() 
 
  q.value <- p.adjust(feature.pvalue, method="fdr") 
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  for (i in 1:10/10) 
  { 
    print(paste("qvalue <=", i, ":", length(which(q.value<=i)))) 
  } 
  col.sig <- which( feature.pvalue < pvalue.cutoff)  
  print(paste("Significant records: p-value < 0.05:", 
length(col.sig)))   
 
  name.sig <- feature.name[col.sig] 
  pvalue.sig <- feature.pvalue[col.sig] 
  #qvalue.sig <- q.value[col.sig] 
 
  col.retain <- feature.col[col.sig] 
# Only keep the top significant ones if there are too many  
 if (length(col.retain)> top)  
 { 
    col.retain <- col.retain[head(sort(pvalue.sig, 
index.return=T)$ix, n=top)] 
  }   
  cols.include<-col.retain 
  if (length(cols.include)==0) 
  { 
    stop("No feature passed the univariate cox screen: exit.") 
  } 
   
  print(paste("After univariate cox screen, features remain:", 
length(cols.include))) 
  return(cols.include) 
} 
 
#Create network propagation view using vary_restart and 
netwalker 
 
vary_restart<-function(data,W,r){ 
 P<-data 
 for(i in 1:length(data[,1])){ 
   print(paste("Sample",i,"of",length(data[,1]))) 
   P[i,]<-netwalker(data[i,],W,r) 
 } 
 #quantile normalize rows to ensure that each patient follows 
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same distribution 
 network<-t(normalize.quantiles(t(P))) 
 rownames(network)<-rownames(P) 
 colnames(network)<-colnames(P) 
 return(network) 
} 
 
#Network propogation via random walk with restart 
netwalker <- function(p0,W,r){ 
   
  #Set up for the first iteration 
  pt <- p0 
  #First iteration 
  pt1 <- (1-r)*(W%*%pt)+r*p0 
   
  #Iterate until convergence 
  threshold<-1e-6 
  iter<-0 
  while(sum(abs(pt1-pt))>threshold){ 
    pt <- pt1 
    pt1 <- (1-r)*(W%*%pt)+r*p0 
    iter<-iter+1 
  } 
  print(paste("converged in",iter,"iterations")) 
  return(pt1) 
} 
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APPENDIX D 

The following R code is used to train the base learners on training data. 

#Pass parameters to R script 
options(echo=TRUE) 
args<-commandArgs(trailingOnly=TRUE) 
print(args) 
#Subset # 
i<-as.numeric(args[1]) 
#View # 
j<-as.numeric(args[2]) 
#Model # 
k<-as.numeric(args[3]) 
 
clinfilename<-paste("frma_",i,"_",j,"_",k,"_clin.RData",sep="") 
microfilename<-
paste("frma_",i,"_",j,"_",k,"_micro.RData",sep="") 
binfilename<-paste("frma_",i,"_",j,"_",k,"_binary.RData",sep="") 
gsfilename<-paste("frma_",i,"_",j,"_",k,"_geneset.RData",sep="") 
networkfilename<-
paste("frma_",i,"_",j,"_",k,"_network.RData",sep="") 
NEMfilename<-paste("frma_",i,"_",j,"_",k,"_NEM.RData",sep="") 
 
rule<-"ROC" 
 
#Curated list of 27 base learners 
methods<-
c("treebag","LogitBoost","avNNet","lda","stepLDA","nb","nnet","p
caNNet","ORFlog","ORFpls", 
"ORFridge","pls","pda","multinom","qda","stepQDA","rf","rda","ro
tationForestCp","svmRadialWeights", 
"svmLinear","svmRadial","svmRadialCost","svmRadialSigma","evtree
","xgbTree","knn") 
 
filename<-
paste("/dors/bioinfo/castelja/CRC/final/iter_",i,"_frma.RData",s
ep="") 
load(filename) 
method<-methods[k] 
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#10 x 10 fold cross validation 
ctrl<-trainControl(method="repeatedcv", 
     number=10, 
     repeats=10, 
     savePredictions="final", 
     classProbs=TRUE, 
     index=resamples, 
     summaryFunction=twoClassSummary) 
 
if(j==1){ 
#Clinical View 
model_clin<-train(clin.train,trainclass, 
      method=method, 
      trControl=ctrl, 
      #family=binomial, 
      #verbose=FALSE, 
      tuneLength=10, 
      metric=rule) 
save(model_clin,file=clinfilename) 
} else if(j==2){ 
#Microarray Original View       
model_micro<-train(micro.train.fs,trainclass, 
      method=method, 
      trControl=ctrl, 
      #verbose=FALSE, 
      preprocess=c("center","scale"), 
      tuneLength=10, 
      metric=rule) 
save(model_micro,file=microfilename) 
} else if(j==3){ 
#Microarray Discretized View 
binary_micro<-train(micro.train.binary,trainclass, 
                           method=method, 
                           trControl=ctrl, 
                           #verbose=FALSE, 
                           tuneLength=10, 
                           metric=rule) 
save(binary_micro,file=binfilename) 
} else if(j==4){ 
#Microarray Geneset View 
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geneset_micro<-train(geneset.train,trainclass, 
                           method=method, 
                           trControl=ctrl, 
                           #verbose=FALSE, 
                           preprocess=c("center","scale"), 
                           tuneLength=10, 
                           metric=rule) 
save(geneset_micro,file=gsfilename) 
} else if(j==5){ 
#Microarray Network View 
network_micro<-train(network.train,trainclass, 
                           method=method, 
                           trControl=ctrl, 
                           #verbose=FALSE, 
                           preprocess=c("center","scale"), 
                           tuneLength=10, 
                           metric=rule) 
save(network_micro,file=networkfilename) 
} else{ 
NEM_micro<-train(micro.train.NEM.fs,trainclass, 
         method=method, 
                           trControl=ctrl, 
                           #verbose=FALSE, 
                           preprocess=c("center","scale"), 
                           tuneLength=10, 
                           metric=rule) 
save(NEM_micro,file=NEMfilename) 
} 
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APPENDIX E 

 The following R code was used to train the ensemble model. 

create_list<-function(i,j,type){ 
 methods<-
c("treebag","LogitBoost","avNNet","lda","stepLDA","nb","nnet","p
caNNet","ORFlog","ORFpls","ORFridge","pls","pda","multinom","qda
","stepQDA","rf","rda","rotationForestCp","svmRadialWeights","sv
mLinear","svmRadial","svmRadialCost","svmRadialSigma","evtree","
xgbTree","knn") 
 seq<-1:length(methods) 
 out_list<-list() 
 null_list<-c() 
 for(k in 1:length(seq)){ 
  filename<-
paste("frma_",i,"_",j,"_",k,"_",type,".RData",sep="") 
  print(filename) 
  if(file.exists(filename)){ 
   print("exists") 
   e1 = new.env() 
   invisible(lapply(filename, load, envir = e1)) 
   my_list = as.list(e1) 
   out_list[[k]]<-my_list[[1]] 
   method<-methods[k] 
   names(out_list)[k]<-paste(method,type,sep="_") 
  } else{ 
   print("Does not exist") 
   null_list<-c(null_list,k)  
  } 
 } 
 if(length(null_list)>0){ 
  out_list[null_list]<-NULL 
  print(paste("These methods did not 
exist:",methods[null_list])) 
 } else{ 
  print("All methods exist")  
 } 
 class(out_list)<-"caretList" 
 return(out_list) 
} 
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#Set up model lists for each view 
clin_list<-create_list(i,1,"clin") 
micro_list<-create_list(i,2,"micro") 

geneset_list<-create_list(i,4,"geneset") 
binary_list<-create_list(i,3,"binary") 
network_list<-create_list(i,5,"network") 
NEM_list<-create_list(i,6,"NEM") 
meta_list<-append(clin_list,micro_list) 
meta_list<-append(meta_list,binary_list) 
meta_list<-append(meta_list,geneset_list) 
meta_list<-append(meta_list,network_list) 
meta_list<-append(meta_list,NEM_list) 
names(meta_list)<-c(names(clin_list),names(micro_list), 
names(binary_list),names(geneset_list),names(network_list), 
names(NEM_list)) 
 
ens.train<-c() 
lapply(meta_list,function(x){  
 tmp<-setorderv(x$pred,c("Resample","rowIndex")) 
 tmp<-setorderv(tmp[grep("Rep01",tmp$Resample),],c("rowIndex")) 
 ens.train<<-cbind(ens.train,tmp$Y) 
 } 
) 
colnames(ens.train)<-names(meta_list) 
rownames(ens.train)<-rownames(clin.train) 
 
resamples<-fold_generator(trainclass) 
ens_control<-trainControl( 
 method="cv", 
    number=10, 
    classProbs=TRUE, 
    index=resamples, 
    savePredictions="final", 
    summaryFunction=twoClassSummary) 
 
library(“caretEnsemble”) 
model_list_big <- caretList( 
  ens.train,ens.trainclass, 
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  trControl=ens_control, 
  metric="ROC", 
  methodList=c("rf","knn","nb","pls"), 
  tuneLength=10 
) 
modelCor(resamples(model_list_big)) 
 
greedy_ensemble <- caretEnsemble( 
  model_list_big,  
  metric="ROC", 
  trControl=trainControl( 
    method="cv", 
    number=10, 
    summaryFunction=twoClassSummary, 
    classProbs=TRUE 
    )) 
summary(greedy_ensemble) 
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APPENDIX F 

 

Signature overlap between validation and training data sets after univariate feature 

selection and LASSO.  
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