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CHAPTER 1 

 

Introduction 

In the medical domain, the rapid growth in the use of electronic health records (EHR) has made a 

large amount of electronic textual data available for clinical research. It drives the development 

of new technologies, such as natural language processing (NLP) and machine learning (ML), to 

unlock important information from clinical text for further analyses. However, statistical NLP 

systems often require large numbers of annotated samples in order to build high performance ML 

models. Building large-scale, high-quality corpora is very time consuming and costly in the 

medical domain, because it often requires manual annotation by domain experts. Therefore, 

methods that can help build high-performance ML models but require fewer annotations are 

highly desirable in clinical NLP research.     

Active learning (AL), which selects the most informative samples for annotation (as opposed to 

using random sampling) to iteratively build ML models, could be one of the solutions for 

addressing the above challenge. AL has been widely studied in the open domain, as well as 

biomedical NLP tasks, such as assertion classification for clinical concepts [1], word sense 

disambiguation in biomedical literature [2], and phenotyping from electronic health records [3]. 

Despite the fact that these studies demonstrated the potential of AL for achieving high-quality 

ML models with reduced annotation cost, all these studies were conducted in a simulated 

environment, which assumes that annotation cost for each sample is identical. In reality, 

however, annotation cost (i.e. the time required by an annotator) can be very different from one 

sample to another and from one user to another user.  
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This dissertation research aims to develop novel AL algorithms and practical AL systems for the 

clinical named entity recognition (NER) task. NER is a fundamental task for many NLP 

applications. But there is no AL research on NER in the medical domain. We systematically 

investigated AL for clinical NER and our work consists of three major parts: 1) we conducted a 

simulation study, using existing annotated datasets, to evaluate existing and new AL algorithms 

for clinical NER (Chapter 2); 2) we developed an AL-enabled annotation system for clinical 

NER and conducted a user study to assess the benefit of AL (vs. random sampling) in real-time 

annotation for building NER models (Chapter 3); and 3) based on results from 2), we further 

refined our AL algorithms by developing more sophisticated annotation time models and 

evaluated them using both simulation and user studies (Chapter 4). Our final AL enabled NER 

system showed better performance than random sampling in the real-world annotation task, 

demonstrating the potential of AL in clinical NER. 

This chapter provides a literature review. We start with NLP and ML-based NER in the medical 

domain and then introduce relevant aspects of AL for text processing in both open domains and 

the biomedical domain, including three of our previous studies of AL on other biomedical text 

processing tasks.    

 

1.1 Natural language processing in the medical domain 

NLP converts free text into structured forms to support computational applications. In the open 

domain, many NLP technologies benefit people’s daily lives. For example, web search engines 

(i.e. Google, Bing, Baidu, etc)[4-6] are currently the most valuable information resources.  Using 

a very simple interface, users type a phrase and get instant returns of the links with the 
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information they want the most. Apple Siri, an intelligent personal assistant and knowledge 

navigator, uses a natural language user interface to understand the user’s audio question, answer 

questions, make recommendations, and request information from the internet for the user [7]. 

IBM’s Watson [8] won the Jeopardy! Challenge in 2011 against two of the best human 

opponents in Jeopardy by applying the technology of automatic question answering in the 

general domain.  

In the medical domain, the rapid growth in the use of clinical notes in EHRs is a strong incentive 

for the development of clinical NLP [9]. With the large amount of structured knowledge 

extracted from the narrative using NLP, many clinical studies have been enhanced, for example 

disease phenotypes and patient cohort identification [10, 11], decision support [5], and drug 

repurposing [12]. Identification of clinical concepts or clinical NER is an important task to build 

clinical NLP systems. For example, much work has been done to extract clinically important 

entities from clinical text, such as diseases, medications, procedures, and laboratory tests [13-

15]. 

Some existing clinical NLP systems, including MedLEE [16, 17], MetaMap [18], cTAKES [19], 

and KnowledgeMap [20],  not only extract various types of clinical entities, but also map them to 

concepts in the controlled vocabularies the Unified Medical Language System (UMLS) [21]. 

MedLEE, developed by Friedman et al. in the 1990s at Columbia University, is mainly a 

semantic rule-based system. It was initially designed to extract clinical attributes from 

radiological reports [22], and then extended to mammography [23], discharge summaries [24, 

25] and pathology [26]. MetaMap was developed initially for biomedical literature mining and 

has recently also been used for clinical note processing. cTAKES, a comprehensive clinical NLP 

system, combines both rule-based and machine learning techniques under the IBM UIMA 
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framework. The KnowledgeMap, developed by Denny et al. [27, 28] at Vanderbilt University, is 

another clinical NLP system built to extract clinical concepts with their section headers (by 

SecTag [29]) and negation status (by NegEx [30]) in documents and map them to UMLS concept 

unique identifiers. In addition, researchers have also developed various tools for clinical NLP 

tasks for negation detection [30, 31], medication extraction, [32, 33] and temporal expressions 

[34, 35] in clinical text.  

 

1.2 Machine learning-based named entity recognition in clinical text 

NER is a fundamental task for information extraction, which is often used to locate phrases in 

clinical text and classify them into pre-defined categories of medical concepts, for example 

medical problem, treatment, and lab test. Many of the clinical NLP systems perform reasonably 

well at this task by utilizing symbolic NLP or rule-based approaches.  

Recent studies have shown that ML-based models, which are trained on annotated datasets, have 

the potential to achieve better performance in clinical NER tasks. Patrick et al. [36] developed a 

machine learning model to extract medication-related entities. His system achieved an F-measure 

of 85.65% for the evaluation of exact match medication entry, which was superior to the other 

participants in the 2009 i2b2 NLP challenge. Both Brujin et al. [37] and Jiang et al. [38] 

systematically investigated ML-based approaches for recognizing broader types of clinical 

entities and presented their promising results of 85.23% and 83.91% in F-measure, respectively, 

as the top two teams in the clinical concept extraction task in the 2010 i2b2 NLP/VA challenge.  

Conditional random field (CRF) [39]  and support vector machine (SVM) are the most widely 
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used ML models in NER tasks.  Both build the most effective clinical concept extraction systems 

[14]. The structural SVM (SSVM) [40, 41] is another NER algorithm that merges the advantages 

of both CRF and SVM for solving the sequence-labeling problems. Recent studies demonstrated 

that SSVM performed slightly better in recognizing clinical entities from discharge summaries 

[42-44]. 

The ML-based NER uses a classification algorithm (e.g. CRF, SVM, or SSVM) to sequentially 

label a sentence. The labels of the individual words or tokens in the sentence are commonly 

represented in the “BIO” format, where “B” represents the label for the beginning of an entity, “I” 

the inside of the entity, and “O” for outside of the entity. Figure 1 shows an example of “BIO” 

representation of problem, treatment, and lab test entities for each word/token in a sentence.  

 

 
Figure 1. An example of "BIO" representation of problem, treatment, and lab test entities for 
each word/token in a sentence 

 

The training of the ML-based NER model extracts the pattern representing the relationship 

between the sequential words with their features and their labels. Therefore, the features are 

extremely important in determining the quality of the NER model. A variety of features extracted 

from the raw text data were systematically studied for the improvement of the NER model [38]. 

They include bag of words, prefix and suffix, syntactic features (e.g. part-of-speech tags), and 

semantic features (e.g. semantic classes in UMLS). In addition, unsupervised analysis for word 

representation, such as brown clustering [42, 43], has also shown improvement for the clinical 
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NER task. [37] 

 

1.3 Active learning 

ML-based approaches, however, often require large annotated corpora, which are time-

consuming to build due to the manual effort required for the task. In the clinical domain, 

clinicians (e.g. physicians or nurses) are required to conduct the annotation task, thus the cost of 

annotation could be very high. In the general English domain, pool-based AL strategies [45] 

have benefited many NLP tasks which require annotation from a large pool of unlabeled data to 

construct the supervised ML model. Examples include word sense disambiguation [46], text 

classification [47], and information extraction [48].  

In recent years, several studies have also applied AL to text processing tasks in the clinical 

domain. Figueroa et al. [49] validated AL algorithms as a way to reduce the size of training sets 

to yield expected performance in medical text classification tasks on five datasets. We also 

developed and evaluated AL paradigm on multiple biomedical NLP tasks, such as assertion 

classification of concepts in clinical text [1], supervised word sense disambiguation in 

MEDLINE [2], and high-throughput phenotyping tasks for EHR data [3]. The conclusion shared 

by these studies is that AL could reduce annotation cost while improving the quality of the 

classification model, as compared to the passive learning approach (random sampling). 
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1.3.1 Pool-based active learning framework 

The pool-based AL approach to classification [45] is practical for many real-world learning 

problem domains, including medicine. The learner can access a large quantity of unlabeled data 

as a pool with low cost, iteratively select samples from the pool, and request their true labels. An 

AL system mainly consists of a classification model and an active sample selection or a querying 

algorithm. The classification model is built by traditional supervised machine learning 

algorithms. The model is trained by using the labeled instances (training set) and is then applied 

to the new unlabeled instances (test set) to predict class labels. The second core component of 

AL is the querying method. In general, there are two types of learners: active learner and passive 

learner. The passive learner just uses a random sampling method, which queries the labels of 

instances randomly selected from the pool of unlabeled samples, without considering the 

information about samples in the pool. The active learner, on the other hand, will select the 

instances that are the most promising in improving the predictive performance of the model.  

An AL protocol is often used for a given dataset and a querying algorithm:  

(1) Generate an initial labeled set L = L0, unlabeled set (the pool) U =U0, and a test set T.  

(2) Train a predictive model based on L and infer the class label for each sample in U and T. 

(3) Score the samples in U based on the querying algorithm and label the top b(i) samples in U, 

where b(i), the batch size of AL, is the number of querying samples at iteration i.  

(4) Add the b(i) sample(s) with label(s) to L and remove from U.  

(5) Iterate steps (2) to (4) until the stop criterion is met.  

(6) Finally, report the classification performance (e.g. AUC, Accuracy, or F-measure) for the 

prediction of T at each iteration i, generate the learning curve that plots the classification 
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performance as a function of annotation cost (e.g. number of training samples or annotation time 

at each iteration i), and compute the global score based on the learning curve. 

 

1.3.2 Active learning methods  

The main issue for the active learner is how to find the good queries from the pool for better 

classification performance. Many variations of the AL (querying) algorithms exist, which can be 

classified into six main types: uncertainty sampling [50], query-by-committee (QBC) [51], 

expected gradient length (EGL) [52], Fisher information [53], estimated error reduction (EER) 

[54] and information density [48].  

The uncertainty sampling is the simplest and most commonly used query algorithm. The active 

learner using an uncertainty sampling algorithm tends to query the samples which are least 

certain about their labels. The QBC algorithm tends to select the samples that generate the most 

disagreement from a committee of models. The models in the committee are all trained on the 

same labeled set but represent different hypotheses. The level of disagreement can be computed 

based on different voting strategies, such as vote entropy [55] and Kullback-Leibler (KL) 

divergence [56]. The EGL algorithm tends to select the samples that would have produced the 

greatest change to the current model if their labels were known. The EER algorithm is similar to 

EGL, in that it tends to query the samples that maximally reduce the generalization error of 

model. The Fisher information algorithm tends to select the samples, which could indirectly 

reduce the generalization error by minimizing the output variance. It is equivalent to selecting 

the sample that could maximize its Fisher information. The information density algorithm tends 

to query the most representative samples based on the similarity function. It can sometimes be 
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combined with the uncertainty sampling algorithm to select the most informative samples that 

are not only uncertain, but also the most representative of the data (e.g. centers of dense regions 

of data). Detailed information about these algorithms can be found in an AL literature survey 

[57].  

Some of the algorithms are computationally expensive and not practical, such as expected 

gradient length, Fisher information, and estimated error reduction. QBC is sensitive to the type 

of classification models selected and also computationally expensive when the number of 

committees is high and each of the committee is expensive to build. In this study, we mainly 

focused on uncertainty sampling and diversity sampling (similar to information density), which 

are more straightforward to implement and fast to compute. In the following sections, we review 

our previous studies of applying AL to biomedical text processing.  

 

1.3.3 Simulated active learning studies 

The majority of the AL studies were based on simulation. They used the pre-annotated dataset, 

which was split into two sets: 1) a pool of samples to be queried and 2) the evaluation set. The 

labels of the data in the pool were considered unknown at the beginning of the AL process. 

When a querying algorithm selected the samples from the pool, their labels were unlocked and 

the selected samples were added to the training set. In addition, the batch size was pre-set and the 

AL process stopped when all samples in the pool were queried.  

Simulated studies often assume that the cost of training a model is equal to the number of 

samples in the training set. Some studies assume that the annotation cost per sample is not the 



	
   10	
  

same but a known number (e.g. annotation cost for a sentence is the same for sentences with the 

same length). 

Method assessment in the simulated AL studies is based on a learning curve, which plots the 

classification performance (e.g. area under the ROC curve score (AUC), accuracy, or F-measure) 

computed on the evaluation set, as a function of the size of the training set or other types of cost. 

The area under the learning curve (ALC) score, which was the main evaluation metric in the AL 

challenge in 2010 [58], is computed as a global score for each querying method. The ALC score 

is computed based on the following function: 

ALCALC score
max

Arand
A Arand

−
=

−
 

where Amax is the area under the best achievable learning curve (e.g. 1.00 AUC on all points of 

the learning curve) and Arand is the area under the learning curve obtained by random prediction 

(e.g. 0.50 AUC on all points of the learning curve). The learning curve of two neighbor points is 

interpolated linearly. 

 

1.3.4 Active learning in practice 

Few prior studies have applied AL to real world tasks in the medical domain and evaluated its 

performance. In the open domain, researchers have built tools with AL implementations to 

support different real-world text processing tasks. Relevant studies are described below. 

DUALIST [59] is an AL annotation interface that queries and learns from annotations on both 

features and instances for the classification tasks, such as text word sense disambiguation, twitter 
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filtering and sentiment analysis. The authors used DUALIST as an example to transform AL to 

the concept of interAL. In the interAL, a machine can ask questions to obtain information 

regarding not only the label of instance but also features and utilize the answers from the human 

users to train a classifier faster. The learning engine is based on the multinomial naïve Bayes, a 

generative model that can learn from the labels of both the feature and the instance. In addition, 

DUALIST also implements the Expectation-Maximization (EM) algorithm and semi-supervised 

learning to exploit the unlabeled data, which could be labeled by the machine and used as the 

labeled data with zero human effort. 

This study also includes user experiments, where human annotators use DUALIST to label 

features and sentences as part of the loop in the AL process. The user study compares AL, 

interAL, and passive learning in three classification tasks with five users. The results show that 

interAL generated better learning curves than random sampling did for most of the users. 

Moreover, features annotations took less time than instance annotations. However, how the 

annotated features contributed to the classifier training compared to the annotated instances was 

unknown. Their annotation data shows that users annotated instances more accurately in the case 

of AL. Users also skipped more instances in interAL and AL than passive learning, indicating 

that the interactive and active queries could be more ambiguous. 

The classification tasks studied in this paper were fairly simple as the actively-trained classifiers 

were able to reach 90% accuracy after only a few minutes of annotation effort. The study only 

reported the average annotation time per instance, but its variance is unknown. The difference of 

annotation time between instances in this study is not large.  How AL would perform in a harder 

task (e.g. clinical NER) when the annotation time per instance is large is also unknown. 
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In 2008, Settles et al. [60] reported a detailed empirical study of AL with real annotation costs in 

four real-world domains. In some domains, the annotation cost is known or fixed per sample. 

This paper studied how AL performed in the domain where annotation cost was unknown in 

advance.   

They conducted user study and simulation experiments over five tasks, including NER and 

relation extraction in a News corpus, multiple-instance labeling in images, subjectivity handling 

in speculative text corpus, and contact extraction from an email corpus. The annotation data was 

collected and the distribution of annotation time per instance over multiple annotators was 

analyzed. The most interesting questions discussed in this paper are “Can annotation time be 

accurately predicted?” and “Can we improve AL by utilizing cost information?”  

For the first question, they evaluated several regression cost models that achieved reasonable 

results over different tasks (with correlations ranging from 0.29 to 0.85). For the second 

question, they tested a cost-sensitive AL approach with a simple querying heuristic that divides 

the utility measure (e.g. entropy-based uncertainty sampling) by the predicted cost of the 

instances. They found that AL methods without cost information performed no better than 

random sampling. However, in some instances, the learning curves could be improved if the 

annotation cost variables during the AL were taken into account. They did an additional 

experiment using the true annotation cost in the AL and obtained the best performance in most of 

the tasks. Moreover, when the actual annotation cost shows considerable variation, an accurate 

annotation cost model is more helpful for AL. However, further investigation is required. 

In the same year, Haertel et al. [61] also presented a practical cost-conscious AL approach based 

on return on investment (ROI).  They evaluated the ROI based-AL on a part-of-speech tagging 
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task and showed that ROI reduces up to 73% in annotation hours over random sampling. 

However, they used a fixed heuristic cost model only. The performance with a different cost 

model and/or human annotator is unknown.  

Baldridge and Palmer [62] conducted an interesting AL experiment with one expert and one 

novice annotators for morpheme annotation in a rare language documentation task. They found 

that the expert annotator was more efficient with an uncertainty-based active learner, but semi-

automated annotations were of little help. On the other hand, the novice annotator was more 

efficient with a passive learner based on random sampling, but semi-automated annotations were 

beneficial.  

 

1.4 Active learning in biomedical text processing 

Recently, several studies have applied AL to biomedical text processing tasks. We review the 

relevant studies in the following paragraphs. 

Figueroa et al [63] applied AL to two clinical text classification tasks, such as smoking status 

and depression status extraction, and one non-clinical classification task using SVM as a 

classifier. They implemented distance-based (DIST), diversity-based (DIV), and a combination 

of both AL algorithms (CMB), and compared the performance with passive learning.  Their 

results showed that DIST and CMB algorithms performed significantly better than passive 

learning. They also suggested that DIV is more suitable on data with higher diversity and DIST 

on data with lower uncertainty.  
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Miller et al [64] explored various AL methods for clinical coreference resolution that fit more 

realistically into the coreference annotation workflows. This paper indicated that the traditional 

AL approach may not be feasible for this task since coreference annotations require contextual 

information. Their work showed that instance selection worked well for coreference resolution, 

introduced several metrics for document selection, and proposed a hybrid selection approach that 

preserves the benefits of instance selection while offering the potential of being applicable to real 

annotation. 

Wallace et al [65] studied an application of AL to the problem of biomedical citation screening 

for systematic reviews at the Tufts Evidence-based Practice Center. They proposed a novel AL 

strategy that exploited a priori domain knowledge provided by the expert (specifically labeled 

features) and extended this model via a Linear Programming algorithm for situations where the 

expert can provide ranked labeled features. Uncertainty sampling with SVM performed better 

than random sampling when using accuracy as a model evaluation metric; however, it was not 

true for evaluating recall of the model, which is important for citation screening. This was due to 

the imbalanced class and the hasty generalization problem. The result showed that using prior 

knowledge could positively guide AL.  

In addition, our group has carried out studies of AL on clinical and biomedical NLP tasks that 

have been published. Detailed descriptions of each study are provided below: 
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1.4.1 Applying active learning to assertion classification in clinical text 

The first paper [1] presented one of the earliest applications of AL to clinical text processing. 

Specifically, we developed new AL algorithms and applied them to the assertion classification 

task for concepts in clinical text.  

We used the manually annotated training set for concept assertion classification provided by the 

2010 i2b2/VA NLP challenge [14]. The assertion classification task was to assign one of the six 

labels (“absent”, “associated with someone else”, “conditional”, “hypothetical”, “possible”, and 

“present”) to medical problems identified from clinical documents. We converted the multi-class 

assertion classification task into a binary classification problem, by considering “present” to be 

the positive class and all others as the negative class. We implemented several existing and 

newly developed AL algorithms, such as least confidence (LC), least confidence with bias 

(LCB), least confidence with dynamic bias (LCB2), and the novel model change sampling 

algorithms (LCMC, LCBMC, LCB2MC). Their uses were assessed with other methods, such as 

information density and baseline random sampling. 

Results showed that when the same number of annotated samples were used, AL strategies could 

generate better classification models (best ALC – 0.7715 by LCBMC) than the passive learning 

method (random sampling) (ALC – 0.7411). Moreover, to achieve the same classification 

performance, AL strategies required fewer samples than the random sampling method. For 

example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our 

best AL algorithm (LCBMC) required only 12 samples, a reduction of 62.5% in the manual 

annotation effort. This study demonstrated that AL technologies can be effectively applied to 

clinical text classification tasks, improving performance and reducing annotation effort. New 
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querying methods developed here also showed good performance on the concept assertion 

classification task. 

 

1.4.2 Applying active learning to supervised word sense disambiguation in MEDLINE 

This was the first study to explore the use of AL in supervised WSD tasks in the biomedical 

domain [2]. In this study, we developed Support Vector Machines (SVM) classifiers to 

disambiguate 197 ambiguous words and abbreviations in an existing benchmark dataset, MSH 

WSD collection, derived from MEDLINE abstracts. Three different uncertainty sampling-based 

AL algorithms (LC, Margin, and Entropy) were implemented with the SVM classifiers and were 

compared with a passive learner based on random sampling. For each ambiguous term and each 

learning algorithm, an average learning curve was generated to plot the accuracy computed from 

the test set as a function of the number of annotated samples used in the model via a 10-fold 

cross-validation.  

Our experiments showed that active learners significantly outperformed the passive learner, 

showing better performance for 177 out of 197 (89.8%) WSD tasks.  However, there was no 

significant difference among three active learners for words with more than two senses. Further 

analysis showed that to achieve an average accuracy of 90%, the passive learner needed 38 

samples, while the active learners needed only 24 annotated samples, a 37% reduction of 

annotation effort. Moreover, we analyzed cases where AL algorithms did not achieve superior 

performance and discovered three causes: (1) poor model in early learning stage; (2) easy WSD 

cases; and (3) difficult WSD cases, which provide useful insight for future improvements. This 
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study demonstrated that integrating AL strategies with supervised WSD methods could 

effectively reduce annotation cost and improve the disambiguation models.  

 

1.4.3 Applying active learning to high-throughput phenotyping in electronic health record 

data 

This paper investigated the use of AL in ML-based phenotyping algorithms [3]. Generalizable, 

high-throughput phenotyping methods based on supervised ML algorithms could significantly 

accelerate use of EHR data for clinical and translational research. However, they often require 

large numbers of annotated samples, which are costly and time-consuming to produce.  

We integrated an uncertainty sampling AL approach with SVM-based phenotyping algorithms 

and evaluated its performance using three annotated disease cohorts including rheumatoid 

arthritis (RA), colorectal cancer (CRC), and venous thromboembolism (VTE). We investigated 

performance using two types of feature sets for each phenotype: 1) unrefined features, which 

contained all the clinical concepts extracted from the notes and billing codes; and 2) a smaller set 

of refined features selected by the domain experts. The performance of the AL-based approach 

was compared with a passive learning approach based on random sampling using area under the 

learning curve.  

Our evaluation showed that AL outperformed passive learning on all three phenotyping tasks. 

When unrefined features were used in the RA and CRC phenotyping tasks, AL reduced the 

number of annotated samples required to achieve an area under curve score (AUC) of 0.95 by 

68% and 23%, respectively. AL also reduced the number of samples needed to achieve optimal 

performance for VTE by 68% when using refined features; however, VTE algorithms only 
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achieved an AUC of 0.70. As expected, refined features improved the performance of 

phenotyping classifiers and required fewer annotated samples. This study demonstrated that AL 

can be useful in ML-based phenotyping methods. Moreover, AL and feature engineering based 

on domain knowledge could be combined to develop efficient and generalizable phenotyping 

methods. 

 

1.5 Summary 

In this chapter, we reviewed relevant literature about AL in biomedical text processing. AL has 

received increasing attention in the medical domain as a potential solution to address the 

bottleneck of annotation cost for statistical NLP methods. However, none of the previous studies 

investigated AL for clinical NER, an important step for many clinical NLP applications. 

Moreover, none of the studies evaluated the use of AL in real-world annotation processes. 

Therefore, it is critical to conduct systematic studies to assess all these aspects, in order to 

demonstrate and propose practical AL solutions for building NER systems.    
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CHAPTER 2 

 

A Simulation Study of Active Learning Methods for Named Entity Recognition in Clinical 

Text 

2.1 Introduction 

The goal of AL for NER would be to select informative sentences from the pool and hopefully 

save annotation cost. In the literature, some AL studies particularly focused on NER tasks and 

provided insightful information for approach design. An AL study by Kim et al. [66] presented a 

new AL paradigm for NER that considered both uncertainty of the classifier and the diversity of 

the corpus. For uncertainty sampling, they implemented N-best sequence entropy, which was 

computed based on N the most likely label sequences for the unlabeled samples. For diversity 

sampling, they considered three levels of information, including NP chunk, Part-of-Speech tag, 

and the word itself, to compute the similarity between sentences. The combined performance 

was better than random sampling. However, their diversity-based method alone did not 

outperform random sampling. Settles and Craven [67] conducted a large-scale empirical study of 

AL for NER by evaluating seventeen methods in six corpora. They used random sampling and 

long sentence sampling methods as the two baselines, and multiple AL methods, including six 

uncertainty-sampling approaches, six query-by-committee methods, and other methods such as 

information density, Fisher information, and expected gradient length. Most of the AL 

algorithms performed better than baselines, indicating the promise of AL in NER. One limitation 

of these existing studies is that they are simulated studies that assumed that the annotation cost 

for each sentence was the same.  In reality, however, annotation cost could be different from one 



	
   20	
  

sentence to another. Informative sentences selected by AL algorithms (using uncertainty 

sampling for example) could require more annotation time just because they are longer 

sentences. There have been mixed results for doing cost-sensitive AL in the literature	
   to tackle 

realistic annotation costs [68-70]. 

Nevertheless, all the above studies of AL in NER were from open domains and to the best of our 

knowledge, there is no AL on clinical NER tasks. In this study, we conducted simulated AL 

experiments using an existing clinical NER corpus with annotated medical problems, treatments, 

and lab tests in clinical notes. We assessed six existing AL algorithms and developed seven 

novel AL algorithms for the clinical NER task. In addition to the traditional assumption of same 

annotation cost per sentence, we also evaluated our methods based on the assumption of same 

annotation cost per word, which is closer to the real world scenario. The results of our study 

showed that multiple AL algorithms outperformed passive learning using both evaluations.  

 

2.2 Methods 

2.2.1 Dataset 

In this study, we used the annotated training corpus from the 2010 i2b2/VA NLP challenge, 

which contains 349 clinical documents with 20,423 unique sentences. Three types of medical 

entities: problem, treatment, and test, were annotated in each sentence. Table 1 shows the 

descriptive statistics of the corpus. The dataset is divided into two pieces: 1) the pool of data to 

be queried and 2) the independent test set for evaluation. As we used 5-fold cross validation in 

the experiment, each pool contains 80% of the data randomly selected from the original dataset 

while the independent test set has the remaining 20% of the sentences. 
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Table 1. Distribution of words and different types of entities in the corpus of 20,423 unique 
sentences 

 Overall count Mean of count per 
sentence 

SD of count per 
sentence 

Word 225,670 11.05 9.73 

Entity 26,206 1.28 1.65 

Problem entity 11,192 0.55 1.03 

Treatment entity 8,099 0.40 0.91 

Test entity 6,915 0.34 1.02 
 

 

2.2.2 Active learning experimental framework 

In this study, we simulated the practical pool-based AL framework. Although all sentences in our 

corpus were pre-annotated, we did not utilize their labels unless the querying algorithms selected 

them. The following is the framework we used in the experiments: 

(1) Initial model generation: At the beginning, a small number of samples are queried for 

annotation to build the initial model. Instead of using random selection, we picked the 8 longest 

sentences for their entity labels to train the model. The main reason for using this strategy is that 

selecting the longest sentences could most likely avoid a zero-entity scenario and generate a 

better initial model or a starting point in the learning curve. Please note that all different methods 

used the same set of initial samples to ensure a fair comparison.  

(2) Querying: The unannotated sentences were then ranked based on the querying algorithm. 

Some algorithms require the updated CRF model for ranking (e.g. uncertainty sampling) while 

some do not (e.g. all diversity based algorithms). The top ranked sentences were selected for 
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annotation, and then added to the annotated set. In our experiment, the batch sizes (the size of top 

ranked sentences selected for annotation) of each iteration were 8, 16, 32, 64, 128, …, 2^(i+2), 

where i is the number of iterations. This is one of the standard ways to select the batch size for 

AL experiments and has been used in an AL challenge [71]. 

(3) Training: The CRF model was retrained on the updated annotated set.   

(4) Iteration: Steps (2) and (3) were repeated until the stop criterion was met (e.g. the limit of 

annotation cost was reached.). 

Multiple measurements were stored during the AL process for evaluation, such as model quality 

in F-measure, number of words in the annotated set, and number of entities in the annotated set. 

As shown above, querying algorithms are critical for an AL system. The following sections 

discuss three types of querying algorithms that we investigated in our experiments. Some 

algorithms were developed by previous studies and some algorithms are newly developed in this 

study (marked as new).  

 

2.2.2.1 Uncertainty-based querying algorithms 

The assumption here is that the most uncertain sentences are most informative because 

identification of their uncertain labels could gain the most utility for the supervised NER 

learning. We considered a label of a sentence as a sequence of labels of words. In most of our 

implementations, only the N-best sequence labels were considered since the size of the possible 

sequence labels grows exponentially as the length of a sentence increases. We also extended the 

N-best sequence labels to cover most of the highly probable labels. The entropy of words and 
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entities was also tested in our study. The six methods we implemented to calculate the 

uncertainty of a sentence are described below: 

(1) Least Confidence (LC): to take the uncertainty from the best possible sequence label based on 

the posterior probability output from CRF. The uncertainty of a sentence is equal to 1 – P(y*|x), 

where y* is the most likely sequence label. 

(2) Margin: to take the uncertainty from the best two possible sequence labels. The uncertainty 

of a sentence is equal to P(y*|x) – P(y**|x), where y* and y** are the most likely and second 

most likely sequence labels, respectively. The smaller difference between the two probabilities 

represents higher uncertainty. 

(3) N-best sequence entropy: to take the entropy of the probability distribution over N-best 

sequence labels predicted by the CRF model. We used N=3 in our experiments. 

(4) Dynamic N-best sequence entropy (new):  to take the N-best sequence labels with the sum of 

their probabilities being at least 0.9. Here, N ranges from 1 to 20 in our experiments. For 

example, if the best sequence label has a probability of 0.95, N is equal to 1 (equivalent to LC); 

if the best 4 sequence labels have probabilities of 0.4, 0.3, 0.1, and 0.1, the sum of the 

probabilities is 0.9 and therefore, N is 4 and we ignore the 5th and later labels. 

(5) Word entropy: to take the summation of entropy of individual words given the probability 

distribution over all possible labels. 

(6) Entity entropy (new): to take the summation of entropy of the beginning word of the 

estimated entities (e.g. B-entity; excluding the entropy from the inside “I” and outside “O” of the 

estimated entities). 
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2.2.2.2 Diversity-based querying algorithms 

Uncertainty sampling is highly dependent on the quality of the model. Therefore, it may not be 

efficient in a practical setting where updating the model may take time. In this section, we 

propose diversity-based querying algorithms that consider information other than the model, 

such as the similarity between sentences.  

The idea behind the diversity-based querying algorithms is that we do not want to query the 

sentences that are similar to those that are already annotated. We applied the vector space model 

to pre-calculate pair-wise cosine similarity of any two sentences in the corpus. We used 

complete-linkage (max similarity) to determine the similarity between an unlabeled sentence and 

a group of labeled sentences. Unlabeled sentences with lower similarity scores would be 

assigned higher priority for annotation. The advantages of the diversity-based algorithms are (1) 

it is not dependent on the model and the annotation results; (2) the pair-wise similarity scores 

between sentences could be pre-computed, thus the querying step could be very efficient.  

To find the best similarity measurements, we explored different features at the word, semantic, 

and syntactic levels for building vectors and calculating similarity scores. We also combined all 

of them for better similarity assessment. 

(1) Word similarity (new):  A vector of words weighted by the TF/IDF weighting scheme is used 

to represent each sentence. Then the cosine similarity between two vectors is calculated as the 

similarity between the two sentences.  
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 (2) Syntax similarity (new): Each sentence is parsed by the Stanford parser [72] and the 

dependency relations derived from the parse tree are used to form the vector. For example, a 

sentence “She is afebrile with stable vital signs.” has six dependencies “nsubj(afebrile-3, She-

1)”,  “cop(afebrile-3, is-2)”, “prep(afebrile-3, with-4)”, “amod(signs-7, stable-5)”, “amod(signs-

7, vital-6)”, and “pobj(with-4, signs-7)”. To generalize the dependency relations, we then 

replaced the arguments of relations by their corresponding part of speech (POS) tags. The above 

example was converted into a vector of [“nsubj(JJ, PRP)”,  “cop(JJ, VBZ)”, “prep(JJ, IN)”, 

“amod(NNS, JJ)”, “amod(NNS, JJ)”, and “pobj(IN, NNS)”]. We weighted each dependency 

relation in the vector using the TF/IDF weight scheme based on their counts in the sentence and 

the corpus. Finally, cosine similarity was computed for each pair of sentences, similar to the 

method of word similarity. 

(3) Semantic similarity (new): This method is to calculate semantic similarity between two 

sentences based on concept similarity. We modified an existing semantic similarity method 

originally based on word similarity [73]. Our approach consisted of two steps: 1) extraction of 

clinical concepts in each sentence so that each sentence can be represented using a vector of 

union concepts from the two sentences; and 2) calculation of the similarity between the two 

sentence vectors of concepts, by measuring similarity scores between any two concepts and 

computing the cosine similarity of two sentence vectors. For Step 1, we processed each sentence 

using KnowledgeMap Concept Identifier (KMCI) [74], a general clinical NLP system, that 

extracts clinical concepts defined in the UMLS. Each sentence was represented by a vector of 

UMLS concept unique identifiers (CUIs) of the union concepts. For Step 2, the semantic 

similarity (or distance) between any two UMLS concepts was calculated using the package of 

UMLS-interface and UMLS-similarity [75], which computes the similarity between two CUIs by 
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using the user-selected similarity measurement (i.e. Path, LCH [76], WUP [77], etc) with a 

specified source (i.e. SNOMED-CT [78] and MeSH [79]). The value of each union concept of a 

sentence is the max similarity among the similarity scores between each of the concepts from 

this sentence and this union concept. Once we formed the semantic vector for two sentences, we 

computed the cosine similarity between them. Figure 2 demonstrates an example of how 

semantic similarity is calculated for two sentences:  S1: “You will need to have your uterine 

bleeding evaluated.” and S2: “This continued agitation may be caused by intraparenchymal 

hemorrhage.” 

	
  

Figure 2. An example of computing similarity between two sentences using semantic similarity 
algorithm 

 

KMCI identified “uterine bleeding” as an UMLS concept (with CUI: C0019080) in S1 and 

“continued agitation” (C0085631) and “intraparenchymal hemorrhage” (C0019080) in S2. The 

union UMLS concepts of the two sentences are C0085631 and C0019080. Then we applied 
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UMLS-similarity package to compute the similarity between the two concepts. The vector for S1 

is [0.14, 1], where 0.14 is the UMLS similarity between C0019080 and C0085631 and 1 for the 

one between C0019080 and C0019080. The vector for S2 is [1, 1] because the UMLS concepts 

from S2 are exactly the same to the union concepts. Then the similarity between S1 and S2 is 

0.80, which is the cosine similarity of these two vectors.  

(4) Combined similarity (new): This approach combines all word, syntactic, and semantic 

information for similarity calculation. We first combined words and dependency relations for the 

same sentence into one vector, and then computed the cosine similarity for each pair of sentences 

based on the new vectors. The final combined similarity between the two sentences is the 

average similarity for both the newly computed cosine similarity between word/dependency 

vectors and the semantic similarity based on UMLS. 

In principle, zero similarity score would indicate very diverse sentences, which we want to 

select. However, after careful analysis, we found that sentences with a zero similarity score to the 

labeled set were usually short sentences, which contain very few clinical entities. For example, 

short sentences such as section headers contain few dependency relations and often yield zero 

syntax similarity. Therefore, we decided to eliminate unlabeled sentences with zero similarity to 

the labeled set from sample selections for all diversity-based algorithms. 

 

2.2.2.3 Baseline algorithms 

In addition, we also included two querying algorithms that simply consider the length of the 

words or entities in a sentence. As we mentioned in the introduction, one limitation of such 

simulated AL studies is to assume that each sentence costs the same amount of annotation effort. 
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By including these two extremely biased methods as additional baselines, we hope to further 

confirm the effectiveness of AL methods.   

(1) Length-words is a simple querying method that selects sentences with the largest number of 

words. The assumption is simply that longer sentences may contain more information for NER 

than shorter ones. 

(2) Length - concepts is another simple querying method that selects sentences with the largest 

number of clinical concepts, as identified by KMCI. The assumption is that sentences with more 

clinical concepts are more informative sentences for NER. 

In addition, we included the typical passive learning method Random, which randomly selects 

samples at each iteration.   

 

2.2.3 Evaluation 

Most of the AL studies utilized learning curves that plot F-measure of the model on an 

independent test set as a function of sample size of the training set as the primary evaluation 

approach. Following previous studies on open domain NER [66, 67], we first evaluated our AL-

enabled clinical NER using the same type of learning curve that plots F-measure versus number 

of annotated sentences, assuming annotation cost is same for each sentence. However, we think 

the annotation costs for different sentences could differ greatly in reality; thus simply assuming 

the equal annotation cost of each sentence, as is traditionally done, could induce an inaccurate 

estimation about the benefit of AL in reality. Therefore, we also generated the learning curve of 

F-measure versus number of words in the annotated sentences as a new assessment approach. 

The new method of word-based evaluation assumes that the annotation cost is proportional to the 

length of a sentence, and is therefore a better way to estimate the real annotation cost. We also 
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computed the area under the learning curve (ALC) as a global score for both evaluation methods, 

which was a major metric to evaluate AL methods in the challenge [71]. The ALC scores for the 

learning curves of F-measure vs. sentences and F-measure vs. words are labeled as ALC1 and 

ALC2, respectively. To further demonstrate some characteristics of different querying methods, 

we plotted additional curves, including the entity count curve that plots the number of entities 

versus the number of sentences and the sentence length curve that plots the number of words 

(length of sentences) versus the number of annotated sentences. 

Our evaluation results were based on 5-fold cross validation (CV). For each iterative experiment, 

one fold was used as an independent test set and four other folds were used as the pool of 

querying and training set. The results on the learning curves were averaged over the five runs. 

For the experiments using random sampling, we repeated the experiments of 5-fold CV five 

times and averaged their results. 

 

2.3 Results 

All methods were tested in the same AL framework and cross validation setting (e.g. the same 

initial queries and model, pool, batch size, parameters of CRF model, and test set). Table 2 

shows the ALC scores based on two types of learning curves for twelve AL algorithms in three 

categories and Random that represents passive learning.  
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Table 2. Two types of ALC scores for all AL algorithms versus passive learning 

Categories Methods Existing or 
New 

ALC1 score ALC2 score 

F-measure 
 vs. 

Sentences 

F-measure 
vs.  

Words 

Uncertainty 
based sampling 

methods 

LC Existing 0.83 0.84 

Margin Existing 0.83 0.84 

N-best sequence 
entropy Existing 0.81 0.85 

Dynamic N-best 
sequence entropy New 0.82 0.84 

Word entropy Existing 0.83 0.84 

Entity entropy New 0.83 0.84 

Diversity based 
sampling 
methods 

Word similarity New 0.77 0.82 

Syntax similarity New 0.72 0.80 

Semantic similarity New 0.79 0.83 

Combined similarity New 0.76 0.82 

Baseline 
methods 

Length – Words Existing 0.82 0.81 

Length – Concepts New 0.82 0.81 

Passive 
Learning Random Existing 0.74 0.82 

Note: ALC1 is the ALC (area under the learning curve) score for the learning curves of F-
measure vs. number of sentences; ALC2 is the ALC score for the learning curves of F-measure 
vs. number of words. 
 
 

For ALC1 that is based on learning curves of F-measure vs. number of sentences, all AL 

algorithms, except syntax similarity, were better than random sampling. Among the three types 

of algorithms, uncertainty-based sampling methods (0.83 in average ALC1) outperformed two 
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baselines (0.82 in average ALC1), which outperformed diversity-based methods (0.76 in average 

ALC1).  

For ALC2 that is based on learning curves of F-measure vs. number of words, three types of 

querying algorithms performed differently: all six uncertainty-based methods outperformed 

random sampling; in the diversity sampling category, only semantic similarity achieved better 

performance than Random; ALC2 of baseline methods (Length – Words and Length - Concepts) 

did not exceed random sampling because the tendency of selecting longest sentences was 

penalized in this evaluation.  

We generated two types of learning curves for all thirteen methods. However, for ease of 

interpretation, we selected the best-performing method in each category to display its learning 

curve versus Random. Figure 3 shows the traditional learning curves based on F-measure versus 

number of annotated sentences for methods of LC, semantic similarity, Length-concepts, and 

Random. The method of Length-concepts had the best performance at the very early stage, but 

was surpassed by LC at the later stages, which outperformed the other methods. Figure 4 shows 

the new type of learning curves based on F-measure versus number of words in the annotated 

sentences for the methods of N-best sequence entropy, semantic similarity, Length-concepts, and 

Random. N-best sequence entropy led all the stages of AL.  
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Figure 3. Learning curves for F-measure versus number of sentences in the training set 
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Figure 4. Learning curves for F-measure versus number of words in the training set 
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respect to cost saving in words, LC reduced 42,854 words (41% saving of annotation cost in 

words), N-best sequence entropy could save more - 44,102 words (42%). However, semantic 

similarity saved only 7,265 words (7%), and Length-concepts actually required annotating 4,240 

additional words (4% increase of annotation cost in words). 

Figure 5 shows the entity count curves for Random and other methods (LC, semantic similarity, 

Length-concepts) that achieved the highest entity count per sentence in their categories. Figure 6 

shows the sentence length curves for Random and other methods (LC, semantic similarity, 

Length-words) that queried the longest sentences in their categories.  

 

	
  
Figure 5. Entity count curves that plot number of entities versus number of sentences in the 
training set 
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Figure 6. Sentence length curves that plot number of words versus number of sentences in the 
training set 
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Figure 3 to 6, AL algorithms (e.g. uncertainty sampling) did query longer sentences with higher 

number of entities per sentence, which could contribute to higher ALC1 and ALC2 scores. 

However, simply selecting sentences with high number of entities (e.g. Length-concepts) or 

longest sentences (e.g. Length-words) failed to surpass passive learning in ALC2 score, which 

we consider as an evaluation metric closer to the real-time situation. This finding suggests that 

active leaning does select informative samples that can help build better clinical NER models 

quickly.  

Uncertainty-sampling based algorithms outperformed all other methods in both ALC1 and 

ALC2, because they queried the most informative sentences using the knowledge of trained 

models. Among these methods, LC, Margin, Word Entropy, and Entity Entropy had very similar 

results (0.83 in ALC1 and 0.84 in ALC2). N-best sequence entropy gained highest ALC2 (0.85), 

indicating that it is probably more efficient in reality. However, one concern of applying 

uncertainty sampling based methods to real-world annotation tasks is that they rely on the 

updated NER models, which may take time when the annotated data set is getting bigger. For 

example, it would take several minutes to fully train a model based on 1000 annotated sentences 

in our experiment. In reality, it may not be feasible to ask annotators to wait such a long time for 

the next iteration of queried samples.  

The diversity sampling methods, on the other hand, do not depend on the CRF model and most 

processes can be pre-computed before the annotation process starts, which makes it more 

appealing. However, the current diversity-based methods implemented in this study did not 

perform as well as the uncertainty sampling. One possibility to improve the diversity-based 

methods is to integrate clustering algorithms (e.g. k-means and affinity propagation [80]) to find 

the most representative samples. In addition, we could also investigate better feature 
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representation methods such as the topic modeling method (e.g. Latent dirichlet allocation [81]). 

Another research direction is to combine uncertainty and diversity methods, e.g., using the linear 

function from Kim et al. [66].  

Another contribution of this work is to introduce a new evaluation metric for simulated AL 

studies for NER. Instead of assuming that each sentence requires the same amount of annotation 

effort, we assume each word requires the same amount of annotation effort. Therefore, the 

estimated savings of annotation cost in our study would be closer to reality, where longer 

sentences probably need more annotation time than the shorter sentences. Our results seem to 

support this intuition. For example, to achieve an F-measure of 80%, the LC method could save 

66% sentences; but the saving would be only 42% if we consider words instead of sentences. 

The 24% drop of savings indicates that the traditional evaluation could overestimate the 

effectiveness of AL methods in NER, when compared to passive learning. Moreover, other AL 

methods such as the diversity sampling methods, which could outperform passive learning in 

ALC1, did not achieve the same performance when ALC2 was used in evaluation. For example, 

the semantic similarity method showed a saving of 37% in ALC1 evaluation; but it had a saving 

of only 7% in ALC2 evaluation. These findings suggest that we should be more cautious about 

results from simulated experiments of AL on clinical NER. The actual benefit of AL should be 

further evaluated using real-time settings of NER tasks.    

As described above, the main limitation of this study is that it is a simulated study of AL for 

clinical NER. To assess the real value of AL for clinical NLP, we will have to evaluate it in a 

real-world setting. There are a few machine learning systems with integrated AL components, 

such as the DUALIST system [59] for word sense disambiguation in open domains. However, to 

our knowledge, there is no clinical NLP system that integrates a practical AL module. Therefore, 
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our next step is to develop a clinical NER system, which consists of an annotation interface and 

an AL component that actively selects samples for annotation. We will then conduct formal user 

studies to compare AL vs. passive learning in terms of annotation time and model quality. 

 

2.5 Conclusion 

We conducted a simulated study to compare different AL algorithms for a clinical NER task. Our 

results showed that most AL algorithms outperformed the passive learning method when we 

assume equal annotation cost for each sentence. However, savings of annotation by AL were 

reduced when the length of sentences was considered. We suggest that the effectiveness of AL 

for clinical NER needs to be further evaluated by developing AL enabled annotation systems and 

conducting user studies.  
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CHAPTER 3 

 

An Active Learning-enabled Annotation System for Building Clinical Named Entity 

Recognition Models  

3.1 Introduction 

Most of AL studies for biomedical text processing, including our study in Chapter 2, were 

conducted in a simulated setting, which assumes that annotation cost for each sample is identical. 

In reality, however, annotation cost (i.e. the time required to annotate one sample by an annotator) 

can be very different from one sample to another, or from one annotator to another. The 

estimated cost savings by AL in simulated studies may not be applicable in reality. Settles et al. 

[60] conducted a detailed empirical study to assess the benefit of AL in terms of real-world 

annotation costs and their analysis concludes that a reduction in the number of annotated 

sentences required does not guarantee a real reduction in cost. Therefore, to better understand 

how AL works within the real time annotation process and to demonstrate the utility of AL in 

real-world tasks, we should integrate AL technologies with annotation systems and validate its 

effectiveness by recruiting users to conduct real-world annotation tasks.  

In this study, we aimed to evaluate performance of AL versus passive learning in annotating 

problems, treatments, and lab tests in clinical notes to build ML-based NER systems in real-time. 

Our work consists of two main parts: 1) develop an AL enabled annotation system, called Active 

LEARNER (or A-LEARNER), for clinical NER; and 2) conduct a user study to evaluate the 

performance of Active LEARNER in practice.  
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The front end of Active LEARNER is a graphic user inference that allows users to mark clinical 

entities in a sentence supplied by the system using a particular querying engine. In the back end, 

the system iteratively trains CRF models based on users’ annotations and selects the most useful 

sentences based on the querying engine. The system implements a multi-thread processing 

scheme to allow a no-waiting annotation experience for users. Meanwhile, we proposed novel 

AL algorithms, which query sentences that are not only the most uncertain samples but also most 

representative of the corpus based on sentence clusters. The algorithm is called Clustering And 

Uncertainty Sampling Engine (CAUSE), which served as the querying engine in the Active 

LEARNER.  

In the user study, we compared the performance of CAUSE against RANDOM (random 

sampling), which represents passive learning. Two nurses were recruited to use Active LEARNER 

to annotate sentences and build NER models for both CAUSE and RANDOM, with a rest period 

between sessions. To ensure that the results from the two methods are comparable, we provided 

intensive user training, which includes review of annotation guidelines, review of sentence-by-

sentence annotations, and multiple rounds of practice sessions. Once users completed the training 

and achieved consistent annotation performance, they were asked to annotate sentences for a 

fixed time period that consists of four 30-minute sessions for each method. We evaluated the 

performance of each method by generating learning curves (i.e. F-measure of the NER model on 

the test dataset vs. annotation time) for each user.  

Our results show that CAUSE did not guarantee less annotation time than Random across 

different users, at a given performance point of the model (e.g., F-measure of 0.7). We then 

discuss other findings in our experiments and the limitations of the CAUSE method, with 

suggestions to future improvements, which are partially addressed in the Chapter 4. 
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3.2 Methods 

The clinical NER task in this study was same as the previous one in Chapter 2, which is to 

extract problem, treatment, and lab test concepts from clinical notes. We first developed an AL- 

enabled annotation system, which iteratively builds the NER model based on already annotated 

sentences and selects the next sentence for annotation. Multiple new querying algorithms were 

developed and evaluated using the simulated studies. For the user study, the best querying 

algorithm from the simulation was implemented in the system. Two nurses were then recruited 

and participated in the real-time annotation experiments using the system for both CAUSE and 

RANDOM modes.  

 

3.2.1 Development of the active learning-enabled annotation system 

Practical AL systems such as DUALIST [59] have been developed to allow user and computer to 

iteratively interact for building supervised ML models for different NLP tasks, such as text 

classification and word sense disambiguation. For sequence labeling tasks such as NER, 

however, there is no existing interactive system available. In this study, we designed and built a 

system named Active LEARNER (also called A-LEARNER), which stands for Active Leaning 

Enabled AnnotatoR for Named Entity Recognition. To the best of our knowledge, it is the first 

AL enabled annotation system for clinical NER tasks.  

Active LEARNER uses the unlabeled corpus as the input and generates NER models on the fly, 

while iteratively interacting with the user who annotates sentences queried from the corpus. The 

Active LEARNER system consists of three components: 1) the annotation interface, 2) the ML-

based NER module, and 3) the AL component for querying samples. For the annotation 
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interface, we adopted the existing BRAT system, a rapid annotation tool developed by Stenetorp 

P et al.	
   [82]. We modified the original BRAT interface to allow users to mark entities more 

efficiently. The ML-based NER module was based on the CRF algorithm implemented by 

CRF++ [83], as described in [38]. The AL component implemented some existing and novel 

querying algorithms (described in later sections) using a multi-thread framework. More details of 

the Active LEARNER system are described below. 

 

3.2.1.1 System workflow 

Initial design: The original plan was to follow the traditional pool-based AL framework [45]. 

Figure 7 shows the initial design workflow of the Active LEARNER system. Once the system 

starts, the pool of unlabeled data is loaded into the memory. At the initial iteration or before the 

CRF model is generated, all sentences are randomly ranked. The top sentence in the ranked 

unlabeled set is queried and displayed on the interface. The annotator then highlights clinical 

entities in the sentence via the labeling function on the interface. When the user submits the 

annotated sentence, the labeled set and the unlabeled set are updated and the learning process is 

activated. Specifically, the learning process includes CRF model encoding based on the current 

labeled set and sentence ranking by the querying engine. The CRF model encoding is 

straightforward; however, it could take time to rebuild the CRF model when the labeled data set 

gets bigger. Sentence ranking consists of two steps: 1) CRF model decoding, which is to make 

predictions for each unlabeled sentence based on the current model; and 2) ranking sentences by 

the querying algorithm, which considers both the probabilistic prediction of each sentence from 

step 1, and other information about the unlabeled sentences (i.e. clustering results). The learning 
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process is complete when the ranked unlabeled set is updated. The next iteration starts when the 

annotator starts reading the new top unlabeled sentence on the interface. The program is stopped 

when the user either clicks the quit button or a pre-set cutoff time runs out. The drawback of the 

initial design, however, is that the annotator sometimes has to wait for the next sentence, because 

the learning process could take time, as CRF model encoding/decoding could be slow with large 

samples.  

	
  

Figure 7. Workflow of Active LEARNER - initial design 

 

Final design: To avoid delay in the workflow, we separate the annotation and learning processes 

by paralleling two threads: the annotation thread and the learning thread. The final design 

workflow is shown in Figure 8.  
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Figure 8. Workflow of Active LEARNER - final design 

 

In the annotation thread, the black circle in the figure splits the flow into two, which run 

simultaneously. One sub-flow runs back to the ranked unlabeled set and interface. Therefore, the 

user can immediately read the next sentence on the interface right after the annotation of the 

previous sentence is submitted. The other sub-flow adds the newly annotated sentence to the 

labeled dataset and pushes the newly updated labeled set to the learning thread. In the learning 

thread, the process starts from an activator. A new learning process will be activated if the 

encoding or querying process in the learning thread is not busy and the number of newly 

annotated sentences is greater or equal to a threshold (equal to five in our study), which is for the 

update frequency control. When the learning process is activated, it runs in parallel with the 

annotation thread and it updates the ranked unlabeled set whenever the new rankings are 

generated. This design allows a user to continuously annotate the top unlabeled sentence from 
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the ranked list, which is generated by either the current or previous learning process in the 

learning thread. The stop criteria are the same as those described in the initial design.  

To better record and manage the user study, we also integrated additional functions to the Active 

LEARNER system:  

Log Function: We collect and record various types of information during annotation, including 

1) user annotation activities such as marking, changing, or deleting entities; 2) detailed time 

information such the start and end annotation time stamp for every sentence; and 3) model 

performance information, such as intermediate NER models files and querying score for each 

unlabeled sentence for each update, so that we can report the precision, recall, and F-measure of 

models over time. All of the logging information is analyzed after the annotation task is 

completed, to provide additional insights to the annotation and learning processes. 

Session Manager: we divide the entire annotation task into different sessions so that users can 

take a break between sessions. The time for each session can be pre-set on the interface for 15, 

30, 45, or 60 minutes. When the user clicks the start button, Session #1 starts and the timer 

activates. When the time of the session is up, a pop up window will interrupt the annotation and 

remind the user to take a break. After the break, the user can click the "Resume" button to 

continue the annotation for the next session (e.g. session #2, session #3, and so on). The system 

also automatically saves everything so that the annotation task can be resumed in case it is 

paused in the middle of a session.  

Prerequisites for running the Active LEANER include: (1) Corpus should be pre-processed for 

tokenization and sentence separation; (2) Features for CRF encoding and decoding should be 
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pre-extracted for every sentence; (3) The entities of interest need to be pre-defined (e.g. problem, 

treatment, and test).  

 

3.2.1.2 Querying methods (clustering and uncertainty sampling engine)  

In Chapter 2, we have described multiple AL querying algorithms and shown that uncertainty 

based sampling methods are more promising than other methods to reduce the annotation cost (in 

terms of the number of sentences or words) in the simulated studies. In this study, we further 

developed a novel AL algorithm that considers not only the uncertainty but also the 

representativeness of sentences. The AL methods were compared to a passive learning method 

based on random sampling (Random) in both the simulation and the user studies.  

Uncertainty sampling (Uncertainty) assumes the most informative sentences are the ones with 

the highest uncertainty to be labeled by the model. We implemented Least Confidence (LC), 

which takes the uncertainty from the best possible sequence label based on the posterior 

probability output from CRF, in the annotation system. LC is the least computationally expensive 

and therefore the fastest among the six uncertainty sampling methods presented in Chapter 2. 

Moreover, LC achieved the best ALC score based on equal cost per sentence assumption (ALC1 

in Chapter 2) and the second best ALC score based on equal cost per word assumption (ALC2 in 

Chapter 2).  

Uncertainty based sampling methods are promising for selecting the most informative sentences 

from the pool for the clinical NER modeling. However, these methods could not distinguish the 

most representative sentences with respect to their similarity. As similar sentences could share 

very close uncertainty scores, the batch of the top ranked sentences could possibly contain 
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multiple similar sentences with repeated clinical concepts. These concepts may be annotated 

more than once in these similar sentences. Obviously, annotating such similar sentences is not 

the most efficient for building NER models although these sentences are most informative.  

Table 3 shows a scenario where two sentences are most informative but occurred back-to-back 

when we ran Active LEARNER with LC as the querying engine. After the user submitted the 

annotation of the first sentence, the second sentence was shown. Then the user had to mark many 

repeated entities in the second sentence. The duplicated effort on the second sentence did not 

really improve the NER model and therefore decreased the AL efficiency. 

 

Table 3. A scenario of two most informative sentences that occurred back-to-back when Active 
LEARNER was tested with LC as the querying engine 

Sentence 1 

Coronary Artery Disease, Hypertension, Hyperlipidemia, Diabetes Mellitus, 
Hypothyroid, h/o Bilateral DVT's (on chronic coumadin therapy), Pleural disorder? 
Sarcoidosis, Gastritis, B12 deficiency, Chronic renal insufficiency, s/p 
Appendectomy, s/p Lap cholectomy, s/p Total abdominal hysterectomy 

Sentence 2 

PMH: Hypertension, Hyperlipidemia, Diabetes Mellitus, Hypothyroid, h/o Bilateral 
DVT's, Pleural disorder? Sarcoidosis, Gastritis, B12 deficiency, Chronic renal 
insufficiency, s/p Appendectomy, s/p Lap cholectomy, s/p Total abdominal 
hysterectomy 

Note: The duplicated words from two sentences were underlined 

 

Here, we propose the clustering and uncertainty sampling engine (CAUSE) that combines 

clustering technique and uncertainty sampling to query both informative and representative 

sentences. This method guarantees that the top ranked sentences in a batch are from different 

clusters and thus dissimilar with each other.  
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The algorithm of CAUSE is described as the following: 

Input:  

(1) Clustering results of sentences 

(2) Uncertainty scores of sentences  

(3) Batch size (x) 

Steps:  

(1) Cluster ranking: score each cluster based on the uncertainty scores of sentences and select the 

top x cluster(s) based on the cluster scores, where x is the batch size; (e.g. the score of a cluster 

could be the average uncertainty score of sentences in this cluster.)  

(2) Representative sampling: in each selected cluster, find a sentence with the highest uncertainty 

score as the cluster representative.  

Output: x cluster representative sentences in the order of their cluster ranking. 

Initial sampling: When the NER model and uncertainty scores of sentences are not available, we 

used random sampling to select a cluster and the representative within the selected cluster. 

The following sections describe how exactly the CAUSE algorithm was implemented in this 

study. 
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3.2.1.2.1 Sentence clustering with topic modeling 

Clustering is a required pre-processing step in CAUSE for the pool of data to be queried. The 

clustering process consists of Latent Dirichlet Allocation (LDA) [81], a topic modeling 

technique, for feature generation, and affinity propagation (AP) [80] for clustering. In this 

clinical concept extraction task, we need to group semantically similar sentences together. We 

applied a C implementation of LDA (LDA-C) [13] to extract the hidden semantic topics in the 

corpus of clinical notes. Since using document-level samples for topic modeling could generate 

more meaningful topics than sentences, we ran LDA topic estimation on the entire dataset from 

the 2010 i2b2/VA NLP challenge (826 clinical documents). Given the K estimated topics, the 

LDA inference process was performed to assign probabilistic values of topics for every sentence. 

Eventually, each sentence was coded in a K dimensional vector with a probability at each of the 

K topics as value. Cosine similarity was used to calculate the similarity between every sentence 

pair. Next, we applied a python package of AP [84] that takes the M x M pair-wise similarity 

matrix as the input and outputs the clustering result for the M sentences.  

 

3.2.1.2.2 Cluster ranking 

Each cluster is assigned a score based on one of the following schemas: (a) Maximum 

uncertainty cluster sampling (MUCS): assign the cluster the highest uncertainty score among all 

the sentences in the cluster; (b) Average uncertainty cluster sampling (AUCS): assign the cluster 

the average uncertainty score from all the sentences in the cluster; (c) Random cluster sampling 

(RCS): assign the cluster a random score (assuming that each cluster is equally important). 

According to our experiments, AUCS performed the best in terms of learning curve 
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performance. The cluster with a higher score will be ranked higher among all clusters, thought to 

contribute most to the NER modeling.  

 

3.2.1.2.3 Representative sampling 

From the top ranked cluster, we select the sentence that has the highest uncertainty score as the 

representative of the cluster. We also find the representative sentences from the second ranked 

cluster, third ranked cluster, and so on. We keep sampling until the batch is filled up with 

representatives. The ranking of the representatives follows the ranking of their clusters. We 

assume that the number of clusters is greater than or equal to the batch size so that the batch 

cannot contain more than one sentence from a cluster.  

The assumption here is that cluster representative sentences can improve the NER model by 

helping identify entities from other sentences in the same cluster. Table 4 shows an example of a 

cluster that contains multiple sentences about medications. The cluster representative is the first 

sentence, where “Dulcolax” is tagged as the medication treatment. When the NER model is 

trained on the annotated cluster representative, the model could identify other medications (e.g. 

“Amaryl”, “Nortriptyline”, “Metformin”, etc.) from additional sentences in the same cluster 

based on their similar context (e.g. “mg”, “p.o.”, and “q.”) as the cluster representative. 
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Table 4. An example of a cluster that contains multiple sentences about prescription 

Cluster 
representative 

Sentences in a cluster 

X 14. Dulcolax 10 mg p.o. or p.r. q. day p.r.n. 

 9. Amaryl 4 mg p.o. q. day . 

 3. Nortriptyline 25 mg p.o. q. h.s. 

 2) Metformin 500 mg p.o. q. 8 hours . 

 … 

 

3.2.2 The user study 

The user study is to evaluate the performance of AL versus passive learning in the real-world 

annotation processes for building NER systems. The annotation cost in the user study is not 

number of sentences or words but the actual annotation time by an annotator; the annotations 

(i.e. clinical entities) are done by users on-the-fly, instead of from a pre-annotated gold standard. 

Two nurses are recruited to use Active LEARNER to annotate sentences and tested both CAUSE 

and RANDOM modes.  

3.2.2.1 Study design 

3.2.2.1.1 Training annotators 

We understand that there are human factors influencing the user study, such as annotation speed 

and annotation quality, in addition to querying methods. To make the results of two methods 
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comparable, we rigorously trained two users in the annotation process, to ensure they will 

perform consistently in both experiments. The user-training phase included the following steps: 	
  

Guided training: The first step of training is to study the annotation guidelines, which were 

generated by the 2010 i2b2/VA NLP challenge organizer [85]. Both nurses had some experience 

on similar chart review tasks. At the very first training session, the NLP expert discussed the 

annotation guidelines with two nurses for 15-30 minutes, particularly focusing on the annotation 

boundaries of the clinical concepts. The next step was to review annotations sentence-by-

sentence. The objective of this training session was to train users to be more familiar with both 

the annotation guidelines of the task and the Active LEARNER interface. Users were shown two 

interfaces on the left and right half of the screen. A user annotates a sentence on the left-side 

interface. When the annotation is finished, the user could review the i2b2 gold standard of the 

annotation for the same sentence on the right-side interface. If there was discrepancy between the 

user’s annotation and the gold standard, we discussed the possible reasons that support either 

gold standard or user annotation. A user could either stick to the original decision or change the 

annotation based on the discussion.  

Practice: The practice process consists of two parts: 1) a shorter session with two to three 15-

minute of annotation; and 2) a longer session with four half-hour annotation, which was the same 

as the main user study discussed in the later section. The users conducted this part of training 

independently without breaks. We collected user’s annotation speed and annotation quality at 

each session so that we could track if the user achieved consistent annotation performance.  
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3.2.2.1.2 The main study design 

Warm up training section: In the second and third week of the user study, we conducted a shorter 

version of the training called warm up training. This served to refresh users on both annotation 

guidelines and interface usage. We also measured the speed and the quality of the annotation 

with user’s current status. The warm up training also consisted of two parts. The first part was 

sentence-by-sentence annotation review. It took at least 15 minutes and up to 45 minutes. This 

part could be stopped when user was making annotations consistent with the i2b2 gold standard. 

The second part was two 15-minute sessions of annotation. We used this opportunity to measure 

the user’s current speed and quality of annotation. 

After users were well trained on the annotation task, we asked users to start the real experiments. 

As shown in Table 5, both users tested the Random method in week 1 and then the CAUSE 

method in week 2. The reason to separate the user studies for two methods by a one-week gap is 

to allow users to forget the previous annotation. In each week, a user was required to go through 

a warm up training first, and then to complete the annotations of four half-hour sessions. The 

annotation time for each session was set to 30 minutes. A break of at least 10 minutes and up to 

15 minutes was required between two sessions. During one session, each user was asked to 

continuously work without break. With respect to the user study environment, each user was 

isolated in a conference room with minimum interruption.  
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Table 5. Schedule of the user study 

Time Event Task Duration 

Week 0 

Guided Training 
1. Annotation guideline review 30 minutes 

2. Sentence-by-sentence annotation 
and review using the interface 45 minutes 

Practice 

1. Three quarter-hour sessions of 
annotation practice 45 minutes 

2. Four half-hour sections of 
annotation using Random, with 15-
minute break between sessions 

3 hours 

Week 1 

Annotation warm up 
training 

1. Sentence-by-sentence annotation 
and review using the interface  15 - 30 minutes 

2. Two 15 min sessions of annotation 
practice 30 minutes 

Main study for 
method Random 

Four 30 min sessions of annotation 
using Method 2 

3 hours 
15-minute break between sessions 

Week 2 

Annotation warm up 
training 

1. Sentence-by-sentence annotation 
and review using the interface  15 - 30 minutes 

2. Two 15 min sessions of annotation 
practice 30 minutes 

Main study for 
method CAUSE 

Four 30 min sessions of annotation 
using Method 2 

3 hours 
15-minute break between sessions 

 

3.2.2.2 Datasets 

In this chapter, we used the same annotated training corpus from the 2010 i2b2/VA NLP 

challenge as described in Chapter 2. The clinical named entity recognition task is to identify the 

medical concepts of problem, treatment, and lab test from the corpus. The dataset with 20,423 

unique sentences was randomly split into five folds, each of which has either 4,084 or 4,085 
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unique sentences. In the simulation, we performed 5-fold cross validation so that four out of five 

folds were used as the pool of data to be queried and the remaining fold was the independent test 

set for evaluation. In the user study, we used fold 1 with 4,085 unique sentences as the 

independent test set and the remaining 16,338 unique sentences as the pool for data querying. In 

the annotation warm up training, the reviewed sentences are from the independent test set. Table 

6 shows the characteristics (counts of sentences, words, and entities, words per sentence, entities 

per sentence, and entity density) in five folds of the dataset and the pool of querying data. 

 

Table 6. Characteristics (counts of sentences, words, and entities, words per sentence, entities per 
sentence, and entity density) in five folds of the dataset and the pool of querying data 

 Sentence 
count 

Word 
count 

Entity 
Count 

Words 
per 

sentence 

Entities per 
sentence 

Entity 
density* 

Fold 1 4,085 44,403 5,395 10.87 1.32 0.25 

Fold 2 4,085 45,588 5,183 11.16 1.27 0.24 

Fold 3 4,084 45,355 5,201 11.11 1.27 0.24 

Fold 4 4,085 45,141 5,263 11.05 1.29 0.25 

Fold 5 4,084 44,834 5,177 10.98 1.27 0.24 

Pool (Fold 
2+3+4+5) 

16,338 180,918 20,824 11.07 1.27 0.24 

Note: Entity density is the number of words of the entities divided by the total number of words. 

 

3.2.2.3 Evaluation 

In the simulation study, we used number of words in the annotated sentences as the estimated 

annotation cost. The learning curves that plot F-measures vs. number of words in the training set 
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were generated to visualize the performance of different methods. For each method, the five 

learning curves from the 5-fold cross validation were averaged to general a final learning curve.  

In the user study, actual annotation time was used as the annotation cost. We also generated the 

learning curves that plot F-measure vs. actual annotation time to compare both AL and passive 

learning. Moreover, there are human factors that would affect the learning curve as well, such as 

user annotation speed and annotation quality. The most intuitive annotation evaluation metric to 

determine the annotation speed is the entity tagging speed (e.g. number of entities or entity 

annotations per minute). Obviously, if a user can contribute significantly more annotations in a 

given time, the learning curve of NER models could be better regardless of querying methods. In 

addition, the annotation quality, which is measured by F-measure based on gold standard, is 

another important factor for training a clinical NER model. If we fix the annotation speed, higher 

annotation quality would help build better NER models. Therefore, we also evaluated users’ 

annotation by generating the annotation speed curve (annotated entities per annotation time) and 

annotation quality curve (F-measure per section). Additional curves were also generated to 

illustrate some characteristics of methods over annotation time, including: sentence count, 

average sentence length, and annotated word count.  Table 7 summarizes all the analysis curves 

generated to measure user’s annotation performance and characteristics of methods in the user 

study. 
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Table 7. Summarization of analysis curves for the measurements of annotation performance of 
users and characteristics of methods in the user study 

Objective Curve name Description 

Annotation 
performance 

of users 

Annotation speed 
curve Count of annotated entities over annotation time 

Annotation quality 
curve Annotation quality in F-measure over sections 

Characteristics 
of methods 

Sentence count 
curve Count of annotated sentences over annotation time 

Average sentence 
length curve Words per sentence over annotation time 

Reading speed 
curve 

Words in the annotated sentence over annotation 
time 

 

To globally assess different learning curves, we computed the area under the learning curve 

(ALC) as a global score for each method, which is calculated as the area under the given learning 

curve (actual area) divided by a maximum area that represents the maximum performance. The 

maximum area is equal to the ultimate cost spent in training (e.g. number of words in the final 

training set or the actual annotation time) times the best possible F-measure. Ideally, the best F-

measure is 1.0. However, the NER models could never achieve perfect under only 120-minute 

annotation. At this study, we used an F-measure of 0.75 as the best possible F-measure in 120-

minute annotation.  

 

3.3 Results 

3.3.1 The Active LEARNER system 

Figure 9 shows the first page when opening the Active LEARNER system, where we can specify 

the parameters used in the user study, such as user name, algorithm name, section time, and 
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selection of training mode and dataset. Then a profile folder is created for each unique parameter 

set. All annotation actions and models are stored in the corresponding profile folder. 

 	
  

Figure 9. The initial interface to select parameters, such as user name, algorithm name, section 
time, training mode, and dataset 

	
  

Figure 10 shows a screenshot of the main annotation interface, which consists of three parts: 

toolbar, sentence annotator, and document viewer. Toolbar is located at the top of the interface, 

which provides basic buttons for the user to control the program. “NEXT (Hot key: space)” or 

“Next” is for user to submit the current annotation and request the next sentence to annotate. 

“Prev” is to return to the previously annotated sentence. “Pause” is to stop the clock when the 

user needs to take a break from annotation. “Quit” is to close the program. The user can also use 

the drop-down list (in Figure 11) to select a sentence among all previously annotated sentences 

for modifications. 

 

 



	
   59	
  

	
  

Figure 10. A screenshot on the main annotation interface 

	
  

	
  

Figure 11. A screenshot of the drop-down list to select a sentence among all previously annotated 
sentences 
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The sentence annotator in the central part of the interface displays the sentence with annotation 

and provides functions to mark entity types for selected phrases in the sentence. We embedded 

and modified BRAT to support these functions for both displaying and labeling. Figure 12 

demonstrates the marking process. The user can also modify the annotation of an entity by 

deleting the one previously marked and generating a new one.   

	
  

Figure 12. An enlarged screenshot on the annotation interface at the time when user was tagging 
"hypertension" as "problem" after "Cerebrovascular accident" was tagged as "problem" 

 

Document viewer in the lower part of the interface displays the clinical document that contains 

the current sentence shown in the annotator. The target sentence is placed in the center of the 

document viewer and highlighted in yellow; but users can scroll up or down to read the whole 

document. However, the user cannot modify anything shown in the document viewer. 

 

3.3.2 Simulated results 

In the simulation, we evaluated methods of Random, Uncertainty, and CAUSE assuming same 

cost per word. Both Uncertainty and CAUSE utilized LC as the uncertainty measurement. The 

training process of Uncertainty and LC started from 5 initially selected sentences based on 

random sampling. CAUSE used random cluster and representative sampling (described in 
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Section 2.2.2.1) to select the initial 5 sentences. The batch size is 5 so that the model was 

updated with every additional 5 newly queried sentences. The AL process stopped at the point 

where there are as close as 7,200 words in the training set. This stopping criterion is to mimic the 

120-minute (7,200 seconds) long user study per method, assuming the user would annotate 

approximately one word per second (see words per minute in Table 11). 

Figure 13 shows the learning curves of Random, Uncertainty, and CAUSE in the same graph. 

Obviously, CAUSE outperformed Random and Uncertainty most of the time at all stages during 

the AL process. In terms of ALC score, CAUSE achieved 0.839, Uncertainty did 0.782, and 

Random did 0.812. At the point where there are ~7,200 words in the training set, CAUSE 

generated NER models with 0.713 in F-measure on average, while Random and Uncertainty 

achieved 0.696 and 0.697 in F-measure, respectively.   
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Figure 13. Simulated learning curves by 5-fold cross validation that plot F-measure vs. number 
of words in the training set for random sampling (Random), least confidence (Uncertainty), and 
CAUSE that used least confidence to measure uncertainty 

 

3.3.3 User study results 

For the user study, there are 16,338 unique sentences in the pool for querying and 4,085 unique 

sentences in the test set for evaluating NER models. Based on the simulated results, CAUSE 

performed better than Uncertainty. Therefore, we used CAUSE to represent AL in the user study 

and compared it with Random in the user study. The initial sentence selection schemas used in 

the user study were the same as the simulation. The batch size was set at 5, meaning the new 
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learning process would be activated when there were at least 5 newly labeled sentences added to 

the labeled set. 

Table 8 reports the assessment of annotation information from the main studies. As we can see, 

two methods (Random and CAUSE) have very similar annotation speed and annotation quality, 

indicating both users’ performances are stable and two methods could be comparable.   

Table 8. Annotation counts, speed, and quality comparison in the 120-minute main study 

Users  Methods 
Annotated 

Entity count 
Annotation speed 
(Entities per min) 

Annotation 
quality           

(F-measure) 

User 1 
Random 945 7.88 0.82 

CAUSE 926 7.72 0.83 

User 2 
Random 882 7.35 0.81 

CAUSE 948 7.90 0.82 
 

Figure 14 and 15 show the learning curves of F-measure versus annotation time in minutes by 

Random (in week 1) and CAUSE (in week 2) from two users. The experimental results for the 

two users were different. Random performed better than CAUSE for user 1; while CAUSE was 

superior to Random for user 2. Table 9 shows the ALC scores and F-measure of the final NER 

model at the end of 120 minutes annotation for Random and CAUSE from both users. 
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Figure 14. Learning curves of F-measure vs. annotation time in minutes by Random and CAUSE 
from user 1 
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Figure 15. Learning curves of F-measure vs. annotation time in minutes by Random and CAUSE 
from user 2 

 

Table 9. Comparison between Random and CAUSE in ALC score and F-measure of the last 
model in the 120-minute main study 

User Index 
Evaluated 
method 

ALC scores 
F-measure of models 

at 120 minutes 

User 1 
Random 0.812 0.680 

CAUSE 0.783 0.666 

User 2 
Random 0.820 0.682 

CAUSE 0.831 0.691 
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We also analyzed additional measures for both CAUSE and RANDOM, which are described in 

Table 7. Figure 16 shows the sentence count curves and it clearly shows that both users 

annotated many more sentences in Random than in CAUSE. The average sentence length curves 

(Figure 17) shows that sentences picked by CAUSE were almost two times longer than that by 

RANDOM, which explains why users can annotate more sentences queried by Random than 

CAUSE.  

	
  

Figure 16. Sentence count curves of the number of annotated sentences over the annotation time 
in minute from the main studies of Random and CAUSE by user 1 and user 2 
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Figure 17. Sentence length curves (words per sentence over the annotation time) from the main 
studies of Random and CAUSE by user 1 and 2 

 

Figure 18 shows the reading speed curves that plot the number of words in the annotated 

sentences over time. This figure suggests that users could review sentences queried by Random 

faster than that by CAUSE, especially for user 1.  

	
  

Figure 18. Reading speed curves that plot the number of words in the annotated sentences over 
annotation time in minute from the main studies of Random and CAUSE by user 1 and user 2 



	
   68	
  

Figure 19 presents the annotation speed curves. Overall the annotation speeds for both users 

were relatively consistent. User 1's annotation speeds for CAUSE and Random were very similar. 

For the annotation by user 2, CAUSE showed higher annotation speed than Random. It seems 

that user 2 performed more efficiently in the CAUSE study than in the Random study. 

	
  

Figure 19. Annotation speed curves that plot the entity annotations over the annotation time in 
minute from the main studies of Random and CAUSE by user 1 and user 2 

 

Table 10 and 11 summarize the characteristics of Random and CAUSE in each 120-minute main 

study from both users. Both users annotated more sentences in the Random mode than that in the 

CAUSE mode, very likely due to shorter length of sentences selected by Random. Moreover, 

users seemed to read the words queried by Random faster than CAUSE. The entity number per 

sentence by CAUSE is about 3 times higher than that in Random. Entity density by CAUSE is 

also higher than that by Random.  
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Table 10. Characteristics of Random and CAUSE in each 120-minute main study from user 1 and 
2 (part 1) 

User Method Annotated 
Sentences 

Words in 
annotated 
sentences 

Entities in 
annotated 
sentences 

Words in 
entities 

User 1 
Random 655 8,023 945 1,915 

CAUSE 232 6,333 926 2,145 

User 2 
Random 651 7,325 882 1,952 

CAUSE 240 6,455 948 2,404 

 

Table 11. Characteristics of Random and CAUSE in each 120-minute main study from user 1 and 
2 (part 2) 

User Method Sentences 
per min 

Words per 
sentence 

Words per 
min 

Entities Per 
Sentence 

Entity 
Density 

User 1 
Random 5.53 12.24 67.70 1.44 0.24 

CAUSE 1.97 27.00 53.30 3.99 0.34 

User 2 
Random 5.55 11.25 62.44 1.35 0.27 

CAUSE 2.01 26.98 54.33 3.95 0.37 

 

3.4 Discussion 

This is the first study that integrates AL with annotation processes to build clinical NER systems 

and evaluates it in a real-world task by engaging users. Although many previous AL studies 

showed substantial savings of annotation in terms of number of samples in simulation, our real 

world experiments showed that current AL methods did not guarantee savings of annotation time 

for all users in practice.  
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This finding could be due to multiple reasons. First, although AL selected more informative 

sentences and required fewer sentences for building NER models, it often selects longer 

sentences with more entities, which take a longer time to annotate. Users annotated ~240 

sentences queried by CAUSE in 120 minutes (~2.0 sentences per minute) versus ~660 sentences 

by Random in the same time (~5.5 sentences per minute). Our results suggest that the increased 

information content of actively selected sentences is strongly offset by the increased time 

required to annotate them. Moreover, it seems that users may have different behaviors for 

sentences selected by different methods. For example, it seemed that users read randomly 

sampled sentences faster (62-68 words per minute) than AL selected sentences (53-54 words per 

minute). All these results demonstrate that AL in practice could be very different from 

simulation studies and it is critical to benchmark AL algorithms using real-world practical 

measurements (such as annotation time), instead of theoretical measurements (such as the 

number of training sentences and the number of words in training sentences).  

There are many other factors that may affect users, thus contributing to the final results. First of 

all, different users have different behaviors when annotating clinical text. For example, one 

annotator reviewed sentences once only and very quickly; but the other often reviewed a 

sentence twice after marking the entities. In addition, users’ responses to AL-selected sentences 

could also be different in terms of annotation speed and annotation quality. Moreover, for the 

same user, the annotation behavior could have varied during the study. Our study design allowed 

user to make more consistent annotation in every session by adding breaks between sessions. 

However, as the whole process for evaluating one method could take over 4 hours including the 

warm-up session, users could be very exhausted for the last one or two sessions.  



	
   71	
  

We assessed the annotation speed and annotation quality curves over four sessions for both users 

(Figure 20 and 21). In terms of annotation speed, both users conducted the annotation faster in 

the first two sessions (Session 1 and 2) than the last two sessions (Session 3 and 4) in the CAUSE 

mode (according to green curves in Figure 20). Conversely, in the Random model, both users’ 

annotation speed achieved the highest point at the last section, although it was fairly consistent in 

the first three sections (according to red curves in Figure 20). With respect to annotation quality 

(Figure 21), both users showed relatively high variance in F-measure, ranging from 0.75 to 0.87 

without obvious patterns.  

	
  

Figure	
  20.	
  Annotation speeds per section in the main studies of Random and CAUSE from user 1 
and 2 

	
   	
  

Figure 21. Annotation qualities per section in the main studies of Random and CAUSE from user 
1 and 2 
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Although the results in this user study showed that the current AL methods could not be 

guaranteed to save annotation time, compared to passive learning, we gained valuable 

information about why it happened. If the querying algorithm accounts for the actual annotation 

time in the model, we believe AL could perform better. Therefore, the next phase of our work 

will include improving our AL algorithms against the practical measures (i.e., annotation time). 

One of our plans is to use annotation data collected in this study to develop regression models, 

which can more accurately estimate annotation time of unlabeled sentences, thus optimizing the 

AL algorithms for actual annotation time instead of number of samples. 
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CHAPTER 4 

 

Annotation Time Modeling for Active Learning in Clinical Named Entity Recognition 

4.1 Introduction 

In the previous chapter, we describe an AL-enabled annotation system for NER (Active 

LEARNER), where we developed a novel AL algorithm called CAUSE that considers both 

uncertainty and representativeness of sentences. In a simulation study where the annotation cost 

was estimated based on the number of words in the annotated sentences, CAUSE showed 

superior performance than baseline methods including the uncertainty sampling method and 

random sampling. In the user study, however, we found mixed results: CAUSE generated a better 

learning curve than random sampling for one user, but not the other. This finding indicates that 

the CAUSE algorithm is not guaranteed to save actual annotation time for each user, when 

compared to random sampling.  

One potential direction to improve the CAUSE algorithm is to develop better models for 

estimating actual annotation cost (i.e., time), instead of simply assuming the length of a sentence 

is the only factor that accounts for annotation time. In the AL field, there are several studies that 

investigated cost-sensitive AL. Settles et al. [60] reported an empirical study of AL’s impact on 

real annotation costs. One of their conclusions is that AL approaches that ignore cost information 

may perform no better than random sampling. However, improved learning curves are 

achievable if the cost variables can be appropriately taken into account. Haertel et al. [61] also 

presented a practical cost-conscious AL approach based on return on investment (ROI). They 
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evaluated the ROI based AL on a part-of-speech tagging task and showed that ROI achieved as 

high as a 73 % reduction over random in hourly cost. 

Inspired by these studies, here we developed a new querying engine in Active LEARNER called 

CAUSE 2.0 (CAUSE2), which queries the sentences that are most informative based on 

annotation time models. Annotated data from both users collected from the previous user study 

were used to generate the annotation time predictive models. To assess these models, we 

conducted three types of evaluations: 1) we fitted the models to the training data and reported the 

coefficient of determination (R2); 2) we conducted simulation studies using another pre-

annotated dataset to systematically evaluate fifteen methods from four different categories (i.e. 

four in the category of uncertainty sampling, four in CAUSE, six in CAUSE2, and one in passive 

learning) using the estimated annotation time predicted by the models as the cost; and 3) we 

integrated the best performing algorithm CAUSE2 with Active LEARNER and conducted another 

user study to compare CAUSE2 and random sampling in the real-time annotation task.   

Based on the regression results, the proposed annotation time models achieved R2 of 0.79 and 

0.53 for user 1 and user 2, respectively; while the baseline models achieved 0.67 and 0.46 for 

user 1 and user 2, respectively. The proposed method outperformed baseline for both users by an 

improvement of 15-16% in R2. 

The simulated results based on learning curves showed that CAUSE2 outperformed CAUSE, 

uncertainty sampling, and random sampling. Uncertainty sampling, which was previously 

considered as a promising AL strategy, required more time when the new annotation time model 

was used. Among all AL methods based on the new time estimation model, CAUSE2 was the 

only algorithm that was significantly better than random sampling.  
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The same two users participated in the new user study to evaluate random sampling and 

CAUSE2. The results showed that CAUSE2 performed globally better than random sampling in 

terms of the area under the learning curve scores for both users. However, the advantage margin 

of CAUSE2 vs. random sampling is different between user 1 and user 2. Finally, we discuss the 

advantages and the limitations of the proposed methods and lay out the direction for future work. 

 

4.2 Methods 

4.2.1 Active learning with annotation time models 

Previously developed AL methods including CAUSE only account for the informativeness of 

samples for building ML models (e.g., uncertainty and representativeness). However, the user 

study shows that without considering the annotation cost in the model, AL is not able to reduce 

actual annotation cost (i.e., time).  

Inspired by Settles et al. [60], who developed a simple heuristic that divides the utility measure 

by the predicted cost, and Haertel et al. [61], who suggested the ROI AL method,  we propose a 

similar AL strategy that queries sentences that are most informative and least costly. Basically, 

we use the ratio between the informativeness of a sentence s - Informativeness (s) and the 

estimated annotation time of s – Cost (s), instead of Informativeness (s) only, to rank sentences. 

Any previous querying algorithm, such as CAUSE, can determine the Informativeness (s). The 

Cost(s) could be an annotation time model, which is further explained in following paragraphs. 

In the case of CAUSE, we name the new algorithm that considers the estimated annotation time 

as CAUSE2. Therefore, CAUSE2 is the first kind of AL algorithm that considers three aspects to 
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rank sentences: (1) uncertainty based on the NER model, (2) representativeness based on the 

clustering, and (3) annotation cost based on the annotation time model. 

We developed a simple linear regression model to predict the annotation time of unlabeled 

sentences. This model attempts to mimic the annotator’s thought process in general, which was 

observed in the previous user study. We divide the annotation process into three procedures, 

represented by the following features in a sentence: number of words, number of words as part of 

the concepts, and number of concepts. The linear model for annotation time estimation is 

described in the following formula: 

AT(s) = w0 + w1*X(s) + w2*Y(s) + w3*Z(s),  

where AT(s) is the estimated annotation time in second for an input sentence s; X(s) is the 

number of words in sentence s; Y(s) is the number of words tagged as part of the entities in 

sentence s; and Z(s) is the number of entities in sentence s. The weights for the three features can 

be interpreted as the following:  w1 is the time in seconds for the annotator to scan the sentence 

word by word; w2 is the time in seconds for the annotator to determine the boundaries of 

potential entities; w3 is the time in seconds for the annotator to mark the identified entities 

through the interface. The intercept in this linear model, w0, is an unrealistic time in seconds to 

annotate a sentence with zero words, zero words as entity, and zero entity. It could be interpreted 

as the “idle time” during annotation when users are taking a tiny break for 1 – 3 seconds per 

sentence. In summary, this simple model can capture the general annotation process and estimate 

the annotation time as the summation of the time of initial word-by-word reading, the time of 

boundary identification for the entities, and the time of marking the identified entities.  
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We also generated a baseline linear regression model to predict annotation time by using only 

number of words as a single feature. Here is the baseline model: 

AT(s) = w0 + w1*X(s), 

where AT(s) is the estimated annotation time in second for an input sentence s; X(s) is the 

number of words in sentence s. The weight of X(s), w1, is basically the reading speed as we 

defined in Chapter 3. We compared the proposed and the baseline linear regression models here. 

As annotation time for the same sentence is different from one annotator to another, we trained a 

regression model for each annotator based on existing individual annotated data from the 

previous study in Chapter 2. 

 

4.2.2 Datasets 

4.2.2.1 Training dataset for building annotation time models 

From the previous user study reported in Chapter 3, we have collected the annotated data in 

week 1 and week 2, resulting in 240-minute annotated data per user, for training the individual 

annotation time models. Table 12 shows the distribution of features in training data for both 

users. 
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Table 12. Distributions of the training data for building annotation time models 

User 
Total 

annotated 
sentences 

Annotation 
time (second) 
per annotated 

sentence 

Words per 
annotated 
sentence 

Words as 
entity per 
annotated 
sentence 

Entities per 
annotated 
sentences 

Mean SD Mean SD Mean SD Mean SD 

User 1 887 16.28 18.15 16.19 17.86 4.58 5.53 2.11 2.75 

User 2 891 16.24 19.18 15.48 14.39 4.89 5.88 2.05 2.42 

 

4.2.2.2 Dataset for simulation studies 

In the simulation studies, we used the same dataset as the one used in Chapter 2 (the training 

corpus from the 2010 i2b2/VA NLP challenge). The dataset contains 20,423 unique sentences 

and was randomly split into five folds. We performed 5-fold cross validation so that four out of 

five folds were used as the pool of data to be queried and the remaining fold was the independent 

test set for evaluation.  

 

4.2.2.3 Dataset for the user study 

In the new user study, the test corpus of the 2010 i2b2/VA challenge, which has 477 clinical 

documents with 29,789 unique sentences, was used as the pool for querying sentences. Table 13 

shows the distribution of words and different types of entities in that dataset. The entity density 

of this corpus is 0.25, which was calculated by the number of words in entities (or entity words) 

divided by the total number of words. The training corpus of the 2010 i2b2/VA challenge, which 
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contains 349 clinical documents with 20,423 unique sentences, was used to evaluate the NER 

models to generate the learning curves. 

Table 13. Distribution of words and different types of entities in the pool of 29,789 unique 
sentences 

 Overall count Mean of count per 
sentence 

StDev of count per 
sentence 

Word 341,982 11.48 9.80 

Entity 41,624 1.40 1.73 

Problem entity 16,796 0.56 1.04 

Treatment entity 12,740 0.43 0.93 

Test entity 12,088 0.41 1.15 

 

4.2.3 Evaluation 

4.2.3.1 Evaluation of annotation time models 

To evaluate linear regression models, we used R2 to find how well the actual annotation time fits 

an annotation cost model. In this study, R2 was calculated as the square of the Pearson 

correlation coefficient between the actual annotation time and the estimated annotation time. We 

simply assume that the model with higher R2 is better at estimating annotation time. 

 

4.2.3.2 Evaluation using the simulation study 

Using a similar simulation study design as in Chapter 2 and 3, we evaluated fifteen querying 

algorithms including nine existing methods that do not consider annotation costs (from three 

categories: Uncertainty sampling, CAUSE, and Random) and six new methods that consider the 
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annotation estimation time models (from the CAUSE2 category). We describe these methods as 

following: 

Uncertainty Methods:  

(1) Least Confidence (LC): to take the uncertainty from the best possible sequence label based on 

the posterior probability output from CRF. The uncertainty of a sentence is equal to 1 – P(y*|x), 

where y* is the most likely sequence label. 

(2) N-best sequence entropy (nBest): to take the entropy of the probability distribution over N-

best sequence labels predicted by the CRF model. The probabilities of the N-best sequence labels 

were normalized so that the sum of them is equal to 1. We used N=3 in our experiments. 

(3) Word entropy: to take the summation of entropy of individual words given the probability 

distribution over all possible labels. 

(4) Entity entropy: to take the summation of entropy of the beginning word of the estimated 

entities (e.g. B-entity; excluding the entropy from the inside “I” and outside “O” of the estimated 

entities). 

CAUSE Methods: 

(1) CAUSE_LC: clustering and uncertainty sampling based on least confidence as the uncertainty 

measurement; 

(2) CAUSE_nBest: clustering and uncertainty sampling based on N-best sequence entropy as the 

uncertainty measurement; 

(3) CAUSE_WordEntropy: clustering and uncertainty sampling based on word entropy as the 

uncertainty measurement; 
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(4) CAUSE_EntityEntropy: clustering and uncertainty sampling based on entity entropy as the 

uncertainty measurement. 

CAUSE2 Methods: 

(1) CAUSE_LCPerCost: clustering and uncertainty per estimated annotation cost sampling based 

on UPC(s) = LC(s) / AT(s), where LC(s) is the least confidence of sentence s and AT(s) is the 

estimated annotation time in second for sentence s;  

(2) CAUSE_nBestPerCost: clustering and uncertainty per estimated annotation cost sampling 

based on UPC(s) = nBest(s) / AT(s), where nBest(s) is the N-best sequence entropy of sentence s 

and AT(s) is the estimated annotation time in second for sentence s; 

(3) CAUSE_WordEntropyPerCost: clustering and uncertainty per estimated annotation cost 

sampling based on UPC(s) = WordEntropy(s) / AT(s), where WordEntropy(s) is the word 

entropy of sentence s and AT(s) is the estimated annotation time in second for sentence s; 

(4) CAUSE_EntityEntropyPerCost: clustering and uncertainty per estimated annotation cost 

sampling based on UPC(s) = EntityEntropy(s) / AT(s), where EntityEntropy (s) is the entity 

entropy of sentence s and AT(s) is the estimated annotation time in second for sentence s; 

(5) CAUSE_WordEntropyPerWord: clustering and uncertainty per estimated annotation cost 

sampling based on UPC(s) = WordEntropy(s) / X(s), where WordEntropy (s) is the word entropy 

of sentence s and X(s) is the number of words in sentence s; 

(6) CAUSE_EntityEntropyPerEntity: clustering and uncertainty per estimated annotation cost 

sampling based on UPC(s) = EntityEntropy(s) / Z(s), where EntityEntropy (s) is the entity 

entropy of sentence s and Z(s) is the number of estimated entities in sentence s; 
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As shown in the result section, our proposed annotation estimation model is a better estimate of 

time than the model based on the number of words in the sentences only. Therefore, we used the 

predicted annotation time based on the model trained from individual users to generate the 

learning curves that plot F-measures vs. estimated annotation time. For each method, five 

learning curves from the 5-fold cross validation were generated and averaged to a final learning 

curve, which simulates the 120-minute user study.  

The ALC score was used to assess the global performance for each method. The derivation of 

ALC score was described in the evaluation section in Chapter 3. We also compared final F-

measures at the end of 120 minutes. In addition, we also reported other characteristics of 

different methods based on the cross validation data from sentences queried at the end of 120 

minutes, such as average sentence length (words per sentence), average sentence entity count 

(entities per sentence), and average entity density (entity words per word). 

 

4.2.3.3 Evaluation by the user study 

To further validate the utility of the new CAUSE2 method in practice, we conducted a similar 

user study as that in Chapter 3 to compare the best-performing algorithm in CAUSE2 with the 

random sampling method. The same two users participated in this user study, following a similar 

study design as the previous one. Table 14 shows the schedule of the new user study, which was 

slightly adjusted. Compared to the user study in Chapter 3, the workload per day is reduced to 2 

hours per day, starting with the sentence-by-sentence annotation review session for 30 minutes as 

the warm up training, followed by two 30-minute annotation sessions with 10-15 minutes break 

in between. Two days were needed to evaluate one method now. We hope that the reduced 



	
   83	
  

workload per day can ensure users to be more consistent during the entire annotation period for 

each method. 

 

Table	
  14.	
  Schedule of the new user study using new data 

Week Day Event Task Duration 
(minutes) 

Week 1 

Day 1 
Main study using 
new data for 
Random (part 1) 

1. Sentence-by-sentence 
annotation and review  30 

2.  Two 30-minute sessions 
(Session 1 and 2) of main 
study using new data for 
Random 

75 

Day 2 
Main study using 
new data for 
Random (part 2) 

1. Sentence-by-sentence 
annotation and review  30 

2.  Two 30-minute sessions 
(Session 3 and 4) of main 
study using new data for 
Random 

75 

Week 2 

Day 1 
Main study using 
new data for 
CAUSE2 (part 1) 

1. Sentence-by-sentence 
annotation and review  30 

2.  Two 30-minute sessions 
(Session 1 and 2) of main 
study using new data for 
CAUSE2 

75 

Day 2 
Main study using 
new data for 
CAUSE2 (part 2) 

1. Sentence-by-sentence 
annotation and review  30 

2.  Two 30-minute sessions 
(Session 3 and 4) of main 
study using new data for 
CAUSE2 

75 
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We then generated the learning curves that plot F-measure vs. actual annotation time for each 

method. The global ALC scores and the final F-measures were calculated to compare two 

methods. 

 

4.3 Results 

4.3.1 Annotation cost models evaluation results 

We trained both the baseline and the proposed annotation cost models for individual users using 

their own annotated data from previous studies (described in Dataset section). Figure 22 shows 

the baseline annotation cost models based on sentence length only for user 1 and user 2, which 

did not fit well to the data. 

	
   	
  

Figure 22. The baseline annotation cost models for user 1 and user 2 
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For user 2: AT(s) = 2.69 + 0.32*X(s) + 1.08*Y(s) + 1.63*Z(s) 

 

More statistical analysis for the annotation cost models for both users is summarized in Table 15 

and 16. These results show that the weights of all three predictors and the intercept are 

significant in the annotation time models for both users. 

 

Table 15. Statistical analysis for annotation cost model for user 1 

Coefficients Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.13 0.38 5.63 2.43E-08 
Number of Entities  

(Z) 1.43 0.23 6.22 7.68E-10 

Number of Entity Words  
(Y) 1.57 0.11 14.41 <2.00E-16 

Number of Words  
(X) 0.24 0.03 7.88 9.31E-15 

Note: Residual standard error: 8.299 on 883 degrees of freedom; Multiple R-squared:  0.7916, 
Adjusted R-squared:  0.7909; F-statistic:  1118 on 3 and 883 DF, p-value: < 2.2e-16. 

 

Table 16. Statistical analysis for annotation cost model for user 2 

Coefficients Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.69 0.65 4.14 3.73E-05 
Number of Entities  

(Z) 1.63 0.36 4.47 8.85E-06 

Number of Entity Words  
(Y) 1.08 0.15 7.37 3.82E-13 

Number of Words  
(X) 0.32 0.06 5.34 1.21E-07 

Note: Residual standard error: 13.17 on 887 degrees of freedom; Multiple R-squared:  0.5298, 
Adjusted R-squared: 0.5282; F-statistic: 333.1 on 3 and 887 DF, p-value: < 2.2e-16 
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The models can be interpreted as the following: users spent 0.24 – 0.32 seconds in scanning 

words, 1.08 – 1.57 seconds in identifying the boundaries of entities, and 1.43 – 1.63 seconds in 

marking entities with “idle time” of 2.13 – 2.69 seconds to annotate a sentence. Table 17 shows 

R2 of the baseline and the proposed annotation time models for both users. The annotation time 

model for user 2 was not as good as the model for user 1. 

 

Table 17. Evaluation of different annotation cost models in R2 

User 
Baseline 

annotation cost 
models 

Proposed 
annotation cost 

models 

User 1 0.67 0.79 

User 2 0.46 0.53 

 

4.3.2 Results of the simulation studies 

Table 18 shows the results of ALC scores of both users for different methods. The CAUSE2 

methods that consider both informativeness and cost achieved superior performance, when 

compared to other methods that consider informativeness only. There are small differences 

between the two users for different CAUSE Methods.   
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Table 18. ALC scores of both users for different AL methods in the simulation study 

Categories Methods ALC scores 
for user 1 

ALC scores 
for user 2 

Uncertainty based 
sampling methods 

(Uncertainty) 

LC 0.783 0.785 

N-best sequence entropy (nBest) 0.824 0.826 

Word entropy 0.766 0.763 

Entity entropy 0.774 0.773 

Clustering and 
uncertainty sampling 
methods (CAUSE) 

CAUSE_LC 0.841 0.842 

CAUSE_nBest 0.847 0.848 

CAUSE_WordEntropy 0.833 0.833 

CAUSE_EntityEntropy 0.837 0.837 

Clustering and 
uncertainty per 
estimated cost 

sampling methods 
(CAUSE2) 

CAUSE_LCPerCost 0.870 0.882 

CAUSE_nBestPerCost 0.859 0.862 

CAUSE_WordEntropyPerCost 0.845 0.888 

CAUSE_EntityEntropyPerCost 0.884 0.859 

CAUSE_WordEntropyPerWord 0.853 0.854 

CAUSE_EntityEntropyPerEntity 0.861 0.865 

Passive Learning 
(Random) Random 0.840 0.840 

 

 

Figure 23 shows the learning curves of four different methods from user 1, consisting of the best 

performing method from each category: Random, N-best sequence entropy (Uncertainty), 

CAUSE_nBest (CAUSE), and CAUSE_EntityEntropyPerCost (CAUSE2).  CAUSE2 seemed to 

outperform all other methods (learning curve was above others).   
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Figure 23. Learning curves of the best-performing method in each of four categories: Random, 
Uncertainty (N-best sequence entropy), CAUSE (CAUSE_nbest), and CAUSE2 
(CAUSE_EntityEntropyPerCost), for user 1  

Note: the learning curves are averaged based on the 5-fold cross validation results 
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Uncertainty are very long (25 – 45 words per sentence); sentences by CAUSE are shorter (22 – 

28 words per sentence); and sentences by CAUSE2 are even shorter (7 – 20 words per sentence). 

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

0.45#

0.50#

0.55#

0.60#

0.65#

0.70#

0.75#

0# 1000# 2000# 3000# 4000# 5000# 6000# 7000#

F-
m

ea
su

re
 

Estimated Annotation Time in Second 

Learning Curve Comparison 
5-fold cv 

Random 

Uncertainty 

CAUSE 

CAUSE2 



	
   89	
  

Similar patterns were found in terms of entities per sentence. However, although the CAUSE2 

sentences are shorter, they have higher entity density. These findings suggest that CAUSE2 

selected sentences with reduced annotation difficulty, while retaining informativeness of these 

sentences. 

Table 19. Characteristics in average sentence length, entities per sentence, and entity density for 
different AL methods 

Categories Methods 

Average 
sentence 
length 

(words per 
sentence) 

 Entities per 
sentence 

Entity 
density 

(entity words 
per word) 

Uncertainty 
based sampling 

methods 
(Uncertainty) 

LC 42.65 6.46 0.36 
N-best sequence 
entropy (nBest) 25.30 3.79 0.34 

Word entropy 44.81 6.22 0.37 

Entity entropy 41.17 7.02 0.37 

Clustering and 
uncertainty 
sampling 
methods  

(CAUSE) 

CAUSE_LC 27.59 3.91 0.35 

CAUSE_nBest 22.76 3.20 0.35 

CAUSE_WordEntropy 32.08 4.33 0.37 

CAUSE_EntityEntropy 28.61 4.49 0.36 

Clustering and 
uncertainty per 
estimated cost 

sampling 
methods 

(CAUSE2) 

CAUSE_LCPerCost 8.85 1.09 0.27 

CAUSE_nBestPerCost 7.31 0.87 0.24 

CAUSE_WordEntropy
PerCost 14.31 1.64 0.30 

CAUSE_EntityEntropy
PerCost 13.12 2.07 0.33 

CAUSE_WordEntropy
PerWord 12.18 2.00 0.43 

CAUSE_EntityEntropy
PerEntity 20.25 2.67 0.34 

Passive Learning Random 11.08 1.25 0.24 



	
   90	
  

4.3.3 Results of the user study 

CAUSE_EntityEntropyPerCost, the best CAUSE2 method based on the simulation studies, was 

implemented in Active LEANER and compared with random sampling in the user study. The 

annotation time models described in Section 3.1 was used in the user study. Figure 24 and 25 

display the learning curves of the 120-minute user studies for user 1 and user 2, respectively. 

Based on the learning curves, we further calculated ALC scores and F-measures of the NER 

systems at the end of 120-minute annotation. For each user, we also performed a statistical 

analysis to test whether CAUSE2 is statistically significantly different from Random in terms of 

learning curves. Appendix A shows the details of the statistical analysis based on the Wilcoxon 

signed-rank test [86]. Table 20 shows the ALC scores, F-measures at the end of 120-minute 

annotation, and the statistical test P-value. 

According to our results, CAUSE2 significantly outperformed Random globally in terms of ALC 

scores for both users. However, the improvements of CAUSE2 vs. Random are different between 

user 1 and user 2. For user 1, CAUSE2 always performed better than Random, almost for the 

entire annotation process. For building an NER model with F-measure of 0.70, user 1 spent ~86 

minutes in CAUSE2 versus ~117 minutes in Random, indicating about ~31 minutes (26.5%) 

reduction in annotation time against Random. For user 2, the benefit of CAUSE2 mostly showed 

in the early stage of annotation (i.e., the first 30 minutes). After that, both methods seemed to 

perform similarly.  



	
   91	
  

	
  

Figure 24. Learning curves by Random and CAUSE2 from user 1 in the new user study 
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Figure 25. Learning curves by Random and CAUSE2 from user 2 in the new user study 
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Meanwhile, we also simulated the new user study following the design in the simulation study 

(Section 2.3.2). Figure 26 and 27 show the simulated learning curves of Random and CAUSE2 

based on the cost models for user 1 and user 2, respectively. It seemed that the learning curves in 

Figure 26 (simulation) are similar to the learning curves in Figure 24 (user study), indicating that 

the simulation study is a feasible way to mimic the user study. 

	
  

Figure 26. Simulated learning curves of Random and CAUSE2 based on the cost models from 
user 1 
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Figure 27. Simulated learning curves of Random and CAUSE2 based on the cost models from 
user 2 

 

Table 21 shows additional measurements of the annotation processes, such as annotation speed 

and quality. Both users performed faster (> 9 entities per minute) compared to the user study in 

Chapter 3. With respect to annotation quality, both users maintained at least the acceptable level 

of 0.80 in F-measure.  
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Table 21. Annotation quantity, speed, and quality comparison in the 120-minute main study for 
Random and CAUSE2 from two users in the new user study 

User  Method 
Annotated 

Entity count 
Annotation speed 
(Entities per min) 

Annotation quality 
(F-measure) 

User 1 
Random 1,104 9.20 0.85 

CAUSE2 1,090 9.08 0.83 

User 2 
Random 1,087 9.06 0.84 

CAUSE2 1,183 9.86 0.80 
 

 

We further analyzed users’ annotation quality across sessions. Figure 28 shows the annotation 

quality at four 30-minute sessions for both users. Both users’ annotation quality was relatively 

consistent for Random (user 1: 0.85 – 0.87; user 2: 0.83 – 0.85). However, in the user study for 

CAUSE2, both users had reduced annotation quality in the later sessions (User 1: 0.88 – 0.78; 

user 2: 0.88 – 0.73). A survey, presented in Appendix B, revealed that the reduced annotation 

quality could be due to the increased difficulty of samples in later sessions of CAUSE2. We also 

suspect that the decreased annotation quality also affects the benefit of CAUSE2. In particular, 

CAUSE2 showed better performance only for the first 30 minutes for user 2, which could be 

related to the dropped annotation quality of user 2 in the later three sessions (e.g., below 0.8). 

This may also explain why the simulated results (Figure 27) are better than the user study results, 

as the simulation experiments were based on the gold standard annotation with annotation 

quality of 1.0 in F-measure.  
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Figure 28. Annotation quality across different sessions for both Random and CAUSE and for 
both users 

 

More characteristics about user annotation processes are reported in Table 22. These results of 

CAUSE2 from both users are very close to the simulated values (13.12 words per sentence, 2.07 

entities per sentence, 0.33 in entity density). 

Table 22. Additional characteristics of annotation processes for both users for Random and 
CAUSE in each 120-minute annotation 

User Method Sentences 
per min 

Words 
per 

sentence 

Words 
per min 

Entities 
Per 

Sentence 

Entity 
Density 

User 1 
Random 6.91 11.44 79.03 1.33 0.24 

CAUSE2 4.26 13.06 55.61 2.13 0.35 

User 2 
Random 6.61 11.52 76.14 1.37 0.25 

CAUSE2 3.85 13.40 51.60 2.56 0.37 
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4.4 Discussion 

In this study, we integrated the annotation cost estimation models into the previously developed 

AL algorithms and demonstrated the utility of this approach using both simulation and user 

studies. To the best of our knowledge, CAUSE2 is the first kind of AL algorithm that combines 

uncertainty, representativeness, and cost models to efficiently build NER systems for clinical text. 

Despite the success of the CAUSE2 algorithm in this study, it is just a start. Many aspects of the 

user annotation process need to be further explored. Based on our current experiments, we 

conducted some additional analysis, hoping to provide some insights to important issues.  

Differences between users: Our user study showed that the benefit of CAUSE was different 

between two users. In the results section, we have identified that annotation quality could be 

related to this finding. Another possible reason could be related to the quality of the annotation 

time models. As shown in section 3.1, our proposed annotation cost estimation model worked 

better on user 1 than that on user 2. In other words, it is more difficult to predict the annotation 

time by user 2 using the current model. Ideally, we hope to develop models that work effectively 

for most of the users, so that we do not need to develop different models for individual users. 

However, the results from only two users are insufficient to draw any conclusions. In the future, 

we plan to recruit more users for the user study.  

Annotation time models: Another interesting research direction is to develop more sophisticated 

annotation time models, instead of linear regression models. The simple annotation time model 

proposed in this chapter, however, could be improved by capturing the following features also 

associated with the user’s annotation time: (1) Proficiency in recognizing a medical concept: 

users could know one concept better than another, which results in different annotation time for 
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identifying different concepts. (2) Relation between medical concepts or non-concept phrases. 

More complicated relations between concepts could increase the time for users to make accurate 

decisions. (3) Context out of the modeling scope: there were cases where users would need to 

read the context outside a given sentence (i.e. the neighbors of the sentence and section headers) 

to better identify the concepts in the sentence. 

Pros and cons of simulation studies: With an accurate annotation time model, we could evaluate 

a large number of methods and obtain results close to reality. Moreover, a simulation study is 

much more economical than a user study, which could be very costly or time consuming 

(sometimes even unfeasible) to evaluate a large number of methods. However, we need to be 

cautious that the simulated results based on estimated annotation cost do overestimate the benefit 

of AL. Two reasons may cause overestimation of benefit: (1) simulation is often based on gold 

standard; while a user study relies on annotations generated by users in real time. The annotation 

quality in the simulation is 100% versus 80-85% in the user study and (2) The simulated update 

process (e.g. querying -> annotation -> training -> querying…) is ideal, while the actual update 

process in the user study may not be optimal for reasons such as supporting the no-waiting 

annotation workflow. 

AL for clinical NER in the long term: In this study, we limited the annotation time to 120 

minutes, which is not long enough to show the long-term effect of AL methods. To evaluate the 

long-term performance of AL, we simulated both CAUSE2 and Random sampling for up to 20 

hours (10 times as long as the user study) for user 1. Figure 29 shows the simulated learning 

curves of Random and CAUSE2 for 20 hours. 
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Figure 29. Simulated learning curves for Random and CAUSE2 for 20 estimated hours of 
annotation time based on an annotation cost model for user 1 

 

Based on the above figure, we further calculated the estimated annotation time for both methods 

at different F-measure levels (0.70 - 0.81) and reported the percentages of saving using CAUSE2, 

when compared to Random (see Table 23). Simulated results show that AL would achieve higher 

percentages of saving when we extend the annotation time, which is very promising. We plan to 

extend the user study to evaluate the long-term effect of AL for building clinical NER systems. 
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Table 23. Estimated annotation cost savings by CAUSE2 at different F-measures 

F-measure 
Estimated annotation time in hours Annotation time 

reduction percentage CAUSE2 Random 

0.81 10.62 17.10 37.89% 

0.80 7.54 11.21 32.74% 

0.79 6.38 9.26 31.10% 

0.78 5.00 6.93 27.85% 

0.77 3.90 5.46 28.57% 

0.76 3.16 4.42 28.51% 

0.75 2.59 3.33 22.22% 

0.74 2.17 2.73 20.51% 

0.73 1.76 2.03 13.30% 

0.72 1.46 1.60 8.75% 

0.71 1.31 1.44 9.03% 

0.70 1.15 1.22 5.74% 
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CHAPTER 5 

 

Conclusion 

5.1 Summary of key findings 

In this dissertation research, we systematically studied AL for a clinical NER task. We 

summarize the key findings from each chapter in the following paragraphs. 

In Chapter 1, we introduced AL as a possible solution to develop clinical NLP systems in a more 

effective way. A survey was conducted to show the impact of AL in biomedical text processing. 

Most of the studies provided evidence supporting the promises of AL in annotation cost 

reduction for different tasks. However, we have concerns about their assumption of equal 

annotation cost per sample, which is not true for most of the annotation tasks. We also studied 

the literature on AL in a practical setting, which suggested that AL without the appropriate 

consideration of annotation cost could be no different from random sampling.  

In Chapter 2, we conducted a preliminary study to examine multiple existing and novel AL 

algorithms for a clinical NER task. The preliminary results showed that uncertainty sampling 

based algorithms outperformed diversity based sampling methods and random sampling under 

two evaluation assumptions: (1) same cost per sentence, and (2) same cost per word. However, 

we found that under the second evaluation assumption that is intuitively closer to the real world, 

the advantage of uncertainty sampling against random sampling was smaller, as compared to the 

first evaluation assumption. Therefore, we postulated that AL needs to be further evaluated in the 

real-world setting. 
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In Chapter 3, we developed an AL enabled annotation system for NER (Active LEARNER), 

which allows us to assess the practicality of AL in a user study. Meanwhile, we proposed a 

clustering and uncertainty sampling engine (CAUSE), which considers both the 

representativeness and the uncertainty of sentences. The results in the user study from the two 

nurses showed a mixed outcome. For one user, AL helped save annotation time compared to 

random sampling. For another, however, random sampling achieved better performance than AL. 

Moreover, we discovered that human factors, such as annotation speed and annotation quality, 

also affected the user study results. 

In Chapter 4, we proposed an annotation cost modeling formula, which was integrated in the 

CAUSE model to query the sentences that are most informative per estimated cost. This cost-

conscious model, CAUSE2, was compared with CAUSE, uncertainty sampling, and random 

sampling in the simulation using estimated annotation time as cost. Furthermore, we conducted a 

new user study to evaluate CAUSE2 and random sampling. The results from two users showed 

that CAUSE2 globally outperformed random sampling. To achieve an NER model with 0.70 in 

F-measure, CAUSE2 reduced the annotation time of 26.5% compared to random sampling for 

one user. However, the advantage of AL was not obvious for another user. By further analyzing 

the results with the users’ annotation data, we found that annotation quality and annotation cost 

model mainly caused the difference in benefit of AL for two users. We suggested that a larger 

number of users are needed to test whether AL could work effectively for most users in the 

clinical NER task. 

 In this chapter, we summarized our contributions from the dissertation research, further 

analyzed some limitations in the study, and describe potential future directions for the work. 
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5.2 Innovations and contributions 

5.2.1 Innovations 

We propose a novel AL algorithm (CAUSE) that combines uncertainty sampling and clustering 

in an innovative way. The conventional hybrid method combines uncertainty and diversity 

sampling by assigning sentences overall scores, which are a function of their uncertainty and 

diversity (e.g. summation of the weighted scores of both uncertainty and diversity) [66, 67]. The 

CAUSE, different from the conventional method, implements a novel two-layer sampling 

strategy, which performs cluster sampling to rank clusters followed by representative sampling 

to find the most representative sample for the top ranked cluster.  

We further improve the CAUSE model to CAUSE2, which queries the most informative and least 

costly sentences based on their three properties: uncertainty, representativeness, and annotation 

time. AL with real annotation cost has been empirically studied [60], but our annotation cost 

model is new for the clinical NER task with an interpretable formula for the annotation process.  

To the best of our knowledge, this is the first study on building practical AL systems for clinical 

NER. This is also the first study on evaluating the AL methods for the real-time clinical NER in 

a user study. Previous studies of AL with actual annotation cost for NER were not actually based 

on the real-time setting [60, 61, 87, 88]. They collected the annotation time for a set of randomly 

selected samples and then performed simulation on these annotated samples. However, they 

ignored the human factors during the annotation process. In our study, we truly evaluated AL in 

a user study with consideration of all factors in the annotation. We discovered that human factors 

created the variance in the AL results and AL with better modeling on human factors could 

improve the actual performance. 
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5.2.2 Contributions 

Our studies have contributed in the areas of biomedical informatics, biomedical NLP, computer 

sciences, and healthcare. With respect to biomedical informatics, we conducted empirical studies 

of AL in clinical NER. Over twenty unique querying methods were systematically evaluated 

using both theoretical and practical measurements. Moreover, our study demonstrated an 

informatics tool that truly interacts with medical domain experts, and is one of the newest 

applications that cross biomedical research and information technology. From the user study, we 

obtained valuable experience to enhance the practical usage of biomedical NLP technology. Our 

novel methods, based on state-of-the-art computer science techniques, are generalizable for text 

processing tasks in open domains. They contributed to the development of interactive machine 

learning and NLP technologies in computer science. With reference to healthcare, our system 

could enhance the efficiency in building clinical NER systems, thus facilitating clinical research 

that uses EHR data. Our novel AL paradigm and system could be one of the big data analytic 

solutions in healthcare. 

 

5.3 Limitations and future work 

The user study results are only based on two users, which is not sufficient to draw conclusions 

about the effectiveness of AL in practice. From the perspective of evaluation, two querying 

methods may not be comparable when users performed very differently in annotation speed and 

annotation quality. Although the annotation training was designed to improve the consistency of 
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users’ annotation across different methods, the method evaluated later in the user study very 

likely gained advantage from the prior experiments since the users’ annotation performance 

generally increased over time.   

The annotation cost models we proposed do not consider the differences in annotation difficulty 

across different sentences, which could be an important variable to improve the estimation of 

annotation time. Moreover, the user-specific modeling process may require a significant effort in 

annotation data collection. The personalized annotation cost models may not be consistent over 

time. In addition, the performance of our methods also relied on the quality of clustering results. 

We did not apply a systematic parameter tuning strategy to find an optimal parameter setting 

(e.g. optimal number of semantic topics and clusters). The clustering results were not 

quantitatively evaluated and optimized in our study.  

In the future, we plan to extend the user study involving a larger number of expert users 

involved. A standardized user study is needed for a larger number of users. To reduce the 

influence of human factors, we plan to develop a novel integrated system that merges all 

querying methods and evaluates them at the same time in the user study. In the annotation cost 

model, we will add more predictive variables, such as annotation time and annotation difficulty 

based on the document frequency of concepts and the complexity of syntactic structures of 

sentences. A more general annotation model is also needed to compare to the personalized model 

used in this study. To investigate the human factor influence on active learning results in the 

economical simulation study, we would design experiments by adding noise on both estimated 

annotation time and annotation quality. Moreover, we also plan to improve the querying methods 

by designing better heuristics to optimize both the informativeness and the annotation cost of 

sentences. In terms of interface improvement, we will enhance user’s annotation experience by 
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adding interactive components (e.g. annotation recommendations) to increase user’s annotation 

speed and annotation quality. 

 

5.4 Conclusion  

In this dissertation research, we systematically studied AL in a clinical NER task. We built a 

practical AL algorithm to query the most informative and least costly sentences. The results 

showed AL has the potential to save annotation time and improve model quality for building 

ML-based NER systems. To the best of our knowledge, this is the first study on building 

practical AL systems for clinical NER, providing a new direction of AL development in practice 

for clinical research. 
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Appendix A. Wilcoxon Signed-rank Test to Evaluate Difference Learning Curves 

First, we generated the smooth learning curves, which plot the F-measures at every 5-minute 

time stamp. The F-measure point at a 5-minute time stamp (x) is the average F-measure of the 

actual F-measure points between the current time stamp (x) and the previous time stamp (x – 1). 

There are 24 points in each smoothed learning curve presenting the F-measures from 0 to 120 

minutes of annotation. Figure 30 and 31 demonstrate the smoothed learning curves from user 1 

and user 2, respectively, in the new user study. 

As every method has an F-measure point at the same time stamp, the learning curves from 

different methods are comparable. Then we performed a statistical analysis based on Wilcoxon 

signed-rank test for the hypothesis that two methods have statistically significant difference in 

learning curves. Table 24 shows the Wilcoxon signed-rank test results. 

 

Table 24. Wilcoxon signed-rank test based on the smooth learning curves by Random and 
CAUSE2 from user 1 and user 2 

Users Methods 
P-values based on 
Wilcoxon signed-

rank test 
Signed rank 

User 1 
Random 

6.4x10-5 22 
CAUSE2 

User 2 
Random 

6.5x10-4 37 
CAUSE2 
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Figure 30. Smoothed learning curves of Random and CAUSE2 from user 1 in the new user study 
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Figure 31. Smoothed learning curves of Random and CAUSE2 from user 2 in the new user study  
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Appendix B. Survey from Two Users 

User 1: 

Categories Description 
Score 

Comments 
 Week 6 Week 7 

Average 
Length of 
sentence 

Please score your impression on the average 
length of the set of sentences given in each 
week.  
Note: Higher score represents your impression 
that the sentences were longer. We preset score 
of 3 for Week 6 as the reference. You may score 
3 for the sentences in week 7 if their average 
length was very similar to the one in week 6; or 
score 1 or 2 if it was lower than week 6; or score 
4 or 5 if it was higher than week 6. 

1 2 3 4 5 1 2 3 4 5 No change 

Medical 
concept density 

per sentence 

Please score your impression on the average 
density of medical concepts from the sentences 
given in each week.  
Note: Higher score represents your impression 
that medical concepts in a sentence were denser 
(or the ratio of the words that you tagged as part 
of the medical concept in a sentence was 
higher). We preset score of 3 for Week 6 as the 
reference. You may score 3 for the concept 
density in week 7 if it was very similar to week 
6; or score 1 or 2 if it was lower than week 6; or 
score 4 or 5 if it was higher than week 6. 

1 2 3 4 5 1 2 3 4 5 No change 

Annotation 
difficulty 

Please score your impression on the annotation 
difficulty in annotating the sentences given in 
each week. 
Note: Higher score represents your impression 
that the sentences were more difficult to 
annotate. We preset score of 3 for week 6 as the 
reference. You may score 3 for the annotation 
difficulty in week 7 if it was very similar to 
week 6; or score 1 or 2 if it was less difficult 
than week 6; or score 4 or 5 if it was more 
difficult than week 6. 

1 2 3 4 5 1 2 3 4 5 Harder 
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Annotation 
difficulty 

change over 
four 30-minute 

sections 

Please score your impression on the change of 
annotation difficulty over section 1, 2, 3, and 4 
for the sentences given in each week. 
Note: Score 5 represents your impression that 
the annotation was more and more difficult in 
the later sections; score 3 represents your 
impression that the annotation difficulty was 
very similar in each section; score 1 represents 
your impression that the annotation was less and 
less difficult in the later sections; score 4 
represents your impression that the annotation 
seems more difficult over sections but the 
change was not very obvious; score 2 represents 
your impression that the annotation seems less 
difficult over sections but the change was not 
very obvious. 

1 2 3 4 5 1 2 3 4 5 

Please also 
comment on 
what 
probably was 
changing 
over sections 
others than 
annotation 
difficulty if 
there is any. 

Clinical 
relevancy of 

sentences 

Please score your impression on the clinical 
relevance of the sentences given in each week. 
Note: Higher score represents your impression 
that the sentences contained more clinically 
relevant information. We preset score of 3 for 
week 6 as the reference. You may score 3 for the 
clinical relevancy in week 7 if it was very 
similar to week 6; or score 1 or 2 if it was less 
than week 6; or score 4 or 5 if it was more than 
week 6. 

1 2 3 4 5 1 2 3 4 5 
More 
relevant 
sentences 

Diversity of 
sentences 

Please score your impression on the diversity of 
sentences given in each week. 
Note: Higher score represents your impression 
that the sentences contained more diverse or less 
duplicate content topics. We present score of 3 
for week 6 as the reference. You may score 3 for 
the sentence diversity in week 7 if it was very 
similar to week 6; or score 1 or 2 if it was less 
diverse than week 6; or score 4 or 5 if it was 
more diverse than week 6. 

1 2 3 4 5 1 2 3 4 5 Same 

	
  
Please	
  also	
  comment	
  on	
  your	
  impression	
  on	
  the	
  difference	
  of	
  user	
  study	
  between	
  week	
  6	
  
and	
  7	
  others	
  than	
  the	
  listed	
  categories	
  if	
  there	
  are	
  any.	
  
	
  
	
  
Comment: There is no significant difference in length, clinical relevance, and diversity. 
However, week 7 seems to be a little more difficult in terms of annotation difficulty. The phrases 
were more ambiguous and the gold standard was inconsistent. Also, the clinical notes in this 
corpus seemed to have more abbreviations and were written in a “lazier” way than the previous 
weeks. 
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User	
  2:	
  	
  
	
  

Categories Description 
Score 

Comments 
 Week 6 Week 7 

Average 
Length of 
sentence 

Please score your impression on the average 
length of the set of sentences given in each 
week.  
Note: Higher score represents your impression 
that the sentences were longer. We preset score 
of 3 for Week 6 as the reference. You may score 
3 for the sentences in week 7 if their average 
length was very similar to the one in week 6; or 
score 1 or 2 if it was lower than week 6; or score 
4 or 5 if it was higher than week 6. 

1 2 3 4 5 1 2 3 4 5  

Medical 
concept density 

per sentence 

Please score your impression on the average 
density of medical concepts from the sentences 
given in each week.  
Note: Higher score represents your impression 
that medical concepts in a sentence were denser 
(or the ratio of the words that you tagged as part 
of the medical concept in a sentence was 
higher). We preset score of 3 for Week 6 as the 
reference. You may score 3 for the concept 
density in week 7 if it was very similar to week 
6; or score 1 or 2 if it was lower than week 6; or 
score 4 or 5 if it was higher than week 6. 

1 2 3 4 5 1 2 3 4 5  

Annotation 
difficulty 

Please score your impression on the annotation 
difficulty in annotating the sentences given in 
each week. 
Note: Higher score represents your impression 
that the sentences were more difficult to 
annotate. We preset score of 3 for week 6 as the 
reference. You may score 3 for the annotation 
difficulty in week 7 if it was very similar to 
week 6; or score 1 or 2 if it was less difficult 
than week 6; or score 4 or 5 if it was more 
difficult than week 6. 

1 2 3 4 5 1 2 3 4 5  
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Annotation 
difficulty 

change over 
four 30-minute 

sections 

Please score your impression on the change of 
annotation difficulty over section 1, 2, 3, and 4 
for the sentences given in each week. 
Note: Score 5 represents your impression that 
the annotation was more and more difficult in 
the later sections; score 3 represents your 
impression that the annotation difficulty was 
very similar in each section; score 1 represents 
your impression that the annotation was less and 
less difficult in the later sections; score 4 
represents your impression that the annotation 
seems more difficult over sections but the 
change was not very obvious; score 2 represents 
your impression that the annotation seems less 
difficult over sections but the change was not 
very obvious. 

1 2 3 4 5 1 2 3 4 5 

Please also 
comment on 
what 
probably was 
changing 
over sections 
others than 
annotation 
difficulty if 
there is any. 

Clinical 
relevancy of 

sentences 

Please score your impression on the clinical 
relevance of the sentences given in each week. 
Note: Higher score represents your impression 
that the sentences contained more clinically 
relevant information. We preset score of 3 for 
week 6 as the reference. You may score 3 for the 
clinical relevancy in week 7 if it was very 
similar to week 6; or score 1 or 2 if it was less 
than week 6; or score 4 or 5 if it was more than 
week 6. 

1 2 3 4 5 1 2 3 4 5  

Diversity of 
sentences 

Please score your impression on the diversity of 
sentences given in each week. 
Note: Higher score represents your impression 
that the sentences contained more diverse or less 
duplicate content topics. We present score of 3 
for week 6 as the reference. You may score 3 for 
the sentence diversity in week 7 if it was very 
similar to week 6; or score 1 or 2 if it was less 
diverse than week 6; or score 4 or 5 if it was 
more diverse than week 6. 

1 2 3 4 5 1 2 3 4 5  

	
  
Please	
  also	
  comment	
  on	
  your	
  impression	
  on	
  the	
  difference	
  of	
  user	
  study	
  between	
  week	
  6	
  
and	
  7	
  others	
  than	
  the	
  listed	
  categories	
  if	
  there	
  are	
  any.	
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