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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Motivation 

Interest in alternative energy sources has increased as world energy consumption 

continues to grow and oil reserves shrink. Stimulated by developing economies, the 

global energy demand is predicted to grow by 30-40% between 2010 and 2040 with oil as 

the main fuel.
1,2

 A substantial portion of that growth is attributed to energy consumption 

for use in transportation, which even with impressive gains in fuel economy, is expected 

to rise by 45% over 30 years.
2
 The development of Non-OECD (Organization for 

Economic Cooperation and Development) economies, particularly China, is projected to 

drastically increase the usage of commercial and personal vehicles.
1-3

 Between 2010 and 

2040, the global passenger car fleet alone is expected to double, reaching almost 1.7 

billion cars.
1-3

 All of this growth places additional demand on the current global 

consumption of 86 million barrels of crude oil per day.
3
 Carbon dioxide levels similarly 

will rise by a predicted 43% through 2035 with the increased oil consumption, causing 

global warming and air quality concerns.
1
 Alternative sources of less polluting energy 

and impressive gains in fuel economy are pivotal in keeping pace with the growing 

energy demand and alleviating environmental concerns. Therefore, there are significant 

efforts to develop alternative energy conversion devices as a replacement for the internal 

combustion engine, in order to lessen our global dependence on fossil fuels.  



 

 

2 

 

1.2 The Fuel Cell 

Fuel cells are an energy conversion device with the potential to replace current 

power generation devices across a variety of applications both portable and stationary 

(cell phones, lap tops, vehicles, residential power plants, etc.). They provide power by 

directly converting a fuel’s chemical energy into usable electricity (with heat as a by-

product).
4-6

 Fuel cells produce power with high energy conversion efficiency, little noise, 

and low maintenance costs.
4,6

 Additionally, the wide variety of fuel cells (Phosphoric 

Acid, Alkaline, Solid Oxide, etc.) provides fuel flexibility with the possible use of non-

carbon fuels which will decrease or eliminate the production of harmful greenhouse 

gases.
4,6

 Table 1 lists key characteristics and applications for the five main fuel cell types. 

Among the various fuel cell types, proton exchange membrane fuel cells 

(PEMFCs) are presently the best suited for transportation applications.
4-7

 A standard 

PEMFC is depicted in Figure 1. A PEMFC consists of an anode, an ion exchange 

membrane, and a cathode. A fuel such as hydrogen or methanol is fed to the anode while 

an oxidant (typically O2 from air) is fed to the cathode. The fuel is oxidized at the anode, 

creating protons and electrons. The ions migrate through the ionically conductive 

membrane while electrons flow through an external circuit to the cathode where they are 

consumed in the cathode electrode reaction. At the air cathode, protons, O2 molecules, 

and electrons react to form water.
4,8
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Table 1: Comparison of the five most common fuel cell types. Modified from [9]. 

 

Fuel Cell 

Type 

Operating 

Temperature 

Efficiency Advantages/ 

Disadvantages 

Applications 

Alkaline  90-100°C 60% Fast cathode reaction 

leads to high 

performance. Low cost 

components. Sensitive 

to CO2 in fuel and air. 

Requires electrolyte 

management 

 

Military, space 

Polymer 

exchange 

membrane 

50-100°C 35-60% Solid electrolyte reduces 

corrosion and electrolyte 

management. Low 

operating temperature 

and quick start-up. 

Expensive catalyst. 

Sensitive to fuel 

impurities. 

 

Backup power, 

portable power, 

distributed 

generation, 

transportation, 

specialty vehicles 

Phosphoric 

acid 

150-200°C 40% 

 

High temperature 

enables cogeneration 

and increased tolerance 

to fuel impurities. 

Expensive Pt catalyst. 

Long start up time and 

low power densities 

 

Distributed 

generation 

Molten 

carbonate 

600-700°C 45-50% High efficiency with 

fuel flexibility. Uses a 

variety of catalysts. 

Suitable for 

cogeneration. High 

temperature corrosion, 

long start up time, and 

low power densities. 

 

Electric utility, 

distributed 

generation 

Solid 

oxide 

700-1000°C 60% High efficiency with 

fuel flexibility. Uses a 

variety of catalysts. 

Suitable for 

cogeneration. High 

temperature corrosion 

and long start up time. 

Auxiliary power, 

electric utility, 

distributed 

generation 
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 Direct methanol fuel cell Hydrogen fuel cell 

Fuel: Liquid methanol Humidified hydrogen gas 

Anodic reaction: CH3OH + H2O → CO2 + 6H
+
 + 6e

-
 H2 → 2H

+
 + 2e

-
 

Cathodic reaction: 3/2 O2 + 6H
+
 + 6e

-
 → 3H2O 2H

+
 + ½ O2 + 2e

-
 → H2O 

 

Figure 1: A diagram of a proton exchange membrane fuel cell with the electrode 

reactions for a direct methanol fuel cell (DMFC) and a hydrogen fuel cell (HFC).  
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Humidified 

air 

H2O and 

air 

Unreacted fuel 

+ 

Fuel oxidation 

products 
Anode Ion Exchange 

Membrane 

Cathode 

Load e- 

H+ 
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The two most common PEMFCs are hydrogen fuel cells (HFCs) and direct 

methanol fuel cells (DMFC), which are both subsets of PEMFCs since they use a solid 

polymer ionomer membrane to transport protons between the electrodes.
4,6

 They differ, 

however, in their fuel source as HFCs use gaseous hydrogen while DMFCs use an 

aqueous solution of liquid methanol. Both fuel cell types are under current development 

since they offer different advantages. Hydrogen fuel cells offer high maximum power 

conversion efficiency (50%), quick start-up operation, and no greenhouse gas 

emissions.
6,7

 Methanol fuel cells are appealing because they utilize a liquid fuel. Liquid 

fuels provide higher energy storage densities than a gaseous fuel like H2. Additionally, 

fuels cells that use liquid fuels allow for the utilization of our current fuel distribution 

infrastructure, without the on-board storage issues associated with hydrogen gas.
6,7

 

Successful commercialization of both HFCs and DMFCs is hindered, however, by the 

lack of a suitable low cost proton conducting membrane with the requisite performance 

and durability properties.
4,5

  

 

1.3 The Direct Methanol Fuel Cell Membrane 

A key component of a DMFC is the proton exchange membrane which transports 

protons from the anode to the cathode. This membrane must also act as an electrical 

insulator to prevent short circuits between electrodes and as a barrier to fuel and air 

crossover to prevent chemical short circuits. The membrane in a DMFC will always 

operate in a water-swollen state due to the humidification of the incoming air, the 

production of water at the cathode, and the presence of water in the liquid anode feed 
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stream.
4,5,10

 The ideal DMFC membrane should have the following properties: high 

proton conductivity, low methanol permeability, good chemical/thermal stability, zero 

electronic conductivity, good mechanical strength, and low cost.
4,5,8,10

  

DuPont’s Nafion
®
 membranes, composed of a perfluorosulfonic acid (PFSA) 

polymer, have been extensively studied for HFC and DMFC applications.
4,7,10-12

 The 

polytetrafluoro-ethylene (PTFE) backbone provides mechanical integrity, while the 

sulfonate-terminated side chains promote proton transport (see Figure 2 for the chemical 

structure of Nafion
®
).

8,13
 The polymer equivalent weight (EW, with units of g dry 

polymer/mol sulfonate units) or ion exchange capacity (IEC, the inverse of equivalent 

weight with units of mmol/g) is a measure of the polymer composition. EW (or IEC) is a 

function of side chain length and the length of backbone repeat units between side chains 

(the side chain density). Decreasing the side chain length and/or the backbone repeat 

units between side chains lowers the EW. At a lower EW, a PFSA polymer will often 

become less crystalline due to shorter CF2 runs between side chains. The reduction in 

crystallinity reduces the polymer’s mechanical properties and increases water swelling 

(often accompanied by an increase in methanol permeability). However, the proton 

conductivity typically increases with decreasing EW due to the increased concentration 

of charged groups in the polymer. A common issue in the development of fuel cell 

ionomer membranes is consequently the tradeoff between high proton conductivity (i.e. 

low EW), low methanol permeability, and acceptable mechanical properties.
8,14

 Nafion
®

 

117 with an equivalent weight of 1100 g/mol (an IEC of 0.91 mmol/g) is the current 

membrane standard for direct methanol fuel cells. 
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Nafion
®
 117 has many desirable fuel cell properties: it exhibits excellent chemical 

and oxidative stability, it has a high proton conductivity for temperatures ≤80ºC under 

full humidification conditions, and it has good mechanical properties.
8,10-18

 Thus, Nafion
®

 

performs well in H2/air fuel cells at moderate temperatures. It suffers however from high 

methanol crossover when used in direct methanol fuel cells (DMFCs). Methanol 

crossover causes fuel loss and a cathodic mixed potential resulting in diminished power 

output and lower fuel utilization efficiency.
8,10,11

 Nafion
®
 does not perform well in fuel 

cells at operating temperatures >80°C. Higher operating temperatures are desired for an 

automotive PEMFC to increase the slow fuel oxidation reaction rate, to improve catalyst 

tolerance to CO poisoning (an intermediate product during methanol electro-oxidation), 

and to lower the size and complexity of radiators and fans that regulate the fuel cell 

temperature.
7,8,11,16-20

 Nafion
®
 suffers greatly at fuel cell operating temperatures >100°C, 

where the membrane dehydrates (a common problem of hydrogen fuel cells at high 

temperature and low feed air humidity) causing a loss in proton conductivity. High 

temperatures in a DMFC also increase the methanol crossover rate due to greater solvent 

sorption.
11,15,20

 The current challenge for fuel cell engineers is to develop a better 

Figure 2: Chemical structure of Nafion® (k=12 for 1100 EW). Image taken from [63] 



 

 

8 

 

performing DMFC membrane by keeping the proton conductivity high while lowering 

methanol crossover at both low and high fuel cell operating temperatures. 

 

1.4 Alternative Direct Methanol Fuel Cell Membranes 

Researchers have studied a wide variety of polymer materials in an attempt to find 

a DMFC membrane that performs better than Nafion
®
 (i.e. a membrane that exhibits a 

lower methanol permeability with the same, or higher, proton conductivity as Nafion
®
). 

Some polymers that have been studied include: sulfonated poly(ether ether ketone),
11,21

 

sulfonated polyimide,
22

 and sulfonated polyphosphazene.
23

 The microstructure of these 

polymers can produce more tortuous diffusional pathways, restrict the size of hydrophilic 

domains, and create dead end pores, which cause a reduction in the methanol 

permeability.
11

 This has been demonstrated in sulfonated poly(ether ether ketone) with its 

stiffer and less hydrophobic backbone and its less hydrophilic side chains, as compared to 

Nafion
®
.
21

 These structural differences result in hydrophilic domains that are not well 

formed, a decrease in membrane swelling (after immersion in methanol solutions), and a 

lowering in methanol permeability.
21

 Figure 3 shows the differences in polymer 

microstructure between Nafion
®
 and sulfonated polyetherketone.

11 
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Figure 3: Reported microstructure differences between Nafion
®
 and sulfonated 

polyetherketone. Image taken from reference [11]. 

 

A poly(ether ether ketone) ionomer with a 47% degree of sulfonation 

(corresponding to an ion exchange capacity of 1.43 mmol/g) had a methanol permeability 

that was only 3% that of Nafion
®
 115 (in 1 M methanol at 80°C). Unfortunately there 

was also a loss in proton conductivity (in water at 80°C); the conductivity was 40% that 

of Nafion
®
. The larger reduction in methanol permeability as compared to conductivity 
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resulted in a selectivity (defined as proton conductivity divided by methanol 

permeability) that was ~14 times greater than that of Nafion
®
 115.  

Crosslinking the polymer matrix has also been used to reduce membrane swelling 

and methanol permeability. Crosslinks tie the polymer chains together which increases 

the rigidity (resistance to swelling) of the polymer network. The effects of crosslinking 

have been demonstrated in covalently crosslinked sulfonated polyphosphazene.
23

 Figure 

4 shows the water diffusion coefficient and proton conductivity for Nafion
®

 117 

compared to sulfonated polyphosphazene (POP) with an IEC of 1.40 mmol/g, both 

crosslinked and uncrosslinked. The increased polymer rigidity was apparent in the 

reduced water diffusion coefficient (which is often comparable to the methanol diffusion 

coefficient) after crosslinking. The methanol diffusion coefficient was found to be 

1.62*10
-8

 cm
2
/s (at 30°C, methanol activity=0.80) in crosslinked POP compared to 

6.5*10
-6

 cm
2
/s (at 30°C in 1.0 M methanol) in Nafion

®
 117.

23
 However, the higher 

resistance towards methanol transport was again accompanied by a loss in proton 

conductivity (~30% lower than Nafion
®
 117). A direct comparison in selectivity between 

Nafion
®

 and crosslinked POP under identical testing conditions was never provided by 

the authors. Nonetheless, an improvement in selectivity is evident due to the greatly 

reduced methanol diffusion coefficients in crosslinked POP.  
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Figure 4: A) Dependence of the water diffusion coefficient on temperature for 1.4 IEC 

sulfonated polyphosphazene membranes (with and without crosslinking) and Nafion
®
 

117. B) Temperature dependence of the proton conductivity in water for 1.4 IEC 

sulfonated polyphosphazene membranes, with ( ) and without ( ) crosslinking, and 

Nafion
®
 117. Plots taken from [23]. 

A 

B 

Nafion
®
 117 

POP-1.4 IEC 

POP-1.4 IEC/crosslinked 

Nafion
®
 117 
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Another common approach for DMFC membrane fabrication is to blend Nafion
®

 

or another proton conducting polymer such as sulfonated poly(ether ether ketone), with 

inorganic particle fillers such as silica,
24

 silicon dioxide,
25

 or acid functionalized zeolite.
26

 

Similarly, Nafion
®
 has been blended or laminated with a hydrophobic polymer like 

fluorinated ethylene propylene (Teflon
®
),

27,28
 or poly(vinylidene fluoride).

8,29
 These 

methods are all similar and involve mixing particles or hydrophobic polymers throughout 

the ionomer matrix in order to reinforce the membrane (control water/methanol swelling) 

and block methanol transport. Similar to crosslinking however, there was always a loss in 

proton conductivity when the methanol permeability was lowered. For example, the 

selectivity (proton conductivity divided by methanol permeability) of a Teflon
®
/Nafion

®
 

blended membrane was enhanced with increasing Teflon
®

 content due to a decline in 

methanol permeability (see Figure 5A).
27

 Because of the added resistance to proton 

conduction however, it was found that no more than 40 wt% Teflon
®
 should be added to 

a membrane for use in DMFCs when using a 1.0 M methanol feed. Figure 5B shows the 

effect of Teflon
®

 wt% on DMFC performance. Higher or lower than 40 wt% Teflon
®

 

resulted in lower power output due to excessive proton transport resistance or methanol 

crossover, respectively. The undesirable reduction in proton conductivity that 

accompanied the desired decrease in methanol permeability limited the improvement in 

DMFC power output for the Nafion
®
/Teflon

®
 blended membranes, as compared to 

Nafion
®
. 
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Figure 5: A) Relative selectivity (ratio of membrane selectivity to the selectivity of 

Nafion
®

 117) as a function of Teflon-FEP content. Through-plane conductivity at 25°C in 

water, and methanol permeability at 60°C with 1.0 M methanol. B) Effect of wt% 

Teflon
®

 on DMFC performance in Teflon
®
/Nafion

®
 blended membranes. 1.0 M methanol 

feed and ambient pressure air at 500 sccm. T=60°C. Plots taken from [27]. 

A 

B 



 

 

14 

 

The focus of all the above studies was to retard trans-membrane methanol 

permeation without a substantial loss in proton conductivity. As demonstrated in these 

examples however, there was always a drop in conductivity as compared to Nafion
®

 

when the methanol permeability of the membrane was lowered. The improved DMFC 

performance due to lower methanol crossover was therefore negated by the drop in power 

output associated with the proton conductivity loss. Table 2 lists the proton conductivity 

and methanol permeability of various DMFC membranes reported in literature. Figure 6 

is a plot of these properties for the same membranes. While there is a decrease in 

methanol permeability without sacrificing proton conductivity (compared to Nafion
®
) for 

some membranes, they frequently suffer from poor adhesion between the catalyst layer 

and the ionomer due to the lack of an appropriate binder.
30,31

 A recent literature review 

reported that only 40% of DMFC membranes ever get tested in an actual fuel cell due 

largely to this complication.
30

 So although many membranes have been reported as being 

more selective (proton conductivity divided by methanol permeability) than Nafion
® 

117, 

they ultimately did not perform significantly better than Nafion
®
 in a DMFC due to either 

the binding issues and/or the commonly observed loss in proton conductivity.
30,31

 

Research therefore continues in the search of a DMFC membrane which provides 

significant performance improvement over commercial Nafion
®
 without an increase in 

resistance to proton transport. 
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Table 2: Wide variety of DMFC membranes and their properties reported in literature. 

Figure 6 is a plot of these membrane properties. Table adapted from [30]. 

Proton Exchange Membrane Proton 

Conductivity 

(S/cm) 

Methanol 

Permeability 

(cm
2
/s)(x10

6
) 

Blends of Sulfonated polyphosphazene- 

polybenzimidazole
32

 

 

0.060
d
 1.300

d 

Crosslinked poly(vinyl alcohol)/poly(acrylic 

acid)/silica hybrid
33

 

 

0.012
a
 0.210

a 

Nitrile-functional, disulfonated poly(arylene ether 

sulfone)
34

 

 

0.090
a
 0.870

a 

Sulfonated poly(styrene)/poly(tetrafluoroethylene) 

composite
35

 

 

0.110
a
 0.670

a 

Sulfonated co-polyimide
36

 

 
0.082

b
 0.480

b 

4-Dodecylbenzene sulfonic acid-doped polyethylene 

glycol/silica hybrid
37

 

 

0.004
a
 0.020

c 

Sulfonated poly(ethersulfone)-Cardo
38

 

 
0.004

a 
0.210

a 

Sulfonated poly(styrene)
39

 

 
0.050

a 
0.520

a 

IonClad
®
 R-1010

40
 

 
0.080

a 
0.590

a 

Sulfonated polyimide
41

 

 
0.120

b 
0.570

b 

Sulfonated poly(ether ether ketone)
42

 

 
0.070

a 
0.300

a 

Poly(styrene sulfonic acid) grafted onto 

poly(vinylidene fluoride)
43

 

 

0.120
a 

1.500
a 

Sulfonated poly(styrene-b-isobutylene-b-styrene) block 

copolymer
44

 

 

0.019
a 

0.150
a 

Poly(vinyl alcohol)/poly(styrene sulfonic acid-co-

maleic acid) blend
45

 

 

0.095
a 

0.266
a 

Nafion
®
 117

46
 

 
0.100

a 
2.60

a 

 

a 
= at room temperature (20-25°C) 

b
= at 30°C 

c
= at 35°C 

d
= at 60°C 
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Figure 6: Proton conductivity plotted against methanol permeability for a wide variety of 

DMFC membranes ( ), along with Nafion
®

 117 ( ). The polymer, proton conductivity, 

methanol permeability, and tested temperatures are all contained in Table 2. 

 

1.5 Membrane Stretching 

Uniaxial and biaxial stretching is a method typically used in the 

polymer/membrane industry to enhance a membrane’s mechanical strength by aligning 

and orienting polymer chains, causing in most cases an increase in polymer 

crystallinity.
46-53

 The membrane stretching technique has garnered additional attention for 

the production of DMFC membranes with Nafion
®
 polymer. Pre-stretched recast Nafion

®
 

films exhibited a low methanol permeability while maintaining a high proton 

conductivity.
46-49

 These membrane properties are highly desirable for DMFC applications 
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and eliminate the compromises required when using other DMFC membrane fabrication 

techniques, such as those discussed in Section 1.4.   

To understand the stretching effect on ionomeric perfluorosulfonic acid (PFSA) 

membranes, one should first consider the starting morphology. PFSA ionomers often 

consist of three phases: crystalline, amorphous, and ionic.
54,55

 Thus, Nafion
®
 is a semi-

crystalline polymer with the degree of crystallinity influenced by the side chain density 

and length. Increasing the side chain density and/or length creates a more amorphous 

polymer by decreasing the chain packing efficiency.
12

 Ionomers, such as Nafion
®
, are 

known to rearrange into a nanophase-separated morphology where the polar, ionic side 

chains create clusters within the hydrophobic, backbone matrix. The key properties of 

interest (proton conductivity, methanol permeability, water diffusivity, etc.) all depend on 

the ionic clusters’ size, spatial distribution, connectivity, and organization.
55

 This is 

because the transport of protons, water, and methanol depend on how ionic/hydrophilic 

percolation pathways develop throughout the membrane. 

A wide variety of models have been proposed over the years to describe the ionic 

domains in Nafion
®
 perfluorosulfonic acid polymer. A well-referenced model considers 

the ionic domains as swollen inverse micelles of spherical shape.
56

 Recently, studies have 

provided strong support for an elongated inverse micelle morphology for the ionic 

domains (i.e. water channels).
55,57-61

 Some of the finer details (extent of clustering, 

crystallite shape, and dimensions) of this model are still under investigation, but the 

hydrophobic polymer backbone creates a cylindrical shell that surrounds the hydrophilic 
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side chains creating an ionic channel (see Figure 7A). These ionic channels are packed 

into bundles (as shown in Figure 7B) which result in locally parallel channels. 

 

   

Figure 7: A) Two views of the cylindrical water channels formed in Nafion
®
 by the 

hydrophobic backbones surrounding the ionic side chains. Shading indicates which 

chains are in front and in back (darker shaded chains are more in front). B) The clustering 

(or bundling) of nearby channels which result in locally parallel channels. Images taken 

from [58]. 

 

The bundles of water channels in Nafion
®
 are thought to orient (as shown in 

Figure 8) via two simultaneously occurring mechanisms upon stretching.
55,59-61

 The first 

mechanism is the rotation of the ionic channel bundles, so that the axial (longitudinal) 

direction of the individual channels aligns parallel to the stretching direction (Figure 

8B).
60

 The second mechanism is the better channel alignment within the bundles caused 

by the continual sliding and disentangling of the individual channels (Figure 8C).
60

 At 

low strain, the first mechanism dominates since the second mechanism occurs typically at 

higher draw ratios.
60

 Crystallites similarly undergo reorientation under stretching and are 

hypothesized to better align the water channels and reinforce the oriented channel 

A B 
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structure.
58,61

 The change in PFSA polymer microstructure caused by stretching is 

reported to slow water/methanol transport in the through plane direction (perpendicular to 

the stretching direction) by increasing the tortuosity of the hydrophilic pathways (as 

shown in Figure 8).
55,61

    

 

 

 

Figure 8: The orientation of the water channel bundles upon uniaxial stretching of a 

PFSA polymer like Nafion
®
. A) The initial unordered state of bundles consisting of 

loosely aligned and ordered channels. B) Bundles rotating to situate the longitudinal 

direction of the channels parallel to the stretching direction. C) Further channel 

movement and alignment occurring at higher strains. Image adapted from [60]. 

 

1.6 Performance of Stretched Nafion
®

 in DMFCs 

Lin et al. in a series of papers demonstrated that one could reduce methanol 

crossover in a Nafion
®
 membrane without lowering the proton conductivity by uniaxially 

stretching a Nafion
®
 film in a particular way.

46-49
 Pre-stretched recast Nafion

®
 films were 

prepared by first evaporating the solvent from a commercial alcohol/water Nafion
®
 

ionic channels 
bundles 

transport 
pathway 

Increasingly stretched 

St
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h

in
g 
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solution. The Nafion
®
 powder was then resuspended/dissolved in dimethylacetamide 

(DMAc) to create a 10 wt% solution. Films were cast into a Teflon
®

 dish at room 

temperature. Solvent was partially evaporated at 60°C, with the removal of 85-90% of the 

DMAc. The partially dried membrane was removed from the casting dish and placed into 

a stretching frame, heated to 125°C, and uniaxially stretched to the desired draw ratio 

(draw ratio is defined as the final stretched membrane length divided by the initial 

membrane length). The membrane was kept in the stretching frame at 125°C for one hour 

to remove residual DMAc solvent, followed by membrane annealing at 150-180ºC for 

two hours. The resulting membranes were removed from the frame, boiled in 1.0 M 

H2SO4 for one hour, and then boiled in deionized water for one hour to ensure full 

membrane hydration with all sulfonate ion exchange groups in the H
+
 form. 

Annealing after stretching and under tension (in the stretching frame) were the 

key innovative steps that eliminated polymer relaxation, which is usually seen in 

stretched commercial Nafion
®
 films.

47,49
 Pre-stretched recast Nafion

®
 films without 

annealing or with annealing prior to stretching did not exhibit good DMFC properties. 

These films would retract to their original dimension when exposed to a hot methanol 

solution.
46-49

 Figure 9 shows the in-plane proton conductivity (in water at 25°C) and 

methanol permeability (with 1 M methanol at 60°C) for pre-stretched recast Nafion
®
 

membranes prepared using the above procedure. The methanol permeability is reduced 

by 60% to ~1.5*10
-6

 at a draw ratio (final length/initial length) of 4 without a decrease in 

proton conductivity. The selectivity for this film was 2.6 times higher than unstretched 

Nafion
®

 under the same conditions (selectivity is defined as proton conductivity divided 

by methanol permeability).  
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Figure 9: Proton conductivity (in water at 25°C) and methanol permeability (with 1.0 M 

methanol at 60°C) of pre-stretched recast Nafion
®

 as a function of draw ratio. Plot taken 

from reference [47]. 

 

The improvement in membrane properties caused by stretching led to 

substantially improved DMFC power outputs. A stretched film (with a draw ratio of 4) 

produced a 50% higher maximum power density than commercial Nafion
®
 117 at 60°C 

with feeds of 1.0 M methanol and ambient pressure air. Table 3 contains reported power 

densities of pre-stretched recast Nafion
®
 films under different testing conditions by Lin et 

al.
46

 The stretched films improved the fuel cell performance under all testing conditions. 

To date, these results serve as a benchmark for high performance DMFC membranes. 
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Table 3: Reported power densities (mW/cm
2
) of direct methanol fuel cell tests with pre-

stretched recast Nafion
®
 and Nafion

®
 117. The anode feed was 1.0 M methanol and 

cathode feed was 500 sccm humidified air. Table lists data from reference [46]. 

 Pre-stretched recast 

Nafion
®
 

Nafion
®
 117 

@ 0.4V Max @ 0.4V Max 

4.0 mg/cm
2
, 60°C 86 107 56 72 

4.0 mg/cm
2
, 80°C 170 176 112 137 

8.0 mg/cm
2
, 60°C 110 117 82 91 

8.0 mg/cm
2
, 80°C 204 207 144 155 

4.0 mg/cm
2
, 80°C, 25 psig backpressure 197 202 143 153 

8.0 mg/cm
2
, 80°C, 25 psig backpressure 240 252 181 203 

 

 

 

1.7 Aquivion
®
 

The aim of the present work is to adapt the Nafion
®
 membrane stretching 

procedure developed by Lin et al.
46-49

 for Solvay Solexis, 830 EW Aquivion
®
 polymer 

(shown in Figure 10). 

   

Figure 10: The chemical structure of 830 EW Aquivion® (k=12). Image taken 

from [63]. 
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The side chain length and polymer equivalent weight (EW) lead to important 

property differences between 1000 EW Nafion
®

 and 830 EW Aquivion
®
. Table 4 lists 

results from Los Alamos National Lab on the two polymers.
62

 A higher ion exchange 

capacity in 830 EW Aquivion
®
 as compared to 1100 EW Nafion

®
 (1.2 mmol/g vs. 0.91 

mmol/g) increases the proton conductivity and water swelling in the Aquivion
®
 

membranes. 

 

Table 4: Polymer characterization for 1000 EW Nafion
®
 and 830 EW Aquivion

®
 

polymers. Table taken from [62]. 

 1000 EW Nafion
®
 830 EW Aquivion

®
 

Density (g/cm
3
) 1.97 2.06 

Conductivity (S/cm)* 0.101 0.147 

Water uptake (wt%)* 19 30 

* in liquid water at room temperature 

 

Shorter sulfonic-acid-terminated side chains means more CF2 groups between 

side chains at a given equivalent weight which promote polytetrafluoroethylene segment 

crystallization. Thus, short side chain ionomers like Aquivion
®
 have a higher crystallinity 

than Nafion
®
 at the same polymer EW (and ion exchange capacity).

13,16-18,20,63,64
 The 

increase in crystallinity is desirable because an increase in polymer rigidity will 

control/limit polymer swelling by water and/or methanol. The optimal tradeoff between 

proton conductivity and acceptable mechanical performance, therefore, occurs at a higher 
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ion exchange capacity in short side chain perfluorosulfonic acid polymers compared to 

long side chain PFSAs.
14,19,54

  

 

1.8 Objective of This Master’s Thesis 

The objective of this thesis is two-fold. First, the stretching procedure used for 

Nafion
®
 was adapted for Aquivion

®
 films. This entails determining the stretching speed, 

stretching temperature, and annealing conditions to create properly stretched Aquivion
®

 

membranes. Second, the stretched Aquivion
®
 membranes were characterized to 

determine how stretching affects membrane properties that are key for DMFC 

applications: crystallinity, water uptake, mechanical strength, proton conductivity, and 

methanol permeability. The physical property results were compared to those for pre-

stretched recast Nafion
®

 to assess the potential use of stretched Aquivion
®
 films in 

DMFCs.  
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CHAPTER 2 

 

EXPERIMENTAL 

 

2.1 Membrane preparation 

 830 EW Aquivion
®
 membranes were prepared using a commercial 10% w/w 

polymer solution in a propanol/water mixed solvent (36% water, 51% 1-propanol, 13% 2-

propanol) which was purchased from Solvay Solexis (D83-10E). The polymer 

concentration was further diluted to 5% w/w through the addition of dimethylacetamide 

(DMAc). Sonication for 30 minutes fully mixed the solution. Membranes were cast from 

this solution at room temperature into a Chemware
®
 PFA (perfluoroalkoxy) tray. A lab 

oven was used to evaporate >95% of the solvent by heating at 70ºC for ~14 hours. The 

resulting membrane was removed from the tray. The solvent evaporation was quantified 

in a separate set of experiments by weighing a polymer film after 14 hours and then 

placing the film in a lab oven at 60°C under vacuum for 4 hours to remove the remaining 

solvent. The membrane was then weighed again, and any weight loss was attributed to a 

loss in residual solvent. All cast membranes were 100-120 μm in dry thickness.  Storing 

the membranes in sealed plastic bags kept any residual DMAc solvent in the membranes; 

small amounts of DMAc were needed to plasticize the Aquivion
®
 films for stretching. 

Membranes cast from different D83-10E dispersion batches exhibited identical 

membrane properties (see Appendix A). 
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A membrane was loaded into the stretching frame (Figure 11) with the initial 

distance between clamps dependent on the final draw ratio (draw ratio is defined as the 

final distance between camps divided by the initial distance); 30 mm for a draw ratio of 2 

(DR2), 10 mm for DR4, 6 mm for DR6. All samples were therefore stretched a standard 

30 mm distance. For film elongation, the stretching frame and film were placed 

horizontally into a lab oven set to 190°C and equilibrated for 15 minutes. After thermal 

equilibration, a rotary motor began turning the shaft which pulled the bottom clamp and 

uniaxially stretched the membrane at a rate of 0.60 mm/min. After 3 minutes, the 

stretching rate was increased to 1.25 mm/min. Preparing the membranes by using an 

initial slow stretching rate followed by a more rapid rate resulted in more uniformly 

stretched films. 

 

                              
 

 

Figure 11: The apparatus used to stretch the Aquivion
®
 membranes. A motor turned the 

shaft which pulled the lower clamp. 

Initial Final 
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The rotary motor was turned off after reaching the desired stretched distance and 

the frame/membrane was left in the oven for a specified period of time, such that all 

membrane samples were kept in the oven at 190°C for a total of 30 minutes (stretching 

and post-stretch annealing). This total time was chosen because 30 minutes is the time 

required to fully anneal the Aquivion
®
 (see Section 3.1). Unlike prior studies on Nafion

®
 

stretching by Lin,
46-49

 stretching and annealing of Aquivion
®

 films were carried out 

simultaneously. After the completion of the stretching procedure, the fame was taken out 

of the oven and the membrane temperature was quickly cooled/quenched to maintain the 

membrane’s structure in the stretched conformation. Stretched membranes were boiled 

for one hour in 1.0 M H2SO4 followed by a one hour boiling treatment in deionized (DI) 

water. All membranes were stored in DI water at room temperature until needed for 

testing. The resulting water soaked membranes had thicknesses of 140-160 μm, 60-80 

μm, 25-35 μm, and 15-20 μm for DR1, DR2, DR4, and DR6, respectively. 

 

2.2 Wide-Angle X-Ray Diffraction 

 Wide-angle X-ray diffraction (WAXD) measurements were made using a Rigaku 

diffractometer with nickel filtered CuKα radiation (λ = 1.5418 Ǻ). The incident angle 

changed from 9º to 25º at a scanning rate of 0.2°/min in the plane perpendicular to the 

stretching direction.  
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2.3 Proton Conductivity 

 In-plane proton conductivity tests were conducted on membranes in a deionized 

water bath at 25°C. Conductivity was measured in the direction parallel to the stretching 

direction using a four point Bekktech conductivity cell (shown in Figure 12) and a 

standard AC impedance technique.
65 

 

        
  Bottom      Top 

 

Figure 12: Bekktech conductivity cell used to measure the in-plane resistance of a 

membrane. All electrodes were Pt wires. 

 

AC impedance data were collected using a Gamry potentiostat over the frequency 

range of 1 Hz to 300 kHz. The real impedance at Zimaginary=0 in a Nyquist plot (as shown 

in Figure 13) was the membrane’s resistance. The conductivity (with units of S/cm) was 

calculated using the following equation: 

Counter 

 
Working 

 

Reference Working 

Sense 

Polymer 

Strip 

Screws 
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     [1] 

where L is the distance between electrodes (cm), R is the membrane resistance from the 

Nyquist plot (ohm), and A is the water soaked membrane cross-sectional area (thickness 

times width with units of cm
2
). 

 

 
 

Figure 13: A representative example of an AC impedance Nyquist plot used to determine 

membrane conductivity. The real impedance (Zreal) at Zimaginary=0 is the membrane’s 

resistance (R). The resistance is used with Equation 1 to calculate the proton conductivity 

of the membrane sample. 

 

 

 

 

 

 

R = Zreal 
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2.4 Methanol Permeability 

 Methanol permeability at 25°C and 60°C was measured using a two-compartment 

diffusion cell (shown in Figure 14).
21,22,32

 The membrane was clamped vertically between 

two solution-filled compartments. One compartment was filled with 1.0 M methanol 

solution (the feeding chamber) and the other with DI water (the receiving chamber). Stir 

bars continually mixed the solutions in both compartments to avoid bulk solution 

concentration gradients. An HPLC pump (Lab Alliance Series I Pump) circulated water 

from the receiving compartment to a differential refractometer (Waters 2414 Refractive 

Index Detector). The refractometer recorded methanol concentration vs. time data for the 

receiving compartment. Data were collected using Personal DaqView software. Figure 15 

displays typical concentration vs. time data for membranes of different draw ratio. 

 
 

 

Figure 14: Two compartment diffusion cell apparatus used to determine the methanol 

permeability in Aquivion
®
 membranes. Figure taken from Wycisk et al. [32] 

receiving 
chamber 

feeding 
chamber 
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Figure 15: Representative experimental methanol concentration vs. time data (in the 

receiving chamber) for the determination of methanol permeability in an Aquivion
®
 

membrane at different draw ratios (DR1, DR2, DR4, DR6). The slope of the data at 

t>300 (where the data are linear) was used to calculate the methanol permeability using 

Equation 3 below.  

 

 

The slope of a methanol concentration vs. time plot for the receiving chamber was 

used to calculate the membrane permeability for methanol using Fick’s second law.
21,22

 

When the difference in methanol concentrations between the feeding and receiving 

compartment is assumed to be constant (setting up pseudo steady-state, 1D diffusion), the 

slope of such a plot is given by: 

 

Slope= (
      

  
)= (

 

  
)  (

   

 
)        [2] 

where CR(t) is the methanol concentration (mol/cm
3
) in the receiving compartment at 

time t (s), A is the area of the exposed membrane (cm
2
) , VR is the volume of the 

receiving chamber (cm
3
), D is the methanol diffusion coefficient in the membrane 

DR1 

DR2 

DR4 

DR6 
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(cm
2
/s), K is the methanol solubility coefficient in the membrane, L is the wet membrane 

thickness (cm), and CF is the initial methanol concentration in the feed compartment 

(mol/cm
3
). Upon rearranging Equation 2, the methanol permeability (P) with units of 

cm
2
/s is given by: 

 

P= D*K=  
            

    
     [3] 

 

 

 

2.5 Water Uptake Measurements 

The equilibrium absorption of water vapor in membrane samples was determined 

by measuring the weight change of dry films using a TA Q5000SA vapor sorption 

apparatus. The temperature was held constant at 80ºC while the relative humidity was 

incrementally increased from 0 to 90%. Figure 16 shows typical sorption data for an 

Aquivion
®
 membrane. The relative humidity was held constant for 2 hours to ensure 

ample time to reach equilibrium. The number of water molecules per sulfonic acid group 

(λ) was calculated using the equation below: 

 

 (
   

   
 )   

         

    
 

 

          
    [4] 

 

where Wwet and Wdry denote wet and dry sample weights (g), IEC is the ion-exchange 

capacity of the membrane (1.21 mmol/g for 830 EW Aquivion
®

), and     is the 

molecular weight of water (18 g/mol). 
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Figure 16: Representative water vapor uptake vs. time data at 80ºC for a stretched 

Aquivion
®
 film (DR=6). Data were collected using a TA Q5000SA vapor sorption 

apparatus.  

 

 

 

2.6 Mechanical Strength (Stress/Strain Measurements) 

Tensile stress vs. strain curves were obtained for stretched and unstretched 

Aquivion
®
 membranes using a TA Q800 Dynamic Mechanical Analysis apparatus. Prior 

to testing, samples were cut into 2 mm x 25 mm strips, dried in a lab oven at 60°C under 

vacuum for one hour, and then equilibrated under atmospheric conditions (20% RH at 

30ºC). During testing, the chamber temperature remained constant at 30ºC (with an 

ambient relative humidity of ~20%). The tensile force was ramped at 0.1 N/min until the 

sample failed. Samples were stretched parallel to the original stretching direction during 

0% RH 

20% RH 

40% RH 

60% RH 

80% RH 

90% RH 
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testing. The Young’s modulus (elastic modulus in tensile stress tests), plastic modulus, 

strain at break, and ultimate stress were determined from each set of stress/strain data. 

Figure 17 shows an experimental stress vs. strain curve property analysis for a stretched 

Aquivion
®
 membrane (DR4), where each of the four mechanical properties is identified. 

 

 
 

Figure 17: Stress/strain curve for a stretched Aquivion
®
 film (DR=4) at 30ºC and 20% 

RH illustrating the determination of membrane mechanical properties. 
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CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1 Annealing Condition 

A literature search found no report on the effect of annealing time and 

temperature on Aquivion
®
 crystallinity, so a proper annealing condition for stretched cast 

Aquivion
®
 was determined in a set of preliminary experiments. The membrane annealing 

temperature should be above the α-transition temperature to provide sufficient chain 

mobility for crystallite formation, yet not so high as to melt the polymer.
66,67

 Aquivion
®
 

has a reported α-transition temperature of 165ºC,
14,16,18,19

 and a complete melting 

temperature of 235ºC.
19

 An annealing temperature 35°C above the glass transition 

temperature (190°C) was thereby chosen to accelerate the crystallization kinetics. 

To determine the required time to fully anneal Aquivion
®
 at 190°C, WAXD (wide 

angle X-ray diffraction) spectra were collected on cast, unstretched, membrane samples 

annealed for three different times: 0 minutes (unannealed), 30 minutes, and 60 minutes. 

All the membrane films were cast following the procedure detailed in Section 2.1. The 

WAXD spectra of the three Aquivion
®
 films are shown in Figure 18. 
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Figure 18: WAXD spectra collected on cast Aquivion
®
 films annealed at 190°C for three 

different times: 0 min (unannealed), 30 min, or 60 min.  

 

 

The degree of crystallinity in the membranes was determined by deconvoluting a 

WAXD spectrum into separate amorphous (at 16.5°) and crystalline (at 18°) peaks using 

the Pearson VII distribution function.
66

  

Figure 19 illustrates the deconvolution of a WAXD spectrum taken on an 

Aquivion
®
 membrane annealed for 30 min at 190°C.  

 

 

 

30 min 

60 min 

unannealed 
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Figure 19: A deconvolution of a WAXD spectrum taken on an Aquivion
®

 film annealed 

at 190°C for 30 min.  

 

 

Crystallinity was calculated by integrating the two peak areas, and dividing the 

area under the sharp crystalline peak (at 18°) by the combined area of the amorphous (at 

16.5°) and crystalline peaks.
12

 The mathematical equation for the % crystallinity (Wcr) is:  

      
∫           

  

 

∫                    
  

 

        [5] 

where Icr(θ) and Iam(θ) are the intensities of the crystalline and amorphous peaks 

respectively, and θ is the incident X-ray angle. Peak integration was performed for 2θ 

incident angles between 9 and 24°. See Appendix B for an in-depth walkthrough of the 

WAXD deconvolution and integration in Excel
®
. This procedure was followed on all 

Amorphous 

Crystalline 
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WAXD spectra throughout the present work. Table 5 lists the calculated % crystallinity 

for each of the three membranes. 

 

Table 5: The calculated crystallinity from the WAXD spectra taken during the 

investigation of the annealing time at 190°C. WAXD spectra are shown in Figure 18.  

 

Annealing Condition Crystallinity % 

No annealing 0 

190°C, 30 min 21 

190°C, 60 min 23 

 

Annealing at 190°C for 30 minutes or 60 minutes successfully crystallized the 

Aquivion
®
 samples. The annealed samples were >20% crystalline, while the WAXD 

spectrum of the unannealed Aquivion
®

 had no discernible crystalline peak (see Figure 

18). The annealing kinetics of Aquivion
®
 appears rapid at 190°C with full crystallization 

in 30 minutes. A similar increase in crystallinity has been observed for annealed 

Nafion
®
.
66,67

 A variety of sources have demonstrated that the chain movement caused by 

heating the polymer above the glass transition temperature enlarges crystallites, repairs 

crystallite defects, and develops long-range order.
66-68

  

The effect of annealing on proton conductivity and methanol permeability in the 

Aquivion
®
 membranes was also determined. Prior to annealing, cast Aquivion

®
 has a 

proton conductivity of 0.065 S/cm (in water at 25°C) and a methanol permeability of 

5.12*10
-6

 cm
2
/s (at 25°C with 1.0 M methanol). The annealed samples show a substantial 

improvement in both properties with a proton conductivity of ~0.10 S/cm and a methanol 

permeability of ~2.85*10
-6

 cm
2
/s (53% increase and 44% decrease, respectively). After 

thermal annealing, the cast Aquivion
®
 samples had properties that resembled those of 
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commercial PFSA membranes. While there were no reported values of methanol 

permeability or proton conductivity for commercial 830 EW Aquivion
®
 films, the 

annealed samples exhibited a proton conductivity consistent with similar EW commercial 

Aquivion
®
 films (~1.1 S/cm for 790 EW in water at 25°C)

18,63
 and a methanol 

permeability comparable to that of Nafion
®

 117 (2.5*10
-6

 cm
2
/s with 1 M methanol at 

25°C). In Nafion
®
, annealing reduces the polymer swelling by increasing crystallinity 

(crystallites act as physical crosslinks), and enhances the proton conductivity by 

organizing the ionic domains.
68,69

 Aquivion
®
 is likely experiencing similar phenomena 

upon annealing which explain the observed changes in methanol permeability and proton 

conductivity. Table 6 provides a summary of the membrane properties for unannealed 

and annealed cast Aquivion
®
. Errors reported in the table are standard deviations 

calculated from the results of repeated experiments. The data in Table 6 support the 

conclusion that 30 minutes is sufficient time for annealing Aquivion
®

 at 190°C, thus all 

cast Aquivion
®
 films were annealed at 190°C for 30 minutes (unless otherwise noted).  

 

Table 6: Cast Aquivion
®
 properties before and after annealing at 190°C.  

 

 0 min  30 min 1 h 

Crystallinity  

(%) 

 

0 21 23 

Proton Conductivity  

(S/cm)
* 

 

0.065 ± 0.006 0.100 ± 0.006 0.108 ± 0.015 

Methanol Permeability 

(cm
2
/s)

**
 x 10

6
 

5.12 ± 0.071 2.86 ± 0.096 2.84 ± 0.186 

*  in deionized water at 25°C 

**  at 25°C with 1 M methanol 



 

 

40 

 

3.2 Determination of Stretching Conditions  

Stretching parameters for Aquivion
®
 (stretching rate and temperature) were 

determined in an attempt to maximize the increase in polymer chain orientation and 

crystallinity. Recast Nafion
®
 membranes, composed of a long side chain PFSA polymer, 

have been successfully stretched by Lin.
46-49

 Lin’s procedure was therefore adapted for 

the short side chain PFSA polymer, Aquivion
®
.  

A stretching temperature of 190°C (the same as the annealing temperature) was 

chosen for the cast Aquivion
®
 membranes based largely on the procedure reported for 

stretching recast Nafion
®

. Lin et al. stretched Nafion
®
 at a temperature of 125°C followed 

by annealing at 150°C.
46-49

 Stretching above the glass transition temperature is required 

to provide the polymer chains with added mobility and to ease polymer reorganization.
50

 

The higher glass transition temperature for Aquivion
®
 compared to Nafion

®
 (165°C vs. 

110°C, respectively)
14,19

 suggests a stretching temperature approximately 55°C greater 

for Aquivion
®
 than Nafion

®
 (equaling 180°C). By increasing the stretching temperature 

to 190°C in the present work, the annealing and stretching steps were performed 

simultaneously to accelerate and simplify membrane processing. At a stretching 

temperature greater than 190°C membranes snapped/tore during elongation. This was 

likely due to excessive rigidity caused by the rapid creation of crystallites and/or 

evaporation of the residual solvent needed to plasticize the films. Therefore, a stretching 

temperature of 190°C was used throughout the present study to stretch cast Aquivion
®

 

films. 
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An optimized stretching rate at 190°C was investigated for uniaxially stretched 

cast Aquivion
®
 membranes by determining the effect of stretching rate (mm/min) on the 

resulting degree of crystallinity (using WAXD). For this investigation, films with a draw 

ratio of 4 were created using three different stretching rates: 0.90 mm/min, 1.25 mm/min, 

and 2.05 mm/min. Prior to stretching, each sample underwent the same casting and 

membrane preparation procedures outlined in Section 2.1. The timing of the individual 

stretching/annealing steps however (initial slow stretching, rapid stretching, and 

annealing with no further stretching) was adjusted to maintain a total annealing time of  

~30 min at 190°C. Table 7 lists the time intervals for each of the three different 

membranes. The membrane that was stretched at the slowest rate (0.90 mm/min) required 

36 minutes for processing, 6 minutes longer than the others. However, the additional 6 

minutes at 190°C is not expected to affect the membrane’s properties since the annealing 

investigation in Section 3.1 indicated there is no difference in membrane properties for 

samples annealed between 30 and 60 minutes. 

Table 7: Experimental protocols for the Aquivion
®
 stretching rate investigation. For all 

samples, the total annealing time (including stretching time) was fixed at 30 or 36 

minutes and the final draw ratio was 4. 

 

Time spent… 
stretching at 

initial slow speed 

stretching at 

tested speed 

annealing with 

no further 

stretching 

Total annealing 

time (including 

stretching) 

Slow          

(0.90 mm/min) 

 

3 min 33 min 0 min 36 min 

Medium     

(1.25 mm/min) 

 

3 min 22 min 5 min 30 min 

Fast           

(2.05 mm/min) 

3 min 15 min 12 min 30 min 

+ + = 
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WAXD analysis was used to determine if the polymer crystallinity of stretched 

cast Aquivion
®
 membranes was dependent on the stretching rate (an in-depth description 

of the WAXD analysis is described in Section 3.1). Figure 20 and Table 8 show the X-ray 

spectra and crystallinities for the stretched Aquivion
®
 membranes listed in Table 7. All 

stretching rates resulted in the same degree of crystallinity (33%). Thus the stretching rate 

had no effect on the crystallinity over the tested range (0.9-2.05 mm/min). Henceforth, all 

stretched Aquivion
®
 membranes were prepared with the medium uniaxial stretching rate 

of 1.25 mm/min (as mentioned in Section 2.1).  

 

 

Figure 20: WAXD spectra collected on DR4 uniaxially stretched Aquivion
®
 membranes 

created using three different stretching rates (slow=0.90 mm/min, medium=1.25 mm/min, 

and fast=2.05 mm/min) following the protocol outlined in Table 7.  

2.05 mm/min 

1.25 mm/min 

0.90 mm/min 
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Table 8: Measured crystallinity for three, DR4, uniaxially stretched Aquivion
®

 

membranes, where the film stretching rate was varied. Results were calculated using the 

WAXD spectra in Figure 20. 

  

 
Slow                  

(0.90 mm/min) 

Medium             

(1.25 mm/min) 

Fast                  

(2.05 mm/min) 

Crystallinity (%) 33 33 33 

 

 

 

3.3 The Effect of Draw Ratio on Stretched Aquivion
®
 Crystallinity   

The effect of draw ratio on crystallinity was investigated by analyzing WAXD 

spectra of stretched Aquivion
®
 membranes. Previous studies on the stretching of 

Nafion
®
,
46-49,55,59

 in addition to other stretched polymers (polyethylene,
69

 

polypropylene,
70

 poly(1-butene)
71

), reported an increase in crystallinity with increasing 

draw ratio. Additionally, enhanced crystallinity was seen in cast Aquivion
®
 membranes 

stretched to a draw ratio of 4 when compared to an unstretched film during the stretching 

rate investigation (see Section 3.2). Therefore, increasing crystallinity with draw ratio 

was expected for stretched Aquivion
®

 membranes. Figure 21 displays WAXD spectra 

taken on unstretched Aquivion
®
, both unannealed and annealed (DR1), as well as on 

stretched/annealed Aquivion
®
 membranes (DR2, DR4, and DR6). The WAXD spectra 

were decomposed as detailed in Section 3.1 to calculate crystallinity. Figure 22 plots the 

crystallinity for stretched Aquivion
®
 and stretched Nafion

®
 (obtained from Lin et al.

48
) 

with respect to draw ratio. 
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Figure 21: WAXD spectra of cast Aquivion
®
 membranes stretched to different draw 

ratios (final length/initial length). 

 

 
 

Figure 22: Crystallinity vs. draw ratio for uniaxially stretched Aquivion
®
 ( ) and 

stretched Nafion
®

 ( ). Nafion
®
 data is from reference [48]. 

Unannealed 

DR1 

DR2 

DR4 

DR6 

Aquivion
®
 

Nafion
®
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The degree of crystallinity is strongly correlated with draw ratio for the uniaxially 

stretched Aquivion
®
 membranes. Aquivion

®
 and Nafion

®
 originally display similar 

crystallinity, but 830 EW Aquivion
®
 appears to undergo larger polymer network 

reorganization than 1100 EW Nafion
®
 upon stretching as evidenced by a larger increase 

in crystallinity. The cause for this difference is currently unknown, but could be due to 

the shorter, and therefore less mobile, side chain in Aquivion
®
 which allows the polymer 

chains to pack more efficiently.
12,54

 Additionally, crystallinity in other stretched polymer 

films (such as polyethylene terephthalate,
72,73

 polyethylene,
74

 and isotactic 

polypropylene
75

) has been shown to be a strong function of the stretching temperature. At 

a constant stretching rate and draw ratio, the crystallinity of these polymers reached a 

maximum at some stretching temperature between their respective glass transition and 

melting temperatures. Although there is no investigation on the stretching temperature 

effect for either ionomeric polymer, based on studies of other stretched polymers the 

higher stretching temperature for Aquivion
®

 (190°C) compared to Nafion
®
 (125°C) may 

also contribute to the increase in crystallinity.  

The full width at half maximum (FWHM) of the XRD crystalline peak gives 

insight into the mean size of the crystalline domains (d) through use of the Scherrer 

equation, which assuming a dimensionless shape factor is:
76

  

  
    

      
     [6] 

where λ is the x-ray wavelength (in nm), B is the FWHM (in rad), and θ is the Bragg 

angle = ½ * 2θcrystalline peak(with units of rad). 
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Table 9 lists the FWHM of the crystalline peak and the corresponding mean 

crystallite size at various draw ratios for stretched Aquivion
®
 and stretched Nafion

®
 (data 

from reference [48]). Figure 23 displays the mean crystallite size as a function of draw 

ratio for the two stretched polymers. In both polymers, the crystallites grow in size after 

stretching, but appear to reach a critical size at DR≥2 (<5% difference) which means that 

crystallite nucleation also occurs within the stretched polymers since both polymers show 

a continued increase in crystallinity at DR≥2. The density of crystallites within the 

stretched polymers (# of crystallites/μm
3
) was calculated from the mean crystallite size 

(cube root of crystallite volume) and the polymer degree of crystallinity. Figure 24 plots 

the density of crystallites within the stretched polymers as a function of draw ratio. The 

crystallite density trends for both stretched Aquivion
®
 and Nafion

®
 suggest that 

stretching originally disrupts and/or combines a large number of crystallites as their 

number decreases sharply at DR2 compared to DR1. Further stretching, however, (DR≥2) 

creates more highly oriented polymer chains which gradually facilitate new crystallite 

formation. The results for crystallite growth and nucleation reveal that stretched 

Aquivion
®
 is composed of larger, less numerous crystallites for all DRs, as compared to 

Nafion
®
. A full investigation into the cause of the differences in crystallite growth and 

nucleation is beyond the scope of this work, as reports on other stretched polymers have 

demonstrated that processing temperatures, stretching rate, chemical structure, and 

molecular weight all affect the resulting crystallinity.
69,71-73,75

 Stretching experiments with 

Aquivion
®
 at other/additional temperatures may reveal whether the differences in 

crystallite size and number, compared to Nafion
®
, are due to different processing 

temperatures (for annealing and stretching). 
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Table 9: FWHM of the crystalline peak (in °), and subsequent mean crystallite size, 

obtained from XRD spectra taken in the plane perpendicular to the stretching direction 

for stretched Aquivion
®
 and stretched Nafion

®
 (from reference [48]). 

 

 Aquivion
®

 (at 2θ=18°) Nafion
®

 (at 2θ=17.5°) 

 FWHM(°) d(nm) FWHM(°) d(nm) 

DR1 1.383 5.81 2.202 3.65 

DR2 1.173 6.85 1.727 4.65 

DR4 1.200 6.70 1.724 4.66 

DR6 1.207 6.66 - - 

DR7 - - 1.703 4.72 

 

 

Figure 23: Mean crystallite size as a function of draw ratio for stretched Aquivion
®
 ( ) 

and stretched Nafion
®
 ( ) films.  
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Figure 24: Crystallite density as a function of draw ratio for stretched Aquivion
®
 ( ) and 

stretched Nafion
®

 ( ) calculated from the mean crystallite size and % crystallinity.  

 

Crystallinity has important effects on key DMFC membrane properties. 

Crystallites in Nafion
®

 have been shown to improve the membrane’s mechanical 

properties by acting as physical crosslinks,
66,67

 and they alter water/methanol transport 

properties by influencing the structure and connectivity of the hydrophilic domains 

within the polymer.
55,66

 The trends in crystallinity for stretched Nafion
®

 and stretched 

Aquivion
®
 (shown in Figure 22), therefore, suggest progressively altered property 

differences at higher draw ratios (proton conductivity, methanol permeability, and 

mechanical strength). These membrane properties of the stretched films are reported in 

the ensuing sections. 
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3.4 Equilibrium Water Vapor Uptake 

Water is required for proton conductivity, but excessive water uptake causes poor 

mechanical properties and typically indicates high methanol permeability (methanol and 

water permeability are often comparable since the solvents are chemically similar).
8,14,77

 

The property of water (or methanol) uptake in an ionomer results from the competing 

forces of the polymer’s affinity for solvent molecules (osmotic pressure), and the 

resistance of the polymer network to volumetric swelling.
50,78

 To investigate the water 

uptake properties of stretched Aquivion
®
, equilibrium water vapor uptake measurements 

were made on Aquivion
®
 membranes at 80°C as described in Section 2.5. Figure 25 

shows plots of the equilibrium water vapor uptake vs. relative humidity in 

unstretched/annealed (DR1) and stretched/annealed (DR2, DR4, DR6) Aquivion
®

 

membranes, along with values reported for commercial Nafion
®
 117.

78
 The equilibrium 

water vapor uptake is expressed in both wt% (g water/g dry polymer * 100%), and λ 

(water molecules per sulfonic acid site). 
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Figure 25: Equilibrium water vapor uptake at 80ºC for Aquivion
®

 films ( ,DR1; 

,DR2; ,DR4;  ,DR6) and Nafion
®
 117 ( ). Nafion

®
 data from reference [78]. 

A 

B 
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830 EW Aquivion
®
, at all tested draw ratios, absorbed more water (wt%) than 

Nafion
®

 117 at relative humidities ≥40%, which agrees with previously reported 

results.
14,62,64,79

 As the concentration of sulfonic acid groups is increased in a polymer 

(thereby lowering the EW), the osmotic driving force builds as water wants to penetrate 

into the membrane to dilute the charged side groups. Figure 26 shows the liquid water 

uptake at 100°C for Nafion
®
 and Hyflon Ion

®
 (a short side chain PFSA polymer of 

identical chemical structure to Aquivion
®
) as a function of EW. At equal equivalent 

weight, the short side chain PFSA demonstrates reduced water uptake compared to 

Nafion
®
. This difference is explained by other traits of the ionomeric microstructure such 

as the width and connectivity of the hydrophilic domains, and/or the degree of 

crystallinity which also affects the water uptake by influencing the volumetric 

swelling.
11,14,80

 So although Aquivion
®
 demonstrates a better ability to restrict water 

uptake compared to Nafion
®
 (at equal EW), the significantly lower EW of Aquivion

®
 in 

this study (830 EW vs. 1100 EW) results in higher water uptake. 

 

Figure 26: Water uptake for Hyflon Ion
®
 ( ) (a polymer of identical chemical structure 

to Aquivion
®
) and Nafion

®
 ( ) membranes in liquid water at 100°C as a function of EW. 

Plot taken from [64]. 
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Crystallites act as physical crosslinks which restrict membrane swelling and 

reduce water uptake,
54

 but this effect was not seen for the stretched Aquivion
®
 

membranes. WAXD experimental results shown previously (Section 3.3) indicated an 

increase in crystallinity with stretching, but the equilibrium water vapor uptake (both λ 

and wt%) was independent of the Aquivion
®

 draw ratio. A similar result was reported for 

stretched Nafion
®

,
47,49

 and was attributed to the amount of crystallinity induced by 

stretching (8%) being too small to influence the water uptake property. However, even at 

a 17% crystallinity increase between DR1 and DR6 in Aquivion
®
, there is no change in 

the water uptake so crystallinity does not appear as the dominant factor. Other traits of 

the ionomeric microstructure mentioned previously that also affect water uptake may 

supersede or counteract the effect of increased crystallinity to keep the water uptake 

constant. In any case, the results show that stretching does not change water uptake in 

Aquivion
®
. 

Although Aquivion
®
 absorbed more water (wt%) than Nafion

®
, the water uptake 

measured as λ was essentially equal between the two polymers at 10%<RH<90%. 

Reports have previously demonstrated that λ is relatively constant across a variety of 

PFSA ionomers (shown in Figure 27).
78,79

 The interaction between water and the 

sulfonated side chains was therefore identical in Aquivion
®
 and Nafion

®
. The water 

vapor equilibrium uptake measurements indicate: 1) The larger wt% water in Aquivion
®
 

compared to Nafion
®
 is attributed to the lower EW (higher IEC) and 2) Stretching did not 

noticeably change the water vapor uptake properties in cast Aquivion
®
 films.  
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Figure 27: Water uptake as a function of relative humidity for various perfluorosulfonic 

acid polymers. Fl-12 = 920 EW Flemion
®
; AC-12 = 1080 EW Aciplex

®
, Nafion

®
 117 

and 125 = 1100 and 1200 EW, respectively. Graph taken from reference [78]. 

 

 

3.5 Mechanical Properties 

A membrane’s performance in a DMFC relies heavily on its mechanical 

properties: (1) The uptake of water (and methanol) is partially controlled by polymer 

relaxation,
8,81

 and (2) tough, durable membranes improve the fuel cell longevity by 

preventing adverse effects (such as chemical crossover and reduced ionic conductivity) 

resulting from membrane deformations (caused by membrane swelling and the 

subsequent stress-buildup).
82,83

 Since crystallinity increases with stretching, the stretched 

Aquivion
®
 samples were expected to show enhanced mechanical strength. Stretched 

Nafion
®
 
48

 in addition to stretched polyethylene,
69

 polypropylene,
70

 and poly(1-butene)
71

 

have all been reported to demonstrate superior mechanical performance over their 
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unstretched counterparts. While relatively few investigations have been devoted towards 

studying stretched ionomers, these other stretched polymers have demonstrated the 

complex nature of stress induced strengthening, which has been shown to be a function of 

the polymer’s morphology, molecular orientation, percentage crystallinity, molecular 

weight, and drawing conditions.
69,71-73,75

  

The effects of uniaxial stretching on the mechanical properties of cast Aquivion
®
 

membranes were examined by obtaining tensile stress/strain curves for samples of 

various draw ratios (DR1, DR2, DR4, DR6). Stress/strain curves for unstretched Nafion
®

 

and unstretched Aquivion
®
 were first compared to determine the combined effect of the 

shorter side chain and lower EW of Aquivion
®
 on membrane mechanical properties. The 

Aquivion
®
 curves were produced in the present work (as detailed in Section 2.6), while 

the Nafion
®
 curves are those collected by Lin et al.

48
 All Aquivion

®
 samples were dried 

at 60°C under vacuum for 2 hours, then equilibrated and tested at 30ºC and 20% RH 

(ambient humidity). The stress/strain data were collected in the direction parallel to 

stretching. Dried Nafion
®
 samples were also tested at 30ºC in the stretching direction, but 

under a nitrogen atmosphere (0% RH).
48

 Figure 28 displays stress/strain curves for 

unstretched Nafion
®
 and unstretched Aquivion

®
. 
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Figure 28: Stress/strain curves for unstretched Aquivion
®
 at 30°C and 20% RH, and 

unstretched Nafion
®
 at 30°C and 0% RH. Nafion

®
 curve obtained from reference [48].  

 

1100 EW Nafion
®
 and 830 EW Aquivion

®
 demonstrate similar stress/strain 

curves in both the elastic and plastic regions (low and high strains, respectively). This 

agrees with previously reported mechanical property results comparing these two 

polymers,
12,63

 as well as the previous finding of similar crystallinity between recast 1100 

EW Nafion
®
 and cast 830 EW Aquivion

®
 (see Section 3.3). The results suggest: (1) the 

difference in PFSA EW between Nafion
®
 and Aquivion

®
 has little effect on membrane 

mechanical properties (other than strain at break)
12

 and (2) for these two polymers, the 

membrane mechanical properties are not a strong function of RH for 0<RH<20%.  

The changes in mechanical properties with draw ratio for stretched/annealed 

Aquivion
®
 films were examined for 1≤DR≤6. The Young’s modulus (slope of the 

Nafion® 

Aquivion® 
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stress/strain curve at a strain <0.5%), the plastic modulus, the ultimate stress, and the 

strain at break were identified as described in Section 2.6. Four Aquivion
®

 samples were 

tested at each draw ratio, and data presented in this section are the average of the repeated 

experiments. The variation in properties from repeated stress/strain experiments is 

expressed in terms of a standard deviation. Figure 29 shows representative Aquivion
®
 

stress/strain curves for unstretched/annealed and stretched/annealed films, while the 

membrane mechanical properties are listed in Table 10. The same mechanical properties 

for stretched Nafion
®
 at various draw ratios (from reference [48]) are presented in Table 

11 for comparison. 

 

 

Figure 29: Stress/strain curves for unstretched/annealed and stretched/annealed 

Aquivion
®
 membranes. Measurements were made at 30°C and 20% RH in the direction 

parallel to stretching. 

 

DR6 

DR4 
DR2 

DR1 
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Table 10: Mechanical properties of unstretched and stretched Aquivion
®

 films at 30°C 

and 20% RH for different stretching draw ratios. All membranes were fully annealed at 

190°C. The data are the average from four repeated experiments, and the errors depict the 

standard deviation. 

 

 Young’s 

Modulus 

(MPa) 

Plastic 

Modulus 

(MPa) 

Ultimate 

Stress 

(MPa) 

Strain  

at break 

(%) 

DR1 311 ± 71 5.15 ± 0.7 27 ± 1.8 330 ± 19 

DR2 300 ± 31 13.5 ± 1.5 46 ± 6.2 285 ± 29 

DR4 318 ± 61 25.8 ± 6.8 41 ± 3.7 148 ± 35 

DR6 386 ± 14 36.3 ± 4.7 38 ± 9.6 80 ± 23 

 

 

Table 11: Mechanical properties of unstretched annealed and pre-stretched annealed 

Nafion
®
 films at 30°C and 0% RH [48].  

 

 Young’s 

Modulus 

(MPa) 

Plastic 

Modulus 

(MPa) 

Ultimate 

Stress 

(MPa) 

Strain  

at break 

(%)  

DR1 305 7.4 26 227 

DR2 412 9.2 30 189 

DR4 590 14.4 35 162 

DR7 595 14.2 31 139 

 

 

As expected, higher draw ratios resulted in an increase in Young’s modulus; a 

trend that was also observed in stretched Nafion
®
 (Young’s modulus vs. DR for both 

polymers is shown in Figure 30). Stretching increases the degree of crystallinity in both 

polymers (see Section 3.3), and the resulting crystallites act as physical crosslinks. 

Although both unstretched Aquivion
®
 and unstretched Nafion

®
 exhibit a Young’s 

modulus of ~300 MPa, the increase in this property induced by stretching Nafion
®
 is 

significantly larger (35% vs. 95%). This finding was unexpected and is currently 

unexplained since the Aquivion
®
 membranes showed a greater increase in crystallinity 

with draw ratio. The trends in Young’s modulus, however, do reflect those of crystallinity 
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as the property improvement for stretched Nafion
®
 levels off at DR4, while it continues 

to improve in stretched Aquivion
®
 beyond DR4. This was attributed to the significantly 

lower change in crystallinity for Nafion
®
 at high draw ratios (≥4) compared to Aquivion

®
 

(see Section 3.3). While a higher Young’s modulus typically results in reduced 

membrane swelling, and therefore lower solvent uptake, this was not seen in either 

polymer for water sorption (see Section 3.4).
51

 This may be explained by other 

morphological changes occurring during stretching, which can increase the water uptake 

such as changes in the width, connectivity, and/or alignment of the hydrophilic 

domains.
14,80

 Currently, the exact reason why there is no correlation between Young’s 

modulus and water uptake is unknown. 

 

 

Figure 30: Young’s modulus as a function of draw ratio for stretched Aquivion
®
 ( ) and 

stretched Nafion
®

 ( ) membranes. The stretched Nafion
®
 values are reported by Lin et 

al. [48] Error bars show the standard deviation between repeated experiments. 
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The plastic modulus in both Nafion
®
 and Aquivion

®
 similarly shows an 

improvement in rigidity (resistance to physical deformation) following the increase in 

crystallinity, as a plateau is again present in Nafion
®
 yet absent in Aquivion

®
. Figure 31 

plots plastic modulus as a function of draw ratio for both polymers. The Aquivion
®

 films 

show a more drastic increase in plastic modulus with DR compared to Nafion
®
. This is in 

contrast with the Young’s modulus results which showed greater improvement for 

stretched Nafion
®

, but the result can be explained by the higher degree of crystallinity in 

the stretched Aquivion
®
 films. Analyses on the remaining mechanical properties 

(ultimate stress and strain at break) result in similar conclusions. Figure 32 and Figure 33 

show plots of ultimate stress and strain at break, respectively, as a function of draw ratio 

for both polymers. Although ultimate stress shows no trend with draw ratio, all stretched 

Aquivion
®
 films exhibited a higher ultimate stress (thereby expressing enhanced strength) 

as compared to both unstretched Aquivion
®
 and stretched Nafion

®
. Additionally, the 

Aquivion
®
 samples show a greater loss in elasticity compared to Nafion

®
 as the strain at 

break decreases with increasing draw ratio. This result can also be explained by the 

presence of more impliable crystalline regions. 
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Figure 31: Plastic modulus as a function of draw ratio for stretched Aquivion

®
 ( ) and 

Nafion
®
 ( ) membranes. The stretched Nafion

®
 values are reported by Lin et al. [48] 

 

 

 
Figure 32: Ultimate stress as a function of DR for stretched Aquivion

®
 ( ) and stretched 

Nafion
®
 ( ) 
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Figure 33: Strain at break as a function of DR for stretched Aquivion

®
 ( ) and stretched 

Nafion
®
 ( ). 

 

 

Figure 34 shows a direct comparison between stress/strain curves for stretched 

Aquivion
®
 and stretched Nafion

®
 at an equivalent draw ratio (DR4). The results for 

higher DRs (DR6 Aquivion
®
, and DR7 Nafion

®
) are also shown. DR6 Aquivion

®
 shows 

the continued change in mechanical properties for high DRs (>4) with this PFSA 

polymer, while stretched Nafion
®
 shows essentially no change in stress/strain curves for 

DR>4 (other than a lower ultimate stress). The mechanical property analyses lead to two 

conclusions: 1) that both Nafion
®
 and Aquivion

®
 exhibit an increase in rigidity 

(resistance to physical deformation) and strength (the ability to withstand a greater load) 

with draw ratio in the stretching direction, and 2) Aquivion
®
 films continue to exhibit 

changing mechanical properties at high draw ratios (≥4) while Nafion
®
 mechanical 

properties level off at DR≥4. Whether these improvements in mechanical properties lead 
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to a more durable, longer lasting membrane in a fuel cell is yet to be determined, but 

should be investigated once the membranes are converted into a membrane-electrode-

assembly.  

 

 

Figure 34: Stress/strain curves for stretched Nafion
®
 (A=DR4; B=DR7) and stretched 

Aquivion
®
 (C=DR4, D=DR6). Nafion

®
 data obtained from [48].  

 

 

3.6 Proton Conductivity  

The proton conductivity of an ionomer is a function of the coupled effects of 

equivalent weight (due to the concentration of charged side-groups) and subsequent water 

uptake.
8
 Due to a lower EW, 830 EW Aquivion

®
 films absorb more water than Nafion

®
 

117 and exhibit higher proton conductivity.
14,16,17,62,63

 Figure 35 displays the proton 

conductivity for 800 EW Dow Ionomer (a polymer of identical chemical structure to 

D 
C 

B 

A 

Nafion
®

 

Aquivion
®
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Aquivion
®
) and Nafion

®
 117 as a function of the membrane hydration (λ).

79
 Equilibrium 

water vapor uptake measurements shown in Section 3.4 proved equal λ between the two 

polymers at all tested relative humidities. Therefore, due to the higher ion exchange 

capacity (IEC), 830 EW Aquivion
®
 has a higher proton conductivity than Nafion

®
 117 

under any given state of hydration.  

 

 

Figure 35: Conductivity as a function of water uptake (λ) at 30°C for 800 EW Dow 

Ionomer ( ) (a polymer of identical chemical structure to Aquivion
®
) and 1100 EW 

Nafion
®
 ( ). Plot taken from [79]. 

 

In the present study, in-plane proton conductivity was measured on water-

equilibrated unstretched and stretched Aquivion
®

 films to determine the effect of uniaxial 

stretching on H
+
 movement in the polymer under the influence of a voltage gradient 
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during current flow (a representative Nyquist plot at each Aquivion
®
 draw ratio is shown 

in Appendix C). Figure 36 shows the effect of uniaxial stretching on in-plane proton 

conductivity (at 25°C in water) for Aquivion
®

 and Nafion
®46

 films in the stretched 

direction. Each Aquivion
®
 data point is an average of four repeated experiments. For 

comparison, the proton conductivity of commercial Nafion
®
 117 under identical 

conditions was 0.090 ± 0.004 S/cm as determined in the present work.  

 

 

Figure 36: In-plane proton conductivity (in water at 25°C) as a function of draw ratio in 

Aquivion
®
 ( ) and Nafion

®
 ( ) films.  

 

The in-plane proton conductivity for the DR1 Aquivion
®
 membrane was 0.100 

S/cm, which is consistent with similar EW commercial Aquivion
®
 films (~1.1 S/cm for 
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790 EW in water at 25°C).
18,63

 As expected, the Aquivion
®

 proton conductivity was 

higher than that of commercial Nafion
®

 117 (as tested in the present work) due to its 

lower EW. However, the reported conductivity for unstretched recast Nafion
®
, which Lin 

reports as identical to that of Nafion
®
 117, was approximately equal to Aquivion

®
. This 

inconsistency was therefore attributed to differences in the experimenter and testing 

apparatus. There was a modest increase in proton conductivity for both Nafion
®
 and 

Aquivion
®
 after stretching, but conductivity was independent of draw ratio above DR2 (a 

conductivity of 0.107 S/cm at DR ≥2). Previously shown water uptake measurements (see 

Section 3.4) concluded that stretching did not change the amount of absorbed water in 

Aquivion
®
 and a similar result was reported for stretched Nafion

®
 by Lin.

49
 The increase 

in proton conductivity along the stretched direction of Nafion
®
 has been attributed by 

Park 
55

 and Li 
61

 to the greater alignment of the hydrophilic channels which enhance the 

proton transport. Therefore it is reasonable to assume a similar conclusion in stretched 

Aquivion
®
 due to the comparable chemical structure.  

In a fuel cell, protons permeate across the membrane in the through-plane 

direction. Through-plane conductivity measurements however were not taken as they are 

time intensive, prone to significant experimental errors, and require expensive equipment 

compared to in-plane conductivity tests.
84

 Additionally, through-plane conductivity 

measurements taken on stretched Nafion
®
 showed no change with stretching and were 

equal to the in-plane measurements.
47,48

 Therefore, through-plane and in-plane proton 

conductivity were assumed to be comparable to one another in stretched Aquivion
®

. The 

validity of this assumption will be determined once the through-plane proton conductivity 

of stretched Aquivion
®
 films can be measured in a membrane electrode assembly. 
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3.7 Methanol Permeability 

Methanol permeability tests were carried out on stretched Aquivion
®
 films to 

determine whether uniaxial stretching decreased the methanol permeability as was the 

case for stretched Nafion
®
. Figure 37 is a plot of the methanol permeability for stretched 

Aquivion
®
 films at 25°C and 60°C with 1.0 M methanol. Each data point is an average of 

two repeated experiments. The methanol permeability of commercial Nafion
®
 117 under 

identical conditions was 2.4*10
-6

 cm
2
/s at 25°C and 4.63*10

-6
 cm

2
/s at 60°C (both were 

determined in the present work). 

 

 

Figure 37: Effect of draw ratio on methanol permeability in Aquivion
®

 membranes at 

25°C ( ) and 60°C ( ) with 1.0 M methanol. The data points are the average of two 

experimental measurements and the measured permeability between repeated 

measurements differed by less than 5%. 
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 The methanol permeability results confirm an expected decrease in permeability 

with increasing draw ratio. Unstretched Aquivion
®
 exhibits a slightly higher methanol 

permeability than Nafion
®
 117 due to an increase in solvent swelling caused by its higher 

IEC. Equilibrium water vapor uptake measurements shown in Section 3.4 led to the same 

conclusion of greater solvent uptake in 830 EW Aquivion
®
, as compared to 1100 EW 

Nafion
®
. As opposed to water uptake however, stretching causes a substantial reduction 

in methanol permeability with draw ratio. The ability to decrease the methanol 

permeability without lowering the water uptake is unique to the stretching technique and 

is discussed later in this section. Compared to DR1, a DR6 stretched Aquivion
®

 

membrane shows significant reduction in methanol permeability at both 25°C and 60ºC 

respectively. These trends resemble the previously reported drop in methanol 

permeability for stretched Nafion
®
 films.

46-49
 Figure 38 displays the methanol 

permeability at 60°C with 1 M methanol for stretched Aquivion
®
 and stretched Nafion

® 46
 

as a function of draw ratio. Figure 39 is a plot of the relative methanol permeability 

(permeability/permeability of DR1) for each polymer under the same conditions as 

Figure 38. 
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Figure 38: Methanol permeability at 60°C with 1.0 M methanol for stretched Aquivion
®
 

( ) and stretched Nafion
®
 ( ) films. Nafion

®
 data obtained from reference [47]. 

 

Figure 39: Relative methanol permeability (permeability/permeability at DR1) as a 

function of draw ratio for Aquivion
®
 ( ) and Nafion

®
 ( ) membranes. Permeability was 

measured at 60ºC with 1.0 M methanol. Nafion
®
 data obtained from reference [47]. 

Nafion
®

 

Aquivion
®
 

Nafion
®

 

Aquivion
®
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Aquivion
®

 exhibits a higher methanol permeability than Nafion
®
 at all draw ratios 

until DR6. At this point, the permeability of stretched Aquivion
®
 becomes equal to 

stretched Nafion
®

 as the greater reduction in permeability caused by stretching nullifies 

the effect of the lower EW and greater solvent swelling. The relative decrease in 

permeability for both Nafion
®

 and Aquivion
®
 with stretching is the same up to a draw 

ratio of 4 (see Figure 39). Aquivion
®
 however shows a reduction at DR6 that appears to 

continue declining, while the Nafion
®

 permeability remains constant for DR >4. This is 

similar to the crystallinity and mechanical property data which showed greater property 

differences between the two stretched polymers at higher draw ratios. Crystallinity is not 

the only factor that controls methanol permeability (much like the water uptake detailed 

in Section 3.4) as Aquivion
®
 has a higher crystallinity at all draw ratios. However, the 

greater increase in crystallinity for Aquivion
®
 may lower the methanol permeability by 

generating more tortuous diffusional pathways, creating a larger number of dead end 

pathways, and/or restricting the width of the hydrophilic domains.
8,11,30,31

 These are 

properties of the membrane microstructure that have been demonstrated previously to 

successfully reduce methanol permeability.  

Previous work has investigated the cause of the reduced methanol permeability in 

Nafion
®
 upon uniaxial stretching. Lin et al. reported a decrease of the methanol solubility 

in the polymer with draw ratio (shown in Figure 40).
46,49

 This was explained by a 

reduction in the freezable water content within the membrane (water that interacts weakly 

or not at all with the sulfonic acid side groups), which appeared coupled to the decline in 

methanol permeability. The total water content, however, stayed relatively constant since 

the amount of nonfreezable water increased (water that is strongly bound to the ionic 
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groups of the polymer). This change in ratio between freezable and nonfreezable water 

was theorized to give the stretching technique the unique ability to decrease the methanol 

permeability without lowering water uptake since the sulfonic acid groups preferentially 

bound with water. Water content (total, freezable, and nonfreezable) as a function of 

draw ratio in stretched Nafion
®
 films is plotted in Figure 41 as reported by Lin.

49
 

Additionally, Park
55

 and Li
61

 reported an increasing degree of anisotropic transport at 

higher draw ratios in stretched Nafion
®
. Transport in the plane perpendicular to the 

stretched direction was slowed, while transport increased in the stretched direction 

(shown in Figure 42).
55

 The diffusional pathways were thought to become more tortuous 

in the through-plane direction as the hydrophilic pathways were directionally oriented in 

the stretched direction (as described in Section 1.5). Since Aquivion
®

 and Nafion
®

 have 

similar chemical structures, it is reasonable to assume similar effects in stretched 

Aquivion
®
 films. Further investigation is required however to determine the exact cause 

behind the greater reduction in methanol permeability for Aquivion
®
 compared to 

Nafion
®
.  
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Figure 40: Methanol partition coefficient (methanol in polymer/methanol in solution) as 

a function of draw ratio for stretched Nafion
®
 films ( ), and commercial Nafion

®
 ( ). 

Data from reference [46]. 

 

 
Figure 41: Total ( ), freezable ( ), and nonfreezable ( ) water content in Nafion

®
 117 

(closed symbols) and recast Nafion (open symbols) at various draw ratios. Data from 

reference [49]. 

Total 

Nonfreezable 

Freezable 
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Figure 42: Water diffusion coefficient (Dwater) in the stretched direction ( ) and through-

plane direction ( ) as a function of water content (λ) in stretched Nafion
®
 (A=DR1; 

B=DR2; C=DR3; D=DR4). Data from reference [55]. 

 

 

3.8 Relative Selectivity in Stretched Aquivion
®
 and Stretched Nafion

®
 

The selectivity (the ratio of proton conductivity and methanol permeability) of 

commercial Nafion
®
 117 is a widely used benchmark in comparing direct methanol fuel 

A B 

C D 
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cell (DMFC) membranes. Therefore, the selectivity of stretched Nafion
®
 and stretched 

Aquivion
®
 membranes were related to that of commercial Nafion

®
 117 to determine their 

relative selectivities (defined as the selectivity of a given membrane divided by the 

selectivity of Nafion
®

 117). The values of conductivity (in water at 25°C), methanol 

permeability (at 60ºC, measured with 1 M methanol), and relative selectivity for stretched 

Aquivion
®
, stretched Nafion

®
, and commercial Nafion

®
 117 are listed in Table 12 

.  

Table 12: Tabulated data used in the calculation of the relative selectivities (selectivity of 

stretched membrane/selectivity of commercial Nafion
®
 117) at different draw ratios. 

Values for stretched Nafion
®
 were collected from [47].  

 

  Cond @ 25°C 

(S/cm) 

Perm @ 60°C 

(cm2/s) 

Relative 

Selectivity 

-  

Nafion 117
* 0.100 3.60 e-06 1 

Nafion 117
** 0.090 4.63 e-06 1 

S
tr

et
ch

ed
  

N
a
fi

o
n

®
*
 

DR1 0.100 3.60 e-06 0.95 

DR2 0.105 2.75 e-06 1.31 

DR3 0.109 2.38 e-06 1.57 

DR4 0.107 1.59 e-06 2.31 

DR7 0.109 1.42 e-06 2.63 

S
tr

et
ch

ed
  

A
q

u
iv

io
n

®
*
*
 

DR1 0.100 5.74 e-06 0.90 

DR2 0.110 4.66 e-06 1.21 

DR4 0.105 2.41 e-06 2.24 

DR6 0.104 1.58 e-06 3.38 

 

*  Data in Lin et al. [47] 

**  Data collected in the present study 

 



 

 

74 

 

Upon membrane elongation, the observed decrease in methanol permeability without 

an accompanying drop in proton conductivity leads to an increase in relative selectivity 

for both Aquivion
®
 and Nafion

®
. The relative selectivity for stretched Aquivion

®
 and 

stretched Nafion
®

 is plotted against membrane draw ratio in Figure 43. The relative 

selectivity for the stretched polymers is essentially identical for DR <4. At high DR (>4) 

however, Aquivion
®
 demonstrates a higher selectivity due to the larger reduction in 

methanol permeability (see Section 3.6 for in-depth methanol permeability discussion).  

 

 
 

Figure 43: The relative selectivity (selectivity of membrane divided by selectivity of 

Nafion
®

 117) for stretched Aquivion
®
 ( ), and stretched Nafion

®
 ( ) as a function of 

draw ratio. The stretched Nafion
®
 values are reported in [47]. 

Aquivion
®
 

Nafion
®
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Although the gain in relative selectivity is smaller than that seen in SPEEK, 

blended Teflon
®
/Nafion

®
, and some other membranes referenced in Section 1.4, the 

improvement comes without the unwanted cost of increased proton transfer resistance. 

Therefore, the compromise between decreased methanol crossover and increased proton 

transfer resistance, which limits many DMFC membranes, is not an issue for stretched 

Aquivion
®
. Lin et al. previously demonstrated the value of stretched membranes by 

setting a benchmark for high performance direct methanol fuel cell testing with stretched 

Nafion® (DMFC test results are detailed in Section 1.6).
46-49

 The improvement in relative 

selectivity of DR6 Aquivion
®
 over stretched Nafion

®
 (~30% improvement) suggests that 

the stretched Aquivion
®

 membranes will perform well in a DMFC. Such experiments 

were not performed in the present study. 
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CHAPTER 4 

 

CONCLUSIONS 

 

 

 

Uniaxial stretching of recast 1100 EW Nafion
®
 was described in a series of papers 

by Lin et al.
46-49

 In the present study, the method was adapted for use on 830 EW 

Aquivion
®
 (a short side chain PFSA). Stretched Aquivion

®
 membranes exhibited 

increased crystallinity with draw ratio (DR), up to 38% crystallinity at DR6. The 

increased crystallinity and polymer chain orientation led to substantial improvements in 

key direct methanol fuel cell membrane properties: better mechanical strength and a 

lower methanol permeability, without a loss in proton conductivity. Stretching caused the 

in-plane proton conductivity to increase slightly (7% to 0.107 S/cm in water @ 25°C), 

while reducing the methanol permeability substantially (72% in a DR6 film at 60°C and 1 

M methanol), as compared to unstretched Aquivion
®
. The conductivity improvement 

seen in stretched Aquivion
®
 and Nafion

®
 polymers was similar, but stretching caused a 

larger reduction in methanol permeability for Aquivion
®
 at higher values of DR which 

resulted in a 30% improvement in relative selectivity (2.6 for DR4 Nafion
®
 vs. 3.4 for 

DR6 Aquivion
®
). Although no direct methanol fuel cell tests were performed during this 

study, the measured membrane properties appear well suited for use in direct methanol 

fuel cells. The Aquivion
®
 stretching results presented in this work are encouraging. The 

use of stretched Aquivion
®
 in a direct methanol fuel cell may yield high power outputs, 

as compared to commercial Nafion
®
 films and pre-stretched recast Nafion

®
 membranes. 
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CHAPTER 5 

 

SUGGESTIONS FOR FUTURE WORK 

 

i. Whether the membrane properties (crystallinity, methanol permeability reduction, 

mechanical moduli, etc.) reach a maximum with draw ratio in Aquivion
®
 has not 

been determined. Aquivion
®
 membranes appear to continue improving beyond 

DR6, but this was not investigated in the present work. A study on higher DR 

Aquivion
®

 membranes (>6) may reveal further improved membrane properties. 

  

ii. Study the operational temperature effect on the methanol permeability reduction. 

The methanol permeability reduction is greater at 60ºC than 25ºC in the present 

work. A higher glass transition temperature and added crystallinity may help the 

Aquivion
®

 performance compared to Nafion
®
 117 at the desired high operation 

temperatures (>80°C). More testing temperatures are required however before 

reaching any definitive conclusion. 

 

iii. Determine the methanol concentration effect on the methanol permeability of 

stretched Aquivion
®
 membranes. A higher methanol concentration in the fuel 

provides greater energy density, but increases methanol crossover. No 

concentration other than 1.0 M methanol was utilized throughout this work. 
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iv. Lin et al. theorized that a reduction in free water (water not bound to the sulfonate 

ions) causes the decrease in methanol permeability.
49

 A study on the 

bound/unbound water in stretched Aquivion
®
 films may help explain the greater 

permeability reduction in Aquivion
®

 compared to Nafion
®
.  

 

v. Determine the lifetime for the stretched Aquivion
®
 films. The stretched 

Aquivion
®

 films showed no retraction after boiling in 1 M H2SO4, boiling in 

water, or exposure to 1 M methanol at 60°C. However, stretching/annealing 

simultaneously may affect the long term rate at which the films relax.  

 

vi. Place the DR6 Aquivion
®
 membranes into an MEA and test whether the 

membranes improve the DMFC power output over commercial Nafion
®
 117 and 

pre-stretched recast Nafion
®
. The membranes will have to be stacked to determine 

an optimal ionomer thickness. 

 

vii. Place the DR6 Aquivion
®
 membranes into a hydrogen fuel cell. The added 

mechanical strength and organization of the proton conducting channels induced 

by stretching may improve the fuel cell power output compared to Nafion
®

 117. 
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APPENDIX A 

CHECKING THE CONSISTENCY BETWEEN DIFFERENT BATCHES OF 

COMMERCIAL AQUIVION
®
 D83-10E 

 

 

 

Two commercial D83-10E Aquivion
®
 dispersions were used throughout the 

present work to cast membranes. Methanol permeability and proton conductivity tests 

were run on annealed solution cast films to examine any property differences between the 

polymer dispersions. Table A.1 displays the measured membrane properties. The error is 

reported as the standard deviation between repeated experiments. The tests concluded 

that the dispersions created membranes with identical properties. 

 

Table A.1: Properties of membranes cast from different batches of D83-10E Aquivion
®

 

dispersion from Solvay Solexis. 

 1
st
 Polymer dispersion 2

nd
 Polymer dispersion 

Methanol Permeability 

(cm
2
/s) 

 

2.84 ± 0.24 2.83 ± 0.14 

Proton Conductivity 

(S/cm) 

0.105 ± 0.009 0.104 ± 0.003 
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APPENDIX B 

IN-DEPTH WALKTHROUGH OF THE DECONVOLUTION AND 

INTEGRATION OF WAXD SPECTRA IN EXCEL
®
 

 

 

 

The crystallinity was calculated from WAXD spectra in this work by using the 

Pearson VII distribution function for the deconvolution, and the trapezoidal rule for the 

integration. Table B.1 displays the abbreviations that are used throughout this section.  

 

 

Table B.1: List of abbreviations used during the discussion of the WAXD deconvolution 

and integration. 

Abbreviation Meaning 

X 2θ from data (independent variable) 

Y Intensity from data  

HL Height of left peak 

CL Center of left peak 

WL Full width at half maximum of left peak 

EL Exponent of left peak 

HR Height of right peak 

CR Center of right peak 

WR Full width at half maximum of right peak 

ER Exponent of right peak 

PearL Calculated intensity of left Pearson peak 

PearR Calculated intensity of right Pearson peak 

R Residual 

N Index of data point 

N Total number of data points 

SSR Sum of squared residuals 

 

 

 The data was loaded into Excel
®
, and then deconvoluted into two separate peaks 

using Pearson VII distribution functions:
66

 Equation B.1=left (amorphous), and Equation 

B.2=right (crystalline). The solver function in Excel
®
 was used to find the minimum SSR 

(Equation B.5) by varying HL, CL, WL, EL, HR, CR, WR, and ER. 
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PearL(X) 
  

[   (
    

  
)
 
(    ⁄   )]

       [B.1] 

 

PearR(X) 
  

[   (
    

  
)
 
(    ⁄   )]

      [B.2] 

 

 

Combined intensity(X) = PearL(X) + PearR(X)   [B.3] 

 

 

R
2
(X) = Combined intensity(X) – Y(X)    [B.4] 

 

 

SSR= ∑      
   (Xn)       [B.5] 

  

After deconvolution, the fit functions were integrated using the trapezoidal rule 

for each peak (Equation B.6 and Equation B.7). Finally, the crystallinity was calculated 

by calculating the ratio between the area of the right (crystalline) peak to the total 

integrated area of both peaks. 

 

 

Area of left peak= ∑
                     

       

     
      [B.6] 

 

 

Area of right peak= ∑
                     

       

     
      [B.7] 

 

 

% Crystallinity = 
                  

                                    
 x 100% [B.8] 
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APPENDIX C 

REPRESENTATIVE NYQUIST PLOT FOR AQUIVION
®
 AT EACH DRAW 

RATIO (DR1, DR2, DR4, DR6) 

 

 

 

 
 

 

 

A 

B 

Thickness= 0.208 mm 

Width= 3.8 mm 

Thickness= 0.060 mm 

Width= 3.9 mm 
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Figure C.1: Representative Nyquist plots for Aquivion
®
 at each draw ratio (A=DR1, 

B=DR2, C=DR4, D=DR6) which were used to calculate the membrane proton 

conductivity with Equation 1. The wet membrane cross-sectional dimensions for each 

sample are displayed on their respective plot, and the distance between electrodes (L in 

Equation 1) for all samples was 44 mm.  

C 

D 

Thickness= 0.036 mm 

Width= 2.8 mm 

Thickness= 0.016 mm 

Width= 2.7 mm 
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