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PREFACE 

 

In this dissertation, I describe the application of mass cytometry to human B cells, 

germinal center (GC) biology and follicular lymphoma (FL) and its impact on B cell biology 

research and understanding. I have designed detailed mass cytometry phenotype 

staining panels for the study of B cell biology and used these to characterize human B 

cells in healthy peripheral blood, tonsil, and lymphoma tumors.  

In-depth characterization of B cells from a healthy immune system was needed 

before the disease state could be explored. I began with fluorescence flow cytometry to 

identify peripheral blood mononuclear cell (PBMC) subsets and to phenotype mature 

human B cells. I then started collecting mass cytometry data and developed a B cell-

focused panel that could identify mature B cell populations with room for additional 

immunophenotyping. This depth of protein phenotyping required novel approaches for 

data analysis to take advantage of the 30+ markers per cell. I probed the lymphocyte 

populations of follicular lymphoma tumors at the single cell level. I contributed to a study 

characterizing mature tonsillar B cell subsets by phenotype and phospho-signaling 

responses. I optimized computational approaches such as viSNE to maximize the 

biological veracity of the output viSNE maps. I have contributed tools and approaches 

that enable unbiased in-depth phenotyping of human B cells and have shown that these 

tools work in healthy and disease settings. My research has primarily been hypothesis 

generating in nature. The scope of my data collection with mass cytometry reveals much 

and is useful for generating new ideas.  

In Chapter 1, I introduce the fields of systems biology, human B cell biology, 

germinal center biology, follicular lymphoma, mass cytometry, and mass cytometry 
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analysis tools and approaches. The chapter discusses the field when I entered, the 

changes that have occurred since, and my contributions to the field.  

In Chapter 2, I used my knowledge of healthy peripheral blood and tonsil and 

applied it to mass cytometry phenotyping of a small patient cohort of resected follicular 

lymphoma (FL) tumors (Wogsland, Greenplate et al. 2017). Using healthy donor tonsils 

as a comparison point, I thoroughly characterized the lymphoma phenotypes of T cells, 

malignant B cells, and non-malignant B cells. In FL, a substantial proportion of the B cells 

are the malignant disease-causing cells and the disease phenotype is pronounced. I 

identified a potential GC deficit in FL tumors that could contribute to immune deficits by 

inhibiting new GC reactions. In my characterization, I found that the heterogeneity within 

tumors was driven strongly by cell to cell variations in expression levels of human 

leukocyte antigen D related antigen (HLA-DR). Surprisingly I also found that FL malignant 

B cells which are thought to arise from a germinal center B cell, were phenotypically 

distinct from GC B cells. 

Chapter 3 entitled, “Cutting edge: redox signaling hypersensitivity distinguishes 

human germinal center B cells” was published in the Journal of Immunology (Polikowsky, 

Wogsland et al. 2015). Using a high dimensional mass cytometry panel, we identified cell 

types and characterized signaling features. I developed the first human B cell-focused 

mass cytometry panel that was the framework for this panel. The published panel 

contains a backbone of B cell markers that identify the mature B cell subsets of naive, 

memory, class switched memory, germinal center, and plasmablasts/plasma cells. The B 

cell panel was adapted for this study to include intracellular signaling readouts. We 

modified the surface panel by adding phospho-antibodies to study B cell signaling in the 

germinal center. We explored B cell responses to titrating levels of reactive oxygen 
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species (ROS; hydrogen peroxide) and found germinal center B cells to be more sensitive 

than other B cell types found in tonsil.  

In Chapter 4, I present the computational experiments I performed while testing 

the robustness of viSNE with large flow cytometry standard (FCS) file datasets. High 

dimensional mass cytometry requires more than biaxial plots to get the full use of such a 

dense data set. It is crucial that the results produced by computational tools reflect and 

reveal biological truth. I found that decreased cell number or increased iteration number 

both improved the quality of the viSNE map when the data set is large. 

Conclusions, unanswered questions, and future directions are addressed in 

Chapter 5. I discuss ways to test several unanswered questions related to the follicular 

lymphoma phenotyping project. I discuss other topics of interest including B cells, allergy, 

and mass cytometry. 

Additional protocols, figures, and co-authored texts are included in the appendices.  
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CHAPTER 1 INTRODUCTION 

 

Systems biology 

Systems biology is the study of systems of biological components, which may be 

molecules, cells, organisms or entire species. Living systems are dynamic and complex, 

and their behavior may be hard to predict from the properties of individual parts.  

- Excerpt from the Department of Systems Biology at Harvard Medical School webpage (2017) 

 

Researchers have struggled to define and understand the emerging field of systems 

biology (Kirschner 2005, 2007, Breitling 2010). The usefulness of systems biology is 

broadly recognized but understanding and applying this holistic view of a system as 

opposed to a reductionist view has been met with resistance. The need for systems 

biology and systems immunology becomes clear when working in a human system where 

traditional reductionist approaches often used on mouse models or cell lines are not 

applicable. Systems biology research does not focus on single proteins and their role in 

a cell or an organism like traditional reductionist research. Although studying multiple 

proteins and cell types, like I have done here, might seem to be taking on too much, or 

unmanageable; it is only with this broad systems look that we can really understand 

certain features of disease or health. Taking a systems biology approach to characterize 

a disease or biological system allows it to be understood at a high level and can be used 

to not only answer questions but to also generate new hypotheses. The mass cytometry 

approach enables a broad yet deep look at the protein features of individual cells. Not all 

systems biology approaches capture data at the single cell level like mass cytometry. 

Systems biology studies can also include combinations of transcriptomics, metabolomics, 
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cytokine studies, or proteomics of tissue, sorted cells, or single cells. The single-cell 

systems data collected with mass cytometry is invaluable for revealing the nuances of 

protein expression within and between cell types. In their recent review, Brodin and Davis 

discuss the value of systems immunology in translating animal model knowledge to 

humans(Brodin and Davis 2017). They stress the value of systems immunology to 

understand how perturbations to the immune system change immune cell populations. 

Specifically, they refer to systems vaccinology, as a way to study the human immune 

response to vaccines (Brodin and Davis 2017). Tracking the immune response over time 

to vaccines (Hagan, Nakaya et al. 2015), or to infection at the single cell level (Appendix 

F) reveals the changes that occur in immune cell populations. This knowledge aids in 

understanding the impact of the vaccine or infection on the immune system.  

In Chapter 2, I took a similar approach, using single cell systems biology but 

instead of looking over time, I looked at a single pre-treatment time point and compared 

between the disease state of follicular lymphoma and the healthy state of tonsil. The 

systems biology approach confirmed FL characteristics reported in the literature,  

including a lack of IgD co-expression on IgM+ malignant cells (Grier, Al-Quran et al. 

2012), low to negative CD44 expression on malignant cells (Detry, Drenou et al. 2004, 

Eberth, Schneider et al. 2010), and retention of BCR expression on malignant cells 

(Kuppers 2005, Zuckerman, McCann et al. 2010, Buchner and Müschen 2014). This 

approach also led to multiple new findings; GC B cells were diminished in FL tumors; FL 

malignant B cells did not resemble GC B cells phenotypically; the malignant B cells had 

a high level of intra-tumoral heterogeneity that was driven by HLA-DR in all tumors 

studied; the T cell subsets were not significantly different between tumor and healthy 

samples although they trended towards an activated phenotype in FL tumors (Wogsland, 
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Greenplate et al. 2017). The implications and ideas for future studies are presented in 

Chapter 5. 

 

Significance of B cell biology 

B cells are an integral part of the adaptive immune system. They have multiple 

functions including antibody production, antigen presentation, T cell activation, and 

cytokine production (LeBien and Tedder 2008, Shen and Fillatreau 2015, Hoffman, Lakkis 

et al. 2016). A healthy B cell repertoire is essential for fighting off infections and 

developing lasting memory responses to a multitude of pathogens (Conley, Dobbs et al. 

2009). This is apparent in B cell diseases, including antibody deficiencies, where patients 

are far more susceptible to infection than individuals with a normal B cell repertoire 

(LeBien and Tedder 2008, Conley, Dobbs et al. 2009).  

B cells, primarily plasma cells, produce antibodies that circulate throughout the 

body (Medina, Segundo et al. 2002). Secreted antibodies are integral to fighting and 

preventing infection as part of the humoral immune response. The B cell heavy chain 

isotype plays a prominent role in antibody function (Murphy, Travers et al. 2008). The 

antibody isotypes IgD and IgM are produced by B cells that have not undergone class 

switch recombination (CSR). IgG(1-4), IgA(1,2), and IgE are found on the B cell surface 

or are secreted by plasmablasts/plasma cells that have undergone CSR (Klein and Dalla-

Favera 2008). Secreted antibodies have an array of circulation patterns with IgM 

antibodies generally forming pentamers, IgA circulating in monomeric form in blood and 

dimeric form in the mucosa, and IgG and IgE secreted as monomers (Woof and Kerr 

2006, Schroeder and Cavacini 2010).  The Fc portion of the different isotypes direct which 

receptors the secreted antibodies can bind. The most striking of these is IgE’s ability to 
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bind to the high affinity IgE receptor (IgεRI) without first binding antigen (Kinet 1999, 

Gould, Sutton et al. 2003). The Fc portion of the antibody determines the functional role 

the antibody. Fc regions have different affinities for different Fc receptors that are located 

on different cell types and in different tissues. IgG antibodies have a family of  six Fc 

gamma receptors (FcγR) that are found on multiple cell types, have varying affinities for 

the IgG subtypes, can be activating or inhibitory, and play different roles in antibody 

dependent cellular cytotoxicity (ADCC) and phagocytosis (Li and Kimberly 2014). The 

role of IgG antibodies and FcγRs in the context of cancer immunotherapy has been 

reviewed by Stewart et al. (Stewart, Hammond et al. 2014). B cells can express FcγRIIb 

(CD32) which is considered an inhibitory receptor that binds IgG1,3,4 but not IgG2 

(Stewart, Hammond et al. 2014). Engagement of CD32 has an inhibitory effect on BCR 

signaling (Karnell, Dimasi et al. 2014). There are six IgG Fc receptors, some activating 

and others inhibitory, with variable binding affinities for the four IgG subtypes 

(Nimmerjahn and Ravetch 2008). 

B cells are professional antigen presenting cells (APC). They can uptake specific 

antigen via the BCR and display it on MHC-II complexes to cognate CD4 T cells. This 

specific antigen display can activate the cognate T cell which in turn activates the 

presenting B cell via CD40/CD40L binding (Rodríguez-Pinto 2005, Chen and Jensen 

2008). B cells can also display non-specific antigen on MHC-II molecules which acts to 

tolerate CD4 T cells and does not activate the presenting B cell (Chen and Jensen 2008). 

The human MHC class II complexes HLA-DR, DP, and -DQ present exogenous antigen 

on the surface of APC including B cells (Janeway, Travers et al. 2001). The mass 

cytometry panels in this dissertation include staining for HLA-DR. In healthy B cells HLA-

DR, DP, and DQ have coordinate expression, whereas in some lymphomas and 
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leukemias including FL that is not the case and expression patterns may vary (Guy, 

Krajewski et al. 1986). This is one of the few papers published that specifically measured 

DR DP and DQ individually. The FL data from Guy et al. was collected by 

immunohistochemistry (IHC) and there is no single cell information or images in the 

publication. In Chapter 2, HLA-DR was found to be highly variable on FL malignant cells. 

All tumors showed that same variability of expression on the malignant cells.  

B cells are key players in effective vaccination strategies. Vaccines are dependent 

on generating a strong T cell-mediated B cell response that leads to the expansion of 

antigen specific memory B cells, antibody secreting plasma cells, and antigen specific T 

cells (Siegrist 2008). During the early primary immune response, IgM B cells and 

antibodies are the primary isotype. B cells will class switch to IgG later in the immune 

response (Siegrist 2008). This B cell response to vaccination (and infection) is an 

essential part of a healthy immune system (Clem 2011). 

B cells are involved in many diseases including cancer, autoimmunity, and allergy 

(Gould, Sutton et al. 2003, Browning 2006, Yanaba, Bouaziz et al. 2008, Conley, Dobbs 

et al. 2009, Pillai, Mattoo et al. 2011, Braza, Chesne et al. 2014, Schwartz, Zhang et al. 

2016). B cells may inhibit tumor growth, promote tumor growth, or be the tumor causing 

cells, as will be explored here in the context of follicular lymphoma (Tsou, Katayama et 

al. 2016, Yuen, Demissie et al. 2016). In B cell lymphomas, the B cell is the malignant 

pathogenic cell (Kuppers 2005, Gerstein, Zhou et al. 2015). Directly targeting B cells in 

these lymphomas has changed the field and the outcome for many patients. Specifically, 

the introduction of anti-CD20, Rituximab/Rituxan, in 1997 as a therapeutic agent has 

dramatically improved lifespans for patients with B cell lymphomas (Dotan, Aggarwal et 

al. 2010) (Evans and Clemmons 2015). A new anti-CD20 drug, Obinutuzumab/Gazyva, 
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was released in 2013 for use in chronic lymphocytic leukemia (CLL) (Evans and 

Clemmons 2015). It was approved in 2016 as a second line therapy in FL (2016). 

Obinutuzumab is thought to have a greater antibody-dependent cell-mediated cytotoxicity 

(ADCC) effect than Rituximab (Alduaij, Ivanov et al. 2011, Evans and Clemmons 2015). 

It is too soon to say if the progression free survival and overall survival in FL patients will 

be better than with Rituximab.  

B cells play a pathogenic role in autoimmune diseases by producing autoreactive 

antibodies (Mietzner, Tsuiji et al. 2008, Bax, Huizinga et al. 2014, Suurmond and 

Diamond 2015). These self-identifying antibodies lead to cell death and inflammation. 

Anti-CD20 therapies have more recently been introduced in autoimmune diseases with 

good results (Perosa, Prete et al. 2010). Defective B cells are the culprit in many immune 

deficiencies, often due to the inability to produce protective antibodies such as in the 

chronic variable immune disease (CVID) family of diseases. B cell immune deficiencies 

are usually monogenic. Patients present with a history of recurring infections (Warnatz, 

Denz et al. 2002, Conley, Dobbs et al. 2009, Salzer, Santos-Valente et al. 2013). 

 

Human B cell development and the germinal center reaction 

 

Primary B cell development 

B cell development begins in the bone marrow with hematopoietic stem cells 

(HSC) (LeBien 2000). The expression of transcription factors EBF1 and PAX5 are 

required for B cell development (Hagman and Lukin 2006, Somasundaram, Prasad et al. 

2015). EBF1 controls pre-BCR expression and the PI3 Kinase signaling pathway 

(Hagman, Ramirez et al. 2012). PAX5 plays multiple roles in B cell development. It comes 
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on early in B cell development and represses non-B lineage gene expression while 

promoting B-lineage protein expression. PAX5 maintains B cell identity throughout B cell 

development and plays a role in V(D)J recombination (Medvedovic, Ebert et al. 2011)  

 B cell precursors undergo V(D)J recombination in multiple steps producing a wide 

array of gene combinations and B cell receptor (BCR) variable regions (Brack, Hirama et 

al. 1978, LeBien and Tedder 2008). B cell development is subject to the principles of 

central tolerance. B cells must have a successful B cell receptor gene rearrangement to 

survive and reach maturity. They require a low level tonic signal through the B cell antigen 

receptor (BCR) for survival (Lam, Kuhn et al. 1997, Srinivasan, Sasaki et al. 2009). Too 

strong of a BCR signal can lead to cell death, anergy, or receptor editing (Nemazee 2006, 

Zou and Diamond 2013). If a B cell receives to strong of a signal through the BCR, it will 

undergo light chain receptor editing and attempt to produce a modified BCR that is no 

longer self-reactive (Nemazee 2006). Mature B cells circulate throughout the body in 

blood and lymph. The naïve B cells that exit the bone marrow express a diverse repertoire 

of BCR gene rearrangements, thus enabling the detection of a wide range of potential 

antigens.  

 

Germinal center reactions and peripheral B cell development 

The interplay between kinase activity and phosphatase regulation is thought to 

determine the fate of mature B cells undergoing the germinal center (GC) reaction. 

Chapter 3 explores this with peroxide stimulation of tonsil B cells and find that GC B cells 

have a more robust phospho-signaling response than other tonsillar B cell subsets. 

Chapter 2 and Chapter 3 use mass cytometry for an in-depth analysis of GC B cells. 

Chapter 2 focuses on GC B cells in relation to FL B cells while Chapter 3 focuses on 
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kinase and phosphatase differences. When a B cell is activated by binding antigen to the 

B cell receptor (BCR) and receiving additional signals in the form of cytokines or T cell 

help, the activated B cell travels to a B cell follicle in lymphoid tissue and begins to 

proliferate and form a germinal center reaction (Klein and Dalla-Favera 2008). The GC 

reaction is a dynamic process with the result being improved antigen recognition in long 

lived memory B cells and the production of long lived antibody secreting plasma cells. 

Surface molecules and signaling cascades play crucial roles in the GC reaction. Deficits 

in surface molecule expression or signaling pathways can lead to imbalances and deficits 

in the humoral immune system. 

When a B cell encounters antigen with its B cell receptor and receives T cell help 

via CD40/CD40L, it is activated and can then move to the B cell follicle in the lymphoid 

tissue. Mature naïve B cells are IgD+, CD20+ and CD19+ . They lack CD27 and CD38 

which are expressed on memory B cells, and GC B cells respectively (Yurchenko, 

Kovalevska et al. 2010, Huse, Bakkebo et al. 2011, Wei, Jung et al. 2011). Activated T 

cells in the periphery can activate B cells. These T cells can be detected by activation 

markers such as PD-1, MHC II, ICOS, CD69, and CD38 (Rao, Gurish et al. 2017). Surface 

markers such as CD62L, CXCR5, and CXCR4 assist expressing cells in homing and entry 

to lymphoid tissue(Stein and Nombela-Arrieta 2005, Wirth, Badovinac et al. 2009). 

Activated B cells form a germinal center inside the B cell follicle as they begin to proliferate 

and modify their B cell receptors during a process known as affinity maturation (Klein and 

Dalla-Favera 2008).  

During affinity maturation, activation-induced cytidine deaminase (AID) is 

expressed and plays a role DNA modification in somatic hypermutation (SHM) and class 

switch recombination (CSR) (Muramatsu, Kinoshita et al. 2000) SHM induces point 
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mutations in the B cell receptor while CSR makes a change in heavy chain isotype. These 

mutations may produce an antigen specific high affinity BCR, make the B cell receptor 

less likely to bind antigen, destroy the B cell receptor entirely, or cause mutations to other 

DNA sites (Klein and Dalla-Favera 2008). Many B cells die at this point due to 

unsuccessful BCR changes or DNA damage. It is thought that many B cell lymphomas 

arise from inappropriate mutations during the germinal center reaction (Klein and Dalla-

Favera 2008).  

 

Figure 1-1 Cartoon of the germinal center reaction.  

1. An activated mature B cell enters a B cell follicle in lymphoid tissue after receiving T cell help. 2. The B cell undergoes 

a process called affinity maturation which includes clonal expansion and somatic hypermutation of the BCR in an 

attempt to optimize antigen specificity. These proliferating cells are located in a region known as the dark zone. 3. 

Resting B cells with mutated BCRs move to the light zone seeking T cell help. B cells may move between the dark and 

light zones multiple times until successful BCRs are established or apoptosis occurs. 4. B cells with deleterious 

mutations that are unable to receive T cell help undergo apoptosis. This is the majority of GC B cells. 5. Successful B 

cells with enhanced antigen specificity can receive T cell help and are positively selected for survival. 6. Some of these 

B cells undergo class switch and then differentiate to become a memory B cells or a plasma cells.  

Wogsland and Huse Adapted from (Kuppers 2005)  

 



 10 

B cells are one of the few cell types that have permission to make DNA changes 

which makes it more likely that unwanted changes will go unchecked. Both B and T cells 

undergo V(D)J gene rearrangements (Murphy, Travers et al. 2008). Only B cells make 

guided purposeful point mutations during SHM and change out the adapter portion of the 

BCR during isotype class switching (Cerutti 2008). The BCR and its isotype provide 

information about the developmental path of the B cell. B cells that receive T cell help are 

more likely to class switch and to have more extensive point mutations due to SHM 

(Berkowska, Driessen et al. 2011). A minority of GC B cells will successfully mutate a 

BCR that binds antigen with higher affinity and be selected for survival.  

The process of selecting high-affinity B cells is dependent upon the ability to 

present antigen to T follicular helper cells (Tfh) cells (Victora, Schwickert et al. 2010). 

Antigens are presented on follicular dendritic cells (FDCs) and B cells compete with each 

other for binding antigen (Gitlin, Shulman et al. 2014). The B cells with high affinity BCRs 

will pick up the most antigen from the FDCs, process it and present it on MHC-II molecules 

to Tfh cells. Tfh cells with a cognate T cell receptor (TCR) will bind the MHC-II-peptide 

complex and provide survival and proliferation signals to the B cells including 

CD40L/CD40 stimulation (Crotty 2015). B cells that survive, differentiate into either 

memory B cells or antibody secreting plasmablasts/plasma cells (Shlomchik and Weisel 

2012). Both differentiation paths play an important role in adaptive immunity. Many 

mature plasma cells eventually migrate to the bone marrow and continue to secrete 

antibodies, potentially for decades (Medina, Segundo et al. 2002, Klein and Dalla-Favera 

2008, Jourdan, Caraux et al. 2009). These circulating antibodies become a first line of 

defense against known pathogens upon subsequent exposure. When subsequent 
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exposure occurs, the memory B cells will become activated and then undergo a new 

germinal center reaction that will lead to increased and improved antibody production.  

 

Mature B cell phenotypes 

B cells that circulate throughout the body and B cell follicles in the secondary 

lymphoid organs and undergo GC reactions are known as follicular B cells or, B2 B cells 

(Montecino-Rodriguez and Dorshkind 2012). These B cells are the focus of this 

dissertation. With mass cytometry phenotyping, I have focused on four mature B cell 

populations: naïve, memory, GC B cells, and plasmablasts. The cells can be grouped into 

populations by a series of biaxial gates or by drawing gates directly on a viSNE map. 

Most of the research presented in Chapters 2 and 3 focuses on naïve, memory, and GC 

B cell subsets and their characteristics. In Chapter 2, I compare these B cell subsets in 

healthy tonsil to those in follicular lymphoma tumors. In Chapter 3, the comparison is in 

the signaling responses (phospho-specific antibodies) to ROS between the B cell 

subsets. 

Naïve B cells have the phenotype CD19+ CD20+ IgD+ CD38- CD27-. The naïve 

B cells have not undergone class switch recombination (CSR) or somatic hypermutation 

(SHM). Naïve B cells can express varying levels of IgM. They do not express IgG, IgA, or 

IgE (Jackson, Wilson et al. 2008). GC B cells have the phenotype CD19+ CD20hi IgD- 

CD38+ CD44low/-. CD38 is an indicator of GC status in human B cells (Wagner, Hanna 

et al. 2000, Jackson, Wilson et al. 2008). GC B cells tend to have low surface 

immunoglobulin (Ig) since they undergo CSR and SHM during a GC reaction. They tend 

to express low levels of the chemokine receptors CXCR4 and CXCR5 (Allen, Ansel et al. 

2004). Memory B cells have the phenotype CD19+ CD20+ IgD- CD38- CD27+. CD27 
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marks memory B cells in humans. Memory B cells are the result of clonal expansion after 

antigen encounter in T cell dependent GC reaction or T-independent reactions(Jackson, 

Wilson et al. 2008). Gating strategies for these B cell populations are located in the figures 

in Chapter 2. Traditional biaxial gating and on-viSNE gating strategies are shown. 

 

Dysregulation of B cells in follicular lymphoma 

Follicular lymphoma is the most common indolent non-Hodgkin lymphoma 

(McLaughlin 2002, Zinzani 2005). Patients survive for decades but relapses are common 

and transformation to more aggressive lymphoma is always a risk (Dave 2006)  Follicular 

lymphoma is thought to originate from the germinal center reaction (Dave, Wright et al. 

2004). Even with the use of the life-extending anti-CD20 drug Rituximab, FL has remained 

largely incurable and maintains a risk of transformation to the more aggressive diffuse 

large B cell lymphoma (DLBCL). Follicular lymphoma malignant cells form follicles 

reminiscent of GCs (Dave, Wright et al. 2004). The malignant cells express GC B cell 

signature genes although their protein profile may vary from patient to patient with the 

loss of one or more GC B cell signature protein (Shaffer, Rosenwald et al. 2002).  FL is 

genetically characterized by a genomic translocation that puts BCL2 under the control of 

the heavy chain promoter. BCL2 represses apoptosis and since the heavy chain is 

constitutively expressed in B cells, this means that BCL2 is as well (Ngan , Chen-Levy  et 

al. 1988). When BCL2 is expressed, it blocks BAX and BAK from permeabilizing the 

mitochondrial membrane and releasing ROS and cytochrome C (Hardwick and Soane 

2013). Since GC B cells are already undergoing cycles of proliferation, the block on 

apoptosis can quickly lead to an overexpansion of B cells. I hypothesized that the 

phenotyping of FL tumors would show the malignant cells to be phenotypically similar to 
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GC B cells observed in tonsil. This was however not the case. The malignant cells, had 

high levels of BCR expression, low CD40, low CD38, and low CXCR4 which contrasted 

with GC B cell phenotypes (Figure 2-10B). The malignant cells reflected GC B cells by 

being low to negative for CD44 and expressing some CXCR5. These similarities were not 

enough to map the cells together using the dimensionality reduction tool viSNE. 

In addition to malignant FL cells not resembling GC B cells, there was a lack of GC 

B cells in the resected tumors. Instead, the GC population is almost nonexistent and there 

is a large malignant B cell population. These results are shown in Chapter 2. I discuss 

what might be causing this lack of GC population and how it could be tested in the 

conclusion chapter. 

HLA-DR was found to be highly variable in the malignant B cells we phenotyped. 

The variability implies a complex interaction with the immune system that is not well 

understood. It is known that HLA-DR is sometimes expressed on cancer cells such as 

melanoma (Brocker, Suter et al. 1984, Johnson, Estrada et al. 2016). The cancer cells in 

FL are B cells which normally express HLA-DR in a healthy state whereas melanocytes 

do not do not express HLA-DR in a healthy state. It is not clear why the HLA-DR 

expression is so variable within the malignant tumor cells. All the tumor samples showed 

this same HLA-DR variability. A variance that surpassed that of non-malignant B and T 

cells (Chapter 2, Figure 5). 

This work generated new insights into follicular lymphoma and new questions.  

What is causing the diminished GC population? What is the role of HLA-DR and the 

variability of expression among the malignant cells? What else can be determined if we 

have patient outcome data? I attempt to answer these questions and others in my final 

conclusions chapter. 
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Tools for the study of B cells 

 

Human B cell research 

While mice have long served as a research model for studying the adaptive 

immune system and B cells (Eibel, Kraus et al. 2014), we have the ability to study human 

B cells from healthy and diseased patients. Human B cells can be studied using cell lines 

or primary human tissue. Cell lines are useful for testing experimental design but primary 

cells are an invaluable tool for understanding human B cell biology. Cell lines have 

skewed survival signaling that make them immortal and therefore shift their phenotypes 

and signaling away from that of primary cells (Irish, Czerwinski et al. 2006, Kaur and 

Dufour 2012).  

Human B cell lines and primary B cells have been cultured for decades (Friend, 

Marovitz et al. 1978, Jacques and Françoise 1991, Karpova, Schoumans et al. 2005). 

The discovery that CD40 stimulation, initially via anti-CD40 and later with rCD40L, could 

keep primary B cells alive was important for primary B cell research (Jacques and 

Françoise 1991). CD40 stimulation enables ex vivo culture to study B cell replication, 

class switch (Tangye, Ferguson et al. 2002), signaling, and antibody production.  

 

Peripheral blood 

Human peripheral blood is a renewable resource of primary B cells for research. 

B cells collected from peripheral blood are robust, capable of undergoing freeze/thaw with 

minimal effect, and can be grown in culture (Jacques and Françoise 1991, Irish, 

Czerwinski et al. 2006). The ability to keep B cells alive in culture has made it possible to 
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learn much from human B cells about class switch, differentiation, apoptosis, etc. B cells 

can be grow in suspension making them easy to work with (Huse, Bakkebo et al. 2011). 

 

Tonsil 

Tonsil has been used for decades as a model to study mature human B cells and 

the GC reaction (Gadol, Peacock et al. 1988, Feuillard, Taylor et al. 1995, Kremmidiotis 

and Zola 1995, Jackson, Wilson et al. 2008, Perez, Billordo et al. 2014). Pitfalls of tonsil 

too, not the exact location as tumors, always activated, possibly inflamed. 

 

Flow cytometry 

 

Fluorescence flow cytometry 

Fluorescence flow cytometry is a single cell analysis tool that uses microfluidics 

and lasers to collect single cell data. Fluorescence flow cytometry has continually 

advanced by adding more lasers, detection channels, new fluorescent tags, and improved 

software (Preffer and Dombkowski 2009). While multiple markers can be measured at 

once there is still the concern of compensation due to overlapping emissions spectra 

(Herzenberg, Parks et al. 2002). This overlap limits the number of tags that can be used 

simultaneously. Due to the nature of fluorescence flow cytometry, values are relative and 

vary based on voltage settings which limits signal quantitation (Givan 2001). This makes 

fluorescence flow cytometry less than ideal for quantitative flow cytometry. Fluorescence 

marker/channel intensities vary depending on the voltages for each collection channel. A 

negative value can look positive if the voltages are too high. This can cause confusion 

and it makes quantitative measurements and advanced analysis difficult (Givan 2001). 
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Mass cytometry 

The introduction of mass cytometry with the CyTOF mass cytometer has provided 

a single cell platform that eliminates the need for compensation and has the capacity to 

measure more markers simultaneously and quantitatively (Bandura, Baranov et al. 2009, 

Ornatsky, Bandura et al. 2010). With mass cytometry, zero is zero, it is not relative. The 

ions detected are the ions reported, there are no voltage settings to change that shift 

signal levels. This, combined with the ability to build 30+ marker phenotype staining 

panels, makes it ideal for a systems biology approach at the single cell protein level. 

I have contributed tools (Appendix E) and approaches (Chapter 2 and Chapter 4) 

that enable unbiased in-depth phenotyping of human B cells with mass cytometry. I have 

applied these tools and approaches in settings of health and disease to uncover new 

biology and a deeper understanding of existing biology.  

Mass cytometry uses the same antibodies as fluorescence flow cytometry but a 

different chemistry that conjugates a polymer that can chelate metal isotypes used as the 

detection molecules (Bandura, Baranov et al. 2009, Majonis, Herrera et al. 2010). The 

metal reporter ions become bound to the cells via antibodies during the staining process. 

Each antibody gets a different purified metal isotope. The reporter isotopes remain with 

the cell during ionization and atomization. The reporter ion cloud eventually reaches a 

time of flight detector and the ion pulses are recorded in an integrated mass data (IMD) 

file. The path of an ion is presented as a cartooned schematic in Figure 1-2. The CyTOF 

software parses the IMD file to generate flow cytometry standard (FCS) and text files with 

cell level information similar to fluorescence flow data although without the forward and 

side scatter. See Figure 2-6 for mass cytometry gating strategy. 
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Figure 1-2 Understanding data generation from isotopes to cells: Depiction of pulses, ions, pushes, and events in mass 

cytometry.  

A,B) Cartoon of one push zoomed in to show only two masses (adapted from Fluidigm/DVS). The high and low ion 

concentration are used together to form a single Dual Signal scale. The x axis is nanoseconds. A) At low metal 

concentrations, the pulses can be summed to find the correct number of ions, referred to as the digital puklse count. 1 

pulse equals 1 ion. B) At higher metal concentrations, pulses start to overlap and summation will not give an accurate 

ion count. The use of a calibrartion coeficient is necessary to find the accurate number of ions. When the claibration 

coeficient is multiplies by the anaolg/integrated intensity, the correct number of ions is determined. C) Cartoon of the 

pushes/time of flight collection window zoomed in to a single event and showing only 4 metals including Ir intercalator. 

D) Cartoon of the pushes for two metals that are integrated for a single event. E) Simplified view of what the pre-FCS 

data looks like. Parameters are labeled at the top of each column and each row after the first is an event. F) Example 

biaxial plots from an FCS file showing where the cell tracked in red is located. 

 

As an example, the identification of 4 mature B cell subsets and major BCR heavy 

chain isotypes uses eleven markers/channels (CD19, CD20, IgD, IgM, IgG, IgA, CD27, 

CD38, CD3-, and CD45, CD44). Eleven markers is on the high end of panel design for 

fluorescence cytometry whereas for mass cytometry that is less than a third of the panel 

space. The other channels can then be used to characterize the B cell subsets and 
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identify and characterize other immune populations (Figure 1-3). See Table 1-1 for an 

example B cell panel. 

 

Figure 1-3 The value of mass cytometry – getting key markers into one tube 

Mass cytometry enables the identification and characterization of multiple cell types in a single staining panel. Five 

mature B cell types can be identified and then further characterized simultaneously. The panel allows for the 

identification of T cell, NK cell, and Monocytes as well. The trafficking and adhesion markers and other markers such 

as CD38, CD27, and HLA-DR are helpful in characterizing these non B cell immune subsets. 

 

The high dimensionality and quantitative nature of mass cytometry lends itself to the use 

of dimensionality reduction visualization tools. These tools incorporate all of the 

parameters collected about the cellular events and allow the data to be present in a 2-

dimensional (2D) or 3D format that is comprehensible by the human eye. These tools 

include viSNE, SPADE, PCA, and CITRUS (Qiu, Simonds et al. 2011, Newell, Sigal et al. 

2012, Amir el, Davis et al. 2013, Bruggner, Bodenmiller et al. 2014, Chester and Maecker 

2015, Newell and Cheng 2016). My research has primarily used viSNE and SPADE. 

viSNE is excellent for preserving the single cell level data while SPADE is useful for 

clustering the data based on t-SNE features. When I applied viSNE to the B cells from 

the lymphoma tumors, the malignant cells were clearly distinguishable from non-

malignant tumor B cells and healthy tonsillar B cells with minimal human involvement in 

the data analysis (Figure 2-1). viSNE was able to separate malignant and non-malignant 

B cells thereby identifying malignant and non-malignant samples in computational 
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experiments without the need to look at light chain exclusion. This could be put to use as 

an automated tool for FL identification, especially if other B cell lymphomas map 

differently in viSNE.  
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Table 1-1 Example  B cell focused mass cytometry panel 

 

Example Human B cell mass cytometry CyTOF staining panel 

# Isotope Antigen Notes Clone Supplier 

1 141Pr CCR6 (CD196) Chemokine receptor for CCL20, involved in mucosal immunity, on T cells surface G034E3 Biolegend 

2 142Nd CD19 B cells surface HIB19 Fluidigm 

3 143Nd CD5 T cells surface UCHT2 Fluidigm 

4 144Nd CCR5 (CD195) chemokine receptor, on memory T cells, DCs, and macrophages surface NP6G4 Fluidigm  

5 145Nd CD4 T helper cells surface RPA-T4 Fluidigm 

6 146Nd IgD non-class switched B cells surface IA6-2 Fluidigm 

7 147Sm CD20 B cells surface 2H7 Fluidigm 

8 148Nd IgA Class switched B cells both Poly Fluidigm 

9 149Sm CD23 low affinity IgE receptor, found on B cells surface EBVCS-5 Biolegend 

10 150Nd CD43 B1 B cells, T, mono, gran, may play a role in activation surface 84-3C1 Fluidigm 

11 151Eu Ig lambda B cell light chain surface MHL-38 Fluidigm 

12 152Sm CD36 FAT, scavenger receptor, IgM plasmas, B2 B cells after CD40 stim surface 5-271 Fluidigm 

13 153Eu CD62L L-selectin lymphoid homing surface DREG-56 Fluidigm 

14 154Sm CD45 leukocytes surface HI30 Fluidigm 

15 155Gd CD27 memory B cells surface L128 Fluidigm 

16 156Gd CD86 B7-2, involved in T cell interactions surface IT2.2 Fluidigm 

17 158Gd CD33 mono, myeloid, binds sialic acid, ITIM surface WM53 Fluidigm 

18 159Tb CD22 BCR inhibitory receptor surface HIB22 Fluidigm 

19 160Gd Ig kappa B cell light chain surface MHK-49 Fluidigm 

20 161Dy CD32 in house conjugation surface FUN-2 Biolegend 

21 162Dy CD79B Igβ, BCR signaling subunit surface CB3-1 Fluidigm 

22 163Dy IgG-APC* majority of class switch B cells both G18-145 BD 

23 164Dy CD49F α6 integrin subunit, involved in cell adhesion surface G0H3 Fluidigm 

24 165Ho CD40 B cells, co-stimulatory molecule, interacts with CD40L on T cells surface 5C3 Fluidigm 

25 166Er CD44 hyaluronic acid receptor, negative on GC B cells, positive for Teff, mem surface BJ18 Fluidigm 

26 167Er CD38 GC B cells, plasmablasts/plasma cells surface HIT2 Fluidigm 

27 168Er CD8 CTLs surface SK1 Fluidigm 

28 169Tm CD24 adhesion: B cells surface ML5 Fluidigm 

29 170Er CD3 T cells surface UCHT1 Fluidigm 

30 171Yb CXCR5 (CD185) allows access to lymph node and spleen surface J252D4 Biolegend 

31 172Yb IgM Non-class switched B cells surface MHM-88 Fluidigm 

32 173Yb IL4Rα IL-4 cytokine receptor on B cells and T cells surface G077F6 Biolegend 

33 174Yb HLA-DR antigen presenting cells surface L243 Fluidigm 

34 175Lu CXCR4 (CD184) B cells, binds CXCL12  surface 12G5 Fluidigm 

35 176Yb CD56 NCAM, Leu-19, and NKH1, type I transmembrane glycoprotein, NK cells surface CMSSB Fluidigm 

36 Ir191 - Natural Iridium intercalator, cell marker for mass cytometry IC - Fluidigm 

37 Ir193 - Natural Iridium intercalator, cell marker for mass cytometry IC - Fluidigm 

*IgG-APC antibody used, with an anti-APC secondary from Fluidigm (APC003) 
IC – intracellular 

BD -   Becton, Dickinson Biosciences 

(Kondo, Takata et al. 2007, Barmania and Pepper 2013) 
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CHAPTER 2 MASS CYTOMETRY OF FOLLICULAR LYMPHOMA TUMORS 

  

Full title: Mass cytometry of follicular lymphoma tumors reveals intrinsic heterogeneity in 

proteins including HLA-DR and a deficit in non-malignant plasmablast and germinal 

center B cell populations (Wogsland, Greenplate et al. 2017) 

Cara Ellen Wogsland, Allison Rae Greenplate, Arne Kolstad, June Helen Myklebust, Jonathan Michael 

Irish, Kanutte Huse 

 

Abstract 

Background: Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma that has a 

risk of transformation to more aggressive lymphoma. Relatively little is known about the 

non-malignant B-cell and T-cell subset composition within the tumor microenvironment 

and whether altered phenotypes are associated with patterns of lymphoma B-cell 

heterogeneity. 

 

Methods: Two mass cytometry (CyTOF) panels were designed to immunophenotype B 

and T cells in human FL tumors. Populations of malignant B cells, non-malignant B cells, 

and T cells from each FL tumor were identified and their phenotypes compared to B and 

T cells from healthy human tonsillar tissue.  

 

Results: Diversity in cellular phenotype between tumors was greater for the malignant B 

cells than for non-malignant B or T cells. The malignant B-cell population bore little 

phenotypic similarity to any healthy B-cell subset, and unexpectedly clustered closer to 

naïve B-cell populations than GC B-cell populations. Among the non-malignant B cells 

within FL tumors, a significant lack of GC and plasmablast B cells was observed relative 
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to tonsil controls. In contrast, non-malignant T cells in FL tumors were present at levels 

similar to their cognate tonsillar T-cell subsets. 

 

Conclusion: Mass cytometry revealed that diverse HLA-DR expression on FL cells within 

individual tumors contributed greatly to tumor heterogeneity. Both malignant and non-

malignant B cells in the tumor bore little phenotypic resemblance to healthy GC B cells 

despite the presence of T follicular helper cells in the tumor. The non-malignant GC B cell 

population was diminished in the tumors however the Tfh cell population was not 

diminished. These findings suggest that ongoing signaling interactions between 

malignant B cells and intra-tumor T cells shape the tumor microenvironment.  

 

Introduction  

Follicular lymphoma (FL) has been observed to be very different between patients 

in terms of phenotype, progression, transformation, and outcome. Here, I examined the 

differences between the cells within individual tumors and between tumors. This provided 

several new insights. The malignant B cells are heterogeneous within the tumor. 

Heterogeneity in FL exists not only between patients but within the malignant cells of a 

single tumor. Using dimensionality reduction tools and clustering I identified HLA-DR as 

highly variable within the tumors and the top contributor to malignant cell phenotypic 

diversity. All eight tumors examined had variable expression of HLA-DR on the malignant 

cells. Since HLA-DR presents peptides to immune cells, this variability could be due to a 

complex interaction with the immune system. The malignant cells might be playing a 

complex balancing act between receiving T cell help (high-HLA-DR) and becoming less 

immunogenic (low HLA-DR) (Silva, Silva et al. 2013). I discuss HLA-DR in more detail in 
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Chapter 5. I also found that GC B cells had a diminished presence among the non-

malignant B cells in the tumors. This is contrary to that normally robust GC population 

that is seen in tonsil. 

Patient demographics are shown in Table 2-1. This information was not used in 

the analysis of the data because the sample set is too small to accurately draw 

conclusions about phenotype based on the patient demographics. The Sample IDs in the 

table were used in the figures to label individual tumors. There were 2 male patients and 

6 female patients. Patients ages ranged from  31 and 49 years, which is a lower than the 

average FL patient (>60 years) (Freedman 2015). The therapies and responses to 

therapies are recorded in Table 2-1 along with overall survival (OS) data. All tumor 

samples were collected before therapy so the therapies listed have no impact on the data 

shown here. These patients were treated before the Rituximab era so even if there were 

enough patients to make an outcome analysis, the findings would not be as relevant since 

Rituximab is now a key part of first therapy (Freedman 2015). The patient disease 

presentations were scored using the Follicular Lymphoma International Prognostic Index 

(FLIPI) at the time of diagnosis. FLIPI uses 5 prognostic factors and a total scale of 0-5 

to assess FL in a patient: patient age (>60 is +1), Ann Arbor Stage (>II is +1), hemoglobin 

(<120 g/L is +1), number of nodal areas (>4 is +1), serum lactate dehydrogenase (LDH) 

(>normal is +1) (Solal-Celigny, Roy et al. 2004). FLIPI scores of 0-1 fall into the good risk 

category, 2 is intermediate risk, and 3-5 means the prognosis is poor (Solal-Celigny, Roy 

et al. 2004). The light chain restriction status determined clinically matched what we saw 

by mass cytometry. 

I designed the core B cell mass cytometry marker panel (Chapter 1, Table 1-1) 

and assisted in adapting the panel for this study (Table 2-2). The markers included were 
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chosen to identify mature B cell subsets, characterize those B cell subsets, and identify 

other immune cell types, primarily T cells. Although a T cell panel was run for the detailed  

 
 

Table 2-1 Patient demographics for FL tumors phenotyped by mass cytometry.  

All tumor samples were taken pre-therapy. Ann Arbor stage is recorded in roman numerals with higher numerical values 

indicating more advanced disease. The FLIPI scale is a prognisis scale of FL disease. A higher FLIPI score indicates 

a worse prognosis (Solal-Celigny, Roy et al. 2004). Overall survival (OS) is marked as 0 for alive and 1 for deceased. 

The cloumn to the right of Censor for OS indicates the years since diagnosis for the OS measure. CD37 is a 

tetraspannin that is highly expressed on B cells and B cell lymphomas and is thought to play a role in B cell activation. 

It has been considered as an immunotherapy target in B cell lymphomas (Grosmaire, Hayden-Ledbetter et al. 2014). 

CD37 was not measured by mass cytometry in this study.  The kappa/lambda percentages were measured by clinical 

fluorescence flow and the tumor light chain restriction was determined and reported here. CD3 positivity was also 

measured in the tumor as an indicator of T cell presence. These sample were all FL lymph node tumors resected in 

Oslo, Norway in the last 2 decades of the 20th century. 

 

analysis of the T cells, it is important to have at least a few T cell markers in the B cell 

panel in order to definitively mark the T cells as not B cells. T cells are CD3+ and B cells 

are CD3-. This marking of the T cells as not B cells, enables confident gating out of T 

cells and a robust viSNE map if the cells were to be analyzed together. I designed the 

strategy for and performed the data processing, clean up gating, manual population 

gating, automated cluster generation with SPADE, and the multiple viSNE runs. The 

markers chosen as input parameters for the B cell viSNE runs were markers that identified 

mature B cell populations such as CD38, IgD, CD27, CD44, and CD20 and markers that 

characterized those populations including CD22, CXCR5, CXCR4, and HLA-DR. I chose 

not to use markers that were previously used to positively gate the B cells such as CD45 

and CD19 since those did not add value to the analysis. CD20 was used for pre-gating 
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however its expression levels are indicative of B cell subset; GC B cells have higher CD20 

levels than other mature B cell subsets. CD45 staining was variable between samples 

stained on different days so including that could have introduced error into the analysis.  

There are several pitfalls to note for this study. First off, as I mentioned above, the 

samples were not all stained on the same day or with the same staining cocktail. Samples 

were also not run on the CyTOF on the same day. While these variables could introduce 

problems into the data interpretation, I have looked extensively at the primary data for all 

the samples and I am confident that the signals are true enough as to not introduce 

significant errors into the findings. I discussed BCL2 in the introduction chapter however 

I am showing no data on BCL2. The reason for this is because the BCL2 staining did not 

work and showed no positivity. I hypothesize that the staining failure is due to the fact that 

we used an anti-BCL2 antibody that required a secondary antibody for detection. The 

anti-BCL2 antibody was labeled with PE, which is a very bright marker by fluorescence 

flow. The problem with using it for mass cytometry with a secondary anti-PE antibody is 

that PE is a large molecule and does not leave room for the binding of many PE molecules 

to an antibody. This in turn means that there are few spots for anti-PE to bind so there is 

little amplification of the signal.  

I designed the viSNE analyses, choosing appropriate markers that would address 

the questions asked. For example, IgK and IgL were not included in the analyses because 

I knew that the malignant cells would have either high or negative expression depending 

on tumor status (Table 2-1).  
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Table 2-2 List of mass cytometry antibodies used in the FL study. 

 

What I wanted to do was see if I could separate out the malignant cells on the 

viSNE map without using light chain restriction. My computational experiment was a 
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success and viSNE did separate out the malignant cells (Figure 2-1). It is crucial to have 

markers that are positive and negative for multiple populations. This helps spread the cell 

populations apart in phenotypic tSNE space. The difference in overall phenotype is larger 

if a population is positive for one marker and negative for another and another population 

shows the opposite expression patterns. This is observed most readily in viSNE maps 

that have altered marker use. I interpreted the results for the viSNE runs and manual 

gating. Moreover, I designed and created the figures for the body of the text. 

 

 

FL is a B-cell malignancy and the second most common non-Hodgkin lymphoma. 

Although patient overall survival is now measured in decades, FL is considered incurable 

and multiple relapses are common (Dave 2006). FL is named for its follicle-like 

appearance and is thought to arise from mature germinal center (GC) B cells (Dave, 

Wright et al. 2004). Malignant FL B cells are characterized by light-chain restriction and 

the t(14;18) translocation that leads to overexpression of B cell lymphoma 2 (BCL2) (Ngan 

, Chen-Levy  et al. 1988). As the disease evolves, more mutations are acquired, leading 

to genetic heterogeneity in the tumor (Eide, Liestøl et al. 2010, Green, Gentles et al. 

2013). The high rate of relapse and the identification of negative prognostic cells present 

at high levels within some FL tumors (Irish, Myklebust et al. 2010) has highlighted the 

need to understand the biology of FL tumor cell heterogeneity and interaction with the 

microenvironment. 

Much of the past FL research has focused on genetics (Dave, Wright et al. 2004, 

Dave 2006, Green, Gentles et al. 2013) and flow cytometric analysis with a limited number 

of markers measured per single cell (Mantei 2009, Irish, Myklebust et al. 2010). The 
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introduction of mass cytometry and the associated field of computational high-

dimensional analysis have paved the way for in-depth analysis of single cell phenotype 

(Greenplate, Johnson et al. 2016, Saeys, Gassen et al. 2016). Here, malignant and non-

malignant tumor cells were characterized at the single cell protein level and compared to 

the lymphocytes from healthy tonsils. Non-malignant healthy donor tonsil is an accessible 

lymphoid tissue that contains mature B cells that are pre-, during-, and post-germinal 

center reaction (Allen, Okada et al. 2007) and that has been studied previously by mass 

cytometry (Sen, Mukherjee et al. 2014, Polikowsky, Wogsland et al. 2015, Wong, Chen 

et al. 2015). While differences exist in the phenotype and organization of the cells in 

human secondary lymphoid organs including spleen, lymph nodes, and tonsils (Brachtel, 

Washiyama et al. 1996, Vidal-Rubio, Sanchez-Carril et al. 2001, Allen, Okada et al. 2007), 

both tonsils and reactive lymph nodes are valuable comparison points for studies of 

tumor-involved lymph nodes and FL tumors.  

In this exploratory study, mass cytometry was used to study malignant B cells and 

non-malignant B and T cells in the tumor microenvironment with a focus on intra- and 

inter-tumor heterogeneity, and on changes in the composition of immune cells within 

tumors. Mass cytometry was selected due to the ability to characterize >35 features of 

individual cells and to reveal unexpected malignant and non-malignant cell subsets with 

unusual phenotypes (Becher, Schlitzer et al. 2014, Bendall, Davis et al. 2014, Irish and 

Doxie 2014, Greenplate, Johnson et al. 2016, Leelatian, Doxie et al. 2016).  
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Materials and methods 

 

Tissue sample collection  

FL samples were selected from the biobank at The Norwegian Radium Hospital, Oslo 

University Hospital. Tonsils were obtained from patients undergoing tonsillectomy at 

Agroklinikken, Asker, Norway. All samples were obtained with patient consent in 

accordance with the Declaration of Helsinki. The study was approved by the regional 

committee for research ethics, Oslo Norway, and the Vanderbilt institutional review board 

(IRB).  

 

Mass cytometry 

Cryopreserved single cells were thawed, pelleted, and rested in RPMI-1640 with 10% 

FBS for 45 minutes before staining. Viability was determined by trypan blue staining and 

manual cell counting. Samples with less than 50% viability were excluded from the study. 

At least one million live cells per sample were stained with surface antibodies (listed in 

Table 2-2) for 30 minutes, then washed and fixed in 1.6% PFA for 5 minutes followed by 

cell membrane permeabilization with >90% cold methanol. Cells were stored in methanol 

at -80°C for up to two weeks. Samples were washed twice and stained with intracellular 

antibodies (listed in Table 2-2) for 30 minutes. Cells were then incubated in iridium cell 

tracker (Fluidigm) at the recommended concentration for 20 minutes. Stained and nucleic 

acid marked (iridium intercalated) samples were collected on a CyTOF 1 (Fluidigm) at the 

Vanderbilt flow cytometry core.  
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Data analysis 

The cloud-based flow cytometry platform, Cytobank (Kotecha, Krutzik et al. 2010), was 

used for file storage and data analysis including biaxial data display and gating, viSNE 

(Amir el, Davis et al. 2013), SPADE (Qiu, Simonds et al. 2011), histograms, heat maps, 

and statistics consistent with standard computational analysis workflow (Diggins, Ferrell 

et al. 2015). The statistical language R with RStudio was used for hierarchical clustering 

(RStudio Team (2015) URL http://www.rstudio.com/, R Core Team (2013) URL 

https://www.R-project.org). 

A computational light-chain channel was added to the B-cell panel files post data 

collection. The channel was named “light_chain” and was created by selecting the value 

of either IgL or IgK, whichever was higher, for each cell event. This new light chain 

channel reported the light chain level for each B cell regardless of isotype and was used 

in computational analysis of phenotype. 

The dimensionality reduction similarity mapping tool viSNE (Amir el, Davis et al. 

2013) was used to create two-dimensional t-SNE visualizations of multidimensional 

cellular phenotypes (Diggins, Ferrell et al. 2015, Newell and Cheng 2016, Saeys, Gassen 

et al. 2016). Cells that had similar phenotypes were placed close together on viSNE maps 

created based on analysis of 20 cellular measurements. T cells from all tonsil and tumor 

samples were analyzed together by viSNE using 20 markers from the T-cell panel (Figure 

2-1 and in depth in Figure 2-5). A total of three B cell viSNE analyses were performed 

each using the same 20 B-cell panel markers. All B cells were initially analyzed together 

(Figure 2-1), and that map was used to gate for malignant and non-malignant B cells. In 

the two subsequent B cell viSNE analyses, the non-malignant B cells from FL samples 

and all tonsillar B cells were analyzed together in a “non-malignant B cell” viSNE (Figure 
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2-9), and the malignant B cells were analyzed together in a “malignant B cell” viSNE 

(Figure 2-10). SPADE was applied to the t-SNE axes created by viSNE (Figure 2-11) to 

cluster cells into cell subsets (Becher, Schlitzer et al. 2014, Shekhar, Brodin et al. 2014, 

Diggins, Ferrell et al. 2015). Variance in marker expression between clusters was 

calculated for nodes containing at least 100 cells using transformed median values 

(arcsinh scale, cofactor of 15, as in (Irish, Myklebust et al. 2010)). 

 

Results 

 

FL malignant B cells were phenotypically distinct from tonsillar B cells. 

Eight FL lymph node tumor samples were phenotyped by mass cytometry. Each 

sample was stained with two different panels, one focused on T-cell makers and one on 

B-cell markers (Table 2-2). Three non-malignant healthy donor tonsils were stained with 

the same panels to serve as healthy controls (Figure 2-1). After initial gating to identify 

singlet T cells or B cells (Figure 2-2A), viSNE analyses were performed. CD45+ CD3+ 

CD19- cells from the 11 T-cell panel files were analyzed together in the “T cells” viSNE, 

(Figure 2-1A; tSNEs_T cells). The panel was designed to identify and characterize T-cell 

subsets and included for viSNE analysis the following 20 markers: CCR6, CCR5, CD4, 

CD8, CCR4, CD43, ICOS, TCRγδ, CD45RA, CXCR3, CCR7, CD69, CD44, CD27, 

CTLA4, CD25, CXCR5, CD57, PD1, CXCR4. These markers were not used to gate for T 

cells. CD45+ CD19+ and/or CD20+ CD3- B cells were analyzed together in a similar 

fashion for the “all B cells” viSNE analysis (Figure 2-1A; tSNEs_all B cells). The panel 

was designed to identify and characterize B cell subsets, and included for viSNE analysis 
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the following 20 markers: CCR6, IgD, CD20, CCR4, CD43, CD36, CD62L, CD86, CD33, 

CD22, CD79B, CD40, CD44, CD27, CD38, CD3, CXCR5, HLA-DR, CXCR4, light_chain. 

 

 
 

Figure 2-1 High dimensional phenotyping of lymphoma B cells, non-malignant B cells, and tumor-infiltrating T cells.  

A) FL tumor samples and tonsils from healthy donors were studied by mass cytometry. Each sample was split in two 

and analyzed by two antibody panels, one focused on B cells and the other on T cells, to identify three main populations 

of cells in FL tumor samples (malignant B cells, non-malignant B cells, and T cells) as shown in the cartoon. CD3+ T 

cells (bottom left) and CD19+ B cells (bottom right) from tonsils and FL samples were analyzed together in a viSNE 

based on 20 markers from the T-cell panel and 20 markers from the B-cell panel, respectively. B-C) Malignant B cells 

were gated in an area of the viSNE map where tonsillar B cells were mostly absent (B) and the cells were light-chain 

restricted (C). Top row shows all tonsil samples combined, bottom row shows all FL samples combined. 

 

The tonsillar B cells mapped almost entirely to the periphery of the all B cells viSNE 

map, leaving a large space in the center of the map where the majority of B cells from the 

eight FL tumors fell (Figure 2-1, Figure 2-3). The central area on the viSNE map where 

the tonsillar B cells were primarily absent was gated as malignant B cells (Figure 2-1B,C). 

The viSNE map was made without the use of IgLambda (IgL) and IgKappa (IgK) to guide 

the separation of malignant cells; instead, a computational light-chain channel was used 

to indicate positivity of total light chain. IgL and IgK expression were used afterward to 

confirm the isotype exclusion of the malignant B cells for each tumor sample (Figure 2-

4). The area outside the malignant gate, the non-malignant B-cell area, for tonsil and FL 

tumors showed a mixture of light-chain isotypes, as expected (Figure 2-1C). Two IgL 
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lymphomas (FL5 and FL7) were clearly identifiable on the viSNE map as IgK- and IgL+ 

(bottom, Figure 2-1C). The third lambda positive sample, FL3, does not follow this pattern 

so I do not think this is a lambda specific feature, merely a tumor specific occurrence. The 

intensities of IgL and IgK showed that the malignant area contained light-chain-restricted 

cells whereas the non-malignant area contained a mix of IgK and IgL cells, similar to the 

tonsillar B cells (Figure 2-1C). A key finding is the fact that light-chain-restricted cells fell 

into the malignant area regardless of light-chain isotype. The FL samples contained cells 

that mapped in the non-malignant area, but to varying degrees. These cells were 

interpreted as non-malignant B cells present within the tumors. 

 

 

Figure 2-2 Gating strategy used for initial gating before viSNE or traditional biaxial gating comparison. 

A) T cell pre-gating. B) B cell pre-gating and clean-up gating 
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Figure 2-3 viSNE plots of all B cells for each tumor.  

The percent shown is the percentage of cells inside the malignant gate. FL5, FL9, and FL14 were excluded from the 

nonmalignant B-cell analysis. 

 

 

 

Figure 2-4 Backgating of light-chain biaxial gating  

(viSNE view of traditional gating of malignant/nonmalignant cells by light-chain exclusion) 

 

T-cell distribution trended toward an activated state 

Key T-cell markers and the T cells viSNE map (Figure 2-5A) were used to subset 

the T-cell panel samples into five populations (Figure 2-5B). For comparison, traditional 
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biaxial gating was performed in parallel (Figure 2-6A,B). The eight FL tumors and the 

three tonsils had a high degree of overlap in the T cell viSNE map (Figure 2-1D-E), 

suggesting a similar phenotype of tumor-associated T cells and healthy tonsillar T cells. 

There were no significant differences between T-cell subset distributions in FL tumors 

and tonsils (Figure 2-5C, Figure 2-7A). T cells from most samples were distributed 

throughout the viSNE map with the exception of FL14 (Figure 2-5D-E). FL14 had a 

restricted distribution and contained predominantly CD8+ T cells.  

 

Figure 2-5 The abundance and phenotypes of tumor infiltrating T-cell subsets are comparable to those of healthy 

tonsillar T cells.  

A) Expression of measured proteins is shown as a heat plot on t-SNE axes (tSNEs_T cells). Markers shown were used 

to make the expert-gated populations shown in (B). Populations are denoted by black lines. B) T-cell populations were 

gated in viSNE based on markers shown in A. C) Distribution of T-cell subsets across samples. Figure shows all healthy 

donor (HD) tonsil samples (D) and all FL samples (E) overlaid with individual cell-density plots beneath. 

 

Although there were no significant differences between tonsillar T cell and FL tumor T 

cell-subset proportions, FL tumors tended to have fewer CD45RA+ or more CD45RA- T 

cells, suggesting fewer naïve cells were present (Figure 2-5C). It is not uncommon for T 
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cell populations to shift from naïve (CD45RA+) to memory (CD45RA-) in disease (Ezawa, 

Yamamura et al. 1997, Larbi and Fulop 2014). FL tumors also displayed a skewing 

towards CD8+ T cells (Figure 2-8). I suspect that the Tfh cells are interacting with the 

malignant B cells. 

 

Diminished GC and plasmablast populations among non-malignant B cells in FL 

tumors 

Non-malignant tumor-infiltrating B cells were next investigated by analyzing them 

in a new viSNE together with the tonsillar B cells (tSNEs_non-mal. B) using the same 

markers as the initial B cell viSNE (Figure 2-9). In Figure 2-1, B cells positioned outside 

the malignant gate were considered non-malignant due to their overlapping with tonsillar 

B cells in the viSNE map and the mixture of IgK and IgL expressing cells. Three of the FL 

tumors contained less than 10% non-malignant B cells and were excluded from this 

analysis (Figure 2-3). Key B-cell markers were used to draw expert gates on the non-mal. 

B viSNE map to divide the B cells into four mature B-cell subsets; naïve, memory, 

germinal center (GC), and plasmablasts (PB) (Figure 2-9A-B, Figure 2-6C,D). The FL 

tumor non-malignant B cells and the tonsillar B cells showed a high degree of overlap in 

the B cell viSNE map (Figure 2-9D-E), suggesting a similar phenotype of non-malignant 

B cells and healthy tonsillar B cells. There were significant differences in B cell-subset 

distributions between tonsil and FL tumor for GC B cells and plasmablasts (Figure 2-9C, 

Figure 2-7B) with average percentages of 15% and 2.8% for GC B cells and 2% and 0.2% 

for plasmablasts, respectively.  
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Figure 2-6 Comparison of biaxial gating and gating on viSNE maps.  

A) Traditional biaxial gating of T-cell subsets. B) Backgating of biaxial-gated T-cell populations onto viSNE map (top), 

and backgating of on-viSNE-gated populations onto biaxial plots (bottom). D) Traditional biaxial gating of B-cell subsets. 

B) Backgating of biaxial-gated B-cell populations onto viSNE map (top), and backgating of on-viSNE-gated populations 

onto biaxial plots (bottom). 
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Figure 2-7 Distribution of B & T cell subsets identified by traditional biaxial gating.  

Figure shows all healthy donor (HD) tonsil samples and all FL samples. A) T-cell subsets as gated in Figure 2-6A. B) 

B-cell subsets as gated in Figure 2-6C. 

 

 

 
Figure 2-8 T cell percentages plotted as total CD4 and total CD8 T cells for healthy donors and FL tumors.  

A) On-viSNE gating values. B) Traditional biaxial gating values 
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Figure 2-9 Disruption of germinal center and plasmablast populations was observed in tumor-associated non-malignant 

B cells.   

Non-malignant B cells, identified in Figure 2-1, were analyzed in a new viSNE (tSNEs_non-mal. B). FL samples with 

90% or more malignant cells were excluded from the analysis. A) Expression of measured proteins is shown as a heat 

plot on t-SNE axes. B) Markers shown in (A) were used to gate established B-cell populations. C) Distribution of B-cell 

subsets across samples. Figure shows all healthy donor (HD) tonsil samples (D) and all FL samples (E) overlaid and 

with color coded individual cell density plots beneath. 

 

FL malignant B cells were not germinal-center like in phenotype 

The (non-malignant) tonsillar B-cell populations for each tonsil (4 populations from 

3 tonsils) from Figure 2-9 were compared to the malignant B-cell population from each 

FL tumor sample using median intensity of the same 20 markers (Table 2-2) used in the 

B cells viSNE analyses. The populations were hierarchically clustered by median marker 

intensities, thereby creating a dendrogram that showed how phenotypically similar the 

populations were. The malignant B cells primarily clustered together but had a phenotype 

more similar to naïve and memory B cells than GC and plasmablasts (Figure 2-10A). 

There was no single marker that separated out the malignant B cells (Figure 2-10B). 
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Malignant B cells had higher levels of CD79B and IgM than tonsillar B-cell subsets 

suggesting strong dependence of BCR signaling. However, in contrast to naive B cells, 

all malignant B cells were IgD-. The malignant B cells also showed downregulation of the 

co-receptor CD40. 

 

Figure 2-10 Hierarchical clustering grouped most malignant B-cell populations and revealed malignant B cells are more 

phenotypically similar to naive and memory B cells than to GC B cells.  

A) Dendrogram shows hierarchical clustering of healthy tonsillar B cell subsets and FL malignant B cells (as gated in 

Figure 2-9 and Figure 2-1 respectively) based on median marker expression. B) Average median marker expression 

of healthy tonsillar B cell subsets and FL malignant B cells. Markers are ordered by FL marker median mass intensity 

(MMI) from top to bottom. 

 



 41 

Mass cytometry characterized high variability of intra-tumor phenotypic 

heterogeneity in malignant B cells 

The malignant B cells from FL samples were analyzed in a separate viSNE 

analysis (tSNEs_mal. B cells). In contrast to the non-malignant B cells and T cells, 

malignant B cell viSNE maps varied between the samples with cells occupying different 

areas of the map (Figure 2-11A). To quantify this variation, unsupervised clustering using 

SPADE was utilized to make 10 unbiased clusters of cells for each of the viSNE maps (T 

cells, malignant B, and non-malignant B; Figure 2-11B). Cell distribution between the 

nodes could then be studied within a sample and across samples (Figure 2-11C). There 

was some variation in the distribution throughout SPADE nodes for all the three cell types, 

but with greater variability for the malignant B cells than the non-malignant B and T cells 

(Figure 2-11C). For the malignant B cells, some FL samples were dominated by a few 

SPADE nodes (FL5, FL7, and FL14) whereas others spread out in the viSNE map (FL3, 

FL4, FL12). The markers that varied the most within tumors were HLA-DR, light_chain, 

and CD38 (Figure 2-11D-E). These results demonstrated variable phenotypic 

heterogeneity among the malignant B cells within a single tumor.  

 

Discussion 

Minimally biased, automated computational analysis using viSNE accurately 

separated malignant B cells from non-malignant B cells without using BCL2 expression 

or light-chain restriction when distinguishing these cell subsets. Light-chain isotype was 

found to be restricted within the computationally defined malignant cell area, as expected 

for FL (Davidson, Risberg et al. 1999, Irish, Czerwinski et al. 2006, Craig and Foon 2008, 

Horna, Olteanu et al. 2011).  
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Figure 2-11 Intratumor heterogeneity differed between the FL samples and HLA-DR was the most variable marker 

across samples.  

A) Malignant B cells, gated in Figure 2-1, were analyzed in a new viSNE. Individual density plots are shown. B) SPADE 

analysis with 10 nodes were analyzed on the viSNE of T cells (top), non-malignant B cells (middle), and malignant B 

cells (bottom). Figure shows each numbered node as a separate color on a viSNE map of aggregated files. C) 

Histograms display number of events in each SPADE node. D) Heat map of median marker expression for each SPADE 

node with more than 100 cells for the FL samples. Below each heat map, the variance in each marker between the 

SPADE nodes are displayed as bar graphs. E) Expression of measured proteins is shown as a heat plot on t-SNE axes 

(malignant B cells viSNE) for some of the markers with high variance across several samples. Gates represent SPADE 

nodes. 

 

Thus, automated computational analysis was effective at identifying malignant and 

non-malignant cells despite the significant heterogeneity of lymphoma tumors. viSNE also 

successfully separated populations of non-malignant B cells and T cells. Malignant cells 
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are identified clinically using fluorescence flow cytometry however deep phenotyping of 

malignant cells is not possible with fluorescence flow cytometry and the non-malignant B 

cells are not characterized (Freedman 2015). viSNE mapping reveals cellular 

relationships in an easy to understand manner. The in-depth and quantitative nature of 

mass cytometry combines well with viSNE to reveal the biology of the data.  

Multiple viSNE analyses were performed with and without the combined light-chain 

channel and the malignant cells plotted separately from the tonsillar B cells with both 

strategies. This result suggested that marker expression other than light-chain restriction 

can be used to distinguish FL malignant B cells from healthy B cells. While skewing of the 

light chain ratio is useful in identifying B cell malignancies, it does not allow for the 

separate analysis of the malignant cells because non-malignant B cells of the matching 

light chain will be present. This non-exclusion of the non-malignant B cells will skew any 

kind of bulk analysis of the malignant cells. In addition to this, identifying other markers 

that have differential expression between malignant and non-malignant cells could lead 

to the development of new therapeutic targets. CD79B, the signaling subunit of the B-cell 

receptor, was expressed at higher levels in malignant B cells than in all non-malignant B-

cell populations (Figure 2-10B). Similarly, malignant B cells typically displayed high per-

cell expression of Ig light chain and IgM (Figure 2-10B). This high level of BCR protein 

expression on the lymphoma B cells is consistent with a continued dependence on BCR 

signaling in FL (Irish, Myklebust et al. 2010). Activation of BCR signaling by auto-antigen 

might be one of the initial driving forces in FL, and several auto-antigens have been 

identified (Coelho, Krysov et al. 2010, Sachen, Strohman et al. 2012, Cha, Qin et al. 

2013). Furthermore, high BCR expression, potentially followed by BCR-induced 

activation, aligns with the observed skewing of the non-malignant B-cell populations and 
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suggests that the malignant B cells outcompete the non-malignant B cells that are most 

dependent on support from the microenvironment for survival and selection, such as GC 

B cells and plasmablasts (Victora and Nussenzweig 2012). Together with the survival 

advantage provided by overexpression of anti-apoptotic BCL2, this may explain the deficit 

in non-malignant GC and plasma B cell populations observed here in FL tumors. 

FL is traditionally considered to be a germinal center malignancy. FL malignant B 

cells contain evidence of SHM in their immunoglobulin genes (Zhu, McCarthy et al. 2002), 

and exhibit a GC-like gene expression pattern (Alizadeh, Eisen et al. 2000, Elenitoba-

Johnson, Jenson et al. 2003). However, key signaling receptors differed between GC and 

malignant B cells and the protein expression pattern of malignant B cells was not GC-like 

(Figure 2-10). Critically, higher per-cell expression of BCR subunits CD79B, light-chain, 

and heavy-chain provided a clear distinction between malignant B cells and GC B cells, 

which expressed less surface BCR subunit proteins than naïve healthy B cells and 

malignant B cells. The malignant B cells were lower than GC B cells for other markers, 

including CD20 and CD38, as shown previously (Mantei 2009). However, malignant B 

cells did not phenotypically match naïve B cells or any other subset of non-malignant B 

cells. For example, both malignant B cells and healthy tonsillar GC B cells expressed 

lower levels of CD44 than naïve B cells (Figure 2-10). Thus, the expression profile of 

signaling receptors on malignant B cells distinguished them from all subsets of non-

malignant B cells, including GC B cells.  

Prior studies of clonal evolution in FL have revealed genetic heterogeneity (Eide, 

Liestøl et al. 2010, Green, Gentles et al. 2013, Green, Kihira et al. 2015). Single cell 

analysis of BCR signaling and patterns of protein expression with fluorescence flow 

cytometry revealed lymphoma negative prognostic (LNP) cells that exists at diagnosis in 
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patients with poor overall survival (Irish, Myklebust et al. 2010). Here, we observed similar 

patterns of CD20 expression as in these prior studies and identified additional proteins 

that are highly variable among lymphoma cells from the same tumor. In particular, mass 

cytometry revealed HLA-DR expression as one of the most variable features of FL. Green 

et al. have previously found CREBBP to be commonly mutated in FL, a mutation that is 

associated with decreased antigen presentation and expression of HLA-DR on FL B cells 

(Green, Kihira et al. 2015). Furthermore, this intratumor as well as intertumoral variation 

in HLA-DR is significant as HLA-DR expression has been previously reported in other 

cancers to be associated with a positive response to anti-PD1 checkpoint inhibitor therapy 

(Johnson, Estrada et al. 2016).  

In conclusion, the use of mass cytometry to obtain deep profiling of cell subsets 

enabled identification of biologically important features, such as tumor heterogeneity and 

loss of non-malignant B-cell subsets. 
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CHAPTER 3 REDOX SIGNALING HYPERSENSITIVITY DISTINGUISHES HUMAN 

GERMINAL CENTER B CELLS 

 

Full title: Cutting Edge: Redox signaling hypersensitivity distinguishes human germinal 

center B cells (Polikowsky, Wogsland et al. 2015) 

Hannah G. Polikowsky, Cara E. Wogsland, Kirsten E. Diggins, Kanutte Huse, and Jonathan M. Irish 

 

Abstract 

Differences in the quality of BCR signaling control key steps of B cell maturation and 

differentiation. Endogenously produced H2O2 is thought to fine tune the level of BCR 

signaling by reversibly inhibiting phosphatases. However, relatively little is known about 

how B cells at different stages sense and respond to such redox cues. In this study, we 

used phospho-specific flow cytometry and high-dimensional mass cytometry (CyTOF) to 

compare BCR signaling responses in mature human tonsillar B cells undergoing germinal 

center (GC) reactions. GC B cells, in contrast to mature naive B cells, memory B cells, 

and plasmablasts, were hypersensitive to a range of H2O2 concentrations and responded 

by phosphorylating SYK and other membrane-proximal BCR effectors in the absence of 

BCR engagement. These findings reveal that stage-specific redox responses distinguish 

human GC B cells. 

 

Introduction 

In this study, we found that ROS caused increased signaling through the B cell receptor 

(BCR) pathway in germinal center (GC) B cells. Additionally, we saw increased 

phosphatase (SHP-1) expression in a subset of GC B cells that we suspect are the light 

zone B cells. Understanding healthy GC B cells is key to making advancements in B cell 
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lymphomas. In Chapter 2, I performed a deep phenotyping of eight follicular lymphoma 

(FL) tumors with tonsillar cells as the healthy counterpart. The work done here helped 

pave the way for incorporating disease states into the mass cytometry analysis performed 

in Chapter 2. Here I focused on the markers that identify mature healthy B cell subsets 

and the markers that characterize those populations. This study paved the way for the FL 

study by providing me with insight into mass cytometry deep phenotyping of mature B cell 

subsets. This depth of phenotyping had not been done previously in FL. Fluorescence 

flow FL studies have not had large enough staining panels to perform this depth of 

phenotyping.  

 Previously, Irish et al. showed that FL malignant B cells had more robust BCR 

pathway signaling responses than non-malignant B cells in the same tumors as 

determined by BCR expression (Irish, Czerwinski et al. 2006).  That study did not have 

the ability to characterize the four main B cell populations that were characterized in 

Chapter 2 and will be characterized by signaling responses in this chapter. It did however 

provide evidence that FL B cells responded more robustly to H2O2 stimulation much in 

the same way that GC B cells do here. So, although we found FL B cells to be 

phenotypically distinct from GC B cells (Figure 2-10), they share heightened signaling 

responses to reactive oxygen species (ROS). 

I designed the core B cell panel (Table 1-1) used here and helped adapt the core 

panel for this study (Table 3-1). The adaptation included the intracellular readouts p-PLCγ 

and SHP-1. Phospho-antibody and phosphatase channels need to be considered in 

viSNE analysis design. Whether or not to include one of these signaling molecules 

depends on the question being asked. If we want to know which cell subsets express a 
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Table 3-1 Two mass cytometry panels with a large degree of overlap were used in this study.  

Phospho-PLCγ was stained for in panel 1 only and total SHP-1 was stained for in panel 2 only. 

 

signaling molecule, then we would leave it out of the viSNE analysis as in Figure 3-5 so 

that its expression is not directing the shape of the map. I assisted in the interpretation of 

the data and figure design. Although the study was not powered to truly differentiate light 

and dark zone GC B cells, based on the phenotyping that we performed and the literature 

on GC B cells, I suspect that the cells higher for the phosphatase SHP-1 are likely light 
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zone GC B cells that have recently received T cell help based on the fact that they 

expressed higher levels of CD79B, CD40, HLA-DR, CD22, and CD86 (Figure 3-5A). The 

mass cytometry panel could be improved by adding CXCR4 and CXCR5 to help 

differentiate light and dark zone B cells. One of the major pitfalls is that p-PLCγ and SHP-

1 are not on the same mass cytometry panel so we cannot see directly how 

phosphorylation of PLCγ relates to total SHP-1 expression at the single cell level. 

 

 

In addition to BCR signaling, secondary messengers control the signaling context 

and help determine functional outcomes in B cells. H2O2 is the primary reactive oxygen 

species (ROS) produced by B cells. H2O2 amplifies BCR signaling by transiently inhibiting 

BCR-associated protein tyrosine phosphatases (Reth 2002). H2O2 is also produced as 

part of innate immune responses to wounds and infection (Nathan and Cunningham-

Bussel 2013). However, it is not known what impact H2O2 has on healthy human B cell 

signaling responses and whether B cells undergoing GC reactions respond differently to 

H2O2. 

Seconds after BCR crosslinking, a network of signaling molecules becomes 

activated through posttranslational modifications. As signaling directs B cells down 

differentiation pathways, B cells adopt well-characterized signatures defined primarily by 

protein expression (Maecker, McCoy et al. 2012). Naive B cells in humans are defined by 

expression of CD19, CD20, and IgD. GC B cells are defined as CD19+, CD20hi, CD38+, 

IgD− B cells. Memory B cells, alternatively, express CD19, CD20, and CD27. 

Furthermore, human plasmablasts are defined as CD38hi, CD20lo cells that are in the 

process of downregulating surface BCR and most other surface antigen. 
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The GC is a highly active environment vital for proper functioning of the adaptive 

immune system. GC B cells undergo affinity maturation, which involves iterative cycles of 

clonal expansion, somatic hypermutation, and selection that result in class-switched 

memory B cells and Ab-secreting plasma cells (Victora, Schwickert et al. 2010, Gitlin, 

Shulman et al. 2014). How high-affinity B cells are selected in the GC is not entirely clear. 

Increased Ag capture and presentation lead to increased rates of cell division (Gitlin, 

Shulman et al. 2014, Shulman, Gitlin et al. 2014). It is also possible that actively 

proliferating GC B cells produce unique signals that promote their survival and 

proliferation. Additionally, GC B cell signaling is regulated by protein tyrosine 

phosphatases (Klein, Tu et al. 2003, Khalil, Cambier et al. 2012). For example, cell 

surface CD22 can recruit phosphatases, such as SHP-1, to attenuate BCR signaling 

(Singh, Kumar et al. 2005, Khalil, Cambier et al. 2012). Opposing this activity are NADPH 

oxidases, such as DUOX1, which produce H2O2 and lower BCR signaling thresholds by 

reversibly inhibiting phosphatases (Nathan and Cunningham-Bussel 2013). The 

environment surrounding the BCR simulates NADPH oxidase, which produces 

endogenous ROS (Woo, Yim et al. 2010). In turn, ROS oxidize the extracellular 

compartment and activate the BCR signaling pathway, creating a positive feedback loop. 

BCR signaling governs B cell functions, and activation and termination of BCR signaling 

are finely tuned by multiple levels of regulation in healthy cells. 

Although the biochemistry of BCR signaling is well understood in model systems, 

little is known about the quality of in vivo BCR signaling in mature, healthy human B cells. 

Addressing this gap by mapping the influence of ROS on healthy B cell signaling is 

important for placing into context the extreme BCR signaling and H2O2 responses 

observed in B cell diseases and disorders (Irish, Myklebust et al. 2010). In this study, we 
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used high-dimensional mass cytometry, phospho-specific flow cytometry, and novel 

computational data analysis tools (Amir el, Davis et al. 2013, Becher, Schlitzer et al. 2014, 

Bendall, Davis et al. 2014) to better understand how ROS regulate BCR signaling within 

subsets of primary human tonsillar B cells. 

 

Materials and Methods 

 

Human samples 

Tonsils were obtained from children undergoing routine tonsillectomies in accordance 

with the Declaration of Helsinki following protocols approved by Vanderbilt University 

Medical Center Institutional Review Board (IRB# 121328). Specific patient demographics 

are unknown since the samples were collected with an IRB exemption and classified as 

non-human subjects. Single-cell suspensions were prepared and stored in liquid nitrogen. 

 

Antibodies 

Fluorescent Abs for CD20, IgD, CD38, CD3, CD27, p-SRC, p-SYK, p–phospholipase C 

(PLC)γ, and p–NF-κB were conjugated to BV421, PerCP-Cy5.5, FITC, PE-Cy7, BUV395, 

BV570, BV605, PE, and Alexa Fluor 647 (BD Biosciences, Invitrogen, or BioLegend). 

Mass cytometry Abs are listed in Table 3-1. 

 

Fluorescence cytometry 

Aliquots of cryopreserved single-cell tonsillar samples were thawed into 10 ml warm 

media (RPMI 1640 [Mediatech, Manassas, VA] plus 10% FBS [Life Technologies, Grand 

Island, NY]), pelleted by centrifugation at 200 × g, washed with warm media, and pelleted 
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again at 200 × g before resuspension in flow cytometry tubes. Resuspended samples 

rested for 15 min in a 5% CO2 incubator at 37°C. Each rested sample was either left 

unstimulated or stimulated with H2O2 (Fisher Scientific, Fair Lawn, NJ) for 2 min or CD40L 

plus enhancer (Enzo Life Sciences, Farmingdale, NY) for 15 min. CD40L and enhancer 

were prepared per the manufacturer’s recommendation. Cells were fixed with 1.6% 

paraformaldehyde (Electron Microscopy Services, Fort Washington, PA) for 5 min at room 

temperature following stimulation, washed with PBS (HyClone Laboratories, Logan, UT), 

pelleted at 800 × g, and permeabilized by 100% ice-cold methanol (Fisher Scientific) in a 

−20°C freezer overnight. Cells were washed once with PBS and once with cell staining 

media composed of PBS plus 1% BSA (Fisher Scientific). For each condition, 1 × 106 

tonsillar cells were stained in 100 μl cell staining media. Samples were analyzed using a 

five-laser BD LSR II (Becton Dickinson, Franklin Lakes, NJ) at the Vanderbilt Flow 

Cytometry Shared Resource and evaluated using Cytobank software. 

 

Mass cytometry 

Single-cell tonsillar samples were thawed the same way as samples prepared for 

fluorescent cytometry. For mass cytometry panel 1, one tonsil sample was left 

unstimulated and one sample was stimulated with H2O2 (Fisher Scientific) for 2 min. Cells 

were fixed (paraformaldehyde) and stained for extracellular targets (Table 3-1). After 

methanol permeabilization, cells were stained for IgG, IgM, IgA, and p–PLCγ-PE in cell 

staining media for 15 min at room temperature, then stained with 250 nM iridium 

intercalator and anti-PE (Fluidigm) for 30 min at room temperature. Cells were washed 

once in PBS, once in double distilled H2O, suspended in double distilled H2O, and 

collected on a CyTOF 1.0 at the Vanderbilt Flow Cytometry Shared Resource. Cells 
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stained with panel 2 (Table 3-1) were stained immediately after thawing, except for SHP-

1, which was stained after permeabilization. Mass cytometry data files were evaluated 

using manual gating and viSNE (Amir el, Davis et al. 2013) in Cytobank. Data were 

transformed using an arcsinh scale (cofactors of 15, except for SHP-1, which had a 

cofactor of 5). viSNE maps were generated using the following markers: SHP-1, CD40, 

IgD, CD3, CD3, CD19, CD20, CD86, CD22, CD44, CD38, CD27, CD79B, and HLA-DR. 

 

Results and Discussion 

 

A subset of B cells responded robustly to H2O2 stimulation 

A subset of human tonsillar B cells was initially observed to respond to a 2-min stimulation 

by 3.3 mM H2O2 by phosphorylating upstream members of the BCR signaling pathway, 

including SYK and Src family kinases (SFKs) (Irish, Czerwinski et al. 2006). This H2O2-

sensitive population varied in abundance from 7.3 to 33.24% of CD3− cells (Figure 3-1) 

and generally expressed higher levels of CD20 compared with other tonsillar B cells 

(Figure 3-2).  

In previous reports, naive B cells in peripheral blood did not respond to 3.3 mM 

H2O2 (Irish, Czerwinski et al. 2006). The H2O2 response of the CD20hi CD3- B cells 

distinguished these cells from other tonsillar cells and contrasted with the B cell response 

to other stimuli, such as CD40L, which showed no significant signaling differences across 

the full range of CD20 expression levels (Figure 3-1). Thus, a novel H2O2 signaling 

response distinguished a CD20hi subset of tonsillar B cells. 
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Figure 3-1 A subset of CD20hi B cells responded robustly to peroxide via phosphorylation of SFK. 

Populations (CD3- cells and CD3+CD20- cells) defined in figure 3-2 for A-C and gating schematic for D and E (Naïve 

B cells, GC B cells, Memory B cells, plasmablasts) shown in figure 3-4. (A) Contour plots show p-NFκB in unstimulated 

cells and cells stimulated by CD40L for 15 minutes in CD3- cells. (B-D) Cells were either left unstimulated or stimulated 

by 3.3mM of H2O2 for 2 minutes. (B) Contour plots show p-SFK (i.e. p-LCK) in CD20- CD3+ tonsillar T cells (C) Contour 

plots show two other CD3- healthy tonsil specimens (T13 left-two plots, V015T right-two plots) and their response to 

H2O2 stimulation. Sensitivity to H2O2 in a CD20hi B cell population is indicated (gray arrows). (D) Population portions 

of identified B cell subsets for two tonsils is shown. (E) Contour plots show raw data for B cell population responses to 

H2O2 (bottom row). Data for one representative tonsil (T13, n=3) is shown. 
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Figure 3-2 CD20hi B cells in human tonsil were sensitive to H2O2.  

(A) Contour plots show gating for CD3− cells and CD3+CD20− T cells in human tonsil. (B) Contour plots show p-SYK 

and p-SFK in CD3− tonsillar B cells left unstimulated or stimulated by 3.3 mM H2O2 for 2 min. Sensitivity to H2O2 in a 

CD20hi B cell population is indicated (gray arrows). Plots are representative of three tonsils. 

 

Comprehensive characterization of H2O2-responsive B cells by mass cytometry 

To determine the identity of the H2O2-responsive cells, a high-dimensional mass 

cytometry panel designed to characterize mature B cells was developed (Table 3-1). The 

H2O2-sensitive cell population was gated and labeled as “responder” (R) cells, and the 

signature of protein expression was contrasted with cells labeled as “non-responders” 

(NR) or CD3+ T cells (Figure 3-3A,B). The H2O2-sensitive responder cells were 

characterized by a CD20hi, CD38+, IgD− phenotype that contrasted with the other 

evaluated populations of non-responder cells and CD3+ cells (Figure 3-3C). This 

observed responder cell phenotype suggested a GC B cell identity (Jackson, Wilson et 



 56 

al. 2008, Maecker, McCoy et al. 2012). In agreement with this, a strong relationship was 

seen between the fraction of H2O2-sensitive responding cells and the abundance of GC 

B cells in each tonsil (Figure 3-1). 

 

 

Figure 3-3 Mass cytometry revealed H2O2 responder population as CD20hi, CD38+, and IgD−.  

(A) Contour plots show gating for CD19+ B cells and CD3+ T cells in human tonsil. (B) Contour plots show p-PLCγ in 

CD19+ tonsil B cells left unstimulated or stimulated by 3.3 mM H2O2 for 4 min. Cells that were sensitive to H2O2 

stimulation were labeled responder (R) cells and contrasted with nonresponder cells (NR). (C) A heat map shows the 

median fold change in CD3+ T cells, R, and NR subsets. 

 

GC B cells were hypersensitive to H2O2 stimulation 

BCR signaling normally triggers a complex, interconnected network of effector signaling 

pathways (Irish, Czerwinski et al. 2006), and it is currently not known how the quality, 

magnitude, and duration of BCR signaling “programs” a B cell for contrasting functional 

outcomes ranging from cell death to proliferation. Phospho-proteins in the BCR signaling 

network that are rapidly phosphorylated following H2O2 stimulation might act as effectors 
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of secondary messenger signaling. To identify H2O2 signaling effectors and better 

delineate the H2O2 sensitivity of B cell populations, a fluorescent panel was developed 

and cells from three human tonsils were stimulated with varying doses of H2O2 for 2 min 

(Figure 3-4). Naive, GC, memory, and plasmablast B cell subsets were distinguished 

using canonical markers CD3, CD20, CD38, CD27, and IgD (Figure 3-4A). Observed B 

cell subsets responded to H2O2 in a dose-dependent manner seen through the 

phosphorylation of SFK, PLCγ, and SYK; however, GC B cells were the most sensitive to 

H2O2 at all concentrations (Figure 3-4B,C). 

 

 

Figure 3-4 GC B cells were hypersensitive to H2O2.  

(A) Density dot plots show gating for identification of plasmablasts, GC B cells, memory B cells, and naive B cells in 

human tonsils. (B) Histogram overlays show p-SFK in each B cell population [shown in (A)] following 2 min of 3.3 mM 

H2O2 (n = 3, representative data shown). Color denotes median fold change in p-SFK expression compared with 

unstimulated (0 mM H2O2). (C) Plots illustrate the median fold change in p-PLCγ, p-SYK, and p-SRC in H2O2-stimulated 

conditions compared with the unstimulated condition (arcsinh scale). Each point represents the average of three 

individual tonsil specimens (n = 3) stimulated for 2 min with the indicated concentration of H2O2, except for the 0.04 
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mM and 0.12 mM H2O2 stimulated conditions (where n = 2). Red squares represent GC B cells and blue circles 

represent naive B cells. Error bars denote the SD for each point. 

 

H2O2 sensitivity may be an intrinsic characteristic of GC B cells that is necessary 

for BCR regulation within an active GC. GC B cells may use endogenously produced 

H2O2 as a modulator of BCR signaling, whereas BCRs undergo iterative modification. In 

fact, loss of BCR signaling in healthy B cells reduces B cell survival, and sustained BCR 

signaling capability is essential for B cell development and survival (Kraus, Alimzhanov 

et al. 2004). Observed H2O2 hypersensitivity of GC B cells (Figure 3-4) may be an 

important feature of accelerating the GC reaction; alternatively, this redox sensitivity may 

help to cull B cells that do not appropriately execute the delicate process of somatic 

hypermutation. These results help to place in context the observation that lymphoma B 

cells are especially sensitive to ROS (Irish, Czerwinski et al. 2006). Prior studies revealed 

that lymphoma B cells undergo rapid, ROS-mediated apoptosis when glutathione is 

depleted and that stimulation of lymphoma B cells using anti-BCR F(ab′)2 and H2O2 

negates suppression of BCR signaling that distinguishes clinically relevant lymphoma 

negative prognostic cells in follicular lymphoma (Irish, Myklebust et al. 2010). 

 

Heterogeneous SHP-1 expression across B cell populations 

Previous data from GCs generated within transgenic mice reported that GC B cells do not 

robustly respond to Ag or anti-IgM stimulation compared with non-GC B cells due to 

colocalization of SHP-1 with the BCR (Khalil, Cambier et al. 2012). To study this 

relationship in humans, a single-cell approach was used to measure total SHP-1 levels 

within human tonsillar B cell subsets and quantify any correlation between total SHP-1 

protein expression and B cell population identity. Furthermore, an unsupervised 

computational approach was used to characterize GC B cells and determine whether 
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additional heterogeneity might exist within this or other B cell populations (Amir el, Davis 

et al. 2013, Becher, Schlitzer et al. 2014). Elevated phosphatase levels of GC B cells 

compared with other B cell subsets might explain why GC B cells were hypersensitive to 

H2O2 stimulation. To evaluate this hypothesis, an Ab for SHP-1 was added to the mass 

cytometry panels (Table 3-1). B cell subsets were identified by viSNE analysis using the 

same key markers as in fluorescent experiments (Figure 3-5). viSNE revealed 

heterogeneous expression of SHP-1 within naive, GC, and memory B cell populations. 

Each of these B cell populations contained both high and low SHP-1–expressing cells. In 

contrast, plasmablasts expressed a consistent, low level of SHP-1. SHP-1 expression 

contrasted strongly with canonical subset marker expression patterns, which were 

enriched in subset-specific ways, such as CD20 and CD38 (Figure 3-5B). In the present 

study, SHP-1 expression was uncorrelated with H2O2 sensitivity across the B cell stages. 

Plasmablasts and naive B cells expressed contrasting levels of SHP-1 and had 

comparable H2O2 sensitivity, whereas GC and naive B cells had contrasting H2O2 

sensitivity despite similar median levels and per-cell distributions of SHP-1 expression 

(Figures 3-4, 3-5). 

 Because SHP-1 expression did not correlate with B cell subset, it is possible that 

the observed heterogeneity of SHP-1 expression is due to transient differences within B 

cell subsets that are not reflective of stage, but rather recent stimulation experience. A 

recent study demonstrated that a subpopulation of light zone GC B cells had more robust 

BCR signaling compared with all GC B cells (Mueller, Matloubian et al. 2015). Our study 

was not powered to look at light zone/dark zone differences, but the data suggested that 

light zone GC B cells may be the GC B cells that are higher for SHP-1. SHP-1 has 
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previously been found to be higher on light zone GC B cells by IHC (Kossev, Raghunath 

et al. 2001). Within the GC B cell subset, the cells on the viSNE map that expressed 

 

 

Figure 3-5 SHP-1 expression was heterogeneous within B cell populations.  

viSNE maps show CD45+ leukocytes arranged based on marker expression profiles (see gating in Figure 3-3A). Color 

denotes protein expression, as indicated. (A) Gates were drawn around the main populations identified by viSNE, using 

protein expression to identify each population. CD19+ B cells were subdivided into naive B cells (CD38−CD27−IgD+), 

GC B cells (CD20hiCD38+), memory B cells (CD38−CD27+IgD−), and plasmablasts (CD20−CD38hi) and compared 

with CD3+ T cells. One representative tonsil of four analyzed is shown. (B) Box-and-whisker plots illustrate expression 

of SHP-1, CD38, and CD20 proteins across three tonsil specimens. Median of each marker is indicated by a black line. 

Bars denote the minimum and maximum observed mean fluorescence intensity of each marker. GC, GC B cells; M, 

memory B cells; N, naive B cells; P, plasmablasts; T, T cells. 

 

higher levels of SHP-1 also expressed higher levels of CD40, HLA-DR, CD22, and CD86 

(Figure 3-5A). These proteins relate to T cell signaling interactions and suggest a shift in 

the signaling relationship between T follicular helper cells and GC B cells. 

These results provide new information regarding redox-sensitive signaling in B cell 

networks that may act to control the outcomes of GC reactions. Precisely how ROS 
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regulate BCR signaling within GCs remains to be seen; however, the findings in the 

present study indicate that redox cues specifically impact human GC B cell signaling. 

These results revealed unknown human GC B cell signaling responses to ROS that can 

be used as a reference point for studies of diseases originating in cells with GC 

characteristics, such as B cell lymphomas.  
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 CAPTURING BIOLOGICAL TRUTH WITH DIMENSIONALITY REDUCTION 

TOOLS 

 

Full Title: Accuracy in viSNE analysis is improved by simultaneously increasing iterations 

with analyzed cell count (unpublished) 

Cara E. Wogsland and Jonathan M. Irish  

 

Abstract 

Background: Computational tools like viSNE are effectively revealing known and novel 

cell subsets in 30+ dimensional cytometry studies of healthy tissue, cancer, and immune 

disorders (Amir el, Davis et al. 2013, Diggins, Ferrell et al. 2015). However, some viSNE 

runs fail to effectively separate established cell populations that are normally well-

distinguished, such as CD4+ and CD8+ T cells. This study explored the underlying 

reasons and solutions to address this in the context of canonical human blood cell types.  

 

Methods: Human peripheral blood mononuclear cells (PBMCs) from 4 healthy donors 

were analyzed by 34-dimensional mass cytometry. 422,833 intact CD45+ cells were 

gated by into 5 populations with the established phenotypes: B cells (CD19+, CD3-), 

monocytes (CD33+ CD19-, CD3-), CD4 T cells (CD3+, CD4+, CD19-, CD8-), CD8 T cells 

(CD3+, CD8+, CD19-, CD4-), and NK cells (CD56+, CD19-, CD3-). To assess separation, 

viSNE maps created in Cytobank or Rstudio with Rtsne were split evenly into 50 x 50 

square bins and assessed for average percent purity in bins containing at least 1% of 

cells. A result of 90% average purity indicated that the most abundant expert-gated 

population in each bin on average comprised 90% of the cells in that binned region of the 
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viSNE map. For example, if all the B cells were mapped together, then all the B cell 

containing bins should have a high percentage of B cells and a low percentage of other 

cells, giving a high average percent purity score. Bins containing less than 1% of B cells 

were not counted toward the score. This provided a simple way to rank viSNE maps 

according to effective separation of canonical cell subsets. Input arguments for 

viSNE/BH-SNE, including cell number and iterations were varied systematically to test 

impact on separation of known cell types.  

 

Results: viSNE maps made with over 100,000 events and standard input arguments 

(iterations=1000, perplexity=30) received lower average purity scores indicating a 

decrease in biological relevance and map integrity.  

 

Conclusions: When running viSNE on datasets of over 100,000 events, it is important to 

increase the number of iterations in order to capture biologically important details and 

maintain the integrity of the map. The viSNE input arguments should continue to be 

evaluated as the algorithm and usage evolve. 

 

Introduction 

I recognized the problem of the viSNE map losing integrity with many cells 

(>100,000) being analyzed simultaneously (Figure 4-1). Integrity refers to the shape of 

the map and the biological information accurately displayed on the map. If different cell 

populations such as B and T cells are occupying the same space on the viSNE map, it 

has lost integrity. Since viSNE is a visualization tool and a large number of cells caused 

a breakdown in visualization of biologically accurate data, this was a problem that needed 
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to be addressed. I designed a series of tests to perturb the input parameters to determine 

which parameters should be changed by the user before a viSNE run and how to allow 

for the analysis of a large number of cells in a single viSNE run. The work shown here is 

the qualitative and quantitative summary of that project. I measured integrity with a 

(percent average) purity score, where the higher the purity, the more pure and biologically 

true the cell populations are in the map. This means that with high purity, B cells and T 

cell will not overlap in the map, nor will T cell subsets such as CD4 and CD8. 

The purpose of this project was to find the appropriate computational input 

parameters for identifying biological truth in viSNE analyses of mass cytometry data. In 

the context of viSNE, identifying biological truth would mean that things an expert knows 

are “B cells” would be close to each other on a map. Similarly, T cells would be close to 

T cells and not overlap with B cells. The initial viSNE paper used a maximum of 100,000 

events in a single viSNE run (Amir el, Davis et al. 2013). As computational resources 

have advanced and more cells could be run simultaneously, I have observed in my data 

and that of others that the viSNE maps lose integrity with more cells added and they often 

show disparate cells close together.  

 

Methods 

The cellular data points defined by t-SNE coordinates were assigned to a bin in a 

50x50 grid (2,500 bins) of the viSNE map. The bins were of equal distance intervals in t-

SNE space with the total PBMC t-SNE x,y ranges serving as the outer edges of the grid 

for each of the five expert gated populations. This ensures that changing the visualization 

of the map to zoom in or out does not change the bins. 
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The percentage of expert gated cells in a single bin was calculated for all 2,500 

bins, separately for each of the 5 expert gated populations. For every bin that contained 

at least 1% of an expert population, a purity score was calculated, (expert gated 

cells)/(total PBMC)*100. Percentages were averaged for each of the five populations to 

get an average purity score.  

 

Results and discussion 

 

Decreasing cell number improved the qualitative look of the viSNE map and the 

average purity score.  

Figure 4-1 illustrates the problem of the cells clumping together and failing to spread out 

on the map when cell number increased when using the original parameters of 1000 

iterations (I) and perplexity (P) of 30. Perplexity was not tested in this study due to minimal 

change observed in initial testing and the additional computational demands required. 

 

Figure 4-1 High cell numbers inhibited cell separation in the viSNE map  

1000 iterations (I) were run for each of five different numbers of cells from the same experimental PBMC dataset. The 

perplexity (P) was set at the recommended value of 30. The top row shows the heat on CD3 identifying the T cells. The 

bottom row shows the density of the cell distrubution on the map. 

 

The large PBMC dataset was subsampled and new viSNEs were run to see if the 

maps visually improved the separation of the cell population. The maps looked 
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qualitatively superior as the cell number dropped. When the purity binning matrix was 

applied and the scores were calculated, it was observed that the average percent purity 

increased with fewer cells and decreased with more cells (Figure 4-2). The viSNE maps 

look good and the average purity score is highest when only 100,000 events were 

analyzed.  

 

Figure 4-2 Average percent purity scores dropped as cell number increased with iterations held constant.  

A) 100,000 cells, B) 300,000 cells, and C) 422,833 cells were run in separate viSNE analyses and average purity scores 

were calculate for each.The coloumns show the viSNE maps of the different cell populations and the average percent 

purity scores for each expert gated cell type. Rotation in the viSNE map is normal and does not influence map integrity. 

Every new viSNE run starts cells at random points (Amir el, Davis et al. 2013). 

 

Since ignoring a large portion of a dataset is not an ideal solution, increasing the number 

of iterations was tested to see if that improved the quality and the average purity of the 

viSNE map.  
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Increasing the number of iterations improved the visualization of the map more 

than it altered the average purity score.  

300,000 events were chosen to be run at 1000, 5000, and 10,000 iterations. The full data 

set was not chosen because the viSNE run often canceled out when analyzing the whole 

dataset at 10,000 iterations. The increase in iterations improved the visualization of the 

map integrity (Figure 4-3). This also makes on-viSNE gating easier since population cut 

points are more clearly delineated by an absence of cells (white space). The purity scores 

do not show a consistent increase at 10,000 iterations and were actually lower or the 

same at 5000 iterations.

 

Figure 4-3 The visualization of the map improved with increased iterations.  

The same 300,000 events were analyzed by three separate viSNE with varying numbers of iterations, A) 1000 I, B) 

5000 I, and C) 10,000 I. The average purity scores were calculated for each expert gated population. A) is the same 

data as in Figure 4-2B). 
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At 10,000 iterations, the total PBMC map reveals clear spacing between the five expert 

gated populations. Although, the purity score was not consistently increased at 10,000 

iterations, that map is superior in its visualization of the cell populations. Visualization to 

the human eye should be considered in addition to the purity score of map integrity.  

 There is a balance to be struck when analyzing cells with viSNE. Too many cells 

and the purity will be poor with cellular populations overlapping and the cell distribution 

on the map will not be biologically informative. Increasing the number of iterations will 

compensate and improve the visualization of the viSNE map. More iterations do not 

appear to negatively impact the data, although it takes more time and is computationally 

intensive and may result in a failed run. If running a large number of events is not 

necessary, fewer events will provide a better map. Although there is always the worry the 

too much down sampling of the dataset will not provide accurate results. viSNE analyses 

should be run in duplicate or triplicate and several input parameter (cell number and 

iteration number) settings should be tested for each data set. This will help insure that 

findings are reproducible and that the correct input parameters are being used for the 

dataset. The findings from this computational study were applied to the viSNE analysis 

performed on the FL data in Chapter 2. It is important to always be aware of the total 

number of cells per viSNE run and the number iterations. I recommend at least 1000 

iterations for every 100,000 cells. 
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CHAPTER 5 CONCLUSION 

 

Follicular lymphoma 

This mass cytometry study extends knowledge of intra- and inter-tumor 

heterogeneity that has been observed in prior studies of follicular lymphoma cell genetics, 

phenotypes, and functional capabilities. We have now characterized the non-malignant B 

cells in FL at the single cell level. This type of characterization had not been done 

previously. Understanding the non-malignant cells present in the tumor could impact 

treatment choices especially immunotherapy choices dependent on forming an adaptive 

immune response. It remains to be seen if the diminished GC B cell population can be 

activated to fight the malignant cells. I found viSNE to be a reliable tool to separate 

malignant and non-malignant cells. Because it takes in so many parameters, 20 here, it 

is more efficient at differentially mapping malignant and non-malignant B cells than it 

would be to perform successive manual gating on biaxial plots to pull out the non-

malignant cells. I attempted this approach with limited success before the gating strategy 

became too complex and too many cells were lost. This unbiased stratification of cells 

performed by viSNE, allowed me to include the non-malignant cells of the same light 

chain as the malignant cells into the analysis. More importantly, it enabled me to exclude 

non-malignant cells of the same light chain from the malignant cell analysis. This is a 

problem in many past studies that cells of the malignant light chain were included in the 

malignant cell analysis. This can bias the results of what proteins malignant cells actually 

express, such as IgD (Grier, Al-Quran et al. 2012). Grier et al. used the malignant 

restricted light chain to mark FL malignant cells for flow cytometry analysis. They found 

FL malignant cells to include a low level of IgD in some samples. I would argue that these 

IgD positive cells were non-malignant cells of the same isotype that were grouped in with 
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the malignant cells for lack of a way to exclude them. With viSNE, we no longer have to 

settle for light chain restriction as the means to identify malignant cells. viSNE 

incorporates more information and can plot the malignant and non-malignant cells apart 

from each other in tSNE space allowing for continued phenotypic analysis as was 

performed in Chapter 2. 

 Due to the high dimensional nature of the data, additional computational 

experiments can be performed without collecting new data. For starters, the HLA-DR 

variability among the malignant B cells (Figure 2-11) can be further analyzed by gating 

the HLA-DR positive and negative cells and performing a phenotypic comparison of the 

two groups such as in Figure 3-3. The gates could be drawn to include all the cells or only 

the highest and lowest expressers depending on the question asked. Marker enrichment 

modeling (MEM) (Appendix E) could be added in addition to median shown in Figure 3-3 

to display the expression differences of the other markers. The high and low populations 

could be compared to each other or to a reference population such as healthy GC B cells. 

MEM works well because it mutes the similarities between the populations and allow the 

differences to show as in Figure 5-3B. Here the MEM heatmap shows no change for 

CD45 since all populations express CD45. 

I recommend a FL follow up study with a larger patient cohort (including a training 

and testing set) that includes patient outcomes and patient paired uninvolved lymph 

nodes. In the case that uninvolved lymph nodes could not be acquired, matched 

peripheral blood should be collected. The high level of heterogeneity observed at the 

single cell level hints at malignant B cell biomarkers that could be used to predict 

treatment response. The tumors studied in Chapter 2 were excised pretreatment. 
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Phenotyping of tumor tissue over the course of treatment could provide valuable data 

about which tumors and patients will respond best to different treatment options.  

The lack of germinal center B cells in the follicular lymphoma lymph node tumors 

should be explored. Understanding or reversing the diminished GC B cell population 

could lead to new treatments in lymphoma. Activating the GC B cells in the tumor could 

lead to an anti-tumor B cell and antibody pool that could help combat the disease. The 

GC B cells may be minimally represented due to, 1) the malignant cells using up 

necessary resources for the healthy GC reaction, 2) the malignant cells stunting the GC 

reaction through cell-cell contact or 3) secretion of inhibiting molecules or proteins, or 4) 

little to no GC activity was present prior to the arrival of the malignant cells and the 

malignant cells are not causing a localized adaptive immune response.  

The hypotheses that the malignant cells may be using up resources or inhibiting 

GC development can be tested ex vivo with several different co-culture experiments. B 

cells can be cultured and clusters of blasting B cells can be observed with the naked eye. 

The culture of healthy primary B cells from tonsil or peripheral blood has been well 

established (Tangye, Ferguson et al. 2002, Huse, Bakkebo et al. 2011). T cells from FL 

tumors and reactive lymph nodes have been successfully co-cultured. Researchers found 

that the gene expression of reactive lymph node T cells could be changed to reflect that 

of tumor-associated T cells when cultured with FL cells (Scott and Gascoyne 2014). This 

means that malignant B cells can survive long enough in culture to have an effect on the 

cells they are co-cultured with. Malignant B cells could be cultured and then the 

supernatants collected and applied to GC B cells. Readouts could include, mass 

cytometry phenotyping, phospho-flow (as in Chapter 3), viability staining via trypan blue 

for light microscopic analysis or a fluorescent membrane exclusion dye for fluorescence 



 72 

flow cytometry. A co-culture with membrane separation may be needed to determine if 

any inhibition in GC reactions was caused by secretions or cell-cell contact. If there truly 

is no inhibition and the GC B cells just are not being activated by the malignant B cells, 

then stimulating the bulk tumor cells should reveal a GC response in the non-malignant 

B cells. Then the problem becomes, can these B cells be activated to act against the 

malignant cells. In a cancer-immunity cycle model, B cells act as antigen presenting cells 

(APCs) in presenting antigen to CD4 T cells. This would ideally lead to B cell activation 

and potentially anti-cancer antibodies. However, the role of B cells in cancer is 

contentious with some studies showing B cells to promote tumor growth and other studies 

showing the opposite(Wang, Zhang et al. 2016).  

Depending on the results, strategies could be employed to bolster the non-

malignant GC B cell response. This may include targeting the T cells or innate immune 

cells. The key would be to understand the mechanism behind the diminished GC 

compartment. 

I hypothesized that viSNE analysis would spatially separate malignant B cells from 

non-malignant B cells. Chapter 2 supported this model. The same was not true for T cells 

although I hypothesized that it would be. The T cells were characterized with their own T 

cell focused panel. However, this phenotyping was not enough to distinguish T cells from 

tumor and tonsil. Other researchers have observed T cell differences in signaling which 

this T cell panel was not designed to capture (Myklebust, Irish et al. 2013). The automated 

detection of malignant B cells could be further explored to develop a machine gating 

algorithm that would take the guess work out of human analysis and provide prompt 

unbiased diagnostic information. 
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Redox and hypoxia in B cells 

Chapter 3 showed that redox signaling through the BCR pathway was increased 

for some GC B cells. Additionally we saw increased phosphatase expression in what we 

suspect were light zone GC B cells (Polikowsky, Wogsland et al. 2015). Recent papers 

from other groups have shown that light zone GC B cells have higher levels of hypoxia 

(Cho, Raybuck et al. 2016). There is ample data on redox and hypoxia in cancer research 

that might be applicable to B cell germinal center responses. ROS can stabilize HIF1a in 

hypoxic conditions which improves cell survival (Jung, Yang et al. 2008). Hypoxia and 

redox responses might all be tied to antigen presentation and the ability to get T cell help 

in the germinal center reaction. It might be that follicular dendritic cells (FDCs) are creating 

the hypoxic environment due to their high O2 need. GC B cells are subject to poor survival 

unless they receive T cell help. B cells can produce their own H2O2 (Reth 2002) which 

has been shown to have chemo-attractant properties to recruit other cells such as T cells 

(Rojkind, Domínguez-Rosales et al. 2002, Hara-Chikuma, Chikuma et al. 2012). Maybe 

B cell survival is not just about making a good antigen receptor (BCR) but also about 

being able to physically draw a T cell close via H2O2 chemotaxis. The H2O2 attractant 

properties might also play a role in keeping the B cell in the light zone since a successful 

B cell needs to bind to a T cell for a measurable length of time (Okada, Miller et al. 2005). 

If a B cell needs a functional BCR in order to produce H2O2 as Reth 2002 suggests, then 

that would provide another controlling factor in affinity maturation. 

 

Ever advancing technologies 

In Chapter 4, I explored the input parameters iterations and cell number. I found that 

increasing iterations or decreasing cell number have the ability to improve the map 
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integrity when working with a large data set. When viSNE was first introduced, it was only 

available through MATLAB and had a cell input maximum of 100,000 (Amir el, Davis et 

al. 2013). At the time, 1000 iterations were enough to maintain map integrity. When viSNE 

started to be applied to multiple platforms and the cell cap was removed, problems started 

to arise with balling up of the data with large data sets. I began to formally address that 

issue in Chapter 4. It is important to continually reevaluate computational tools as their 

usage changes to ensure that the results are biologically relevant. 

The mass cytometry studies discussed herein shed light on multiple new findings 

and bring about even more questions. The systems biology approach is good for 

hypothesis generation due to the breadth of molecules studied. The beauty of mass 

cytometry data is that there is always more to discover within the same data set. Often, I 

have gone back to reanalyze my data after reading a literature and hearing a relevant 

lecture. During my time as a graduate student, the mass cytometry field has grown from 

being unknown, perceived as complicated, and even thought of as unnecessary, to being 

a sought-after tool for answering questions in a broad range of biological disciplines. This 

technology and quantitative single cell technologies like it are the future of systems 

biology. Along with these tools, comes the endless need for algorithms to assist in 

analyzing this data. Visualization algorithms are key to making the data visually 

accessible to the researchers collecting it. I look forward to working with the next 

generation CyTOF, the Helios, that has a larger mass range to detect more parameters. 

Fluidigm continues to release antibodies conjugated to new metals as the chemistry 

evolves. The introduction of metal conjugated RNA probes allows for the simultaneous 

detection of RNA and protein product from a single gene at the single cell level (Frei, 

Bava et al. 2016). This will help answer many questions about the nature of gene 
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regulation such as timing and RNA to protein ratios. I suspect the ratios will be different 

for different genes and vary across cell types and probably during the cell cycle. 

Fortunately, there are mass cytometry tools for cell cycle study  and replication studies 

(Behbehani, Bendall et al. 2012).  

With the introduction of imaging mass cytometry, cellular data with 30+ parameters 

can be measured while maintaining cell positional information (Giesen, Wang et al. 2014). 

Imaging of peripheral lymphocytes could be interesting, especially if the cells have been 

stimulated to form immune synapses, however the real power here is in solid tissue. The 

ability to achieve single micron resolution of tissue with over 30 antibody markers has the 

potential to reveal much about protein expression in tissue compartments and tumors. 

This could be highly valuable for inspecting FL resected tumors. The variations in HLA-

DR expression on the malignant B cells might be due to a malignant GC light zone/ dark 

zone-type localization or could be due to local necrosis. How are the non-malignant B 

cells oriented? Are they spread throughout the tumor or pushed to the outside away from 

the bulk of the malignant B cells? I suspect that they do not have their own niche or the 

GC population would not be so diminished.  

 

Allergic disease 

My project started out by asking what differences existed between the mature B 

cell compartment of allergic and non-allergic individuals. Literature searches did not turn 

up any in depth phenotype comparisons between the peripheral blood of non-allergic and 

allergic individuals so I decided that would be a good place to start. I hypothesized that 

there would be an obvious B cell phenotype in atopic patients and with a 34-marker panel 

I was well posed to find it. What I did not count of was the complexity of characterizing 
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non-atopic normal cells at the level of phenotyping. With so many markers and so many 

cells, it quickly became clear that normal needed to be characterized and the tools to do 

so needed to first be optimized in order to effectively apply mass cytometry to the study 

of B cells in allergic disease. This led to a pause in allergy research while I tested and 

optimized the dimensionality reduction tools viSNE and SPADE on control cells. Tool 

building compounded with a substantial decrease in clinical pediatric blood draws, led my 

dissertation research away from allergic disease.  

Although I have no significant findings to report from my pilot study, I would like to 

outline my hypotheses and thoughts that may be useful to others down the road. B cells 

have proven to be a useful target in other diseases and I believe the same is true in 

allergic disease. Anti-CD20 and rapamycin are blunt tools but may work to provide relief 

in especially severely allergic patients. Diminishing the B cell pool or disrupting B cell 

function along with the removal of preexisting IgE with anti-IgE (D'Amato, Salzillo et al. 

2007) could go a long way to mitigate life threatening allergic reactions.  

I hypothesize that a defect in B cells that might be causing them to class switch to 

IgE more robustly could be detected by perturbing the B cells from allergic and non-

allergic individuals with factors that push B cells towards (IL-4, IL-13, IGF-1) an IgE cell 

fate and factors that pull B cells away (IFNα, IFNγ, PGE2, IL-12, CpG, TGFβ, IL-10) from 

an IgE cell fate (Pene, Rousset et al. 1988, Gascan, Gauchat et al. 1991, Gascan, 

Gauchat et al. 1991, Punnonen, Aversa et al. 1993, Punnonen, Yssel et al. 1997, Jeannin, 

Lecoanet et al. 1998, Koh, Park et al. 2000, Gould, Sutton et al. 2003, Mangan, Fallon et 

al. 2004, Kumar, Verma et al. 2012). I suggest perturbing the system with stimulating 

factors such as IL-4 (increase class switch to IgE isotype) and IL-21 (pushes B cells 

towards an antibody production fate) or inhibiting factors such as TGFβ which inhibits 
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class switch to IgE isotype. If B cells in allergic individuals possess a defect, it may 

become apparent when stimulating and observing the readouts of phosphorylation in both 

intensity and duration, proliferation, cell survival, and ultimately class switch.  

It is entirely possible that there is no B cell defect in allergic individuals. It may be 

other cell types or micro environmental influences that determine the existence of 

pathogenic IgE. Finding the root cause is important for understanding allergies. 

Regardless of the cause though, B cells play a role as they are the cell types that 

eventually produce the pathogenic and often life threatening IgE. Understanding B cell 

biology and being able to fine tune and direct class switch would be invaluable for stop 

allergic pathogenesis by blocking the class switch to IgE or inhibiting the survival of IgE 

positive cells. 

 

Autoimmune diseases 

B cell mass phenotyping in autoimmune diseases would be an excellent avenue 

to explore for new drug targets. We know that B cells are involved in autoimmune 

diseases. B cells become plasma cells that secrete autoantibodies. Regulatory B cells 

(Bregs) are also involved in disease and should be included in analysis. With the 

backbone of the B cell panel in place, swapping markers in and out makes the B cell 

panel flexible for studying Bregs and other B cell types. The flexibility of the panel also 

allows for tissue specific markers to be added. It is important that the panel can identify 

B cells in multiple activation states (chemokine receptors and activation markers) and 

distinguish and positively identify non-B cell populations, such as CD34 on HSCs in the 

bone marrow. 
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Summary 

The systems biology approach using mass cytometry to study B cell biology allows 

for simultaneous identification and characterization of at least 4 major B cell populations 

in health and disease settings. This in-depth simultaneous approach was not possible 

before mass cytometry. Mass cytometry enabled the identification and characterization 

of naïve, GC, memory, plasmablasts, and malignant B cells simultaneously. In Chapter 

2, I was able to ask multiple questions with a single data set. I found that 1) the GC B 

cells were diminished in FL tumors, 2) malignant B cells did not phenotypically resemble 

GC B cells, 3) the malignant B cells had a highly variable phenotype, and 4) the malignant 

cell phenotypic variability was driven by diverse expression of HLA-DR surface molecules 

within the tumors. The most significant contribution that came out of the FL study was the 

in-depth phenotypic characterization of the non-malignant cells at the single cell level. 

The non-malignant B cells had not been studied so carefully before.  

In Chapter 3, we used mass cytometry to study the kinase and phosphatase activity 

of the 4 main populations. That study started out using fluorescence flow and looking at 

phospho-responses from ROS stimulation. We noticed a subset of cells that were 

responding robustly to the ROS stimulation and had to move platforms to mass cytometry 

in order to add enough markers to identify the cells of interest. The move to mass 

cytometry enabled us to identify the GC B cells as the robust responders.  

In Chapter 4 and throughout this dissertation, I used and optimized the analysis tool 

viSNE to display complex data in a comprehensible way. It would be a shame to not use 

the data from the 30+ parameters but it would be incomprehensible to try and view it all 

at once. viSNE enabled rapid visualization of cell phenotypes as defined by the tSNEs. 

This allowed for large differences to be easily spotted and followed up on, such as the 



 79 

malignant cells in Figure 2-1 and the lack of GC B cells in the FL tumors (Figure 2-9). This 

work contributed not only biological findings but computational insight and approach to 

our scientific knowledgebase. 
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APPENDIX A : SERIAL DILUTION SCHEMATIC FOR ANTIBODY TITRATION 

 

 

Figure 5-1 Example schematic of serial dillutions for antibody titration.  

It is important to always have a negative and positive cell population so that the appropriate antibody concentration can 

be determined. Subsets of B cells will be positive for CD10, CD23, and/or CD32 and T cells will be negative for these 

markers. CD20 positively identifies B cells. CD3 positvely identifies T cells. SKO cells will be positive for IgE and PBMC 

will be negative for IgE. PBMC can be discriminated from SKO cells by their higher level of CD45 expression. 

 

 

20ug/ml

(0.5ug/mL)

August 2014 CyTOF Antibody Titration
Titrate:CD10-141, CD23-149, CD32-161, IgE-164 
Guide Markers: CD20-147, CD45-154, CD3-170

Antibody Serial Dilution per antibody

PBS+BSA 15µL 15µL 

Fixed Mixed cells

(tonsil + SKO)
50µL 50µL 

15µL 15µL 

10µL 10µL 10µL 

2 3

50µL 

Estimated

500ug/mL 

stock 1

60µL 

total 

Staining

(1ug/mL)

All tubes are Ir intercalated before run on CyTOF.

50µL 

10µL 

(0µL)

PBS+

BSA

Guide 

markers 

only

2 31

10uL Guide marker cocktail 

added to each tube

50µL 

20µL 

(0µL)

PBS+

BSA

Intercalator

only

Total staining 

volume 100uL
Ton.

only

SKO

only

Add 2.4uL

(2ug/mL)

10µL x 4 Ab.= 40uL

Final Ab. Conc. (1X)

(10X)
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APPENDIX B :  WHOLE BLOOD PROCESSING PROTOCAL 

 

Written by Cara Wogsland 2014-11-18 

Prepare BUFFY COAT and Plasma 
Put PBS, RPMI+FBS, FBS, and Freeze media at RT 
In Green top tubes Spin down RT, 600xg, 20 min, NO BRAKE 
Pipette plasma to new 15 mL conical down to about 1 cm above buffy coat 
 
Ficoll Gradient Separation: 
Pipette buffy coat and top layer of RBC into 50 mL conical 
Dilute by 1⁄4 with PBS 
Add 14 mL of Ficoll to new 50 mL conical 
Slowly add the diluted buffy coat on top of Ficoll 
Spin down RT, 400xg, 30 min, LOW BRAKE 

Plasma: Spin down RT, 1600xg, 10 min, Brake on to remove platelets 
Store plasma in 0.5-1 mL aliquots at -20°C, be careful to leave platelets behind 

Ficoll prep after spin: Aspirate down to 3 cm above PBMC layer 
 

PBMC layer Granulocyte layer 
Pipette the PBMC layer located above the Ficoll 
layer into a labeled 15 mL conical.  

Pipette granular cells located beneath Ficoll layer 
into a labeled 15 mL conical. 

Fill tube with RPMI+FBS to wash ACK lyse with 10 mL ACK lysis buffer for 4-5 
minutes 

 Top off tube with RPMI+FBS to wash 
Spin down RT, 200xg, 10 min, Brake on Spin down RT, 200xg, 10 min, Brake on 
Aspirate  Aspirate 
Wash again in 15 mL RPMI+FBS ACK lyse again for 1 min with 5 mL lysis buffer 
 Fill tube with RPMI+FBS to wash 
Spin down RT, 200xg, 10 min, Brake on Spin down RT, 200xg, 10 min, Brake on 
Aspirate, resuspend in 1 mL FBS to count Aspirate, resuspend in 1 mL FBS to count  

 

(Both tubes can be spun together) 
 

PBMC and Granulocytes Count and Freeze: 
Pipette 10 µL cells into 90uL PBS for counting, for both cell types 
Bring cells up in enough FBS for 500 µL per tube and 5-6 million PBMC per tube, 10 million 
gran. per tube 
Add 500 µL 2X freeze media to the bottom of each vial 
Aliquot 500 µL of cells to separate cryovials for PBMC and Granulocytes  
Freeze in Mr. Frosties or similar at -80°C. Move to LN2 within a week. 
 

Remaining PBMC in FBS (Optional) 
Bring up in 1 mL PBS 
Fix with 100 µL 16% PFA for 5 minutes 
Wash with 1 mL PBS 
Spin down RT, 1000xg, 5 min, Brake on 
Decant, Vortex 
Bring up in 1 mL cold MeOH 
Vortex vigorously  
Cap and store at -80°C in 15 mL conical 
To be used for fluorescent phenotyping 
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APPENDIX C :  FLUORESCENCE FLOW STAINING PROTOCOL 

 

Fluorescent phospho-flow primary samples thaw to staining protocol 
Written by Cara Wogsland, last updated 2015-11-12 
 

Media: warm RPMI+10%FBS 
Staining Media: cold PBS+1%BSA or RT BV Stain Buffer* 
 

Staining cocktail(s): 
Make enough cocktail for the number of samples, plus add an extra 10% staining media for 
slop. Make separate staining cocktail for secondary antibodies. Transfer cells to new tubes for 
each staining cocktail so that volumes are precise. This is especially important for comparing 
between samples since staining is concentration dependent. (Staining cocktail calculations can 
be done in an Excel spreadsheet) 
 

Thaw: 
Warm cryovial of PBMCs in warm water until thawed 
Add 1 mL warm RPMI+FBS to thawed cells. Dump into 15 mL conical containing ~8 mL warm 
media.  
Rinse cryovial and dump into 15 mL conical x2 
Spin down RT, 200xg, 5 min 
Resuspend and count as needed 
Keep cells in incubator while counting 
 

Rest cells in incubator if performing live cell assays such as phospho-flow 
 

Stimulation: 
Bring up cells in enough warm media for all conditions. (200 µL per condition) 
Aliquot 200 µL of cells per well into plate based on the number of conditions. 
Rest in incubator for 10-15 minutes. 
Reverse time course based on chosen conditions and time points. (Start with longest time point 
and count down. Fix all cells together.) 
Put cells back in incubator between each time point. All tubes should move in and out together 
to minimize variables. 
All conditions should be fixed at time 0 when the timer goes off. 
Remember: two unstim conditions are better than one. 
 
Stims are used at 50X, add 4 µL of stim to 200 µL of cells: 
 
Example time course: 5 conditions, N=3, 15 wells total 

 
Stim1 

(15min) 
Stim2 

(15min) 
Stim2 

(10min) Unstim1 Unstim2 6 7 8 9 10 11 12 

Sample1             

Sample2             

Sample3             

             

             

             

             
Figure 5-2 Example layout of a 96 well plate for stimming cells for a phospho-flow experiment.  

White empty spaces have cells. Grayed out spaces are considered unused for the purpose of this figure. 
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Fix: 
Add 20 µL 16% PFA to 200 µL of cells (media will turn yellow) 
Mix by gentle pipetting 
Incubate for 10 min at RT. 
Wash with 50 µL PBS 
Spin down RT, 900xg, 5 min (dead cells are always spun faster than live cells since they do not 
pellet as well) 
Decant, pat on paper towels 
Wash with 200 µL PBS, mix by pipetting 
Spin down RT, 900xg, 5 min 
 
Permeabilize: 
Decant, pat on paper towels 
Resuspend the cells in the residual volume left after decanting by vortexing gently on side of 
plate.  
Add 200 µL of cold methanol (-20ºC) with multi-channel pipet and immediately mix repeatedly 
by pipetting 
Continue to pipet as needed to break up clumps 
Incubate cells at -20ºC for at least 10 minutes. 
Cells can be left overnight at -20ºC or for weeks at -80ºC. Cover plate so methanol does not 
evaporate. Wrap in parafilm if stored for longer time periods. 

 
Intracellular Stain (60 µL total staining volume):  
*Use BV Stain Buffer as staining media if using 2 or more Brilliant Violet dyes in one panel. 
Add 70 µL PBS to wash 
Spin down RT, 900xg, 5 min 
Decant, pat on paper towels 
Wash with 200 µL staining media, mix by pipetting 
Spin down RT, 900xg, 5 min 
Decant, pat on paper towels 
Add 30 µL staining media to each well, mix by pipetting 
Transfer 25 µL of cells to new wells for staining 
Add 35 µL antibody staining cocktail, mix by pipetting 
Stain in dark for 15-30 min (make comp tubes during this time) 
Add 200 µL BV stain buffer, transfer wells to labeled FACS tube 
Wash each well with 200 µL PBS+BSA and transfer to appropriate FACS tube 
Wash cells in FACS tubes with additional 1 mL PBS+BSA 
Spin down RT, 900xg, 5 min 
(Repeat staining as needed for secondary antibodies.) 
 
Running on Fluorescent Flow Cytometer 
Decant 
Bring up in 110 µL PBS.  
Store in fridge until ready to run. (Can be run next day but should ideally be run the same day.) 
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Compensation tubes are made for each antibody and 1 unstained tube using comp beads 
In labeled FACS tubes add: 
100 µL PBS 
10 µL positive-negative bead mix (vortex beads well before adding) 
Add ¼ the antibody used per 100 µL test. 
 
The positive comp beads in the Irish lab are anti-mouse kappa chain. If you stained with 
antibodies from other animals, you need to find an antibody produced in mouse with matching 
fluorophore to add to the comp beads. Comp fluorophores should be the actual antibody when 
using a tandem fluorophore since those can break down over time and show differences 
between sources. 
 
Comp Beads do not get washed or spun down. They are ready to run through the cytometer as 
soon as they are made. They should be kept in the dark along with the samples once they are 
made. They can be stored at 4°C for at least a week. 
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APPENDIX D :  CYTOF MASS CYTOMETRY STAINING PROTOCOL 

 

CyTOF Primary samples thaw to CyTOF staining protocol 
2014-08-26 

 

Media: warm RPMI+10%FBS 
Staining Media: cold PBS+1%BSA 
 
Thaw 
Warm cryovial of PBMCs in hands or warm water until thawed 
Add 1 mL warm RPMI+FBS to thawed cells. Dump into 15 mL conical containing ~8 mL warm 
media. Rinse cryovial and dump into 15 mL conical 
Wash cryovial with warm media. 
Spin down RT, 200xg, 5 min 
Resuspend and count as needed 
 
Staining cocktail(s) 
Make enough cocktail for the number of samples, plus add an extra 10% PBS+BSA for slop. 
Make separate staining cocktails for surface and intracellular markers. Make separate staining 
cocktails for secondary antibodies. You may have up to four staining panels. Transfer cells to 
new tubes for each staining cocktail so that volumes are precise. This is especially important for 
comparing between samples since staining is concentration dependent. 
 
Live Surface Stain 
50 µL stain (double volumes for 100 µL test size) 
Staining media: cold PBS+1%BSA.  
Cells and antibodies should be in staining media. 
Transfer 30 µL of cells to a new FACS tube. 
Add 20 µL of premade staining cocktail. (Titrate antibodies ahead of time. In general antibodies 
can be used at half the recommended concentration. E.g. 0.25 µL into one 50 µL test) 
Vortex 
Stain RT for 15-30 minutes. 
Wash with 1-2 mL PBS+BSA 
Spin down RT, 200xg, 5 min 
(Repeat staining as needed for secondary antibodies.) 
 
Fix 
Decant 
Bring cells up to 200 µL with PBS. 
Fix with 20 µL 16% PFA (for a final concentration of 1.6% PFA) 
Vortex. 
Incubate for 10 min at RT. 
Wash with 1-2 mL PBS 
Spin down RT, 900xg, 5 min 
 
Permeabilize 
Decant 
Resuspend the cells in the residual volume left after decanting by vortexing vigorously.  
Add 1 mL of cold methanol (-20ºC) 
Vortex immediately.  
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Pipet as needed to break up clumps 
(If a lot of clumping is observed, add 100 µL PBS to next tube before adding methanol. Then 
bring up in 2 mL cold methanol.) 
Incubate cells at -20ºC for at least 10 minutes. 
Cells can be left overnight at -20°C or for weeks at -80°C. Cover tubes for longer times so 
methanol does not evaporate. 
 
Methanol Removal 
Wash the cells that are in methanol with 2mL PBS  
Vortex 
Spin down RT, 900xg, 5 min 
Decant 
Repeat wash 1 more time 
Spin down RT, 900xg, 5 min 
 
Intracellular Stain (if applicable) 
Resuspend cells in ~40 µL in staining media.  
Transfer 30 µL of cells to a new FACS tube. 
Add 20 µL of premade staining cocktail.  
Vortex 
Stain for 15-30 minutes. 
Wash with 2 mL PBS+BSA 
Spin down RT, 900xg, 5 min 
(Repeat staining as needed for secondary antibodies.) 
 
Nucleic Acid Stain 
Decant 
Bring cells up in 200 µL PBS 
Add 4 µL 50X Iridium nucleic acid intercalator. 
Vortex 
Incubate 15 minutes at RT. Cells can be left in fridge for several hours. 
Wash with 2 mL PBS right before running on the CyTOF. 
Spin down RT, 900xg, 5 min 
Add another 2 mL PBS 
Vortex 
 
Filter cells 
Use a P1000 to facilitate filtering cells. Push tip against filter of a filter top FACS tube and push 
the cell suspension through. Remove caps when done. 
Spin down RT, 900xg, 5 min 
 
Running on CyTOF 
Decant 
Vortex void volume 
Bring up in 1X normalization beads 
Volume varies: A good place to start is 600 µL for a small pellet, 1 mL for a large pellet. 
Run 200 µL first to test concentration. Adjust as needed. Streaking and FIFO errors may mean 
that cells should be diluted further. If you have over 10 million cells, make a separate 1:5 dilution 
to run first to test the concentration. 
Never run all of your sample at once. 
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APPENDIX E :  CHARACTERIZING CELL SUBSETS IN HETEROGENEOUS 

TISSUES USING MARKER ENRICHMENT MODELING (MEM) 

 

Full title: Characterizing cell subsets in heterogeneous tissues using marker enrichment 

modeling (Diggins, Greenplate et al. 2017) 

Kirsten E Diggins, Allison R Greenplate, Nalin Leelatian, Cara E Wogsland & Jonathan M Irish 

 

Abstract 

Learning cell identity from high-content single-cell data presently relies on human experts. 

We present Marker Enrichment Modeling (MEM), an algorithm that objectively describes 

cells by quantifying contextual feature enrichment and reporting a human and machine-

readable text label. MEM outperforms traditional metrics in describing immune and cancer 

cell subsets from fluorescence and mass cytometry. MEM provides a quantitative 

language to communicate characteristics of new and established cytotypes observed in 

complex tissues. 

 

Introduction 

Marker enrichment modeling (MEM) scores are a useful augmentation to median 

values that cut through the noise and erroneous results to show where population 

phenotypes truly differ from each other. MEM labels are an unbiased characterization of 

cell population phenotypes made using the MEM scores. MEM scores are valuable in 

visualized form in a heatmap alone or in conjunction with median values. MEM labels help 

to identify and characterize pre-existing cell populations. Any approach can be used to 

create the cell populations that will be input into the MEM algorithm including clusters, 

biaxial gating, and on-viSNE gating. This makes MEM useful as part of a workflow for 
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data analysis. I have been intellectually involved with MEM since its inception. I was the 

first to challenge it and argue with the concept and then eventually became one of its 

strongest supporters as I realized its power in data analysis and started running it on my 

own data.  

I helped design experiments, discussed data visualization, and contributed 

intellectually to the manuscript. I beta tested the software implementation of MEM and 

provided feedback about what files and file formats should be generated when MEM is 

run. I proposed the -10 to +10 scale used for reporting MEM values to make the output 

values standardized and easily interpretable. I contributed to the R programming 

language code base implementation of MEM. I assisted with manuscript revisions. 

MEM is a powerful tool to assist in the understanding of data however it is very 

important understand how the algorithm works and how it has been implement in each 

case. Since the MEM values are often reported in a heatmap, there is a risk of 

misunderstanding the results and assuming that MEM is like median or mean. MEM is 

different in that it shows the differences between the populations not the values within a 

population. For example, CD45 will look negative on leukocyte populations when looking 

at MEM values whereas it will be very high when looking at median values (Figure 5-3B).  

There are several different ways to implement the MEM algorithm. The reference 

population is a crucial part of the MEM score. The MEM scores and labels are 

meaningless without knowing the reference population. The most common, and my 

preferred, implementation is to set the reference population as the bulk non-population 

cells. That means that all populations in the analysis other than the scored population will 

be used as the reference point for each population. Every population will be scored so 

this means that each population’s MEM scores will be generated using a different 
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reference population. (This is all done automatically in the software code.) In practice, the 

populations are generally gated from a single sample, but that is not necessary. The 

populations could consist of cell lines or cancer and non-cancer for example. Using the 

other populations as the reference will provide the best characterization of each 

population within a given sample. Another way to use MEM is to have all populations run 

against the same reference population, such as hematopoietic stem cells (HSC). 

MEM can be used to compare populations where data has been collected on 

different platforms, however, I stress again the importance of understanding how the 

algorithm works to prevent misinterpretation of the results. 

 

Main text 

Quantitative cytometry workflows have developed diverse approaches to grouping 

cells into populations and visualizing results in graphs that arrange populations based on 

phenotype (Diggins, Ferrell et al. 2015, Saeys, Gassen et al. 2016). Important features of 

populations are typically assumed to be those most highly or differentially expressed. This 

approach works well when feature variability is low and cells match established types, but 

computational analysis of single cell data routinely reveals novel cells with non-canonical 

phenotypes (Becher, Schlitzer et al. 2014, Patel, Tirosh et al. 2014, Greenplate, Johnson 

et al. 2016). This is especially common in diseases where abnormal expression profiles 

and signaling responses distinguish clinically significant cell subsets (Irish, Hovland et al. 

2004, Irish, Myklebust et al. 2010, Gaudilliere, Fragiadakis et al. 2014, Levine, Simonds 

et al. 2015, Greenplate, Johnson et al. 2016). Existing statistical approaches can be used 

to characterize a population’s degree of difference from a reference, but may be limited 
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to a normal distribution or may not account for intra- and inter-population variability in a 

single metric.  

 The MEM equation (Eq. 1) produces a signed value for each population feature by 

quantifying positive and negative, population-specific, contextual feature enrichment 

relative to a reference cell population (Supplementary Note 1).  

 

MEM score = , (MAGPOP-MAGREF) <0  MEM = -MEM  

(Eq. 1)  

 In Eq. 1, POP denotes the population of interest, REF denotes the reference 

population to which POP will be compared, MAG is feature magnitude (here, median 

protein expression detected by mass or fluorescence flow cytometry), and IQR indicates 

the interquartile range. A reference population (REF) is chosen based on a biological 

comparison of interest (Supplementary Note 1, Supplementary Table 1, Supplementary 

Fig. 1). MEM was designed to quantify enrichment, whereas other metrics used in 

cytometry, such as Kolmogorov-Smirnov (K-S) (Young 1977), area under the ROC curve 

(AUC) (Kim, Donnenberg et al. 2016), and Earth Mover’s Distance (EMD) (Orlova, 

Zimmerman et al. 2016), capture other differences between frequency distributions 

(Supplementary Note 1). In datasets including healthy human blood, bone marrow, and 

tonsil, murine tissues, and human tumors, MEM identified key proteins used by experts 

to distinguish rare and novel cell subsets.  

 Four cytometry studies, Dataset A (Leelatian, Diggins et al. 2015), Dataset B 

(Bendall, Simonds et al. 2011), Dataset C (Becher, Schlitzer et al. 2014), and Dataset D, 

collected as described by Leelatian and Doxie, et al. (Leelatian, Doxie et al. 2016), were 

1|| 








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REFPOP

IQR

IQR
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used to evaluate the ability of MEM to identify biological features of expert and machine 

identified cell subsets. For datasets A, B, and C, populations had been previously 

identified by experts and by computational tools including viSNE (Amir el, Davis et al. 

2013) and SPADE (Qiu, Simonds et al. 2011), which are used in mass cytometry for 

dimensionality reduction and cell clustering (Diggins, Ferrell et al. 2015), respectively.  

Dataset A was mass cytometry data quantifying expression of 25 proteins on 

healthy human peripheral blood mononuclear cells (PBMC) (Leelatian, Diggins et al. 

2015). This dataset was chosen for two reasons: 1) the 7 cell subsets present are well-

established, phenotypically distinct populations that served as a gold standard of 

biological ‘truth’ and 2) the cells in each of the 7 subsets were characterized for 25 

proteins that displayed varying homogeneous and heterogeneous expression patterns. 

Populations were expert gated following viSNE analysis and each population was 

compared to the other cells in the sample (Fig. 1, Supplementary Table 2). MEM returned 

labels that matched prior expert analysis (Leelatian, Diggins et al. 2015) and correctly 

assigned high positive enrichment values to canonical protein features of each subset 

(Fig. 1b), including CD4 on CD4+ T cells (▲CD4+6 CD3+5 ▼CD8a-4 CD16-3), IgM on 

IgM+ B cells (▲MHC II+8 IgM+6 CD19+5 ▼CD4-6 CD3-5), CD11c and MHC II on 

monocytes (▲CD11c+8 CD33+7 CD14+6 CD61+6 MHC II+4 CD44+3 ▼CD3-5 CD4-4), 

and CD16 on NK cells (▲CD16+9 CD56+2 CD11c+2 ▼CD4-7 CD3-4 CD44-3). Proteins 

that were not significantly enriched on any of the 7 subsets of mature human blood 

mononuclear cells were correctly assigned near-zero MEM scores (e.g. CD34 and CD117 

proteins expressed on hematopoietic stem cells, Fig. 1b). Similarly, proteins with little 

variability across cell subsets were assigned low, near-zero MEM scores, even for highly 

expressed proteins (e.g. CD45 on all subsets, CD45RA on non-T cells, Fig. 1b). 
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Incorporating information about feature variability allowed MEM to capture negative 

enrichment that was not reflected in magnitude difference (MAGDIFF, Supplementary Note 

2). Highly enriched proteins were more important to accurate population identification 

than proteins characterized by high median expression alone (Fig. 1c; Supplementary 

Fig. 2; Supplementary Fig. 3).  

 

5-3 Figure 1: Marker enrichment modeling (MEM) automatically labels human blood cell populations in Dataset A.  

a) Cells from normal human blood grouped into 7 canonical populations using viSNE analysis and expert review of 25D 

mass cytometry data (Leelatian, Diggins et al. 2015). b) MEM labels computationally generated for each canonical cell 

subset. Heatmaps show protein enrichment values used to generate MEM labels and the median protein expression 

values for each protein on each cell subset. Variability in protein expression across the 7 canonical cell populations is 

shown below to highlight proteins that were expressed homogeneously (low variability, e.g. CD45) and those that were 

expressed heterogeneously (high variability, e.g. CD8a, CD4). c) Graphs show decreasing f-measure (clustering 

accuracy) as markers were excluded from k-means cluster analysis based on high to low absolute MEM or median 

values, compared to random exclusion. 
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To test the hypothesis that features with high MEM scores would be important for 

computational cluster formation, the 25 proteins measured in Dataset A (Figure 1b) were 

sorted in six ways: 1) high to low MEM score, 2) high to low median value, 3) high to low 

MAGDIFF, 4) high to low z-score, 5) high to low K-S statistic, and 6) randomly 

(Supplementary Table 3). Z-score and K-S statistic values are shown in Supplementary 

Table 4. The proteins were then sequentially, cumulatively excluded from use in k-means 

clustering and f-measure was calculated to measure clustering accuracy (Fig. 1c and 

Supplementary Fig. 2). The order in which markers were excluded is shown in 

Supplementary Table 3. Random exclusion was performed 15 times and the average 

result is shown (Fig. 1c). Clustering accuracy was most impacted by excluding proteins 

based on MEM score. F-measure dropped to 0.75 after removing the proteins with the 

top 6 MEM scores, whereas a comparable F-measure decrease was only observed after 

removing the 14 highest markers based on MAGDIFF, the 13 highest markers based on z-

score, and the 12 highest markers based on K-S statistic values (Supplementary Fig. 2). 

Removing markers based on median was not significantly different from removing 

markers randomly until the 15 markers with the highest median signal intensity were 

excluded (Supplementary Fig. 2). The same analysis was performed with viSNE in place 

of k-means clustering to visualize loss of population resolution (Supplementary Fig. 3c). 

In this case, loss of accuracy was reflected in the viSNE map as a loss of separation 

between “islands” of cells. These results indicated that MEM enrichment scores captured 

markers that were important to cell identity better than traditional comparisons based 

solely on median protein expression.  
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Dataset B was mass cytometry data quantifying expression of 31 proteins on 

healthy human bone marrow (Bendall, Simonds et al. 2011). Computational and expert 

analysis had previously identified 23 populations of cells that were analyzed here by MEM 

(Supplementary Note 3). For example, the cell subset labeled as HSCs was highly 

enriched for CD34 (CD34+6) and negatively enriched for CD45 (CD45-5). Dataset B also 

illustrated the general rule that MEM scores will approach median values as feature 

variability within populations decreases (Supplementary Fig. 4). MEM captured feature 

enrichment and heterogeneity better than median in diverse populations, as in Fig. 1c. 

 Dataset C was mass cytometry data quantifying expression of 38 proteins on 

murine cells from eight tissues (Becher, Schlitzer et al. 2014) (Supplementary Note 4). In 

this dataset, “cluster 28” was a novel population identified as CD11bint NK cells. The MEM 

label for cluster 28 within ILCs was ▲CD11b+5 CD62L+3 ▼CD4-7 CD103-4 Terr119-3 

(Supplementary Note 4 and Supplementary Fig. 5). This MEM label captured the key 

feature of this novel innate lymphoid cell subset (CD11bint) and highlighted additional 

features that can be used to match this subset to cells identified by others (i.e., to cytotype 

the population). These results indicate that MEM labels complement unbiased population 

discovery and effectively characterize cyto incognito (Irish 2014) by providing unbiased 

descriptions that correctly capture key features of novel cell types. 

 An important aspect of MEM is generation of machine-readable quantitative labels 

that can be used to register population identities across samples and studies. A MEM 

label for a newly discovered population can be compared quantitatively against a 

reference set of established MEM labels or a MEM label reported in a paper. To illustrate 

this idea, the pairwise, normalized root-mean-squared distance (RMSD) of MEM scores 

was calculated as a measure of similarity between 80 populations of cells from 7 different 



 95 

studies including healthy CD4+ T cell and B cell (Fig. 2). Cells had highly similar MEM 

scores within each major cell type, regardless of platform (mass or fluorescence flow 

cytometry), study, or tissue source. For example, T cells run on mass cytometry from 

different blood donors were 97% ± 1.3 similar to each other, 85% ± 1.9 similar to T cells 

from blood run on fluorescence flow cytometry, and 87% ± 2.1 similar to T cells from tonsil 

run on mass cytometry (Fig. 2, Supplementary Table 5). However, these cells were 66.9% 

± 13 similar to any B cell population. This indicates that MEM scores provide a way to 

communicate cell identity and to quantify similarities of cell types from the text label alone.  

 

5-4 Figure 2. Hierarchical clustering based solely on MEM label groups T cells and B cells measured in diverse studies 

using different cytometry platforms.  

A) MEM label values were compared for each of 80 populations (CD4+ T cells and B cells) from 3 human tissues 

representing 6 mass cytometry studies and 1 fluorescence flow cytometry study. Populations are shown clustered 

according to MEM label percent similarity. Tissue type, source study (numbered 1-7 and referenced in online methods), 

and individual sample IDs are indicated to the right. *indicates samples stimulated by bacterial superantigen 
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Staphlococcus enterotoxin B (SEB). B) Representative MEM labels for CD4+ T cells (top) and B cells (bottom) from 

SEB-stimulated normal human blood (1.4, top, mass cytometry), normal human bone marrow (5, mass cytometry), 

normal human tonsil (2.5, mass cytometry), SEB-stimulated normal human blood (1.4, bottom, fluorescence flow 

cytometry), and normal human blood (6.1, mass cytometry). 

 Dataset D included 52 populations of tumor infiltrating APCs, tumor infiltrating T 

cells, and non-immune malignant tumor cells identified in human glioma tumors 

(Leelatian, Doxie et al. 2016). To obtain these populations, each tumor was analyzed by 

viSNE and cell subsets were expert gated solely on t-SNE cluster density (Supplementary 

Fig. 6). To determine whether MEM could distinguish immune cell subsets from other 

tumor cell types with limited information, MEM scores were calculated using only 9 

markers that were expected to be expressed on cancer cells (S100B, TUJ1, GFAP, 

Nestin, MET, PDGFRα, EGFR, HLA-DR, and CD44, Fig. 3a). The 52 populations were 

grouped into 13 major cell types based on MEM enrichment of 9 analyzed proteins, and 

these groups were interpreted as tumor infiltrating APCs (Fig. 3b, blue), tumor infiltrating 

T cells (Fig. 3b, green), or non-immune tumor cells (Fig. 3b, red). To confirm cell identity, 

four protein features that had been excluded from MEM analysis were assessed (Fig. 3c, 

CD45, CD3, CD45RO, and CD64). CD45 and CD3 were used to confirm T cell identity 

and CD45 and CD64 were used to confirm APC identity. MEM correctly identified both 

immune cell subsets from all tumor types without using key immune lineage markers and 

without using healthy populations (e.g. APCs from blood or tonsil) to guide the clustering. 

Thus, MEM labels distinguished populations of cells based on non-traditional features 

and in a disease context.  



 97 

 

5-5 Figure 3. MEM correctly grouped immune and cancer cell populations from glioma tumors using nine proteins 

expressed on cancer cells in Dataset D.  

(A) A heatmap of MEM enrichment scores is shown for 52 populations of cells identified in tumors from 4 glioblastoma 

patients (G-08, G-10, G-11, G22) in an unsupervised manner using viSNE. (B) Each population was annotated for a 

cell type based on review of the MEM label and classified as tumor infiltrating APCs (blue), tumor infiltrating T cells 

(green), or non-immune tumor cells (red). (C) A heatmap of median intensity values is shown for the 13 measured 

proteins from each of the 52 tumor cell populations. 

 

MEM labels provided a quantitative language to objectively communicate 

characteristics of new and established cell types observed in complex tissue 

microenvironments. Algorithmic comparison of MEM labels correctly identified 80 cell 

populations from 7 studies of 3 human tissues measured using different instrumentation 

and distinguished tumor-infiltrating immune cell subsets and malignant cell populations 

from human glioma tumors. Following additional validation in other cell types, tissues, and 

instrumentation platforms, it may be possible for machines and humans to use MEM 

labels to learn and clearly communicate cell identity (cytotype). Given widespread 

adoption and reporting, MEM labels could be used to communicate cytotypes in a manner 

analogous to cluster of differentiation (CD) naming of antigen targets of antibodies (1984). 

MEM can compare populations against a common reference (Supplementary Note 5) and 

guide feature selection for computational and experimental analysis. MEM can also be 
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used to monitor changes in tissues over time during treatment. Deviation from a stable 

MEM score for peripheral blood cell subsets would be expected in the case of emerging 

malignant cells (Greenplate, Johnson et al. 2016), and lack of change towards a healthy 

set of MEM scores for blood or bone marrow cell subsets might indicate a lack of response 

to chemotherapy for a leukemia patient. MEM is expected to assist in machine learning 

applications by providing quantitative text descriptions of cytotype that can be 

algorithmically parsed and used to classify newly identified cell subpopulations.  

 

Data availability statement 

The normal human PBMC dataset (Figure 1) were generated by CyTOF analysis 

as described by Leelatian, et al. (Leelatian, Diggins et al. 2015) and is available as an 

FCS file in Flow Repository (https://flowrepository.org/experiments/1043).  

The normal human bone marrow data set from Bendall and Simonds, et al 

(Bendall, Simonds et al. 2011) (Dataset B, Supplementary Note 3) was downloaded from 

Cytobank (Kotecha, Krutzik et al. 2010) as FCS files that included the cell population IDs 

defined by Bendall and Simonds, et al. (Bendall, Simonds et al. 2011) 

(https://reports.cytobank.org/1/v1). MEM enrichment scores from Dataset B were 

compared to the authors’ analysis and prior studies of proteins marking stem cells, 

progenitor cells, and mature cells (Civin, Strauss et al. 1984, Doulatov, Notta et al. 2012) 

The murine myeloid CyTOF dataset from Becher, et al (Becher, Schlitzer et al. 

2014) (Dataset C, Supplementary Note 4) was downloaded from Cytobank as FCS files 

that contained gated cell events and cluster IDs as designated by automated analysis 

conducted by Becher et al (Becher, Schlitzer et al. 2014). MEM enrichment scores from 
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Dataset C were compared to the authors’ analysis and prior studies of neutrophils (Basit, 

Reutershan et al. 2006, Furze and Rankin 2008). 

Datasets for Figure 2 were generated in 7 separate fluorescence and mass 

cytometry studies by 1) Nicholas et al. (Nicholas, Greenplate et al. 2016), 2) Polikowsky 

et al. (Polikowsky, Wogsland et al. 2015), 3) Ferrell et al. (Ferrell, Diggins et al. 2016), 4) 

Amir et al. (Amir el, Davis et al. 2013), 5) Bendall and Simonds et al. (Bendall, Simonds 

et al. 2011), 6) Greenplate et al., previously unpublished data, and 7) Leelatian et al. 

(Leelatian, Diggins et al. 2015). 

The phospho-flow AML data set generated by Irish et al. (Irish, Hovland et al. 2004) 

(Supplementary Note 5-Fig.2) was downloaded from Cytobank as FCS files. 

The human GBM mass cytometry dataset (Fig. 3) was generated and analyzed as 

described by Leelatian and Doxie et al. (Leelatian, Doxie et al. 2016) and are available 

on Flow Repository as text files (https://flowrepository.org/experiments/1044/). 

 

Online methods 

 

Code availability 

Software for generating MEM scores is available as Supplementary Software. 

 

CyTOF data pre-processing and analysis 

Data analysis was performed using the online analysis platform Cytobank 

(Kotecha, Krutzik et al. 2010) and the statistical programming environment R. Raw 

median intensity (MI) values were transformed to a hyperbolic arcsine scale. A cofactor 

of 15 was used for the PBMC dataset (Fig. 1), and 5 was used for the normal human bone 

https://flowrepository.org/experiments/1044/
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marrow data set and for the murine myeloid data set. Single, intact cells were gated based 

on cell length (30-60) and nucleic acid intercalator (iridium). Major PBMC subsets were 

gated based on CD45 expression (leukocytes) and on canonical lineage marker 

expression to identify major blood cell subsets.  

FCS files were exported from Cytobank as FCS or tab-delimited text files that were 

parsed for expression intensity information using the R package flowCore (Hahne, 

LeMeur et al. 2009). MEM was calculated using the arcsinh transformed MI values, as 

described above. Heatmaps were generated using the heatmap.2 function in the gplots 

R package (Gregory R. Warnes 2015). 

 

Fluorescence phospho-flow AML data analysis 

 Data were downloaded from Cytobank as FCS files and processed in R as 

described above. MFI values were transformed to a log normal scale. For each AML 

patient, a median value and an IQR value was calculated for each marker in the 

unstimulated condition and for the stimulated conditions. The unstimulated median values 

were subtracted from the stimulated median values, and likewise for the IQR values. MEM 

was then calculated by comparing each patient’s subtracted median and IQR values to 

those of the other patients. This enabled a comparison of fold change signaling values 

rather than raw values. 

 

Marker enrichment modeling (MEM) 

MEM analysis begins after populations have been identified and aims to provide a 

simple way to compare findings from experts working with different platforms or 

performing analysis using different computational tools for population discovery (Lo K 
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2009, Qiu, Simonds et al. 2011, Bruggner, Bodenmiller et al. 2014, Mosmann, Naim et al. 

2014, Shekhar, Brodin et al. 2014) and graphical visualization (Irish, Hovland et al. 2004, 

Bendall, Simonds et al. 2011, Bendall, Davis et al. 2014, Levine, Simonds et al. 2015, 

Spitzer, Gherardini et al. 2015). These tools have differing strengths that depend greatly 

on the structure of the datasets and controls, the biological goals of the study, and the 

quality of the existing knowledge in the field (Chattopadhyay, Gierahn et al. 2014, Diggins, 

Ferrell et al. 2015, Saeys, Gassen et al. 2016).  

 

MEM equation 

The MEM equation is implemented as an R package (Supplementary Software). 

Currently, MEM uses medians as the magnitude value; however, depending on the data 

type, mean may be a more appropriate magnitude statistic and mean could be substituted 

for median in the equation. Similarly, other statistics, such as variance, might be 

substituted for IQR. The MEM equation was developed with the intention of capturing and 

quantifying population-specific feature enrichment in a simple equation that avoids over-

fitting or unnecessary computation. The primary goal of this equation is to scale 

magnitude differences depending on distribution spread. While other distribution features 

such as skew or shape could be informative, incorporating only two pieces of information 

– magnitude and spread – into the equation captured enough information to be useful in 

quantifying both positive and negative population-specific feature enrichment. 

 

MEM output and score scaling 

The MEM R script outputs a heatmap of MEM values with a text label summary of 

feature enrichment as the population (row) names. The + or - value provided along with 

the marker name is converted to a -10 to +10 scale and rounded to the nearest integer. 
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As implemented here, the maximum of the scale was set using the highest absolute value 

MEM score observed across all markers and populations. All values in the matrix are 

divided by this maximum value and multiplied by 10 to achieve the -10 to +10 scaling. 

After scaling, the original sign value is reapplied to each MEM score. Scaling the output 

this way is intended to generate MEM values and labels that are intuitive to human 

readers and to facilitate comparison of feature enrichment across experiments, samples, 

batches, time points, and data types.  

 

IQR Threshold 

Because MEM uses a ratio of IQR values, near zero values in the denominator, 

IQRPOP, will greatly increase MEM scores. For each measurement type, it is important to 

identify a minimum significant IQR value so that small IQR values below the platform’s 

ability to distinguish signal from noise do not inappropriately increase MEM scores. To 

automatically determine a minimum threshold for IQRPOP, the algorithm here calculated 

the average of the IQR values that were associated with the lowest quartile of population 

and reference medians. For the mass and fluorescence cytometry datasets used, the 

automatically calculated IQR threshold was on average 0.5 ± X and so the IQR threshold 

for all studies here was set to 0.5. The default IQR threshold in the algorithm is also set 

to 0.5. To have the IQR threshold re-calculated, investigators should specify the “auto” 

option for the IQR.thresh argument in the MEM function. It is recommended that 

investigators applying MEM to datasets from different instruments or who are testing 

MEM for the first time determine whether a change in the IQR threshold is needed. 
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Reference population selection 

MEM scores are contextual; a population’s MEM score depends on the reference 

population(s) to which it is compared. Selection of a reference population should be made 

deliberately depending on the biological question being addressed. When populations in 

a MEM analysis arise from different experimental sources, it may be necessary in some 

cases to normalize measurements prior to MEM analysis to avoid artifacts from 

experimental variation. 

 

PBMC processing and mass cytometry  

 PBMC were isolated and cryopreserved as described by Greenplate, et al. 

(Greenplate, Johnson et al. 2016). PBMC were stained with metal conjugated antibodies 

and prepared for the mass cytometry as previously described (Greenplate, Johnson et al. 

2016). The following antibodies were used in the staining panel: CD19-142, CCR5-144, 

CD4-145, CD64-146, CD20-147, CCR4-149, CD43-150, CD14-151, TCRγδ-152, 

CD45RA-153, CD45-154, CXCR3-156, CD33-158, CCR7-159, CD28-169, CD29-162, 

CD45RO-164, CD16-165, CD44-166, CD27-167, CD8-168, CD25-169, CD3-170, CD57-

172, PD-L1-175, and CD56-176 (Fluidigm Sciences). In addition, the following purified 

antibodies from Biolegend were labeled using MaxPar DN3 kits (Fluidigm Sciences), 

stored at 4°C in antibody stabilization buffer (Candor Bioscience GmbH) and used in the 

same panel: ICOS-141, TIM-143, CD38-148, CD32-161, HLA-DR-163, CXCR5-171, and 

PD-1-174.  
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Cell subpopulation MEM Score Similarity Calculations 

 

Comparison of CD4+ T cells to B cells in Figure 2 

In order to assess the robustness of MEM across tissue sample types, donors, 

experimental runs, and flow cytometry platforms (fluorescence and mass cytometry), 

MEM scores were calculated for cell subsets from 7 different experiments that included 3 

healthy human bone marrow samples (Bendall, Simonds et al. 2011, Amir el, Davis et al. 

2013, Ferrell, Diggins et al. 2016), 9 healthy human PBMC samples (Leelatian, Diggins 

et al. 2015, Nicholas, Greenplate et al. 2016), and 6 healthy human tonsil samples 

(Polikowsky, Wogsland et al. 2015). MEM scores were calculated for each population 

using as the reference population a combination of hematopoietic stem cells gated as 

CD34+ CD38lo/- from two studies of healthy human bone marrow (Bendall, Simonds et al. 

2011, Ferrell, Diggins et al. 2016). Population similarity was calculated using root mean 

squared distance (RMSD) calculated on all population MEM scores in a pairwise fashion. 

MEM scores were calculated using all markers in common between each dataset and the 

HSC reference (Supplementary Table 5).  

RMSD was calculated here as the square root of the average in squared distance 

between all MEM values in common for each pair of populations (Supplementary Table 

5) and then converted into percent maximum possible RMSD. Given the -10 to 10 MEM 

scale, an RMSD of 20 was the maximum possible difference and corresponded to 0% 

similarity, whereas an RMSD of 0 between MEM labels indicated 100% similarity. This 

approach emphasized differences in marker expression when comparing populations. 

Calculated statistics for CD4+ T cell comparisons included average MEM value +/- 

standard deviation and p-value calculated using an unpaired, two-tailed Student’s t-test. 
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Human Glioma and Normal Immune Cell MEM Analysis 

Glioblastoma data (G-08, G-10, G-11, and G-22) were collected following a published 

protocol (Leelatian, Doxie et al. 2016). Cells were stained with isotope-tagged antibodies 

to detect surface and intracellular targets following established protocols (Leelatian, 

Diggins et al. 2015, Leelatian, Doxie et al. 2016). MEM analysis of glioblastoma patient 

samples was performed with 9 markers (S100B, TUJ1, GFAP, Nestin, MET, PDGFRα, 

EGFR, HLA-DR, and CD44), using arcsinh transformation of original median intensity 

values with a cofactor of 5. Each cell subset was the POP, and the remaining cell subsets 

were the REF in the analysis. 

 

Z-score and K-S statistic calculations 

Z-score was calculated between POP and REF as (MEANpop-MEANref)/STDEVref for 

each marker. 

The K-S statistic (Young 1977, Cox, Reeder et al. 1988) was calculated comparing the 

distribution for each marker on POP and REF using the function ks.test() in R. 

 

F-measure Analysis 

PBMC populations were defined by expert human gating on canonical markers. 

For f-measure analysis (Fig. 1c and Supplementary Fig. 2), the 25 measured markers 

from the CyTOF analysis of healthy PBMC were sorted based on absolute MEM scores, 

median values, median difference, z-score, and K-S statistic (shown in Supplementary 

Fig. 2), or randomly across all PBMC populations and the 25 measured proteins. The 

5x25 matrix was converted into an ordered vector (length 25X5) and then sorted by 

absolute value. The first occurrence of each marker in the list was kept and subsequent 

occurrences of that marker in the list (i.e. that marker’s scores on other populations) were 
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discarded. The order of markers excluded by MEM, median, median difference, z-score, 

and K-S statistic are shown in Supplementary Table 3. Markers were then sequentially, 

cumulatively excluded from k-means clustering of cells from high to low absolute for each 

statistic or score. F-measure was calculated as:  

Sensitivity = True Positives/ (True Positives + False Negatives) 

Specificity = True Negatives/ (True Negatives + False Positives) 

F-measure = 2*(sensitivity*specificity)/ (sensitivity + specificity)  

An F-measure was calculated for each round of clustering, where truth was the cell cluster 

ID resulting from clustering on all 25 markers. The moving average of f-measure with an 

interval of 3 was calculated in Microsoft Excel. The F-measures for random marker 

exclusion are the average at each point of 15 different rounds of random marker exclusion 

from clustering. 
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Supplement 

 

5-6 Supplementary Figure 1 Examples of MEM reference population selection to capture different contexts. 

Alternative reference populations (REF) can be used to capture how features of the test population (POP) are enriched 

in different contexts. Reference comparisons include a) all non-population cells in the sample or experiment (default), 

b) a population from another sample in the same study, c) a population from the same sample, d) multiple subsets of 

non-population cells from the same sample, e) a standard control population, and f) pairwise comparison between all 

populations in a sample. 
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5-7 Supplementary Figure 2 MEM highly scores markers that are important to clustering accuracy.  

Markers were sequentially and cumulatively excluded from k-means cluster analysis of Dataset A, from high to low, 

sorted based on 5 different statistics or scores (marker order shown in Supplementary Table 3): MEM, median, median 

difference (MAGDIFF), z-score, and Kolmogorov-Smirnov (K-S) statistic. Clustering accuracy was quantified as the f-

measure where true cluster identity was assumed to be the clusters formed by clustering on all 25 markers in the 

dataset. The moving average of the f-measure is shown. Error bars represent the standard error. The vertical red line 

indicates the number of excluded features at which the f-measure reached 0.75. 
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5-8 Supplementary Figure 3 MEM highly scores markers that are important to viSNE mapping.  

a) viSNE map for healthy human blood, built using 25 surface protein markers. Populations were identified by expert 

analysis and color coded.  

b). Top to bottom, left to right: viSNE maps generated as markers were iteratively, cumulatively excluded based on 

their MEM scores (high to low absolute value). Heat intensity for each cell indicates CD8 expression.  

c) Top to bottom, left to right: viSNE maps generated as markers were iteratively, cumulatively excluded based on their 

median scores (high to low absolute value). Heat intensity for each cell indicates CD8 expression. 

 

 

 

5-9 Supplementary Figure 4 MEM scores largely reflect median expression values for relatively homogenous 

populations.  

Heatmaps show median intensity of protein expression (left) and protein enrichment by MEM (right) for measured 

proteins in 28 populations characterized as relatively homogeneous for established cell types by expert analysis (rows). 

Each population was compared to the other 27 subsets for the MEM analysis. MEM scores approach median 

expression values in homogeneous populations because the contribution of variance approaches zero. 
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5-10 Supplementary Figure 5 Focused MEM analysis quantifies feature enrichment within phenotypically similar groups 

of cells.  

a-f) Focused MEM analysis on murine myeloid cell subsets. A MEM label for one population within each group is shown 

as an example. Groups were defined as the 6 major murine subgroups identified by t-SNE and DensVM by (Becher, 

Schlitzer et al. 2014). 

 

 

5-11 Supplementary Figure 6 Unsupervised clustering and gating of 52 populations of malignant and immune cells in 

glioma.  

Live nucleated immune and malignant cells were gated from glioma tumors as described in Leelatian and Doxie et al., 

Cytometry B 2016 (Leelatian, Doxie et al. 2016). Patient-specific t-SNE axes were created in separate viSNE analyses 

of each tumor (e.g. t-SNE1-G-08 for glioma tumor G-08). Shown here is density of cells on t-SNE1 vs. t-SNE2 from 

each tumor-specific viSNE analysis. Expert analysis of density was then used to identify 52 cell clusters from the 4 

glioma tumors. These 52 populations were subsequently grouped by MEM in Fig. 5a using 9 proteins expressed on 

malignant cells. 
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Supplementary Table 1 – Healthy human CD4+ T cells from various mass cytometry studies 
were labeled consistently by MEM  

Tissue Study Panel focus # MEM label for CD4+ T cells vs. other live cells 

Bone 
marrow 

Bendall  
et al.  

Hematopoiesis 4 
▲CD4+10 CD3+6 

▼MHCII-3 CD8-2 CD45RA-2 CD11b-2 

Amir  
et al.  

Canonical 
immune 

5 
▲CD4+10 CD3+4 

▼CD45RA-2 

Ferrell  
et al.  

AML &  
myeloid cells 

2 

▲CD3+10 CD7+7 CD4+6 CD62L+4 

▼CD11b−6 CD11c−6 MHCII−6 CD64−5 CD61−4 CD13−3 

CD38−3 CD123−2 CD33−2 CD14−2 

Healthy 
human 
PBMCs 

Leelatian  
et al.  

Canonical 
immune 

7 
▲CD4+10 CD3+7 

▼CD8a-3 CD16-3 CD11b-2 CD69-2 MHCII-2 

Greenplate 
AR§ 

T cells 

1.3 
▲CD4+10 CD3+9 CCR7+5 CD27+5 CD28+3 CD64+2 

 

1.7 
▲CD4+10 CD3+9 CD45RO+3 CD27+3 CD64+2 CD28+2 

▼CD45RA-4 

1.1 
▲CD4+10 CD3+8 CD27+4 CCR7+3 CD64+2 

▼CD45RA-2 

1.8 
▲CD4+10 CD3+9 CD45RO+4 CD27+3 CD43+2 

▼CD45RA-5 

1.6 
▲CD4+10 CD3+7 CD27+2 

▼CD45RA-4 

1.4 
▲CD3+10 CD4+9 CD27+4 CCR7+3 CD28+2 

▼CD45RA-3 

1.2 

▲CD4+10 CD3+10 CD43+4 CD27+3 CCR7+2 CD28+2 

CD45RO+2 

▼MHCII-4 CD38-2 CD45RA-2 

Healthy 
human 
tonsil 

Polikowsky  
et al.  

B cells 

3.1 

▲CD4+10 CD3+9 CD5+5 CD27+5 

▼MHCII-10 CD19-9 CD20-7 CD40-7 CD22-7 Igκ-5 Igλ-4 IgD-2 

SHP1-2 CD16-2 CD33-2 IgM-2 

3.4 

▲CD4+9 CD3+9 CD5+5 CD27+5 

▼MHCII-10 CD19-10 CD20-9 CD22-7 CD40-7 Igλ-3 Igκ-3 IgG-

2 CD33-2 CD16-2 SHP1-2 

3.5 

▲CD4+10 CD3+10 CD27+6 CD5+4 

▼MHCII-7 Igλ-5 CD20-5 CD19-5 CD22-5 CD40-4 IgD-3 IgM-3 
CD16-2 Igκ-2 CD79B-2 SHP1-2 

# Sample numbers match study numbers in Figure 4. 
§New data from AR Greenplate, prepared as in Leelatian et al.  

5-1 Supplementary Table 1 – Healthy human CD4+ T cells from various mass cytometry studies were labeled 

consistently by MEM 
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Supplementary Table 2. MEM equation components for PBMC subsets in Fig. 1* 
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MAGPOP 4.3 2.3 3.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 2.4 3.1 0.5 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 

MAGREF 4.0 2.6 2.6 0.1 0.0 0.0 0.8 0.1 0.0 0.4 0.0 0.0 0.2 0.1 0.0 0.8 0.3 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.7 0.9 0.5 0.5 0.5 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.9 0.6 0.8 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 

IQRREF 0.8 1.1 1.6 2.3 0.5 0.5 4.8 2.2 0.7 1.2 0.5 0.8 3.7 1.8 0.6 1.2 1.4 0.5 0.7 0.5 0.5 0.5 0.5 0.5 

MEM 0.6 0.1 1.9 -5.0 0.0 0.0 -7.4 -4.7 0.7 -2.5 0.0 0.7 -8.8 4.2 4.1 -1.0 -2.7 0.0 -0.8 0.0 0.0 0.0 0.0 0.0 

MAGDIFF-S 0.5 -0.6 1.3 -0.2 0 0 -0.5 -0.2 0 -0.7 0 0 -0.4 4.8 6.4 -0.4 -0.6 0 -0.2 0 0.2 0 0 0 

MAGDIFF 0.3 -0.3 0.6 -0.1 0.0 0.0 -0.3 -0.1 0.0 -0.4 0.0 0.0 -0.2 2.3 3.0 -0.2 -0.3 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 

IQRDIFF -0.1 0.7 -0.7 -1.8 0.0 0.0 -4.1 -1.7 -0.2 -0.7 0.0 -0.3 -3.2 -0.8 0.0 -0.4 -0.9 0.0 -0.2 0.0 0.1 0.0 0.0 0.0 

C
D

8
 T

 c
e
lls

 

MAGPOP 4.1 2.7 2.6 0.0 0.0 0.0 5.1 0.0 0.0 0.2 0.0 0.0 0.0 2.2 0.1 0.2 1.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGREF 4.2 2.4 3.1 0.0 0.0 0.0 0.4 0.0 0.0 0.1 0.0 0.0 0.0 1.7 2.6 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.0 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.8 0.5 0.6 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.4 1.3 0.9 0.5 0.5 0.9 0.7 0.5 0.6 0.5 0.5 0.6 2.5 3.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM -0.2 0.9 -1.3 1.0 0.0 0.0 7.3 0.5 0.0 0.3 0.0 0.0 0.3 3.5 -10.0 -1.7 1.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGDIFF-S -0.2 0.5 -0.9 0 0 0 10 0 0 0.2 0 0 0 1.1 -5.3 -1 3.5 0 0 0.1 0 0 0 0 

MAGDIFF -0.1 0.3 -0.5 0.0 0.0 0.0 4.7 0.0 0.0 0.1 0.0 0.0 0.0 0.5 -2.5 -0.5 1.7 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

IQRDIFF -0.1 -0.4 -0.5 -0.4 0.0 0.0 -0.4 -0.2 0.0 -0.1 0.0 0.0 -0.1 -1.7 -2.5 -0.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

D
C

s
 

MAGPOP 3.9 3.0 3.4 2.7 0.0 0.0 0.1 3.1 0.9 0.0 0.1 0.3 1.3 0.0 0.7 0.7 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

MAGREF 4.1 2.5 3.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 1.9 2.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 1.1 1.6 1.0 2.0 0.5 0.5 0.5 3.9 1.7 0.5 0.5 1.5 3.9 0.5 1.4 1.2 0.5 2.3 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.3 1.3 0.5 0.5 0.5 1.5 0.5 0.5 0.7 0.5 0.5 0.5 2.4 3.1 1.0 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM 0.2 0.5 0.8 2.6 0.0 0.0 -3.2 3.0 0.2 -0.5 0.1 -0.5 0.5 -7.6 -3.4 -0.1 -0.4 0.7 0.0 0.0 0.0 0.0 0.0 0.0 

MAGDIFF-S -0.4 1.1 0.7 5.6 0 0 -1 6.6 1.8 -0.1 0.1 0.6 2.6 -3.9 -2.8 0.2 0 2.6 0 0 0 0 0 0 

MAGDIFF -0.2 0.5 0.4 2.7 0.0 0.0 -0.5 3.1 0.9 -0.1 0.1 0.3 1.3 -1.9 -1.3 0.1 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 

IQRDIFF 0.4 0.3 -0.2 1.5 0.0 0.0 -1.0 3.4 1.2 -0.2 0.0 1.0 3.4 -1.9 -1.7 0.2 -0.1 1.8 0.0 0.0 0.0 0.0 0.0 0.0 

Ig
M

- 
B

 c
e
lls

 MAGPOP 4.4 3.5 3.1 3.1 0.0 2.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

MAGREF 4.1 2.5 3.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 1.9 2.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.8 1.4 1.0 1.3 0.5 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.3 1.3 0.5 0.5 0.5 1.5 0.5 0.5 0.6 0.5 0.5 0.5 2.4 3.0 1.0 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM 0.2 1.3 0.5 3.3 0.0 3.0 -3.3 0.0 0.1 -0.5 0.0 0.0 -0.1 -7.6 -9.4 0.1 -0.4 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGDIFF-S 0.4 2.1 0.2 6.5 0 5.2 -1.1 0 0.1 -0.2 0 0 0 -3.9 -4.2 0.2 0 0 0 0.3 0 0 0 0 

MAGDIFF 0.2 1.0 0.1 3.1 0.0 2.5 -0.5 0.0 0.1 -0.1 0.0 0.0 0.0 -1.9 -2.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

IQRDIFF 0.0 0.0 -0.3 0.8 0.0 0.2 -1.0 0.0 0.0 -0.1 0.0 0.0 0.0 -1.9 -2.5 0.0 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Ig
M

+
 B

 c
e
lls

 MAGPOP 4.3 2.6 2.7 3.7 3.0 2.5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGREF 4.1 2.5 3.0 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 2.0 2.3 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.2 0.9 1.4 2.6 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.4 1.3 0.5 0.5 0.5 1.6 0.5 0.5 0.7 0.5 0.5 0.6 2.4 3.0 0.9 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM 0.4 0.5 -1.0 4.0 2.9 3.0 -3.6 0.0 0.1 -0.6 0.0 0.0 -0.3 -7.5 -9.6 0.2 -0.6 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

MAGDIFF-S 0.4 0.3 -0.7 7.7 6.3 5.2 -1.2 0 0.2 -0.2 0 0 0 -4 -4.8 0.5 0 0 0 0.2 0 0 0 0 

MAGDIFF 0.2 0.2 -0.3 3.7 3.0 2.5 -0.6 0.0 0.1 -0.1 0.0 0.0 0.0 -1.9 -2.3 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

IQRDIFF -0.1 -0.2 -0.4 0.9 2.1 0.2 -1.1 0.0 0.0 -0.2 0.0 0.0 -0.1 -1.9 -2.5 0.1 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

M
o
n
o
c
y
te

s
 

MAGPOP 4.1 2.3 4.2 2.1 0.0 0.0 0.2 3.6 3.5 2.7 2.9 2.9 0.1 0.0 1.1 1.3 0.2 0.4 0.1 0.0 0.0 0.1 0.0 0.0 

MAGREF 4.2 2.5 2.9 0.0 0.0 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0 2.0 2.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 1.1 0.7 1.5 0.5 0.5 0.5 0.8 0.6 0.7 0.7 1.2 0.5 0.5 0.9 0.8 0.6 0.8 0.5 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.4 1.2 0.5 0.5 0.5 1.7 0.5 0.5 0.5 0.5 0.5 0.6 2.2 3.1 0.9 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM -0.2 -0.5 2.6 1.9 0.0 0.0 -3.5 4.3 4.5 3.1 3.5 3.1 0.2 -7.2 -5.0 1.1 0.3 0.0 0.1 0.0 0.0 0.1 0.0 0.0 

MAGDIFF-S -0.2 -0.3 2.6 4.4 0 0 -0.9 7.5 7.4 5.5 6 6.1 0 -4.2 -2.7 1.5 0.4 0.7 0.1 0 0 0.1 0 0 

MAGDIFF -0.1 -0.2 1.3 2.1 0.0 0.0 -0.5 3.6 3.5 2.6 2.9 2.9 0.0 -2.0 -1.3 0.8 0.2 0.4 0.1 0.0 0.0 0.1 0.0 0.0 

IQRDIFF 0.0 -0.2 -0.5 1.0 0.0 0.0 -1.1 0.3 0.1 0.2 0.2 0.7 -0.1 -1.7 -2.2 -0.1 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

N
K

 c
e
lls

 

MAGPOP 3.8 2.6 1.6 0.0 0.0 0.0 0.5 0.8 0.0 0.6 0.0 0.0 4.3 0.0 0.0 1.1 0.1 0.0 0.8 0.0 0.0 0.0 0.0 0.0 

MAGREF 4.2 2.4 3.2 0.0 0.0 0.0 0.5 0.0 0.0 0.1 0.0 0.0 0.0 2.1 2.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

IQRPOP 0.7 0.9 0.9 0.5 0.5 0.5 2.4 1.6 0.5 0.9 0.5 0.5 0.8 0.5 0.5 1.3 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 

IQRREF 0.7 1.5 1.0 1.0 0.5 0.5 1.3 0.5 0.5 0.5 0.5 0.5 0.5 1.6 2.8 0.9 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

MEM -0.6 1.0 -2.3 1.2 0.0 0.0 0.6 0.1 0.0 0.1 0.0 0.0 5.2 -5.6 -9.6 0.3 0.5 0.0 0.4 0.0 0.0 0.0 0.0 0.0 

MAGDIFF-S -0.9 0.2 -3.3 0 0 0 0 1.6 0 1 0 0 9.1 -4.3 -5.3 1.1 0 0 1.7 0 0 0 0 0 

MAGDIFF -0.4 0.1 -1.6 0.0 0.0 0.0 0.0 0.8 0.0 0.5 0.0 0.0 4.3 -2.1 -2.5 0.5 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 

IQRDIFF 0.0 -0.6 -0.1 -0.5 0.0 0.0 1.1 1.1 0.0 0.4 0.0 0.0 0.3 -1.1 -2.3 0.4 -0.2 0.0 0.5 0.0 0.0 0.0 0.0 0.0 

* Rounded values are shown from raw calculations  

5-2 Supplementary Table 2. MEM equation components for PBMC subsets in Fig. 1 
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Supplementary Table 3. Order of marker 
exclusion for clustering and f-measure (high to 
low) 

MEM MAG MAGDIFF z-score K-S  

CD4 CD8a CD8a CD8 CD14 

CD16 CD45 CD16 CD33 IgM 

CD3 CD16 CD11c CD16 CD33 

CD8a CD44 HLA-DR CD11b CD19 

CD11c CD11c CD33 CD19 CD16 

HLA-DR HLA-DR CD4 CD14 CD61 

CD33 CD33 CD61 CD4 CD8 

CD61 CD4 CD14 CD11c CD11b 

CD14 CD61 CD19 IgM CD11c 

CD19 CD45RA CD11b CD61 CD4 

CD11b CD14 IgM HLADR CD123 

CD69 CD11b CD3 CD20 CD69 

CD44 CD19 CD20 CD69 CD20 

CD20 IgM CD69 CD3 HLADR 

IgM CD3 CD44 CD44 CD44 

CD38 CD20 CD56 CD56 CD56 

CD45RA CD69 CD38 CD123 CD3 

CD56 CD38 CD123 CD45RA CD25 

CD45 CD56 CD45 CD38 CD117 

CD34 CD123 CD45RA CD25 CD34 

CD10 CD34 CD34 CD117 CD45RA 

CD117 CD25 CD25 CD34 CD38 

CD123 CD10 CD10 CD45 CD45 

CD25 CD117 CD15 CD15 CD15 

CD15 CD15 CD117 CD10 CD10 

5-3 Supplementary Table 3. Order of marker exclusion for clustering and f-measure (high to low) 
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Supplementary Table 4. K-S and z-score values for immune cell populations in Fig. 1 
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H
L
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C
D

5
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K
-S

  

CD4+ T 1.8 1.2 3.3 9.7 4.1 3.8 2.7 2.2 1.8 2.0 2.0 0.1 2.3 3.8 2.5 3.7 1.3 3.4 3.2 1.7 3.6 6.7 1.2 3.7 3.6 

CD8+ T 1.0 1.2 1.3 6.2 10.0 6.5 3.5 1.1 1.0 1.4 1.0 0.7 1.5 2.3 1.2 8.3 0.1 1.9 2.8 3.3 2.1 4.1 0.8 2.0 0.3 

DC 0.8 0.7 4.5 4.0 3.1 1.5 0.3 3.1 5.8 2.6 1.8 0.2 4.7 4.8 2.8 1.8 0.6 3.4 1.8 0.9 2.1 6.7 0.9 7.8 0.8 

IgM- B 9.3 3.6 1.7 5.9 4.8 7.6 3.4 0.7 0.4 4.3 1.6 0.4 2.2 1.0 0.9 3.0 0.6 1.7 0.9 0.7 0.5 6.6 1.5 7.9 1.1 

IgM+ B 9.8 3.6 2.9 6.4 5.4 8.4 3.5 0.8 0.9 1.3 1.5 0.5 2.6 1.7 1.2 3.1 0.4 1.9 2.1 1.4 0.7 6.8 9.4 8.5 0.9 

Mono 0.9 0.5 9.8 4.9 3.0 2.5 1.2 9.2 5.6 1.0 0.8 1.5 9.9 9.4 9.7 2.7 1.4 1.7 6.6 4.2 2.5 7.3 0.6 8.2 1.8 

NK 1.8 1.4 3.6 6.6 1.9 2.0 1.6 1.1 0.9 1.5 3.2 0.6 1.3 4.7 1.1 1.0 1.8 9.8 7.3 2.7 2.8 7.7 2.0 3.2 6.1 

z
-s

c
o
re

 

CD4+ T -0.6 -0.3 -0.9 4.6 -0.7 -1.0 -0.6 -0.6 -0.5 -0.8 0.6 0.0 -0.7 -1.0 -0.7 -1.0 -0.3 -0.9 0.7 -0.4 1.6 1.9 -0.4 -0.9 -0.9 

CD8+ T -0.3 0.3 -0.1 -1.5 5.6 1.4 0.7 -0.4 -0.3 0.4 -0.2 -0.2 -0.5 -0.7 -0.5 4.2 0.0 -0.4 -0.4 -1.0 -0.5 0.9 -0.3 -0.5 0.1 

DC -0.1 -0.2 -0.9 -0.6 -0.8 -0.2 0.1 0.7 4.4 0.6 -0.4 0.0 1.1 1.9 0.2 -0.5 0.1 1.0 0.4 0.3 -0.5 -1.7 0.2 2.3 0.0 

IgM- B 4.4 1.2 -0.5 -1.6 -1.0 3.1 1.2 -0.2 0.0 1.2 0.4 0.1 0.0 -0.3 -0.3 -0.7 -0.1 -0.6 0.2 0.3 0.0 -1.6 -0.3 2.6 -0.3 

IgM+ B 7.6 1.4 -0.7 -1.7 -1.1 3.9 1.2 -0.3 0.1 0.5 0.5 0.2 0.0 -0.5 -0.4 -0.8 -0.1 -0.6 -0.3 0.4 -0.2 -1.7 9.9 3.8 -0.2 

Mono -0.3 0.1 5.1 -0.3 -0.8 -0.7 0.3 6.2 1.9 0.0 -0.2 0.5 8.7 5.1 10.0 0.1 0.4 -0.4 1.8 1.1 -0.6 -1.9 -0.3 2.3 0.0 

NK -0.4 -0.1 0.5 -1.9 -0.2 -0.6 -0.4 -0.4 -0.3 0.3 -1.0 -0.1 -0.5 0.8 -0.2 -0.2 0.5 7.4 -2.8 0.9 -0.7 -2.2 -0.5 -0.8 2.5 

Each population (POP) was compared to all non-population cells (REF). K-S statistic was calculated as a comparison between 
POP and REF distributions for each protein. Z-score was calculated as the number of standard deviations the POP mean was 
from the REF mean. K-S and z-score were signed and scaled to -10 to +10 as for MEM values. 

5-4 Supplementary Table 4. K-S and z-score values for immune cell populations in Fig. 1 
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Supplementary Table 5. Full antibody panels for immune cell datasets in Fig. 2 

Dataset Panel 

Nicholas KJ et al.(Nicholas, 
Greenplate et al. 2016) 

HLADR, CD8, CD25, CD38, CD4, CD3, CD62L, CD69 

Nicholas KJ et al.(Nicholas, 
Greenplate et al. 2016) 

HLADR, CD19, CD27, CD38, CD86, CD20 

Greenplate AR§ 

ICOS, CD19, TIM3, CCR5, CD4, CD64, CD20, CD38, CCR4, CD43, CD14, 
TCRγδ, CD45RA, CD45, CXCR3, CD33, CCR7, CD28, CD32, CD69, HLADR, 
CD45RO, CD16, CD44, CD27, CD8, CD2, CD3, CXCR5, CD57, PD1, PDL1, 
CD56 

Ferrell et al.(Ferrell, 
Diggins et al. 2016) 

CD235a, CD19, CD117, CD11b, CD4, CD64, CD7 , CD34, CD61, CD123, CD13, 
CD62L, CD45, CD183, CD33, CD11c, CD14, CD15, CD16, CD24, CD38, CD25, 
CD3, CD185, HLA-DR, CD184, CD56 

Leelatian et al.(Leelatian, 
Diggins et al. 2015) 

CD19, CD117, CD11b, CD4, CD8a, CD20, CD34, CD61, CD123, CD45RA, 
CD45, CD10, CD33, CD11c, CD14, CD69, CD15, CD16, CD44, CD38, CD25, 
CD3, IgM, HLADR, CD56 

Bendall et al.(Bendall, 
Simonds et al. 2011) 

CD45, CD45RA, CD235ab, CD19, CD11b, CD4, CD8, CD34, CD161, CD20, 
CD41, CD11c, CD123, IgM, CD10, CD33, CD14, CD38, CD15, CD16, CD44, 
CD7, CD13, CD56, CD61, CD117, CD47, HLADR, CD90, CXCR4, CD3 

Polikowsky et 
al.(Polikowsky, Wogsland 
et al. 2015) 

CD19, CD5, IgG, CD4, IgD, CD20, CD16, Igλ, CD45, CD27, CD86, CD33, CD22, 
Igκ, CD79B, CD40, CD44, CD38, CD8, CD3, IgM, HLADR, SHP1, CD56 

Amir et al.(Amir el, Davis et 
al. 2013) 

CD45, CD3, CD45RA, CD19, CD11b, CD4, CD8, CD34, CD20, Ki67, CD33, 
CD123, IκBα, CD38, CD90 

HSC REF:  
Amir et al.(Amir el, Davis et 
al. 2013)  
& Ferrell et al.(Ferrell, 
Diggins et al. 2016) 

CD45, CD45RA, CD235ab, CD19, CD11b, CD4, CD8, CD34, CD161, CD20, 
CD41, CD11c, CD123, IgM, CD10, CD33, CD14, CD38, CD15, CD16, CD44, 
CD7, CD13, CD56, CD61, CD117, CD47, HLADR, CD90, CXCR4 

Note: MEM comparisons were made using all markers in common between each dataset and the HSCs (combined from 
Amir et al. and Ferrell et al. datasets). Pairwise RMSD comparisons of MEM scores were made using all markers in common 
between the pairs of datasets. §Unpublished data from AR Greenplate, prepared as in Leelatian et al.(Leelatian, Diggins et 
al. 2015) 

5-5 Supplementary Table 5. Full antibody panels for immune cell datasets in Fig. 2 
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APPENDIX F :  ALLERGY RESEARCH IN COLLABORATION WITH UVA 

 

Full Title: High-Dimensional Single-Cell Monitoring of Circulating Cells in Allergic 

Asthmatics Infected with Rhinovirus Reveals Dynamic Flux in Diverse Immune Cells   

(Muehling, Wogsland et al. 2015) 

Lyndsey Muehling*, Cara E. Wogsland*, Rachana Agrawal, Peter W. Heyman, Jonathan M. Irish, Judith A. 

Woodfolk 

* Equal contributions 

 

My Contributions 

I hosted Lyndsey Muehling at Vanderbilt University for two weeks during which 

time the mass cytometry data for the following abstract was collected. Prior to her visit, 

we collaborated to design a T cell allergy focused panel. During her visit I instructed and 

assisted with the conjugation of metal tagged antibodies, titration of the conjugated 

antibodies, use of the CyTOF1, and use of Cytobank software to analyze mass cytometry 

data and how to interpret the data. I introduced her to data analysis with viSNE and how 

useful a tool it is when comparing different sample types. 

We used viSNE to compare lymphocyte changes in the peripheral blood of patients 

with allergic asthma over the course of infection. The Woodfolk group at UVA has a rare 

setup where human subjects are infected with the common cold and monitored during the 

course of infection. Using mass cytometry was an ideal way to look at many cell types 

simultaneously. The data collected shed light on T cell populations that are lost from the 

periphery over the course of infection and thought to be sequestered and those that 

expanded after infection. 
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Abstract 

Rationale: Infection with rhinovirus (RV) exacerbates allergic asthma. The immune 

mechanisms remain poorly understood, in part owing to practical and technical limitations. 

Using mass cytometry, we applied a systems biology approach to identify novel 

transitions in circulating cells during an experimental RV infection in allergic asthmatics. 

 

Methods: Allergic asthmatics were challenged intranasally with RV-16. Peripheral blood 

mononuclear cells (PBMCs) were collected immediately before inoculation, and then at 

days 4 and 21 post-inoculation. Mass cytometry was performed using a 35-parameter 

phenotyping panel, and data analysis was performed using viSNE. 

 

Results: At each time point, viSNE created visual maps of phenotypically similar cell 

types, including CD4+, CD8+, and γδ T-cell populations, as well as B-cells. During the 

acute phase, loss of cells expressing the Th1 transcription factor T-bet, was observed, 

suggesting egress from the periphery. These T-bet+ populations included memory B-cells 

and memory CD4+ T-cells with lung-homing potential (CCR5+). Further inspection of the 

data revealed complete loss of memory CCR5+CD4+T-cells that co-expressed the Th2 

marker CCR4. These cells re-emerged and were expanded at day 21, along with both 

CCR4+CD8+ and γδ T-cells. 

Conclusions: For the first time, we have used mass cytometry to identify dynamic 

fluctuations in complex cell populations in asthmatics infected with RV. Sequestration of 

diverse immune cell types during the acute phase, including both Th1- and Th2-like cells, 

coupled with expansion of both CD4+ and non-CD4+ T-cell types several weeks after 
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infection, were notable findings. These novel observations provide new insight into the 

immunopathogenesis of RV-induced asthma. 
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