
VIDEO IMAGE PROCESSING USING MPEG TECHNOLOGY 

FOR A MOBILE ROBOT 

 

By 

 

Soradech Krootjohn 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

 

DOCTOR OF PHILOSOPHY 

in 

Electrical Engineering 

 

August, 2007 

Nashville, Tennessee 

 

Approved: 

Professor D. Mitchell Wilkes 

Professor George E. Cook 

Professor Andrew W. Dozier 

Professor Richard A. Peters 

Professor Douglas P. Hardin 



 ii

 

 

 

 

 

 

 

 

 

To my lovely family: 

 

my parents (Lt. Chaiya and U-Thai)  

and  

my brothers (Denpong and Wanchai). 

 

 

 

 

 

 

 

 

 



 iii

ACKNOWLEDGEMENTS 

 

 First of all, I would like to extend my gratitude to all of my committee members, 

Dr. Cook, Dr. Peters, Dr. Dozier, and Dr. Hardin. Also, I would like to give a big thanks 

to all of my friends in the Mobile Lab including Mert, Amy, Faisal, and Chris. The 

biggest thank you to the lab members has to go to Jonathan, “The Master of 

Procrastination”, who kept me company day-and-night during my final phase towards 

this project completion. 

 Without the initial main financial support from the Thai Government, my study 

provided by Vanderbilt could never have taken place. Furthermore, I am very grateful for 

the additional financial support provided by the Vanderbilt office of Biomedical Research 

Education and Training (BRET). Especially, I am grateful to Dr. Chanchai McDonald, 

who introduced me to be a part of this prestigious institution.  

 I would like to give my appreciation to Anu and Dr. Natalie (Chapati & Macaroni) 

for their kind friendship and support from back stage. I am also grateful to Dr. Lason 

Watai, my first roommate. When you stay in one place for almost a decade, you gain a lot 

of friends. There are so many other people whom I would like to mention. However, 

although I am unable to bring up all the names here, you all are a part of my success. 

 Lastly, I am not able to find the words to say thank you to my Vanderbilt advisor, 

Professor Mitch Wilkes, who always kept my hope alive. If I was a rally driver, he would 

be my navigator. I would never have had a chance to find the finish line without his 

guidance. 

 



 iv

TABLE OF CONTENTS 
 

 Page
 
ACKNOWLEDGEMENTS……………………………………………………………... iii
 
LIST OF FIGURES……………………………………………………………………...vii 
 
LIST OF TABLES…………………………………………………………………….….xi 
 
Chapter 
 
     I.  INTRODUCTION AND RESEARCH MOTIVATION…………………….. 1
 
          Research Motivation……..…………………………………………………... 4
          Thesis Outline………………………………………………………………... 8
 
     II.  DIGITAL VIDEO PROCESSING AND MPEG TECHNOLOGY………… 10
 
          Digital Video Signal……………………………………...…………………. 10
          Spatial Sampling and Temporal Sampling……...……………..……………. 11
          Progressive and Interlaced Sampling……………………………..…………. 12
          Color Spaces………………………………………………………...………. 12
              RGB………………………………………………………………………. 12
               YCrCb…………………………………………………………………….. 12
               YCrCb Sampling Formats………………………………………………… 13
          Video Coding………………………………………………………………... 15
          Temporal Model…………………………………………………………….. 16
               Prediction from the Previous Frame……………………………………... 16
               Block-Based Motion Estimation and Compensation…………………….. 18
          Image Model………………………………………………………………… 21
               Predictive Image Coding............................................................................ 22
               Transform Coding………………………………………………………... 22
               Discrete Cosine Transform (DCT)............................................................. 23
               Quantization……………………………………………………………… 26
                    Scalar Quantization…………………………………………...………. 26
                    Vector Quantization. …………………………………………………. 28
               Reordering and Zero Encoding…………………………………………... 29
                    DCT Coefficient Distribution………………………………………… 29
                    Scanning DCT Coefficients…………………………………………... 31
               Run-Level Encoding……………………………………………………... 32
          Entropy Encoder…………………………………………………………….. 33
               Predictive Coding………………………………………………………... 34
               Variable-Length Coding…………………………………………………. 34
               Huffman Coding…………………………………………………………. 34



 v

          The Hybrid DPCM/DCT Video CODEC Model……………………………. 37
          MPEG Standard…………………………………………………………....... 42
          MPEG-1……………………………………………………………………... 43
               Data Structure and Compression Modes………………………………… 43
               Intra Frame Compression Mode……………………………..…………... 46
               Inter Frame Compression Modes……………...…………………………. 47
                    P-Picture……………………………………………………………… 47
                    B-Picture……………………………………………………………… 49
               MPEG-1 Encoder and Decoder………………………………………….. 51
          MPEG-2 Standard………………………………………………………........ 52
               Coding Interlaced Video………………………………………………..... 53
               Scalable Extensions……………………………………………………… 55
               Profiles and Levels………………………………………………………. 56
          MPEG-4……………………………………………………………………... 57
               MPEG-4 Visual………………………………………………………….. 58
               Profiles and Levels………………………………………………………. 59
               Visual Profiles………………………………………………………….... 59
               Levels…………………………………………………………………….. 61
               Tools and Objects………………………………………………………... 62
               Video Object……………………………………………………………... 62
               Video Packet……………………………………………………………... 65
               Data Partitioning…………………………………………………………. 66
                    Reversible VLCs……………………………………………………… 67
                    Short Header………………………………………………………….. 67
               Four Motion Vectors Per Macroblock…………………………………… 67
               Unrestricted Motion Vectors (UMV) ………………………………….... 68
               Global Motion Vector (GMV) …………………………………………... 69
               Simple Profile……………………………………………………………. 70
 
     III. VISUAL MOTION ESTIMATION………………………………………… 72
 
          Visual Motion Field …………..……………………………………..……… 73
               Direct Method …..……….…………………………………………......... 73
                    Optical Flow………………………………………………………….. 74
               Indirect Method………………………………………………………….. 76
                    Tracking Feature Approach…………………………………………... 76
                    Block-Based Approach……………………………………………….. 77
          Camera Model on Perspective Projection …………………………………... 78

        Camera Motion Model ……………………………………………..... 79
                     Effect of Camera Rotation…...……….……………………………..... 79
                     Effect of Camera Translation………………………………………… 81
          Camera Motion Estimation Mode ………………………………………….. 82
               Affine Model …….……………………………………………………… 82
               Camera Rotation Estimation ……………………………………………. 85
          Camera Motion Estimation for Mobile Robot Navigation …………………. 88
      



 vi

     IV. HARDWARE SPECIFICATION AND SETUP…………………………… 95
 
          Mobile Robot ……………………………………………………………...... 96
          Camera Unit ………………………………………………………………… 97
               Camera Setup ……………………………………………………………. 97
               Vanishing Point on Virtual Image Plane ………………………………... 101
          Computer Unit ……………………………………………………………… 103
 
     V. SOFTWARE SYSTEM DESIGN AND IMPLEMENTATION…………….. 105
 
          Creating Motion Field from MPEG Encoder …………………………......... 105
          Approaches to Visual Odometry ………………………………………........ 106
               How to Determine Robot Motion ……………………………………….. 107
               Outlier Rejection ………………………………………………………… 108
               Calculation of Robot Translation ……………………………………....... 111
               Calculation of Robot Rotation …………………………………………... 113
          Approach to Precipice Detection ………………………………………........ 116
 
     VI. SOFTWARE IMPLEMENTATION………………………………………... 120
 
          Visual Odometry ……………………………………………………………. 122
               Application for Real-Time Visual Odometry …………………………… 124
          Application for Real-Time Precipice Detection …………………………..... 126
 
     VII. EXPERIMENT AND RESULT DISCUSSION…………………………… 131
 
          Real-Time Visual Odometry ………………………………………………... 131
               Experiment of Visual Odometry on Robot Translation ………………..... 133
               Experiment of Visual Odometry on Robot Rotation …………………..... 140
          Real-Time Precipice Detection ……………………………………………... 147
               Precipice Detection by Robot Velocity …………………………………. 147
               Precipice Detection by Approaching Direction (Simulated Precipice) …. 149
               Precipice Detection by Approaching Direction (Stairwell) ……………... 151
          Caveat ………………………………………………………………...…….. 154
 
     VIII. CONCLUSION AND FUTURE WORK…………………………………. 155
 
          Future Work ……………………….……………………………..…………. 157
               Adaptive Frame Rate …………….…………………………………….. 157
               Alternative Method to Detecting a Precipice …………………………... 157
               Dealing with Detecting a Fake Precipice ………………………………. 158
 
     REFERENCES………………………………………………………………….. 159

 

 



 vii

LIST OF FIGURES 

 

 

Figure 
 

Page

2.1 Spatial and temporal sampling of a video sequence………………………... 
 

10

2.2 Interlaced video sequence…………………………………..………………. 
 

11

2.3 Allocation of 4:2:0 samples to top and bottom fields………………………. 
 

14

2.4 Video encoder/decoder …………………………………………………..… 
 

15

2.5  a) Frame 1,  b) Frame 2,  c) Residual (no motion compensation) ………… 
 

17

2.6 Optical flow………………..…………………………….……………….… 
 

18

2.7 Macroblock (4:2:0) …………………………………..…………………….. 
 

19

2.8 Macroblock motion estimation…………………………………………...… 
 

20

2.9 Motion vectors of a 16 x 16 block frame…………………………………… 
 

21

2.10 4x4 DCT basis patterns…………………………………………...………… 
 

25

2.11 8x8 DCT basis patterns……………………….………………….…….…… 
 

26

2.12 Scalar quantizers: linear, nonlinear with dead zone………………………... 
 

28

2.13 Vector quantization…………………………………………….…………… 
 

29

2.14 8x8 DCT coefficient distribution of the image in Figure 2.5c (frame) ……. 
 

30

2.15 Residual field picture……………………………………………………….. 
 

30

2.16 8x8 DCT coefficient distribution (field) ……………………………….…... 
 

31

2.17 Zigzag scan order (Frame block) ………………………………….……….. 
 

32

2.18 Zigzag scan order (Field block) ………………………………….………… 
 

32

2.19 Huffman code tree for sample motion vectors………………….………….. 
 

36

2.20 DPCM/DCT video encoder……………………………………..………….. 
 

37



 viii

2.21 DPCM/DCT video decoder……………………………………..………….. 
 

38

2.22 Input frame Fn……………………………………………….……………… 
 

39

2.23 Reconstructed reference frame F’n-1…………………………………….….. 
 

40

2.24 Residual Fn –F’n-1 (no motion compensation) ……………………...……… 
 

40

2.25 16x16 motion vectors (superimposed on frame) ………………….……….. 
 

41

2.26 Motion compensated reference frame……………………………………… 
 

41

2.27 Motion compensated residual frame…………………………………….….. 
 

42

2.28 MPEG video bitstream……………………………………………..………. 
 

44

2.29 Group of pictures in MPEG-1………………………………….…………… 
 

46

2.30 MPEG-1 forward prediction……………………………………….……….. 
 

48

2.31 MPEG-1 bi-directional prediction………………………………..………… 
 

50

2.32 DCT options for interlaced frame pictures: frame DCT and field DCT          
MC prediction modes for interlaced video…………………….……… 
 

54

2.33 Alternate scan…………………………………………….………………… 
 

56

2.34 VOPs and VO (arbitrary shape) ………………………………….………… 
 

63

2.35 A video scene consisting of three VOs……………………………….…….. 
 

64

2.36 Video scene composed of VOs from separate sources………………….….. 
 

64

2.37 Tools and objects for coding rectangular frames……………………….…... 
 

65

2.38 Video packet structure…………………………………….………….…….. 
 

66

2.39 Reference VOP, current VOP, and reference VOP extrapolated beyond 
boundary …………………………………………………………………… 
 

68

2.40 VOP, GMVs and interpolated vector…….…………………………………. 
 

69

2.41 GMC a) compensating for rotation.  b) compensating for camera zoom…... 
 

70

2.42 I-VOP encoding and decoding stages………………………………………. 
 

70



 ix

2.43 P-VOP encoding and decoding stages…………………………….…...…… 
 

71

3.1 Displacement vector between image at time t and t+δT…………………… 
 

74

3.2 Perspective projection model……………………………….………….…… 
 

79

4.1 Pioneer 2AT mobile robot……………………………………….……….… 
 

96

4.2 Side view of camera setup………………………………………….………. 
 

98

4.3 Top view of camera setup (floor region projected to the image plane is 
shaded) ……………………………………………………………………... 
 

100

4.4 Vanishing point location……………………………………………………. 
 

102

5.1 Flowchart of real-time visual odometry …………………………………… 
 

106

5.2 2Vf  x 2Vf  virtual square used in classifying robot motion ………………... 
 

108

5.3 Method of rejecting outliers for motion FORWARD and BACKWARD … 
 

109

5.4 Method of rejecting outliers for motion LEFT……………………………... 
 

110

5.5 Method of rejecting outliers for motion RIGHT …………………………... 
 

111

5.6 Mapping of line yi on the image plane onto the distance Yi on the floor…… 
 

112

5.7 Robot rotation…………………………………………...………………..… 
 

114

5.8 Motion vectors are grouped into patches …………………………………... 
 

117

6.1 Overall system………………………………………………………...….… 
 

120

6.2 A simplified interface class of CVOdometry………………………………. 
 

122

6.3 A GUI of the real-time visual odometry application ………………………. 
 

124

6.4 Setting view………………………………………………………………… 
 

125

6.5 A GUI of the precipice detection………………………………………..….. 
 

127

7.1 All surfaces used in the experiments of robot translation and rotation ……. 
 

132

7.2 Error percentage of forward translation on lab surface ……………………. 
 

134

7.3 Error percentage of backward translation on lab surface ………………….. 134



 x

 
7.4 Standard deviation of error percentage from forward translation …………. 

 
135

7.5 Standard deviation of error percentage from backward translation ………... 
 

135

7.6 Mean of absolute error percentage from forward translation ……………… 
 

136

7.7 Mean of absolute error percentage from backward translation ……………. 
 

136

7.8 Error percentage of left rotation of 360 degrees on lab surface …………… 
 

141

7.9 Error percentage of right rotation of 360 degrees on lab surface ………….. 
 

141

7.10 Standard deviation of error percentage from left rotation …………………. 
 

142

7.11 Standard deviation of error percentage from right rotation ………………... 
 

142

7.12 Mean of absolute error percentage from left rotation ………………….…... 
 

143

7.13 Mean of absolute error percentage from right rotation …………………….. 
 

143

7.14 Experiment on simulated precipice ………………………………………... 
 

147

7.15 Graph displays the result from the precipice detection by speed ………….. 
 

148

7.16 Precipice detection from different directions: a) left, b) center, and c) right  
 

149

7.17 Graph of precipice detection from different directions (simulated 
precipice)…………………………………………………………………… 
 

151

7.18 Mobile robot detecting real precipice ……………………………….……... 
 

152

7.19 Graph of precipice detection from different directions (real precipice)……. 
 

153

 

 

 

 

 

 

 

 



 xi

LIST OF TABLES 

 

Table 
 

Page

2.1 Probability of occurrence of sample motion vectors………………………... 
 

35

2.2 Huffman codes for sample motion vectors………………………………….. 
 

36

2.3 MPEG-1 data structure……………………………………….……………... 
 

45

2.4 MPEG default intra quantization matrix………………………..…………… 
 

47

2.5 Macroblock types in MPEG-1………………………………….…………… 
 

49

2.6 Breakdown of time in MPEG decoder………………………….…………… 
 

52

2.7 Optional set of MQUANT values…………………………………………… 
 

56

2.8 Parameter constraints according to levels…………………………………… 
 

57

2.9 Profiles and bitrates (Mbps) at each level…………………………………… 
 

57

2.10 Visual profile for natural video……………………………………………… 
 

60

2.11 Visual profile for synthetic and synthetic/natural hybrid visual……..……… 
 

61

2.12 Levels for Simple-based profiles…………………………………….……… 
 

62

3.1 Visual odometry performance by terrain type………………………….…… 
 

92

4.1 Camera parameters………………………………………………………..… 
 

97

4.2 Essential parameters in the robot setup……………………………...……… 
 

103

7.1 Standard deviation (mean absolute) of error percentage (forward)……….… 
 

137

7.2 Standard deviation (mean absolute) of error percentage (backward) …….… 
 

137

7.3 Standard deviation (mean absolute) of error percentage (left rotation) …….. 
 

144

7.4 Standard deviation (mean absolute) of error percentage (right rotation) …... 
 

144

7.5 Precipice detection by speed……………………………………………….... 
 

148

7.6 Precipice detection from different directions (simulated precipice) …….….. 150



 xii

 
7.7 Precipice detection from different directions (stairwell) ……………...……. 

 
152

 

 



 1

CHAPTER I 

 

INTRODUCTION AND RESEARCH MOTIVATION 

 

 Research into an autonomous mobile robot has drawn the attention of numerous 

research groups around the world. The ability to intelligently navigate through different 

environments requires a set of components that cooperatively perform the vehicle 

localization task. A mobile robot, in general, may be equipped with various types of 

sensors to accomplish its navigation task. Such sensory equipment includes sonars, 

bumper sensors, internal compass, wheel encoder, etc. A more sophisticated system may 

also employ a laser range finder, gyroscope correction system, or a Global Position 

System (GPS). However, these accessories are comparatively more expensive. 

Additionally, they mostly perform a single task specific to what they are designed for.  

 A video camera is also considered to be a common piece of sensory equipment. 

The captured image sequence, by its nature, contains an enormous amount of information 

to be extracted. Such information may include image intensity, color components, spatial 

motion, temporal motion, etc. Applications in digital image/video processing have been 

deployed in a variety of research areas. In medical research, for example, scientists utilize 

image processing to perform 3D segmentation of the internal structures in the MR images 

of the human brain [1] [2] for further analysis. Astronomers may use digital image 

processing to restore blurred star field images for discovering new objects in the universe 

[3]. Video surveillance may be used for security concerns. A suspicious person can be 

tracked by a real-time tracking system [4]. A face recognition system [5] can help 



 2

identify a person and may be used with a video surveillance system to authenticate an 

authorized person [6]. An application may use a simple motion detection technique to 

detect an intruder. Optical flow [7] can be used to model the camera motion, thus it can 

be utilized to stabilize a shaky digital video sequence [8] [9] that is caused by a moving 

camera. In addition, optical flow can be used to detect moving objects from a moving 

camera [10] [11] as well. Other research groups have adopted video processing analysis 

to control an autonomous driving system for a vehicle [12] [13].  These are only a few 

examples of how a video camera has been used in a myriad of research fields. 

 Recently, webcam prices keep have continuously dropped. A typical webcam 

capable of capturing RGB pictures may cost as little as $20. As a result of decreasing 

price, the webcam becomes almost a “necessity” that all household computers should 

have. Considering the fact that the video sequence contains substantial useful information 

as described above, video cameras have some promise to become cheap but effective 

robot sensors. One outstanding feature is that they can perform multiple tasks as a single 

unit. These encouraging factors then accelerate the use of video cameras among the 

research societies, especially in robotics. 

 Video cameras are employed in the navigation task in a variety of ways, ranging 

from heading detection, basic obstacle detection and avoidance, to visual odometry. A 

common method in many systems is to attach a video camera to the front of the vehicle, 

simply called an “observer”. Motion fields are created while the observer is moving. 

With a set of constraints applied to how the camera is mounted and the environment 

where the observer is to be traveling, egomotion can then be estimated. Based on the 

perspective model [14], the observer’s heading direction can be computed from 2D 



 3

velocity vectors, which radiate away from the vanishing point, called the Focus of 

Expansion (FOE).  

 Burger and Bhanu, [15] propose a technique, called “Fuzzy FOE”, to compute the 

heading direction of a land-based vehicle. Instead of finding a single conventional FOE, a 

computation of a 2D region of FOE is performed, which they claim to be more robust 

than the conventional one. Dev et al. [16] proposed a technique to drive a mobile robot 

along the center of a corridor. The robot direction is achieved by computing the normal 

surface of the corridor’s walls from the obtained optical flow field. The application can 

operate in real-time without additional supporting hardware. 

 Branca et al. [17] estimate the egomotion from the motion field to determine the 

robot’s direction and the time to collide (TTC) with the environment. The mobile robot is 

restricted to travel on a flat surface in a stationary environment. Stoffler and Schnepf [18] 

[19] created an application for a mobile robot that is capable of detecting potential 

obstacles, roughly estimating their positions, and planning an avoidance task. The 

accuracy of the 3D reconstruction from the 2D motion field on the image plane is 

approximately 10cm. 

 Campbell et al. [20] proposed a new technique for estimating egomotion on which 

a video camera is mounted on a mobile robot so that the optical flow field is divided into 

two portions: the ground region and the sky region which are separated by a horizon line. 

The motion in the ground portion is used to compute the robot translation while the sky 

portion is used to compute the robot rotation. The application is created for the mobile 

robot’s visual odometry. This work is then extended to detect obstacles and precipices in 

[21] based on the technique used in [20]. 



 4

The above systems are implemented generally in such a way that a camera maps 

the 3D environment and projects it to the 2D image plane. Then, a motion field is created 

from the motion information on the image plane. One technique is to use a gradient 

method to compute the optical flow. The method is based on using spatial and temporal 

derivatives of the image intensity. The procedure is extensively time consuming, which 

may not be suitable for real-time systems [22]. Other techniques compute the 

displacement vectors by tracking a set of selected features over the video sequence. The 

method involves selecting good features. The problem in this method is how to define 

good features. Furthermore, a tracked feature will eventually disappear from the image 

plane. Thus, it is necessary to find new features to replace those that are about to move 

out of view. A block-based approach is then introduced to eliminate the long-term 

tracking. Instead of creating displacement vectors from the selected tracked feature, the 

current image is divided into blocks of sub-images. The displacement vectors are 

computed by applying a gradient method, finding correspondence features, or calculating 

a sum of absolute of the selected blocks with respect to a search region in the previous 

frame.  

  

 

Research Motivation 

As is widely known, in order to develop an application based on the above 

techniques, it can be very difficult in general and may require a high-level knowledge in 

mathematics. In real-time applications, the gradient method, in particular, demands high 

computational costs (and thus time) to process each image frame on a pixel-by-pixel 



 5

basis. Furthermore, the implementation of efficient code is very difficult and also requires 

a high level of programming skill in order to obtain highly efficient code that meets the 

real-time constraints. 

The recent development of standardized streaming video technologies, such as 

MPEG-1, MPEG-2, MPEG-4, Quicktime®, and the H26x series, may be exploited as an 

existing platform of highly efficient code for developing computer or robot vision 

applications. These coding systems employ motion estimation and motion compensation 

methods based on blocks of an image, called “macroblocks”, to predict a subsequent 

frame from the previously coded frame as its reference. The predicted frame basically 

consists of motion information, called “motion vectors”, and the residual data that is 

associated with the particular macroblock. The motion vector is the offset from the 

current macroblock in the predicted frame to the reference region in the reference frame, 

whereas the residual data refer to the difference between the values in the current 

macroblock and the reference region. These motion vectors, especially, provide very 

valuable information that describes the motions occurring on a frame-to-frame basis in 

the video sequence. This useful information is freely available and can be accessed for 

further processing techniques and developments. A simple application such as a motion 

detection system can simply utilize these motion vectors in order to detect the changes in 

the image plane. If motion values become significant or above some threshold value, the 

system may alert the user by sending an email attached with the captured images or 

generate a warning sound to expel the intruder. However, a more sophisticated 

application may utilize the motion information to estimate the optical flow in the video 

sequence. This optical flow analysis is very useful for applications such as high-level 



 6

motion detection, video segmentation, object tracking [23], etc. Furthermore, it can also 

be used to model the motion of the camera and the moving objects in the scene [10], 

which is essential for an autonomous driving system for a ground vehicle [24], mobile 

robot [25], or helicopter [26]. Since the processing operation is performed on a block-

based basis instead of pixelwise, the computational time spent on analyzing the motion 

information becomes smaller than pixel-based techniques. This is extremely suitable for 

real-time applications. 

 In this work, a low-cost solution to the visual odometry problem is proposed. A 

cheap webcam is attached to the front side of a mobile robot traveling on flat surfaces and 

restricted to performing translation and rotation, one at a time. The captured images are 

converted to the YUV420 format and fed to an MPEG encoder. Next, the motion field is 

constructed from the motion vectors obtained from the motion estimation module. The 

potential raw motion vectors are projected onto a virtual square that is used to determine 

the robot motion based on the majority vote method. As a result, a selected outlier 

rejection technique is employed in accordance with the resulting robot motion. Finally, 

the robot travel distance or rotation angle can be calculated from the valid motion vectors. 

 Furthermore, this low-cost motion field detector may be used in detecting a 

precipice while the robot is moving forward. A filtered motion field from the above 

technique is divided into 3 rows with 5 patches each. The detection stages of 

WATCHING, WARNING, and PANIC, are applied to the top, middle, and bottom rows, 

respectively. If the PANIC row is activated, the robot will stop immediately to protect it 

from potential damage. 



 7

 The main focus of this work is to leverage the implementation of the motion field 

creation by means of utilizing what is already available from existing technology. The 

MPEG encoder, by its nature, performs the motion estimation to minimize the amount of 

residual data in the video. One benefit from deploying the MPEG encoder in the motion 

field construction is complexity reduction. Additionally, the process of modifying the 

software encoder to export its motion vectors is fairly simple and less time-consuming 

than creating the motion field from scratch. But considering the fact that the MPEG 

encoder performs motion estimation to optimize the video compression, rather than 

optimizing for motion estimation, this leaves some issues to be investigated. Since the 

quality of the visual odometry is determined by how accurately the system can perform, 

the questions that need to be answered are how good is it to use the MPEG motion 

vectors for this work and how accurate is the resulting system? 

 In the experiments, the performance of the proposed real-time visual odometry 

system is compared to those obtained from wheel encoders. The results indicate that the 

visual odometry is sufficiently accurate for use in a mobile robot that has no wheel 

encoder. It may also be used in cooperation with wheel encoders to enhance the accuracy. 

Nevertheless, the performance of the visual odometry is less consistent than the wheel 

encoder. In addition, it relies on the degree of the visual texture present in the floor. The 

performance will deteriorate considerably for a floor that causes large areas of glare. 

 However, one missing feature in many mobile robot sensor systems is the ability 

to detect a precipice. It is possible to detect a precipice by using a laser range finder 

scanning in a vertical direction attached to the front of a mobile robot. This may be 

successful but is often not a cost-effective means to resolve the problem.  Consequently, 



 8

this inexpensive MPEG motion field estimate is applied to develop low-cost precipice 

detection. This work is inspired by the pixel-based precipice detection by Campbell et al., 

[21]. Our experiments demonstrate highly successful results. It is believed that this is the 

first implementation of precipice detection employing MPEG motion vectors. 

  

 

Thesis Outline 

This thesis specifically investigates employing MPEG motion vectors in mobile 

robot navigation. Two real-time applications are created. One is to study the feasibility of 

whether the MPEG motion vectors will be sufficiently accurate for the visual odometry 

application. The other is use these obtained motion vectors to detect a precipice. The 

thesis organization is given as follows. 

Chapter II gives a detailed background study of how digital video processing 

works. This is the infrastructure of the implementation of this work. The techniques of 

video compression, in general, will be given. The second part of the chapter then 

describes the MPEG standard in some detail. The key topics related to the application 

design and implementation are provided. 

Chapter III discusses related work regarding visual motion analysis and mobile 

robot visual navigation. It starts with explaining methods for creating the visual motion 

field. Next, techniques used to recover the camera motion from the 2D motion field on 

the image plane are given.  Then, the application of the mobile robot navigation is 

described. 



 9

Chapter IV describes the hardware components as building blocks of the system. 

The hardware composition and setup will be given. The issues of software selected to 

implement the system are also mentioned. 

 Chapter V mainly describes the system design. The proposed approaches to 

tackling the problems will be given. Starting from how to obtain the motion field from 

the MPEG encoder, the chapter then proposes a technique for implementing a real-time 

visual odometry application. Finally, it proposes a method of detecting a precipice. 

 In Chapter VI, the given hardware components and software design are 

implemented. The system as a whole will be depicted. Then, the graphical user interfaces 

(GUI) of both applications are shown. The setup parameters, which are important to the 

system performance, are provided as well. 

 Chapter VII describes how the experiments are to be conducted. The application 

setup prior to the experiments will be explained. The experimental results are shown in 

graphical and numeric formats, and the data analysis and discussion is given. The chapter 

concludes by describing particular useful observations obtained during the experiments. 

 Chapter VIII gives the conclusions of this thesis. At the end, it discusses future 

work that may be extended from this work. 

 

 

 

 

 

 



 10

CHAPTER II 

 

DIGITAL VIDEO PROCESSING AND MPEG TECHNOLOGY 

 

Digital Video Signal 

A digital video signal [27] is composed of a series of still images, representing a 

natural visual scene, sampled spatially and temporally as shown in Figure 2.1. A scene 

may be represented as a frame or field, where a field may be classified as top (odd) or 

bottom (even) field in a particular frame. (Fields are also used with interlaced sampling 

as shown in Figure 2.2.) Each subsequent frame is then sampled at intervals to produce a 

moving video signal. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Spatial and temporal sampling of a video sequence. 

 

Spatial 

Temporal 



 11

Spatial Sampling and Temporal Sampling 

Each sampled pixel on an image occurs at each of the intersection points on the 

grid. The most common format for a sampled image is a rectangle with the sampling 

points positioned on a square or rectangular grid. The image quality varies as the number 

of sampling points/rates. A higher spatial sampling rate produces a higher quality image. 

Each image/frame in a moving video signal is taken at a periodic time interval measured 

by the number of frames per second. A higher temporal sampling rate produces a 

smoother playback. Typically, frame rates below 10 frames/second are used for very low 

bit-rate video communications. However, the motion in the playback process is clearly 

jerky. The frame rates between 10 and 20 are more typical for low bit-rate video 

communications. The motion is smoother but may suffer from a little jerkiness in fast-

motion scenes. Sampling at 25 or 30 complete frames per second is standard for 

television pictures (PAL [28] utilizes 30 frames/second, while NTSC [29] utilizes 25 

frames/second). 

 

 

 

 

 

 

 

 

 

Figure 2.2: Interlaced video sequence. 

Top/Odd field Top/Odd field Bottom/Even field Bottom/Even field



 12

Progressive and Interlaced Sampling 

 A video signal may be sampled using progressive sampling or interlaced 

sampling. Progressive sampling uses complete frames in a video sequence, while 

interlaced sampling divides each complete frame into two fields: odd (Top) field and 

even (bottom) field as indicated by the scan-lines as shown in Figure 2.2. The interlaced 

sampling method can send twice as many fields per second as the number of frames in an 

equivalent progressive sequence at the same data rate. As a result, it gives smoother 

motion in the playback process.  

 

Color Spaces 

A color image requires at least three components to accurately represent colors. A 

color space method describes the representation of brightness (luminance or luma) and 

color (chrominance or chroma). Commonly used color spaces include RGB, YCrCb, and 

YCrCb sampling formats. 

 

RGB 
In the RGB color space, any color can be created by the combination of three 

additive primary colors of light: Red, Green, and Blue. Therefore, an RGB image is 

typically composed of red, green, and blue components of varying shading. A typical 

application uses 8 bits/color or 224 unique colors, providing over 16 million colors. 

 

YCrCb 
The YCrCb color space, also known as YUV, separates color image into two 

major components (luminance and chrominance) and can be derived from the RGB color 



 13

space. The luminance component (Y) represents the brightness of each pixel in the 

image, which can be computed as a weighted average of R, G and B: 

 

Y = krR  +  kgG  +  kbB Eq (2.1)

 

Where the k’s are weighting factors. These values may vary according to various 

standards. 

The chrominance, on the other hand, represents the color difference components. 

Each component is the difference between R, G, or B and the luminance Y as described 

by: 

 

YBCb −=  Eq (2.2)

YRCr −=  Eq (2.3)

YGCg −=  Eq (2.4)

 

 

YCrCb Sampling Formats 

The YCrCb sampling format is the extension of YCrCb by adding the sampling 

format as the indication of the resolution for each component. Since human eyes are less 

sensitive to the chrominance than the luminance, some coding systems may choose to 

encode the Y component at a higher rate than Cr and Cb.   

There are three sampling formats used in this color space: 4:4:4, 4:2:2, and 4:2:0. 

Format 4:4:4 indicates that all three components have the same resolution. In the 4:2:2 



 14

sampling format (sometimes referred to as YUY2), the chrominance components have the 

same vertical resolution as the luminance but half the horizontal resolution. The 4:2:2 

video format is usually used for high quality color reproduction. The 4:2:0 sampling 

format, sometimes called “YV12”, seems to be the most popular format. It is used widely 

in video conferencing, Video CD (VCD), digital television, and DVD. The chrominance 

components are sub-sampled by 2 in both directions. Thus, the number of samples for 

each color component contains only a quarter of the samples in the Y component and it 

requires only half the samples of the 4:4:4 video format. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Allocation of 4:2:0 samples to top and bottom fields [27]. 

 

 

Top field 

Top field 

Top field 

Bottom field 

Bottom field 

Bottom field 

Y sample 

Cr sample 

Cb sample 



 15

Video Coding 

Typically, most video signals are composed of similar frames, which were 

captured at a series of consecutive times. Most consecutive frames are temporally 

correlated. In each of those succeeding frames, the neighboring pixels are usually 

spatially similar to each other. As a result, most video coding methods exploit both 

redundancies in order to reduce the amount of video information needed for transmission 

or storage. 

 

 

 

 

 

 

 

Figure 2.4: Video encoder/decoder. 

 

 

From Figure 2.4, a video encoder encodes a source image or video sequence into 

a compressed form and either transmits it directly to the decoder or stores it in a video 

storage medium. The decoder, then, decodes this compressed data to produce a copy or 

an approximation of the source sequence. If the decoded video  sequence is identical to 

the original, then the coding process is called “lossless”; if the decoded sequence differs 

from the original, the process is called “lossy”.  

Note: The video encoder/decoder pair is often described as a CODEC(enCOder/ DECoder). 

enCOder DECoder 
Transmit 

or 
Store 

display 
Video source 



 16

Temporal Model 

As mentioned earlier, most frame sequences are highly correlated. Therefore, the 

primary goal of a temporal model is to reduce the redundant information between 

consecutive frames. A simple ideal is to create a predicted current frame by subtracting 

from its raw data the reference frame (previous frame, future frame, or both).  This yields 

a difference frame, also called the “residual” frame. This residual frame, which actually 

has less information, will be encoded and sent to the decoding system at the receiver. The 

decoder uses this residual frame and reference frame to create a predicted current frame. 

 

Prediction from the Previous Frame 

This method employs the previous frame as a reference to produce the current 

predicted frame. The residual frame, as shown in Figure 2.5c, is created by subtracting 

the previous frame (Figure 2.5a) from the current frame (Figure 2.5b). From Figure 2.5c, 

however, the residual frame still contains a lot of information to be compressed. (The 

difference between two frames is indicated by light and dark grays).  A better prediction 

for the residual frame is to compensate for the motions occurring between the two 

frames. The differences may occur from object motions such as rigid object motion (a 

moving car), deformable object motion (a rotating asymmetric object), camera motion 

(pan, tilt, zoom, rotation), uncovered region (occluded object), or lighting changes. 

Except for the last two factors, a difference frame may be modeled as the movements of 

the pixels in the video frame. Consequently, it is possible to estimate the trajectories 

between those two consecutive frames. Then, we can create a frame/field of trajectory 

pixels, which is also known as “optical flow”. Figure 2.6 shows the optical flow from 



 17

Figure 2.5a and 2.5b. Nevertheless, accurate optical flow estimation requires extensive 

computation, since it may be required to compute the trajectories for all pixels in the 

frame. As a result, there is still a huge amount of information to be sent to the decoder.  

 

 

 

a) 

 

b) 

 

 

 

c) 

 

Figure 2.5:  a) Frame 1,  b) Frame 2,  c) Residual (no motion compensation). 



 18

 

 

Figure2.6: Optical flow. 

 

 

Block-Based Motion Estimation and Compensation 

A widely used method of motion compensation is to divide a current frame into 

blocks of MxN pixels and compensate for movement in those blocks.  This can simply be 

done by searching in the reference frame for the best matching block in the search area. 

Usually, the best match is considered as the candidate region that gives the minimum 

residual energy. This process of finding the best match is known as motion estimation. 

Examples of a number of matching criteria can be found at [30] [31] [32]. The chosen 

region is then subtracted from the current block to form a residual MxN block (motion 

compensation).  



 19

 Since the motion is considered as a block instead of a pixel, block-based motion 

compensation can significantly reduce the residual energy in the predicted frame. 

Realistically, most objects are not rectangular. Several types of objects, such as 

deformable objects, rotation and warping, complex motion, are hard to compensate by 

using the block-based method. However, block-based motion compensation remains the 

most common temporal model used by all current video coding standards including 

MPEG-1, 2, 4 and the H26x series. 

The most popular video coding systems, such as MPEG-1 [33], MPEG-2 [34], 

MPEG-4 Visual [35], H.261 [36], H.263 [37] and H.264 [38], employ a block of 16x16 

pixels, called a macroblock. An example of the video 4:2:0 format is shown in Figure 2.7. 

The luminance is composed of four 8x8-sampled blocks. The chrominance components, 

blue and red, are sub-sampled and composed of one 8x8 block. 

 

 

 

  

 

 

 

 

Figure 2.7: Macroblock (4:2:0). 

 

The macroblock motion estimation is performed by finding the best match of a 

16x16-pixel region in the search area as shown in Figure 2.8. The residual macroblock is 

16 

16 

16x16 region 
in color picture 

0 1

2 3

16 

16 

Y 

4

Cb 

8 

8 

5

Cr

8 

8



 20

created by subtracting the selected matching region from the current macroblock. The 

residual is then encoded and sent to the decoder along with its motion vector (d), the 

offset from the current macroblock to the reference region. An example of motion vectors 

from 16x16-block frames is displayed in Figure 2.9. It is obvious that the amount of 

information contained in the frame is significantly smaller than the ones represented by 

the optical flow as shown in Figure 2.6 

If there is a major difference between the reference and the current frames, some 

macroblocks may be coded without motion compensation, the intra mode, and some may 

be coded with compensation, the inter mode. This can be done on a macroblock-to-

macroblock basis, depending primarily on the contents in each macroblock. If the 

difference is too substantial, the whole frame may have to be coded without motion 

estimation and compensation at all. This kind of frame is called an “intra frame”, and is 

called an “inter frame”, otherwise. In some cases, the reference frame may be selected 

from the previous frame, the next future frame, or both. Therefore, it is possible that the 

future predicted frame may have to be encoded before the current predicted frame. 

 

 

 

 

 

 

 

 

Figure 2.8: Macroblock motion estimation. 

Reference 

Search area 

Best match 

Current frame 

Current macroblock 

d 



 21

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Motion vectors of a 16 x 16 block frame. 

 

 

Image Model 

Most images have high correlation in neighboring samples. It is hard to compress 

them in their original form, thus the primary function of the image model is to decorrelate 

the image or the residual data further so that it can be converted into a form that can be 

efficiently compressed using an entropy coder [39]. 

In order to achieve more efficient compression, practical image models typically 

perform three main operations: transformation (decorrelates and compacts the data), 

quantization (reduces the precision of the transformed data), and reordering (arranges the 

data to group together significant values). 

 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 

. . . . . . . . . . . 



 22

Predictive Image Coding 

A main function of predictive image coding is to compare the current component 

with the previous or future component(s).  Then it computes the difference/residual 

between the current and the reference components. The goal is to reduce the number of 

information in the residual component. The more accurate the prediction, the less energy 

that is left to be compressed. Motion compensation is an example of predictive coding. In 

this scheme, a region of a current frame is predicted according to the previous frame. The 

selected region is then subtracted from the current region to produce a motion-

compensated residual. 

Predictive coding is also used to predict an image sample, or region, based on the 

previously-coded samples or region within the same image or frame. This is also used for 

Intra coding in H.264 [40]. The spatial prediction is sometimes called “Differential Pulse 

Code Modulation” (DPCM), which is named after a method of differentially encoding 

PCM samples used in telecommunications system. 

 

Transform Coding 

The primary goal of this procedure is to convert image or motion-compensated 

residual data into another domain (the transform domain). Typical tranforms in image 

and video compression fall into block-based and image-based transforms. Currently, the 

most common of the block-based transforms is the Discrete Cosine Transform (DCT). In 

the DCT, an image is divided into, and operated on, NxN blocks. Its advantages are that it 

requires low memory for its operation, and fits into the compression of block-based 

motion compensation. On the other hand, the most common image-based transform is the 



 23

Discrete Wavelet Transform (DWT). The DWT operates on the entire image or frame, 

known as the tile. Even though it performs better on still images than the DCT does, it is 

not suitable for video compression, because it requires more memory and it does not fit 

block-based motion compensation. Therefore, the DWT will not be discussed in this 

paper. 

 

Discrete Cosine Transform (DCT) 

The DCT operates on X, an NxN block, and produces Y, an NxN block of 

coefficients, as its output. This process is invertible. The forward DCT (FDCT) and 

inverse DCT (IDCT) are given in (2.5) and (2.6) respectively. 

 

Y = AXAT Eq (2.5)

X = ATYA Eq (2.6)

 

Where X is a matrix of sampled pixels 

 Y is a matrix of coefficients 

 A is a transform matrix 

 AT is a transpose of matrix A. 

 

The elements of A are given by: 

 

N
ijCA iij 2

)12(cos π+
=      where  

N
Ci

1
=     (i=0) 

N
Ci

2
=    (i > 0)       Eq (2.7) 

 



 24

Then, equations 2.5 and 2.6 can be written in summation form as: 

 

∑∑
−

=

−

=

++
=

1

0

1

0 2
)12(cos

2
)12(cos

N

i

N

j
ijyxxy N

xi
N

yjXCCY ππ  
Eq (2.8) 

 

∑∑
−

=

−

=

++
=

1

0

1

0 2
)12(cos

2
)12(cos

N

x

N

y
xyyxij N

xi
N

yjYCCX ππ  
Eq (2.9)

  

An example of a 4x4 transform matrix A is given in 2.10: 

 





























































































































=

8
21cos

2
1

8
15cos

2
1

8
9cos

2
1

8
3cos

2
1

8
14cos

2
1

8
10cos

2
1

8
6cos

2
1

8
2cos

2
1

8
7cos

2
1

8
5cos

2
1

8
3cos

2
1

8
cos

2
1

)0cos(
2
1)0cos(

2
1)0cos(

2
1)0cos(

2
1

ππππ

ππππ

ππππ

A      Eq (2.10) 

 

The cosine function is symmetrical and repeats after 2π radians and hence A can 

be simplified to: 



































−














−








−−







−






−
















=

8
3cos

2
1

8
cos

2
1

8
cos

2
1

8
3cos

2
1

2
1

2
1

2
1

2
1

8
7cos

2
1

8
5cos

2
1

8
3cos

2
1

8
cos

2
1

2
1

2
1

2
1

2
1

ππππ

ππππ

A      Eq (2.11) 

or 



 25



















−−
−−

−−
=

cbbc
aaaa
bccb

aaaa

A  

 

Eq (2.12)

where  
2
1

=a  ,  





=

8
cos

2
1 πb ,  






=

8
3cos

2
1 πc   

Evaluating the cosine gives: 



















−−
−−

−−
=

271.0653.0653.0271.0
5.05.05.05.0
653.0271.0271.0653.0
5.05.05.05.0

A  

 

Eq (2.13) 

 

 

These coefficients in the DCT domain can be considered as “weights” of a set of 

standard basic patterns. The basic pattern for the 4x4 and 8x8 DCT’s are given in Figure 

2.10 and Figure 2.11 respectively and are composed of combinations of horizontal and 

vertical cosine functions. Any image block may be reconstructed by combining all NxN 

basis patterns, with each basic pattern multiplied by the appropriate weighting factor 

(coefficient). 

 

 

Figure 2.10: 4x4 DCT basis patterns [27]. 



 26

 

Figure 2.11: 8x8 DCT basis patterns [27]. 

 

Quantization 

This process is a way to represent a quantized signal with fewer bits than the 

original signal. It can be done by reducing the range of input values to a smaller range in 

the output. The process falls into two main categories, scalar quantization and vector 

quantization. 

 

 Scalar Quantization 

Scalar quantization maps one value of input to one quantized value of output. An 

example is to round a floating-point number to the nearest integer. The process is “lossy” 



 27

since the rounded integer cannot be inverted to its original value. A simple example of a 

uniform quantizer is given as follows: 

 









=

QP
XroundFQ  

 
Eq (2.14)

 
FQQPY ⋅=  

 
Eq (2.15)

 









⋅=

QP
XroundQPY  

 

 
Eq (2.16) 

 
FQ = round(X/QP) 

 
Eq (2.17)

 
Y = QP.FQ 

 
Eq (2.18) 

 
Y = QP.round(X/QP) 

 
Eq (2.19)

 

where QP is a quantization, step size.  

 

The quantized output values, Y, are spaced at uniform intervals of QP. The 

essential parameter to consider is the step size QP. If the step size is large, the forward 

quantizer (FQ) produces small quantized values. The compression efficiency then 

becomes high but the inverse quantizer (IQ) produces output values with a crude 

approximation (higher error). Hence, the output quality is lower. On the contrary, if the 

step size is small, the de-quantized values in the inverse quantizer will be closer to the 

original values, producing higher quality outputs, but the compression efficiency 

becomes lower. 



 28

Figure 2.12 depicts two samples of scalar quantizers: linear and nonlinear 

quantizers. The linear quantizer maps linear inputs to linear output, whereas the nonlinear 

quantizer maps small values in the input to zero. The big gap near the zero value in the 

output is called the “dead zone”. The video encoder utilizes the forward quantization to 

reduce the precision of the image data. This is utilized by mapping insignificant 

coefficients after DCT transformation to zero, while retaining the significant coefficients 

outside the dead zone. 

 

 

 

 

 

 

 

 

 

Figure 2.12: Scalar quantizers: linear, nonlinear with dead zone. 

 

Vector Quantization 

Vector quantization maps a group of input values, such as a block in the image, to 

a single value, the codeword (typically an integer). A simple idea for understanding 

vector quantization is that both the encoder and decoder have a set of vectors stored in a 

codebook. The encoder divides the image into MxN blocks and finds a vector that best 

matches an input block. Only the vector index is transmitted to the decoder. The decoder, 

4 

3 

2 

1 

432 1 

-1 -2 -3 -4 0 
Input

Output 

Linear 

-1 

-2 

-3 

-4 

4

3

2

1

43 2 1 

-1-2-3-4 0 
Input

Output 

-1 

-2 

-3 

-4 

dead 
zone 

Nonlinear 



 29

on the other hand, uses the index to look up the vector in its codebook and outputs the 

result as illustrated in Figure 2.13. 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Vector quantization. 

 

Reordering and Zero Encoding 

After the DCT coefficients have been quantized, the majority of the quantized 

coefficients become zero. However, the data order is not quite uniform. The reordering 

process groups non-zero coefficients together, so that entropy encoding, which will be 

described later in this chapter, can perform more efficiently. 

 

DCT Coefficient Distribution 

A transformed block of image or residual samples typically contains low 

frequencies. Its non-zero coefficients are generally clustered around DC (0, 0) at the 

upper left corner as shown in Figure 2.14. The distribution is fairly symmetrical in both 

 
Codebook 

 
Vector 1 
Vector 2 

… 
Vector N 

 
Codebook

 
Vector 1 
Vector 2 

… 
Vector N 

Input 
block 

Output
block 

Transmit 
code index 

 
Find best 

match 

Encoder 

 
Look up

Decoder



 30

the horizontal and vertical directions. In the residual field as shown in Figure 2.15, the 

non-zero coefficients are also clustered around the DC position but are skewed. Figure 

2.16 illustrates the distribution of a field of coefficients, where most non-zero coefficients 

occur on the left hand side of the plot. Since the picture is subsampled in the vertical 

direction, the vertical axis then contains strong high-frequency components resulting in 

larger DCT coefficient in the vertical direction. 

 

 

Figure 2.14: 8x8 DCT coefficient distribution of the image in Figure 2.5c (frame). 

 

 

 

 

Figure 2.15: Residual field picture. 



 31

 

 

 

Figure 2.16: 8x8 DCT coefficient distribution (field). 

 

 

Scanning DCT Coefficients 

As mentioned above, most of the non-zero coefficients in the frame distribution 

concentrate around the DC position, leaving the zero coefficients lying outside. Hence, 

we can take advantage of this scenario by reordering the DCT coefficients in such a way 

that the non-zero values are grouped together. One common method is by zigzag 

scanning the order of coefficients starting from the DC coefficient as displayed in Figure 

2.17. However, this zigzag scan is not applicable to the field coefficients because of its 

skewed distribution. The scan order must be modified to suit the skewed distribution as 

shown in Figure 2.18. 

 

 



 32

 

 

 

 

 

 

 

 

 

Figure 2.17: Zigzag scan order (frame block). 

 

 

 

 

 

 

 

 

 

Figure 2.18: Zigzag scan order (field block). 

 

Run-Level Encoding 

After quantization and reordering, high-frequency coefficients are typically 

quantized to zero and grouped together. Thus, the output of the reordered coefficients is 



 33

an array of one or more clusters of nonzero coefficients followed by a number of zero 

coefficients. A number of consecutive zeros can be represented as a series of (run, level) 

pairs, where run indicates the number of zeros preceding a nonzero coefficient and level 

indicates the magnitude of the nonzero coefficient. For example, an input array 

containing [16,0,0,-3,5,6,0,0,0,0,-7....] can be represented as (0,16),(2,-3),(0,5),(0,6),(4,-

7)..... Each run-level pair is then encoded as separate symbol by the entropy encoder. 

In some cases, a special code symbol, last, is required to indicate the final 

nonzero coefficient in the input array. This “Two-dimensional” (run, level) encoding is 

used to encode each run-level pair as usual and a last is encoded to indicate the end of 

nonzero coefficients. However, if “Three-dimensional” run-level encoding is used, each 

symbol encodes three quantities, run, level, and last. From the example above, if –7 is the 

final nonzero value, its output in 3D run-level coding can be written as (0,16,0), (2,-3,0), 

(0,5,0), (0,6,0), (4,-7,1), where “1” in the final code indicates the final nonzero coefficient 

in the array input. 

 

Entropy Encoder 

The entropy encoder converts a series of symbols representing elements of the 

video sequence into a compressed bitstream, which makes it more suitable for 

transmission or storage. The input symbols include quantized transform coefficients, 

motion vectors, resynchronization marker, headers of macroblock, picture, sequence, and 

some other supplementary information. This section will discuss the methods of 

predictive pre-coding followed by two entropy coding techniques: Huffman variable 

length codes and arithmetic coding. 



 34

Predictive Coding 

The data in a frame such as blocks, macroblocks, and motion vectors seem to be 

correlated to their neighbors. The DC values in adjacent intra-coded block as well as the 

neighboring motion vectors may be very similar to each other as well. Hence, the coding 

efficiency may be improved by predicting the elements in the block or macroblock with 

the previously encoded one. Then, only the different value is left to be encoded. In case 

of a large object moving or camera pan, for instance, the adjacent macroblocks in the 

moving area are likely to have similar displacement. A vector for the current macroblock 

may be predicted from the previous coded value. Then, the difference between the 

predicted and actual motion vector (Motion Vector Difference or MVD) is encoded and 

transmitted. 

 

Variable-Length Coding 

Variable-length coding is a way to compress data by mapping input symbols into 

a shorter form of codewords (variable-length codes, VLCs). 

 

Huffman Coding 

Huffman coding [41] constructs a set of VLCs according to the probability of the 

occurrence of each symbol. The resulting VLCs are then assigned to each symbol. 

Typically, the most commonly occurring symbol contains the shortest codeword.  

The procedure of Huffman coding starts with creating a probability table and 

generating a Huffman code tree. Then the encoding and decoding process can be obtained 

by using the Huffman code tree. The example of Huffman coding given below 



 35

demonstrates how to encode and decode a set of motion vector differences (MVD) for a 

video sequence. Table 2.1 lists the probability of the motion vectors in the video 

sequence. Log2(1/p) represents the number of bits utilized to achieve optimum 

compression. Figure 2.19, displays the Huffman code tree with the binary symbols (0,1) 

associated with each edge. The leaves of the binary tree represented by square boxes are 

the MVD values at which each leaf is mapped to a VLC. Each VLC can be found by 

traversing the tree from the root to the leaf, the target value. For example, the series of 

vectors (1, 0, -2) would be transmitted as the binary sequence 0111000. Table 2.2 lists all 

codes generated from the tree. The decoding process is very straightforward. Given the 

Huffman tree and a sequence of encoded binary, each uniquely-decodeable code is 

converted back to the original data, for example: 011 is decoded as (1), 1 is decoded as 

(0), and 000 is decoded as (-2). 

 

 

Table 2.1: Probability of occurrence of sample motion vectors. 

Vector Probability p log2(1/p) 
-2 0.1 3.32 
-1 0.2 2.32 
0 0.4 1.32 
1 0.2 2.32 
2 0.1 3.32 

 

 

 

 

 

 



 36

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Huffman code tree for sample motion vectors. 

 

 

Table 2.2: Huffman codes for sample motion vectors. 

Vector Code Bits (actual) Bits (ideal) 
0 1 1 1.32 
1 011 3 2.32 
-1 010 3 2.32 
2 001 3 3.32 
-2 000 3 3.32 

 

 

In the MPEG encoder, an MVD is encoded as a pair of VLCs, one for the x 

component and another for the y component. However, one major disadvantage of 

Huffman-based codes is that they are sensitive to transmission errors. If an error occurs in 

the VLC bitstream, it can cause the decoder to lose synchronization and fail to decode the 

0 

0 

A

-2 2

B

-11 

C

D

0 

0 

1 

1 

1 1 0 

p=1.0 

p=0.6 

p=0.4 

p=0.1 

p=0.4 

p=0.2 p=0.2 

p=0.2 

p=0.1 



 37

following codes correctly. The error may also spread to the decoded sequence. Reversible 

VLCs (RVLCs) [42] that can be successfully decoded in either the forward or backward 

direction can resolve this problem and prevent error propagation. 

 

The Hybrid DPCM/DCT Video CODEC Model 

Most major video coding standards, such as H.261 [36], H.263 [37], MPEG-1 

[33], MPEG-2 [34], MPEG-4 Visual [35] and H.264 [38], employ the same generic 

model, which includes motion estimation and compensation (also known as DPCM), 

transform coding, and entropy coding. This model is described as a hybrid DPCM/DCT 

CODEC. The block diagrams of the video encoder and decoder are shown in Figures 2.20 

and 2.21 respectively. The encoder predicts the current frame Fn using frame F’n-1 as a 

reference to produce the coded bitstream, whereas the decoder conversely decompresses 

the coded bitstream to reconstruct the current frame F’n for a playblack. 

 

 

 

 

 

 

 

 

 

Figure 2.20: DPCM/DCT video encoder. 

 

DCT Quant

IDCT Rescale Reorder 

Entropy
Encode

Fn 
(current) 

F’n-1 
(ref) 

Motion 
Estimation 

Motion 
Compensation

F’n 
(reconst) 

Vectors 
and header 

Dn 

D’n 

+

+

+

-
Coded 

bitstream

P

X



 38

 

 

 

 

 

Figure 2.21: DPCM/DCT video decoder. 

 

 

 The video encoder in Figure 2.20 is divided into two parts according to the flow 

of the signals. The flow of left to right represents the encoding part, while the flow of 

right to left represents the reconstruction part. In the encoding operation, the input frame 

Fn is processed in a macroblock unit. The motion estimation uses the previous 

reconstructed frame F’n-1 as a reference to find the best matching region and the offset 

(motion vector) for the current macroblock. Then, a motion compensated prediction P is 

created. After that, P is subtracted from the current macroblock to generate a residual Dn. 

Dn is typically divided into four 8x8 blocks and each block is transformed using DCT. 

The coefficients from the DCT are quantized, reordered, and run-level coded. Finally, the 

coded coefficient, motion vector, and associated header information of the current 

macroblock are entropy encoded to produce the coded bitstream. 

 The decoder in Figure 2.21 simply reverses the encoding procedure in the encoder 

part. First, it entropy decodes the coded bitstream to extract the macroblock header, 

motion vector, and the coded coefficients from the bitstream. The coefficients are then 

reorder and rescaled (dequantized). After that, the decoded residual D’n is created by the 

inverse DCT. At this point, the decoded motion vector is extracted and can be used to 

IDCT Rescale Reorder 
Entropy
Encode

F’n-1 
(ref) 

Motion 
Compensation 

F’n 
(reconst) 

Vectors 
and header 

D’n 
+

+

Coded 
bitstreamP

X



 39

locate the 16x16 region in the previous decoded frame F’n-1. This region now becomes 

the motion compensated prediction P. Finally, P is added to D’n to generate a 

reconstructed macroblock. Once this reconstruction for frame F’n is completed, the 

reconstructed frame is ready for display and may be saved for further decoding in frame 

F’n+1. 

 Note that, the reconstruction part in the encoder, shown in Figure 2.20, is similar 

to the decoder. This is to make sure that the encoder and decoder use the same 

reconstructed frame to generate the motion compensated prediction. This is to prevent the 

problem of a cumulative mismatch (“drift”) between the encoder and decoder. 

 Figures 2.22-2.27 [27] illustrate the sample input frame Fn, reconstructed 

reference frame F’n-1, residual frame, Fn – Fn-1, with no motion compensation, 16×16 

motion vectors (superimposed on frame), Motion compensated reference frame, and 

motion compensated residual frame respectively.  

 

 

Figure 2.22: Input frame Fn. 



 40

 

Figure 2.23: Reconstructed reference frame F’n-1. 

 

 

 

 

Figure 2.24: Residual Fn –F’n-1 (no motion compensation). 

 



 41

 

 

Figure 2:25: 16x16 motion vectors (superimposed on frame). 

 

 

 

Figure 2.26: Motion compensated reference frame. 



 42

 

 

Figure: 2.27: Motion compensated residual frame. 

 

 

MPEG Standard 

“MPEG, which stands for Moving Picture Experts Group, is the name of a family 

of standards used for coding audio-visual information (e.g., movies, video, and music) in 

a digital compressed format.” [43]. MPEG was first established in 1988. The definition of 

the video algorithm (Simulation Model 1) was completed by September 1990 and the 

MPEG-1 standard was approved as an international standard by late 1992. The MPEG 

family of standards includes MPEG-1, MPEG-2 and MPEG-4, formally known as 

ISO/IEC-11172 [33], ISO/IEC-13818 [34] and ISO/IEC-14496 [35] respectively. MPEG 

standards are mainly categorized as Systems, Video, and Audio standards. MPEG 

Systems specify how to multiplex MPEG Video and Audio bitstreams into a single 

stream. An MPEG System stream contains the proper timing information so that MPEG 



 43

players (or decoders) can playback the video and the audio properly synchronized. 

MPEG Audio, in particular, is a subgroup of MPEG working on all audio aspects of the 

MPEG standards. 

 

MPEG-1 

 MPEG-1 is a generic standard in that it standardizes a syntax that supports the 

operations such as motion estimation, motion compensated prediction, discrete cosine 

transformation (DCT), quantization, and variable-length coding. In fact, the syntax does 

not standardize how a video sequence is to be encoded or what encoding algorithm is to 

be used. Instead, it allows the encoder implementers flexibility in designing the encoder. 

However, a number of parameters defining the coded bitstream and decoders are 

contained in the bitstream itself. The implementers can utilize this to pass parameters 

from the encoder to the decoder. 

MPEG-1 provides progressive (noninterlaced) video only. Typically, the video 

input is converted into the MPEG Standard Input Format (SIF) with (Y, Cr, Cb) color 

space. The luminance component is sampled at 352x240 pixels, 30 frame/second with 8 

bits per pixel (for both luma and chroma). However, the chrominance component is 

subsampled by 2 in both spatial directions (horizontal and vertical) as described in the 

previous chapter. 

 

Data Structure and Compression Modes 

The MPEG-1 bitstream is categorized as six layers of its data structure as shown 

in Figure 2.28. 



 44

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.28: MPEG video bitstream. 

 

 Figure 2.28 indicates that one layer is formed by the intermediate layer 

underneath it. Each layer is described as follows:  

1) Sequences are formed by several groups of pictures.  

2) Group of Pictures (GOP) are made up of pictures. 

3)  Pictures are composed of slices. There are four types of pictures in MPEG-1: I-

pictures, P-pictures, B-pictures, and D-pictures. I-pictures are intra-frame DCT 

encoded using a JPEG-like algorithm. They are also used as access points to the 

video sequence. P- and B-pictures are encoded as inter frames using the MC 

prediction algorithm. A P-picture uses a previous I- or P-frame for its forward 

Seq Seq ….. Seq

Seq SC Video 
Params

Bitstream
Params

QTs, 
Misc

GOP ….. GOP 

GOP SC Time 
Code 

GOP 
Params

Pict .... Pict 

PSC Type Buffer 
Params

Encode
Params

Slice ..... Slice 

SSC Vert 
Pos 

Qscale MB .... MB 

Addr 
Incr 

Type Motion
Vector

Qscale CBP b0 ..... b5 



 45

prediction, whereas prediction of a B-picture can be forward, backward, or 

bidirectional using previous and/or future I- or P-pictures as its reference(s). D-

pictures contain only the DC component of each block. They are used for 

browsing purposes at very low bitrates. Since, the B-pictures may use a future 

frame as a reference frame for its motion-compensated predictions, each picture in 

a GOP, as a result, may not be coded sequentially as shown in Figure 2.29. ( The 

number of I-, P-, and B-frames in a GOP are application-dependent.) 

4) Slices are made of Macroblocks. They are mainly used in error recovery. 

5) Each Macroblock is composed of one luminance block and two chrominance 

blocks (Cr and Cb). 

6) Blocks are the lowest layer in MPEG-1 Data Struture. They are composed of 8x8 

pixel arrays. 

The details regarding the fields in each layer are described in Table 2.3. 

 

Table 2.3: MPEG-1 data structure. 

Video Params Width, height, aspect ratio of pixels, picture rate. 
Bitstream Params Bit rate, buffer size, and constrained parameters flag. 

SEQ 

QTs Quantization Tables for I-frames and Quantization Tables for 
P-frames 

Time code Bit field with SMPTE time code indicating hours, minutes, 
seconds, frame. 

GOP 

GOP Params Bits describing structure of GOP 
Type I, P, or B-frame. 
Buffer Params How full decoder's buffer should be before starting decoding.

Pict 

Encode Params Indicate whether half pixel motion vectors are used 
Vert Pos Line that this slice starts. Slice 
Qscale Quantization table scaled used in this slice. 
Addr Incr Number of MBs to skip. 
Type MB type and if it has a motion vector. 
Qscale Quantization table scaled used in this MB. 

MB 

Coded Block 
Pattern (CBP) 

Bitmap indicating which blocks are coded 



 46

 

 

 

 

 

 

 

The pictures in this GOP may be encoded as: 
0, 4, 1, 2, 3, 8, 5, 6, 7 

or 
0, 1, 4, 2, 3, 8, 5, 6, 7 

 

Figure 2.29: Group of pictures in MPEG-1. 

 

 

Intra Frame Compression Mode 

 Since there is no temporal compression in the intra frame compression mode, the 

intra frame is coded without motion-compensated prediction. The macroblocks are 

transformed into DCT coefficients and are divided by the quantization matrix. The results 

are rounded to the nearest integer giving the quantized coefficients. There are two types 

of macroblocks in I-pictures: Intra and Intra-A. The Intra MB is coded using the default 

quantization as shown in Table 2.4, while the Intra-A MB is coded using MQUANT, a 

quantizer scale parameter, which is transmitted in the header. In MPEG, MQUANT can 

be varied on a macroblock-to-macroblock basis to control the bitrate for subjective 

quantization. The quantized DC coefficients are compressed by DPCM with a DC 

Huffman table giving the result of an 8-bit VLC code. The quantized AC coefficients, on 

BB B PB BI 

0 1 2 3 4 5 6
Group of Pictures 

B P 

7 8 



 47

the other hand, are zigzag scanned and converted into (run, level) pairs. A single 

Huffman-like code table is used. There is no downloadable custom table used in MPEG-

1. Only those pairs, which are highly probable, are VLC coded. The rest of them are 

coded with an escape symbol followed by a fixed-length code. This is to purposely avoid 

having very long codewords. 

 

Table 2.4: MPEG default intra quantization matrix. 

8 16 19 22 26 27 29 34 
16 16 22 24 27 29 34 37 
19 22 26 27 29 34 34 38 
22 22 26 27 29 34 37 40 
22 26 27 29 32 35 40 48 
26 27 29 32 35 40 48 58 
26 27 29 34 38 46 56 69 
27 29 35 38 46 56 69 83 

 
 
 
Note: From the Table 2.4, the weight becomes larger as the frequency increases 

in both horizontal and vertical directions.  As a result the high frequencies become 
diminished or eliminated after applying this quantization matrix.  
 

 

Inter Frame Compression Modes 

 Inter frame is coded with motion-compensated prediction to reduce the temporal 

redundancy. MPEG-1 employs two types of temporal prediction modes: forward 

prediction (P-pictures) and bidirectional prediction (B-pictures). 

P-Picture 

 The P-picture utilizes a previous I- or P-picture as a reference picture for its 

forward prediction. The temporal prediction of a current macroblock is given by: 



 48

 

cb ~ˆ =  

 

Eq (2.20)

where: 

b̂  is the predicted macroblock in the current frame 

c~ is the reconstructed macroblock  

 

 

 

 

 

 

 

Figure 2.30: MPEG-1 forward prediction. 

 

Figure 2.30 illustrates the prediction of a P-picture resulting in a motion vector, d, 

that indicates the displacement from the current macroblock to the reference one in the 

reconstructed previous frame. Then, the residuals for macroblock b will be computed. In 

the P-picture, each macroblock may be coded in one of those listed in Table 2.5. “Intra” 

and “Intra-A” MBs are coded independently without motion compensation (MC) as they 

are coded in I-pictures. MBs in the “Inter” mode family are coded with MC and/or 

adaptive quantization. The subscript “D” means that the DCT residual is coded, “F” 

means that forward MC is ON and the motion vector will be sent to the receiver, and “A” 

indicates the use of adaptive quantization (MQUANT). Therefore, the MB coded as 

b
b

c 

d 

Frame n 

Frame n-1 

Current 
Macroblock



 49

“Inter-FDA” indicates that the DCT coefficients, motion vector, and a new set of 

MQUANT are transmitted to the receiver. In certain circumstance, a macroblock may be 

“skipped”. In this case, the MB in the previous frame can be used without coding at all. 

 

Table 2.5: Macroblock types in MPEG-1. 

I-pictures P-pictures B-pictures 
Intra 
Intra-A 

Intra 
Intra-A 
Inter-D 
Inter-DA 
Inter-F 
Inter-FD 
Inter-FDA 
Skipped 

Intra 
Intra-A 
Inter-F 
Inter-FD 
Inter-FDA 
Inter-B 
Inter-BD 
Inter-BDA 
Inter-I 
Inter-ID 
Inter-IDA 
Skipped 

 
 

B-Picture 

 The B-picture, also known as bi-directional prediction, may utilize both the 

previous I- or P-picture and the future I- or P-picture as references for its motion-

compensated prediction. The temporal prediction is given by: 

2211
~~ˆ ccb αα +=  Eq (2.21)

where { }1,5.0,0, 21 ∈αα   

 121 =+αα  

 c~ = reconstructed macroblock 

 11 =α  , 02 =α  ⇒ forward prediction 

 01 =α  , 12 =α  ⇒ backward prediction 

 and 5.01 =α  , 5.02 =α  ⇒ bi-directional prediction 



 50

 

 

 

 

 

 

 

 

Figure 2.31: MPEG-1 bi-directional prediction. 

 

 

 Figure 2.31 illustrates that the prediction of B-picture results in two motion 

vectors, d1 and d2. Then, the residuals for macroblock b will need to be computed for 

each prediction. For B-picture predictions, the I- and P-pictures must be encoded first. 

Then, the remaining B-pictures can be interpolated from the reconstructed I- and P-

pictures. This is why the bi-directional prediction is also called “interpolative coding”.  

 Each macroblock in a B-picture can be coded in different compression modes as 

shown in Table 2.5. Two additional subscripts, “B” and “I”, are introduced at which “B” 

indicates backward prediction with motion compensation, while “I” indicates interpolated 

prediction with motion compensation.  

One major advantage of B-pictures is that they may be useful in handling covered 

or uncovered objects. For instance, if the object is about to be covered in the next frame, 

it can still be predicted from the previous frame and vice versa. However, its 

b
b 

b 
c1 

c2 

d1 

d2 

Frame n 
Frame n+1 

Frame n-1 

Current 
Macroblock



 51

disadvantage is that at least two frames are needed in the encoder and decoder. Using 

more B-pictures will lead to longer coding delay. 

 

MPEG-1 Encoder and Decoder 

 An encoder consists of the following modules: 

- Motion estimation 

- MTYPE (selection of compression mode per macroblock) 

- Setting the values of MQQUANT 

- Motion compensated prediction 

- Quantizer and Dequantizer 

- DCT and IDCT 

- Variable-length coding (VLC) 

- Multiplexer, 

- Buffer 

- Buffer regulator 

 Note that the dequantizer and IDCT are needed to reconstruct a coded frame for 

further prediction. The IDCT used in the encoder should match the IDCT that is used in 

the decoder. This is to avoid the propagation of errors in prediction processes. The 

number of I-, P-, and B-pictures (B is optional) in a GOP is application-dependent but at 

least one I-picture must be included in every 132 pictures to avoid error propagation. The 

motion estimation algorithm, selection of MYTPE, and MQUANT are not parts of the 

standard. The motion estimation is performed using the luminance component only. One-

half (0.5) pixel may be used for more accuracy in motion estimation. The maximum 



 52

length of motion vector can vary from picture to picture to allow maximum flexibility. 

Nevertheless, motion vectors that reference to the pixels outside the picture are not 

allowed. 

 On the other hand, the decoder is a reverse operation of the encoder. It 

demultiplexes the incoming bitstream into DCT coefficients, MTYPE, motion vectors, 

MQUANT, and etc. The decoder may require a buffer to store two frames in order to 

decode the B-pictures. An interesting breakdown of time spent in an MPEG decoder [44] 

is given in Table 2.6. 

Table2.6: Breakdown of time in MPEG decoder. 

Function % Time 
Parsing Bitstream 17.4% 

IDCT 14.2% 
Reconstruction 31.5% 

Dithering 24.5% 
Misc. Arith 9.9% 

Other 2.7% 
 

 

 

MPEG-2 Standard 

 MPEG-2 was intended for high quality video applications such as DVD, Digital 

Cable TV, Satellite TV, and HDTV. It is an extension of MPEG-1 with higher bitrates at 

2-20 Mbps. Its main additional features include interlaced inputs, higher-definition 

inputs, alternative subsampling of chroma components. It also provides a scalable 

bitstream and improved quantization and coding options. The syntax is categorized into 

five “profiles”: the simple profile, main profile, SNR scalable profile, spatially scalable 

profile, and high profile. In addition, each profile is divided into a number of “levels” to 



 53

impose constraints on some of the video parameters [45]. (More details about profiles 

will be described in the MPEG-4 section.) MPEG-2 allows three chroma subsampling 

schemes for its macroblocks as 4:2:0 (as for MPEG-1), 4:2:2 (horizontal subsampling), 

and 4:4:4 (no chroma subsampling).  

 

Coding Interlaced Video 

 MPEG-2 accepts both progressive and interlaced inputs. Interlaced video can be 

coded into either field pictures or frame pictures. This may be switched from frame-to-

frame. A frame picture refers to a combination of even and odd fields to form a complete 

frame, while a field picture is simply an even or odd field considered as a separate 

picture. Both frame and field pictures can be encoded as I-, P-, or B-pictures. The field 

pictures are suitable for video scenes that contain significant motion. Furthermore, 

MPEG-2 introduces the field/frame DC option per MB for frame pictures and new 

Motion Compensation (MC) prediction modes for interlaced video to handle interlaced 

inputs more efficiently. 

 A group of pictures (GOP) may contain a combination of field and frame pictures. 

However, the field pictures always appear in pairs of top and bottom fields. If the top 

field is a P- (B-) picture, the bottom field then must be P- (B-) picture.  If the top field is 

an I-picture, then the bottom field can be an I- or a P-picture. A pair of field pictures is 

encoded in the order they should appear.  

 In a frame picture, each MB may be coded with a field or frame DCT.  MPEG-2 

allows this operation on a field-to-field basis for specific parts of a frame picture. 

Macroblocks that contain high motion may use field-DCT, while ones with little or no 



 54

motion but containing high spatial resolution may employ frame-DCT. Figure 2.32 

depicts macroblocks with frame DCT and field DCT. 

 

 

 

 

 

 

 

Figure 2.32: DCT options for interlaced frame pictures: frame DCT and field DCT 

MC prediction modes for interlaced video. 

 

 

 MPEG-2 introduces two main types of predictions: simple field and simple frame 

prediction. Simple field prediction independently predicts each field using data from one 

or more previously decoded fields and it can use field predictions only. Simple frame 

prediction, on the other hand, performs a prediction for an entire frame using one or more 

previously decoded frames and either field or frame prediction can be used on a 

macroblock-to-macroblock basis. 

 Furthermore, two more prediction modes, 16x8 MC and dual-prime modes, are 

also introduced. 16x8 MC mode can be used in field pictures only. When this mode is 

used in a P-picture, it yields two motion vectors: one for the top and the other for the 

bottom 16x8 regions of top and bottom fields respectively.  In a B-picture, this mode will 

produce four motion vectors. On the other hand, dual-prime mode is used only for P-



 55

pictures. It uses one motion vector and a differential vector in frame pictures and uses 

two motion vectors for each field in field pictures. 

 

Scalable Extensions 

 MPEG-2 assumes that different decoders with different spatial-temporal 

resolutions can decode and display the video sequence from the same bitstream. The 

minimum decodable subset of the bitstream is called the “base” layer. All other layers are 

“enhancement” layer. Two or three layers are allowed in MPEG-2 syntax. There are 

different forms of scalability: Spatial, SNR, Temporal, and Hybrid scalabilities. Spatial 

scalability refers to the ability to decode video at different spatial resolutions. SNR 

scalability refers to the ability to decode video using different quantizer step sizes for the 

DCT coefficients. Temporal scalability refers to the ability to decode video at different 

frame rates. Lastly, Hybrid scalability refers to a combination of the above scalabilities. 

 MPEG-2 also provides some extensions in the quantization and coding steps such 

as a new scanning scheme, a finer quantization, finer set of MQUANT values, and a 

separate VLC table for the DCT coefficients for the intra MBs. The alternate scan pattern, 

which fits interlaced video, is shown in Figure 2.33. The quantization weight for DC 

coefficients in intra MBs can be 8, 4, 2, or 1, which is actually fixed to 8 in MPEG-1, 

while the AC coefficients are quantized in the range of [-2048, -2047], as opposed to [-

256, 255] in MPEG-1. All coefficients in non-intra MBs are quantized into the range of [-

2048, 2047], whereas it is [-256, 255] in MPEG-1. In addition, MPEG-2 allows the 

optional set of 31 values to include real numbers ranging from 0.5 to 56. These values are 

listed in Table 2.7.  



 56

 

 

 

 

 

 

 

Figure 2.33: Alternate scan [46]. 

 

 

Table 2.7: Optional set of MQUANT values [46]. 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
11.0 
12.0 

14.0 
16.0 
18.0 
20.0 
22.0 
24.0 
26.0 
28.0 

32.0 
36.0 
40.0 
44.0 
48.0 
52.0 
56.0 

 

 

Profiles and Levels 

A profile is a "defined subset of the syntax of the specification". In other words, a 

profile imposes some bounds on the full syntax. It defines which tools or functionalities 

may be used to produce a bitstream and how [45]. 

A level is a defined set of constraints on the values, which may be taken by the 

parameters of the specification within a particular profile. An example of parameter 

constraints for each level is given in Table 2.8.  

 



 57

 

Table 2.8: Parameter constraints according to levels. 

Level Max. Pixels Max. Lines Max. Frames/sec 
Low 
Main 

High-1440 
High 

352 
720 

1440 
1920 

288 
576 

1152 
1152 

30 
30 
60 
60 

 

 

 

Table 2.9: Profiles and bitrates (Mbps) at each level. 

Profile \ Level Low Main High-1440 High 
Simple  1.5   
Main 4 15 60 80 

SNR Scalable 4(3) 15(10)   
Spatially Scalable   60(15)  

High  20(4) 80(20) 100(25) 
 

 

 Table 2.9 summarizes the bitrates at each level that each profile supports. The 

numbers in parentheses indicate the maximum bitrate for the base layer. Note that the 

Simple profile does not include B-pictures.  

 

 

MPEG-4 

 While MPEG-2 focused on a high-quality audiovisual application, MPEG-4, on 

the other hand, supports a wide range of applications from low bit rates, such as 

wireless/mobile multimedia and applications for the Internet, to very high bit rate 

applications used in studios. MPEG-4 is far beyond the traditional video and audio to 

end-users as provided by its predecessor, MPEG-2. Apart from typical audiovisual 



 58

representation, MPEG-4 also provides other types of media such as graphics, text, and 

synthetic visual and audio objects. Since MPEG-4 is object-based, each media is 

described as a media object and is coded into an independent stream. Audiovisual objects 

may include natural video sequence with/without shape information, general 3D 

animation, still image, natural audio, structured audio (MIDI), text-to-speech (TTS), etc. 

However, the individual objects can be composed to form a display scene by the Scene 

Descriptor (BIFS: Binary For Scenes). With the use of the Scene Description, an end-user 

can turn on/off individual objects, change the position of individual video objects, zoom 

in/out on interesting objects, choose different audio tracks (language/music), etc. This 

feature allows end users to have interactivity and full control over how the media should 

be presented. 

 

MPEG-4 Visual 

 Two distinctive features that MPEG-4 visual improved on MPEG-2 are the ability 

to achieve better compression for the same visual quality and providing a wider variety of 

applications with larger set of profiles and levels. The core compression tools are based 

on the ITU-T H.263 standard [37], plus a mechanism of coding irregularly-shaped video 

objects. As a result, it enables the coding of separate foreground and background objects, 

which can be used to form a composite video scene. MPEG-4 also provides error 

resilience tools to help a decoder in recovering from a transmission error in an error-

prone network. Its scalable coding also supports flexible transmission at a range of 

bitrates. Essentially the coding of animated visual objects such as 2D and 3D polygonal 

meshes, animated faces, and animated human bodies are also introduced. In addition, 



 59

MPEG-4 provides a coding for applications requiring “studio” quality video. In this case, 

visual quality is likely more important than high compression. 

 

Profiles and Levels 

Technically, profiles limit the tool set a CODEC has to implement and the levels 

for each profile restrict the computational complexity of the CODEC. A Profile@Level 

combination allows a CODEC builder to implement only the subset of the standard that is 

needed, while maintaining interworking with other MPEG-4 devices built to the same 

combination, and checking whether MPEG-4 devices comply with the standard 

(‘conformance testing’) [35]. Profiles in MPEG-4 exist for various types of media content 

(audio, visual, and graphics) and for scene descriptions. All profiles defined in MPEG-4 

include Visual Profiles, Audio Profiles, Graphics Profiles, Scene Graph Profiles, MPEG-J 

Profiles, and Object Descriptor Profiles. Since this paper primarily focuses on regular 

video coding, only the Visual Profiles will be elaborated in the following section. 

 

Visual Profiles 

Visual profiles define the decoding of natural, synthetic, and synthetic/natural 

hybrid visual content. The profiles for natural video content and for synthetic and 

synthetic/natural hybrid visual content are described in Table 2.10 [35] and Table 2.11 

[35] respectively. 

 

 

 

 



 60

Table 2.10: Visual profile for natural video. 

Profile Description Applicaton 
Simple Provide efficient, error resilient coding of 

rectangular video objects. 
Mobile networks video, 
videoconferrencing 

Simple Scalable Add support for coding of temporal and 
spatial scalable objects to the Simple Visual 
Profile. 

Services providing more 
than one level of quality ie. 
Internet decoding. 

Core Add support for coding of arbitrary-shaped 
and temporally scalable objects to the Simple 
Visual Profile. 

Simple content-interactivity: 
Internet multimedia. 

Main Add support for coding of interlaced, semi-
transparent, and sprite objects to the Core 
Visual Profile. 

Interactive and ntertainment 
quality broadcast and DVD. 

N-Bit Add support for coding video objects that 
have pixel-depths ranging from 4 to 12 bits to 
the Core Visual Profile. 

Surveillance applicationsn 

Advanced  
Real-Time 
Simple (ARTS) 

Provide advanced error resilient coding 
techniques of rectangular video objects using 
a back channel and improved temporal 
resolution stability with the low buffering 
delay. 

Real-time coding such as 
the videophone, tele-
conferencing and remote 
observation 

Core Scalable Support for coding of temporal and spatial 
scalable arbitrarily shaped objects to the 
Core Profile. The main functionality of this 
profile is object based SNR and 
spatial/temporal scalability for regions or 
objects of interest. 

Internet, mobile and 
broadcast. 
 

Advanced 
Coding 
Efficiency (ACE) 

Improve the coding efficiency for both 
rectangular and arbitrary shaped objects. 

Mobile broadcast reception, 
the acquisition of image 
sequences, and other 
applications with high coding 
efficiency and small footprint 
is not the prime concern. 

Advanced 
Simple 

Support only rectangular objects, add 
support for B-frames and ¼ pel motion 
compensation, extra quantization tables, and 
global motion compensation (GMC). 

Broadcast Television, video 
storage and playback such 
as DVD. 

Fine Granularity 
Scalability 

Allow truncation of the enhancement layer 
bitstream at any bit position so that delivery 
quality can easily adapt to transmission and 
decoding circumstances. (It can be used with 
Simple or Advanced Simple as a base layer.) 

Streaming video 

Simple Studio Provide very high quality. It only supports I- 
frames, but does support arbitrary shape and 
multiple alpha channels. Bitrates go up to 
almost 2 Gigabit per second. 

Studio editing applications, 
studio distribution. 

Core Studio Add P-frames to Simple Studio, making it 
more efficient but requiring more complex 
implementations 

Studio editing applications, 
requiring less storage and 
bitrates. 

 

 



 61

Table 2.11: Visual profile for synthetic and synthetic/natural hybrid visual. 

Profile Description Application 
Simple Facial 
Animation 

Provide a simple means to animate a face 
model. 

Audio/video presentation for 
the hearing impaired. 

Scalable 
Texture 

Provide spatial scalable coding of still image 
(texture) objects. 

Applications needing multiple 
scalability levels, such as 
mapping texture onto objects 
in games, and high-
resolution digital still 
cameras. 

Basic 
Animated 2-D 
Texture 

Provide spatial scalability, SNR scalability, 
and mesh-based animation for still image 
(textures) objects and also simple face 
object animation. 

 

Hybrid Combine the ability to decode arbitrary-
shaped and temporally scalable natural 
video objects (as in the Core Visual Profile) 
with the ability to decode several synthetic 
and hybrid objects, including simple face 
and animated still image objects. 

Various content-rich 
multimedia applications. 

Advanced 
Scaleable 
Texture 

Support decoding of arbitrary-shaped 
texture and still images including scalable 
shape coding, wavelet tiling and error-
resilience. 

Applications requiring fast 
random access as well as 
multiple scalability levels and 
arbitrary-shaped coding of 
still objects i.e. fast content-
based still image browsing 
on the Internet, multimedia-
enabled PDA’s, and Internet-
ready high-resolution digital 
still cameras. 

Advanced 
Core 

Combine the ability to decode arbitrary-
shaped video objects (as in the Core Visual 
Profile) with the ability to decode arbitrary-
shaped scalable still image objects (as in 
the Advanced Scaleable Texture Profile). 

Various content-rich 
multimedia applications such 
as interactive multimedia 
streaming over Internet. 

Simple Face 
and Body 
Animation 

A superset of the Simple Face Animation 
Profile, adding, obviously, body animation. 

 

 

 

Levels 

A Level in a profile indicates constraints on the parameters of the bitstream and 

the maximum performance required to decode an MPEG-4 coded sequence. A summary 

of the levels for simple-based profiles in MPEG-4 visual is listed in Table 2.12 [46].  

 



 62

 

Table 2.12: Levels for Simple-based profiles. 

Profile Level Typical Resolution Max. Bitrate Max. Objects 
L0 176x144 64 kbps 1 simple 
L1 176x144 64 kbps 4 simple 
L2 352x288 128 kbps 4 simple 

 
Simple 

L3 352x288 384 kbps 4 simple 
L0 176x144 128 kbps 1 AS or simple 
L1 176x144 128 kbps 4 AS or simple 
L2 352x288 384 kbps 4 AS or simple 
L3 352x288 768 kbps 4 AS or simple 
L4 352x576 3 Mbps 4 AS or simple 

 
 

Advanced Simple 
(AS) 

L5 176X576 8 Mbps 4 AS or simple 
L1 176x144 64 kbps 4 ARTS or simple 
L2 352x288 128 kbps 4 ARTS or simple 
L3 352x288 384 kbps 4 ARTS or simple 

 
Advanced 

Real-Time Simple 
(ARTS) L4 352x288 2 Mbps 16 ARTS or simple 

 

 

 

Tools and Objects 

A tool defines a subset of coding functions for a specific feature, such as basic 

video coding, interlaced video, coding object shapes, etc. An object is simply a video 

element (such as a sequence of rectangular frames, a sequence of arbitrary-shaped 

regions, and a still image) that is coded using one or more tools.  

 

Video Object 

 A video object (VO) in MPEG-4 is not limited to an ordinary rectangular video 

frame. In fact, it refers to an area of a video scene including an arbitrary-shaped region, 

and it may present for an arbitrary length of time. An instance of a VO at a particular 

point in time is called a “video object plane” (VOP). MPEG-4 visual allows user to 

access (seek, browse) and manipulate (cut, paste) video objects.  



 63

Basically, each VOP is considered as a single frame or a sequence of frames that 

form a VO. Figure 2.34 shows a VO that consists of three irregular-shaped VOPs at 

which each one of them exists within a frame and can be coded separately (this refers to 

object-based coding in MPEG-4). Figure 2.35 illustrates a video scene, which is 

composed of two foreground objects (VOP1and VOP2) with a background object 

(VOP3). In this scenario, each video object may be coded separately using different 

visual qualities and temporal resolutions. The end-user may manipulate these objects by 

composing them with different types of objects from other sources, such as a synthetic 

object, to form a particular scene. Figure 2.36 shows a new video scene composed by 

adding VO1 and VO2 with a new background VO3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.34: VOPs and VO (arbitrary shape) [27]. 

 

 

VOP3 VOP2 VOP1 

Time

Video Object 



 64

 

 

Figure 2.35: A video scene consisting of three VOs [27]. 

 

 

 

 

 

 

Figure 2.36: Video scene composed of VOs from separate sources [27]. 



 65

 Even though MPEG-4 provides such an advanced coding technology, most 

applications are still employing the rectangular frame coding. The simple profiles family 

provides tools to handle rectangular VOPs as shown in Figure 2.37. Since MPEG-4 is the 

extension for MPEG-1 and MPEG-2, the basic tools used here are similar to those used in 

its predecessors. The advance simple and advance real-time simple profiles add more 

tools to the simple profile to support better coding scheme and capacities to handle error. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.37: Tools and objects for coding rectangular frames [27]. 

 

 

Video Packet 

 A video packet in MPEG-4 is similar to a slice in MPEG-1 and MPEG-2. MPEG-

4 transmits a VOP, which consists of one or more video packets. A video packet, as 

Advance 
Simple 

Advance 
Real-Time 

Simple 

B-VOP Interlace 

Alternate Quant 

Global MC

Quarter Pel

Dynamic 
Resolution 
Conversion 

NEWPRED

I-VOP 
P-VOP 
4MV 
UMV 

Intra Pred 

Video Packets 
Video Partitioning 

RVLCs 

Short Header 

Simple 

Object 

Tool 



 66

shown in Figure 2.38, consists of a resynchronization marker, a header field, header 

extension code (HEC), optional extension header, and a group of coded macroblocks in 

raster scan order. The resynchronization marker is followed by a count of the next 

macroblock number to enable the decoder to locate the first macroblock of the packet. 

Next to it is the quantization parameter. If the flag HEC is set to 1, a duplicate of this 

VOP header will follow. This helps the decoder to recover the VOP header in case the 

first one is lost or corrupted. Essentially, if an error occurs in a current video packet, the 

decoder can use the first resynchronization marker in the next video packet to prevent 

error propagation. 

 

 

 

Figure 2.38: Video packet structure. 

 

Data Partitioning 

 The data partitioning tool divides a video packet into two partitions in order to 

reduce the impact of transmission errors. The first partition contains coding mode 

information for each macroblock with DC coefficients for each block of intra 

macroblocks or motion vectors of inter macroblocks. The second one contains AC and 

DC coefficients of inter macroblocks. The first partition is placed right after the video 

packet header, while the second one follows the resynchronization marker. The first 

partition is considered to be more important than the second one. In case an error is 

detected, if the first part can be recovered, it is adequate for the decoder to reconstruct 

the packet. 

Sync Header HEC (Header) Macroblock data Sync 



 67

Reversible VLCs 

 Another attempt for error recovery is using reversible VLCs to encode DCT 

coefficient data. Reversible VLCs are decodable in both the forward and backward 

directions. If an error occurs, a decoder will decode the video packet in the reverse 

direction at the next resynchronization mark. Consequently, the error may possibly be 

limited to only a single macroblock. 

 

Short Header 

 The short header tool allows MPEG-4 to encode an I- or P-VOP that has identical 

syntax to an I- and P-picture coded in the baseline mode of H263. The macroblocks 

within a VOP are organized into Groups Of Blocks (GOBs) as used in H263. Each GOB 

may contain one or more complete rows of macroblocks and may start with a 

resynchronization marker for error resilience concealment.   

 

Four Motion Vectors Per Macroblock 

 MPEG-4 introduces this tool to increase efficiency in motion compensation by 

assigning one motion vector for each 8x8 block in the luminance component. As a result, 

one luma macroblock contains four motion vectors. Similarly, the chrominance 

component is divided into four 4x4 blocks and contains four motion vectors, one for each 

block. This tool is useful especially in reducing residual energy in some areas that contain 

complex motion or near the boundaries of the moving object. However, this tool may 

incur overhead in sending more motion vectors to the decoder, but it can be applied on a 

macroblock-by-macroblock basis for better quality in a video sequence. 



 68

Unrestricted Motion Vectors (UMV) 

 The UMV tool allows motion vectors to point to a region outside of the reference 

VOP boundary. It is necessary, for instance, in certain situations where an object is 

moving toward the edge of the VOP and the best match for a macroblock is found on the 

boundary of the VOP. In doing so, the reference VOP may be extrapolated beyond the 

boundary of the VOP giving a better match for motion compensation as shown in Figure 

2.39 [27]. 

 

 

 

 

 

 

Figure 2.39: Reference VOP, current VOP, and reference VOP extrapolated beyond boundary. 

 



 69

Global Motion Vector (GMV) 

 In some cases such as camera pan or a large moving object, the majority of the 

macroblocks in a video object may produce similar motion. The camera zoom and 

rotation may create more complex motion vectors but they tend to be moving in relative 

directions. Hence, these motion vectors can be described as a default ‘global’ motion for 

the entire VOP. As a result, only a small number of motion parameters may be needed to 

transmit to a decoder. GMC takes advantage of this mechanism by encoding and sending 

the global motion parameter in the VOP header to the decoder. This alternative coding 

method can be activated by setting the parameter sprite_enable to ‘GMC’ in a Video 

Object Layer (VOL) header. 

In MPEG-4, the global motion compensation (GMC) enables the encoder to allow 

a VOP to contain up to four GMVs along with the location for each of them. For each 

pixel position in the VOP, an individual motion vector is calculated by interpolating 

between the GMVs as displayed in Figure 2.40. Additionally, the GMC tool also enables 

compensation for a variety of types of motion including rotation (as shown in Figure 

2.41a.), camera zoom (as shown in Figure 2.41b), warping, and traditional or linear 

motion.  

 

 

 

 

 

 

Figure 2.40: VOP, GMVs and interpolated vector. 

Interpolated 

Global 



 70

 

 

 

 

 

 

Figure 2.41: GMC a) compensating for rotation.  b) compensating for camera zoom. 

 

 

Simple Profile 

 The simple profile of MPEG-4 visual employs a CODEC called a Very Low 

Bitrate Video (VLBV) Core, which is similar to the hybrid DPCM/DCT model as 

described earlier. The basic requirements of the coding process for intra VOPs in the 

simple profile of MPEG-4 visual is shown in Figure 2.42 and for inter VOPs in Figure 

2.43. 

 

 

 

 

 

 

 

 

Figure 2.42: I-VOP encoding and decoding stages. 

a) b) 

DCT Q Reorder RLE VLE Source 
frame 

IDCT Q-1 Reorder RLD VLD 
Decoded 

frame 

Coded 
I-VOP 



 71

 

 

 

 

 

 

 

 

Figure 2.43: P-VOP encoding and decoding stages. 

 

 

This chapter provides a background study regarding the digital video processing 

model, color spaces, and video coding techniques. The key topics of the MPEG system, 

which are related to the application design and implementation, are described in more 

detail. Some topics that may be useful for future work are provided as well. 

 

DCT Q Reorder RLE VLE Source 
frame 

IDCT Q-1 Reorder RLD VLD 
Decoded 

frame 

Coded 
P-VOP

MCP 

ME Reconstructed 
frame 

MCR 



 72

CHAPTER III 

 

VISUAL MOTION ESTIMATION 

 

 The analysis of motion in video sequences has become a pivotal topic in various 

fields of research. One common task is to track moving object(s) of interest in a video 

scene. The target object’s trajectory may be calculated in order to have the camera keep 

an eye on that moving object over a period of time. In this case, the motion in the picture 

that we have to pay particular attention to is that of the moving object. This is called 

“local motion”. However, the object motion may turn out to be undesirable to other 

researchers interested in the motion of the camera itself. This type of visual motion is 

known as “egomotion”. In this scenario, the motion of the entire scene will be analyzed 

while the motions of the local objects are considered as random noise. The key operation 

of the egomotion is the transform model for recovering the 3D camera motion with 

respect to the real world environment from the 2D coordinates of the perspective 

projection from the image plane. The possible camera motions include translation, 

rotation, and zoom factor. Generally, a camera may experience a translation along the X, 

Y, or Z axes, or a combination of them. In addition, there may have been rotation around 

the X, Y, Z axes, or a combination of these. Applications that employ egomotion 

estimation include video stabilization, video mosaicing, video annotation, autonomous 

vehicle driving systems, and mobile robot navigation.  

A video stabilizer, for example, analyzes the camera motion to compensate for the 

jerky image sequence from a shaky hand. Video mosaicing may be used to create a 



 73

panoramic view [47] or may be used in “Sprite Coding” for MPEG-4 [48]. Furthermore, 

egomotion estimation may be used in driving a vehicle autonomously [49]. A more 

advanced system by Muratet et al. [26] is to compute egomotion to fly a helicopter 

without human assistance. This chapter will discuss egomotion estimation methods in 

general. Subsequently, we will focus mainly on applying egomotion estimation for 

mobile robot navigation.  

 

Visual Motion Field 

 The 3D camera motion parameters are computed from estimates of the 2D motion 

field that occurs in a sequence of video images. Typically, it is assumed that the 

environment’s structure is stationary and the projected 2D motion in the image plane is 

predominantly caused solely by the motion of the camera. A number of approaches have 

been proposed for tackling this problem, and can generally be classified into two methods, 

direct and indirect.  

 

Direct Method 

 The direct method, also called the gradient method, employs the spatial and 

temporal gradient of the image sequence based on the Taylor series expansion of the 

image function with respect to the motion parameter space or image space [50]. 

Generally speaking, the method is based on using spatial and temporal derivatives of the 

image intensity. Its main purpose is to compute the velocity vectors, called optical flow, 

at each pixel in the image. 

 



 74

Optical Flow 

 Optical flow [7] is the distribution of apparent velocities of movement of 

brightness patterns in an image. However, a single image does not sufficiently describe 

the motion information. Rather, optical flow can be generated by the relative motion of a 

camera or the objects in the scene between two successive frames as shown in Figure 3.1.  

 

Figure 3.1: Displacement vector between image at time t and t+δT. 

 

From the figure, when the approximate motion and time interval are small, the 

basis of differential optical flow, the Motion Constraint Equation, can be written as [51]: 

 

)](),(),[(),,( ttyyxxItyxI δδδ +++=  Eq (3.1)

 

It is assumed that the change in the image’s spatial intensity is caused by pixel 

translation. By taking a 1st order Taylor Series Expansion in equation (3.1), a new 

equation can be expressed as: 

 

(x,y) 
Displacement 
(δx, δy) 

(x+δx, y+δy) 

a) Image I(x, y) at time t b) Image I(x, y) at time t+δT



 75

.),,()](),(),[( termsorderhigher
t
t

t
I

t
y

y
I

t
x

x
ItyxIttyyxxI +

∂
∂

+
∂
∂

+
∂
∂

+=+++
δ
δ

δ
δ

δ
δδδδ

 

 

Eq (3.2) 

The higher order terms are typically small and can be omitted. Then combining 

equation 3.1 and equation 3.2 yields 

 

0),,(),,( =−







∂
∂

+
∂
∂

+
∂
∂

+ tyxI
t
t

t
I

t
y

y
I

t
x

x
ItyxI

δ
δ

δ
δ

δ
δ  

Eq (3.3)

or 

0=
∂
∂

+
∂
∂

+
∂
∂

t
Iv

y
Iv

x
I

yx  
Eq (3.4)

 

where 
t
x

x δ
δυ =   and 

t
y

y δ
δυ =   represent the x and y components of image velocity or 

optical flow and 
t
Iand

y
I

x
I

∂
∂

∂
∂

∂
∂ ,  represent image intensity derivatives at (x, y, t)  

which normally are written in partial derivative form as: 

 

t
IIand

y
II

x
II tyx ∂

∂
=

∂
∂

=
∂
∂

= ,  
Eq (3.5)

 

Then, we can group together the intensity derivatives and optical flow parts and 

rewrite it as:  

tyxyx III −=⋅ ),(),( υυ  Eq (3.6) 

or 



 76

tII −=⋅∇ υ
r  Eq (3.7) 

 

where ),( yx III =∇  represents the spatial intensity gradient and υr  represents the image 

velocity or optical flow at pixel (x, y) at time t. (Note: υr  is a column vector without the 

transpose sign). 

 

 It is obvious that the gradient method relies primarily on the consistency of image 

texture and continuous image motion. It performs well under small displacements 

between subsequent images. The method, however, suffers from the estimate of the 

velocity vectors at points perpendicular to the tangent of a boundary or edge in the image. 

This is known as “aperture problem” [52]. 

  

Indirect Method 

 The indirect method, also known as the displacement method, performs motion 

estimation on the basis of the feature-based technique. It is mainly dependent upon 

computing displacement vectors on a set of corresponding features in the image. 

Discontinuities in image intensity or motion, which cause the aperture problem in the 

gradient methods, are selected as features for its operation. The indirect method may be 

further categorized into the tracking feature approach and the block-based approach.  

 

Tracking Feature Approach 

The features under consideration include line segments, high contrast regions 

where brightness and darkness occur, and (the most widely used) corners are selected and 



 77

tracked over a series of consecutive image frames. Then, at each frame, the associated 

displacement vectors are discretely generated from the tracked correspondences.   

Even though the indirect method seems to have advantages over the direct one, it 

also raises two problems to be taken into account. First, due to perspective, a feature in 

the distance may not be able to retain its shape as it moves closer to the observer. A 

discussion on the “range dependence” of feature extraction is given in [53]. Second, the 

selection of reliable features to be tracked between consecutive frames for a length of 

time is not easy. This problem is referred to as the “correspondence problem” [54]. 

 

Block-Based Approach 

 The principle idea behind this approach is that the current image frame is divided 

into blocks of sub-images. The selected blocks contain features needed in the matching 

process. Subsequently, each block will be searched for the best match of its 

correspondence within a search window in the previous frame.  The associated 

displacement vector will then be calculated.  

The techniques used to compute the motion displacement may include applying 

the gradient method, finding the correspondence features, or calculating the sum of 

absolute error of the current block respect to search region. An example of the latter, the 

technique of Sum of Absolute Difference (SAD), with a block size of 16 pixels is given 

in Equation 3.8.  

 

∑∑
−= −=

−++=
7

8

7

8
),(),(),(

k l
klRBkvluSWvuSAD  

Eq (3.8)

where  SW is the Search Window and RB is the Reference Block. 



 78

Interestingly, this technique has been deployed by the MPEG motion 

compensation and estimation unit as well. As a result, this motion displacement field can 

be obtained directly from the MPEG encoder without further calculation. 

 

 

Camera Model on Perspective Projection 

 The perspective projection maps a point, P, in 3D space environment onto the 2D 

image plane using an ideal pinhole camera. Basically, the ray from the projected point, P, 

will pass straight into the origin of the projection, which is the center of the lens. The 

projected point position is derived by 

 

Z
X

F
x
=       ,      

Z
XFx =  

Eq (3.9)

 

and 

Z
Y

F
y
=        ,        

Z
YFy =  

Eq (3.10)

  

where X, Y, and Z are the principal axes and F is the camera focal length. 

 Figure 2 illustrates a side/top view of a perspective projection model. Two points, 

P1 and P2, in 3D space are projected onto an imaginary  xy image plane, which is located 

at a distance of the camera focal length (F). The origin of the coordinate system lies at the 

center of the camera lens. 

 



 79

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Perspective projection model. 

 

 

 

Camera Motion Model 

 By assuming the origin of the coordinate system is located at the center of the 

camera, motion of the camera will usually cause a point in 3D space to change its 

location in the image. Such motion refers to rotation around principal axes, translation 

along principal axes, and change of focal length (zoom parameter). 

 

Effect of Camera Rotation 

 When a camera undergoes a pure 3D rotation around X, Y, or Z axis, a new 3D 

camera coordinate system [ ]TZYX '''  can be the result of 

 

P1

P2

p1

p2

Image Plane 

Optical Axis
(Z) Focal Length

(F) 

Y Axis 



 80
















=

















Z
Y
X

R
Z
Y
X

'
'
'

 

 

Eq (3.11)

    

where R is a 3x3 rotation matrix and rotations about X, Y, and Z can be expressed as 

 

 
















−=

φφ
φφφ

cossin0
sincos0
001

)(xR  

 

Eq (3.12)

















−
=

θθ

θθ
θ

cos0sin
010

sin0cos
)(yR  

 

Eq (3.13)
















−=

100
0cossin
0sincos

)( ϕϕ
ϕϕ

ϕzR  

 

Eq (3.14)

 

 

 When successive rotations are applied to the camera coordinate system (X, Y, and 

Z), R will become a combination of those rotation as 

 
















==

333231

232221

131211

)()()(
rrr
rrr
rrr

RRxRR zy ψθφ  

Eq (3.15)

   



 81

where 

θψ coscos11 =r  

θψ cossin12 =r  

θsin13 −=r  

φθψφψ sinsincoscossin21 +−=r  

φθψφψ sinsinsincoscos22 +=r  

φθ sincos23 =r  

φθψφψ cossincossinsin31 +=r  

φθψφψ cossinsinsincos32 +−=r  

φθ coscos33 =r  

 

 

Effect of Camera Translation 

 Camera translation along principal axes simply moves its coordinate system to the 

opposite direction that it translates to. A new coordination system can be written as 

 
















+
















=

















z

y

x

T
T
T

Z
Y
X

Z
Y
X

'
'
'

 

 

Eq (3.16).

A special case of camera motion, zoom operation, is defined as 

 



 82

'
'''

Z
XFx =  

Eq (3.17)

'
'''

Z
YFy =  

Eq (3.18)

 

where FfF ⋅=' , at which  f indicates the zoom factor. 

 

 

Camera Motion Estimation Model 

 Camera motion estimation is the process of estimating 3D camera motion based 

on the observed 2D motion field on the projected image plane. A certain set of basic 

constraints are made such that the observed points in the 3D environment remains 

stationary and the 2D motion field is predominantly caused by camera motion. A 

restriction on camera movement may be applied as well. From the above assumptions, it 

is possible to model camera operation, with respect to the 3D coordinate system. 

 

Affine Model 

 Based on research and studies [55] [56] [57] [58] [59] [60], basic camera 

operation can be categorized as zoom, pan, tilt, and rotation (around the Z axis). These 

camera motions can be described by the affine model as shown in Equation 3.19. 

 

 



 83









+
















=









6

5

43

21

a
a

y
x

aa
aa

v
u

 
 

Eq (3.19).

   

The affine model provides 6 parameters to describe the basic camera motions 

where a5 and a6 indicate a translation operation along the X and Y axes respectively, a1 

and a4 indicate the scaling factor, and a2 and a3 indicate shearing of the object. In other 

words, the affine model can be rewritten in terms of camera operation as: 

 

 









+
















−

=







tilt
pan

y
x

zoomrotate
rotatezoom

v
u

 
 

Eq (3.20).

 

 

 The affine model eliminates the non-linear terms by generalizing the rotation 

around the Y axis to a simple pan and the rotation around the X axis to a simple tilt. This 

makes it possible to solve for all camera parameters linearly. Consequently, a 

straightforward technique, such as linear least square fitting, can be used to solve the 

problem.  

Because of its simplicity, a number of researchers in camera motion estimation 

have adopted the affine model to their work on the basis of their theoretical assumption. 

Wang and Huang [55], for instance, use Equation 3.20 to analyze camera motion in the 

MPEG domain. The system to estimate the camera parameters is defined as 

 

 



 84

NXHY
srrr

+⋅=  Eq (3.21)

 

where    























=

...
2
2
1
1

v
u
v
u

Y
r

   is a vector of MPEG motion vectors ,   

 























−

−
=

............
1022
0122
1011
0111

xy
yx
xy

yx

H
r

  represents the spatial matrix of macroblock center locations,  

 

N
s

 represents a noise term, and [ ]tiltpanrotatezoomX =
r

 is the vector of camera 

motion parameters to be estimated. As a result, X
r

’s least square estimator can be 

obtained by  

 

( ) YHHHX TT
rrrr 1~ −

=  Eq (3.22).

   

 

In the noise term, outliers may be eliminated gradually by examining the error from the 

current estimate at each iteration. 

Jin et al. [56] employ the affine model in their proposed technique, called a 

probabilistic model for camera zoom detection. The model uses the Expectation-



 85

Maximization (EM) algorithm to estimate the probability of a zoom versus a non-zoom 

operation from standard MPEG motion vectors. The results indicate superiority over the 

traditional methods such as those introduced by Wang and Huang [55] and Park et. al. 

[57] in terms of precision and recall. 

Kim et. al. [58] also utilize the affine model with threshold-based qualitative 

interpretation to detect basic camera motions. They extend the interpretation model to 

represent a hyperbolic flow, which is assumed to occur when object motion is dominant 

over global motion.  

 Furthermore, the affine model is adapted to a variety of techniques in estimating 

camera motion. Chiew et al. [59] use Hough transforms based on the affine model for 

global motion estimation. The application is reported to be accurate and suitable for real-

time implementation. Smolic et al. [60] extends the generic affine model to motion 

parameters in higher order. The model employs a higher order polynomial to create a 

parabolic transformation, which is described with 12 parameters. The technique is 

designed for the long-term global motion estimation of image objects. The global image, 

the background scene, from the motion estimation is stored in long-term memory. Later, 

the predicted image can be generated from the estimated parameters and this long-term 

memory. This technique is very useful for MPEG-4 sprite coding. 

 

Camera Rotation Estimation 

 As mentioned above, the affine model assumes that camera pan and tilt are the 

consequences of camera translation along the X and Y axes respectively. On the other 

hand, if the camera is fixed to a wall, then the pan effect will be generated by camera 



 86

rotation around the Y axis while tilt will be an effect of rotation around the X axis. Hence, 

the use of the affine model is no long applicable to solving for these camera parameters.    

In order to find the rotation angles, the rotation matrix of Equation 3.15, is needed. 

Suppose, given that (x, y) is a projected coordinate of a stationary in 3D point P before 

the camera operation and that (x’, y’) is the new coordinate after the camera operation, the 

relationship in a particular camera operation can be expressed as 

 

Fryrxr
Fryrxr

Fx
333231

131211''
++
++

=  
Eq (3.23)

   
 
 

Fryrxr
Fryrxr

Fy
333231

232221''
++
++

=  
Eq (3.24).

 
   

Note that FfF ='   ;  where f is a zoom parameter and the new coordinate, (x', y') after 

zoom operation is  
'
'''

Z
XFx =    ,  

'
'''

Z
YFy = . 

 

 Equation 3.23 and Equation 3.24 contain only 2D variables on the projected plane. 

As a result, the camera operations, rotation, zoom, and focal length, can be estimated by 

applying non-linear least square fitting method from the motion field on the image plane. 

Park et al. [61] demonstrate the estimate of camera parameters in 5 degrees of freedom, 

focal length, zoom, and 3D rotation parameters. The estimating parameters are least 

square fitted using the Levenberg-Marquardt method [62]. The simulations show that the 

proposed method is able to estimate the focal length from the test video. The proposed 

method also performs very well on detecting 3D rotation and zoom. 



 87

Later, Park et al. [57] apply the estimate of global camera motion for video 

annotation and retrieval. The application detects zoom, yaw, pitch, and roll operations 

from motion vectors of encoded video. The estimation model is based on Equation 3.23 

and Equation 3.24 with fF += 1' . Two least-square estimation techniques, the 

Levenberg-Marquardt method [62] and the extended Kalman filter [63] [64], are 

compared. The results indicate that both techniques yield similar performance but the 

Levenberg-Marquardt method is computationally more efficient than the extended 

Kalman filter. 

 Broszio and Grau [65] propose a very interesting application for estimating 

camera pan, tilt, and zoom for integration of virtual objects into video sequences. The 

application uses the indirect method based on conventional feature detection and 

correspondence analysis. The camera parameters are estimated from a real moving 

camera using a least square technique on the selected correspondences. Once the 

parameters have been established, the virtual scene with a computer generated (CG) 

object can be synchronized. The ultimate goal is to create a combination scene as if they 

were taken from only one single camera. 

 

 Global camera motion estimation is essential for many areas of study. One 

valuable field that provides the motivation for this work is the estimation of egomotion 

for mobile robot navigation. The following sections will discuss camera motion 

estimation and mobile robot navigation. 

 

 



 88

Camera Motion Estimation for Mobile Robot Navigation 

 A mobile robot may be equipped with various types of sensors such as bumpers, 

sonars, laser range finder, wheel-encoders, etc.  These offer specific functionality for the 

robot to fulfill the localization task and obstacle avoidance task. For instance, wheel-

encoder odometry passively provides the travel speed, distance, and orientation while the 

sonar and laser range finder provide useful information to help the robot actively make a 

decision on how to react to a detected obstacle. Interestingly, there has been a lot of work 

on using video camera to perform these two essential tasks successfully. Fundamentally, 

a camera will be attached to a mobile robot. While the robot moves, a motion field on the 

image plane will be generated. The main focus is the implementation of egomotion 

estimation for the robot heading direction and detecting obstacles. The heading direction 

can be calculated based on the perspective model with the fact that the 2D velocity 

vectors radiate from the vanishing point, called the Focus Of Expansion (FOE). The FOE 

technically indicates the direction along which the observer (robot) moves.  On the other 

hand, an obstacle may be detected from the motion field segmentation. With some 

constraint applied, the object location can be obtained. However, the detailed 

implementation may vary among research groups. 

 Burger and Bhanu, 1990 [15] address a difficulty in precisely computing a single-

point FOE for vehicle navigation from a noisy displacement vector field. They, instead, 

suggest that the FOE should be located from a computation of a 2D region FOE. Hence, 

they propose a technique, called “Fuzzy FOE”, to compute the heading direction of a 

land-based vehicle. This method is reported to be more robust than the conventional 

single-point FOE techniques. Since the system uses the indirect method, a discrete model, 



 89

to compute the egomotion from perspective image sequences, the resulting FOE is 

considered as the “direction of accumulated translation” over a certain period of time (as 

opposed to the velocity-based models which treat the FOE as the “direction of 

instantaneous heading”). 

 The experiments they conducted are performed on an autonomous land-based 

vehicle traveling at approximately 14 kilometers per hour. The camera captures images at 

2 frames per second with a spatial resolution of 512x512 pixels. About 25 features of 

selected endpoints and corners are tracked from the computation of binary edge detection 

in the range of 2-16 frames. At each frame, three components, fuzzy FOE, angles of 

horizontal and vertical rotation, and approximate traveled distance, are estimated from 

the displacement vector field. In the presence of noise, small displacement vectors tend to 

cause a problem in locating the FOE. Hence, from the results, they suggest that using the 

longer vectors in the lower central area of the image plane, located near the vehicle, are 

more reliable for estimating the approximate vehicle velocity and travel distance.  

 Dev et al. 1997 [16] analyze the optical flow field from a sequence of images 

taken from an on-board camera for mobile robot navigation. The main objective is to 

drive the robot through the center of a corridor. Under this constraint, the spatial structure 

of the environment can be obtained. Egomotion estimation and relative depths toward the 

walls can be derived from optical flow. The key feature is the use of the temporal 

derivative of the flow field to compute the normal surfaces of the walls. This feature is 

very significant in estimating the robot orientation as well as maintaining the robot 

position in the middle of the corridor. It is claimed that the implementation is able to 

achieve real-time performance on a standard PC without any special hardware. 



 90

 Branca et al.1997 [17] give a definition of passive navigation as “the ability of an 

autonomous agent to determine its motion with respect to the environment”. They 

propose a technique of estimating egomotion parameters to determine the heading 

direction and the time to collision (TTC) with the environment. They also address a 

difficulty in accurately estimating the motion field due to the need for a priori knowledge 

of the viewed scene properties.  Therefore, certain constraints on some known 

information must be imposed so that a more robust 3D motion parameter estimation can 

be achieved in terms of accuracy. In this work, the robot motion is restricted to travel on 

a flat surface in a stationary environment and rotates around the Y axis. Since rotation 

with translation will cause the FOE location to shift but still preserve the radial shape, the 

location of the FOE on the X axis can be computed from 

 

z

x
x T

T
FOE =  

Eq (3.25)

   

where Tx is a translation along the X axis and Tz is a translation along the Z axis. 

 

Stoffler and Schnepf 1998 [18] and Stoffler et al.2000 [19] create an equivalent 

optical flow field, motion field, for robot obstacle avoidance based on the MPEG-like 

motion estimation. A special block-based motion estimation processor, called MEP, is 

developed in order to create a robust optic-flow-like vector field in real time. Each 

reference block (RB 16x16 pel) in the current frame searches for the best match of its 

correspondence in a search window (SW 32x32 pel) in the previous frame with the lowest 

SAD as given by Equation 3.8. Additionally, the system is equipped with an external 



 91

subsystem to calculate an additional confidence value to sift out the unwanted motion 

vectors, which may not represent real motion. On the mobile robot, a camera is mounted 

parallel to the heading direction. Furthermore, the robot motion is constrained to two 

degrees of freedom, translation along the trajectory of the vehicle and rotation around the 

vertical axis. The motion vector field on the image plane is divided into two main 

portions. The lower part, located right in front of the robot, called the “ground window”, 

is used to detect obstacles and calculate their position for avoidance planning. The upper 

part, mostly containing the small motion vectors around the FOE location, is called the 

“blind spot”. Like its name, these motion vectors are not used in object localization 

because they do not provide sufficient information in estimating the object position. In 

the obstacle detection process, the 3D points in the environment are transformed into the 

robot coordinate system to generate a 2D obstacle map for robot navigation. The system 

is reported to perform well in real-time. The magnitude of the accuracy of 3D 

reconstruction is 10cm, which typically is sufficient for the obstacle avoidance task. 

 Campbell et al., 2004 [20] point out that the decreasing price of digital video 

cameras relative to 1D sonar rangefinders makes cameras more cost effective for robot 

navigation. In this work, a camera is mounted on a mobile robot having no wheel 

encoders and running at 4 cm/sec. The prerecorded image sequences of a move-turn-

move operation are analyzed in terms of the precision of visual odometry on 4 different 

surfaces, carpet, grass, asphalt, and ice. The optical flow field is created from 

uncompressed video using a direct method. A consensus method, RANSAC [66], is used 

to eliminate outliers during the optical flow creation. A new technique for estimating 

egomotion is introduced, in which the optical flow field is divided into two portions: the 



 92

ground region and the sky region separated by a horizon line. The vectors in the ground 

portion are used to compute the x and z translation whereas the vectors in the sky portion, 

which is less affected by translation, are used for rotation estimation. Since the camera is 

fixed with zero roll and yaw and its pitch angle is constant relative to presumably flat 

surfaces, simple trigonometry can be used to map the optical flow vectors to the traveled 

distance on the surface. The estimates of tangential and normal translation are described 

as follows. The vectors in the sky region are estimated for the robot rotation from the 

consensus value. The vectors in the ground region are estimated based on the perspective 

model for the displacement along the ground plane. The ground vectors are then 

subtracted from the estimate rotation, and finally the tangential and normal translation are 

obtained from the remaining ground motion field left from the consensus. 

 Table 3.1 shows the performance of visual odometry on different surfaces both 

indoor and outdoor. The results indicate the best overall performance on the indoor carpet. 

However, the worst performance on estimating rotation is posted on the indoor test, 

which is on a carpet surface. This is because the calculation of rotation relies more on 

points at a distance, and the indoor environment provides less distant points.   

 

Table 3.1: Visual odometry performance by terrain type [20]. 

Terrain Incremental 
Error 

Translation 

Incremental 
Error 

Rotation 

Average 
Cumulative Error 

Rate 
Indoors/Carpet 0.3 14.2 0.26 
Outdoors/Grass 2.2 4.7 0.41 

Outdoors/Asphalt 4.3 5.8 0.49 
Outdoors/Ice 3.5 10.5 0.43 

 

 



 93

Two reasons of using uncompressed over compressed video are given: firstly, it is 

because of the compatibility between the embedded video system and camera via a high-

speed interface; secondly, it is due to the result of degraded performance on some vision 

algorithms from the use of compressed data.  

 

 Campbell et al., 2005 [21] pursue the previous work on the same basis of the 

falling price of video cameras. Due to the fact that a video camera can capture abundant 

information, it should be able to perform multiple sensory operations at the same time as 

well. Two types of cheap cameras, USB and IEEE1394, are used in two types of 

experiment, closed-loop and open-loop tests. The open loop tests are performed at 7.5 fps 

by the IEEE1394 camera. The experiment is performed based on the previous work. The 

closed loop task, however, is run on a USB camera capable of running at approximately 

10 fps. Since the open loop tests are similar to the previous work, only the closed loop 

experiments will be reviewed here. 

 In [21], the Open Computer Vision Library (OpenCV) [67] is used in a standard 

computer vision algorithm throughout this discussion. The estimate of the optical flow 

field is performed by an improved version of the Lucus Kanade algorithm [68]. A low 

corner threshold is chosen to track selected features. The outliers are screened out based 

on the smoothness of observed tracking patches. As used in the previous work, the optical 

flow vectors are divided into two main parts: sky and ground with an ignored horizon 

zone. A median filter is used to estimate the observed angular displacement in the sky 

region. The x-displacements and y-displacements in the ground region are median filtered 

to estimate the translation along the side-ways and forward/backward directions 



 94

respectively. The results from the closed-loop tests reveal the cumulative error (Cartesian 

distance as % of distance traveled) at 7.1%. Nevertheless, it is also reported that the total 

latency in the control loop, obtaining the images, processing them, and commanding the 

robot, is approximately 300 ms. As for performing obstacle and precipice detection, 

the recovery of the depth in the video scene is not utilized. Instead, it relies primarily on 

the discontinuities in the optical flow field in the image’s sub-regions to detect the 

potential hazards. The median optical flow field direction and velocity are independently 

computed for each region. The longer vector, positive violation, signals a detected 

obstacle while the shorter vector, negative violation, flags a detected precipice.  

 

 In conclusion, this chapter discusses the techniques of the motion estimation in a 

video sequence. The direct method and indirect method describe how a motion flow field 

is created from a pair of two consecutive video frames. Afterward, the camera motion 

models are given, which leads to their deployment on mobile robot navigation. The 

principal methods are pixel-based and block-based techniques are discussed according to 

previous work by various researchers. 



 95

CHAPTER IV 

 

HARDWARE SPECIFICATION AND SETUP 

 

 The ultimate goal in this work is to develop a visual odometry system and a 

precipice detection based on MPEG encoding technology. A camera is mounted on the 

top of the front part of a mobile robot, and the image sequence captured from the camera 

is fed to an MPEG encoder. The software system, then, utilizes the motion field provided 

by the MPEG encoder to analyze the robot’s egomotion. The robot’s localization can be 

estimated from the operation. In addition, the MPEG motion field is also used to perform 

precipice detection. If a precipice is detected successfully, the robot needs to stop moving 

or perform other actions to avoid damage. 

 This chapter focuses mainly on the hardware components used to build the system. 

The hardware specifications and their performance will be discussed. The hardware setup 

will be described as well, as it is one of the vital parts for maximizing system 

performance. Some software issues are taken into consideration in order to help in 

selecting proper equipment and minimizing potential problems and difficulties. The main 

hardware components utilized in this system include a mobile robot, a camera unit, and a 

laptop computer. The details of each component will be given in the following sections. 

 

 

 

 



 96

Mobile Robot 

 The system is designed and implemented based on a Pioneer 2AT mobile robot 

[69]. The robot is equipped with 8 forward and 8 rear sonar sensors. It is driven by 4 

motors, uses skid steering, and has wheel encoders. The robot microcontroller 

communicates with an external computer via a serial port (RS-232). Figure 4.1 depicts 

the Pioneer 2AT mobile robot used in the work. 

 

 

 

 

 

 

Figure 4.1: Pioneer 2AT mobile robot. 



 97

Camera Unit 

 In this work, a Logitech USB QuickCam Express is utilized and the sourcecode 

driver for Linux distribution can be downloaded from [70]. This camera model is one of 

the cheapest sets available in the market at an approximate price of $25. It is capable of 

capturing RGB images at about 10 frames per second with somewhat decent quality. The 

camera parameters necessary for the implementation are shown in Table 4.1. Since the 

MPEG encoder requires the YUV420 picture format, the captured RGB buffer of the 

camera driver must be converted before feeding to the encoder. 

 

Table 4.1: Camera parameters. 

Camera Parameters 
Focal Length (f) 50 cm 

Horizontal View Angle (β) 35.5 Degree 
Vertical View Angle (λ) 27 Degree 

 

 

 

Camera Setup 

The fundamental objective of the camera setup is to try to eliminate as many 

unknown variables as possible. By establishing constraints on fixing the camera angle 

and running the robot on fairly flat surfaces, for instance, the coordinate system for 3D 

points on the floor can be recovered. Since the distance to the points on the floor is 

known, a lookup table that maps the 2D points on the image plane onto the 3D points on 

the floor can be created. This pre-calculated table can tremendously reduce the 

computational time during the real-time operation. 



 98

 For this system, the camera is placed in the middle of the front side of the Pioneer 

robot at which the center of the projection, h, is located at 31 cm above the floor. The 

camera is tilted down so that the point in the center of the image plane is the projection of 

a point on the floor located about 100 cm, d, horizontally away from the camera.  Figure 

4.2 displays the side view of the camera setup on the robot. 

 

 

 

 

 

 

 

 

Figure 4.2: Side view of camera setup. 

 

 

 From the figure, the tilt angle, θ, can be calculated from Eq (4.1) and α can be 

computed from Eq (4.2). 

 







= −

h
d1tanθ  

Eq (4.1) 

 

 θα −= 90    or   





= −

d
h1tanα  

Eq (4.2).

 

h

d

Projection plane

α
b

ω λ

t

θ



 99

The distance of the bottom line in the image plane to the front of the robot, b, can 

be obtained by Eq (4.3). 

 

)tan(ωhb =  Eq (4.3)

 

where 





−=

2
λθω  and    λ is the vertical viewing angle of the camera. 

 

 

The distance of the top line in the image plane to the front of the robot, t, can be 

computed as Eq (4.4). 

 

)tan( λω += ht  Eq (4.4).

   

 Given the above constraints and parameters, the projected area on the floor can be 

displayed as in Figure 4.3. While the robot is moving, motion in the image plane will 

reflect motion in the shaded area. 

 

 

 

 

 

 

 

 



 100

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Top view of camera setup (floor region projected to the image plane is shaded). 

 

 

 The distance from the center of the camera to the bottom projected line, ob, 

middle projected line, od, and top projected line, ot, can be calculated from Eq (4.5), Eq 

(4.6), and Eq (4.7), respectively. 

 

ωsin
bob =      or     22 bhob +=  

Eq (4.5)

θsin
dod =      or     22 dhob +=  

Eq (4.6)

( )λω +
=

sin
tot      or     22 thob +=  

Eq (4.7).

wd 

β ob

od

ot 

wb 

wt 

Projection
Plane 

ob od
ot 

Note: Ob , Od , and Ot  are the 
distance from the camera to 
the points on the floor.    



 101

 The width of the bottom (wb), middle (wd), and top (wt) projected lines can be 

obtained from Eq (4.8), Eq (4.9), and Eq (4.10), respectively, where β is the camera’s 

horizontal viewing angle. 

 















×=

2
tan2 β

bb ow  
Eq (4.8)















×=

2
tan2 β

dd ow  
Eq (4.9)















×=

2
tan2 β

tt ow  
Eq (4.10).

 

  

  

Vanishing Point on Virtual Image Plane 

 Based on the Perspective model [14], while the observer is moving forward, every 

point on the image plane tends to expand around the point where the direction of the 

observer is projected onto the image plane, called the Focus Of Expansion (FOE) or the 

vanishing point. On the other hand, if the observer is moving backward, the vanishing 

point will be at the same location but every point will, rather, converge to the vanishing 

point, called the Focus Of Contraction (FOC). Therefore, with all the setup and 

parameters given above, while the robot is moving forward or backward, the vanishing 

point on the image plane can be computed from Eq (4.11). (Note that the location of the 

vanishing point is made based on the ideal assumption of a noiseless signal.)  

 



 102

( )αtanfvy =  Eq (4.11)

and vx = 0. 

  

 Since it is assumed that the robot is performing a pure translation (i.e., moving 

straight ahead or behind), the ideal vanishing point should then be located at 0 on the X 

axis (vx = 0). We note that vy is given in centimeters from the origin along the Y axis on 

the virtual image plane. Consequently, this value is mapped to the point where it should 

appear on the image plane. An example of the ideal vanishing point caused by the robot 

translation is given in Figure 4.4. 

 

  

 

 

 

 

 

 

 

Figure 4.4: Vanishing point location. 

 

 Table 4.2 lists the calculated parameters from the camera setup used in this 

system. Note, however, that these values are approximate. Error may be caused by 

inaccurate measurement or camera distortion. 

 

α

α x

Vanishing Point 
(vx, vy) 

f

Translation direction 

Image Plane 



 103

Table 4.2: Essential parameters in the robot setup. 

Height of camera from the floor (h) 31 cm 

Pitch Angle (θ) 72.78 deg 

Distance from robot to the point on the center of the image plane (d) 100 cm 

Distance from robot to the bottom line of the image plane (b) 52.17 cm 

Distance from robot to the top line of the image plane (t) 476.79 cm 

The width of the projection area at the bottom of the image plane (wb) 38.85 cm 

The width of the projection area at the middle of the image plane (wd) 67.02 cm 

The width of the projection area at the top of the image plane (wt) 305.89 cm 

Vanishing point [vx  vy] [0  15.5] cm* 

* The mapping ratio at f is 1mm:1px. Therefore, vy is approximately 155 pixels above the 
origin. Since the screen dimension is 320x240, vy is then located about 35 pixels above 
the top line of the screen. 
 

 

Computer Unit 

 The Pioneer robot used in this system does not have a built-in computer installed. 

Instead, an external laptop computer is used by strapping it on top of the robot. Since the 

robot is shared by a number of staff in the lab, using external laptop computers is found 

to be more effective than having a built-in computer. Firstly, in case of computer upgrade 

needed, it is much easier to replace a new external computer than the built-in. A built-in 

computer is comparatively more expensive and may need upgrades yearly. Secondly, the 

use of the built-in computer is limited solely to the pioneer robot. It is not convenient to 

employ it in other tasks. Lastly, it is more troublesome to deploy a new application into 

the built-in computer. By using a personal laptop computer, one can develop an 

application or robot simulation on his/her own computer. Once, everything is ready to 

operate on the real robot, this can be done simply by connecting the laptop computer to 

the robot via the serial port (RS-323) connectors. 



 104

 In this work, the software systems are developed mainly on a COMPAQ Presario 

V2000. The computer runs on an Intel(R) Pentium(R) M processor at 1.86 GHz with 

1GBs of RAM. Since this work heavily requires access to numerous software 

sourcecodes, a Linux operating system is chosen due to the fact that many opensource 

projects are provided for the Linux platform. Because, this computer model does not have 

a serial port installed, a Keyspan USB Serial Port is used. 

 The software systems developed from the COMPAQ computer were ported to a 

DELL Precision M70 laptop computer during the experiments. The DELL laptop runs on 

an Intel(R) Pentium(R) M processor at 2.13 GHz with 1GBs of RAM. The main reason 

for transferring the applications to the DELL computer was not due to performance issues. 

Rather, it is because the DELL computer is equipped with a large battery pack that can 

last almost 4 hours from a full charge. It is very helpful in extending the operational times 

during the experiments. Nevertheless, both computers are running Fedora Core 4 Linux 

[71]. 

 

 This chapter generally discussed the hardware specification and the equipment 

setup. The next chapter will focus specifically on the software issues in developing the 

system. It will describe the software design and the algorithms employed to develop the 

system.  



 105

CHAPTER V 

 

SOFTWARE SYSTEM DESIGN AND IMPLEMENTATION 

 

 In this chapter, a software system design based on the hardware systems and 

specifications given in the previous chapter is discussed. An opensource software 

package for an MPEG encoder that is capable of performing in real-time is needed. The 

chapter starts with how to create a motion field out of the MPEG encoder’s motion 

vectors. The approaches to visual odometry, outlier elimination, and the precipice 

detection will be given, respectively. 

 

 

Creating Motion Field from MPEG Encoder 

 An equivalent optical flow field, the motion vectors field (MV Field), can be 

constructed from the MPEG motion vectors. The motion estimation module in the MPEG 

encoder calculates the movement for each macroblock and yields a motion vector 

representing the motion of that particular macroblock. For a picture encoded with the P-

frame type, a macroblock without a motion vector may indicate either no motion or no 

matched region found, while a picture with the I-frame encoding will not produce any 

motion vectors at all. Consequently, the encoded frame type becomes necessary for the 

motion analysis as well. Thus, the motion estimation module must be modified in such a 

way that the (x, y) components of the motion vectors and the encoded frame type are 

accessible. Then, the analysis of the robot’s egomotion can be proceeded. 



 106

Approaches to Visual Odometry 

 Once the MV field has been created, the robot’s egomotion can be determined. 

The motions under consideration include translation (FORWARD and BACKWARD), 

rotation (TURN LEFT and TURN RIGHT), and no motion (STOP).  In this work, only a 

single motion will be calculated, one at a time, assuming that no two simultaneous 

motions occur during the operation in a particular frame. Once the MV field has been 

obtained, the travel distance or the turning degree will be computed after the erroneous 

motion vectors have been filtered out. No operation is performed if the egomotion has 

been categorized as STOP. A flowchart of this operation is given below in Figure 5.1. 

 

 

Figure 5.1: Flowchart of real-time visual odometry. 

Obtain MVs

Determine 
Motion 

Do Nothing 

Filter out Outliers 
Filter out Outliers 

Calculate Travel 
Distance 

Update Robot 
Position 

Calculate Angle 

Compensate for 
Translation 

FORWARD/BACKWARD TURN LEFT/RIGHT 

STOP

MPEG Encoder 



 107

How to Determine Robot Motion 

 Based on the perspective model, the distance in the 3D environment is inversely 

proportional to the distance in the image plane. From the camera setup explained earlier, 

when the robot performs forward or backward translation, the motion vectors in the upper 

portion of the image plane will have less effect than those in the bottom. Therefore, only 

motion vectors in the lower portion, which also are less sensitive to noise, will be used in 

the motion evaluation. In this work, all motion vectors in the evaluated area will be 

projected onto the sides of the 2Vf x 2Vf virtual square shown in Figure 5.2. The motion 

vectors that project onto the left and right sides of the virtual square will be used to 

estimate the robot rotation LEFT and RIGHT respectively. It is important to note that the 

top side is used for both the robot translation FORWARD and BACKWARD and the 

bottom side is not utilized for BACKWARD. This is because translation in the backward 

direction will cause the motion vectors to diverge from the vanishing point, FOC, as 

explained earlier. Therefore, a motion vector having a negative y component will be 

flipped into the opposite direction so that its projection will point towards the vanishing 

point. Then, it is tested to see if it projects onto the top side of the square. If it does, this 

motion vector belongs to the motion BACKWARD. Otherwise, this motion vector is part 

of either the motion LEFT or RIGHT, according to its forward projection. 

 

 

 

 

 



 108

 

 

 

 

 

 

 

 

 

 

Figure 5.2:  2Vf X 2Vf  virtual square used in classifying robot motion. 
 

 

 After the projection process is completed, the system employs a simple technique 

of majority vote to finalize the robot motion. If the number of valid motion vectors for 

the winning motion is below a threshold value, the robot motion will automatically be 

evaluated as STOP. 

 

 

Outlier Rejection 

 Once the robot motion has been determined, outlier rejection can proceed. This 

process filters out erroneous motion vectors and keeps all legitimate ones for the motion 

calculation. Figure 5.3 shows the outliner rejection for the robot translation FORWARD 

and BACKWARD. The process for motion FORWARD starts with calculating the 

Vf 

Projected MV indicates 
FORWARD and BACKWARD 

P
rojected M

V indicates  
LE

FT TU
R

N
 

P
rojected M

V indicates  
R

IG
H

T TU
R

N
 

2Vf

2Vf 

Projection Plane 



 109

average heading value of the motion vectors accounted for the forward translation. (Note 

that this system does not use this value to compensate for the real heading value due to 

the fact that the motion vectors produced by the MPEG encoder are too noisy to give an 

accurate value. It is left to future investigation to obtain a more reliable real heading 

direction estimate.) Subsequently, the lower bound and upper bound values of the 

intermediate threshold values are established for this particular frame. These thresholds 

may be changed by the user. The values used in this work are given in the next chapter. 

As a result, motion vectors having projections that lie outside the threshold bounds are 

rejected. The process of filtering motion vectors for the motion BACKWARD is 

performed in a similar manner except that the flipped projections of the motion vectors 

are used instead. 

 

 

Figure 5.3: Method of rejecting outliers for motion FORWARD and BACKWARD. 

 

Valid MV 
 
Invalid MV 

Lower Bound Upper Bound 



 110

 The process of eliminating outliers for the motions LEFT and RIGHT, on the 

other hand, is performed slightly different from that of FORWARD and BACKWARD. 

Since the direction of the motion vectors belonging to the robot rotation LEFT and 

RIGHT are actually produced relative to the X axis of the image plane, all motion vectors 

have to be translated to the X axis of the image plane coordinate before the calculation of 

the average heading value. Afterward, the process proceeds in a similar fashion  to that of 

FORWARD/BACKWARD. Figure 5.4 and Figure 5.5 visually describe the method of 

rejecting outliers for the robot motions LEFT and RIGHT respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Method of rejecting outliers for motion LEFT. 

 

 

 

Valid MV 
 
Invalid MV 

Lower Bound 

Upper Bound 

MV Projections 
of  

LEFT TURN 



 111

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Method of rejecting outliers for motion RIGHT. 

 

 

Calculation of Robot Translation 

 Since the robot travels on a flat surface with a fixed camera, the mapping of 

points on the 2D image plane onto the 3D environment becomes static and can be pre-

calculated. Thus, the real-time performance of the visual odometry can be improved 

tremendously by the help of a lookup table. All the y components on the image plane will 

be pre-computed and stored in a table. Because the motion estimation of MPEG produces 

motion vectors at sub-pixel resolution, the lookup table of the y components on the image 

plane is created at the level of sub-pixels as well. Figure 5.6 displays the mapping of line 

yi on the image plane onto the distance Yi on the floor whereas Eq (5.1) explains how to 

calculate the distance for the lookup table. 

 

Valid MV 
 
Invalid MV 

Lower Bound 

Upper Bound 

MV Projections 
of  

RIGHT TURN 



 112

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Mapping of line yi on the image plane onto the distance Yi on the floor. 

 

 

)tan( ii hY βθ +⋅=  Eq (5.1).

 

where 





= −

F
yi

i
1tanβ  at which yi is given in subpixel units ranging from the top to the 

bottom line with the coordinate origin located at the center of the image plane. 

 Once the lookup table has been created, an intermediate travel distance for each 

frame can be obtained simply by calculating the difference of the distance, from the 

lookup table, between the y location of the macroblock and the y component of the 

motion vector associated with it. The FORWARD motion gives a positive distance while 

the BACKWARD motion gives a negative value. In each frame, only valid macroblocks 

are used in the calculation. The macroblocks in the same row will be passed to a filter, 

F
θ

Yi

Image plane 

yi

d
h

yi



 113

either mean or median, and the output value will represent the intermediate travel 

distance for that row. Finally, the resulting values for all rows will be sent to the filter, 

mean or median, again to compute the final intermediate travel distance. 

 

Calculation of Robot Rotation 

 When the robot performs a rotation, only the x component of the motion vectors is 

used to calculate the intermediate angle. As discussed earlier, since points in the 

environment at different distances yield the same effect on the image plane, all motion 

vectors can be used in computing the turn angle. However, the motion vectors in the 

upper part may be corrupted by other moving objects, at least more so than those in the 

bottom part. Thus, only valid motion vectors in the lower part will be used in the 

calculation as well. 

 With the camera mounted in front of the robot in lieu of being placed on the 

center of rotation, the robot rotation will simultaneously cause a translation along the X 

axis as well. As a result, the x components of the motion vectors caused by the robot 

rotation become larger than the value given by the real robot rotation as can be seen in 

Figure 5.7. Thus, the translation associated with the robot rotation must be excluded. 

Equations 5.2, 5.3, 5.4, and 5.5 explain how to obtain the pure robot rotation. 

 

 

 

 

 



 114

 

 

 

  

 

 

 

 

 

 

 

Figure 5.7: Robot rotation. 

 

 

The angle with the effects of translation is given by 

)(
)(

tan' 101

czF
xx

+
−

= −φ  
Eq (5.2)

 

where 'φ  = angle with translation, 

 x0 = point before rotation (x component of motion vector) 

 x1 = point after rotation, which is the center of the macroblock,  

 xc = camera translation occurring during the robot rotation, 

 F = focal length, 

 zc = length from the center of camera to the center of the robot rotation. 

Image Plane 

Translation 
Component 

x0 x1 

xc 

F 

zc 

 
'φ

Center of Rotation 

φ



 115

The translation component, xc, can be obtained from: 

 

)'tan(φcc zx =  Eq (5.3).

 

or it can easily be obtained from: 

 

)(
)( 10

c
cc zF

xx
zx

+
−

=  
Eq (5.4).

 

 

Therefore, the pure robot rotation,φ , can be calculated by: 

 

F
xx c )(

tan 01 −
= −φ  

Eq (5.5). 

  

 

During the calibration process, it has been discovered that the center of rotation is 

not located in the center of the robot. The approximate zc is given about 34 cm away from 

the center of the camera. The resulting xc, based on the equations above, contributes 

about 40 percents to the x component of the motion vectors. However, in order to reduce 

the computational time, the intermediate angle for each valid macroblock is computed by 

mapping the motion vectors, x, to the pre-calculated angle. Given the horizontal viewing 

angle of 35.5 degrees with the screen width of 320 pixels, 1 pixel is assumed to be equal 

to 0.1109375 degree. Since the motion vectors are in sub-pixel resolution, they need to be 



 116

divided by 2. In addition, the resulting angle is a combination of robot rotation and 

translation. The translation component has to be eliminated. Then, the final intermediate 

turn angle for each frame is the result of the mean or median filter applied in the same 

manner as in the calculation of robot translation, FORWARD and BACKWARD.  

 

 

Approach to Precipice Detection 

 In using the camera to detect a precipice, the same setup used for visual odometry 

is employed. This also supports the idea of using a single camera to perform multiple 

tasks. Thus, the motion vector field fed to the visual odometry system will be used here. 

In this scenario, because the motion vectors obtained from the MPEG encoder are 

considered to be noisy and may not represent the real motion, the more robust motion 

vectors in the lower portion of the screen are then divided into three rows as depicted in 

Figure 5.8. Each row contains 5 patches. Each patch is 4x3 macroblocks. However, the 

patches in the bottom row are 4x2 macroblocks. This has two reasons: one is that the 

number of rows in the active portion is not a factor of 3 and other is that the motion 

vectors in the bottom rows seem to be less noisy than those in the upper part.  

 

 

 

 

 

 



 117

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Motion vectors are grouped into patches. 

 

 

 From the figure, each row is labeled as WATCHING, WARNING, and PANIC, 

respectively. The WATCHING row implies that the robot is likely to be approaching a 

precipice. The WARNING row implies that the robot is about to reach a precipice. The 

PANIC row indicates the precipice in very near and the robot should stop.  

 The process of detecting a precipice will be performed on the robot motion 

FORWARD only. Assuming that there is currently no precipice in the detected range of 

the robot (about half a meter in front of the robot), the process of detecting a precipice is 

explained as follows: 

- After retrieving the filtered motion field, each patch computes the mean/median 

value. (Only macroblocks with motion vectors not equal to zero are used. 

Macroblocks with no motion vector will be disregarded.) The resulting value of 

WATCHING 

WARNING 

PANIC 



 118

each patch will be quantized to 0 or 1. In this case, if the resulting value is less 

than half of the average value of the bottom row, then this patch yields 0, 

otherwise 1. 

- If more than half of the number of patches in a particular row is zero, which is 

three in this case, it will be marked as invalid. (This can be done by using a 

median filter if the number of patches in a row is odd.) 

- The detection process starts on the upper row, WATCHING, by observing the 

row status over the past 3 frames. If it has been invalid for 3 consecutive frames, 

it will be flagged with WATCHING alert. 

- The WARNING alert is perform in the same fashion as that in the WATCHING 

except that the WARNING alert will be flagged if the WATCING is also 

flagged. 

- At a current frame, if the WARNING row indicates a detected precipice, the 

PANIC alert will be flagged once the number of valid patches in the PANIC 

row is less than half. 

 

 However, the status of the invalid WATCHING and WARNING rows can be 

recovered if its status becomes valid for 3 consecutive frames. From the algorithm above, 

the detection of the PANIC state is treated differently. Instead of observing its status over 

3 consecutive frames, the PANIC status will be checked in every frame. The 

WATCHING state is not used in this case because the robot may be approaching a trench, 

which has a short drop-off, about a foot long, with a normal surface ahead. In this case, 

the WATCHING row may be recovered by the time the trench has been discovered in the 



 119

PANIC row. This precaution procedure is very important in order to protect the robot 

from damage.  

 

  The approaches to the visual odometry and precipice detection given here rely 

extensively on the MPEG motion estimation. The equivalent optical field is created from 

the motion vectors in the P-frame. This technique is performed only in the software 

without any assistance from external hardware at all. The system is designed in 

accordance with the availability of an opensource software project. Thus, the Linux 

operating system seems to be a good fit in creating the software systems. The 

implementation of the systems given in this chapter will be explained in the next chapter.  

 

 

 



 120

CHAPTER VI 

 

SOFTWARE IMPLEMENTATION 

 

 The main objective of this chapter is to describe the software implementations of 

the real-time MPEG visual odometry and precipice detection. The software systems are 

written in C++ under the Fedora Linux [71] environment. The major reason for selecting 

the Linux operating system is mainly because of the support from the opensouce 

community. The availability of the sourcecode, in particular, makes it possible to 

customize the software application as needed. Figure 6.1 depicts the overall system in 

this work, which generally consists of major subsystems including Video Frame Grabber, 

RGB2YUV converter, MPEG Encoder, Visual Odometry, and Precipice Detection.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Overall system. 

 

RGB  
to  

YUV 

MPEG 
 

Encoder

Motion Vector 
Field 

Visual 
Odometry Precipice 

Detection

Motion 
FORWARD 

RGB YUV420Video 
Frame 

Grabber 



 121

In this system, a USB Logitech Quickcam Express is attached to the Pioneer 

mobile robot. Its generic driver for Linux distributions can be downloaded from the 

sourceforge projects website [70]. The driver requires a kernel version 2.2.18 (or higher), 

kernel 2.4.x, or kernel 2.6.x with Video for Linux (V4L) support. It also provides 

infrastructure interface functions such as grab image, image quality adjustment, adaptive 

brightness/contrast adjustment, etc. The Video Frame Grabber is responsible for 

capturing an image sequence into an RGB buffer. The RGB2YUV module then converts 

the RGB picture format in to a YUV420 format so that it can be fed into the MPEG 

encoder.  

As described earlier, an MPEG encoder generates motion vectors in a P-frame 

based on the motion of each macroblock relative to the image contents in the previous I- 

or P-frame. The MPEG motion estimation especially calculates the motion for each 

macroblock and packs the motion vectors together with other information in the MPEG 

data stream. Unfortunately, the MPEG encoder does not export these motion vectors to 

the external module outside the MPEG encoder system. With help from the opensouce 

FFMPEG project [72], the retrieval of these motion vectors becomes possible. In this 

case, the sourcecode of the MPEG encoder is modified by inserting three integer pointers 

into the AVMPEGContext Struct so that the (x, y) components of the motion vectors and 

the encoded picture type in the motion estimation module can be accessible. Then, an 

equivalent optical flow field can be constructed. Eventually, this motion vector field can 

be distributed to the visual odometry and precipice detection systems.  

In order to reduce the complexity of the software implementation, the two 

applications, the Visual Odometry using MPEG Technology and the Real-time Precipice 



 122

Detection, are created separately. As a result of doing so, the data analysis from the 

experiments will be pertinent to each application since the data collected from one 

application will not interfere with the other. How both applications are constructed will 

be explained in the following sections. 

 

Visual Odometry 

 The main functionalities of the Visual Odometry system are evaluating the robot 

motion from the motion vectors field at a particular frame, rejecting outliers based on the 

motion detected, and calculating the robot translation or rotation according to the motion 

detected. A simplified version of an interface for the class CVOdometry is given in 

Figure 6.2. 

 

 

 

Figure 6.2: A simplified interface class of CVOdometry. 

Class CVOdometry 
{ 
 //Initialize VOdometry 
 initVOdometry(f, h, d); 
 initMacroblockLocation(); 
 initDistanceLookupTable(); 
 resetVisualOdometry(); 
  
 //Methods for processing robot motion 
 evaluateMotion(mvx, mvy); 
 filterMVs(); //Outlier Rejection 
 calculateMotion(); 
 
 //Retrieve travel distance 
 double getIntermediateDistance(); 
 double getAccumulatedDistance(); 
 //Retrieve Heading Angle 
 double getIntermediateAngle(); 
 double getAccumulatedAngle(); 
}; 



 123

 The class methods are divided into three main parts: initialization, motion 

processing, and data retrieval. The initialization part takes the parameters in accordance 

with camera specifications, mounted angle and position, to compute the vanishing point 

on the image plane. For this initialization, three parameters are needed: f (camera focal 

length), h (the height measured from the floor to the center of the camera), and d the 

horizontal length measured from the camera to the point where the optical axis intersects 

with the floor. Subsequently, the camera tilt angle and vanishing point can be obtained 

from the calculation. These values are, in turn, used to create a lookup table in the 

initDistanceLookupTable(). The initMacroblockLocation() method calculates the (x, y) 

location of all macroblocks while the resetOdometry() method simply resets all 

intermediate and accumulated values. 

 The pivotal part of the class CVOdometry is the motion processing unit. The main 

functionality of this unit is to evaluate the motion vector field obtained from the MPEG 

encoder. The output of this operation indicates one of the given robot motions: 

FORWARD, BACKWARD, TURN LEFT, TURN RIGHT, and STOP. The resulting 

robot motion, then, defines which outlier rejection algorithm to be used in the filterMVs() 

method to eliminate erroneous motion vectors. Finally, the filtered motion vector field is 

used to compute the robot translation or rotation as an intermediate value for a particular 

frame as well as accumulated values for the entire sequence. The last part of this class 

provides interfaces to access the intermediate and accumulated distance values and angles.  

 

 

 



 124

Application for Real-Time Visual Odometry 

 Figure 6.3 shows the Graphical User Interface (GUI) of the real-time visual 

odometry application. The application was written in C++ and the GUI part utilizes the 

GTK-MM library [73], which is a library for C++ interface. 

 

 

 

 

 

Figure 6.3: A GUI of the real-time visual odometry application. 

 1 

2 

3

4

5



 125

 The application is comprised of 5 main portions: 1.) camera view, 2.) map view, 

3.) robot controller view, 4.) setting view, and 5.) display view. The camera view is 

capable of drawing the image sequence, grid (macroblock layout), and motion vectors. It 

also provides brightness and contrast adjustable slider bars. The map view graphically 

displays the robot localization in the Cartesian coordinate relative to the robot origin. 

Each grid is 100x100 cm2 in dimension. The adjustable slide bar is responsible for 

changing the map ratio. Thirdly, the robot controller view provides a user interface to 

interact with the Pioneer 2AT robot. In addition, it displays the robot position, and reads 

the wheel encoders and the battery level in numeric format. The setting view requires the 

user to enter all parameters necessary in creating the distance lookup table and 

calculating robot motion, which has been described above. Lastly, the display view 

shows the calculated outputs of the visual odometry, robot translation speed, and video 

frame rate in numeric format. 

 

 

 

 

Figure 6.4: Setting view. 

 



 126

 The setting view in Figure 6.4 is one of the most significant parts of the 

application. The accuracy of the visual odometry computation is dependent heavily upon 

the parameters given to the system. As previously described, the focal length, distance, 

and height are used to create the distance lookup table. It is where the mapping of the 2D 

points on the image plane to the 3D points on the floor takes place. The calculation of the 

robot motion FORWARD and BACKWARD employs these pre-calculated values to 

produce the accumulated travel distance. The threshold entry box is the value of the 

lower and upper bound used to eliminate outliers. The threshold value is given in pixel 

units at which the lower bound is the left value from the average projection value 

computed from all potential motion vectors, while the upper bound indicates the value to 

the right. The forward bias and backward bias are the calibrated values for the robot 

translation FORWARD and BACKWARD, respectively. The turn bias, on the other hand, 

is the calibrated value for the robot rotation LEFT and RIGHT. The number of valid 

block is the lowest count of the filtered motion vectors after the determination of the 

robot motion at a given frame. If the counted number is less than the threshold value, the 

robot will be considered not moving. The numbers given in Figure 6.4 are the optimal 

values used in the experiments. 

 

 

Application for Real-Time Precipice Detection 

 The GUI of the real-time precipice detection is shown in Figure 6.5. The window 

is divided into two parts: camera view and detection view. In this application, the robot 

velocity and the frame rate adjustable slide bars are added in the camera view so that the 



 127

experiments can be performed more conveniently. In the detection view, the only main 

components used during the experiments are the detection status and the status bar (three 

vertical bars next to the graphs). The top bar indicates the WATCHING status if a 

potential precipice is detected about a meter in front of the robot. The middle bar 

indicates the WARNING status when the potential precipice approaches the robot at 

approximately 70-80 centimeters in front of the robot. The bottom bar indicates the 

PANIC status and will be flagged when the potential precipice is confirmed. In this 

scenario, the robot will be stopped immediately to protect it from potential damage. 

 

 

 

 

Figure 6.5: A GUI of the precipice detection. 



 128

From the figure, the graph plotters and data table are supplementary. Each graph 

plotter draws the history of the robot velocity calculated from filtered motion vectors for 

each region over the past 10 frames. The values are then plotted together with the fitting 

line computed from those values using the numerical method Linear Regression 

technique by [74]. The equations are given in Eq (6.1) and Eq (6.2), respectively. 

 









=

















2

1

2,21,2

2,11,1

Z
Z

b
a

AA
AA

 
 

Eq (6.1).

where 

 LA =1,1     (Number of observed data) 

∑= L
ixA

12,1  

∑= L
iyZ

11  

∑= L
ixA

11,2  

( )∑= L
ixA

1
2

2,2  

 ∑= L
ii yxZ

12  

 a = constant term 

b = slope of the fitting line. 

 

Therefore the linear regression function of g(x) is a representation of Eq (6.2). 

 

bxaxg +=)(  Eq (6.2).

 



 129

 The data table below the graph plotters displays the parameter from Eq (2), slope 

and constant, at a current frame in numeric format. In addition, it computes the predicted 

velocity, based on the fitting function, of each row for the next frame as well. 

 Nevertheless, the linear regression part is not used in the data analysis from the 

experiments at all. It is used primarily as an observation tool in detecting a precipice. 

This may become very useful in developing a new technique to detect a precipice for 

future work. 

 

 One important issue needed to be discussed here is the operation on the I-frames.  

In this implementation, the MPEG encoder is set to enforce the coding of the I-frame at 

every 30 frames. In case if there is no significant change occurring in a given frame, an I-

frame will be coded about every 3 seconds, at which one frame is an incident of 100 

milliseconds. Hence, the I-frame occurring during the operation will be assumed to the 

same motion as the previous frame. 

In these software implementations, the application performance, however, may 

not meet the maximum requirements since some decoration components have to be added 

so as to support the data keeping during the experiments. For example, both applications 

are equipped with a SAVE function to capture the necessary data for further analysis in 

the offline mode. During the operation, all necessary data are written to a text file at 

every frame. Notwithstanding, both applications are able to operate at approximately 10 

frames per second, which is considered to be very efficient based on the hardware 

specifications. 

 



 130

 This chapter explained how the applications are built. The applications run on 

Linux operating system and are mostly opensource. The next chapter will delineate the 

results from a variety of experiments. The data analysis and discuss will be given in the 

chapter as well. 

 

 

 

 



 131

CHAPTER VII 

 

EXPERIMENT AND RESULT DISCUSSION 

 

 This chapter focuses specifically on the experiments of the real-time visual 

odometry and precipice detection under different circumstances and environments. The 

experiments are performed separately. Each section starts by addressing how the 

experiments are to be conducted. The experimental environment and setup will be 

described and the resulting data are shown in graphical and numeric formats. A 

discussion of the results is given at the end of the section.  

 

 

Real-Time Visual Odometry 

The real-time visual odometry system operates on 4 different types of surfaces: 

lab, carpet, tile, and corridor. Each surface possesses uniquely different properties. The 

lab surface is moderately textured. The lighting condition is mostly under control in 

which the reflective interference is minimal. The odometry calibration of all the 

experiments is undertaken under this environment using the mean filter. The carpet 

surface is very highly textured without lighting reflection. The tile surface is fairly low 

textured. The lighting condition is varying, depending primarily on the location and time 

when the experiments take place. When performing at night or on a closed area, the 

lighting condition will be dominated by fluorescence and incandescent light, which 

generate small glare area. When performing in the day time where it is close to exterior 



 132

glass windows, the ambient light from the sun will cause a large area of glare on the floor. 

Finally, the corridor surface is very glossy low textured and highly reflective. It produces 

a large amount of specular reflection. The experiments on the real-time visual odometry 

system will be performed on the robot translation and rotation separately. Figure 7.1 

displays the surface types used in the experiments.   

 

 

a) Lab Surface 

 

b) Carpet Surface 

c) Tile Surface d) Corridor Surface 

 

Figure 7.1: All surfaces used in the experiments of robot translation and rotation. 

 



 133

Experiment of Visual Odometry on Robot Translation 

In this experiment, the robot performs the translations, forward and backward, for 

approximately 100 cm on each surface at different speeds ranging from 5 cm/sec to 25 

cm/sec. The robot velocity is increased by 5 and each trial is run 10 times at each velocity. 

The values read from the visual odometry, using the mean filter, wheel encoder, and tape 

measurement are recorded at the experiment site. The motion vectors from all 

experiments are saved into text files for further analysis. In this case, the motion vector 

text files are processed offline to compute the values that would result from the median 

filter. Since the robot may stop before or after a 100-cm line, the error percentage of the 

obtained values will be used in the performance comparison. This is to make sure that the 

values are compared on the same scale. The standard deviation of the error percentage is 

then used to measure the accuracy consistency of the system, while the mean of the 

absolute error percentage is used to analyze the magnitude of error. Examples of typical 

data from the experiments of the robot translation are given in Figure 7.2 and Figure 7.3, 

respectively. Figure 7.4 and Figure 7.5 display the graphs of the standard deviation of the 

error percentage. Figure 7.6 and Figure 7.7 display the graphs of the mean of the absolute 

error percentage.  The numeric data of these values are listed in Table 7.1 and Table 7.2, 

respectively. 

 

 

 

 

 



 134

 

 

Lab Forward Translation (Speed 15)

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

1 2 3 4 5 6 7 8 9 10

Trial

E
rr

or
 P

er
ce

nt
ag

e

Mean
Median
Wheel

 

Figure 7.2: Error percentage of forward translation on lab surface. 

 

 

Lab Backward Translation (Speed 15)

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 2 3 4 5 6 7 8 9 10

Trial

E
rr

or
 P

er
ce

nt
ag

e

Mean
Median
Wheel

 

Figure 7.3: Error percentage of backward translation on lab surface. 

 



 135

Forward Translation

0

0.5

1

1.5

2

2.5

3

3.5

4

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

5 10 15 20 25

Surface/Speed (Cm/Sec)

St
an

da
rd

 D
ev

ia
tio

n 
(E

rr
or

 P
er

ce
nt

ag
e)

Mean Filter Median Filter Wheel Encoder
 

Figure 7.4: Standard deviation of error percentage from forward translation. 

 

Backward Translation

0

0.5

1

1.5

2

2.5

3

3.5

4

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

5 10 15 20 25

Surface/Speed (Cm/Sec)

St
an

da
rd

 D
ev

ia
tio

n
(E

rr
or

 P
er

ce
nt

ag
e)

Mean Filter Median Filter Wheel Encoder
 

Figure 7.5: Standard deviation of error percentage from backward translation. 



 136

Forward Translation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

5 10 15 20 25

Surface/Speed (Cm/Sec)

M
ea

n 
of

 A
bs

ol
ut

e
Er

ro
r P

er
ce

nt
ag

e

Mean Filter Median Filter Wheel Encoder
 

Figure 7.6: Mean of absolute error percentage from forward translation. 

 

 

Backward Translation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

5 10 15 20 25

Surface/Speed (Cm/Sec)

M
ea

n 
of

 A
bs

ol
ut

e
Er

ro
r P

er
ce

nt
ag

e

Mean Filter Median Filter Wheel Encoder
 

Figure 7.7: Mean of absolute error percentage from backward translation. 



 137

Table7.1: Standard deviation (mean absolute) of error percentage (forward). 
 

Speed (FW) Surface Mean Filter Median Filter Wheel Encoder 
5 Lab 0.86 (0.66) 1.21 (1.61) 1.01 (2.07) 
  Carpet 1.30 (1.19) 1.66 (2.24) 1.07 (1.00) 
  Tile 1.78 (1.69) 1.84 (1.33) 0.23 (1.91) 
  Corridor 2.03 (3.08) 1.96 (4.06) 0.62 (1.65) 

10 Lab 0.75 (0.80) 0.62 (1.20) 0.48 (7.89) 
  Carpet 1.50 (1.84) 1.53 (2.16) 1.14 (7.04) 
  Tile 2.14 (1.47) 2.33 (1.71) 0.23 (7.89) 
  Corridor 1.49 (1.87) 1.85 (3.22) 0.17 (8.00) 

15 Lab 0.74 (0.54) 1.09 (1.06) 0.19 (8.85) 
  Carpet 1.15 (2.94) 1.19 (3.18) 1.18 (7.88) 
  Tile 2.48 (1.59) 2.52 (2.01) 0.12 (8.75) 
  Corridor 1.81 (2.35) 2.13 (3.95) 0.19 (8.93) 

20 Lab 1.39 (0.96) 1.51 (1.16) 0.17 (6.79) 
  Carpet 1.82 (2.94) 1.53 (3.54) 1.05 (5.83) 
  Tile 2.48 (1.78) 2.98 (2.31) 0.18 (6.70) 
  Corridor 1.59 (1.47) 2.50 (3.90) 0.21 (6.94) 

25 Lab 1.22 (1.08) 1.17 (1.00) 0.65 (6.16) 
  Carpet 1.68 (3.77) 2.08 (4.78) 1.13 (4.89) 
  Tile 3.28 (1.93) 3.26 (2.41) 0.14 (5.94) 
  Corridor 2.08 (2.13) 2.88 (6.49) 0.15 (6.07) 

 

Table 7.2: Standard deviation (mean absolute) of error percentage (backward). 
 

Speed (BW) Surface Mean Filter Median Filter Wheel Encoder 
5 Lab 1.35 (0.96) 1.48 (1.04) 0.16 (2.44) 
  Carpet 1.32 (1.47) 1.17 (1.13) 1.03 (2.77) 
  Tile 2.42 (2.16) 2.17 (1.95) 0.19 (2.43) 
  Corridor 1.24 (1.04) 1.26 (0.88) 0.16 (2.49) 

10 Lab 1.11 (1.03) 1.19 (0.91) 0.12 (6.95) 
  Carpet 1.47 (1.30) 1.84 (1.76) 1.22 (6.94) 
  Tile 1.72 (1.25) 1.95 (1.15) 0.34 (6.81) 
  Corridor 1.55 (1.22) 1.74 (1.88) 0.11 (6.93) 

15 Lab 1.14 (0.92) 1.05 (1.22) 0.18 (9.12) 
  Carpet 1.24 (1.86) 0.91 (2.27) 1.29 (9.26) 
  Tile 2.47 (1.62) 2.71 (2.28) 0.29 (9.00) 
  Corridor 1.66 (1.56) 2.16 (3.04) 0.20 (9.13) 

20 Lab 1.18 (0.94) 1.33 (1.32) 0.15 (6.93) 
  Carpet 1.71 (3.21) 1.83 (3.82) 1.24 (7.12) 
  Tile 2.69 (2.10) 3.10 (3.00) 0.20 (6.80) 
  Corridor 1.01 (1.96) 2.35 (5.38) 0.15 (6.92) 

25 Lab 0.93 (1.25) 1.05 (2.28) 0.16 (6.18) 
  Carpet 1.58 (4.81) 1.55 (5.62) 1.18 (6.32) 
  Tile 3.46 (3.14) 3.64 (4.23) 1.20 (6.38) 
  Corridor 3.42 (4.62) 3.74 (9.12) 0.18 (6.10) 

 



 138

 From the experiments on robot translations, the wheel encoders have lowest 

standard deviation, which is around 1 or less. This means that the wheel encoders 

perform more consistently on all surfaces. The visual odometry seems to work very well 

on the lab surface as well as carpet at all speeds. It is obvious that the visual odometry 

does not perform well on the tile surface. The standard deviation becomes higher as the 

speed increases. This is probably due to a lack of texture on the surface. Unexpectedly, 

the visual odometry performs more consistently on the corridor surface than the tile. 

However, similar to the tile surface, the performance deteriorates as the speed increases. 

 When analyzing the results in terms of error magnitude, the visual odometry 

performs extremely well on the lab surface at all speeds. On other surfaces, it performs 

fairly well at low and medium speeds but the error magnitude becomes larger at the 

higher speeds. In the case of the carpet surface, it is probably because the texture also 

moves faster in the image plane at higher speed. Since the carpet texture is repeated at an 

interval distance, the motion estimation may rather select a closer match area for some 

macrobloks than the real one caused by the robot motion. In the cases of the tile and 

corridor surfaces, these surfaces are somewhat low textured. As a result, the MPEG 

encoder seems to produce fewer motion vectors. In addition, some macroblocks may be 

encoded as intra-block. This might be the reason why the error differences between the 

mean filter and median filter on the corridor surface are higher at the higher speeds. An 

intuitive assumption is that the MPEG encoder may produce a sparse motion field, which 

contains zero or small motion vectors in more than half of each row. However, this is not 

a surprising issue at all hence this is the expected nature of the MPEG encoder. 



 139

 The wheel encoders, on the other hand, produce similar average absolute error 

percentages on all surfaces and the results are separated into two groups. The error 

magnitude is very small at the very low speed (5 cm/sec). At the speed of 10 cm/sec or 

higher, the values become higher but stable. As its standard deviation is low, the wheel 

encoders can perform more accurately with a calibration value for the low speed (5 

cm/sec) and another value for higher speeds. 

 The use of the mean filter and median filter seems to yield comparable results 

except for the corridor surface at higher speeds. This may be a result from sparse motion 

vectors as described above. One thing to keep in mind is that this system is calibrated on 

the mean filter. That is the reason why it seems to have lower error percentage. 

What we learn from this experiment is that the robot velocity is limited by the 

video frame rate. The optimal speed, in general, is approximately 15 cm/sec or slower. 

The speed of 20 cm/sec seems to be sufficient on certain types of surface in terms of the 

error magnitude and accuracy consistency. Generally, the error from the visual odometry 

is proportional to the robot velocity. If the frame rate is low and the speed is high, the 

MPEG encoder may produce smaller motion vectors (due to the repeated texture pattern 

or limited search area), or, in the worst case, it may not produce motion vectors at all. On 

the contrary, if the frame rate is high but the robot velocity is low, MPEG may not 

produce the motion vectors either. The tiny motion in a macroblock may cause the 

MPEG to encode only the residual data and leave the motion vector at zero. This leads to 

a suggestion for future work on implementing an adaptive frame rate for visual odometry. 

A simple idea is to have the video frame rate vary in inverse proportion to the robot 

velocity. 



 140

Experiment of Visual Odometry on Robot Rotation 

 In this experiment, the robot performs the rotations, left and right, on the same 

surfaces as in the translation experiments. Each rotation is performed 10 times on the 

turns of 90, 180, 270, and 360 degrees, respectively. The angular velocity is fixed at 7 

degrees/second for all surfaces, which seems to be the maximum speed for optimal 

performance, except for the carpet, which is set to 8 degrees/second. This is due to the 

fact that the carpet is extremely frictional. The robot sometimes cannot complete its 

rotation. When this happens, it attempts to accomplish its task even though it is stuck in 

the same position. Essentially, this can severely damage the robot’s gear system. 

However, the robot’s turning speed on the carpet surface seems to be slower than 8 

degrees/second possibly due to the surface friction. 

 Similar to the previous experiment, all necessary data are saved in text files for 

further analysis. The data representations and comparisons are shown in the same fashion 

as the above experiment. Examples of typical data from the experiments of the robot 

rotations are given in Figure 7.8 and Figure 7.9, respectively. The graphs of the standard 

deviation of error percentage are shown in Figure 7.10 and Figure 7.11, and the graphs of 

the mean of absolute error percentage are shown in Figure 7.12 and Figure 7.13.  The 

numeric data of these values are listed in Table 7.3 and Table 7.4, respectively. 

 



 141

Left Rotation (Lab 360)

-20.00

-15.00

-10.00

-5.00

0.00

5.00

1 2 3 4 5 6 7 8 9 10

Trial

E
rr

or
 P

er
ce

nt
ag

e

Mean
Median
Wheel

 

Figure 7.8: Error percentage of left rotation of 360 degrees on lab surface. 

 

Right Rotation (Lab 360)

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

1 2 3 4 5 6 7 8 9 10

Trial

E
rr

or
 P

er
ce

nt
ag

e

Mean
Median
Wheel

 

Figure 7.9: Error percentage of right rotation of 360 degrees on lab surface. 

 

 



 142

Left Rotation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

90 180 270 360

Surface/Degree

S
ta

nd
ar

d 
De

vi
at

io
n

(E
rr

or
 P

er
ce

nt
ag

e)

Mean Filter Median Filter Wheel Encoder
 

Figure 7.10: Standard deviation of error percentage from left rotation. 

 

Right Rotation

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

90 180 270 360

Surface/Degree

St
an

da
rd

 D
ev

ia
tio

n
(E

rr
or

 P
er

ce
nt

ag
e)

Mean Filter Median Filter Wheel Encoder
 

Figure 7.11: Standard deviation of error percentage from right rotation. 



 143

Left Rotation

0
2
4
6
8

10
12
14
16
18
20

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

90 180 270 360

Surface/Degree

M
ea

n 
of

 A
bs

ol
ut

e
Er

ro
r P

er
ce

nt
ag

e

Mean Filter Median Filter Wheel Encoder
 

Figure 7.12: Mean of absolute error percentage from left rotation. 

 

Right Rotation

0
2
4
6
8

10
12
14
16
18
20

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

La
b

C
ar

pe
t

Ti
le

C
or

rid
or

90 180 270 360

Surface/Degree

M
ea

n 
of

 A
bs

ol
ut

e
Er

ro
r P

er
ce

nt
ag

e

Mean Filter Median Filter Wheel Encoder
 

Figure 7.13: Mean of absolute error percentage from right rotation. 



 144

 

 

Table 7.3: Standard deviation (mean absolute) of error percentage (left rotation). 
 
Degree L Surface Mean Filter Median Filter Wheel Encoder 

90 Lab 0.63 (0.79) 0.64 (0.49) 1.70 (15.80) 
  Carpet 1.95 (1.51) 1.98 (1.74) 1.52 (16.58) 
  Tile 3.40 (3.83) 3.48 (4.53) 0.63 (16.46) 
  Corridor 1.04 (2.71) 1.26 (5.36) 0.82 (15.45) 

180 Lab 0.46 (0.70) 0.50 (0.42) 1.74 (16.39) 
  Carpet 1.90 (1.38) 2.60 (1.54) 1.31 (17.82) 
  Tile 2.33 (3.59) 2.32 (4.54) 1.00 (17.67) 
  Corridor 0.41 (3.83) 0.51 (6.60) 0.67 (16.78) 

270 Lab 0.64 (0.73) 0.46 (0.35) 1.27 (16.65) 
  Carpet 1.04 (1.20) 1.09 (1.44) 1.01 (17.62) 
  Tile 2.57 (3.43) 2.12 (4.52) 0.72 (17.50) 
  Corridor 1.14 (4.51) 1.08 (7.16) 0.80 (16.86) 

360 Lab 0.72 (0.83) 0.59 (0.51) 1.66 (16.57) 
  Carpet 1.50 (1.34) 1.61 (1.48) 0.63 (17.64) 
  Tile 2.50 (3.49) 2.27 (4.74) 0.71 (17.58) 
  Corridor 0.81 (4.09) 0.72 (6.77) 0.65 (16.76) 

 

 

Table 7.4: Standard deviation (mean absolute) of error percentage (right rotation). 
 
Degree R Surface Mean Filter Median Filter Wheel Encoder 

90 Lab 1.32 (1.05) 1.05 (0.93) 1.62 (17.22) 
  Carpet 1.15 (1.10) 1.53 (1.50) 0.89 (17.40) 
  Tile 2.72 (3.58) 2.80 (4.54) 1.20 (17.35) 
  Corridor 2.06 (3.66) 1.85 (6.68) 1.06 (16.28) 

180 Lab 0.71 (0.79) 0.54 (0.49) 1.48 (17.73) 
  Carpet 1.67 (1.39) 1.99 (1.69) 0.60 (18.05) 
  Tile 3.81 (4.71) 3.32 (6.12) 1.10 (18.26) 
  Corridor 1.71 (4.37) 1.41 (6.99) 0.82 (17.13) 

270 Lab 0.54 (0.57) 0.57 (0.54) 1.59 (17.31) 
  Carpet 1.96 (1.63) 2.39 (1.99) 0.74 (18.25) 
  Tile 2.71 (4.02) 2.55 (5.34) 0.78 (18.41) 
  Corridor 0.60 (3.69) 0.71 (6.50) 0.29 (17.68) 

360 Lab 0.65 (0.68) 0.55 (0.58) 1.29 (17.82) 
  Carpet 1.42 (1.40) 1.47 (1.52) 1.58 (17.98) 
  Tile 3.04 (4.21) 2.75 (5.60) 0.72 (18.48) 
  Corridor 0.78 (4.27) 0.68 (7.13) 0.52 (17.48) 

 

 



 145

 From the experiments on robot rotations, the performance of visual odometry 

under the controlled environment in the lab is superior to other surfaces, including the 

wheel encoder, in terms of error magnitude and accuracy consistency. The experiment on 

the carpet yields small mean error percentage but provides lower expectation on the 

accuracy consistency. Possibly due to the floor friction, the rotation motions sometimes 

become rather jerky, resulting in decreasing of its accuracy consistency. However, the tile 

surface gives the least accuracy consistency. This is caused by the low texture surface 

and the large area of glare under certain circumstances of lighting. In addition, the robot 

rotation may suffer from the imperfect grout joints between tiles. The robot may get stuck 

between uneven tiles temporarily and then swings out pretty fast after the release. This 

possibly leads to a higher error percentage as well. An interesting point to note is that the 

visual odometry on the corridor performs surprisingly well in terms of accuracy 

consistency, especially at larger degrees. On the corridor surface, the areas that contain 

bad texture or excessive reflection are stationary. For random rotations at 90 degrees, it 

may accidentally encounter a bad spot at some trials. Consequently, the results of short 

rotations may depend primarily on the random trial spot whereas the complete rotation, 

360 degrees, will always encounter the good and bad spots equally for all trials. 

However, the above experiment employs only the motion vectors in the lower part 

of the image plane in the angle calculation. An additional experiment has been conducted 

to investigate whether the motion vectors in the upper part of the image plane could 

resolve the problem regarding the consistency on the tile and corridor surfaces. First, all 

motion vectors are used to calculate the rotation angle. Then, only the motion vectors in 

the upper part are used to calculate the angle. The results from both scenarios do not give 



 146

satisfaction as expected. This is probably because of the nature of the surface properties. 

For these types of surface, the texture at a distance becomes less noticeable. As a result, 

visual odometry should rely on objects above the surface instead. Since the vertical 

viewing angle of the camera is small, distant objects become out of its sight. 

 

 What we learn from this experiment is that the performance of the robot rotation 

is dependent primarily on the surface properties. The computation of the rotation angle 

relies heavily on the surface texture and the surface reflection. It can be concluded from 

the experiment that surfaces with Lambertian reflection (tiles in this case) may have more 

impact on the system performance than the specular type (corridor). The video frame rate 

also has an impact on the computational accuracy. On surfaces that cause a jerky rotation, 

when the robot gets stuck and swings out after release, the speed may be too fast for the 

MPEG encoder to capture the real motion, resulting in decreased accuracy as well. This is 

the same problem that has also been discussed previously in the robot translation. 

 

 

 

 

 

 

 

 

 



 147

Real-Time Precipice Detection 

 The experiments on precipice detection are divided into two stages. Firstly, the 

experiments are performed on a simulated precipice. A large piece of white plain paper 

without texture is used in this experiment. This is to make sure that the robot can perform 

safely on very first attempts due to possibly unexpected failures. Figure 7.14 displays the 

robot detecting a fake precipice. 

 

 

 

Figure 7.14: Experiment on simulated precipice. 

 

 

Precipice Detection by Robot Velocity 

 In this experiment, the robot detects a simulated precipice located in front it. The 

detection is performed on the same setup at 10 different speeds, starting from 5 cm/sec to 



 148

50 cm/sec. The robot velocity is increased by 5 on each attempt. If the robot can detect 

the precipice successfully, the distance measured from the front side of the robot (the 

position where the robot stops) to the precipice will be made. Table 7.5 gives the results 

from this experiment. A graph of the stop distance by the robot speed is displayed in 

Figure 7.15.  

 

Table 7.5: Precipice detection by speed. 

Speed (cm/sec) Stop at (cm) Frame/Sec 
5 56.0 6.0 
10 51.5 10.8 

15 48.7 10.8 
20 46.0 10.8 

25 43.0 10.8 
30 41.0 10.8 

35 32.0 10.8 
40 35.0 10.8 

45 28.5 10.8 

50 19.3 10.8 
 

Precipice Detection by Speed

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 10 20 30 40 50 60

Speed (Cm/Sec)

Di
st

an
ce

 M
ea

su
re

d 
at

 S
to

p 
(C

m
)

 

Figure 7.15: Graph displays the result from the precipice detection by speed. 



 149

 From this experiment, the robot can successfully detect the simulated precipice at 

all speeds. The graph in Figure 7.15 indicates that the stop distance is inversely 

proportional to the robot velocity. It is noted that at the speed of 5 cm/sec, the frame rate 

is set to 6 fps. This is due to the fact that the sizes of the motion vectors are too small at 

lower speed. Reducing the video frame rate will increase the size of the motion vectors so 

that the precipice detection operates more efficiently.  

 

Precipice Detection by Approaching Direction (Simulated Precipice) 

This experiment is performed on three scenarios. First, the robot attempts to 

detect the precipice from the front. Then, it tries to detect the precipice when approaching 

from its left side and right side, respectively. Figure 7.16 shows the robot approaching the 

precipice from 3 different directions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16: Precipice detection from different directions: a) left, b) center, and c) right. 

a) 

b) 

c) 



 150

 In this experiment, the robot velocity is fixed at 15 cm/sec. Each direction is 

performed on 10 trials. The approximate angles are 40 degrees for the left approach and 

38 degrees for the right approach. When approaching from the front side, the robot 

direction is perpendicular to the precipice. In this case, the measurement from the 

position where the robot stops to the precipice is performed in the same fashion as the 

measurement in the above experiment. In the case of left approach, the measurement is 

made from the left side of the robot’s left wheel to the precipice and vice versa in the case 

of right approach. Each measurement is shown by the doubled arrowhead lines in Figure 

7.16. Table 7.6 provides the results in numeric format while the resulting graphs are 

shown in Figure 7.17.  

 

 

Table 7.6: Precipice detection from different directions (simulated precipice). 

 Direction of Precipice Approaching 
Trial # Left Front Right 

1 23.0 51.0 24.8 
2 24.0 50.7 21.8 
3 24.0 50.9 27.0 
4 20.0 50.5 21.8 
5 20.5 51.3 22.3 
6 20.5 51.2 22.5 
7 23.7 49.0 24.3 
8 21.5 51.0 23.8 
9 22.6 49.8 21.8 
10 20.5 49.5 23.8 

Avg 22.03 50.49 23.39 

StdDev 1.61 0.79 1.69 
 



 151

Precipice Detection from Different Direction
(Simulated Precipice) 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

1 2 3 4 5 6 7 8 9 10

Trial

Di
st

an
ce

 a
t S

to
p

Left
Front
Right

 

Figure 7.17: Graph of precipice detection from different directions (simulated precipice). 

 

 From the experiment, the robot can successfully detect the precipice in all 

approaching directions. The average measured distance in the Front approach is 50.49 cm. 

The left and right approaches are 22.03 cm and 23.39 cm, respectively. The standard 

variation is small, less than 1 for the front and less than 2 for the left and right. 

 The experiment on the simulated precipice indicates that the real-time precipice 

detection should perform consistently and be able to successfully detect the real precipice, 

as well. The next section will show the results from the experiment using the real 

precipice. 

 

Precipice Detection by Approaching Direction (Stairwell) 

 The real-time precipice detection is performed to detect the stair steps located 

next to the mobile lab. The robot is heading for a stairwell and expected to stop before 

falling down. The experiment is performed in the same manner as the previous 



 152

experiment.  The average left angle is 50 degrees and the average right angle is 48 

degrees. The range of the angle variation for both cases is ± 5 degrees. Figure 7.18 

displays the robot at its experimental location. The results are reported in Table 7.7 and 

Figure 7.19. 

 

Figure 7.18: Mobile robot detecting real precipice. 

 

 

Table 7.7: Precipice detection from different directions (stairwell). 

 Direction of Precipice Approaching 
Trial # Left Front Right 

1 20.6 51.2 31.5 
2 30.5 49 21.5 
3 28.1 50 21.5 
4 35.5 53.3 21.7 
5 21 49.3 19.8 
6 31.1 49.3 21.1 
7 34.8 49.1 33.7 
8 18 50.2 24.5 
9 21 49.8 35.3 

10 32.4 50.3 33 

Avg 27.30 50.15 26.36 

STD. Dev 6.55 1.29 6.21 



 153

Precipice Detection at the Stairwell

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Trial

Di
st

an
ce

 a
t S

to
p

Left
Front
Right

 

Figure 7.19: Graph of precipice detection from different directions (real precipice). 

  

 The experiment on the real precipice is also successful even though the floor 

surface is somewhat reflective and produces some small glare during the operation. The 

average distance in the case of the front detection is very close to the value from the 

simulation. The average values of the side detection are larger than the simulation, 

perhaps because of the larger angles. The higher standard deviation of the side detection 

may indicate the variation in the angles performed in the experiments.  

 

 From the experiments on the real-time precipice detection, the robot can detect 

both simulated and real precipices successfully.  The camera’s tilt angle is set in such a 

way that the width of the bottom row of the macroblocks in the image plane is, at least, 

equal to the width of the robot or larger. This is to make sure that the detection range is 

large enough to protect the robot from falling down in a precipice. As explained earlier, 

the selected tilt angle is made on the basis of using the same camera setup to perform 



 154

multiple sensor operations on a single camera. The results from both applications also 

substantiate the assumption.  

 

 

Caveat 

From the experiments, it is crucial to keep in mind that the camera’s adaptive 

brightness adjustment must be turned off. A small change in lighting condition can 

severely impair the MPEG motion estimation. This can cause MPEG to mistakenly detect 

false motions even in a stationary scene. Consequently, several false motion vectors will 

be produced or, in the worst case, the entire scene will be encoded as an intra-frame (I 

Frame). Furthermore, the processing time in performing automatic adjustment is 

evidently slow. It may take up to 2-3 seconds to stabilize the brightness level. Another 

aspect that is very important in helping improve the MPEG motion estimation is the 

adjustment of image quality. It has also been discovered that setting the image quality to 

3 or lower (on a scale of 5) can help the MPEG encoder produce a more uniform motion 

vector field regarding the robot motion. For instance, the visual odometry will perform 

poorly on the corridor surface unless the image quality is set to its lowest value, 1.  

 



 155

CHAPTER VIII 

 

CONCLUSION AND FUTURE WORK 

 

 Typical computer vision applications involve high-level mathematics and 

advanced programming skills. In spite of efficient coding, the algorithms are mostly time 

consuming. In this work, we investigate the use of an existing technology to help in 

implementing a visual system for mobile robot navigation. The main objective is to 

employ a low-cost and simple technology to reduce complexity to estimate the robot’s 

egomotion from a cheap USB webcam along with an opensource MPEG encoder. With a 

little effort in modifying the MPEG encoder software, a motion field can be estimated 

simply from the obtained motion vectors. Such an effort is considerably less time-

consuming and easier than estimating a motion field from the conventional methods. 

Subsequently, this motion field is analyzed in two real-time applications: visual odometry 

and precipice detection. 

 Firstly, the visual odometry system was designed to be easy to implement. A set 

of constraints are applied to the camera setup so that certain known values can be 

computed once and stored in a lookup table. The outlier rejection exploits the 

trigonometry method and the nature of the robot movement to eliminate erroneous 

motion vectors without iteration. Eventually, the calculation of the robot motions can be 

obtained readily from the lookup table. These basic mathematics methods prove to be 

very effective in implementing a real-time application. 



 156

 The experiments of the real-time visual odometry are performed to evaluate the 

accuracy and consistency of the visual odometry on four different surfaces: lab, carpet, 

tile, and corridor. The visual odometry performs very well on the surface with high 

texture and less reflection whereas its performance suffers from the surface with a large 

area of glare. The results also show that the robot velocity is limited by the video frame 

rate. Its accuracy deteriorates as the robot runs at very high speeds. The results confirm 

that the visual odometry based on MPEG encoder is sufficiently accurate for use in a 

mobile robot without wheel encoders. On the other hand, it may be used in accordance 

with built-in wheel encoders to improve the performance. 

  Secondly, the same motion vectors obtained from the MPEG encoder are used to 

implement a real-time precipice detection. The proposed algorithm divides the motion 

vectors into three rows of patches, WATCHING, WARNING, and PANIC. The detection 

procedure is performed by observing the status of each row over the past 3 frames. The 

experiments of the precipice detection are firstly tested on a simulated precipice to 

protect the robot from unexpected failures. Later, it is applied to an actual precipice. The 

results from both experiments are successful. The experiments of detecting a precipice 

show that the robot can detect a precipice successfully at a high speed up to 50 cm/sec, or 

even higher during the test. Furthermore, the results report that the proposed algorithm is 

able to effectively detect a precipice approaching the robot from an angle as well. Finally, 

despite its simplicity, the results from the experiments validate its reliability and 

efficiency. It also suggests that the system can be used to detect a precipice in real 

situations. 

 



 157

Future Work 

 Based on what we gained from this work, a few examples of future work are 

given as follows: 

 

Adaptive Frame Rate 

 The results from the experiments indicate that the video frame rate and the robot 

velocity are the major factors in creating a motion field. At a particular frame rate, the 

motion vector size is proportional to the robot velocity. At a high frame rate, when the 

robot moves very slowly, the motion vectors become very small. In this case, the MPEG 

encoder may produce sparse motion vectors or, in the worst case, the macroblocks may 

be coded as intra-block. These small and sparse motion vectors can potentially cause 

inaccuracy to the visual odometry calculation. In addition, the precipice detection cannot 

operate on a motion field of tiny motion vectors. This leads to a suggestion of estimating 

motion field adaptively. The idea is to dynamically adjust the video frame rate according 

to the robot’s speed. As a result, the motion field will be comprised of motion vectors 

with appropriate size. 

 

Alternative Method to Detecting a Precipice 

 The algorithm used in the proposed system is simple and proved to be very 

efficient when operating in real-time. However, from an observation during the 

experiments of a successful detection, when each detection status, WATCHING, 

WARNING, and PANIC, is activated, the slope of its fitted line over the past 10 frames 

will become negative (typically about -0.2). An alternative method to implement 



 158

precipice detection is to monitor the slope of the fitted line over a range of times/frames. 

The activation of the detection status is then dependent on this value. 

 

Dealing with Detecting a Fake Precipice 

From the successful experiment on the simulated precipice, it also implies that the 

robot may mistakenly detect an area of uniform surface, a surface without texture, as a 

precipice. This is a common problem occurring in visual applications. Inevitably, the area 

in doubt needs to be captured for additional processing to validate the detection. 

 

 This work shows that the use of MPEG motion vectors can tremendously reduce 

complexity and time in developing a visual system. The procedure to obtain the motion 

vectors from the encoding software is comparatively simple. The applications are able to 

operate efficiently under real-time constraints. Therefore, further investigations and 

implementations for mobile robot navigation are worthwhile and encouraging. 

 

 

 

 



 159

REFERENCES 
 
 
 
[1] B.M. Dawant, S.L. Hartmann, J-P. Thirion, F. Maes, D. Vandermeulen, and P. 
Demaerel, “Automatic 3D segmentation of internal structures of the head in MR images 
using a combination of similarity and free form transformations: Part I, methods and 
validation on normal subjects”, IEEE Transactions on Medical Imaging,  Vol.18(10),        
pp. 909-916, October 1999. 
  
[2] S.L. Hartmann, M.H. Parks, P.R. Martin, and B.M. Dawant, “Automatic 3D 
segmentation of internal structures of the head in MR images using a combination of 
similarity and free form transformations: Part II, Validation on Severely Atrophied Brains”,  
IEEE Transactions on Medical Imaging, Vol. 18(10), pp. 917-926, October 1999. 
 
[3] B.D. Jeffs and M. Gunsay, “Restoration of blurred star field images by maximally 
sparse optimization”, IEEE Transactions of Image Processing, Vol. 2(2), pp. 202-211,  
April 1993. 
 
[4] O. de Vel and S. Aeberhard, “Line-based face recognition under varying pose”,  
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 21(10),  
pp. 1081–1088, October 1999. 
 
[5] Y.T. Chien, Y.S. Huang, S.W. Jeng, Y.H. Tasi, and H.X. Zhao, “A real-time security 
surveillance system for personal authentication”, Proceedings: IEEE 37th Annual on 
Security Technology, 2003. 
 
[6] H.X. Zhao and Y.S. Huang, “Real-time multiple-person tracking system”,  
16th International Conference on Pattern Recognition (ICPR’02), Vol. 2, pp. 20897, 2002. 
 
[7] B.K.P. Horn and B.G. Schunk, “Determining optical flow”, Artificial Intelligence,  
Vol. 17(1-3), pp. 185-203, August 1981. 
 
[8] J. Chang, W. Hu, M. Cheng, and B. Chang, “Digital image translational and rotational 
motion stabilization using optical flow technique”, IEEE Transactions on Consumer 
Electronics, Vol. 48(1), pp. 108-115, February 2002. 
 
[9] S. Erturk, “Image sequence stabilization: Motion vector integration (MVI) versus 
frame position smoothing (FPS)”, Proceeding 2nd International Symposium Image and 
Signal Processing and Analysis, pp. 266–271, 2001. 
 
[10] G. Adiv, “Determining three dimensional motion and structure from optical flow 
generated by several moving objects”, IEEE Trans. on Pattern Analysis and Machine 
Intelligence, Vol. 7(4), pp. 384-401, 1985. 
 



 160

[11] P.J. Burt, J.R. Bergen, R. Hingorani, R.J. Kolczynski, W.A. Lee, A. Hung, J. Lubin, 
and J. Shvaytser, “Object tracking with a moving camera; an application of dynamic 
motion analysis”, IEEE Workshop on Visual Motion, Irvine, CA, 1989. 
 
[12] S. Patwardhan, H.S. Tan, and J. Guldner, “A General Framework for Automatic 
Steering Control: System Analysis”, Proceedings of the American Control Conference, 
Albuquerque, New Mexico, pp. 1598-1602, June 1997. 
 
[13] O. Ramström and H. Christensen, “A method for following unmarked roads”,  
IEEE on Intelligent Vehicles, Las Vegas, NV, June 2005, pp. 650-655, 2005. 
 
[14] R. N. Bracewell, “Two-Dimensional Imaging”, Perspective Model, pp 43- 48,  
ISBN 0-13-062621-X, Prentice-Hall, 1995. 
 
[15] W. Burger and B. Bhanu, “Estimating 3-D Egomotion from Perspective Image 
Sequences”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 12(11) 
November 1990. 
 
[16] A. Dev, B. Krose, and F. Groen, “Navigation of A Mobile Robot on The Temporal 
Development of The Optic Flow”, Proceedings of IEEE/RSJ International Conference 
on Intelligent Robots and Systems, Vol. 2, pp. 558-563, September 1997. 
 
[17] A. Branca, E. Stella, A. Distante, “Mobile robot navigation using egomotion 
estimates”, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and 
Systems, Vol. 2, pp. 533-537, September 1997. 

[18] N. O. Stoffler and Z. Schnepf, “An MPEG-Processor-Based Robot Vision System 
for Real-Time Detection of Moving Objects by a Moving Observer”, Proceedings of the 
14th International Conference on Pattern Recognition, Vol. 1, pp. 477, 1998. 

[19] N. O. Stoffler, T. Burkert, and G. Farber, “Real-Time Obstacle Avoidance Using an 
MPEG-Processor-Based Optic Flow Sensor”, 15th International Conference on Pattern 
Recognition, Vol. 4, pp. 161-166, 2000. 

[20] J. Cambell, R. Sukthankar, and I. Nourbakhsh, “Techniques for Evaluating Optical 
Flow for Visual Odometry in Extreme Terrain”, Proceedings of IEEE/RSJ International 
Conference on Intelligence Robots and Systems, Vol. 4, pp. 3704-3711, September-
October 2004. 

[21] J. Cambell, R. Sukthankar, I. Nourbakhsh, and A. Pahwa, “A Robust Visual 
Odometry and Precipice Detection System Using Consumer-grade Monocular Vision”, 
Proceedings of IEEE International Conference on Robotics and Automation, pp. 3412-
3427, April 2005. 
 
 



 161

[22] A. Burns and A. Wellings, “Real-Time Systems and Programming Languages”, 
Chapter1: Introduction to Real-Time Systems, pp 1-15, ISBN 0-201-40365-X,  
Second Edition, Addison-Wesley, 1997. 
 
[23] S.M. Smith and J.M. Brady, “ASSET-2: Real-time motion segmentation and shape 
tracking”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17(8), 
pp. 814-820, August 1995. 
 
[24] M. Sotelo, F. Rodriguez, L. Magdalena, L. Bergasa, and L. Boquete, “A color 
vision-based lane tracking system for autonomous driving on unmarked roads,” 
Autonomous Robots, Vol. 16(1), pp. 95–116, January 2004. 
 
[25] J. Campbell, A. Pahwa, R. Sukthankar, and I. Nourbakhsh. “Visual Odometry Using 
Commodity Optical Flow”, Intelligent Systems Demonstrations at AAAI 2004 (The 19th 
National Conference on Artifical Intelligence), San Jose, July 2004. 
 
[26] L. Muratet, S. Doncieux, and J.A. Meyer, “A biomimetic reactive navigation system 
using the optical flow for a rotary-wing UAV in urban environment”, In Proceedings of 
the International Session on Robotics, March 2004. 
 
[27] I.E.G. Richardson, “H.264 and MPEG-4 video compression: Video coding for next-
generation multimedia”, London: John Wiley & Sons, Ltd., 2003. 
 
[28] B. Townsend, “PAL Colour Television”, The Syndics of the Cambridge University 
Press, 1970. 
 
[29] D.G. Fink, “Color Television Standards: selected papers and records of the National 
Television System Committee”, McGraw-Hill Television Series, 1995. 
 
[30] “Motion estimation”, http://www.cs.cf.ac.uk/Dave/Multimedia/node259.html. 
 
[31] B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion 
vectors”, IEEE Transactions on Circuits and System for Video Technology, Vol. 3(2),     
pp.148-157, April 1993. 
 
[32] E. Linzer, P. Tiwari, M. Zubair, “High performance algorithms for MPEG motion 
estimation”, IEEE International Conference on Acoustics, Speech, and Signal Processing,  
(ICASSP-96), Vol. 4, pp.1934-1937, May 1996. 
 
[33] “ISO-11712: Coding of moving pictures and associated audio for digital storage 
media at up to 1.5 Mbits/sec (MPEG1)”, 
http://www.chiariglione.org/mpeg/standards/mpeg-1/mpeg-1.htm. 
 
[34] “ISO-13818: Generic coding of moving pictures and associated audio (MPEG2)”, 
http://www.mpeg.org/MPEG/dvd.html. 
 



 162

[35] “MPEG-4 overview”,  
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm. 
 
[36] “ITU-T Recommendation H.261: LINE TRANSMISSION OF NON-TELEPHONE 
SIGNALS”, Video codec for audiovisual services at p x 64 kbits,  
International Telecommunication Union (ITU), March 1993. 
 
[37] “ITU-T Recommendation H.263: SERIES H: AUDIOVISUAL AND 
MULTIMEDIA SYSTEMS”, Infrastructure of audiovisual services – Coding of moving 
video, Video coding for low bit rate communication, International Telecommunication 
Union (ITU), January 2005. 
 
[38] “ITU-T Recommendation H.264: SERIES H: AUDIOVISUAL AND 
MULTIMEDIA SYSTEMS”, Infrastructure of audiovisual services – Coding of moving 
video, Advanced video coding for generic audiovisual services,  
International Telecommunication Union (ITU), March 2005. 
 
[39] R.L. Joshi, T.R. Fischer, and R.H. Bamberger, “Lossy encoding of motion vectors 
using entropy-constrained vector quantization”, IEEE Computer Society Proceedings of 
the 1995 International Conference on Image Processing, Vol. 3(3), pp. 3109, ISBN:0-
8186-7310-9, 1995. 
 
[40] R. Schäfer, T. Wiegand, and H. Schwarz, “The emerging H.264/AVC standard”, 
Audio/Video Coding, Heinrich Hertz Institute, Berlin, Germany. 
 
[41] “Huffman Coding”, National of Institute of Standards and Technology (NIST), 
http://www.nist.gov/dads/HTML/huffmanCoding.html. 
 
[42] Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length codes”, 
IEEE Transactions on Communications, Vol. 43(2/3/4), pp. 158/162, 
February/March/April 1995. 
 
[43] “MPEG pointers & resources”,  
http://www.mpeg.org/MPEG/index.html. 
 
[44] “Decoding MPEG video in software”, 
http://www.cs.cf.ac.uk/Dave/Multimedia/node263.html. 
 
[45] “MPEG-2 profiles and levels”, 
http://viswiz.gmd.de/DVP/Public/deliv/deliv.211/mpeg/pr@lv01.htm. 
 
[46] A.M. Tekalp, “Digital Video Processing”, Prentice Hall Signal Processing Series, 
ISBN: 0-13-190075-7, 1995. 
 



 163

 [47] Y. Gong, G. Proietti, and D. LaRose, “A Robust Image Mosaicing Technique 
Capable of Creating Integrated Panoramas”, Proceeding: IEEE International Conference 
on Information Visualization, pp. 24-29, July 1999. 
 
[48] A. Smolic and T. Sikora, “Long-Term Global Motion Estimation and Its Application 
for Sprite Coding, Content Description, and Segmentation”, IEEE Transactions on 
Circuits and Systems for Video Technology, Vol. 9(8), pp. 1227 -1242, December 1999. 
 
[49] M. Hebert, “Pixel-Based Range Processing for AutonomouS Driving”, Proceeding:  
IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994. 
 
[50] J.I. Park, N. Yogi, K. Enami, and K. Aizawa, “Estimation of Camera Parameters 
from Image Sequence for Model-Based Video Coding”, IEEE Transactions on Circuits 
and Systems for Video Technology, Vol. 4(3), pp. 288-296, June 1994. 
 
[51] J.L. Barron and N.A.Thracker, “Motion Constraint Equation”. Tina Memo No. 2004-
012, Imaging Science and Biomedical Engineering Division, Medical School, University 
of Manchester,Stopford Building, Oxford Road, Manchester, M13 9PT. 
 
[52] M.J. Black, “Robust Incremental Optical Flow”, Ph.D. Thesis, Yale University, 
Department of Computer Science. Research Report YALEU-DCS-RR-923, 1992. 
 
[53] J. Kim and B. Bhanu, “Motion Disparity Analysis using Adaptive Windows”, 
Honeywell Systems and Research Center, Tech. Rep., 87SRC38, June 1987. 
 
[54] S.T. Barnard and W.B. Thompson, “Disparity Analysis of Images”,  
IEEE Transactions on Pattern Analysis for Machine Intelligence, Vol. PAMI-2 (4),  
pp. 333-340, July 1980. 
 
[55] R. Wang and T. Huang, “Fast Camera Motion Analysis in MPEG Domain”, 
Proceedings of IEEE International Conference on Image Processing, Vol. 3, pp. 691–
694, Kobe, Japan, October 1999. 
 
[56] R. Jin, Y. Qi, and A Hauptmann, “A Probabilistic Model for Camera Zoom 
Detection”, Proceedings of IEEE International Conference on Pattern Recognition,  
Vol. 3, pp. 859-862, 2002 
 
[57] J.I. Park, S. Inoue, and Y. Iwadate, “Estimating Camera Parameters from Motion 
Vectors of Digital Video”, IEEE Second Workshop on Multimedia Signal Processing, 
Vol. 7(9), pp. 105-110, CA, USA, December 1998. 
 
[58] J.G. Kim, H.S. Chang, J.W. Kim, and H.M. Kim, “Threshold-Based Camera Motion 
Characterization of MPEG Video”, ETRI Journal, Vol. 26, pp. 269-272, June 2004. 
 
[59] T.K. Chiew, P. Hill, D. R. Bull, and C. N. Canagarajah, “Robust Global Motion 
Estimation Using The Hough Transform for Realtime Video Coding”,  
Coding Symposium 2004, University of California Davis, CA, USA, December 2004. 



 164

 
[60] A. Smolic, J.R. Ohm, and T. Sikora, “Object-Based Global Motion Estimation Using 
A Combined Feature Matching and Optical Flow Approach”, Proceedings of 
International Workshop on Very Low Bitrate Video Coding, Urbana, IL, USA, October 
1998. 
 
[61] J.I. Park, N. Yogi, and C.W. Lee, “Video Composition Based on Robust Estimation 
of Camera parameters from Image Sequence”, Proceedings of IEEE International 
Conference on Image Processing, Vol. 1, pp. 368-372, November 1994. 
 
[62] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, “Numerical 
Recipes in C”, The Art of Scientific Computing, Second Edition, Cambridge University 
Press, 1992. 
 
[63] C. Morimoto and R. Chellappa, “Fast 3D Stabilization and Mosaic Construction”, 
Proceedings on IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, pp. 660-665, June 1997. 
 
[64] Z. Zhang and O. Faugeras, “3D Dynamic Scene Analysis”, Springer-Verlag, 1992. 
 
[65] H. Broszio and O. Grau, “Robust Estimation of Camera Parameters Pan, Tilt and 
Zoom for Integration of Virtual Objects into Video Sequences”, International Workshop 
on Synthetic-Natural Hybrid Coding and 3D Imaging, Greece, September 1999. 
  
[66] M. Fischler and R. Bolles, “Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and Automated Cartography”, 
Communications of the ACM, Vol. 24(6), pp. 381-395, 1981. 
 
[67] “Open Computer Vision Library”,  
http://sourceforge.net/projects/opencvlibrary/. 
 
[68] J.Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature Tracker”, 
OpenCV Documentation, Intel Corporation, Microprocessor Research Labs, 1999. 
 
[69] MobileRobots Inc., “Robots for Commercial & Research Applications”, 
http://www.mobilerobots.com/. 
 
[70] “Linux QuickCam USB Web Camera Driver Project”,  
http://qce-ga.sourceforge.net/. 
  
[71] “Fedora Project”,  
http://fedora.redhat.com. 
 
[72] “FFMPEG”,  
http://ffmpeg.mplayerhq.hu. 
 



 165

[73] “gtkmm - the C++ interface to GTK+”,  
http://www.gtkmm.org/. 
 
[74] S. Nakamura, “APPLIED NUMERICAL METHODS WITH SOFTWARE”, 
Chapter 8: Curve Fitting to Measured Data, pp. 274-288, ISBN 0-13-041047-0, Prentice 
Hall, Englewood Cliffs, N.J. 07632. 


