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CHAPTER I 

INTRODUCTION 

I.1 Specific Aims 

Ultrasound	provides	several	contrast	mechanisms,	such	as	conventional	B‐mode	and	strain	

imaging,	 which	 have	 the	 potential	 to	 provide	 complementary	 information	 beyond	 that	 which	 is	

offered	 by	 preoperative	 volumetric	 imaging	 modalites	 such	 as	 computed	 tomography	 CT 	 or	

magnetic	resonance	 MR 	imaging	 1 .	Given	the	critical	importance	of	accurate	margin	delineation	

for	surgical	targets	such	as	tumors	or	blood	vessels,	ultrasound	can	be	a	useful	interventional	tool	

within	a	 comprehensive	 image‐guidance	 framework	by	 supplementing	 information	 regarding	 the	

extent	of	diseased	 tissue.	Unfortunately,	 ultrasound	 suffers	 from	several	drawbacks	 compared	 to	

other	 imaging	modalities.	 One	 of	 the	most	 common	 criticisms	 of	 ultrasound	 centers	 around	 the	

challenge	 of	 image	 interpretation,	which	 can	be	diffiult	without	 other	 supporting	 information.	 In	

addition,	the	contact	between	ultrasound	probe	and	tissue	can	result	in	nonrigid	tissue	deformation	

which	 distorts	 positional	 and	 size	 measurements	 of	 subsurface	 targets.	 There	 are	 emerging	

ultrasound	technologies	which	have	yet	to	be	widely	realized	in	an	interventional	role	due	in	part	

to	the	issues	mentioned	above,	despite	the	fact	that	ultrasound	is	already	a	common	fixture	within	

the	operating	room.	These	technologies	have	the	potential	to	impact	a	wide	array	of	procedures	by	

offering	 novel	 information	 to	 the	 clinician,	 provided	 that	 intraoperative	 ultrasound	 can	 be	made	

more	quantitative	with	respect	to	spatial	localization	of	subsurface	objects.	

The	primary	objective	of	 this	dissertation	was	to	advance	ultrasound	as	an	 interventional	

image‐guidance	 platform	 by	 creating	methods	 to	 enhance	 the	 spatial	 context	 of	 ultrasound	 data	

intraoperatively.	 The	 following	 tasks	were	 accomplished	 in	 order	 to	meet	 this	 goal:	 1 	 a	 tracked	

ultrasound	system	was	developed	with	capability	 for	both	B‐mode	and	strain	 imaging,	2 	a	high‐
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accuracy	 laser	 range	 scanner	was	 characterized	 and	 used	 to	 register	 tracked	 ultrasound	 data	 to	

other	 imaging	modalities,	 3 	methods	were	developed	 to	 correct	 for	nonrigid	 tissue	deformation	

during	ultrasound	imaging,	and	4 	these	methods	were	evaluated	with	simulations,	phantoms,	and	

clinical	 data.	 The	 results	 and	 applications	 of	 this	 work	 are	 important	 to	 the	 development	 of	 a	

comprehensive	approach	to	ultrasound‐guided	interventions.	Thus,	while	the	goals	of	 this	project	

lie	within	the	domain	of	a	much	larger	field,	the	scope	of	this	dissertation	was	constrained	by	the	

formulation	of	the	following	specific	aims:	

I.1.1 AIM 1: Characterize the accuracy of a novel laser range scanner 

The	 first	 aim	of	 this	project	was	 to	describe	 the	design	and	performance	of	 a	 laser	 range	

scanner	 LRS .	The	LRS	was	developed	with	the	capability	to	create	a	tracked	geometric	point	cloud	

with	 color	 information	 automatically	 aligned	 to	 cloud,	 and	 it	 was	 evaluated	 with	 respect	 to	 its	

geometric	and	tracking	accuracy.	This	device	was	necessary	to	support	the	next	two	aims	as	a	high	

accuracy	 measurement	 tool	 capable	 of	 creating	 surface	 geometry	 in	 a	 common	 3D	 coordinate	

system	 as	 the	 tracked	 ultrasound	 data.	 The	 data	 from	 the	 LRS	was	 used	 for	 both	 surface‐based	

image‐to‐physical	registrations	and	for	tissue	deformation	measurements.		

I.1.2 AIM 2: Develop a patient‐specific compression correction method for tracked ultrasound 

	 The	 second	 aim	 of	 this	 project	 was	 to	 develop	 a	 method	 to	 correct	 the	 positional	 and	

geometric	 information	 in	 tracked	 ultrasound	 in	 cases	 involving	 significant	 tissue	 compression	

exerted	 by	 the	 ultrasound	 probe.	 This	 was	 accomplished	 by	 registering	 intraoperative	 tracked	

ultrasound	data	 to	a	 tissue	model	created	 from	preoperative	 imaging	of	 the	patient,	 and	utilizing	

that	registration	to	estimate	the	amount	of	tissue	compression	induced	during	ultrasound	imaging.	

This	estimation	of	the	compression	was	then	used	to	drive	a	biomechanical	tissue	model	and	create	

a	full	displacement	field	prediction	throughout	the	tissue	volume,	which	was	then	used	to	correct	

the	ultrasound	data.	

	



 
 
 

3 
 

I.1.3 AIM 3: Develop a generalized real‐time compression correction method for tracked ultrasound 

	 The	 third	 aim	 of	 this	 project	 was	 to	 extend	 the	 patient‐specific	 correction	 to	 a	 generic	

framework	 which	 does	 not	 rely	 on	 the	 patient‐specific	 model	 as	 in	 Aim	 2.	 The	 patient‐specific	

method	 was	 limited	 to	 clinical	 interventions	 which	 routinely	 utilize	 volumetric	 preoperative	

imaging	 which	 closely	 matches	 the	 intraoperative	 state	 of	 the	 patient.	 This	 aim	 modified	 the	

previous	 approach	 so	 that	 a	 generic	 block	 of	 tissue	 was	 modeled	 on	 the	 tip	 of	 the	 tracked	

ultrasound	probe	and	used	to	estimate	 tissue	displacement.	The	generic	block	correction	method	

only	required	relatively	sparse	intraoperative	measurements	of	tissue	compression	depth	in	order	

to	generate	a	model	correction.	In	addition,	the	workflow	modifications	by	this	method	enabled	the	

model	solution	to	be	calculated	at	a	much	faster	speed	compared	to	the	patient‐specific	correction,	

and	thus	preserved	the	rapid	acquisition	characteristic	of	ultrasound.	

I.2 Dissertation Overview 

This	dissertation	begins	 in	Chapter	 II	with	an	 introduction	 to	 image‐guided	 interventions,	

including	 ultrasound	 imaging,	 tracking	 systems,	 registration	methods,	 and	model‐updated	 image	

guidance.	 A	 comprehensive	 description	 of	 the	methodology	 used	 throughout	 this	 dissertation	 is	

given	 in	 Chapter	 III,	 including	 image	 segmentation	 methods,	 model	 creation,	 the	 creation	 and	

calibration	of	the	tracked	ultrasound	system,	and	ultrasound	strain	imaging.	The	following	chapters	

expand	upon	the	aforementioned	specific	aims	of	the	project.	Chapter	IV	describes	the	methods	and	

results	of	the	characterization	of	the	novel	LRS.	Chapter	V	describes	the	development	of	the	patient‐

specific	 model	 correction	 for	 tissue	 compression	 during	 ultrasound	 imaging,	 with	 results	 in	

phantoms	 and	 clinical	 data.	 In	 Chapter	 VI,	 the	 methods	 and	 results	 of	 the	 generic	 compression	

correction	method	are	described.	Chapter	VII	presents	additional	studies	 in	which	the	ultrasound	

image	information	is	exploited	to	detect	surgical	targets.	Finally,	Chapter	VIII	presents	the	overall	

conclusions	of	the	work	and	suggests	future	areas	of	investigation.	 	
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CHAPTER II 

BACKGROUND 

	 The	following	section	provides	a	brief	overview	of	the	state	of	image‐guided	interventions	

and	 the	most	 common	 technologies	which	enable	 these	procedures.	 Special	note	will	be	made	of	

groups	which	 have	 used	 intraoperative	 tracked	 ultrasound	 as	 a	 navigational	 tool,	 as	 the	 Specific	

Aims	of	this	project	rely	on	the	development	and	use	of	a	tracked	ultrasound	system.	This	chapter	is	

intended	to	provide	a	broader	context	to	the	contributions	of	this	dissertation	in	the	field	of	image‐

guided	interventions	as	a	whole.	

II.1 Introduction to Image‐Guided Interventions 

	 Image‐guided	 interventions	 are	 defined	 as	medical	 procedures	 which	 leverage	 computer	

displays	 of	 imaging	 data	 to	 assist	 the	 physician	 in	 localizing	 a	 surgical	 target	 in	 a	 spatially	 and	

temporally	quantitative	manner	 2,	3 .	This	is	achieved	by	merging	information	from	imaging	data	

with	the	physical	working	space	in	the	operating	room	and	thus	aligning	the	coordinate	systems	of	

image	and	physical	space.	A	modern	image‐guidance	technology	platform	most	commonly	consists	

of	 the	 following	 components:	 1 	 imaging	data,	which	 is	 often	preoperative	 tomographic	 volumes	

but	also	 includes	a	variety	of	 intraoperative	modalities,	2 	 intraoperative	 tools	which	are	 tracked	

with	 a	 localizing	 system,	 3 	 an	 image‐to‐physical	 registration	 method,	 and	 4 	 a	 method	 of	

visualizing	the	co‐registered	information	in	an	interactive	display.		

The	 following	 sections	will	describe	 some	of	 these	 technological	 components	and	current	

clinical	applications.	Although	many	anatomical	targets	in	the	human	body	are	the	subject	of	image‐

guided	interventions,	this	dissertation	will	focus	on	a	subset	of	these.	Many	of	the	examples	will	be	

centered	 on	 neurosurgery,	 as	 image‐guidance	 has	 been	 standard	 of	 care	 for	 several	 decades	 in	
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those	procedures.	Special	attention	will	also	be	given	 to	emerging	ultrasound	technologies	which	

may	provide	substantial	benefit	to	current	clinical	practices	when	integrated	with	the	contributions	

made	 in	 this	 dissertation.	 It	 should	 therefore	 be	 noted	 that	many	 of	 the	 following	 concepts	 and	

technologies	 are	 also	being	 employed	 to	 aid	 interventional	 procedures	 in	 other	 fields,	 such	 as	 in	

radiation	 therapy	 and	 radiosurgery,	 as	 well	 as	 in	 other	 anatomy	 such	 as	 the	 kidney,	 liver,	 and	

prostate	to	name	a	few	 4‐6 .	

II.2 Ultrasound Imaging 

	 Intraoperative	 ultrasound	 is	 an	 interventional	 imaging	 modality	 capable	 of	 subsurface	

measurements.	 It	 has	 the	 benefit	 of	 being	 a	 low‐cost	 and	 safe	 alternative	 to	 both	 computed	

tomgraphy	 CT 	and	magnetic	resonance	 MR 	imaging,	and	is	a	tool	readily	available	in	almost	all	

operating	 rooms	 ORs .	 Conventional	 ultrasound	 is	 an	 attractive	 imaging	modality	 because	 it	 is	

relatively	inexpensive,	noninvasive,	nonionizing,	and	can	provide	quick	real	time	imaging	of	nearly	

any	human	tissue.	 It	 is	widely	used	 for	a	variety	of	medical	applications,	 including	 intraoperative	

imaging	for	 treatment	of	breast	 7‐9 ,	 liver	 10‐12 ,	prostate	 13 ,	 thyroid	 14 ,	and	gynecological	

targets	 15 .	Despite	its	appeal,	however,	it	does	generally	suffer	the	limitation	of	providing	only	2D	

images	as	opposed	to	CT	and	MR	3D	volumes.	The	clinical	availability	of	3D	ultrasound	probes	 is	

increasing,	but	conventional	2D	probes	remain	the	standard	intraoperative	technology.	It	is	widely	

recognized	that	the	2D	format	and	relatively	low	signal‐to‐noise	ratio	of	ultrasound	images	makes	

them	more	difficult	to	interpret	in	isolation.	Because	of	this	limitation,	the	utility	of	intraoperative	

ultrasound	has	also	been	investigated	almost	in	parallel	with	stereotactic	procedures	in	attempts	to	

place	US	images	in	a	spatial	context	 16‐19 .	For	example,	intraoperative	ultrasound	has	been	used	

to	 provide	 some	measure	 of	 brain	 shift	 in	 neurosurgery,	 as	well	 as	 to	measure	 the	 difference	 in	

tumor	volumes	predicted	by	preoperative	CT	and	ultrasound	 20,	21 .		
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In	addition	to	conventional	open	surgeries,	ultrasound	guidance	has	also	been	deployed	in	a	

variety	 of	 noninvasive	 procedures.	 A	 procedure	 of	 particular	 note	 is	 the	 use	 of	 high	 intensity	

focused	ultrasound	 HIFU 	to	ablate	surgical	targets	such	as	solid	tumors	by	converting	mechanical	

energy	 into	heat	and	also	 through	 inertial	cavitation	effects	 22,	23 .	A	recurrent	challenge	 in	 the	

HIFU	 community	 is	 accurate	monitoring	of	 the	 ablation	 zone	with	noninvasive	 imaging,	which	 is	

typically	done	with	either	MR	or	ultrasound	itself.	Ultrasound	has	been	used	to	guide	HIFU	ablation	

of	tumors	in	the	breast	 24 ,	liver	 25 ,	uterus	 26 ,	and	other	organs.	One	of	the	difficulties	usually	

encountered	 is	 accurate	 spatial	 identification	 of	 the	 target	 and	 ablation	 zone	 borders.	 Figure	 1	

shows	an	example	of	a	HIFU	ablation	zone	evolving	with	time	during	a	procedure.	

	

Figure  1.  Time  evolution  of  a  HIFU  focus  region  showing  close‐ups  of  the  bright  hyperechoic  spot 
produced during ablation (b‐h). Reprinted from [23], with permission from Elsevier. 
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A	 related	 technique	 involves	 using	 short	 pulses	 of	 focused	 ultrasound	 energy	 to	 induce	

cavitational	destruction	of	the	tissue	in	a	noninvasive	and	nonthermal	manner.	This	effect	is	known	

as	histotripsy,	and	it	has	been	presented	as	a	more	precisely	targeted	method	of	destroying	tissue	

by	avoiding	the	problems	associated	with	thermal	ablation,	namely	the	inhomogeneous	heating	of	

tissue	due	to	tissue	heterogeneity,	perfusion,	and	charring	 27 .	Ultrasound	histotripsy	has	shown	

potential	 for	use	 in	 thrombolysis	 28 	 and	has	 also	been	proposed	 for	 targeted	 ablation	of	 small	

incidental	 lesions	 in	 various	 organ	 systems	 such	 as	 the	 kidney	 29 	 and	 prostate	 30 .	 Figure	 2	

shows	an	example	of	a	targeted	ablation	in	an	animal	model	using	histotripsy.	

	

Figure  2.  A  B‐mode  image  of  a  rabbit  kidney  before  (left)  and  during  (right)  histotripsy  treatment, 
showing the hyperechoic cavitation zone. Reprinted from [27], with permission from Elsevier. 

Acoustic	radiation	force	impulse	 ARFI 	imaging	and	shear	wave	elasticity	imaging	 SWEI 	

are	 ultrasound‐based	 technologies	 which	 have	 emerged	 as	 noninvasive	 methods	 of	 measuring	

tissue	stiffness	 31‐33 .	Traditionally,	imaging	strategies	for	measuring	tissue	stiffness	have	relied	

on	 external	 tissue	 excitation	 methods	 or	 physiological	 motion	 in	 order	 to	 induce	 mechanical	

deformation	of	the	tissue	which	can	be	related	to	material	properties	 34 .	The	acoustic	radiation	

force	based	methods	avoid	the	need	 for	external	excitation,	relying	 instead	on	the	 interactions	of	

the	tissue	and	acoustic	beam	to	estimate	stiffness.	ARFI	has	been	commercially	available	for	the	last	
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several	years	and	has	been	presented	in	the	clinical	 literature	for	several	applications.	Thus	far	 it	

has	primarily	been	used	 in	a	diagnostic	role,	such	as	for	assessing	solid	hepatic	 lesions	 35 ,	 liver	

fibrosis	 36‐38 ,	myocardial	stiffness	 39 ,	breast	lesions	 40,	41 ,	and	peripheral	nerves	 42 .	There	

has	also	been	recognition	of	the	potential	usefulness	of	the	elasticity	information	offered	by	ARFI	in	

a	guidance	sense,	such	as	for	needle	biopsies	in	the	prostate	 43 	and	monitoring	the	target	zone	in	

radiofrequency	ablations	in	the	heart	and	the	liver	 44,	45 	as	shown	in	Figure	3.	

	

Figure 3. A thermal lesion resulting from radiofrequency ablation of a metastatic liver mass, imaged with 
B‐mode  (a) and ARFI  (b), with verification of  the  tumor borders  in postoperative CT  (c&d). Reprinted 
from [44], with permission from Elsevier. 
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	 A	 technology	 which	 has	 also	 been	 emerging	 is	 freehand	 tracked	 ultrasound,	 which	 has	

several	 advantages	 over	 conventional	 ultrasound.	 It	 visualizes	 tissue	 in	 an	 intuitive	 3D	 format,	

allows	 for	 the	 acquisition	 of	 2D	 slice	 views	 in	 arbitrary	 3D	 orientations,	 and	 facilitates	 the	

placement	 of	 ultrasound	 image	 slices	 in	 a	 meaningful	 spatial	 and	 temporal	 context.	 Freehand	

tracked	ultrasound	systems	generally	consist	of	a	tracked	sensor	attached	to	the	ultrasound	probe	

which	 is	 used	 to	 determine	 its	 3D	 position	 and	 orientation	 by	 an	 external	 tracking	 system.	 This	

information	 is	used	 to	calculate	 the	3D	position	of	each	object	 in	 the	ultrasound	 images,	and	can	

also	be	used	to	reconstruct	a	3D	ultrasound	volume	by	compounding	a	series	of	tracked	2D	images	

46 .	By	placing	 the	 images	within	an	external	 coordinate	system,	 it	becomes	possible	 to	directly	

align	 ultrasound	 images	 to	 the	 patient,	 as	 well	 as	 to	 other	 modalities.	 As	 an	 example,	 tracking	

information	 has	 been	 used	 to	 assist	 in	 automatic	 co‐registration	 of	 ultrasound	 with	 MR	 for	

correction	of	brain	deformation	 47 .	Similar	work	has	been	done	 to	 register	ultrasound	with	CT	

images	of	the	spine	in	navigated	orthopedic	surgery	 48 .	The	fusion	of	multiple	imaging	modalities	

in	 a	 unified	 image‐guided	 surgery	 IGS 	 platform	 can	 produce	 a	 greater	 understanding	 of	 the	

content	 in	both	modalities	 for	 the	 surgeon,	 and	 it	has	 also	been	shown	 to	 lead	 to	 changes	 to	 the	

therapeutic	 strategy	 compared	 to	 standalone	 imaging	 information	 49,	 50 .	 Groups	 have	

demonstrated	 freehand	 3D	 ultrasound	 to	monitor	 brain	 shift,	 for	 example,	 and	 also	 incorporate	

image	warping	to	register	intraoperative	data	to	preoperative	images	 51‐56 .	Current	commercial	

ultrasound	systems	designed	for	IGS	integration	include	the	SonoWand	 SonoWand	AS,	Trondheim,	

Norway ,	 Brainlab	 Brainlab	 AG,	 Munich,	 Germany 	 49,	 57 	 and	 PercuNav	 systems	 Philips,	

Amsterdam,	Netherlands .	While	these	imaging	systems	do	provide	a	quantitative	measurement	of	

intraoperative	tissue	movement,	methods	of	compensating	for	tissue	deformation	 in	real‐time	for	

use	in	surgical	guidance	have	not	yet	reached	maturation.	
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II.3 Tracking Systems 

	 There	are	a	variety	of	spatial	localization	technologies	for	tracking	surgical	tools	in	physical	

space.	Early	on	in	the	evolution	of	image‐guidance	systems,	geometric	localizers	such	as	articulated	

arms	were	used	to	track	points	in	3D	space,	but	these	devices	were	ultimately	deemed	too	unwieldy	

for	routine	use	 58 .	The	two	most	common	tracking	modalities	currently	in	clinical	use	are	optical	

and	electromagnetic	tracking.	Optical	tracking	entails	the	use	of	an	optical	recording	camera	which	

employs	 triangulation	 to	 localize	 rigid	 objects	 affixed	 with	 either	 actively	 emitting	 LEDs	 or	

passively	 reflecting	 spheres	 arranged	 in	 a	 known	 geometric	 configuration.	 Optical	 systems	 are	

capable	of	highly	accurate	spatial	localization	in	relatively	large	work	volumes,	but	suffer	from	the	

limitation	of	requiring	line‐of‐sight	from	the	tracking	camera	and	the	tracked	rigid	body.	This	leads	

to	the	additional	implication	that	it	is	not	typically	possible	to	track	the	tip	of	nonrigid	flexible	tools	

using	optical	methods,	as	the	optical	trackers	need	to	remain	outside	the	body.	 	Nevertheless,	the	

submillimetric	accuracy	of	optical	systems	has	led	them	to	become	the	standard	tracking	modality	

in	practice	 59 .	Electromagnetic	tracking	devices	work	on	the	principle	of	detecting	alterations	in	a	

static	magnetic	field	induced	by	the	movement	of	a	sensor	through	that	field.	This	method	offers	the	

advantage	of	avoiding	the	issues	associated	with	the	line‐of‐sight	requirements	of	optical	tracking	

between	 the	 tracking	 system	 and	 the	 tracked	 object.	 Electromagnetic	 sensors	 have	 become	 the	

preferred	tracking	technology	for	the	tips	of	nonrigid	instruments	 inserted	into	the	body,	such	as	

flexible	endoscopes	in	orbital	procedures	 60 	or	flexible	ultrasound	probes.	The	primary	drawback	

of	 electromagnetic	 tracking	 systems,	 however,	 is	 their	 susceptibility	 to	 localization	 inaccuracy	

when	 the	magnetic	 field	 is	distorted	by	objects	 such	as	metal	 tools	 in	 the	working	volume	of	 the	

system.	The	working	volume	for	most	electromagnetic	tracking	systems	is	also	much	smaller	than	

for	optical	systems.		

While	 any	 tracking	 technology	 could	 in	 theory	 be	 used	 to	 track	 an	ultrasound	probe,	 the	

most	typical	tracking	mechanisms	have	been	electromagnetic	and	optical	as	discussed	above.	The	
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three	most	common	magnetic	tracking	devices	used	for	freehand	3D	ultrasound	have	been:	1 	the	

Polhemus	AC	 electromagnetic	 tracking	 systems	 Polhemus	 Inc.,	 Colchester,	USA 	 61,	 62 ;	 2 	 the	

Ascension	DC	 electromagnetic	 systems	 Ascension	 Technology,	 Burlington,	 USA 	 63‐66 ;	 and	 3 	

the	NDI	Aurora	 Northern	Digital	 Inc.,	Waterloo,	Canada 	system	 67 .	The	most	 common	optical	

tracking	devices	used	for	freehand	3D	ultrasound	have	been:	1 	the	NDI	Polaris	optical	tracker	 52,	

68‐70 ;	and	2 	the	NDI	Optotrak	optical	tracker	 71‐76 .	

II.4 Registration Methods 

The	 primary	 function	 of	 any	 IGS	 platform	 is	 to	 provide	 correspondence	 between	

intraoperative	data	and	a	wealth	of	preoperative	images	 3 .	This	correspondence	is	accomplished	

by	aligning	the	patient	in	the	OR	and	the	patient’s	preoperative	images	within	a	common	coordinate	

system.	This	process	of	alignment	is	known	as	registration.	

Registration	was	initially	accomplished	by	the	surgeon	using	intuition	and	training	to	align	

anatomical	landmarks	to	get	a	sense	of	where	to	operate.	Quantitative	registration	in	neurosurgery	

was	popularized	with	the	use	stereotactic	frames	 77,	78 ,	which	helped	to	formalize	the	problem	of	

registering	image	space	 the	coordinate	system	in	the	preoperative	images 	and	physical	space	 a	

similar	coordinate	system	within	a	real	world	localization	system,	such	as	the	stereotactic	frame .	

The	advent	of	tomographic	imaging	modalities	led	to	widespread	exploration	of	IGS	methods	using	

stereotaxy	 79‐82 .	

	 Frameless	stereotaxy	has	become	a	popular	method	of	providing	correspondence	in	recent	

years	as	a	more	convenient	alternative	to	full	stereotactic	frames.	These	are	devices	which	localize	

the	 physical	 space	 of	 the	 patient	 in	 alternative	 ways,	 such	 as	 with	 acoustical	 83 ,	 robotic	 84 ,	

magnetic	 85 ,	 or	 optical	 86 	 mechanisms	 as	 discussed	 in	 the	 previous	 section.	 These	 systems,	

particularly	optical	tracking,	have	been	shown	to	provide	the	same	level	of	localization	accuracy	as	

stereotactic	frames,	and	have	become	the	current	standard	in	IGS	procedures.	
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	 The	process	of	registering	without	frames	essentially	consists	of	matching	landmarks	in	the	

images	 to	 corresponding	 physical	 landmarks	 on	 the	 patient.	 Provided	 at	 least	 three	 points,	 a	

transformation	can	be	computed	which	maps	all	points	in	one	space	to	the	other	 87 .	These	points	

are	 sometimes	 chosen	 to	 be	 immobile	 anatomical	 landmarks	 such	 as	 the	 bridge	 of	 the	 nose	 in	

craniofacial	 surgery	 88 .	 Difficulty	 in	 consistently	 localizing	 these	 types	 of	 landmarks,	 however,	

has	led	to	the	common	use	of	synthetic	markers	which	are	attached	to	the	skin	 89,	90 	or	rigidly	

implanted	in	bone	 91 	and	provide	a	much	more	accurate	and	precise	marker	localization	across	

both	spaces.	

	 In	addition	to	point‐based	registration	methods,	surface‐based	methods	are	also	commonly	

used.	 Alignment	 in	 these	 methods	 is	 usually	 achieved	 by	 first	 digitizing	 some	 portion	 of	 the	

patient’s	skin	or	organ	surface.	The	digitized	surface	is	then	registered	to	the	corresponding	surface	

in	 image	 space	 using	 an	 iterative	 closest	 point	 ICP 	 algorithm	 described	 in	 92 .	 For	 example,	

methods	 of	 digitizing	 the	 patient	 surface	 in	 neurosurgery	 commonly	 consist	 of	 swabbing	 the	

craniofacial	region	with	a	tracked	stylus.	Recent	methods	have	included	laser	range	scanning	 LRS 	

technology,	which	creates	a	geometric	reconstruction	of	 the	target	surface	 93‐95 	by	sweeping	a	

line	of	laser	light	onto	the	object	of	interest.	The	surface	is	digitized	by	capturing	the	shape	of	the	

laser	line	with	a	digital	camera	and	using	triangulation	to	form	a	point	cloud.	Calibration	is	done	to	

determine	how	points	 detected	by	 the	 digital	 camera	 are	mapped	 to	 the	 physical	 location	 of	 the	

laser	 line.	 LRS	 systems	 are	 attractive	 for	 assisting	 image‐guidance	 because	 they	 can	 provide	

relatively	fast	and	accurate	sampling	of	the	entire	exposed	surface	of	the	organ.	Alignment	can	be	

facilitated	by	 tracking	a	 conventional	LRS	 in	3D	space	via	optical	 targets	attached	 to	 the	exterior	

enclosure.	 Some	of	 these	devices	 also	 collect	 color	 information	 from	 the	 field	 and	 apply	 it	 to	 the	

surface	 as	 a	 textured	 bitmap.	 This	 represents	 additional	 information	 which	 can	 help	 guide	 the	

registration,	 such	 as	 by	 matching	 vessels	 or	 other	 landmarks	 on	 the	 textured	 surface	 with	 the	

contrast‐enhanced	MR	image	 94,	96‐98 .	
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Much	progress	has	been	made	 in	 the	 last	 30	 years	 to	provide	 registration	between	 these	

data,	but	there	remain	obstacles	to	achieving	accurate	correspondence	between	the	physical	state	

of	 the	 patient	 and	 high‐detail	 tomograms	 throughout	 the	 entire	 procedure.	 In	 particular,	 the	

integrity	 of	 IGS	 procedures	 continues	 to	 be	 challenged	 by	 the	 lack	 of	 standard	 mechanisms	 to	

account	 for	 intraoperative	 soft	 tissue	 deformations,	 such	 as	 the	 well‐described	 phenomenon	 of	

brain	 shift	 in	 neurosurgery,	 for	 example.	 Deformation	 of	 the	 organ	 compromises	 the	

correspondence	 between	 the	 patient	 and	 images	 if	 there	 are	 no	means	 of	 compensating	 for	 the	

change	throughout	the	course	of	the	procedure.	Soft	tissue	deformation	is	particularly	prohibitive	

in	translating	IGS	practices	to	anatomy	outside	of	the	cranium	such	as	the	abdomen,	due	to	the	lack	

of	 rigid	 structures	 to	 restrict	 tissue	 movement.	 In	 addition,	 uncertainty	 regarding	 anatomical	

landmarks	 in	 the	 preoperative	 images	 themselves	 can	 undermine	 the	 fidelity	 of	 IGS.	 This	

dissertation	 highlights	 the	 current	 challenges	 associated	 with	 IGS	 procedures	 and	 presents	 the	

development	of	novel	tools	to	help	address	these	challenges.		

II.5 Model‐Updated IGS 

	 While	 intraoperative	 imaging	modalities	 can	provide	 some	 level	 of	 information	 regarding	

the	 surgical	 status	 of	 the	 patient,	 any	 data	 which	 is	 not	 acquired	 intraoperatively	 needs	 to	 be	

updated	to	reflect	the	realities	of	the	operating	room.	A	complementary	approach	to	intraoperative	

imaging	 is	 to	 computationally	 model	 the	 changes	 to	 the	 preoperative	 state	 of	 the	 patient	 using	

intraoperative	data	acquisition	methods.	Generally,	the	behavior	of	the	organ	of	interest	is	assumed	

to	conform	to	a	patient‐specific	soft	tissue	biomechanical	model.	The	model	can	be	used	to	predict	

the	soft	 tissue	motion	of	 the	organ	under	 loading	conditions	measured	 in	 the	OR.	One	domain	 in	

which	this	approach	has	seen	promising	results	is	in	neurosurgery	to	address	brain	shift,	and	there	

has	been	a	great	deal	of	research	done	to	investigate	ways	to	accurately	model	brain	deformation	

99‐105 .	One	of	the	most	accurate	brain	shift	models,	used	by	Miga	et	al.,	is	based	on	Biot’s	theory	
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of	consolidation	mechanics	and	approximates	the	brain’s	behavior	as	a	sponge	 106 .	The	levels	of	

cerebrospinal	fluid	 CSF 	in	the	brain	affect	brain	motion	in	this	model,	as	lower	levels	of	CSF	will	

result	 in	 the	 brain	 sagging	 in	 the	 direction	 of	 gravity.	 This	 model	 has	 been	 shown	 in	 the	 cited	

studies	as	accurately	mimicking	the	brain’s	observed	behavior,	and	has	demonstrated	the	ability	to	

predict	70‐80%	of	controlled	shift	in	a	porcine	brain	model.	

	 In	 order	 for	 the	 model	 to	 accurately	 predict	 movement	 of	 the	 soft	 tissue,	 it	 requires	

boundary	 conditions	 to	 drive	 and	 constrain	 the	 biomechanical	 equations	which	 characterize	 the	

behavior	 of	 the	 organ.	 These	 boundary	 conditions	 are	 measured	 via	 a	 variety	 of	 devices	 and	

techniques.	Workflow	and	resource	demands	often	result	 in	this	data	being	sparse	in	 information	

and	extent	within	the	surgery.	Sources	of	data	may	include	intraoperative	imaging	modalities	 such	

as	MR,	CT,	 or	US ,	 a	 tracked	 stylus,	 or	 surface	 acquisition	methods	 such	as	 laser	 range	 scanners.	

Each	 of	 these	 methods	 may	 be	 used	 to	 provide	 patient‐specific	 boundary	 conditions	 for	 the	

mathematical	model	of	the	tissue	and	thus	present	customized	guidance	to	the	surgeon.	The	speed	

of	surface	acquisition	methods	make	 them	preferred	 for	model‐based	guidance,	but	 the	ability	 to	

quickly	 localize	 subsurface	 landmarks	with	 ultrasound	 also	 has	 considerable	merit.	 A	 combined	

approach	may	provide	the	necessary	data	while	keeping	cost	manageable.	
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CHAPTER III 

METHODOLOGY 

The	 following	chapters	 represent	a	 series	of	 studies	which	were	designed	 to	evaluate	 the	

innovations	 arising	 over	 the	 course	 of	 this	 project.	 Each	 chapter	 focuses	 on	 components	 of	 a	

generalized	 image	guidance	platform	which	have	been	enhanced	in	this	dissertation.	The	focus	of	

this	 chapter	 is	 to	provide	an	overview	of	 the	entire	 image	guidance	 framework	and	 the	methods	

used.	 The	 primary	 steps	 involved	 are:	 image	 segmentation,	 biomechanical	 model	 creation	 and	

designation	 of	 boundary	 conditions,	 ultrasound	 calibration	 and	 tracking,	 image‐to‐physical	

registration,	 and	 the	 fundamentals	 of	 ultrasound	 strain	 imaging.	 This	 thesis	 contributes	 novel	

contributions	 to	 the	areas	of	boundary	 condition	designation,	 and	 image‐to‐physical	 registration.	

The	remainder	of	this	chapter	is	devoted	to	outlining	this	framework	step‐by‐step,	with	indications	

to	where	the	new	contributions	will	be	made.	

III.1 Image Segmentation 

With	respect	to	the	general	image	guidance	framework,	image	segmentation	is	a	necessary	

component	 of	 the	 workflow	 for	 both	 preoperative	 tomographic	 imaging	 and	 intraoperative	

ultrasound	imaging.	The	following	subsections	describe	the	techniques	used	in	this	dissertation	to	

accomplish	this	task.	

III.1.1 Preoperative Tomogram Segmentation 

Preoperatively	acquired	images	for	surgical	navigation	are	usually	high	resolution	CT	or	MR	

images	which	offer	detailed	anatomical	 information.	The	structures	of	 interest	must	be	extracted	

from	unnecessary	information	in	order	to	construct	a	geometric	model,	which	will	be	covered	in	the	

next	 section.	 There	 is	 a	 rich	 variety	 of	 segmentation	 techniques	 in	 the	 literature	 for	 CT	 and	MR	
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volumes,	 including	 methods	 specific	 to	 the	 imaging	 modality,	 organs,	 or	 tissue	 types.	 These	

methods	 can	 also	 be	 classified	 as	 manual,	 semi‐automatic,	 or	 automatic.	 Although	 there	 are	

automatic	segmentation	techniques	in	current	use	for	procedures	such	as	MR‐guided	neurosurgery	

107 ,	 the	 work	 done	 in	 this	 dissertation	 utilizes	 primarily	 manual	 and	 semi‐automatic	

segmentation.	 As	 far	 as	 manual	 segmentation,	 commercial	 packages	 such	 as	 Analyze	 9.0	 Mayo	

Clinic,	Rochester,	MN 	and	freely	available	software	such	as	ITK‐SNAP	 108 	and	VTK/ITK	 Kitware	

Inc.,	Clifton	Park,	NY 	can	be	used	to	draw	contours	with	line	segments	and/or	splines	to	outline	the	

organ	 of	 interest	 in	 each	 image	 slice	 and	 create	 a	 segmented	 image	mask.	With	 respect	 to	 semi‐

automatic	segmentation,	the	packages	mentioned	above	offer	several	different	methods	to	facilitate	

supervised	 segmentation	 of	 structures.	 The	 primary	method	 in	 this	 dissertation	 consisted	 of	 the	

simple	 intensity	 thresholding	 tools	 in	 Analyze	 9.0,	 in	which	 seed	 points	 are	 placed	 in	 the	 image	

volume	and	voxels	with	 intensity	values	within	a	defined	range	and	connected	to	the	seed	points	

are	 assigned	 to	 the	 image	mask.	 The	 second	method	 utilized	 consisted	 of	 the	 contour	 evolution	

tools	in	ITK‐SNAP,	in	which	the	segmentation	border	propagates	based	upon	a	partial	differential	

equation	 PDE 	 framework	 using	 either	 edges	 or	 intensity	 values	 in	 the	 image.	 The	 contour	 is	

seeded	in	a	similar	manner	as	the	simple	thresholding	technique,	but	can	allow	for	a	more	refined	

segmentation	by	adjusting	 the	various	PDE	weighting	parameters	 such	as	propagation,	advection	

toward	edges,	or	curvature	of	the	contour.		

III.1.2 Intraoperative Ultrasound Segmentation 

The	 task	 of	 ultrasound	 segmentation	 presents	 different	 challenges	 than	 CT	 or	MR	 image	

segmentation	due	to	the	characteristic	noise	and	artifacts	which	are	often	prevalent	in	the	images.	

The	 presence	 of	 speckle,	 attenuation,	 and	 shadowing	 in	 the	 data	 often	 complicate	 segmentation	

techniques	traditionally	used	in	other	imaging	modalities.	In	addition,	the	contrast	between	various	

tissue	 types	 of	 interest	 can	 be	 quite	 low	 in	 B‐mode.	 These	 issues	 have	 motivated	 interest	 in	

segmentation	 algorithms	 which	 leverage	 the	 unique	 characteristics	 of	 ultrasound	 imaging	 or	
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information	 from	other	 imaging	modalities	 to	 assist	 in	 the	 segmentation	 problem	at	 hand.	Much	

effort	 has	 been	 made	 toward	 tissue	 segmentation	 for	 diagnostic	 purposes,	 but	 image‐guided	

interventions	are	emerging	as	an	 important	application	 in	which	 image	segmentation	may	have	a	

strong	clinical	 impact.	 	A	review	of	the	ultrasound	segmentation	literature	from	the	last	decade	is	

given	 by	 109,	 110 .	 Generally	 speaking,	 the	 most	 prevalent	 segmentation	 strategies	 primarily	

target	 B‐mode	 images	 rather	 than	 the	 raw	 radiofrequency	 RF 	 or	 envelope‐detected	 signals,	 as	

most	clinical	ultrasound	machines	do	not	provide	access	to	those	forms	of	data.	Although	several	

machines	 now	 exist	which	 offer	 research	 interfaces	 to	 the	 raw	 data,	 this	 dissertation	 deals	with	

segmentation	 of	 B‐mode	 images.	 The	 primary	 method	 used	 in	 this	 dissertation	 was	 a	 Livewire	

technique	 111 	implemented	using	VTK	image	processing	and	visualization	filters	in	custom‐made	

software.	 In	addition,	a	novel	segmentation	 framework	 for	 intraoperative	 tracked	ultrasound	will	

be	presented	in	the	second	half	of	Chapter	VII.	

III.2 Model Construction 

Subsequent	to	segmentation	of	the	organ	of	interest	from	a	CT	or	MR	image	volume,	a	finite	

element	mesh	is	constructed	to	use	as	the	numerical	domain	for	a	biomechanical	model.	First,	the	

segmented	 image	 mask	 is	 used	 to	 create	 a	 3D	 surface	 description	 using	 the	 marching	 cubes	

algorithm	 112 .	This	 surface	 is	 then	 smoothed	with	 a	 Laplacian	 filter,	 and	 then	 it	 is	 used	 as	 the	

input	for	SPMESH,	a	mesh	generation	program,	to	create	a	mesh	with	tetrahedral	elements	 113 .	

The	edge	 length	of	 the	 tetrahedrons	can	be	specified	by	 the	user,	and	 typically	an	edge	 length	of	

approximately	 5	mm	was	 utilized	 for	 each	mesh	 in	 this	 dissertation,	 resulting	 in	 approximately	

10,000	nodes	and	50,000	elements	for	a	liver	phantom.	Each	element	is	assigned	material	property	

values	 according	 to	 prior	 knowledge	 about	 the	 tissue,	 and	 according	 to	 the	 particular	

biomechanical	continuum	model.	
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The	 finite	element	mesh	described	above	 is	designed	 for	numerical	 integration	techniques,	which	

are	 used	 in	 conjunction	with	 a	 carefully	 selected	model	 to	 predict	 how	 tissue	will	 deform	when	

subjected	 to	 various	 boundary	 conditions	 reflecting	 the	 intraoperative	 state.	 In	 this	 dissertation,	

the	 linear	 elastic	model	 was	 chosen	 to	 simulate	 tissue	 biomechanics	 within	 the	 general	 tracked	

ultrasound	framework	because	of	its	computational	simplicity	 114 .	The	governing	PDE	consists	of	

the	standard	3D	Navier‐Cauchy	equations	for	a	displacement	field	u:	

	
2 1

u
2 1 1 2

∙ u 0 1

where	E	is	Young’s	modulus,	 	is	Poisson’s	ratio,	and	F	is	an	applied	body	force	distribution.	Linear	

basis	functions	are	defined	on	the	tetrahedral	elements	to	perform	the	Galerkin	weighted	residual	

method	and	obtain	a	linear	system	of	equations	for	a	mesh	with	n	nodes:	

	 2

	 ⋯ 3

where	K	 is	 a	 3n	 x	 3n	 global	 stiffness	matrix,	 d	 is	 the	 vector	 of	 nodal	 displacements,	 and	 f	 is	 the	

vector	 containing	 applied	 body	 forces	 and	 surface	 traction	 at	 each	 node.	 The	 assignment	 of	

boundary	conditions	is	accomplished	using	a	custom‐made	graphical	user	interface.	Surface	nodes	

are	selected	using	either	a	plane	or	box	widget,	and	then	are	assigned	either	displacement	or	stress	

conditions	by	the	user.	 In	addition,	 the	user	designates	whether	 the	assigned	conditions	are	with	

respect	to	the	global	Cartesian	coordinate	system	or	the	local	normal‐tangential	coordinate	system	

of	each	individual	surface	node.	Boundary	conditions	are	applied	to	the	appropriate	surface	nodes	

by	modification	of	the	corresponding	equation	rows	in	 2 ,	giving	a	final	system	of	equations	which	

is	solved	for	the	3D	nodal	displacements	throughout	the	mesh	that	satisfy	static	equilibrium	for	the	

boundary	 conditions.	A	previously	developed	 remote	 submission	 system	can	be	used	 to	 take	 the	

mesh,	 boundary	 conditions,	 and	 material	 properties	 as	 inputs,	 and	 return	 the	 displacements	 as	

output	 115 .	
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III.3 Tracked Ultrasound 

The	 following	 subsections	describe	 all	 of	 the	hardware,	 software,	 and	methods	 that	were	

used	 to	 support	 the	 goals	 of	 this	 research.	 These	 primarily	 include	 the	 equipment	 and	 software	

used	to	track	ultrasound	images,	the	calibration	procedures	needed	to	ensure	accurate	tracking,	the	

registration	methods	which	were	used	to	align	tracked	ultrasound	images	and	tomograms	with	the	

patient,	 the	 methods	 used	 for	 generating	 strain	 images,	 and	 the	 methods	 used	 to	 construct	

phantoms	for	preliminary	studies.	

III.3.1 Tracked Ultrasound Hardware 

The	 task	of	 acquiring	 tracked	ultrasound	 images	must	be	 accomplished	by	 capturing	 two	

data	streams:	1 	ultrasound	video	frames	and	2 	tracking	data.	These	two	sources	of	data	require	

two	hardware	setups	connected	to	a	single	host	PC,	which	then	synchronizes	the	data.	This	section	

provides	a	brief	overview	of	the	hardware	used	in	this	dissertation.	

A	 tracked	 ultrasound	 system	 requires	 synchronization	 of	 the	 tracking	 information	 with	

real‐time	ultrasound	video.	There	are	two	primary	ways	of	acquiring	 images	from	the	ultrasound	

machine.	The	first	and	most	popular	method	is	to	stream	the	analog	video	output	of	the	ultrasound	

machine	 S‐video,	 composite	 video,	 coaxial,	 etc. 	 to	 a	 dedicated	 frame‐grabber	 card	 on	 the	

computer	 52,	116,	117 .	This	solution	 is	simple	and	usable	on	virtually	any	ultrasound	machine,	

provided	 that	 it	 outputs	 video	 in	 some	 form.	 However,	 it	 is	 associated	 with	 an	 implied	 loss	 of	

accuracy	due	to	the	repeated	signal	processing	necessary	to	convert	the	onboard	digital	image	data	

on	 the	 ultrasound	machine	 to	 output	 analog	 video	 data,	 and	 then	 to	 digital	 data	 again	 once	 it	 is	

captured	by	the	frame‐grabber.	The	second	method	is	to	directly	stream	the	digital	images	 pre‐	or	

post‐processed 	 from	 the	 ultrasound	machine	 to	 the	 computer,	 usually	 through	 a	 network	 cable	

63,	69,	118 .	However,	 this	method	requires	 the	ultrasound	machine	to	be	specifically	built	with	

this	capability	in	mind,	and	it	is	not	currently	a	typical	feature	of	most	clinical	ultrasound	models.	

There	 have	 recently	 been	 attempts	 by	 manufacturers	 to	 fulfill	 the	 demand	 for	 direct	 real‐time	
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access	 to	 digital	 data,	 such	 as	 with	 Ultrasonix	 units	 Ultrasonix	 Medical	 Corporation,	 Burnaby,	

Canada 	 119 .	

The	ultrasound	machine	used	in	this	dissertation	was	an	Acuson	Antares	unit	produced	by	

Siemens	 Siemens	 Inc.,	Munich,	Germany .	 It	 comes	with	 a	 standard	 array	of	 video	 output	ports,	

including	VGA,	S‐video,	and	RS‐170.	 In	order	 for	 the	host	PC	 to	acquire	video	output	 from	any	of	

these	 ports,	 it	 needs	 to	 be	 equipped	with	 a	 frame‐grabbing	 device.	 Several	 considerations	 were	

taken	into	account	when	choosing	the	capture	device,	such	as	price,	video	formatting,	applications	

programming	interface	 API 	availability,	and	form	factor.	The	device	chosen	for	this	project	was	a	

Matrox	Morphis	Dual	frame	grabber	card	 Matrox	Imaging,	Dorval,	Canada .	This	card	is	capable	of	

capturing	 from	 NTSC,	 PAL,	 RS‐170	 and	 CCIR	 video	 sources	 and	 so	 could	 easily	 be	 adapted	 to	

capturing	video	from	other	devices	as	well.	It	has	a	relatively	small	form	factor	and	interfaces	via	a	

standard	PCI	card	slot	in	the	host	PC,	which	enabled	simultaneous	use	with	other	devices	requiring	

a	footprint	on	the	motherboard	 such	as	the	LRS .	It	was	connected	directly	to	the	video	output	of	

the	ultrasound	machine	to	capture	RS‐170	format	video	in	real‐time.	

The	 second	 hardware	 component	 of	 the	 tracked	 ultrasound	 system	 was	 the	 tracking	

instrumentation.	 In	 this	 project,	 a	 passive	 optical	 tracking	 system	was	 used	 as	 it	 is	 the	 current	

standard‐of‐care	in	neurosurgery	cases	at	Vanderbilt	University	Medical	Center	 see	Figure	4 .	The	

tracking	 device	 used	 was	 an	 NDI	 Polaris	 Spectra	 Northern	 Digital	 Inc.,	Waterloo,	 Canada .	 The	

target	attached	to	the	ultrasound	probe	was	also	produced	by	NDI,	and	was	pre‐calibrated	by	the	

manufacturer	to	be	tracked	by	the	Polaris.	The	tracking	system	was	connected	to	the	PC	through	a	

USB	port	to	acquire	the	tracked	target	pose	in	real‐time.	
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Figure 4. Tracking hardware setup. The passive target attached to the probe (left) is tracked with respect 
to a reference target by the Polaris tracking system (right). 

III.3.2 Tracked Ultrasound Software 

A	tracked	ultrasound	system	requires	real	time	streaming	of	ultrasound	images	and	tracked	

transducer	 poses.	 While	 the	 hardware	 framework	 described	 above	 did	 provide	 the	 two	 data	

streams,	the	host	PC	needed	to	synchronize	them.	The	software	used	for	this	synchronization	was	

adapted	 from	 the	 Synchrograb	 collection	 of	 open‐source	 software	 for	 real	 time	 3D	 ultrasound	

reconstruction	 120,	121 .	This	software	was	primarily	based	upon	the	Visualization	Toolkit	 VTK 	

libraries	 Kitware	 Inc.,	 Clifton	 Park,	 New	 York ,	 which	 is	 a	 collection	 of	 high‐level	 functions	 for	

facilitating	visualization	and	processing	of	images	and	3D	graphics.	The	Synchrograb	software	was	

roughly	organized	into	the	following	categories:	1 	video	acquisition,	2 	tracking	acquisition,	and	3 	

synchronization.	

The	acquisition	of	video	was	accomplished	by	utilizing	the	API	of	the	Matrox	frame	grabber	

card,	which	was	known	as	the	Matrox	Imaging	Library	 MIL 	and	was	produced	by	Matrox.	The	MIL	

suite	of	functions	came	in	the	form	of	dynamic	link	libraries	 DLLs 	and	C 	header	files.	The	MIL	

functions	could	be	called	from	an	external	program	to	control	the	physical	card	and	request	images	

be	sent	to	the	program	as	they	were	acquired	from	the	ultrasound	machine.	Synchrograb	contained	

an	 array	 of	 classes	which	wrapped	 the	MIL	 functions	 into	 VTK‐style	 classes	 for	 ease	 of	 use	 and	
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consistency.	These	classes	grabbed	the	video	frames	and	stored	them	in	a	rotating	buffer	along	with	

their	 timestamps	 in	 real	 time.	 All	 frames	 that	 were	 collected	 could	 be	 optionally	 output	 as	

individual	bitmap	image	files	at	the	end	of	data	acquisition.		

The	acquisition	of	tracking	information	was	accomplished	by	utilizing	the	API	of	the	Polaris	

tracking	system.	The	API	was	produced	by	NDI	and	provided	methods	for	communicating	with	the	

machine.	The	functions	for	controlling	the	system	were	wrapped	into	VTK‐style	classes	in	the	same	

manner	 as	 the	MIL	 functions	 discussed	 above.	 These	 classes	 acquired	 the	 tracking	matrices	 and	

timestamps	from	the	tracking	system	and	stored	them	in	a	rotating	buffer	in	real‐time.	The	entire	

tracking	buffer	could	be	optionally	output	as	a	text	file	for	postprocessing.	

The	synchronization	of	video	frames	and	tracking	matrices	was	accomplished	by	timestamp	

matching.	 It	was	assumed	 that	 the	 timestamps	which	were	 recorded	 for	 the	 two	streams	of	data	

were	based	on	the	same	relative	time	defined	by	the	host	PC,	as	enforced	by	a	temporal	calibration	

performed	 prior	 to	 data	 collection.	 Even	 with	 this	 assumption,	 each	 ultrasound	 frame	 was	 not	

necessarily	 perfectly	 matched	 with	 a	 corresponding	 tracking	 matrix,	 due	 to	 the	 difference	 in	

sampling	rate	between	the	two	data	sources.	Since	 in	general	 the	 tracking	data	was	sampled	at	a	

much	higher	rate	than	the	video	data,	the	synchronization	was	approached	from	the	view	that	each	

video	frame	should	be	matched	to	an	interpolated	tracking	matrix,	rather	than	vice	versa.	It	was	not	

appropriate	to	simply	average	the	elements	of	4	x	4	transformation	matrices,	however,	as	this	could	

have	 unintended	 consequences	 to	 the	 orthonormality	 of	 the	 resulting	 matrix	 and	 produce	 an	

unsatisfactory	result.	A	commonly	used	method	for	finding	an	intermediate	transformation	matrix	

is	 known	 as	 spherical	 linear	 interpolation	 Slerp .	 Slerp	 is	 a	 method	 for	 interpolating	 the	

quaternion	representation	of	a	transformation	matrix	to	a	path	through	3D	rotations	with	uniform	

angular	 velocity	 around	 a	 fixed	 rotation	 axis	 122 .	 This	 method	 has	 been	 shown	 to	 generate	

motion	 between	 two	 quaternions	 that	 is	 smooth	 and	 natural.	 In	 the	 synchronization	 code,	 each	

tracking	 matrix	 was	 converted	 to	 its	 quaternion	 form	 and	 the	 two	 nearest	 quaternions	 to	 each	
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frame	 were	 interpolated	 using	 Slerp	 to	 find	 the	 corresponding	 quaternion,	 which	 was	 then	

converted	back	to	the	conventional	4	x	4	matrix	form.	

III.3.3 Spatial Calibration 

A	 spatial	 calibration	 procedure	 is	 required	 in	 order	 to	 transform	 ultrasound	 image	

coordinates	 into	patient	coordinates.	The	rigid	body	 file	 for	 the	 target	attached	 to	 the	ultrasound	

probe	 defines	 the	 geometry	 of	 the	 target	 such	 that	 it	 can	 be	 localized	 by	 the	 tracking	 system.	

However,	the	relationship	between	the	ultrasound	image	slice	and	the	attached	target	needs	to	be	

established	 in	 order	 to	 fully	 connect	 ultrasound	 image	 space	 with	 physical	 patient	 space.	 The	

tracking	system	is	used	to	track	the	pose	of	the	sensor	rigidly	attached	to	the	ultrasound	probe,	but	

this	 does	 not	 directly	 track	 the	 image	 plane	 itself.	 Thus,	 an	 additional	 transformation	 has	 to	 be	

computed	in	the	form	of	a	calibration	which	maps	the	coordinates	of	image	pixels	to	the	coordinate	

system	defined	by	the	attached	sensor.	The	transformations	required	to	express	pixel	coordinates	

in	terms	of	patient	coordinates	are	illustrated	in	Figure	5.	

	

Figure 5.  Illustration of  the  two discrete  transformations needed  in a  freehand 3D ultrasound system. 
The calibration transformation must be computed by the user before using the system and maps image 
space  (left)  to  probe  sensor  space  (center),  whereas  the  tracking  transformation  is  computed 
automatically by the tracking system and maps probe space to patient space (right). 
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There	have	been	a	wide	variety	of	 tracked	ultrasound	calibration	procedures	proposed	 in	

the	 literature,	 and	 it	 remains	 an	 area	 of	 active	 research.	 A	 thorough	 review	 of	 freehand	 3D	

ultrasound	calibration	methods	is	presented	in	 123 .	The	basic	idea	is	the	same	for	each	method,	

which	 is	 to	 establish	 a	 consistent	 relationship	 between	 pixels	 in	 the	 ultrasound	 images	 and	 the	

sensor	mounted	to	the	transducer.	This	relationship	can	be	expressed	in	equation	form	as:	

	

1

∙ ∙ 0
1

4

where	u	and	v	are	pixel	coordinates	in	image	space,	and	x,	y,	and	z	are	coordinates	in	patient	space.	

Tc	and	Tw	are	the	4x4	transformation	matrices	mapping	from	image	space	to	sensor	space	 from	the	

calibration 	 and	 from	 sensor	 space	 to	 patient	 space	 from	 the	 tracking	 system ,	 respectively.		

Creation	 of	 Tc	 is	 commonly	 done	 by	 scanning	 a	 phantom	 of	 known	 geometry	 such	 that	 a	 set	 of	

features	is	identifiable	in	both	image	space	and	in	sensor	space.	Phantom	designs	initially	consisted	

of	single‐point	targets	in	a	coupling	medium,	in	the	form	of	small	spherical	objects	or	a	single	wire	

116,	124 .	A	calibration	method	developed	by	 74 	is	unique	in	that	no	phantom	is	used,	but	rather	

the	tip	of	a	tracked	stylus	is	imaged	by	the	ultrasound	probe.	Later	groups	developed	multi‐target	

and	 cross‐wire	 phantoms	 to	 aid	 in	 alignment	 during	 calibration	 64,	 73,	 117,	 125 .	 The	 design	

which	has	 probably	 become	most	 common	 is	 the	N‐wire	 phantom	 65,	 69 ,	which	 is	 inspired	by	

stereotactic	head	frames	 126 .	

	 The	calibration	is	performed	by	first	localizing	phantom	features	in	physical	space,	usually	

with	a	 tracked	tool.	Corresponding	 features	are	 then	 localized	in	 image	space,	either	manually	or	

utilizing	automatic	edge	detection	 127 ,	depending	on	the	phantom	used.	The	calibration	solution	

creation	of	Tc 	 is	essentially	 the	rigid	registration	of	 these	point	sets	by	minimization	of	 fiducial	

registration	error:	
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5

where	R,	t,	and	s	are	the	rotational,	translational,	and	scaling	components	of	Tc,	FRE	is	the	fiducial	

registration	error,	aj	is	the	set	of	image	points,	and	bj	is	the	set	of	physical	points.	This	problem	is	

usually	solved	in	a	least‐squares	minimization	sense	using	singular	value	decomposition	 SVD 	or	

Horn’s	method	 128,	129 .	

In	 this	 dissertation	 the	 method	 of	 Muratore	 et	 al.	 was	 used,	 as	 it	 did	 not	 require	 the	

construction	of	any	special	phantoms	and	was	shown	to	have	similar	accuracy	to	conventional	N‐

wire	calibration	phantoms	 74 .	In	this	calibration	procedure,	the	tracked	transducer	was	secured	

to	 a	 fixed	 stand,	 and	 the	 ultrasound	 beam	 was	 projected	 into	 a	 water	 bath	 consisting	 of	 9.5%	

ethanol	so	that	the	speed	of	sound	was	approximately	1540	m/s	 130 .	A	tracked	stylus	was	then	

used	to	sample	the	ultrasound	beam	by	inserting	the	probe	into	the	water	bath	until	the	tip	showed	

as	a	bright	dot	in	the	image	as	illustrated	in	Figure	6.	

	

Figure 6.  Spatial calibration setup. A tracked probe is inserted into the ultrasound beam (left) until the 
tip produces a bright dot  in  the  image  (right). This  is done  repeatedly  to establish  the  transformation 
between image space and sensor space. 

The	ultrasound	image	was	recorded,	as	well	as	the	3D	position	of	the	stylus	tip	in	the	sensor	

coordinate	 system.	 This	 process	 was	 repeated	 a	 number	 of	 times,	 with	 the	 points	 distributed	
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equally	throughout	the	extent	of	the	ultrasound	image.	Typically,	about	30	points	were	gathered	in	

this	manner,	25	of	which	were	used	to	generate	the	calibration	and	the	remainder	were	used	to	test	

its	accuracy.	The	stylus	points	were	collected	under	the	assumption	that	the	ultrasound	beam	was	

approximately	planar,	and	that	the	points	gathered	should	comprise	a	plane	in	3D	space.	The	stylus	

points	were	therefore	fit	to	a	plane	by	calculating	a	least‐squares	estimate	of	the	coefficients	of	the	

general	equation	for	a	plane:	

	 0 6

Once	the	coefficients	 A,	B,	C,	and	D 	were	known,	the	stylus	points	were	projected	onto	the	plane	

along	 the	 vector	 normal	 to	 the	 plane.	 The	 bright	 points	 in	 the	 ultrasound	 images	 which	

corresponded	to	the	3D	probe	points	were	manually	selected	and	given	3D	coordinates	of	the	form	

u,	v,	0 ,	where	u	and	v	are	the	2D	pixel	coordinates	of	the	point.	The	ultrasound	image	points	were	

then	 fitted	 to	 the	 plane‐projected	 probe	 points	 by	 a	 3D	 affine	 registration	 using	 a	 standard	 SVD	

algorithm	 87 .	 The	 result	 of	 this	 registration	 was	 a	 4x4	 matrix	 which	 described	 the	 necessary	

transformation	 of	 ultrasound	 image	 pixel	 coordinates	 to	 transducer	 coordinates.	 The	 points	 in	

transducer	coordinates	were	 then	automatically	 transformed	 into	 the	physical	 coordinate	system	

by	the	tracking	camera	using	the	NDI	calibration	file	for	that	target.	

	 During	the	tracked	ultrasound	calibration,	a	rough	indicator	of	the	noise	in	the	calibration	

data	 was	 the	 average	 distance	 of	 the	 probe	 points	 to	 the	 plane	 created	 from	 6 .	 This	 average	

distance	was	used	as	a	metric	to	help	 judge	whether	the	collected	points	were	in	agreement	with	

the	assumption	of	planarity.	A	large	distance	suggested	that	the	stylus	did	not	properly	sample	the	

ultrasound	beam,	most	likely	because	the	point	of	the	stylus	was	not	adequately	close	to	the	center	

of	 the	 ultrasound	 beam.	 This	 indicated	 that	 the	 calibration	 data	 should	 be	 discarded	 and	

recollected.	

	 An	even	more	relevant	and	direct	metric	of	the	quality	of	the	calibration	was	the	calculation	

of	a	calibration	target	registration	error	 TRE 	using	points	gathered	during	the	calibration	which	



 
 
 

27 
 

were	not	actually	used	to	generate	the	plane	and	4	x	4	matrix,	Tc.	These	points	were	selected	in	the	

ultrasound	 images	 and	 then	 transformed	 into	 physical	 coordinates	 using	 the	 calibration	 and	

tracking	system.	The	transformed	image	points	were	then	directly	compared	to	the	corresponding	

tracked	stylus	points	as	the	gold	standard	to	calculate	TRE.	The	primary	contributions	to	this	error	

were	the	calibration	error	and	the	inherent	error	of	the	tracking	system.	Given	that	passive	tracking	

error	can	be	on	the	order	of	1.5	mm,	it	was	reasonable	to	obtain	a	tracked	ultrasound	TRE	in	the	

range	of	1.5	to	2.5	mm.	

III.3.4 Temporal Calibration 

In	order	to	track	each	frame	of	a	live	video	feed	from	the	ultrasound	machine,	the	video	was	

synchronized	with	 the	 tracking	 information	 from	 the	 tracking	 system	 in	 the	 form	 of	 a	 temporal	

calibration.	 The	 tracking	 system	 and	 the	 ultrasound	 machine	 both	 sent	 their	 respective	 data	

streams	 to	 the	host	computer,	but	each	was	sampled	at	a	different	 frequency	and	had	a	different	

transfer	time	from	the	device	to	the	PC.	This	problem	is	illustrated	in	Figure	7.	

	

Figure 7. Illustration of the synchronization problem in tracked ultrasound. Interpolation of tracking data 
needs to be performed in order to match each video frame with its corresponding tracked pose (dotted 
line). 

The	practical	implication	of	this	was	that	the	images	arrived	at	the	PC	in	a	slightly	delayed	

fashion	compared	to	their	corresponding	tracking	data.	The	standard	approach	to	addressing	this	

asynchrony	is	to	determine	the	temporal	offset	between	the	data	streams	experimentally	and	also	
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to	interpolate	the	measured	pose	values	to	find	poses	corresponding	to	the	image	timestamps	 70,	

131 .	Once	the	offset	to	is	calculated	 generally	on	the	order	of	milliseconds ,	it	is	integrated	into	the	

guidance	 platform	 by	 simply	 associating	 each	 image	 frame	 with	 the	 pose	 data	 timestamped	 to	

milliseconds	prior.	An	alternative	solution	is	to	use	an	external	trigger	to	 interrogate	the	tracking	

system	whenever	an	image	frame	is	acquired,	but	this	requires	more	specialized	hardware	 61 .	An	

important	phenomenon	that	affects	this	process,	however,	is	the	difference	in	transfer	time	to	the	

PC	for	the	video	frames	and	for	the	tracking	information.	In	general,	it	can	be	assumed	that	there	is	

a	relatively	constant	time	lag	between	the	two	data	sets	due	to	the	size	differences	between	the	two	

an	image	is	much	larger	than	a	4x4	transformation	matrix ,	and	the	differences	in	transfer	method	

coaxial	cable	into	a	frame	grabber	card	for	the	video	versus	USB	for	tracking .		

The	 temporal	 calibration	 method	 used	 for	 this	 project	 was	 a	 variant	 which	 relies	 on	

estimating	the	time	lag	difference	between	two	analogous	signals	 video	and	tracking 	using	cross‐

correlation.	This	method	was	essentially	the	same	as	the	method	which	will	be	described	in	a	later	

section	for	finding	a	displacement	field	using	two	sets	of	RF	signals.	The	primary	challenge	in	this	

application	was	the	creation	of	 the	 two	analogous	signals	 to	be	compared.	The	oscillatory	signals	

here	were	created	by	moving	the	tracked	ultrasound	probe	up	and	down	repeatedly	while	imaging	

a	flat	surface	as	shown	in	Figure	8.	The	height	of	the	line	in	the	image	thus	oscillated	in	the	same	

manner	as	the	tracking	data,	with	a	simple	phase	difference	between	the	two	signals	corresponding	

to	the	time	delay	which	needed	to	be	corrected.	
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Figure  8.  Temporal  calibration  setup.  The  tracked  transducer  (left)  is  oscillated  up  and  down while 
imaging a flat surface (right), which moves correspondingly in the video. 

The	position	of	the	probe	was	recorded	in	units	of	millimeters,	while	the	motion	of	the	line	

in	the	ultrasound	image	was	recorded	in	units	of	pixels.	Each	of	the	signals	was	normalized	from	a	

range	of	0	to	1	based	on	the	minimum	and	maximum	values	in	the	axis	of	motion	in	order	to	better	

visualize	their	correspondence.	Each	signal	was	also	resampled	using	a	cubic	spline	interpolation	in	

order	 to	 enforce	 equal	 spacing	 between	 sample	 points.	 The	 original	 data	 was	 unequally	 spaced	

because	the	sampling	rates	of	 the	video	and	the	tracking	stream	were	different,	and	also	because	

some	frames	were	not	tracked	properly	when	the	user	inadvertently	blocked	line	of	sight	from	the	

tracking	 system	 to	 the	 target.	 The	 two	 signals	 were	 then	 compared	 in	 a	 cross‐correlation	

framework	 using	 a	 Hilbert	 transform	 approach	 to	 estimate	 the	 time	 lag	 between	 the	 two.	 This	

approach	yielded	a	 time	 lag	 estimate	of	 approximately	11	ms	between	 the	 tracking	data	 and	 the	

video	 frames.	 To	 compensate	 for	 this	 discrepancy	 as	 the	 tracking	 data	 and	 video	 frames	 were	

acquired,	 they	were	 each	 stored	 in	 buffers	 on	 the	 PC	 along	with	 their	 timestamps.	 As	 each	 new	
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frame	was	entered	into	the	buffer,	 it	was	matched	to	the	tracking	matrix	 from	11	ms	prior	 in	the	

tracking	 buffer.	 This	 simple	 approach	 was	 sufficient	 to	 address	 the	 issue	 of	 temporal	

synchronization	of	the	two	data	streams.	

III.3.5 Registration 

Given	 that	 the	 ultrasound	 probe	was	 calibrated,	 alignment	with	 preoperative	 tomograms	

was	 accomplished	 with	 standard	 image‐to‐physical	 registration	 techniques.	 A	 Polaris	 tracking	

system	was	 the	primary	 intraoperative	 tracking	 equipment	 used	 in	 this	 dissertation.	 A	 passively	

tracked	stylus	was	also	utilized	in	order	to	digitize	points	in	physical	space.	It	is	currently	standard	

of	 care	 at	 Vanderbilt	 University	 Medical	 Center	 VUMC 	 for	 the	 neurosurgeon	 to	 use	 the	

StealthStation	 stylus	 to	 perform	 the	 initial	 image‐to‐physical	 registration	 by	 swabbing	 facial	

landmarks	 and	 allowing	 the	 Medtronic	 software	 to	 iteratively	 align	 the	 swab	 points	 to	 the	

preoperative	images.	Registration	for	this	project	was	accomplished	in	essentially	the	same	manner	

with	a	stylus	via	points	using	Horn’s	method	 129 ,	swabs	using	iterative	closest	points	 92 ,	or	a	

combination	of	both	 132 .	

III.3.6 Strain Imaging 

One	 of	 the	 original	 goals	 of	 this	 project	 was	 to	 investigate	 the	 utility	 of	 tracked	 strain	

imaging	as	an	intraoperative	guidance	tool.	Early	on	during	the	initial	utilization	of	tracked	strain	

imaging	 in	 clinical	 cases,	other	obstacles	were	 identified	which	needed	 to	be	 resolved	and	which	

ultimately	became	the	primary	focus	of	this	dissertation,	namely	correcting	for	tissue	compression	

effects	which	 are	 often	 induced	while	 creating	 conventional	 axial	 strain	 images.	 For	 the	 sake	 of	

background,	this	subsection	will	provide	an	overview	of	strain	imaging.	

The	 simplest	 method	 for	 implementing	 a	 strain	 imaging	 capability	 was	 to	 use	 a	

commercially	 available	 elastography	module,	 such	 as	 the	 software	 produced	 by	 Siemens	 for	 the	

Antares	 ultrasound	 unit.	 This	 module	 was	 eSie	 Touch	 Elasticity	 Imaging	 and	 was	 installed	

separately	on	the	ultrasound	machine	as	an	additional	imaging	option.	It	was	designed	to	be	used	
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for	breast	imaging	with	the	VFX13‐5	transducer,	which	has	a	frequency	bandwidth	of	5	to	13	MHz.	

Although	 it	was	 intended	 for	breast	 imaging,	 it	was	easily	 translatable	 to	other	 anatomy	 like	 the	

brain,	so	long	as	the	objects	to	be	imaged	were	no	deeper	than	the	transducer’s	display	depth	of	6	

cm	and	the	large	probe	could	be	placed	on	the	tissue	of	interest.	The	strain	images	produced	by	this	

software	were	 displayed	 as	 real‐time	 video	 in	 the	 same	manner	 as	 conventional	 B‐mode	 images	

and	 thus	 were	 captured	 and	 synchronized	 to	 the	 tracking	 data	 in	 exactly	 the	 same	 manner	

described	 previously.	 An	 example	 strain	 image	 acquired	 from	 a	 gel	 phantom	 containing	 a	 stiff	

inclusion	is	shown	in	Figure	9	along	with	the	corresponding	B‐mode	image.	

	

Figure 9. Siemens  commercial elastography  software. A gel phantom  containing a hard  inclusion was 
imaged using B‐mode (left) and strain imaging (right). 

	 The	Siemens	elastography	software	had	the	advantage	of	providing	real	time	strain	images,	

but	had	the	disadvantage	of	not	allowing	access	to	the	raw	data	used	to	generate	the	images,	and	

did	not	provide	any	quantitative	measurement	of	calculated	tissue	displacements	or	relative	strain	

values.	 These	 values	 would	 be	 useful	 in	 validation	 of	 the	 commercial	 strain	 images,	 as	 well	 as	

additional	analysis	of	the	underlying	tissue	behavior.	The	Acuson	Antares	ultrasound	machine	did,	
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however,	 also	 have	 a	 separate	 ultrasound	 research	 interface	 URI 	 called	 Axius	 Direct	 which	

provided	access	to	raw	beamformed	radiofrequency	 RF 	data.	The	unprocessed	RF	data	could	be	

collected	 during	 a	 normal	 imaging	 procedure	 by	 manually	 triggering	 the	 URI	 software	 on	 the	

ultrasound	 machine,	 which	 then	 saved	 RF	 data	 files	 to	 the	 hard	 drive.	 The	 files	 were	 then	

transferrable	to	a	PC	to	be	processed	by	the	user.	 In	this	 framework,	 it	was	extremely	difficult	 to	

synchronize	the	raw	RF	data	files	with	the	external	tracking	system.	Therefore	there	was	a	need	for	

both	 the	 commercial	 strain	 imaging	package	and	 the	URI,	 in	order	 to	get	 the	benefits	of	 tracking	

data	 and	 quantitative	 strain	 imaging,	 respectively.	 Although	 the	 raw	 RF	 data	was	 not	 ultimately	

used	 in	 this	 dissertation	 due	 to	 the	 synchronization	 issue,	 an	 overview	 of	 strain	 image	 creation	

from	RF	signals	will	now	be	described	to	provide	a	general	understanding	of	the	process.	

	 The	raw	RF	data	can	be	converted	to	strain	images	using	a	variety	of	algorithms	 133,	134 .	

An	 ultrasound	 elastography	 algorithm	 used	 by	 Solbekk	 et	 al.	 was	 been	 implemented	 in	 Matlab	

Mathworks	 Inc.,	 Natick,	 MA 	 due	 to	 its	 simplicity	 and	 demonstrated	 efficacy	 in	 brain	 tumor	

imaging	 135,	 136 .	 This	 method	 was	 used	 for	 generating	 only	 axial	 strain	 images,	 as	 the	 axial	

resolution	 is	 greater	 than	 the	 lateral	 resolution	 in	 ultrasound	 images.	 The	 general	 procedure	 for	

generating	 a	 strain	 image	 begins	 with	 the	 acquisition	 of	 at	 least	 two	 frames	 of	 RF	 data	 while	

dynamically	 compressing	 the	 tissue	 of	 interest.	 The	 RF	 data	 is	 recorded	 as	 an	 array	 of	 voltage	

values	generated	by	the	piezoelectric	elements	in	the	transducer	as	the	acoustic	waves	reflected	by	

the	 tissue	 are	 recorded	 over	 time.	 A	 non‐uniform	 distribution	 of	 scatters	 in	 the	 interrogated	

medium	 gives	 unique	 RF	 signatures	 throughout	 an	 image.	 An	 example	 of	 an	 RF	 frame	 and	 its	

equivalent	 processed	 B‐mode	 image	 is	 shown	 in	 Figure	 10	 acquired	 from	 a	 linear	 array	

transducer .	
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Figure  10.  Example  of  unprocessed  RF  data  (left)  and  processed  B‐mode  image  (right)  from  a  gel 
phantom containing hard inclusion. 

Assuming	that	the	deformation	applied	to	the	tissue	was	very	small,	the	basic	shape	of	the	

post‐compression	echo,	for	a	given	window	at	a	specific	depth,	will	not	have	changed	significantly	

in	shape	when	compared	with	the	pre‐compression	echo.	However,	there	will	be	a	phase	difference	

between	the	two	echo	signals	due	to	the	difference	in	acoustic	travel	time	arising	from	the	change	

in	distance	to	the	probe	brought	about	by	compression.	An	illustration	of	this	phase	shift	is	shown	

for	a	single	axial	trace	in	Figure	11.	
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Figure  11.  Pre‐compression  (solid  line)  and post‐compression  (dashed  line)  axial RF  signals  from  two 
frames in a single window. These curves represent approximately the same signal separated by a phase 
difference. 

Local	 tissue	 displacements	 may	 be	 estimated	 by	 exploiting	 the	 phase	 shifted	 signal	

described	 above.	 A	 computational	 framework	 for	 matching	 the	 two	 signals	 based	 on	 cross‐

correlation	 CC 	can	calculate	the	lag	between	them,	and	thus	the	displacement	which	would	have	

resulted	in	the	phase	difference.	For	an	RF	signal	r m,n,k 	at	sample	m	of	trace	n	in	frame	k,	 	 the	

cross‐correlation	at	lag	q	between	frames	k	and	k	 	1	is	found	from:	

	
, ; , 0 	 , , ∙ , , 1 	 7

In	the	algorithm	used	here,	the	cross‐correlation	function	is	only	calculated	along	the	axial	traces,	

with	zero	 lag	 in	 the	 lateral	 n 	direction.	The	correlation	 function	needs	a	certain	window	size	 in	

order	to	generate	accurate	results.	A	window	that	 is	 too	 large,	however,	will	reduce	the	ability	to	

detect	smaller	local	displacements.	The	applied	window	size	was	generally	selected	based	on	visual	
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inspection	of	the	resulting	strain	image.	Given	a	sufficiently	high	frame	rate,	the	tissue	movement	

between	consecutive	RF	frames	was	small	enough	that	the	maximum	value	of	the	cross‐correlation	

function	 in	 each	 window	 occured	 within	 a	 few	 samples	 of	 zero	 lag.	 An	 example	 of	 the	 cross‐

correlation	function	for	one	window	is	shown	in	Figure	12.	

	

Figure 12. Cross correlation function for one window of RF data matched in the axial direction. Here, the 
maximum discrete value occurs at a lag of 2 samples. 

	 In	 Figure	 12,	 the	 maximum	 CC	 value	 appears	 at	 a	 time	 lag	 of	 2	 samples,	 which	 would	

suggest	that	the	tissue	displaced	a	distance	of	2	samples.	However,	the	CC	equation	only	computes	

values	discretely	 located	at	sample	 intervals	and	does	not	provide	subsample	estimates	of	 the	CC	

function.	Further	processing	must	be	done	 in	order	 to	determine	 the	 true	maximum	value	of	 the	

underlying	 function.	 One	 method	 of	 achieving	 this	 is	 to	 exploit	 a	 characteristic	 of	 the	 Hilbert	

transform,	which	is	defined	as:	

	 1
8

The	Hilbert	transform	is	used	to	create	the	analytic	form	of	the	CC	function:	

	 , , , , ∙ , , ∗ 9
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where	*		is	the	convolution	operator.	The	analytic	form	of	a	signal	created	in	this	fashion	is	known	

to	have	some	useful	properties.	The	most	relevant	 is	 that	 the	phase	of	 the	analytic	signal	crosses	

zero	 at	 maximum	 values	 of	 the	 original	 signal	 137 .	 The	 significance	 of	 this	 is	 that	 the	 true	

maximum	 value	 of	 the	 CC	 function	 may	 be	 estimated	 at	 subsample	 resolution	 via	 simple	 linear	

interpolation	of	the	analytic	phase	values:	

	
,

2 ∙ ∠ , ; , 0
∠ , ; 1,0 ∠ , ; 1,0

	 10

where	 dt	 is	 the	 estimated	 lag	 between	 the	 two	 RF	 signals,	 ∠	 is	 the	 phase	 operator,	 qmax	 is	 the	

discrete	maximum	lag	of	the	CC	function,	and	Tsamp	is	the	sampling	time	of	the	RF	data.	The	equation	

above	 is	derived	 from	a	simple	 line	equation	using	a	center‐difference	approach	 for	 the	slope.	At	

each	 zero	 crossing	 the	 phase	 angle	 function	 becomes	 approximately	 linear,	 and	 so	 the	 angles	

corresponding	to	qmax,	qmax	 	1,	and	qmax	‐	1	can	be	used	to	determine	the	subsample	lag	estimation.	

This	interpolation	procedure	is	illustrated	in	Figure	13.	

	

Figure 13. Phase angle of the analytic CC function at each lag value. Each zero crossing corresponds to a 
maximum  CC  value.  The  exact  zero  crossing may  be  estimated  by  approximating  the  phase  angle 
function as a line using three points (shown above). 
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	 The	CC	window	slides	in	the	axial	direction	down	each	RF	trace	and	produces	a	field	of	time	

lag	values	using	the	procedure	described	above.	Utilizing	the	assumption	that	the	shift	in	signal	is	

the	 direct	 result	 of	 tissue	 displacement,	 these	 lag	 values	 are	 converted	 to	 axial	 strain	 by	

differentiation:	

	
,

1, ,
11

An	example	of	a	completed	strain	 image	using	this	method	 is	shown	in	Figure	14.	A	gel	phantom	

containing	 a	 hard	 inclusion	was	 sampled	with	 the	URI	 and	RF	 data	was	 collected	 to	 reconstruct	

both	a	B‐mode	image	and	strain	image.	

	

Figure 14. B‐mode  image (left) and strain  image overlay (right). Both  images were computed from raw 
RF data acquired from the research interface on the Acuson Antares machine. 

III.3.7 Phantom Construction 

This	dissertation	made	use	of	phantom	models	prior	to	collection	of	in	vivo	data	in	order	to	

validate	the	tracked	ultrasound	methods	developed	in	later	chapters.	A	variety	of	tissue‐mimicking	

materials	 ccould	 be	 utilized	 to	 replicate	 characteristics	 of	 biological	 tissue,	 but	 many	 of	 these	

substances	require	the	use	of	potentially	hazardous	reagents.	Polyvinyl	alcohol	 PVA ,	however,	is	

non‐toxic	 and	 biocompatible.	 It	 is	 also	 known	 to	 have	 the	 interesting	 property	 of	 becoming	
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increasingly	stiffer	with	the	application	of	repeated	freeze‐thaw	cycles	 FTC ,	which	makes	it	suited	

for	elastography	studies	 138‐140 .	

	 The	creation	of	a	PVA	cryogel	phantom	begins	by	preparing	 the	basic	polymer	mixture.	A	

7%	w/v	suspension	of	hydrolyzed	PVA	powder	 Flinn	Scientific,	Batavia,	 IL 	 in	cold	water	 is	 first	

heated	to	80°C.	Glycerol	 Fisher	Scientific,	Pittsburgh,	PA 	is	then	added	at	10%	by	volume	until	the	

mixture	 is	clear	and	fluid.	The	container	 is	 then	covered	tightly	to	minimize	dehydration,	and	the	

mixture	is	cooled	to	room	temperature	while	mixed	by	a	magnetic	stir	plate.	The	final	creation	of	

the	 cryogel	 phantom	 occurs	 after	 full	 polymerization,	 achieved	 by	 the	 application	 of	 sequential	

FTCs	 in	which	 the	material	 is	 brought	 to	 ‐37°C	 over	 the	 course	 of	 12	 hours	 and	 then	 gradually	

returned	to	approximately	20°C	over	another	12	hours.	

	 The	phantom	design	used	for	most	of	the	studies	in	this	dissertation	consisted	of	bulk	PVA	

mixture	poured	into	an	organ‐like	mold,	which	was	then	allowed	to	go	through	one	FTC.	During	this	

FTC,	a	tumor‐like	object	was	suspended	in	the	mixture	using	wires,	which	could	be	removed	easily	

by	 simply	 pulling	 them	 out	 of	 the	 final	 phantom.	 The	 tumor	 used	 varied	 depending	 on	 the	

requirements	 of	 the	 study.	One	 type	which	 lent	 itself	 to	 elastography	 studies	was	 to	 use	 a	 small	

amount	of	PVA	mixed	with	contrast	agent	 in	a	tumor‐like	mold	which	was	allowed	to	go	through	

one	or	more	FTCs	by	 itself.	When	 it	was	 suspended	 in	 the	bulk	PVA	mixture,	 it	went	 through	an	

additional	 FTC,	 and	 thus	 the	 tumor	 became	 stiffer	 than	 the	 surrounding	 phantom	material.	 The	

contrast	 agent	 facilitated	 segmentation	 of	 the	 tumor	 in	 tomograms	 to	 establish	 a	 ground	 truth	

location,	 while	 the	 difference	 in	 material	 properties	 caused	 it	 to	 show	 up	 on	 ultrasound	 strain	

images.	

	 In	order	to	evaluate	the	performance	of	ultrasound	elastography	for	detecting	differences	in	

phantom	 material	 properties,	 validation	 was	 performed	 by	 independent	 mechanical	 tests.	 To	

achieve	this,	a	sample	from	the	bulk	phantom	and	from	the	phantom	tumor	were	put	aside	during	

phantom	 construction.	 The	 samples	were	 placed	 in	 polystyrene	 cell	 culture	 plates	 Corning	 Inc.,	
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Corning,	 NY 	 and	 subjected	 to	 the	 same	 number	 of	 FTCs	 as	 the	 main	 phantom	 materials.	 This	

process	 resulted	 in	 cylindrical	 samples	with	 diameter	 and	 height	 both	 about	 15	mm,	which	was	

then	 subjected	 to	 compression	 testing	 using	 an	 ElectroForce	 3100	 material	 tester	 Bose,	 Eden	

Prairie,	MN 	shown	in	Figure	15.	

	

Figure 15. Mechanical tester (right) and workstation (left) which are used to obtain material properties 
of phantom samples to validate strain imaging. 

Each	sample	was	subjected	 to	several	 cycles	of	 a	 load	rate	by	a	 transducer	 for	 small	 strains.	The	

instrument	was	 used	 to	 determine	 average	 elastic	modulus	 values	 using	 the	 slope	 of	 the	 stress‐

strain	curves	of	the	steady‐state	loading	phases.	The	ratio	of	moduli	between	the	two	materials	was	

then	usd	to	validate	the	ultrasound	strain	images	from	the	Siemens	elasticity	software.	
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CHAPTER IV 

DESIGN AND EVALUATION OF AN OPTICALLY‐TRACKED SINGLE‐CCD LASER RANGE SCANNER 

IV.1 Introduction and Significance of Study 

This	 chapter	will	 give	 an	 overview	 of	 the	 design	 and	 evaluation	 of	 a	 novel	 tracked	 laser	

range	 scanner	device	which	 supported	 the	 tracked	ultrasound	 research	presented	 in	 subsequent	

chapters.	 The	 primary	 intent	 of	 this	 device	was	 to	 act	 as	 a	 relatively	 quick	 and	 accurate	 surface	

digitizer	for	intraoperative	procedures.	The	dense	geometric	point	clouds	produced	by	the	LRS	are	

useful	 for	 surface‐based	 registration	 methods,	 and	 also	 for	 measuring	 tissue	 deformation	 for	

model‐updated	 image	guidance.	 In	 this	work,	 the	LRS	was	described	and	subjected	 to	 a	 series	of	

performance	 tests	 to	 establish	 its	 clinical	 efficacy.	 The	 geometric	 point	 cloud	 accuracy	 was	

determined	 using	 phantoms	 to	 be	 submillimetric,	 and	 the	 tracking	 accuracy	 of	 the	 system	 was	

found	 to	 be	 similar	 to	 other	 passive	 optical	 tracking	 tools.	 The	 significance	 of	 this	 study	was	 to	

establish	a	gold	standard	registration	and	surface	measurement	tool	to	be	used	in	Chapters	V	and	

VI.	In	addition,	this	work	also	led	to	the	use	of	this	device	in	studies	targeting	brain,	liver,	and	breast	

surgery	 141‐144 .	This	work	was	published	in	Medical	Physics	in	2012.	

	

Appearing	 in:	Thomas	S.	Pheiffer,	Amber	L.	Simpson,	Brian	Lennon,	Reid	C.	Thompson,	Michael	 I.	

Miga.	 Design	 and	 evaluation	 of	 an	 optically‐tracked	 single‐CCD	 laser	 range	 scanner.	 Medical	

Physics,	Volume	39	 2 ,	Pages	636	–	642,	February	2012.	

IV.2 Abstract 

Purpose:	Acquisition	of	laser	range	scans	of	an	organ	surface	has	the	potential	to	efficiently	provide	

measurements	 of	 geometric	 changes	 to	 soft	 tissue	 during	 a	 surgical	 procedure.	 A	 laser	 range	
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scanner	 design	 is	 reported	 here	 which	 has	 been	 developed	 to	 drive	 intraoperative	 updates	 to	

conventional	image‐guided	neurosurgery	systems.		

Methods:	The	scanner	 is	optically	 tracked	 in	 the	operating	room	with	a	multi‐face	passive	 target.	

The	 novel	 design	 incorporates	 both	 the	 capture	 of	 surface	 geometry	 via	 laser	 illumination 	 and	

color	information	 via	visible	light	collection 	through	a	single	lens	onto	the	same	charge‐coupled	

device	 CCD .	 	 The	 accuracy	 of	 the	 geometric	 data	 was	 evaluated	 by	 scanning	 a	 high‐precision	

phantom	and	comparing	relative	distances	between	landmarks	in	the	scans	with	the	corresponding	

ground	 truth	 known 	 distances.	 The	 range‐of‐motion	 of	 the	 scanner	with	 respect	 to	 the	 optical	

camera	was	 determined	by	placing	 the	 scanner	 in	 common	operating	 room	 configurations	while	

sampling	the	visibility	of	the	reflective	spheres.	The	tracking	accuracy	was	then	analyzed	by	fixing	

the	scanner	and	phantom	in	place,	perturbing	the	optical	camera	around	the	scene,	and	observing	

variability	in	scan	locations	with	respect	to	a	tracked	pen‐probe	ground	truth	as	the	camera	tracked	

the	same	scene	from	different	positions.		

Results:	The	geometric	accuracy	test	produced	a	mean	error	and	standard	deviation	of	0.25	 	0.40	

mm	with	an	RMS	error	of	0.47	mm.	The	tracking	tests	showed	that	the	scanner	could	be	tracked	at	

virtually	 all	 desired	 orientations	 required	 in	 the	 OR	 set	 up,	 with	 an	 overall	 tracking	 error	 and	

standard	 deviation	 of	 2.2	 	 1.0	 mm	 with	 an	 RMS	 error	 of	 2.4	 mm.	 There	 was	 no	 discernible	

difference	between	any	of	the	three	faces	on	the	LRS	with	regard	to	tracking	accuracy.	

Conclusions:	A	single‐lens	laser	range	scanner	design	was	successfully	developed	and	implemented	

with	sufficient	scanning	and	tracking	accuracy	for	image‐guided	surgery.		

IV.3 Introduction 

An	 ongoing	 problem	 in	 the	 field	 of	 image‐guided	 neurosurgery	 is	 the	 measurement	 and	

compensation	 of	 intraoperative	 brain	 shift.	 It	 is	 well	 understood	 that	 there	 is	 often	 significant	

movement	of	brain	 tissue	between	 the	 time	of	preoperative	 imaging	and	 the	 time	of	 resection	of	



 
 
 

42 
 

soft	tissue	 145,	146 .	As	the	most	common	strategy	for	image‐guidance	relies	solely	on	registering	

preoperative	 tomograms	 with	 the	 physical	 intraoperative	 coordinate	 frame,	 brain	 shift	 reduces	

navigational	 accuracy	 147,	 148 .	 Efforts	 to	 address	 the	 problem	 of	 brain	 shift	 have	 included	

methods	 to	characterize	 intraoperative	 tissue	deformation.	 Intraoperative	 imaging	modalities	are	

often	utilized	to	provide	updates	to	the	pre‐operative	surgical	plan	derived	from	higher‐resolution	

magnetic	resonance	 MR 	or	computed	tomography	 CT 	images	 149‐151 .	There	has	also	been	a	

movement	 toward	 using	 intraoperative	 ultrasound	 for	 shift	 measurement,	 as	 in	 the	 SonoWand	

Trondheim,	 Norway 	 and	 BrainLab	 Munich,	 Germany 	 systems	 49,	 57 .	 While	 these	 imaging	

systems	do	provide	a	quantitative	measurement	of	brain	movement,		methods	of	compensating	for	

shift	in	real‐time	for	use	in	surgical	guidance	have	not	yet	reached	maturation.	

	 Movement	 of	 the	 cortical	 surface	 is	 an	 attractive	 metric	 for	 brain	 shift,	 as	 it	 is	 readily	

observed	and	can	provide	intuition	on	the	positions	of	internal	structures	of	the	brain.	Any	method	

which	can	capture	and	digitize	 the	 intraoperative	surface	of	 the	patient	could	be	used	 to	provide	

quantitative	measurements	of	shift.	Once	the	surface	has	been	acquired,	 it	can	be	used	to	drive	a	

number	of	shift	compensation	strategies.	These	strategies	can	include	rigid	or	nonrigid	registration	

of	 the	 surface	 to	 preoperative	 imaging	 to	 provide	 a	 corrective	 transformation	 to	 the	 guidance	

system	 95,	 152,	153 .	Another	 approach	 is	 to	use	 the	acquired	 surface	 to	drive	a	biomechanical	

model	of	the	brain,	which	provides	displacement	updates	throughout	the	imaged	tissue	 104,	154 .	

Sources	of	data	may	include	intraoperative	imaging	modalities	 such	as	 intraoperative	MR,	CT,	or	

ultrasound 	 or	 surface	 acquisition	 methods	 such	 as	 lasers	 range	 scanners	 LRS .	 Each	 of	 these	

methods	may	be	used	to	provide	patient‐specific	boundary	conditions	for	the	mathematical	model	

of	the	brain	and	thus	present	customized	guidance	to	the	surgeon.	Regardless	of	the	method	used,	

real‐time	guidance	requires	that	data	acquisition	be	both	fast	and	accurate.		

	 LRS	systems	are	traditionally	used	for	geometric	measurement	of	objects	for	which	tactile	

means	of	measurement	are	either	undesirable	or	infeasible	 155‐157 .	As	soft	tissue	deforms	when	
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contacted,	 an	LRS	 lends	 itself	 very	well	 to	 surgical	 applications	as	a	way	of	measuring	geometry.	

Laser	 range	 scanners	 have	 been	 used	 for	 surface	 capture	 in	 a	 variety	 of	 procedures	 such	 as	

orthodontics,	cranio‐maxillofacial	surgery,	 liver	surgery,	and	neurosurgery.	Table	1	summarizes	a	

list	 of	 publications	 that	 examine	 the	 integration	 of	 various	 LRS	 devices	 into	 image‐guided	

procedures.		

Table 1. Recent examples of LRS integration into image‐guided procedures. 

Year  Author  Procedure  Application 

2000  Commer et al.[158]  orthodontics  tooth position tracking 
2003  Audette et al.[93]  neurosurgery  registration, brain deformation tracking 
2003  Cash et al.[159]  liver surgery  registration of liver surface 
2003  Marmulla et al.[160]  cranio‐maxillofacial surgery face registration 
2003  Meehan et al.[161]  cranio‐maxillofacial surgery facial tissue deformation tracking 
2003  Miga et al.[94]  neurosurgery  cortical surface registration 
2005  Cash et al.[162]  liver surgery  liver deformation tracking 
2005  Sinha et al.[97]  neurosurgery  cortical surface deformation tracking 
2006  Sinha et al.[98]   neurosurgery  cortical surface registration 
2008  Cao et al.[96]  neurosurgery  comparison of registration methods 
2009  Ding et al.[163]  neurosurgery  semiautomatic LRS cloud registration 
2009  Shamir et al.[95]  neurosurgery  face registration 
2010  Dumpuri et al.[164]  liver surgery  liver deformation compensation 

	

Conventional	LRS	devices	work	by	sweeping	a	line	of	laser	light	onto	the	object	of	interest,	

and	the	surface	is	digitized	by	capturing	the	shape	of	the	laser	line	with	a	digital	camera	and	using	

triangulation	 to	 form	a	point	 cloud.	Calibration	 is	done	 to	determine	how	points	detected	by	 the	

digital	camera	are	mapped	to	the	physical	location	of	the	laser	line.	The	digital	camera	may	also	be	

used	 to	 collect	 texture	 information	 from	 the	 surface	 and	 map	 it	 onto	 the	 geometry	 to	 form	 a	

textured	point	cloud	 97,	98,	159 .	LRS	systems	are	attractive	for	assisting	image‐guidance	because	

they	can	provide	relatively	 fast	and	accurate	sampling	of	 the	entire	exposed	surface	of	 the	brain.	

Sun	 et	 al.	 have	 also	 used	 stereopsis	 via	 operating	 microscopes	 to	 capture	 the	 brain	 surface	 to	

address	 the	 problem	 of	 deformation	 156 .	 This	 intraoperative	 information	 can	 be	 used	 both	 to	

align	 image‐to‐physical	 space	 as	 well	 as	 to	 track	 deformations.	 	 Alignment	 can	 be	 facilitated	 by	

tracking	a	 conventional	LRS	 in	3D	space	via	optical	 targets	attached	 to	 the	exterior	 enclosure.	 In	
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addition	 to	 assisting	 with	 image‐to‐physical	 alignment,	 the	 role	 of	 an	 LRS	 in	 brain	 shift	

compensation	 is	well	defined	by	 its	ability	 to	quickly	acquire	a	series	of	scans	over	 the	course	of	

surgery	in	order	to	track	deformation.	Work	has	also	been	done	to	use	the	texture	associated	with	

the	point	clouds	to	nonrigidly	register	a	series	of	LRS	scans,	thus	providing	measurements	of	brain	

shift	 97,	163 .	Although	 the	accuracy	of	LRS	data	has	been	encouraging,	 efforts	 to	 improve	LRS‐

driven	model‐updated	systems	have	highlighted	aspects	of	conventional	LRS	design	which	could	be	

altered	to	increase	system	fidelity	and	ease	of	use.	

	 We	 present	 two	 fundamental	 contributions	 in	 this	 paper:	 1 	 a	 tracked	 single‐CCD	 LRS	

design	and	2 	an	accuracy	assessment	of	the	new	device.	LRS	devices	which	provide	field‐of‐view	

colored	 point	 clouds	 are	 usually	 constructed	 from	 a	 two‐lens	 design	 in	which	 one	 lens	 captures	

geometric	 information	 from	 the	 laser	 line,	 and	 the	 other	 lens	 captures	 color	 information	 via	 a	

digital	camera.	The	use	of	separate	lenses	unfortunately	makes	it	necessary	to	create	an	additional	

calibration	 to	map	 the	2D	color	 information	onto	 the	3D	scanner	point	 cloud.	We	present	here	a	

solution	 to	 this	 problem	 in	 the	 form	 of	 a	 single‐lens	 system	 design.	 The	 novel	 LRS	 design	 was	

implemented	 and	 evaluated	with	 the	 intent	 to	 use	 in	 cortical	 surface	 tracking;	 however,	 the	 LRS	

could	be	used	to	characterize	any	anatomy	with	sufficient	surgical	access.	

IV.4 Materials and Methods 

	 The	 following	sections	describe	 the	 two	production	phases	of	 the	new	LRS:	1 	 the	design	

and	development	decisions	which	composed	the	final	system,	and	2 	an	analysis	of	its	scanning	and	

tracking	accuracy.	

IV.4.1 Design and Development 

This	work	presents	the	results	of	a	collaborative	effort	to	design	a	new	laser	range	scanner	

to	 capture	 both	 geometric	 and	 field‐of‐view	 color	 information	 without	 the	 need	 for	 two	 lenses.	

Working	 in	 conjunction	with	 engineers	 at	 Pathfinder	 Therapeutics	 Inc.	 Nashville,	 TN,	 USA ,	 we	
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developed	a	 single‐lens	 solution	which	 is	unique	 in	 that	 existing	 commercial	 systems	 such	as	3D	

Digital	 Sandy	 Hook,	 CT,	 USA 	 or	 ShapeGrabber	 Ottawa,	 ON,	 Canada 	 products	 capture	 both	

geometric	and	color	information	with	two	lenses	and	two	charge‐coupled	devices	 CCDs ,	or	do	not	

collect	color	information	at	all.	The	older	designs	not	only	carry	additional	cost,	but	also	require	the	

overlay	of	 color	 information	onto	 the	3D	point	 cloud.	This	process	 is	 another	 source	of	 error,	 as	

each	 lens	 imparts	 a	unique	 geometric	distortion	on	 the	 captured	 scene,	 and	 each	 lens	 also	has	 a	

different	 line‐of‐sight	to	the	target.	One	solution	considered	was	to	capture	the	field	with	a	single	

lens	and	feed	the	geometry	and	color	to	two	CCDs	via	a	beam	splitter.	Ultimately	it	was	decided	that	

this	 option	 was	 less	 attractive	 in	 terms	 of	 cost,	 size,	 and	 complexity	 compared	 to	 a	 single‐CCD	

approach.	

The	 novel	 single‐CCD	 solution	 here	 utilizes	 a	 Basler	 Pilot	 camera	 Basler	 Vision	

Technologies,	 Ahrensburg,	 Germany 	 running	 at	 1920x1080	 at	 32	 fps.	 This	 camera	 is	 part	 of	 a	

family	of	cameras	with	uniform	physical	dimensions	and	electrical	interfaces,	which	enables	other	

camera	models	 to	be	swapped	out	 to	meet	varying	scanning	accuracy	or	 speed	requirements.	To	

capture	the	geometry	of	the	field,	a	standard	red	laser	with	a	wavelength	of	635	nm	and	a	uniform	

line	generator	was	selected.	This	wavelength	was	selected	because	of	the	wide	availability	of	diode	

modules	as	well	as	its	known	reflectivity	on	the	organs	of	interest	 primarily	brain	and	liver .	One	

drawback	 to	using	a	red	 laser	 is	 that	 the	Bayer	color	 filter	pattern	 which	 filters	pixels	 to	record	

color	as	either	red,	green,	or	blue	before	interpolation	generates	the	final	image 	used	on	the	CCD	

only	 assigns	 one	 out	 of	 every	 four	 pixels	 to	 capture	 red	 light,	 which	 effectively	 reduces	 the	

resolution	of	the	scanner.	Since	the	Bayer	filter	pattern	assigns	two	out	of	every	four	pixels	to	green	

light,	 there	was	some	consideration	to	using	a	green	laser.	However,	this	would	result	 in	reduced	

contrast	 of	 the	 laser	 on	 the	 background	 image	 in	 some	 of	 our	 intended	 applications,	 such	 as	

scanning	the	liver	surface,	as	a	red‐brown	object	would	tend	to	absorb	green	light.	The	laser	line	is	

swept	 across	 the	 field‐of‐view	 using	 a	 mirror	 attached	 to	 a	 standard	 galvanometer.	 The	
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galvanometer	chosen	can	rotate	over	a	40	arc	with	approximately	15	bit	precision	and	a	settling	

time	of	about	0.1	ms.	Using	a	video	frame	rate	of	32	Hz,	the	maximum	exposure	length	is	31.25	ms.	

The	galvanometer	is	allowed	to	settle	to	its	next	resting	position	during	the	small	window	of	time	

when	the	CCD	is	transferring	data	out	to	the	frame	buffer	and	is	not	actively	collecting	photons.	

In	order	to	maximize	the	scanning	speed,	the	full	frame	rate	of	the	CCD	is	used.	At	8	bits	per	

pixel,	the	CCD	outputs	data	at	a	rate	of	531	Mb/s.	Conventionally,	this	high	data	rate	would	lead	to	a	

digital	 signal	 processor	 DSP 	 based	 processing	 solution	 such	 that	 the	 point	 cloud	 could	 be	

calculated	 in	 the	 scanner	 and	 then	 transmitted	 to	 a	 host	 PC	 upon	 scan	 completion.	However,	 by	

leveraging	 modern	 CPUs	 and	 high‐speed	 communications	 links,	 the	 raw	 video	 frames	 are	

transferred	to	the	host	PC	via	gigabit	ethernet	 for	processing	and	calculation	of	the	final	textured	

point	cloud.	

	

Figure 16.The novel LRS, showing the single CCD design from the front (top left picture) and the tracking 
marker configuration  from  the  top of  the  scanner  (top  right picture). The bottom diagram  shows  the 
improved functionality of the single CCD system (right) in comparison with a dual‐CCD system (left). 
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The	external	enclosure	of	the	LRS	was	designed	to	be	as	small	as	possible	to	accommodate	

the	 following	hardware:	 camera,	 lens,	white‐light	 illuminator,	 galvanometer,	 galvanometer	driver	

board,	 motherboard	 containing	 the	 microcontroller	 with	 support	 circuitry,	 and	 passive	 tracking	

targets	 see	Figure	16 .	Within	the	enclosure,	an	internal	structure	was	created	to	hold	the	camera,	

laser,	and	galvanometer	perfectly	rigid	with	respect	 to	each	other,	as	even	slight	changes	 in	 their	

relative	 positions	would	 invalidate	 the	 scanner	 calibration.	 Although	 the	 calibration	 process	 and	

fixture	are	proprietary	in	nature,	it	can	be	stated	that	it	is	a	semi‐automated	procedure	in	which	the	

scanner	 is	 trained	 to	 measure	 distance,	 determine	 various	 optical	 parameters	 specific	 to	 the	

hardware	used,	and	correct	for	geometric	distortions.	

The	 tracking	 electronics	 were	 originally	 designed	 to	 be	 compatible	 with	 the	 NDI	 Certus	

position	sensor	 Northern	Digital	Inc.,	Waterloo,	ON,	Canada 	for	active	optical	tracking.	This	first	

design	included	active	tracking	infrared	emitting	diodes	 IREDs 	that	were	the	same	height	as	the	

scanner	enclosure.	However,	initial	testing	indicated	that	the	error	in	triangulating	the	position	of	

these	diodes	was	too	great,	which	led	to	the	design	and	construction	of	an	alternate	configuration	of	

IREDS.	The	 attachment	design	of	 the	marker	housings	was	 chosen	 to	be	modular,	 such	 that	 they	

could	 be	 changed	 easily	 depending	 on	 the	 application	 without	 needing	 to	 modify	 the	 scanner	

enclosure	itself.	The	initial	marker	geometry	on	the	LRS	was	replaced	due	to	preliminary	problems	

with	 marker	 visibility	 in	 the	 operating	 room.	 The	 active	 marker	 housings	 were	 replaced	 with	

reflective	 spheres	 compatible	 with	 the	 NDI	 Polaris	 Spectra	 position	 sensor	 for	 passive	 tracking.	

Specifically,	a	passive	target	was	added	to	the	top	face	of	the	LRS	to	increase	the	number	of	viable	

poses	in	the	tracking	volume,	as	it	was	not	always	possible	to	position	the	LRS	within	the	confines	

of	normal	OR	workspace	such	that	at	least	one	of	the	rear	targets	was	visible	to	the	tracking	system.	

Other	 tracking	 systems	 could	also	be	used,	 such	as	 the	NDI	Polaris	Vicra,	but	 the	 relatively	 large	

work	volume	of	the	Polaris	Spectra	allows	for	greater	flexibility	in	positioning	the	equipment,	as	it	

is	 not	 always	 possible	 to	 position	 the	 tracking	 system	 close	 to	 the	 patient,	 in	 our	 specific	
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application.	The	passive	configuration	is	currently	preferred	in	our	work	due	to	the	ease	of	use	of	

wireless	tools	and	the	existence	of	passive	tracked	surgical	instruments	and	reference	rigid	bodies	

in	 the	 StealthStation	 Fridley,	 MN,	 USA 	 workflow,	 currently	 used	 by	 our	 clinical	 colleagues	 at	

Vanderbilt	University	Medical	 Center.	While	 the	 accuracy	 of	 active	 tracking	was	 attractive,	much	

consideration	was	given	to	the	tradeoff	between	achievable	accuracy	and	ease	of	integration	 since	

the	introduction	of	wired	tools	was	intrusive	to	surgical	workflow ,	and	it	was	decided	that	passive	

tracking	provided	sufficient	accuracy	and	minimized	disruption	in	the	OR.	

IV.4.2 Laser Range Scanner Evaluation 

The	 LRS	 accuracy	 was	 characterized	 over	 the	 course	 of	 two	 tests.	 The	 first	 test	 was	

designed	 to	 evaluate	 the	 accuracy	 of	 the	 geometric	 range	 scans.	 A	multi‐level	 platform	phantom	

see	 Figure	 17 	 was	 scanned	 by	 a	 coordinate	 measurement	 machine	 such	 that	 the	 distances	

between	disc	centers	were	known	to	within	a	tolerance	of	0.05	mm.	The	phantom	was	first	used	to	

determine	 the	 effective	 work	 volume	 of	 the	 scanner	 by	 the	 ability	 of	 the	 LRS	 to	 construct	 a	

geometric	point	cloud	as	it	swept	the	laser	across	the	phantom	surface.	Once	the	work	volume	was	

defined	the	geometric	accuracy	test	was	performed	by	mounting	the	LRS	horizontally	on	an	optical	

breadboard,	facing	the	phantom.	The	LRS	was	held	completely	stationary,	the	phantom	was	moved	

systematically	 throughout	 the	work	volume,	and	 the	LRS	scanned	 the	phantom	multiple	 times	at	

each	position.	Nine	positions	in	the	work	volume	were	used,	consisting	of	three	positions	on	each	of	

three	planes	 see	Figure	17 	such	that	at	least	six	of	the	discs	were	visible	in	any	scan	 non‐central	

discs	were	occasionally	outside	of	the	LRS	work	volume	due	to	field‐of‐view	limitations .	Ten	scans	

were	taken	at	each	position	for	a	total	of	90	scans.	From	the	acquired	point	clouds,	the	geometric	

centroids	of	each	visible	disc	at	each	position	were	calculated.	Then	the	relative	distances	between	

centroids	were	compared	to	the	known	disc	distances.	
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Figure 17. Geometric  accuracy  test  setup  (left)  showing  the nine positions of  the precision phantom 
(right). 

	 	The	second	test	was	to	characterize	the	ability	of	 the	LRS	to	be	tracked	with	respect	to	a	

global	coordinate	system	defined	by	the	tracking	system	and	a	reference	target.	The	first	part	of	this	

test	 was	 to	 observe	 the	 tracking	 behavior	 of	 the	 scanner.	 A	 rigid	 body	 file	 describing	 the	 LRS	

passive	sphere	configuration	was	generated	by	characterizing	the	LRS	as	a	passive	three‐face	tool	

within	 the	NDI	software.	Each	 face	was	composed	of	 four	of	 the	twelve	markers	and	was	divided	

into	the	planes	formed	by	the	top	panel	and	two	posterior	panels,	respectively	 see	Figure	16 .	The	

visibility	of	the	spheres	was	tested	by	placing	the	camera	and	the	LRS	in	“typical”	operating	room	

configurations.	The	camera	was	mounted	horizontally	at	a	height	of	 approximately	2	m,	whereas	

the	LRS	was	mounted	at	a	height	of	1	m	at	a	horizontal	distance	of	1.5	m	directly	 in	 front	of	 the	

tracking	 system.	 The	 relative	 positions	 of	 the	 tracking	 system	 and	 LRS	were	 kept	 constant	with	

respect	to	each	other	while	the	orientation	of	the	LRS	was	incremented	in	its	pitch	 ψ 	and	yaw	 θ 	

to	 simulate	 plausible	 orientations	 in	 the	 operating	 room	 see	 Figure	 18 .	 The	 pitch	 was	 varied	

between	0,	45,	and	90°	with	respect	to	the	floor,	and	at	each	pitch	angle	the	yaw	was	incremented	

by	 30°	 through	 a	 full	 360°	 rotation.	 The	 number	 of	 spheres	 tracked	 at	 each	 orientation	 was	

recorded	using	software	provided	by	the	manufacturer	of	the	tracking	system.	
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Figure  18. Orientations  used  in  tracking  visibility  test.  For  reference,  a  pitch  of  0°  and  a  yaw  of  0° 
denotes the orientation in which the top of the LRS is facing toward the camera, whereas a pitch of 90 
and yaw of 180 denotes a horizontal orientation facing away from the camera. 

	 The	 second	 tracking	 test	 was	 designed	 to	 observe	 the	 robustness	 of	 the	 rigid	 body	 file	

description	 for	 the	 passive	 targets	 attached	 to	 the	 LRS.	 A	 calibration	 was	 first	 performed	 to	

determine	the	transformation	placing	the	raw	point	cloud	into	the	coordinate	frame	of	the	tracked	

LRS	rigid	body	 159 .	The	calibration	is	performed	by	scanning	the	block	phantom	described	above,	

and	then	calculating	the	geometric	centroids	of	the	discs	in	the	point	cloud.	Using	the	tracked	LRS	

rigid	body	as	 the	reference	coordinate	system,	 the	 locations	of	 the	discs	are	also	digitized	with	a	

tracked	 pen	 probe.	 The	 scan	 centroid	 points	 are	 then	 fitted	 to	 the	 probe	 points	with	 a	 standard	

least‐squares	method	 to	 produce	 a	 4x4	 calibration	matrix	which	 transforms	 scan	points	 into	 the	

space	of	 the	LRS.	The	navigation	software	 then	automatically	 transforms	 the	point	cloud	 into	 the	

space	of	the	reference	target	as	the	LRS	is	tracked.	This	means	that	all	scans	of	the	patient	will	be	in	

a	common	coordinate	frame.	
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Figure 19. Experimental setup used for the tracking accuracy test, showing the fixed phantom and LRS 
(left) and the Polaris Spectra optical tracking system (right). 

	 After	 the	 scanner	 was	 calibrated,	 the	 LRS	 was	 positioned	 horizontally	 facing	 the	 block	

phantom	such	that	the	phantom	was	in	the	center	of	the	LRS	work	volume.	The	LRS,	block	phantom,	

and	reference	target	were	fixed	in	place	as	shown	in	Figure	19.	The	Polaris	camera	was	then	moved	

between	30	positions	distributed	approximately	360°	around	the	LRS	such	that	the	camera	tracked	

each	of	the	three	faces	of	the	LRS	for	ten	of	the	scans.	A	scan	of	the	phantom	was	acquired	for	each	

position	 of	 the	 camera,	 and	 the	 disc	 centroids	 were	 calculated	 in	 the	 coordinate	 frame	 of	 the	

reference	target.	In	addition,	the	phantom	discs	were	digitized	with	a	tracked	pen	probe	each	time	

the	phantom	was	scanned.	These	points	were	considered	the	gold	standard	positions	for	the	discs,	

and	 the	point	 cloud	centroids	were	compared	against	 them.	While	 this	gold	standard	was	simple	

and	 convenient	 to	 create,	 it	 did	 inherently	 add	 error	 to	 the	 test,	 as	 there	 was	 tracking	 error	

associated	with	tracking	the	pen	probe	itself.	There	was	also	error	in	digitizing	the	discs,	as	placing	

the	tip	of	the	probe	in	the	disc	centers	was	a	manual	process.	A	more	robust	gold	standard	would	

entail	 a	 precision	 grid	 spanning	 the	 work	 volume	 of	 the	 tracking	 system	 throughout	 which	 the	

phantom	and	LRS	setup	could	be	stepped	such	that	its	position	relative	to	the	camera	was	known	
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with	 higher	 precision	 than	 achievable	 with	 passive	 optical	 tracking.	 However,	 the	 pen	 probe	

method	used	above	was	deemed	to	be	more	practical	for	this	study.	The	30	scans	were	analyzed	as	

a	 group	 and	 in	 the	 three	 subsets	 corresponding	 to	 the	 different	 faces	 to	 determine	 variability	 in	

tracking	the	LRS.	

IV.5 Results 

The	geometric	accuracy	test	determined	a	mean	error	and	standard	deviation	of	0.25	 	0.40	

mm,	with	an	RMS	error	of	0.47	mm	for	the	set	of	90	scans	acquired.	The	95%	confidence	interval	

for	this	error	was	0.24	to	0.27	mm.	The	maximum	error	encountered	in	this	dataset	was	1.6	mm.		

	 The	face	visibility	test	indicated	that	in	all	of	the	tested	LRS	orientations	except	for	one	 in	

which	the	LRS	was	positioned	vertically	with	its	top	face	pointing	away	from	the	camera,	i.e.	a	pitch	

of	0°	and	yaw	of	180° 	that	the	camera	was	able	to	track	at	least	one	of	the	faces.	It	should	be	noted	

that	the	NDI	software	 and	navigation	systems	in	general 	only	tracks	a	single	face	of	a	multi‐face	

tool	 at	 a	 time.	 As	 each	 face	 on	 the	 LRS	 contains	 four	markers,	 four	 is	 the	maximum	 number	 of	

usable	markers	at	any	particular	position	or	orientation.	
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Figure 20. Bitmap view of the phantom captured by the LRS (top left) and textured point cloud rotated 
slightly  to  show  the  3D  geometry  of  the  data  (top  right).  The  bottom  left  shows  an  example  of 
intraoperative data collection with the laser line sweeping across a brain surface. The corresponding LRS 
point cloud reconstructed from this scan is shown on the bottom right. 

	 The	 second	 part	 of	 the	 tracking	 test	 resulted	 in	 a	 set	 of	 30	 scans	 such	 as	 the	 example	 in	

Figure	 20.	 The	 nine	 disc	 centroids	 in	 each	 scan	 were	 determined	 and	 compared	 to	 the	

corresponding	points	collected	by	the	pen	probe.	The	results	of	this	comparison	are	shown	in	Table	

2,	which	shows	the	error	across	all	30	scans,	as	well	as	the	error	among	just	the	10	scans	acquired	

while	 tracking	each	of	 the	 respective	 faces	on	 the	LRS.	The	mean	overall	 error	 across	all	 scans 	

was	2.2	 	1.0	mm,	with	an	RMS	tacking	error	of	2.4	mm.	The	95%	confidence	interval	for	this	error	

across	all	30	scans	was	2.1	to	2.4	mm.	When	the	data	was	examined	per	face,	it	was	found	that	Face	

1	 rear	right	face 	had	a	mean	error	of	2.1	 	1.2	mm	with	an	RMS	error	of	2.4	mm.	Face	2	 top	face 	
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had	a	mean	error	of	2.5	 	1.1	mm	with	an	RMS	error	of	2.7	mm.	Face	3	 rear	left	face 	had	a	mean	

error	of	2.3	 	1.0	mm	with	an	RMS	error	of	2.5	mm.	

Table 2. Comparison of the arithmetic and RMS tracking error over all 30 scans (total) and also over the 
separate groups of 10 scans taken while tracking each face (Face 1 is the rear right face, Face 2 is the top 
face, and Face 3 is the rear left face). The errors were calculated by comparing the centroid points of the 
phantom discs against points collected with a tracked pen probe. 

  Mean Tracking Error (mm)  RMS Tracking Error (mm)
Total  2.2 ± 1.0  2.4 
Face 1  2.1 ± 1.2  2.4 
Face 2  2.5 ± 1.1  2.7 
Face 3  2.3 ± 1.0  2.5 

IV.6 Discussion 

The	results	of	the	geometric	accuracy	test	show	that	the	average	geometric	scanning	error	

is	 about	 half	 a	 millimeter	 with	 sub‐millimetric	 standard	 deviation,	 which	 is	 acceptable	 for	 the	

intended	applications.	A	previous	generation	LRS	using	a	dual‐CCD	design	was	reported	to	have	a	

scanning	 accuracy	 of	 0.3	mm	 at	 best,	 and	 its	 performance	 degraded	 outside	 of	 the	 center	 of	 the	

work	volume	at	least	in	part	due	to	the	computational	error	in	aligning	the	texture	and	geometric	

information	 from	 their	 respective	CCDs	 97 .	 It	 is	possible	 to	 increase	 the	 resolution	of	 the	point	

cloud	through	the	scanner	API	by	collecting	more	range	points,	at	the	cost	of	scanning	speed.		

	 The	 face	 visibility	 test	 showed	 that	 four	markers	were	 visible	 on	 average	 to	 the	 tracking	

system	at	virtually	all	of	the	tested	positions,	which	provided	enough	markers	to	compute	the	LRS	

position	and	orientation	 in	 the	reference	 frame.	 It	was	 important	 to	conduct	 this	 test	 in	order	 to	

determine	practical	positioning	limitations	of	the	LRS	with	respect	to	the	optical	tracking	system	in	

the	operating	room.	Equipment	logistics	are	often	beyond	the	control	of	research	engineers	in	the	

operating	room	due	to	the	requirements	of	normal	surgical	workflow,	which	necessitates	flexibility	

in	the	positions	in	which	the	LRS	can	be	tracked.	

	 The	second	part	of	the	tracking	test	showed	that	the	error	in	LRS	point	cloud	locations	in	

the	 reference	 frame	 is	 on	 the	 order	 of	 normal	 optical	 tracking	 error	 for	 passive	 systems.	 The	
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tracking	accuracy	of	the	previous	generation	scanner	used	by	Sinha	et	al.	was	similar	at	1.0	 	0.5	

mm	 97 .	However,	the	LRS	in	that	case	utilized	actively‐emitting	IREDS	rather	than	the	passively	

tracked	 solution	 used	 for	 the	 new	LRS.	 The	 data	 in	 Table	 2	 show	 the	mean	 error	 in	 point	 cloud	

locations	in	the	reference	frame	for	all	30	scans	and	for	each	subset	of	10	scans	per	tracked	face.	It	

is	apparent	that	the	error	is	approximately	equivalent	across	all	three	faces,	which	implies	that	the	

accuracy	of	scan	tracking	is	insensitive	to	the	orientation	in	which	the	LRS	is	viewed	by	the	optical	

tracking	system	 for	configurations	used	in	the	OR .	

IV.7 Conclusions 

The	 design	 goal	 of	 a	 single‐CCD	 LRS	 capable	 of	 capturing	 both	 geometric	 and	 color	

information	 was	 met	 in	 terms	 of	 possessing	 sub‐millimetric	 scanning	 accuracy	 and	 tracking	

accuracy	that	is	typical	of	passive	tracking	systems	 on	the	order	of	2	mm .	It	was	evaluated	with	

regard	 to	 its	 scanning	 accuracy	 and	 tracking	 ability	 using	 a	 precision	 phantom	 and	 found	 to	 be	

appropriate	for	image‐guided	procedures.	While	the	overall	error	in	the	system	is	approximately	2	

mm	 primarily	contributed	by	the	tracking	of	the	LRS ,	this	performance	is	similar	to	the	3D	Digital	

LRS	used	by	Dumpuri	et	al.	to	provide	a	TRE	of	2	to	4	mm	in	liver	phantom	targets,	and	also	used	by	

Cao	et	al.	to	provide	a	TRE	of	about	2	mm	for	cortical	targets	 96,	164 .	We	have	integrated	the	LRS	

into	 our	 guidance	 software	 and	 are	 currently	 evaluating	 its	 contribution	 to	 our	 shift	 correction	

system.	
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CHAPTER V 

MODEL‐BASED CORRECTION OF TISSUE COMPRESSION FOR TRACKED ULTRASOUND IN SOFT‐TISSUE 

IMAGE‐GUIDED SURGERY  

V.1 Introduction and Significance of Study 

This	 study	 is	 the	 first	 contribution	 toward	 the	 improvement	 of	 tracked	 ultrasound	 as	 an	

intraoperative	 guidance	 platform.	 It	 arose	 as	 a	 response	 to	 the	 problem	 of	 registration	 error	

induced	 by	 tissue	 compression	 during	 ultrasound	 imaging,	 especially	 strain	 imaging.	 It	 is	 well	

known	 that	 routine	 ultrasound	 imaging	 can	 cause	 deformation	 on	 the	 order	 of	 1	 cm,	which	 is	 a	

clinically	unacceptable	error	in	many	surgical	procedures.	This	phenomenon	was	detected	early	in	

the	deployment	of	tracked	ultrasound	in	tandem	with	the	LRS	device	from	Chapter	IV.	The	tracked	

LRS	 point	 clouds	 and	 the	 tracked	 ultrasound	 data	 are	 automatically	 recorded	 in	 a	 common	

coordinate	space,	and	in	the	absence	of	compression	error	it	would	be	expected	that	the	top	of	the	

ultrasound	image	would	align	with	the	LRS	surface.	In	practice,	however,	it	was	observed	that	the	

ultrasound	data	tended	to	be	located	well	below	the	LRS	point	cloud	due	to	the	pressure	exerted	by	

the	user.	This	chapter	presents	a	strategy	for	correcting	this	error	by	using	knowledge	of	the	pose	

of	 the	 ultrasound	 probe	 surface	 within	 the	 tissue	 of	 interest.	 An	 initial	 image‐to‐physical	

registration	 of	 the	 tracked	ultrasound	 to	 a	patient‐specific	 finite	 element	model	must	be	done	 in	

order	 to	 calculate	 this	 pose.	 After	 the	 registration,	 the	 pose	 of	 the	 ultrasound	 probe	 within	 the	

tissue	is	used	to	assign	boundary	conditions	to	the	finite	element	tissue	model.	The	solution	of	the	

model	is	then	reversed	to	provide	an	estimate	of	the	tissue	in	the	uncompressed	state.	This	strategy	

was	found	to	be	capable	of	reducing	errors	of	approximately	1	cm	to	a	clinically	useful	2	to	3	mm.	

This	work	was	published	in	Ultrasound	in	Medicine	and	Biology	in	2014.	
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V.2 Abstract 

Acquisition	 of	 ultrasound	 data	 negatively	 impacts	 image	 registration	 accuracy	 during	

image‐guided	 therapy	 due	 to	 tissue	 compression	 by	 the	 probe.	We	 present	 a	 novel	 compression	

correction	method	which	models	 subsurface	 tissue	 displacement	 resulting	 from	 application	 of	 a	

tracked	probe	to	the	tissue	surface.	Patient	landmarks	are	first	used	to	register	the	probe	pose	to	

preoperative	imaging.	The	ultrasound	probe	geometry	is	used	to	provide	boundary	conditions	to	a	

biomechanical	model	of	the	tissue.	The	deformation	field	solution	of	the	model	is	inverted	to	non‐

rigidly	 transform	 the	 ultrasound	 images	 to	 an	 estimation	 of	 the	 tissue	 geometry	 prior	 to	

compression.	 Experimental	 results	 with	 gel	 phantoms	 demonstrated	 that	 the	 proposed	 method	

reduced	the	tumor	margin	Modified	Hausdorff	Distance	 MHD 	from	5.0	 	1.6	mm	to	1.9	 	0.6	mm,	

and	reduced	tumor	centroid	alignment	error	from	7.6	 	2.6	mm	to	2.0	 	0.9	mm.	The	method	was	

applied	to	a	clinical	case,	and	reduced	the	tumor	margin	MHD	error	from	5.4	 	0.1	mm	to	2.6	 	0.1	

mm,	and	the	centroid	alignment	error	from	7.2	 	0.2	mm	to	3.5	 	0.4	mm.	

V.3 Introduction 

Ultrasound	 is	 commonly	 used	 as	 an	 intraoperative	 imaging	modality	 to	monitor	 surgical	

targets	such	as	tumors.	The	need	to	maintain	acoustic	coupling	between	the	probe	and	tissue	often	

results	in	significant	compression	of	the	target	by	the	user.	This	is	especially	a	concern	when	using	

ultrasound	 strain	 imaging,	 in	 which	 a	 certain	 level	 of	 pre‐compression	 of	 the	 tissue	 may	 be	

necessary.	However,	 this	 tissue	deformation	 affects	 the	 geometry	 of	 the	 scanned	objects	 and	 the	
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resulting	images.	Soft	tissue	can	undergo	surface	compression	on	the	order	of	1	cm	during	routine	

freehand	imaging	 165,	166 .	This	leads	to	incorrect	estimates	of	the	size	and	location	of	landmarks	

within	the	ultrasound	images.		

Compressional	effects	from	the	probe	are	especially	apparent	in	image‐guided	procedures,	

which	align	 intraoperative	data	with	preoperative	 tomographic	 images.	 In	 these	procedures,	 it	 is	

important	 that	 data	 collected	 during	 the	 surgery	 is	 accurately	 registered	 to	 high‐resolution	

computed	 tomography	 CT 	 or	 magnetic	 resonance	 MR 	 image	 volumes	 for	 optimal	 guidance.	

Typically	 this	 is	 done	by	digitizing	physical	 landmarks	on	 the	patient	with	 a	 tracked	 instrument,	

selecting	 the	 corresponding	 landmarks	 in	 the	 tomograms,	 and	 computing	 a	 rigid	 transformation	

which	best	aligns	the	two	coordinate	spaces.	Although	there	are	a	variety	of	methods	to	track	and	

calibrate	an	ultrasound	probe	such	that	each	image	slice	is	recorded	with	a	known	pose	in	physical	

space	 71,	 72,	 74,	 123,	 167,	 168 ,	 the	 usefulness	 of	 tracked	 ultrasound	 relies	 on	 an	 accurate	

registration.	 Registration	 accuracy	 is	 compromised	 by	 non‐rigid	 tissue	 deformation	 such	 as	 that	

which	occurs	with	manipulation	of	 the	ultrasound	probe.	The	goal	of	 this	work	 is	 to	 improve	the	

usefulness	of	tracked	ultrasound	in	image‐guided	procedures	by	improving	this	registration.	

There	are	several	approaches	in	the	literature	which	have	sought	to	address	the	problem	of	

tissue	deformation	exerted	by	an	ultrasound	probe.	One	method	is	to	create	a	digital	representation	

of	the	surface	and	then	use	a	combination	of	Bayesian	theory	and	prior	knowledge	of	the	surgical	

scene	to	create	a	deformation	which	matches	the	observed	ultrasound	data	 169 ,	but	this	approach	

did	not	incorporate	a	physical	model	of	tissue	which	could	be	used	to	provide	more	realistic	priors.	

Another	approach	is	to	acquire	B‐mode	or	raw	radiofrequency	 RF 	data	from	the	ultrasound	and	

use	 non‐rigid	 image‐based	 registration	 and	 positional	 tracking	 to	 correct	 for	 deformation	 166,	

170 ,	 but	 this	 approach	 requires	 a	 	 series	 of	 ultrasound	 images	 in	 order	 to	 provide	 sequential	

estimates	of	compression	correction.	There	has	also	been	work	done	to	model	tissue	compression	

using	data	from	a	force	transducer	attached	to	the	ultrasound	probe	along	with	a	position	sensor	to	



 
 
 

59 
 

drive	a	tissue	model	 171,	172 .	Our	proposed	method	is	similar	to	this	method,	but	eliminates	the	

need	 for	 a	 force	 measurement	 apparatus	 on	 the	 probe	 by	 using	 measured	 3D	 surface	

displacements,	rather	than	force,	to	drive	the	model.	Our	method	utilizes	just	the	tracking	system	

which	 is	 routinely	 used	 in	 surgical	 procedures	 such	 as	 image‐guided	 neurosurgery.	 To	 our	

knowledge,	there	has	not	been	an	attempt	to	model	the	tissue	deformation	from	the	physical	probe	

surface	 itself	 in	 the	 correction.	 This	 work	 presents	 a	 compression	 correction	 method	 which	

measures	 and	 compensates	 for	 this	 effect	 using	 a	 biomechanical	 tissue	model	with	 validation	 in	

simulations,	phantoms,	and	a	preliminary	clinical	case.	

V.4 Materials and Methods 

	 We	 present	 our	 compression	 correction	 method	 as	 one	 component	 in	 the	 context	 of	 a	

patient‐specific	 data	 pipeline	 for	 image‐guided	 therapy.	 Prior	 to	 correction,	 we	 perform	 several	

data	acquisition	and	processing	steps.	The	procedures	described	below	were	used	in	all	phantom	

experiments	and	were	similar	for	the	acquisition	and	analysis	of	clinical	data.		

V.4.1 Phantom Construction 

Two	compliant	phantoms	were	each	constructed	by	mixing	7%	by	mass	polyvinyl	alcohol	

PVA 	in	water,	10%	by	volume	glycerol,	and	heating	to	80	°C	to	ensure	saturation	 138,	140 .	For	

each	phantom,	a	smaller	amount	of	PVA	was	 treated	with	barium	sulfate	powder	 for	CT	contrast	

and	poured	into	a	separate	mold	to	act	as	the	tumor	target.	The	tumor	was	subjected	to	five	freeze‐

thaw	cycles	in	which	it	was	frozen	at	‐40	°C	for	12	hours	and	then	thawed	for	12	additional	hours,	

in	order	to	produce	a	stiffer	material.	The	tumor	was	then	suspended	in	the	bulk	phantom	mixture	

and	the	phantom	underwent	one	freeze‐thaw	cycle	to	produce	a	tissue‐like	phantom	containing	a	

stiff	 tumor.	 The	 volumes	 of	 the	 tumor	 and	 bulk	 phantom	 mixtures	 were	 3.2	 cm3	 and	 720	 cm3,	

respectively.	The	stiffness	properties	for	the	bulk	tissue	and	tumor	were	tested	using	small	samples	

with	 an	 ElectroForce	 3100	 instrument	 Bose,	 Eden	 Prairie,	 MN .	 One	 of	 the	 phantoms	 was	
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constructed	in	a	small	cup‐like	container	covered	in	fiducial	markers	and	was	used	for	the	baseline	

accuracy	 test	described	 in	 the	Phantom	Experiments	section.	The	second	phantom	was	 fixed	 to	a	

rigid	 base	 which	 contained	 8	 evenly	 distributed	 fiducial	 markers	 used	 in	 the	 image‐to‐physical	

registration	and	was	used	to	test	the	compression	correction	method.	

V.4.2 Patient Model from Preoperative Image Volume 

	 CT	 image	 volumes	 of	 the	 phantoms	were	 acquired	using	 a	 clinical	 CT	machine.	 This	 data	

simulated	a	typical	preoperative	tomogram	acquisition,	and	was	defined	 in	the	experiment	as	the	

baseline	 undeformed	 state	 against	which	 our	 corrected	 ultrasound	 data	would	 be	 compared.	 All	

volumes	 were	 512	 x	 512	 x	 422	 with	 0.6	 mm	 isotropic	 voxels.	 The	 phantom	 structures	 were	

segmented	 using	 intensity	 thresholding	 tools	 within	 Analyze	 9.0	 Mayo	 Clinic,	 Rochester,	 MN .	

Isosurfaces	 were	 generated	 from	 the	 bulk	 phantom	 and	 tumor	 segmentations	 via	 the	 marching	

cubes	 algorithm,	 and	were	 smoothed	 using	 a	 Laplacian	 filter.	 A	 tetrahedral	mesh	was	 generated	

from	the	segmentation	surfaces	using	custom‐built	mesh	generation	methods	 113 .	One	phantom	

and	mesh	are	shown	in	Figure	21.	

	

Figure 21. Experimental setup with a gel phantom attached to a base with fiducial markers (a), and the 
digital phantom and tumor surfaces segmented from the CT image volume (b). 
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V.4.3 Intraoperative Data Collection 

	 All	ultrasound	images	were	acquired	with	an	Acuson	Antares	ultrasound	machine	 Siemens	

Inc.,	Munich,	Germany ,	using	a	VFX13‐5	linear	array	probe	with	a	6	cm	depth	setting	at	10	MHz.	

The	 ultrasound	 unit	 was	 also	 capable	 of	 producing	 strain	 images	 via	 the	 eSie	 Touch	 elasticity	

software.	 For	 the	 compression	 correction	 experiment,	 B‐mode	 images	 were	 collected	 as	 well	 as	

strain	images,	and	both	types	of	images	were	analyzed	in	order	to	evaluate	the	effect	of	correction	

on	 target	 locations	 in	 ultrasound	 images	 having	 different	 contrast	mechanisms.	 Ultrasound	 data	

was	 tracked	 in	3D	space	by	synchronizing	 the	ultrasound	video	and	 tracking	data	using	software	

based	 on	 the	 Visualization	 Toolkit	 VTK 	 on	 a	 host	 PC	 120,	 121 .	 The	 video	was	 captured	 by	 a	

Matrox	 Morphis	 Dual	 card	 Matrox	 Imaging,	 Dorval,	 Canada ,	 which	 recorded	 the	 analog	 video	

output	 of	 the	 ultrasound	 machine	 in	 real‐time.	 A	 passive	 optical	 tracking	 rigid	 body	 Northern	

Digital,	Waterloo,	ON,	Canada 	was	fixed	to	the	ultrasound	probe	as	shown	in	Figure	22.	The	pose	of	

the	rigid	body	was	measured	by	a	Polaris	Spectra	 Northern	Digital	Inc.,	Waterloo,	Canada 	optical	

tracking	 system.	 The	 tracked	 ultrasound	 system	was	 calibrated	 using	 a	 method	which	 relies	 on	

imaging	 a	 tracked	 tool	 in	 the	 ultrasound	 plane	 74 .	 Once	 the	 tracked	 ultrasound	 system	 was	

calibrated,	all	pixels	in	each	image	were	associated	with	a	3D	pose.		
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Figure 22. Polaris tracking system (a), and the  laser range scanner with passively‐tracked targets (b). A 
passively‐tracked  target was also used  to  track  the ultrasound probe  (c), and  the  laser  range  scanner 
was used to construct a digital representation of the probe surface (d). 

V.4.4 Proposed Compression Error Correction 

	 The	 goal	 of	 our	 project	 was	 to	 reduce	 the	 error	 associated	with	 rigid	 registration	 of	 the	

tracked	ultrasound	data	to	preoperative	volumetric	image	data	by	additionally	correcting	for	tissue	

compression.	The	general	strategy	was	to	use	probe	tracking	information	in	combination	with	co‐

registered	tomograms	to	calculate	the	distance	into	the	tissue	that	the	probe	was	pressed,	and	then	

use	 that	 distance	 to	 correct	 the	 tracked	 ultrasound	 image	 pose.	We	 chose	 to	 first	 evaluate	 rigid	

translations	of	the	ultrasound	pixels	based	on	this	calculated	compression	distance	as	a	simple,	yet	

naive	correction.	This	method	would	have	the	benefit	of	very	low	computational	expense,	and	may	

be	sufficient	for	aligning	subsurface	targets	to	within	a	surgically	relevant	threshold.	However,	this	

rigid	 approach	would	not	 account	 for	non‐rigid	 compressional	 effects	 throughout	 the	ultrasound	

image	itself.	Our	proposed	correction	method	instead	used	the	compression	distance	as	input	to	a	
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more	 sophisticated	 tissue‐mechanics	 model‐based	 approach,	 which	 non‐rigidly	 deformed	 the	

ultrasound	 image	 in	a	physically	realistic	 fashion.	Both	 the	naive	rigid	correction	and	our	model‐

based	correction	are	outlined	in	Figure	23	and	described	below,	and	both	methods	were	performed	

for	 comparison	 in	 terms	 of	 alignment	 error	 reduction	during	 simulations,	 phantom	experiments,	

and	a	clinical	case	described	in	the	following	section.	

	

Figure  23.  Procedure  for  the  rigid  correction  and model‐based  correction.  The  rigid  correction was 
performed  by  calculating  the  distances  between  the  top  of  each  A‐line  and  the  co‐registered 
tomographic  surface  (a)  and  then  translating  the  A‐lines  upward  in  the  depth  direction  by  those 
distances  (b).  The  model‐based  correction  was  performed  by  calculating  the  distances  from  the 
tomogram mesh nodes to a digital representation of the ultrasound probe surface, and designating the 
distances  as  boundary  conditions  to  a  FEM  model  (c).  The  model  was  used  to  solve  for  tissue 
displacements throughout the mesh  (d) and then reversed to deform the ultrasound  image to  its pre‐
compressed state (e). 
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V.4.5 Rigid Correction 

	 The	 rigid	 correction	procedure	 stems	 from	 the	notion	 that,	 in	 the	 absence	of	 registration	

error	 from	 tissue	 compression,	 the	 near‐field	 row	 of	 each	 A‐line	 in	 a	 tracked	 ultrasound	 image	

should	ideally	be	aligned	with	the	organ	surface	from	the	co‐registered	preoperative	tomogram.	In	

the	presence	of	compression	error,	our	tracked	ultrasound	capabilities	would	predict	that	the	near‐

field	 pixels	 in	 the	 image	 would	 typically	 be	 some	 distance	 below	 the	 organ	 surface.	 Thus,	 the	

correction	consists	of	calculating	the	distances	between	the	unperturbed	surface	and	the	near‐field	

ultrasound	image	pixels	representing	the	interface	between	transducer	and	organ,	and	then	rigidly	

translating	 each	 A‐line	 of	 the	 image	 by	 that	 distance	 opposite	 the	 direction	 of	 compression	 to	

render	the	ultrasound	image	in	the	appropriate	preoperative	image	space	as	shown	in	Figure	23a‐b.	

The	 translation	 of	 each	 A‐line	 is	 calculated	 by	 assuming	 the	 direction	 of	 compression	 occurred	

purely	in	the	depth	direction	of	the	ultrasound	image,	and	vectors	are	created	for	each	pixel	in	the	

top	row	of	the	image	with	origin	at	that	pixel	and	direction	opposite	of	compression.	The	points	of	

intersection	on	the	surface	are	determined	for	each	vector,	and	the	distances	from	the	pixels	in	the	

top	row	to	these	points	are	calculated	to	provide	the	translational	correction	vectors	for	the	each	A‐

line	in	the	image.		

V.4.6 Model‐Based Correction 

The	 model‐based	 correction	 procedure	 consists	 of	 modeling	 the	 volumetric	 tissue	

displacement	exerted	by	the	ultrasound	probe.	Knowledge	of	the	exterior	geometry	of	the	probe	is	

a	necessary	component	of	this	model.	A	laser	range	scanner	 LRS 	was	used	to	scan	the	face	of	the	

ultrasound	probe	 in	order	 to	create	a	3D	point	cloud	representing	the	probe	surface	as	shown	in	

Figure	 22d.	 The	 accuracy	 of	 the	 LRS	 device	 was	 previously	 characterized	 and	 known	 to	 have	

geometric	RMS	accuracy	of	approximately	0.5	mm	 173 .	The	LRS	was	tracked	by	the	same	tracking	

system	as	the	ultrasound	probe	during	the	scan,	and	thus	the	created	point	cloud	had	a	known	pose	

based	 on	 the	 pose	 of	 the	 probe.	 As	 a	 consequence	 of	 this	 relationship	 and	 the	 tracking	 of	 the	
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ultrasound	probe	during	data	acquisition,	the	position	and	orientation	of	the	digital	probe	surface	

was	known	for	every	ultrasound	image	collected.	The	LRS	point	cloud	of	the	probe	geometry	was	

converted	to	a	smooth	surface	using	radial	basis	functions	 RBF ,	and	this	surface	was	used	for	all	

subsequent	calculations	 FastRBF,	FarField	Technology	Ltd.,	Christchurch,	New	Zealand .	It	should	

be	noted	that	the	LRS	scan	of	the	probe	surface	was	only	necessary	in	the	absence	of	3D	geometry	

files	 from	 the	 ultrasound	 probe	 manufacturer,	 which	 could	 be	 used	 to	 provide	 an	 equivalent	

geometry.	

	 The	model‐based	correction	method	is	illustrated	in	Figure	23c‐e.	The	general	approach	is	

to	 use	 the	 pose	 of	 the	 probe	 surface	 to	 create	 boundary	 conditions	 for	 a	 forward	 FEM	 model	

solution	 to	 predict	 tissue	deformation.	Due	 to	 the	 standard	 image‐to‐physical	 registration	 that	 is	

done	 in	 image‐guided	 interventions,	 the	 digital	 probe	 surface	 is	 placed	 in	 the	 same	 coordinate	

space	as	the	patient‐specific	FEM	mesh.	Provided	a	good	initial	registration	between	the	patient	and	

preoperative	 imaging,	 we	 assume	 that	 the	 probe	 surface	 is	 located	 within	 the	 mesh	 at	 some	

distance	beneath	the	surface	depending	on	the	magnitude	of	compression	exerted	by	the	user.	The	

distances	 from	 the	 probe	 surface	 opposite	 the	 direction	 of	 compression	 to	 the	mesh	 surface	 are	

computed	 automatically	 in	 a	 similar	 fashion	 as	 in	 the	 rigid	 correction	 method.	 The	 computed	

distances	are	then	assigned	as	Dirichlet	boundary	conditions	to	the	model.	This	is	accomplished	by	

first	 generating	 initial	 mesh	 boundary	 conditions	 which	 describe	 the	 tissue	 at	 rest,	 without	 the	

influence	of	the	ultrasound	probe.	For	the	phantom	experiments,	the	far‐field	of	the	mesh	was	set	

as	fixed	due	to	the	phantom	base	enclosure	and	the	near‐field	and	surrounding	regions	of	the	mesh	

were	set	to	stress‐free	as	shown	in	Figure	24a‐b.	The	top	of	the	phantom	was	considered	stress‐free	

because	that	portion	of	the	phantom	was	left	exposed	to	the	atmosphere	and	was	not	subjected	to	

any	external	forces.	The	ultrasound	probe	was	applied	to	the	top	of	the	phantom	in	the	stress‐free	

region.	The	set	of	initial	boundary	conditions	are	then	altered	to	reflect	the	position	of	the	probe	in	
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the	tissue.	Thus,	for	each	ultrasound	image	the	appropriate	mesh	nodes	were	changed	from	stress‐

free	to	Dirichlet	with	the	probe	displacement	values	as	shown	in	Figure	24c.		

	

Figure 24. Initial boundary conditions were assigned manually (a) to designate the bottom fixed, and the 
top as stress free (b). These boundary conditions were then modified for each model‐based correction 
by changing the appropriate nodes to Dirichlet displacement conditions (c) based on the position of the 
ultrasound probe surface, and then the model was solved to produce an approximation of the deformed 
tissue (d). 

	 After	 the	boundary	conditions	are	generated,	 they	are	used	to	drive	a	FEM	biomechanical	

model	to	solve	for	3D	displacements	throughout	the	tissue.	A	linear	elastic	model	was	used	in	the	

phantom	experiments,	as	the	displacements	were	relatively	small	and	the	phantoms	were	 largely	

homogenous.	The	model	consists	of	the	standard	3D	Navier‐Cauchy	equations	for	the	displacement	

field:	
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where	E	is	Young’s	modulus,	v	is	Poisson’s	ratio,	u	is	the	3D	displacement	vector	at	a	point	in	the	

tissue,	and	F	is	the	applied	body	force	distribution.	The	partial	differential	equation	is	solved	using	

the	Galerkin	weighted	residual	technique	with	linear	basis	functions.	The	system	of	equations	that	

solves	for	the	displacement	vectors	at	every	node	in	the	mesh	can	be	written	as:	

	 13

where	K	 is	 the	 global	 stiffness	matrix,	 u	 is	 the	 vector	 of	 nodal	 displacements,	 and	 f	 contains	 the	

contributions	 of	 any	 applied	 body	 forces	 or	 surface	 movement	 at	 each	 node.	 This	 system	 of	

equations	 is	 solved	 for	 the	nodal	 displacements	which	 satisfy	 static	 equilibrium	 for	 the	 supplied	

boundary	conditions.		

	 These	nodal	displacement	vectors	are	used	to	deform	the	mesh	nodes	to	the	compression	

state	exerted	by	the	probe	as	shown	in	Figure	24d,	giving	a	deformed	mesh	in	which	each	node	is	

associated	with	a	displacement	vector.	We	can	then	interpolate	displacements	corresponding	with	

the	pixels	associated	with	 the	 co‐localized	ultrasound	 image	 slice	and	apply	 the	 reversed	 field	 to	

simulate	 the	 uncompressed	 state,	 i.e.	 the	 reverse	 displacement	 vectors	 are	 used	 to	 non‐rigidly	

undeform	the	ultrasound	image	to	an	estimation	of	the	tissue	in	its	uncompressed	state.	

V.4.7 Experimental Validation 

V.4.7.1 Simulations of Proposed Correction 

	 The	proposed	model‐based	correction	method	primarily	relied	on	the	assumption	that	the	

ultrasound	probe	would	be	applied	with	pressure	directly	normal	to	the	tissue	surface	during	data	

collection.	The	 limits	of	 this	assumption	were	 tested	using	a	 simulation	dataset	 and	applying	 the	

rigid	and	model‐based	corrections	for	a	set	of	tissue	compression	scenarios	in	which	the	trajectory	

of	the	probe	into	the	tissue	was	varied.	
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	 A	patient‐specific	model	was	constructed	from	the	preoperative	MR	volume	of	a	low‐grade	

glioma	patient	at	Vanderbilt	University	Medical	Center	who	previously	gave	informed	consent	with	

approval	of	our	Institutional	Review	Board.	The	brain	surface	and	contrast‐enhanced	tumor	were	

segmented	and	a	patient‐specific	model	was	constructed	as	a	tetrahedral	mesh.	For	simplicity,	the	

brain	and	tumor	were	approximated	as	homogenous	linear	elastic	materials	with	Young’s	modulus	

of	2100	Pa	and	Poisson’s	ratio	of	0.45,	taken	from	the	values	used	by	Dumpuri	et	al.	for	white	and	

gray	matter.	There	are	few	consistent	values	reported	in	the	literature	for	brain	material	properties	

in	vivo,	but	the	values	reported	here	fall	within	a	range	of	values	proposed	by	various	groups	 174,	

175 .	

	

Figure  25.  Simulation methodology.  The  probe  surface  was  inserted  into  the mesh  to  simulate  its 
position  during  ultrasound  imaging  of  the  tumor  (a).  Nine  sets  of  boundary  conditions  were  then 
generated  to  simulate  various  possible  probe‐tissue  contact  scenarios  by  rotating  the  displacement 
vectors  about  angles  θ1  and  θ2  defined with  respect  to  the  probe  orientation  (b).  The  solid  arrows 
descending  from  the  brain  to  the  surface  represent  the  assumption  of  compression  in  the  depth 
direction,  whereas  the  dashed  arrows  are  an  example  of  how  the  displacement  vectors  were 
systematically rotated to test that assumption (here θ2 = 30°). Each set of boundary conditions was used 
to drive the forward model and deform the mesh and tumor (c). The proposed rigid and model‐based 
corrections (using the assumption of compression perfectly parallel with the depth direction) were then 
applied to each deformed tumor and compared to the original uncompressed tumor (d). 
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	 First,	 the	 digital	 probe	 surface	 was	 manually	 inserted	 into	 the	 mesh	 over	 the	 tumor	 to	

simulate	misalignment	between	the	tracked	ultrasound	and	co‐registered	MR	volume	due	to	tissue	

compression,	as	shown	in	Figure	25a.	The	compression	distance	from	the	brain	surface	down	to	the	

probe	surface	was	approximately	7.5	mm,	which	is	within	the	1	cm	compression	magnitude	often	

observed	 in	routine	 imaging	 165,	166 .	An	 initial	set	of	boundary	conditions	was	created	 for	 the	

brain	mesh.	A	patch	of	boundary	nodes	corresponding	to	a	hypothetical	craniotomy	region	above	

the	tumor	was	designated	as	stress‐free,	 the	brain	stem	was	set	as	 fixed,	and	then	the	rest	of	 the	

brain	surface	nodes	were	designated	to	have	zero	normal	displacement,	with	stress‐free	tangential	

components	 to	 allow	 slip	 along	 the	 skull.	 This	 slip	 condition	 has	 been	 observed	 and	 used	 in	

modeling	brain	shift	previously	 176‐178 .	Then,	vector	distances	from	the	brain	surface	nodes	to	

the	probe	surface	were	calculated	and	used	as	Dirichlet	boundary	conditions	for	a	forward	solve	of	

the	linear	elastic	model.	In	order	to	determine	the	impact	of	our	assumption	of	purely	axial	probe	

compression,	the	orientation	of	these	vectors	was	systematically	altered	across	the	pitch	and	yaw	

angles	 θ1	and	θ2	 in	Figure	25b 	of	 the	probe	surface	 from	‐30	to	30°	 in	steps	of	15°.	For	each	of	

these	 vector	 alterations,	 the	 probe	 surface	 remained	 stationary,	 and	 the	 only	 change	 was	 the	

selection	of	brain	surface	nodes	which	were	designated	to	displace	toward	the	probe	with	Dirichlet	

conditions.	 These	 scenarios	 were	 intended	 to	 illustrate	 the	 primary	 limitation	 of	 our	 approach,	

which	 is	 a	 lack	 of	 known	 correspondence	 between	 the	 tissue	 surface	 and	 the	 ultrasound	 probe.	

While	 tracking	 the	 probe	 gave	 knowledge	 of	 its	 location	within	 the	 tissue,	 its	 trajectory	 into	 the	

tissue	to	arrive	at	that	location	was	not	necessarily	known	due	to	tissue	contact	uncertainty.	These	

forward	boundary	conditions	were	used	to	deform	the	brain	and	tumor	to	simulate	nine	possible	

physical	conditions	 one	for	each	of	the	angle	rotations 	during	an	ultrasound	data	acquisition.		

	 Finally,	the	proposed	compression	corrections	were	applied	to	each	of	the	deformed	tissue	

models	generated	from	the	boundary	condition	variants	from	above,	and	resulted	in	nine	corrected	
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tumor	 locations.	 The	 corrections	 incorporated	 the	 assumption	 that	 the	 probe	 was	 compressed	

purely	in	the	depth	direction	of	the	image	plane,	even	for	the	simulations	in	which	the	compression	

trajectory	was	 at	 an	 angle	 not	 parallel	 to	 the	 depth	 direction.	 The	 average	 distance	 from	 tissue	

surface	 to	probe	surface	was	used	 in	 the	rigid	correction	method	to	 translate	 the	entire	 tumor	 in	

the	direction	of	the	mesh	surface.	The	model‐based	procedure	was	used	as	described	previously	in	

order	 to	 create	 an	 inverted	 displacement	 field	 and	 to	 correct	 the	 tumor.	 Each	 of	 the	 simulated	

tumor	corrections	was	then	compared	to	the	gold	standard	uncompressed	tumor	from	the	original	

patient	model	 prior	 to	 deformation,	 in	 terms	 of	 both	 the	 boundary	 node	 distances	 between	 the	

corrected	and	gold	standard	tumor	and	the	distance	between	the	tumor	centroids.	

V.4.7.2 Phantom Experiments 

	 We	performed	three	validation	tests	of	our	method	using	phantoms.	The	first	was	to	image	

a	phantom	through	a	layer	of	water	with	no	contact	between	probe	and	phantom,	in	order	to	assess	

the	baseline	alignment	accuracy	of	 the	system	in	 the	absence	of	compression.	Second,	 in	order	to	

test	our	method	we	performed	an	experiment	with	an	anthropomorphic	phantom	containing	a	stiff,	

contrast‐enhanced	 lesion.	 We	 compared	 the	 tracked	 ultrasound	 tumor	 borders	 and	 centroid	

locations	 with	 the	 equivalent	 data	 from	 co‐registered	 CT	 as	 a	 gold	 standard	 before	 and	 after	

compression	correction.	Third,	we	also	evaluated	the	effect	of	tumor	elasticity	on	our	model‐based	

correction	 by	 using	 the	 actual	 tumor‐to‐phantom	 stiffness	 ratio	 from	 material	 testing,	 and	

compared	this	to	the	correction	using	our	assumption	of	tissue	homogeneity.		

	 The	 two	 phantoms	were	 first	 constructed	 as	 described	 previously.	 The	 phantom	 fiducial	

markers	 were	 localized	 in	 physical	 space	 with	 a	 tracked	 stylus,	 and	 the	 corresponding	 marker	

positions	in	the	CT	volumes	were	also	recorded.	The	image‐to‐physical	registration	was	computed	

using	 a	 standard	 point‐based	method.	 The	 registration	 produced	 a	 transformation	matrix	which	

was	then	automatically	applied	to	all	tracked	ultrasound	images	to	align	them	with	the	CT	data.	
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	 After	 the	 registration	 was	 calculated	 for	 each	 phantom,	 the	 first	 phantom	 which	 was	

constructed	 in	a	cup‐like	container	was	covered	with	a	 thin	 layer	of	water	and	 then	 imaged	with	

freehand	 tracked	 ultrasound	 for	 a	 total	 of	 116	B‐mode	 images	 in	 several	 sweeps	while	 avoiding	

direct	contact	with	the	phantom	surface.		With	respect	to	this	contained	phantom,	the	purpose	was	

not	 to	 assess	 our	 compression	 technique	 with	 realistic	 geometries	 but	 instead	 to	 quantitatively	

assess	geometric	accuracy	of	 a	 reconstructed	 target	based	on	 tracked	ultrasound	 images	without	

the	 presence	 of	 deformation.	 Each	 captured	 image	 was	 stored	 along	 with	 the	 concatenation	 of	

calibration,	tracking,	and	registration	transformations	describing	the	3D	location	of	each	slice,	and	

then	was	compared	to	the	co‐aligned	CT	surface	with	metrics	described	below.	

The	 second	 phantom	 was	 then	 imaged	 normally	 with	 full	 contact	 between	 probe	 and	

phantom	with	the	more	realistic	organ	geometry.	The	tumor	was	first	 fully	outlined	with	B‐mode	

using	several	slow	sweeps	in	approximately	1	mm	increments.	A	total	of	178	B‐mode	images	were	

collected.	Then,	the	elasticity	software	was	used	to	create	strain	images	of	the	tumor.	A	total	of	83	

strain	 images	were	 collected.	 The	 tracking	 and	 registration	 transformations	were	 applied	 to	 the	

LRS	probe	surface	for	each	image	in	order	to	generate	boundary	conditions	as	described	previously.	

Following	the	ultrasound	data	collection	from	this	phantom,	the	rigid	and	model‐based	correction	

methods	were	 applied	 to	 each	 ultrasound	 image.	 The	 result	was	 a	 collection	 of	 uncorrected	 and	

corrected	images.	Each	type	of	correction	was	evaluated	by	comparing	each	population	of	images	to	

the	baseline	CT	 images	 in	 terms	of	 tumor	geometry.	 In	each	B‐mode	and	strain	 image,	 the	 tumor	

borders	were	 segmented	 semi‐automatically	 using	 an	 implementation	 of	 the	 Livewire	 technique.	

For	each	ultrasound	image,	the	CT	volume	was	re‐sliced	to	provide	a	co‐planar	CT	slice	according	to	

the	3D	location	and	orientation	of	 the	co‐registered	ultrasound	slice.	The	CT	tumor	borders	were	

segmented	 using	 intensity	 thresholding	 in	 Analyze	 9.0.	 The	 tumor	 borders	 segmented	 from	

ultrasound	 images	and	CT	were	 then	compared	 to	each	other	 in	 terms	of	 the	Modified	Hausdorff	
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Distance	 MHD 	between	 the	 two	 contours,	 as	well	 as	 the	average	distance	between	 the	 contour	

centroids	 179 .	The	MHD	value	is	defined	for	two	sets	of	points	A	and	B	as	follows:	

	
,

1
min ∈ ‖ ‖

∈
14

	 MHD max , , , 15

where	d A,B 	is	the	mean	closest	point	distance	in	the	direction	of	A	to	B,	a	and	b	are	respectively	

points	in	sets	A	and	B,	and	Na	is	the	number	of	points	in	set	A.	Thus,	the	MHD	value	is	created	by	

calculating	 the	mean	 closest	 point	 distance	 from	A	 to	B,	 and	 then	B	 to	A,	 and	 then	 choosing	 the	

maximum	of	those	two	values.	This	metric	was	chosen	as	it	was	less	prone	to	underestimating	the	

error	 between	 tumor	 borders	 than	 calculating	 just	 a	 mean	 closest	 point	 distance	 from	 the	

ultrasound	to	CT	contours.	The	MHD	and	centroid	distance	comparison	was	made	 for	every	slice	

before	 and	 after	 correction	 and	 were	 the	 primary	 metrics	 used	 to	 evaluate	 the	 improvement	

offered	 by	 our	 proposed	 model‐based	 correction	 algorithm.	 In	 addition,	 the	 tumor	 volume	

measured	during	phantom	construction	was	recorded	for	comparison	with	the	CT	tumor	volume,	

the	 volume	 measured	 by	 tracked	 B‐mode	 in	 the	 baseline	 accuracy	 test,	 and	 the	 volume	 of	 the	

model‐corrected	B‐mode	and	strain	data.	

The	third	phantom	experiment	was	performed	to	 test	 the	effect	of	 tumor	elasticity	on	the	

model‐based	correction.	As	mentioned	previously,	one	of	 the	 simplifications	of	 the	method	 is	 the	

assignment	 of	 homogenous	material	 properties	 to	 the	 patient	 specific	 FEM	mesh,	 which	 implies	

that	the	tumor‐to‐bulk	stiffness	ratio	in	terms	of	Young’s	modulus	is	assumed	to	be	1:1.	The	impact	

of	 this	 assumption	 was	 tested	 by	 instead	 using	 the	 material	 testing	 data	 done	 on	 the	 phantom	

materials	during	the	correction,	which	was	a	 tumor‐to‐bulk	stiffness	ratio	of	9:1.	The	1:1	and	9:1	

model‐based	 corrections	 for	 the	 178	B‐mode	 and	 83	 strain	 images	were	 then	 compared	 to	 each	

other	 in	 terms	 of	 MHD	 and	 centroid	 distances.	 PVA	 is	 known	 to	 be	 nearly	 incompressible,	 so	

Poisson’s	ratio	was	set	to	0.49	for	all	corrections.	



 
 
 

73 
 

V.4.7.3 Clinical Case 

	 In	 addition	 to	 the	phantom	study,	we	also	 investigated	 the	 feasibility	of	 our	method	on	a	

preliminary	clinical	case.	As	in	the	case	of	the	simulation	dataset,	informed	written	patient	consent	

was	obtained	 for	 this	work.	A	preoperative	MR	volume	was	used	 to	 construct	 the	patient	model.	

The	tumor	in	this	case	was	determined	to	be	a	meningioma,	located	on	the	left	side	of	the	brain	just	

beneath	 the	 surface.	 Material	 properties	 for	 the	 linear	 elastic	 model	 were	 those	 used	 in	 the	

simulation,	 based	 on	 the	 average	 brain	 tissue	 properties	 used	 by	 Dumpuri	 et	 al.	 180 .	

Intraoperative	 tracked	 ultrasound	 images	were	 aligned	 to	 the	 patient	model	 by	 first	 collecting	 a	

scan	 of	 the	 patient	 face	 with	 a	 tracked	 LRS	 and	 then	 registering	 the	 point	 cloud	 to	 the	

corresponding	 MR	 surface	 using	 the	 iterative	 closest	 point	 ICP 	 algorithm	 96 .	 After	 the	

craniotomy	 was	 completed,	 tracked	 B‐mode	 images	 were	 obtained	 of	 the	 tumor.	 The	 rigid	 and	

model‐based	correction	methods	were	then	applied	to	the	ultrasound	data	and	were	evaluated	in	

terms	 of	 MHD	 between	 the	 co‐aligned	 B‐mode	 and	 MR	 tumor	 borders,	 as	 well	 as	 the	 distance	

between	the	co‐planar	tumor	centroid	locations.	

V.5 Results 

V.5.1 Simulations 

	 The	 results	 of	 the	 correction	 simulations	 are	 shown	 in	 Table	 3.	 These	 simulations	 were	

designed	 to	 validate	 the	 assumption	 of	 compression	 applied	 purely	 in	 the	 depth	 direction.	 The	

corrected	tumor	volumes	were	compared	to	the	original	uncompressed	tumor	volume	in	terms	of	

node	 positional	 error	 around	 the	 tumor	 boundary,	 as	 well	 as	 the	 distances	 between	 tumor	

centroids.	 	Table	3	 reports	 in	every	case	 that	 the	model	 correction	outperformed	 the	rigid‐based	

method	regardless	of	application	inaccuracy.		Boundary	errors	ranged	between	2.7	and	4.3	mm	for	

the	rigid	method	and	below	2.8	mm	for	all	model‐corrected.		Similarly,	centroidal	errors	ranged	2.4‐

3.8	 mm	 and	 less	 than	 2.6	 mm	 respectively.	 	 On	 average	 over	 all	 cases,	 the	 model	 correction	
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improved	 localization	 over	 the	 rigid	method	by	 55%	and	50%	 for	 the	mean	 boundary	node	 and	

centroid	error,	respectively.	

Table 3. Simulation results to assess the assumption of compression purely in the depth direction of the 
ultrasound image plane. The two angles are the pitch and yaw of the ultrasound probe about which the 
displacement  vectors  were  rotated  when  assigning  Dirichlet  boundary  conditions.  The  mean  and 
standard  deviation  of  the  boundary  node  error  and  the mean  centroid  distance were  calculated  in 
comparing each corrected simulation tumor with the original uncompressed tumor. 

 Rigid Correction Model Correction 
θ1 (°) θ2 (°) Mean and SD of 

Boundary Node 
Error (mm) 

Centroid 
Error (mm) 

Mean and SD 
of Boundary 
Node Error 

(mm) 

Centroid 
Error (mm) 

0 0 2.7 ± 1.5 2.4 0.0 ± 0.0 0.0 
15 0 3.0 ± 1.3 2.5 1.1 ± 0.4 1.2 
-15 0 3.3 ± 1.3 2.8 1.2 ± 0.5 1.1 
0 15 2.9 ± 1.4 2.4 1.0 ± 0.4 1.0 
0 -15 3.2 ± 1.2 2.7 1.0 ± 0.4 1.0 
30 0 4.0 ± 1.0 3.6 2.5 ± 0.8 2.3 
-30 0 4.3 ± 1.1 3.8 2.8 ± 1.2 2.6 
0 30 3.5 ± 1.0 2.9 2.2 ± 0.8 2.1 
0 -30 4.0 ± 0.9 3.4 2.3 ± 1.0 2.2 

	

V.5.2 Phantom Experiments 

The	 baseline	 accuracy	 test	 using	 the	 cup	 phantom	 provided	 an	 assessment	 of	 the	 best	

alignment	 of	 tracked	 ultrasound	 and	 CT	which	 could	 be	 achieved	 using	 only	 tracking	 and	 point‐

based	 registration.	 Using	 the	 116	 images	 from	 this	 test,	 the	 MHD	 between	 the	 B‐mode	 and	 CT	

tumor	contours	was	1.2	 	0.4	mm,	and	the	average	centroid	error	was	1.7	 	0.6	mm.	Additionally,	

the	 tumor	 volume	 enclosed	 by	 the	 ultrasound	 contours	was	 found	 to	 be	 approximately	 3.0	 cm3,	

whereas	the	volume	given	by	the	CT	segmentation	was	3.3	cm3.	For	comparison,	the	volume	of	PVA	

mixture	used	for	the	tumor	during	construction	was	3.2	cm3.	

The	results	of	the	phantom	experiments	are	shown	in	Figure	26	and	Figure	27.	We	showed	

previously	 in	 Figure	 24	 an	 example	 of	 the	 FEM	 mesh	 of	 the	 phantom	 organ	 in	 its	 original	

undeformed	state,	as	well	as	in	its	deformed	state	after	the	probe	compression	has	been	modeled	
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for	 a	 particular	 ultrasound	 slice.	 We	 note	 qualitatively	 that	 the	 displacements	 displayed	 by	 the	

model	match	very	well	with	those	observed	in	the	physical	phantom	during	data	acquisition.	Figure	

26	shows	examples	of	B‐mode	and	strain	images	before	and	after	compression	correction	using	the	

rigid	method	and	model‐based	method.	The	segmented	tumor	contour	from	each	ultrasound	image	

was	 outlined,	 and	 the	 CT	 tumor	 surface	 was	 overlaid	 for	 comparison.	 The	 MHD	 between	 the	

ultrasound	 borders	 and	 CT	 borders	was	 5.0	 	 1.6	mm	 for	 B‐mode	 and	 5.6	 	 1.1	mm	 for	 strain	

images	prior	to	correction.	The	quantitative	compression	correction	results	in	Figure	27	display	the	

MHD	and	co‐planar‐centroid	distances	as	error	metrics	in	comparing	the	ultrasound	tumor	borders	

with	the	co‐registered	CT	tumor	borders.	A	Wilcoxon	signed	rank	test	was	also	computed	for	the	

null	hypothesis	that	the	median	difference	between	the	error	metrics	was	zero.	The	alternative	was	

that	the	median	was	not	zero,	with	the	implication	that	the	correction	method	offered	a	statistically	

significant	 improvement	 to	 the	 data.	 The	 number	 of	 samples	 for	 each	 test	 was	 the	 number	 of	

corrected	 ultrasound	 images.	 In	 results	 not	 presented	 here,	 we	 also	 assessed	 the	 effect	 of	

discarding	image	slices	that	were	within	1.5	mm	 approximately	the	tracking	system	accuracy 	of	

the	previous	slice	in	the	image	stream	to	enforce	uniqueness	of	each	observation	in	the	statistical	

analysis,	but	no	differences	were	observed	in	the	resulting	p	values	compared	to	using	every	image,	

and	so	we	included	all	images	for	the	Wilcoxon	tests	 recall	n	 	178	B‐mode,	and	n	 	83	strain .	
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Figure 26. Examples of B‐mode (a‐c) and strain  image contours (d‐f). (a) and (d) show the uncorrected 
images in 3D space with the segmented tumor contour shown in red and the tomogram tumor volume 
shown  in green. (b) and (e) show the alignment after the rigid correction method. (c) and (f) show the 
alignment after the model‐based correction method. 

With	 respect	 to	 contour	 boundary	metrics,	 after	 the	 rigid	 correction,	 the	MHD	 for	 the	B‐

mode	images	dropped	to	approximately	2.8	 	0.9	mm,	which	was	a	significant	improvement	 p	 	
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0.01 .	The	rigid	correction	also	significantly	 improved	the	alignment	of	 the	contours	 in	 the	strain	

images	 using	 this	 metric	 with	 an	 error	 of	 3.3	 	 0.6	 mm	 p	 	 0.01 .	 In	 the	 case	 of	 the	 model	

correction,	the	MHD	was	reduced	to	approximately	1.9	 	0.6	mm	for	B‐mode	and	2.0	 	0.5	mm	for	

strain	 images.	 The	model‐based	 correction	was	 found	 to	make	 a	 significant	 improvement	 to	 the	

data	compared	to	both	the	uncorrected	and	rigid‐corrected	data	 p	 	0.01 .		

	

Figure 27. Alignment error results for the B‐mode (a & b) and strain  imaging (c & d) modalities for the 
organ‐like phantom (n = 178 for B‐mode, and n = 83 for strain). The position of tumor borders  in each 
modality was evaluated in terms of Modified Hausdorff Distance to the co‐aligned CT borders (a & c), as 
well as the distance between the centroid of the ultrasound tumor with the co‐planar CT tumor border 
(b & d). The edges of the boxes are the 25th and 75th percentiles, and the whiskers extend to the most 
extreme data points not considered as outliers. 
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With	 respect	 to	 centroid	 metrics,	 the	 mean	 uncorrected	 centroid	 distance	 was	

approximately	7.6	 	2.6	mm	for	B‐mode	and	8.0	 	1.6	mm	for	strain	images,	which	conformed	to	

typical	 deformation	 values	 of	 up	 to	 1	 cm	 reported	 in	 soft	 anatomy	 by	 others	 165,	 166 .	 After	

application	of	the	rigid	correction,	the	mean	centroid	distance	was	reduced	to	4.3	 	1.3	mm	in	B‐

mode	 images,	 and	 was	 only	 reduced	 to	 5.4	 	 0.9	 mm	 in	 strain	 images	 but	 was	 still	 significant	

according	to	the	Wilcoxon	test	 both	improved	with	p	 	0.01 .	After	application	of	the	model‐based	

correction,	the	mean	centroid	error	was	reduced	to	2.0	 	0.9	mm	for	B‐mode	and	3.0	 	0.9	mm	for	

strain	 images	 and	was	 a	 significant	 improvement	 over	 the	 uncorrected	 and	 rigid‐corrected	 data	

both	p	 	0.01 .	

The	tumor	volume	enclosed	by	the	rigid‐corrected	and	model‐corrected	ultrasound	B‐mode	

contours	was	found	to	be	approximately	3.2	cm3	and	3.8	cm3	for	this	phantom,	respectively,	and	the	

volumes	enclosed	 in	 the	rigid‐corrected	and	model‐corrected	strain	 images	were	2.5	cm3	and	2.9	

cm3.	Recall	that	in	the	baseline	accuracy	test	using	the	cup	phantom,	the	tumor	volume	 made	from	

the	same	mold 	was	measured	with	tracked	B‐mode	as	3.0	cm3,	and	the	tumor	mold	was	measured	

as	3.2	cm3.	

The	last	phantom	experiment	was	the	comparison	of	model‐correction	with	the	assumption	

of	a	tumor‐to‐bulk	stiffness	ratio	of	1:1	against	the	known	9:1	ratio.	These	results	are	compiled	in	

Table	4	and	 show	 that	 there	was	no	measureable	difference	 in	how	much	 the	 tumor	border	was	

corrected	when	the	actual	9:1	ratio	was	used.	

Table  4.  Results  of  phantom  elasticity  test  to  compare  the  effect  on  model‐correction  from  the 
assumption  of  1:1  tumor‐to‐bulk  stiffness  ratio  against  the  known  9:1  stiffness  ratio  from material 
testing.  

 
1:1 Stiffness Ratio 9:1 Stiffness Ratio 

MHD Error 
(mm) 

Centroid Error 
(mm) 

MHD Error 
(mm) 

Centroid Error 
(mm) 

B-mode 
(n = 178) 

1.9 ± 0.6 2.0 ± 0.9 1.8 ± 0.8 2.2 ± 1.0 

Strain 
(n = 83) 

2.0 ± 0.5 3.0 ± 0.9 1.9 ± 0.5 3.1 ± 0.9 
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V.5.3 Clinical Case 

The	results	of	 the	clinical	case	are	shown	in	Figure	28	and	Figure	29.	Figure	28	shows	an	

example	of	 a	B‐mode	 image	before	and	after	 compression	 correction	using	 the	 rigid	method	and	

model‐based	 method.	 The	 segmented	 tumor	 border	 in	 each	 ultrasound	 image	 was	 outlined	 for	

comparison	with	the	co‐aligned	MR	tumor	surface.	Quantitative	compression	correction	results	are	

shown	in	Figure	29	in	the	same	manner	as	the	phantom	studies,	with	the	error	metrics	being	the	

MHD	and	 co‐planar	 centroid	distances.	The	MHD	error	before	 any	 correction	was	 approximately	

5.4	 	0.1	mm,	and	the	average	centroid	error	was	approximately	7.2	 	0.2	mm.		A	Wilcoxon	signed	

rank	test	was	also	computed	to	assess	the	significance	of	the	improvement	offered	by	each	method.	

The	 rigid	 and	 model‐based	 corrections	 both	 offered	 substantial	 improvement	 compared	 to	 the	

uncorrected	alignment	 both	p	 	0.01 	across	the	two	error	metrics.	The	rigid	correction	resulted	

in	a	reduced	MHD	error	of	2.3	 	0.1	mm	and	centroid	distance	error	of	4.6	 	0.5	mm,	whereas	the	

model‐based	correction	resulted	in	an	MHD	error	of	2.6	 	0.1	mm	and	centroid	distance	error	of	

3.5	 	0.4	mm.	Due	to	the	difficulty	in	maneuvering	the	large	ultrasound	probe	in	the	craniotomy	of	

this	patient,	only	a	few	angles	of	insonation	were	achieved	and	so	a	meaningful	ultrasound	tumor	

volume	could	not	be	constructed.	
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Figure 28. Results of the clinical case using tracked B‐mode to localize a tumor border. The coronal and 
axial views are each shown for the uncorrected (a & b), rigid correction (c & d) and model correction (e 
& f) with the segmented tumor contour shown in red and the tomogram tumor volume shown in green. 
The  segmented  tumor  surface  in  each  B‐mode  slice  is  outlined  for  comparison with  the MR  tumor 
surface. 



 
 
 

81 
 

	

Figure 29. Alignment error results for the clinical case (n = 118 B‐mode  images). The position of tumor 
borders was evaluated in terms of Modified Hausdorff Distance to the co‐aligned MR borders (a), as well 
as the distance between the centroid of the ultrasound tumor with the co‐planar MR tumor border (b). 
The edges of the boxes are the 25th and 75th percentiles, and the whiskers extend to the most extreme 
data points not considered as outliers. 
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V.6 Discussion 

V.6.1 Simulations 

The	 results	 of	 the	 compression	 correction	 simulations	 in	 Table	 3	 show	 the	 effect	 of	

deviating	from	the	assumption	that	the	user	would	always	apply	compression	purely	in	the	depth	

direction	 of	 the	 ultrasound	 image.	 As	 expected,	 when	 the	 displacement	 vectors	 were	 actually	

parallel	with	depth	 θ1	and	θ2	of	0° ,	 the	model‐based	correction	method	essentially	resulted	in	a	

corrected	 tumor	which	was	 equivalent	 to	 the	 original	 uncompressed	 tumor.	The	 rigid	 correction	

method	resulted	in	several	millimeters	of	error	in	terms	of	both	the	tumor	boundary	and	centroid	

location.	However,	when	the	displacement	vectors	used	to	create	the	simulated	deformation	were	

rotated	 to	 approach	 the	 probe	 surface	 from	 a	 different	 set	 of	 surface	 nodes	 see	 Figure	 25 ,	 the	

average	 boundary	 node	 error	 after	 both	 corrections	 grew.	 The	 performance	 variations	 due	 to	

different	angles	can	be	attributed	to	the	assumption	made	in	assigning	boundary	conditions	to	the	

FEM	model,	which	 is	 that	 the	 insertion	trajectory	of	 the	probe	 into	 the	tissue	 is	perfectly	parallel	

with	the	depth	direction	of	the	ultrasound	images.	The	results	in	Table	3	indicate	the	sensitivity	of	

the	method	to	physical	deviations	from	that	assumption.	Essentially,	when	the	insertion	trajectory	

is	 not	 perfectly	 perpendicular	 to	 the	 tissue	 surface,	 then	 the	 method	 creates	 inappropriate	

boundary	 conditions,	 which	 leads	 to	 model	 solutions	 which	 do	 not	 accurately	 reflect	 the	 actual	

tissue	movement.	These	numbers	represent	a	large	error	addition	to	an	image‐guidance	platform,	

especially	 in	procedures	such	as	neurosurgery.	 It	could	be	concluded	that	 it	 is	 important	that	the	

user	 apply	 the	 probe	 primarily	 in	 the	 depth	 direction	 of	 the	 image	 plane	 in	 order	 for	 this	

compression	 correction	 method	 to	 be	 effective.	 This	 may	 not	 be	 a	 large	 limitation	 in	 practice,	

however,	due	to	the	typical	presence	of	slip	between	the	probe	and	tissue	surface	from	ultrasound	

gel	 or	 other	 fluids.	 This	 would	 conceivably	 make	 it	 unlikely	 for	 the	 ultrasound	 probe	 to	 apply	

enough	friction	to	the	tissue	surface	necessary	for	the	“dragging”	effect	which	is	described	by	the	
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scenarios	simulated	above,	in	which	the	probe	trajectory	into	the	tissue	is	off‐axis	from	the	depth	

direction.	

V.6.2 Phantom Experiments 

The	results	of	the	baseline	accuracy	test	show	that	the	tracked	ultrasound	system	is	capable	

of	 aligning	 the	 ultrasound	 and	 CT	 tumor	 borders	 with	 error	 between	 1	 and	 2	mm	when	 tissue	

compression	 is	not	 a	 factor.	This	 represents	 the	best	outcome	 that	 could	potentially	be	expected	

from	our	correction.	In	addition,	the	tumor	volume	measured	by	tracked	B‐mode	was	quite	similar	

to	both	the	volume	measured	from	the	tumor	mold	and	the	CT	volume.	

The	results	of	the	compression	correction	methods	shown	in	Figure	27	clearly	demonstrate	

the	 improvement	 of	 the	 model‐based	 method	 to	 the	 alignment	 between	 ultrasound	 and	 co‐

registered	 tomograms	 in	 the	 phantom	 experiments.	 The	MHD	 error	metric	 shows	 a	 decrease	 in	

misalignment	after	application	of	the	rigid	method,	and	shows	a	further	decrease	when	the	model‐

based	method	is	used	instead.	The	varying	magnitude	in	improvement	between	B‐mode	and	strain	

image	when	using	the	rigid	method	highlights	the	differences	in	contrast	mechanism	between	the	

two	modalities	as	well	as	the	lack	of	tumor	shape	change,	which	both	contribute	to	the	delineation	

of	mock	 tumor	 borders	 in	 this	 case.	 However,	 after	 application	 of	 the	model‐based	 compression	

correction,	both	modalities	show	similar	MHD	error	values.	This	indicates	that	shape	change	of	the	

inclusion	is	significant	and	needs	to	be	taken	into	account	when	correcting	guidance	systems.	One	

interesting	 effect	 of	 the	 correction	 was	 the	 increase	 in	 B‐mode	 tumor	 volume	 after	 model‐

correction	to	3.8	cm3,	which	is	a	slight	overestimate	compared	to	the	tumor	mold	and	CT	volumes	

and	 is	 likely	due	 to	 the	 stretching	 effect	 of	 the	model	displacements.	The	model‐corrected	 strain	

volume	was	actually	an	underestimate	of	the	volume,	but	this	was	primarily	related	to	the	sparser	

manner	 in	 which	 those	 images	 were	 collected	 in	 order	 to	 avoid	 out‐of‐plane	 movement.	 The	

discrepancy	in	rigid‐corrected	tumor	volumes	compared	to	the	uncorrected	volume	was	due	to	the	
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movement	of	the	tumor	contours	in	non‐uniform	directions	determined	by	the	freehand	insonation	

angles	for	the	slices.		

The	centroid	distance	error	metric	showed	an	even	clearer	improvement	after	applying	the	

model	correction	compared	to	the	uncorrected	ultrasound	images.	A	similar	trend	was	again	noted	

with	 respect	 to	 the	 rigid	 correction	 in	 that	 a	 modest	 improvement	 of	 both	 error	 metrics	 was	

observed,	and	model‐based	correction	showed	a	large	correction	in	both	modalities.		It	can	be	seen	

that	the	rigid	correction	gave	a	slightly	larger	improvement	to	the	B‐mode	images	than	the	strain	

images.	 This	 again	 points	 to	 the	 significance	 of	 contrast	 and	 shape	 change	 factors	 in	 our	 study.	

Overall,	 the	 results	 demonstrated	 that	 while	 the	 rigid	 method	 occasionally	 led	 to	 a	 modest	

improvement,	 the	 model‐based	 correction	 consistently	 led	 to	 significant	 reduction	 in	 alignment	

error.	

V.6.3 Clinical Case 

The	 results	 of	 the	 clinical	 case	 showed	 a	 clear	 improvement	 in	 alignment	 between	 the	

tracked	B‐mode	tumor	and	MR	tumor	borders,	as	shown	in	Figure	28	and	Figure	29.		Interestingly,	

the	rigid	correction	was	slightly	more	effective	than	expected	in	improving	the	alignment	given	the	

results	of	the	previous	phantom	experiments,	which	may	be	related	to	the	location	and	structure	of	

the	 tumor	 in	 this	 particular	 case.	 The	model‐based	 correction	 did	 offer	 a	 large	 improvement	 to	

alignment,	especially	along	the	region	of	the	tumor	closest	to	the	surface	as	shown	by	Figure	28d	

and	Figure	28f.	One	important	note	about	this	case	was	that	the	preoperative	brain	surface	was	not	

updated	 to	 account	 for	 general	 intraoperative	 brain	 shift	 which	 may	 have	 occurred	 prior	 to	

applying	our	ultrasound	 compression	correction	methods.	Typically	our	group	employs	a	model‐

based	shift	correction	driven	by	sparse	surface	data	from	a	LRS	or	other	instrumentation	in	order	

to	update	the	preoperative	imaging	to	reflect	 intraoperative	sag	or	swelling	of	the	brain	 96,	141,	

181 .	 However,	 qualitatively	 there	 was	 little	 brain	 shift	 observed	 at	 the	 time	 of	 ultrasound	

acquisition	for	this	patient	before	resection	of	the	dural	membrane,	so	no	LRS	data	was	obtained	so	
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as	 to	 limit	 the	amount	of	 intraoperative	data	collection	 for	 this	case.	 It	 is	possible	 that	 there	was	

some	 quantifiable	 amount	 of	 brain	 shift	 before	 the	 ultrasound	 acquisition,	which	would	 directly	

affect	our	correction	method	and	could	be	reflected	in	the	error	metrics	reported	in	Figure	29.	In	

the	 future,	 the	 preoperative	 brain	 surface	 would	 ideally	 be	 corrected	 for	 brain	 shift	 prior	 to	

collection	and	correction	of	ultrasound	data.	

V.6.4 Limitations 

It	is	worthwhile	to	note	that	although	the	model‐based	correction	demonstrated	a	marked	

improvement	 over	 the	 uncorrected	 alignment	 in	 both	 the	 phantoms	 and	 clinical	 case,	 the	 gold	

standard	used	 in	 this	comparison	 the	co‐registered	 tomogram	borders 	had	some	bulk‐to‐lesion	

segmentation	variability.	It	was	also	likely	that,	due	to	our	realistic	guidance	environment,	several	

sources	of	error	propagated	through	to	the	final	analysis.	For	example,	the	optical	tracking	system	

used	 in	 this	 work	 had	 inherent	 error	 which	 was	 imparted	 to	 each	 measurement	 made	 with	 a	

tracked	 device	 and	 was	 a	 primary	 contributor	 to	 the	 overall	 error.	 Propagating	 uncertainty	 in	

optical	 tracking	 is	an	open	problem.	We	have	recently	proposed	a	solution	 to	 this	problem	 182 	

and	are	working	on	an	empirical	evaluation	 183 	with	encouraging	results.	The	tracking	error	of	

our	 tracking	 system	 has	 been	 reported	 to	 have	 an	 RMS	 error	 of	 approximately	 0.2	 mm	 when	

tracking	a	passive	rigid	body,	although	typically	the	tip	of	a	stylus‐like	tool	which	is	subject	to	lever‐

arm	 effects	 can	 be	 localized	 at	 1	 to	 2	mm	 184,	 185 .	 This	 influences	 fiducial	 localization	 error	

FLE ,	 which	 affects	 the	 accuracy	 of	 the	 image‐to‐physical	 registration	 between	 tomogram	 and	

tracked	 ultrasound	 data.	 While	 FLE	 can	 be	 difficult	 to	 directly	 quantify,	 the	 mean	 fiducial	

registration	 error	 FRE 	 in	 our	 phantom	 experiments	 was	 calculated	 as	 0.4	 	 0.3	 mm	 for	 the	

phantoms.	 It	 should	 be	 noted	 this	 error	 only	 represents	 the	 accuracy	 with	 which	 the	 fiducial	

markers	 in	 the	 tomograms	could	be	matched	to	 the	physical	 fiducials	 localized	with	a	pen	probe,	

and	does	not	necessarily	 imply	 that	 the	 target	registration	error	 TRE 	throughout	 the	phantoms	

was	the	same	value.	In	addition,	there	was	error	associated	with	the	tracked	ultrasound	calibration,	



 
 
 

86 
 

which	was	found	to	be	approximately	0.4	mm	using	the	method	of	Muratore	and	Galloway	 2001 .	

It	should	be	noted	that	the	errors	discussed	above	are	somewhat	interrelated	and	not	necessarily	

additive,	 but	 in	 our	 experience	 a	 reasonable	 estimate	 of	 the	 error	 involved	 in	 using	 a	 passively	

tracked	ultrasound	system	ranges	from	1.5	to	2.5	mm.		

	There	were	also	several	assumptions	and	simplifications	made	 in	 the	development	of	 the	

rigid	 and	 model‐based	 corrections.	 Regarding	 the	 rigid	 correction,	 it	 would	 be	 intuitively	 more	

accurate	to	stretch	the	A‐lines	to	approximate	the	deformation	rather	than	simply	translate	them.		

However,	 without	 a	 known	 reference	 in	 the	 far	 field,	 it	 is	 difficult	 to	 choose	 an	 appropriate	

bounding	condition	since	there	is	no	guarantee	of	having	a	known	fixed	object	in	view.	In	the	case	

of	the	model‐based	correction,	the	first	assumption	was	that	the	user	would	apply	the	probe	purely	

in	 the	 depth	 direction	 for	 each	 image	 acquisition.	 This	 simplified	 the	 creation	 of	 boundary	

conditions	for	the	model,	but	this	was	not	always	accurate.	It	was	challenging	to	avoid	lateral	and	

out‐of‐plane	probe	movement	during	 freehand	 imaging.	This	 type	of	movement	would	 invalidate	

the	 assignment	 of	 Dirichlet	 boundary	 conditions	 based	 upon	 the	 position	 of	 the	 digital	 probe	

surface,	because	 the	correspondence	between	 the	probe	surface	and	 the	 tomogram	surface	could	

potentially	 be	 lost	 in	 the	 absence	 of	 perfect	 slip	 at	 the	 boundary.	 The	 other	 assumption	was	 the	

assignment	 of	 material	 properties	 to	 the	 FEM	 mesh.	 Overall,	 material	 properties	 are	 largely	

irrelevant	in	our	approach	because	the	model	is	driven	by	only	Dirichlet	conditions	and	thus	only	

large	 stiffness	 ratios	 between	 tissue	 regions	 might	 have	 an	 effect.	 Absolute	 values	 for	 Young’s	

modulus	 do	 not	 affect	 the	 displacement	 solution	 in	 the	 scenarios	 described	 in	 this	 work,	 and	

Poisson’s	ratio	affects	it	only	slightly.	Possible	future	incorporation	of	force	measurements	into	the	

model,	 however,	 would	 indicate	 a	 need	 for	 accurate	 material	 properties.	 In	 our	 phantom	

experiments,	 there	 was	 prior	 knowledge	 of	 the	 phantom	 material	 properties	 from	 mechanical	

testing	 data,	 and	 using	 the	 known	 properties	 was	 not	 shown	 to	 improve	 the	 correction.	 The	

phantoms	were	also	highly	homogenous	compared	to	real	tissue.	In	translating	this	method	to	the	
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clinic,	 there	 is	 the	 challenge	 of	 assigning	 appropriate	 property	 values	 throughout	 the	mesh.	 It	 is	

well‐recognized	 that	 determining	 patient‐specific	 material	 properties	 in	 vivo	 is	 difficult,	 so	 one	

solution	which	has	been	 employed	 is	 to	use	 values	 from	 the	 literature,	 as	well	 as	 those	deduced	

through	optimization	experiments	 180 .	Lastly,	one	simplification	which	was	made	was	the	use	of	

a	simple	linear	elastic	model	to	describe	tissue	movement.	More	sophisticated	governing	equations	

that	 better	 capture	 soft‐tissue	mechanics	 could	 be	 employed	 to	 estimate	 displacements,	 such	 as	

Biot’s	consolidation	theory	in	the	case	of	brain	tissue	 101,	186 .	However,	with	added	complexity	

comes	 added	 computational	 and	 integration	 burden	 that	 can	 affect	 adoption,	 yet	 despite	 these	

sources	of	model	error,	the	improvement	we	found	using	this	simple	model	was	considerable.	The	

model‐based	method	offered	consistent	alignment	error	reductions	of	between	4	to	6	mm,	i.e.	the	

final	alignment	error	was	approximately	2	mm,	which	has	clinical	utility	in	the	case	of	brain,	liver,	

and	breast	 surgery.	These	 results	 suggest	 that	our	approach	 is	a	meaningful	 improvement	 to	 the	

utility	 of	 tracked	 ultrasound	 in	 image‐guided	 surgery.	 In	 addition,	 anatomy	 with	 well‐defined	

constitutive	frameworks	may	give	opportunity	to	improve	this	performance.	

Other	 improvements	 can	 be	 made	 with	 respect	 to	 workflow.	 Currently,	 the	 correction	

cannot	 be	 run	 at	 real‐time	 frame	 rates	 given	 that	 the	 model	 solution	 takes	 several	 seconds	 to	

calculate	 on	 an	 Intel	 i7	 processor.	 However,	 updated	 ultrasound	 images	 can	 be	 provided	 in	 less	

than	ten	seconds,	which	is	not	an	unreasonable	burden	on	normal	surgical	workflow.	The	system	

could	 potentially	 be	made	 real‐time	with	 the	 proper	 hardware	 and	 parallelization	methods.	 Our	

method	also	made	no	use	of	the	actual	ultrasound	images	themselves	to	assist	in	realignment.	One	

possible	 addition	 would	 be	 the	 utilization	 of	 either	 raw	 RF	 or	 B‐mode	 pixel	 values	 to	 generate	

displacement	 fields	 by	 comparing	 frames	 in	 close	 proximity	 to	 one	 another	 and	 performing	

deformable	registration	as	other	groups	have	proposed	 166,	170 .	The	inclusion	of	these	smaller	

displacements	could	help	address	small	inaccuracies	due	to	the	tracking	system,	while	still	making	

use	of	the	biomechanical	model	to	provide	an	estimate	of	bulk	displacements.		
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V.7 Conclusions 

	 In	 this	 work	 we	 proposed	 and	 validated	 two	 very	 practical	 methods	 for	 correcting	

alignment	error	due	 to	 tissue	compression	exerted	by	an	ultrasound	probe	within	 the	 context	of	

image‐guided	 therapy.	 In	 one	method,	 a	 simple	 rigid	 correction	was	 applied.	 	 In	 a	 second	more	

sophisticated	method,	patient‐specific	models	were	used	to	estimate	physical	tissue	deformation	as	

the	direct	 result	 of	pressing	 the	 tracked	probe	 to	 the	 tissue	 surface.	These	model	 solutions	were	

then	used	to	transform	the	ultrasound	images	to	an	undeformed	state	for	assessing	pathology.	The	

method	was	validated	 in	 simulations,	phantoms,	 and	a	preliminary	 clinical	 case	and	showed	 that	

alignment	of	freehand	tracked	ultrasound	with	co‐registered	tomographic	images	was	improved	to	

within	 clinically	 useful	margins.	 Experimental	 results	 indicate	 that	 integration	 of	 this	 correction	

method	 into	 conventional	 image‐guided	 therapeutic	 platforms	 could	 assist	 the	 clinicians	 in	

decision‐making	by	providing	more	accurate	intraoperative	data.	
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CHAPTER VI 

TOWARD A GENERIC REAL‐TIME COMPRESSION CORRECTION FRAMEWORK FOR TRACKED ULTRASOUND 

VI.1 Introduction and Significance of Study 

	 This	 study	 is	 concerned	with	 the	 improvement	of	 tracked	ultrasound	 towards	a	 real‐time	

intraoperative	guidance	platform.	The	method	presented	previously	 in	Chapter	V	used	a	patient‐

specific	model	to	address	the	problem	of	registration	error	induced	by	tissue	compression	during	

ultrasound	 imaging.	There	were	 two	areas	of	 improvement	 that	were	 identifed	with	 the	patient‐

specific	 method	 which	 are	 addressed	 in	 this	 chapter.	 The	 first	 was	 the	 reliance	 of	 the	 patient‐

specific	method	on	a	full	volumetric	image	volume	from	preoperative	imaging	in	order	to	construct	

the	 patient	 model,	 which	 limits	 the	 method	 to	 procedures	 which	 routinely	 utilize	 such	 image	

volumes.	The	second	area	was	the	speed	of	the	method,	which	was	not	real‐time	due	to	the	need	to	

generate	new	boundary	conditions	and	solve	the	entire	patient‐specific	model	for	each	ultrasound	

slice.	This	chapter	presents	a	novel	strategy	for	performing	an	equivalent	compression	correction	

by	modeling	 a	 generic	 block	 of	 tissue	 calibrated	 to	 the	 tip	 of	 the	 tracked	 ultrasound	 probe.	 The	

generic	model	may	be	precomputed	and	calibrated	to	any	ultrasound	system	without	the	need	for	

preoperative	 imaging	 of	 the	 patient,	 and	 only	 requires	 a	 sparse	 intraoperative	 measurement	 of	

compression	 depth	 in	 order	 to	 calculate	 the	 model	 solution.	 In	 addition,	 this	 new	 correction	

framework	 requires	 significantly	 less	 computational	 expense,	making	 possible	 a	 nearly	 real‐time	

compression	 correction.	 The	 generic	 method	 was	 evaluated	 with	 simulations,	 phantoms,	 and	 a	

clinical	case,	and	was	found	to	provide	correction	results	which	were	similar	to	the	patient‐specific	

method.	 This	 work	 is	 in	 preparation	 for	 submission	 to	 the	 International	 Journal	 of	 Computer	

Assisted	Radiology	and	Surgery.	
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VI.2 Abstract 

	 Tissue	compression	during	ultrasound	imaging	leads	to	error	in	the	location	and	geometry	

of	subsurface	targets	during	soft	tissue	interventions.	We	present	a	novel	compression	correction	

method	which	models	 a	 generic	block	of	 tissue	and	 its	 subsurface	 tissue	displacements	 resulting	

from	application	of	 a	 probe	 to	 the	 tissue	 surface.	The	block	model	 is	 calibrated	 to	 the	 tip	 of	 any	

tracked	ultrasound	probe.	Intraoperatively	digitization	of	the	tissue	surface	is	used	to	measure	the	

depth	of	compression	and	provide	boundary	conditions	to	the	biomechanical	model	of	 the	tissue.	

The	 tissue	 displacement	 field	 solution	 of	 the	 model	 is	 inverted	 to	 non‐rigidly	 transform	 the	

ultrasound	images	to	an	estimation	of	the	tissue	geometry	prior	to	compression.	This	method	was	

compared	 to	 a	 previously	 developed	method	 using	 a	 patient‐specific	mesh	 rather	 than	 a	 generic	

block	 mesh.	 Experimental	 results	 with	 gel	 phantoms	 demonstrated	 that	 the	 proposed	 generic	

method	reduced	the	tumor	margin	Modified	Hausdorff	Distance	 MHD 	from		5.0	 	1.6	mm	to	2.1	 	

0.7	mm,	 and	 reduced	 tumor	 centroid	 alignment	 error	 from	 7.6	 	 2.6	mm	 to	 2.6	 	 1.1	mm.	 The	

method	was	applied	to	a	clinical	case,	and	reduced	the	tumor	margin	MHD	error	from	5.4	 	0.1	mm	

to	2.9	 	0.1	mm,	and	the	centroid	alignment	error	from	7.2	 	0.2	mm	to	3.8	 	0.4	mm.	

VI.3 Introduction 

Ultrasound	 is	ubiquitous	as	an	 interventional	 imaging	modality,	and	 is	 commonly	used	 to	

assess	the	location	and	geometry	of	disease	intraoperatively.	An	inherent	problem	with	this	role	is	

the	shape	distortion	of	visualized	tissue	structures	introduced	by	pressured	exerted	on	the	tissue	

by	 the	 ultrasound	probe	 itself	 during	 imaging.	 It	 is	widely	 recognized	 that	 relatively	 large	 tissue	

compression	can	occur	in	soft	tissue	anatomy,	e.g.	the	liver	or	breast.	As	a	result,	compression	can	

obfuscate	geometrical	 and	 locational	measurements	of	 subsurface	 targets	 such	as	 tumors.	This	 is	

particularly	 a	 problem	 for	 image‐guided	 interventions	 which	 rely	 upon	 tracked	 ultrasound	 to	

provide	 intraoperative	spatial	measurements	of	structures	taken	during	an	 intervention	and	then	
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compared	 to	 their	 co‐registered	 preoperative	 imaging	 data	 counterparts.	 Nonrigid	 tissue	

compression	is	a	primary	cause	of	misalignment	and	shape	distortion	with	these	other	sources	of	

information.	 As	 image‐guided	 navigation	 strategies	 in	 soft	 tissue	 environments	 continue	 to	 be	

developed,	 methods	 of	 correcting	 the	 tissue	 deformation	 from	 routine	 ultrasound	 imaging	 are	

necessary	in	order	to	ensure	that	all	of	these	data	are	in	a	consistent	spatial	arrangement.		

There	 are	 several	 methods	 described	 in	 the	 literature	 for	 performing	 compression	

correction.	A	common	approach	is	to	utilize	the	intensity	information	in	the	ultrasound	images	to	

perform	a	nonrigid	intensity‐based	registration	with	positional	tracking	of	compressed	images	over	

a	range	of	compression	states	 166,	170 .	One	drawback	of	this	method	is	that	it	requires	a	stream	

of	 ultrasound	 images,	 and	 intensity	 based	 registration	 for	 ultrasound	 is	 a	 challenging	 task	 in	

practice.	For	example,	in	Treece	et	al.	they	demonstrated	a	method	to	correct	for	compression	using	

correlation	 of	 a	 stream	 of	 radiofrequency	 RF 	 or	 amplitude	 frames,	 and	 although	 the	 method	

performed	well	in	a	phantom	dataset,	the	authors	noted	its	reliance	on	good	image	quality	as	well	

as	 the	possibility	of	 correction	drift	when	 compression	estimates	 are	 accumulated	across	 a	 large	

sequence	 of	 images.	 Another	method	 of	 correction	 is	 to	 use	 a	mechanical	model	 of	 the	 tissue	 in	

order	to	estimate	the	subsurface	tissue	displacements	caused	by	the	interaction	of	the	probe	with	

the	 tissue	 surface.	 One	 group	 proposed	 using	 a	 force	 measurement	 apparatus	 to	 provide	 force	

boundary	 conditions	 to	 a	 tissue	 model	 171,	 187 ,	 although	 force	 boundary	 conditions	 require	

some	 prior	 estimate	 of	 absolute	 material	 properties	 for	 the	 tissue.	 We	 recently	 proposed	 an	

alternative	 method	 which	 utilizes	 a	 biomechanical	 model	 based	 correction	 which	 is	 driven	 by	

displacement	boundary	conditions	provided	by	the	position	of	a	tracked	ultrasound	probe	within	a	

co‐registered	patient‐specific	organ	surface	from	preoperative	tomograms	 188 .	This	method	was	

shown	to	reduce	ultrasound	compressional	error	of	nearly	1	cm	to	approximately	2	to	3	mm.	

There	 is	 a	 subset	 of	 image‐guided	procedures	 for	which	preoperative	 tomographic	 image	

volumes	 are	 not	 commonly	 acquired,	 or	 the	 volumes	 are	 acquired	 with	 the	 patient	 in	 a	 much	
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different	state	than	the	operative	state.	This	can	be	the	case	in	liver	surgery,	for	example,	in	which	

there	 is	 often	 significant	 manipulation	 of	 the	 organ	 by	 the	 surgeon	 leading	 up	 to	 the	 surgical	

presentation	 of	 the	 tissue.	 The	 previously	 developed	 method	 for	 ultrasound	 compression	

correction,	however,	relies	on	registration	of	intraoperative	tracked	ultrasound	to	a	geometrically	

accurate	 patient	 model	 constructed	 from	 preoperative	 imaging.	 There	 is	 therefore	 a	 need	 for	 a	

method	of	 compression	 compensation	which	does	not	 rely	 on	 a	preoperative	model.	 In	 addition,	

there	 are	 also	 implications	 for	 utilizing	 subsurface	 information	 to	 perform	 image‐to‐physical	

registration.	Provided	with	at	least	some	form	of	intraoperative	measurement	of	compression,	be	it	

from	 contact	 triggering	 or	 knowledge	 of	 the	 tissue	 surface	 with	 respect	 to	 the	 probe	 position,	

subsurface	 structures	 could	 be	 uncompressed	 to	 give	 true	 shapes	 in	 physical	 space.	 The	 true	

subsurface	shapes	could	be	used	in	combination	with	surface	information	to	compute	a	combined	

image‐to‐physical	registration,	such	as	with	a	surface	point	cloud	from	a	laser	measurement	device	

and	subsurface	structures	like	blood	vessels	 189 .	With	these	possibilities	in	mind,	the	first	goal	of	

this	 work	 was	 to	 create	 a	 compression	 correction	 method	 which	 utilizes	 a	 generic	 correction	

method	 which	 is	 independent	 of	 tomographic	 imaging	 and	 requires	 no	 registration	 to	 a	

preoperative	surface.	The	second	goal	was	to	compare	the	new	method	with	the	method	previously	

described	by	Pheiffer	et	al.	by	deployment	in	phantoms	and	clinical	data.	

VI.4 Methods 

The	 compression	 compensation	method	 is	 one	 step	within	 a	 pipeline	 for	 image‐guidance	

using	tracked	ultrasound.	A	brief	description	of	the	pipeline	is	given	below	to	provide	context	for	

the	new	method	and	to	indicate	how	it	differs	from	the	previous	correction	method.	

VI.4.1 Phantom Construction 

A	compliant	gel	phantom	was	constructed	by	mixing	7%	by	mass	polyvinyl	alcohol	 PVA 	in	

water	with	10%	by	volume	glycerol.	A	small	amount	was	poured	into	a	tumor	mold	and	subjected	
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to	 four	 freeze‐thaw	cycles,	 in	which	 the	gel	was	 frozen	at‐40	°C	 for	12	hours	and	 then	 thawed	at	

room	temperature	for	12	additional	hours.	The	first	freeze‐thaw	cycle	produces	a	gel	with	a	tissue‐

like	consistency,	and	each	additional	cycle	results	in	an	increasingly	stiffer	material.	The	phantom	

tumor	was	then	suspended	by	wire	in	a	larger	anthropomorphic	liver	mold	with	PVA	mixture	and	

subjected	to	one	additional	 freeze‐thaw	cycle.	This	resulted	 in	a	soft	 tissue	phantom	containing	a	

stiffer	 tumor.	 The	 completed	 phantom	was	 fixed	 to	 a	 rigid	 base	 containing	 fiducials	which	were	

used	to	initialize	the	image‐to‐physical	registration.	

VI.4.2 Preoperative Imaging and Patient Model 

Image‐guided	interventions	often	begin	with	acquisition	of	high	resolution	CT	or	MR	image	

volumes	 prior	 to	 the	 procedure.	 The	 patient‐specific	 compression	 correction	 method	 utilized	 a	

patient	model	 created	 from	 these	 images.	 However,	 this	 data	was	 unnecessary	 for	 the	 proposed	

generic	 method.	 Tomograms	were	 acquired	 in	 this	 study	 only	 in	 order	 to	 compare	 the	 patient‐

specific	and	generic	correction	methods.	CT	image	volumes	were	acquired	for	the	phantoms	using	a	

clinical	CT	machine	at	512	x	512	x	422	with	0.6	mm	isotropic	voxels.	The	bulk	phantom	and	tumor	

were	 segmented	 using	 intensity	 thresholding	 in	 Analyze	 9.0	 Mayo	 Clinic,	 Rochester,	 MN .	

Isosurfaces	 were	 generated	 from	 the	 segmentations	 using	 the	 marching	 cubes	 algorithm	 and	

smoothed	with	a	Laplacian	filter.	A	patient‐specific	finite	element	mesh	with	tetrahedral	elements	

was	created	from	the	smoothed	phantom	isosurface	using	custom‐built	mesh	generation	software	

113 .		

	 The	 clinical	 dataset	 consisted	 of	 a	 meningioma	 patient	 at	 Vanderbilt	 Medical	 Center.	

Informed	written	consent	was	obtained	from	the	patient	prior	to	the	study	with	the	approval	of	our	

Institutional	 Review	 Board.	 The	 preoperative	 MR	 volume	 was	 segmented	 to	 produce	 brain	 and	

tumor	 surfaces,	 which	 were	 used	 to	 create	 a	 patient	 specific	 model	 in	 the	 same	manner	 as	 the	

phantom	data.	
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VI.4.3 Intraoperative Data Collection 

An	Acuson	Antares	ultrasound	machine	 Siemens	 Inc.,	Munich,	Germany 	with	a	VFX13‐5	

linear	array	probe	at	10	MHz	was	used	to	acquire	all	ultrasound	images	in	this	study.	The	machine	

was	used	to	collect	both	B‐mode	and	strain	images	with	the	eSie	Touch	elasticity	software	from	the	

manufacturer	in	order	to	illustrate	the	general	applicability	of	the	correction	method	to	all	forms	of	

ultrasound	 data.	 The	 ultrasound	 images	were	 tracked	 in	 3D	 space	 by	 synchronizing	 each	 image	

with	the	pose	detected	by	a	Polaris	Spectra	optical	tracking	system	 Northern	Digital,	Waterloo,	ON,	

Canada 	 for	a	passive	rigid	body	attached	to	the	ultrasound	probe.	The	tracked	ultrasound	probe	

was	 calibrated	 using	 the	method	 described	 by	Muratore	 et	 al.	 such	 that	 all	 pixels	 in	 each	 image	

were	associated	with	a	3D	pose.	

In	 addition	 to	 the	 ultrasound	data	 collected	 above,	 the	 other	 intraoperative	 tools	 used	 in	

this	study	were	a	tracked	pointer	and	laser	range	scanner	 LRS .	The	pointer	was	used	to	digitize	

point	fiducials	such	as	beads	on	the	phantom	base	and	craniofacial	landmarks	on	the	patient.	These	

points	were	used	to	initialize	a	surface‐based	registration	of	the	dense	point	clouds	from	the	LRS	to	

the	 preoperative	 patient‐specific	 model	 in	 the	 case	 of	 the	 phantoms.	 There	 was	 no	 LRS	 cloud	

available	in	the	case	of	this	specific	patient,	and	so	a	random	sampling	of	the	MR	model	surface	was	

used	to	simulate	LRS	data	in	that	case.	

VI.4.4 Compression Correction 

	 The	 goal	 of	 this	 work	 was	 to	 reduce	 the	 registration	 error	 arising	 from	 soft	 tissue	

deformation	 exerted	 by	 an	 ultrasound	 probe.	We	 recently	 presented	 a	method	 in	 188 	 utilizing	

both	 probe	 tracking	 information	 in	 combination	 with	 a	 co‐registered	 patient	 model	 in	 order	 to	

estimate	the	compression	depth	of	the	probe	into	the	tissue	during	insonation,	and	then	to	use	that	

depth	to	correct	the	tracked	ultrasound	image	poses	using	a	biomechanical	model‐based	approach.	

The	 novel	 method	 which	 we	 now	 propose	 does	 not	 use	 a	 patient‐specific	 model	 derived	 from	

preoperative	imaging,	but	instead	uses	a	generic	model	to	drive	the	correction	as	shown	in	Figure	
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30.	In	order	to	thoroughly	compare	the	two	methods,	a	summary	of	the	patient‐specific	method	is	

described	in	the	next	subsection,	followed	by	a	description	of	the	novel	generic	method.	

	

	

Figure 30. Example of a mesh used  for  the patient‐specific model correction method  (a), constructed 
from  preoperative  imaging  and  aligned  to  the  ultrasound  data  using  intraoperative  registration 
methods, and an example of a block mesh  for the generic model correction method  (b), which  is pre‐
aligned to the ultrasound data by performing a calibration to the ultrasound probe. 

VI.4.4.1 Patient‐Specific Correction 

The	patient‐specific	 compression	correction	method	presented	 in	 188 	made	several	key	

assumptions	 in	 order	 to	 compute	 a	 reasonable	 correction.	 The	 primary	 assumption	 was	 that	

intraoperative	 ultrasound	data	 could	 be	 aligned	 to	 the	 preoperative	 imaging	with	 an	 initial	 rigid	

registration	utilizing	surface	 features.	The	second	assumption	was	 that	 the	 tissue	presentation	 in	

terms	 of	 mechanical	 state	 in	 the	 preoperative	 imaging	 was	 similar	 to	 the	 intraoperative	

presentation,	 in	 the	 absence	 of	 tissue	 manipulation	 by	 the	 ultrasound	 probe.	 These	 two	
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assumptions	led	to	the	next	assumption,	which	was	that	in	the	presence	of	tissue	compression	by	

the	 ultrasound	 probe,	 the	 tip	 of	 the	 probe	would	 be	 some	 distance	 below	 the	 surface	 of	 the	 co‐

registered	patient	model	depending	on	the	magnitude	of	compression.		

The	strategy	which	was	proposed	was	to	use	the	position	of	the	probe	geometry	within	the	

tissue	model	in	order	to	estimate	the	tissue	deformation	resulting	from	application	of	the	probe	to	

the	 tissue	 surface	 for	 every	 ultrasound	 slice	 to	 be	 corrected.	 The	 geometry	 of	 the	 probe	 tip	was	

constructed	 by	 scanning	 it	 with	 the	 LRS,	 giving	 a	 digital	 probe	 surface	 which	 was	 tracked	 in	

physical	space	using	the	tracked	target	attached	to	the	probe.	The	next	assumption	was	that	during	

imaging	the	user	would	press	the	probe	only	in	the	depth	direction	of	the	ultrasound	plane	into	the	

tissue,	with	no	lateral	or	out‐of‐plane	movement	through	the	tissue	which	could	cause	a	dragging	

effect.	This	assumption	was	made	to	simplify	the	next	step	of	the	correction,	which	was	to	assign	

boundary	 conditions	 to	 the	 biomechanical	 tissue	 model	 using	 the	 pose	 of	 the	 probe	 geometry.	

Assuming	 purely	 depth	 compression,	 the	 model	 surface	 nodes	 directly	 above	 the	 digital	 probe	

surface	 were	 assigned	 Dirichlet	 boundary	 conditions	 corresponding	 to	 the	 compression	 vectors	

calculated	from	the	patient	surface	to	the	probe	surface.	The	rest	of	the	patient	model	was	assigned	

a	set	of	initial	boundary	conditions	based	upon	the	surgical	plan	and	prior	knowledge	of	the	patient	

presentation.	In	the	case	of	the	liver	phantom,	the	inferior	surface	was	set	to	zero	displacement	and	

the	superior	surface	was	set	to	zero	stress,	because	the	bottom	of	the	phantom	was	rigidly	fixed	to	a	

rigid	 base	 whereas	 the	 top	 of	 the	 phantom	was	 left	 open	 to	 the	 atmosphere.	 In	 the	 case	 of	 the	

clinical	brain	case,	the	mesh	nodes	corresponding	to	the	craniotomy	region	were	set	as	stress	free,	

the	 base	 of	 the	 brain	 was	 set	 as	 fixed,	 and	 the	 rest	 of	 the	 brain	 nodes	 were	 set	 to	 have	 zero	

displacement	 in	the	normal	direction	but	stress	free	 in	the	tangential	directions	 in	order	to	allow	

for	slip	along	the	skull.	

After	 the	assignment	of	boundary	conditions,	 the	model	was	 solved	 for	3D	displacements	

over	 the	 entire	mesh	 to	 estimate	 the	 probe‐deformed	 state	 of	 the	 tissue. The	model	 used	 in	 the	
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previous	method	 and	 in	 the	method	 proposed	 in	 this	 work	 consists	 of	 the	 standard	 3D	 Navier‐

Cauchy	equations	for	the	displacement	field:	

	
2 1

u
2 1 1 2

∙ u 0 16

where	E	is	Young’s	modulus,	v	is	Poisson’s	ratio,	u	is	the	3D	displacement	vector	at	a	point	in	the	

tissue,	and	F	is	the	applied	body	force	distribution.	The	partial	differential	equation	is	solved	within	

a	 finite	 element	 method	 framework	 using	 the	 Galerkin	 weighted	 residual	 technique	 with	 linear	

basis	functions.	The	system	of	equations	that	solves	for	the	displacement	vectors	at	every	node	in	

the	mesh	can	be	written	as:	

	 17

where	K	 is	 the	 global	 stiffness	matrix,	 u	 is	 the	 vector	 of	 nodal	 displacements,	 and	 f	 contains	 the	

contributions	of	any	applied	body	 forces	or	surface	movement	at	each	node.	For	each	ultrasound	

image	 to	 be	 corrected,	 this	 system	 of	 equations	 is	 constructed	 and	 solved	 for	 the	 nodal	

displacements	 which	 satisfy	 static	 equilibrium	 for	 the	 supplied	 boundary	 conditions.	 These	

displacements	 are	 then	 reversed	 and	 interpolated	 onto	 the	 tracked	 ultrasound	 data,	 which	 was	

then	 deformed	 with	 this	 3D	 displacement	 field	 to	 an	 estimate	 of	 its	 state	 in	 the	 absence	 of	

compression.	

VI.4.4.2 Proposed Generic Correction 

	 The	 first	 difference	 between	 the	 generic	 correction	 and	 the	 patient‐specific	 correction	 is	

that	 instead	 of	 a	 patient‐specific	mesh	 constructed	 from	 preoperative	 imaging	 and	 registered	 to	

intraoperative	 space,	 the	 generic	 method	 instead	 uses	 a	 preconstructed	 block	 mesh	 which	 is	

calibrated	 to	 follow	 the	 tip	of	 the	 tracked	ultrasound	probe	 see	Figure	30 .	The	most	 important	

consequence	 of	 this	 framework	 is	 that	 the	 generic	method	only	 requires	 a	 sparse	 intraoperative	

measurement	 of	 tissue	 compression	 in	 order	 to	 provide	 a	 model	 correction,	 rather	 than	 a	



 
 
 

98 
 

registration	to	preoperative	imaging.	In	addition,	a	precomputed	mesh	offers	certain	computational	

advantages	which	will	be	descibed	later.	

The	 block	 mesh	 calibration	 procedure	 simply	 requires	 the	 alignment	 of	 the	 top	 of	 the	

ultrasound	 image	with	 the	 center	of	 one	 side	of	 the	mesh,	 and	of	 the	 image	plane	 itself	with	 the	

plane	 through	 the	 center	of	 the	block.	The	pose	of	 the	generic	block	mesh	 thus	 is	defined	by	 the	

same	tracking	information	which	defines	the	pose	of	the	ultrasound	image.	The	general	strategy	is	

to	acquire	intraoperative	measurements	of	the	undeformed	tissue	surface	using	an	LRS	or	tracked	

pointer,	 and	 use	 that	 surface	 to	 estimate	 the	 depth	 to	 which	 the	 tissue	was	 compressed	 by	 the	

ultrasound	probe.	This	depth	is	then	used	to	assign	Dirichlet	boundary	conditions	to	the	block	mesh	

in	a	similar	manner	as	the	patient‐specific	correction,	although	with	a	slight	difference.	The	initial	

boundary	conditions	 for	 the	mesh	in	 this	method	were	assigned	such	that	the	 inferior	 face	of	 the	

block	was	fixed,	and	the	superior	and	side	surfaces	were	stress‐free.	This	was	somewhat	arbitrary,	

as	one	downside	to	this	approach	is	a	lack	of	knowledge	about	what	part	of	the	patient	anatomy	the	

block	mesh	would	essentially	represent,	depending	on	the	angle	of	insonation.		

After	assignment	of	boundary	conditions,	 the	model	 is	solved	 for	3D	displacements	 in	 the	

block	of	 tissue,	 and	 the	displacements	are	 reversed	and	 interpolated	onto	 the	ultrasound	data	 to	

perform	 the	 correction.	 The	model	 construction	 is	 governed	 by	 the	 same	 constitutive	 equations	

given	by	 16 	and	 17 .	However,	 there	are	several	advantages	 that	 the	generic	 correction	offers	

compared	 to	 the	patient‐specific	model.	The	global	 stiffness	matrix,	K,	needs	 to	be	 reconstructed	

whenever	 the	 type	 of	 boundary	 condition	 for	 any	 boundary	 node	 is	 changed,	 such	 as	 from	 a	

displacement	to	a	force	condition	or	vice	versa.	In	the	patient‐specific	model	correction,	boundary	

nodes	are	often	reassigned	different	types	of	boundary	conditions	depending	on	the	position	of	the	

probe	within	 the	mesh	 as	described	 in	 the	patient‐specific	 correction	 section .	This	 implies	 that	

the	K	matrix	and	boundary	conditions	in	f	often	need	to	be	recomputed	and	solved	for	u,	which	is	a	

relatively	expensive	process.	With	respect	to	the	generic	correction,	however,	the	type	of	boundary	
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condition	 assigned	 to	 each	 boundary	 node	 will	 always	 remain	 the	 same,	 as	 each	 correction	

proceeds	by	merely	altering	the	magnitude	of	the	displacement	boundary	conditions	on	the	top	of	

the	block	mesh.	Thus,	it	is	possible	to	pre‐compute	K	and	reuse	it	for	each	correction	whenever	f	is	

updated	in	a	simple	matrix	multiplication:	

	 18

Another	property	of	the	generic	method	offers	a	further	computational	speedup.	In	order	to	

correct	the	ultrasound	data,	only	the	model	solution	at	a	plane	of	the	mesh	which	corresponds	to	

the	ultrasound	image	plane	 is	actually	needed.	The	computations	solving	 for	the	rest	of	 the	mesh	

nodes	are	therefore	superfluous,	which	makes	it	desirable	to	remove	those	nodes	from	the	system	

of	equations.	This	can	be	accomplished	through	the	method	of	condensation	in	order	to	result	in	a	

smaller	system	of	equations	which	can	be	solved	rapidly	 190 .	The	first	step	in	this	process	 is	to	

carefully	arrange	the	ordering	of	the	mesh	node	indices	to	ensure	that	the	first	N	equations	belong	

to	 the	 nodes	 lying	 on	 the	 ultrasound	 plane,	 as	 well	 as	 any	 nodes	 on	 the	 top	 surface	 which	 are	

assigned	 varying	 amounts	 of	 compression	 boundary	 conditions.	 Assuming	 this	 ordering,	 the	

equation	from	 17 	can	be	rewritten	as	a	block	matrix	system	where	the	subscripts	p	and	a	indicate	

the	plane	nodes	and	all	other	nodes,	respectively:	

	
19

The	 block	 matrix	 system	 in	 19 	 can	 be	 rearranged	 to	 a	 form	 involving	 only	 the	 displacement	

solution	of	the	plane	nodes,	 :	

	 20

where	

	 21

	 22
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The	modified	stiffness	matrix	given	in	 21 	represents	a	transfer	of	the	displacements	from	

all	 non‐plane	 nodes	 to	 the	 plane	 nodes	 which	 are	 the	 primary	 concern,	 and	 maintains	 the	

volumetric	nature	of	the	model.	Using	this	stiffness	matrix	offers	significant	computational	benefit	

because	it	is	a	fraction	of	the	size	of	the	full	K	matrix.	It	can	be	similarly	pre‐computed	and	stored	

for	very	fast	solutions	of	the	 	vector	of	plane	node	displacements.	In	addition,	given	the	careful	

ordering	of	the	node	indices	explained	above	and	the	assignment	of	initial	boundary	conditions,	it	

will	also	be	the	case	that	all	nodes	in	the	 	vector	will	always	be	assigned	either	zero	stress	or	zero	

displacement	boundary	conditions.	Given	 22 ,	this	implies	that	changes	in	the	compression	depth	

during	imaging	will	result	in	simple	reassignment	of	the	values	in	 :	

	 23

Given	the	pre‐computation	of	the	modified	stiffness	matrix	in	 21 	and	the	speed	of	assigning	new	

values	 in	 23 ,	 the	 generic	 method	 offers	 a	 very	 large	 speed	 increase	 compared	 to	 the	 patient‐

specific	method	 and	 can	 potentially	 be	 performed	 at	 near	 real‐time	 frame	 rates.	 Both	 correction	

methods	were	implemented	in	MATLAB	on	an	Intel	Core	2	Quad	CPU	at	2.4	GHz	with	4	GB	of	RAM.	

To	reiterate,	the	primary	hypothesis	of	this	work	was	that	a	correction	using	a	generic	block	

mesh	calibrated	 to	 the	ultrasound	probe	could	 significantly	 reduce	geometric	 compression	error,	

and	 could	 possibly	 perform	 as	 well	 as	 the	 patient‐specific	 method	 without	 the	 need	 for	 a	

preoperative	 mesh.	 In	 the	 next	 section,	 two	 simulation	 studies	 were	 performed	 to	 evaluate	 the	

behavior	 of	 the	 generic	 correction	under	 various	 conditions.	Both	 correction	methods	were	 then	

performed	for	comparison	in	terms	of	alignment	error	reduction	during	phantom	experiments	and	

a	clinical	case	described	in	the	following	section,	with	a	brief	analysis	of	the	computational	expense	

required	by	each	method.	
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VI.4.5 Experimental Validation 

VI.4.5.1 Simulations 

	 Several	 simulations	 were	 performed	 to	 examine	 the	 sensitivity	 of	 the	 generic	 correction	

method	 to	 various	 factors.	 The	 first	 simulation	 performed	was	 to	 analyze	 the	 effect	 of	 the	 finite	

element	 mesh	 resolution	 on	 the	 model	 correction.	 This	 simulation	 consisted	 of	 constructing	

equivalent	10	x	10	x	5	cm	block	meshes	with	a	tetrahedral	element	edge	length	ranging	from	2	to	

10	mm.	The	number	of	nodes	in	the	meshes	ranged	from	53,018	to	634	between	the	2	and	10	mm	

resolution,	respectively.	Three	simulated	tumors	were	created	with	diameters	of	10,	20,	and	40	mm	

and	 placed	 separately	 in	 an	 instance	 of	 each	 mesh.	 A	 10	 mm	 surface	 compression	 was	 then	

simulated	 for	 each	 mesh	 and	 the	 model	 solution	 was	 interpolated	 to	 the	 tumor	 nodes	 for	

comparison	of	 the	effects	of	 the	mesh	resolution	on	 the	correction	strategy.	The	comparison	was	

performed	 by	 utilizing	 the	 most	 finely	 resolved	 mesh	 2	 mm	 edge	 length 	 as	 the	 ground	 truth	

solution,	 with	 each	 subsequent	model	 solution	 from	 the	 coarser	meshes	 being	 compared	 to	 the	

ground	truth	solution	in	terms	of	the	difference	in	final	tumor	position.	

	

Figure 31. Example of the meshes used in the simulation studies with sizes of 10 x 10 x 5 cm (a), 10 x 10 
x 10 cm  (b) and 10 x 10 x 15 cm  (c).  In  this case a simulated 20 mm diameter  tumor  is shown at  the 
equivalent 3 cm depth in each mesh. 
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	 The	 second	 simulation	 performed	 was	 aimed	 at	 determining	 the	 potential	 effects	 of	 the	

following	variables	upon	the	correction:	1 	the	block	mesh	size,	2 	the	tumor	stiffness,	and	3 	the	

tumor	size.	Three	block	meshes	were	created	with	dimensions	of	10	x	10	x	5	cm,	10	x	10	x	10	cm,	

and	10	x	10	x	15	cm	constructed	with	5	mm	edge	length.	Three	simulated	tumors	were	created	with	

diameters	of	10,	20,	and	40	mm	and	each	placed	at	a	3	cm	depth	 half	the	maximum	depth	of	the	

linear	array	probe	used	for	the	phantom	and	clinical	data	in	this	work 	in	an	instance	of	each	block	

mesh	described	above.	To	illustrate,	the	20	mm	tumor	is	shown	in	the	meshes	of	different	sizes	in	

Figure	31.	The	tumors	were	assigned	stiffness	values	of	1:1,	10:1,	and	30:1	compared	to	the	rest	of	

the	 tissue	block,	 resulting	 in	27	meshes	 three	mesh	 sizes,	 three	 tumor	 sizes,	 and	 three	 stiffness	

ratios .	Each	mesh	was	then	subjected	to	surface	compression	ranging	from	0	to	10	mm.	For	each	

state	 of	 compression,	 the	model‐deformed	 tumor	 surfaces	were	 compared	 to	 the	 uncompressed	

tumor	 surfaces	 to	 illustrate	 the	 effect	 of	 tumor	 stiffness	 and	 size	 on	 the	 model	 solution,	 which	

would	in	turn	affect	the	correction.	

VI.4.5.2 Phantom Experiments 

	 A	 liver	 phantom	was	 constructed	 as	 described	 previously.	 The	 phantom	 fiducial	markers	

were	localized	with	a	tracked	pointer	and	an	initial	rigid	point‐based	registration	to	the	CT	images	

was	performed	 128 .	An	LRS	scan	of	the	liver	surface	was	acquired	and	an	iterative	closest	point	

ICP 	registration	was	performed	of	the	tracked	LRS	point	cloud	to	the	CT	surface	in	order	to	refine	

the	 registration	 92 .	This	 alignment	was	used	 to	perform	 the	patient‐specific	 correction	method	

and	served	as	the	gold	standard	validation	for	the	proposed	generic	correction	method.	Tracked	B‐

mode	and	strain	images	were	acquired	of	the	embedded	tumor,	and	the	transformation	matrix	from	

the	ICP	registration	was	used	to	automatically	align	all	tracked	ultrasound	images	with	the	CT	data.	

A	 total	 of	 178	 B‐mode	 and	 83	 strain	 images	 were	 collected	 of	 the	 tumor.	 The	 tracking	 and	

registration	 transformations	were	 then	 applied	 to	 the	 digital	 probe	 surface	 in	 order	 to	 generate	

boundary	conditions	for	the	two	correction	methods	as	described	previously.	
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After	 the	 generation	 of	 boundary	 conditions,	 the	 patient‐specific	 and	 generic	 correction	

methods	 were	 applied	 to	 each	 ultrasound	 image.	 This	 resulted	 in	 a	 collection	 of	 uncorrected,	

patient‐specific	corrected,	and	generic	corrected	 images.	With	respect	to	the	generic	correction,	a	

10	 x	 10	 x	 10	 cm	 block	 mesh	 was	 used.	 For	 both	 methods,	 the	 meshes	 were	 assigned	 a	 tumor	

Young’s	 modulus	 ratio	 of	 1:1	 with	 Poisson’s	 ratio	 at	 0.49	 because	 PVA	 is	 known	 to	 be	 nearly	

incompressible.	 Each	 population	 of	 images	was	 compared	 to	 the	 baseline	 CT	 images	 in	 terms	 of	

tumor	geometry	in	order	to	evaluate	the	corrections.	The	tumor	borders	in	each	B‐mode	and	strain	

image	were	segmented	semi‐automatically	using	the	Livewire	 technique,	and	 for	each	ultrasound	

image	 the	 CT	 volume	 was	 re‐sliced	 to	 provide	 a	 co‐planar	 CT	 slice	 and	 tumor	 contour	

corresponding	 to	 the	 3D	 pose	 of	 the	 co‐registered	 ultrasound	 slice.	 The	 tumor	 borders	 from	

ultrasound	 and	 CT	 were	 then	 compared	 in	 terms	 of	 Modified	 Hausdorff	 Distance	 MHD 	 and	

centroid	 distance	 between	 the	 two	 contours	 179 .	 The	 MHD	 and	 centroid	 error	 metrics	 were	

computed	 prior	 to	 and	 after	 each	 correction,	 and	 were	 the	 primary	 metrics	 in	 determining	 the	

efficacy	of	the	methods.	

VI.4.5.3 Clinical Case 

	 The	 patient‐specific	 and	 the	 generic	 correction	methods	were	 deployed	 in	 a	 preliminary	

clinical	case	in	addition	to	the	phantom	study.	With	respect	to	the	generic	correction,	a	10	x	10	x	10	

cm	 block	 of	 tissue	 was	 used,	 and	 a	 preoperative	 MR	 image	 volume	 was	 used	 to	 construct	 the	

patient‐specific	brain	model.	The	tumor	in	this	case	was	a	meningioma	located	superficially	on	the	

left	side.	In	this	case	the	tumor	and	brain	were	assigned	a	1:1	stiffness	ratio	and	Poisson’s	ratio	of	

0.45	 180 .	Alignment	of	the	intraoperative	tracked	ultrasound	images	to	the	MR	was	performed	by	

scanning	the	face	of	the	patient	with	the	LRS	and	performing	an	ICP	registration	between	the	LRS	

face	 point	 cloud	 and	 the	MR	patient	model.	 Tracked	B‐mode	 images	were	 obtained	 immediately	

after	 the	 craniotomy.	 Both	 correction	 methods	 were	 then	 applied	 to	 the	 ultrasound	 data	 and	
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compared	to	the	co‐aligned	MR	tumor	borders	in	terms	of	the	co‐planar	contour	MHD	and	centroid	

error.	

VI.4.5.4 Computational Efficiency 

	 In	 order	 to	 provide	 an	 idea	 of	 the	 gain	 in	 speed	 offered	 by	 the	 generic	 correction	

framework,	 the	 time	 the	 time	 to	 compute	 the	 generic	 model	 solution	 for	 an	 image	 slice	 in	 the	

phantom	B‐mode	dataset	was	recorded	in	the	case	of	a	10	x	10	x	5	cm	block	mesh	with	5	mm	edge	

length	consisting	of	4,042	nodes	and	19,672	tetrahedral	elements.	Furthermore,	only	the	subset	of	

the	mesh	which	corresponds	to	the	ultrasound	plane	was	used,	which	reduced	the	number	of	nodes	

and	 elements	 used	 in	 the	 generic	 correction	 to	 697	 and	 2,698,	 respectively.	 The	 analogous	

correction	using	the	patient‐specific	correction	was	computed	using	a	mesh	with	5	mm	edge	length	

consisting	 of	 10,989	 nodes	 and	 55,165	 tetrahedral	 elements.	 The	 difference	 in	 the	 numbers	 of	

nodes	 and	 elements	 in	 the	 meshes	 having	 similar	 edge	 length	 corresponds	 to	 the	 difference	

between	the	volume	of	the	full	patient‐specific	organ	versus	the	volume	of	the	block	of	tissue	in	the	

generic	method.		

VI.5 Results 

VI.5.1 Simulations 

	 The	results	of	 the	mesh	 resolution	simulations	are	shown	below	 in	Figure	32.	This	 figure	

displays	how	the	model	solutions	at	varying	mesh	resolutions	changes	compared	to	the	solution	to	

the	high	resolution	mesh	using	a	2	mm	element	edge	 length.	The	general	 trend	 in	each	case	was	

that	 as	 the	 mesh	 becomes	 coarser,	 the	 interpolated	 model	 solution	 deviates	 from	 the	 solution	

obtained	from	the	more	finely	resolved	mesh,	especially	above	an	edge	length	of	7	mm.	
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Figure  32.  Effects  of mesh  resolution  on  three  sizes  of  a  tumor  after  a  simulated  10 mm  surface 
compression. The tumor node error is defined relative to the result of the solution of a mesh with 2 mm 
edge length resolution. 

The	 results	 of	 the	 second	 simulation	 testing	 the	 effects	of	mesh	 size,	 tumor	 stiffness,	 and	

tumor	size	is	shown	below	in	Figure	33.	Each	graph	shows	that	as	the	applied	surface	compression	

increases,	 the	 tumor	 boundary	 nodes	 displace	 correspondingly.	 The	 magnitude	 of	 tumor	

displacement	varies	slightly,	however,	by	the	size	of	the	block	mesh	and	even	more	so	by	the	size	of	

the	tumor	and	its	stiffness	compared	to	the	rest	of	the	tissue	block.	
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Figure 33. Effects of block mesh depth, tumor stiffness, and tumor size upon the model‐predicted tumor 
border deformation under varying amounts of surface compression. 

VI.5.2 Phantom Experiments 

	 The	patient‐specific	and	generic	model	corrections	were	deployed	in	the	liver	phantom,	and	

an	example	of	 the	correction	process	applied	to	a	tracked	ultrasound	slice	 is	shown	in	Figure	34.	

Qualitatively,	 there	 was	 a	 clear	 improvement	 to	 the	 alignment	 between	 ultrasound	 and	 co‐

registered	tomograms	in	the	phantom	experiments.	In	addition,	the	ultrasound	contours	corrected	

with	 the	 generic	 model	 method	 were	 very	 geometrically	 similar	 to	 the	 ultrasound	 contours	

corrected	with	the	patient‐specific	method.	
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Figure  34.  Example of  the patient  specific‐model  correction  (a‐d)  and  generic model  correction  (e‐h) 
applied to a B‐mode  image slice.  (a) and  (e) show the co‐registered LRS point cloud on the respective 
mesh, (b) and (f) show the tracked probe surface and the misalignment between the ultrasound tumor 
border with the CT tumor, (c) and (g) show the deformed mesh after creation of boundary conditions, 
and (d) and (h) show the undeformed mesh and corrected ultrasound image. 
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	 The	quantitative	 results	of	 the	phantom	experiments	 in	Figure	35	show	 the	MHD	and	co‐

planar‐centroid	distances	as	error	metrics	in	comparing	the	ultrasound	tumor	borders	with	the	co‐

registered	 CT	 borders,	 for	 both	 B‐mode	 and	 strain	 images.	 The	 B‐mode	 MHD	 values	 for	 the	

uncorrected,	patient‐specific	corrected,	and	generic	corrected	tumor	borders	were	5.0	 	1.6	mm,	

1.9	 	0.6	mm,	and	2.1	 	0.7	mm,	respectively.	A	Wilcoxon	signed	rank	test	was	computed	for	the	

null	hypothesis	that	the	median	difference	between	the	error	metrics	was	zero.	 It	was	found	that	

there	was	 a	 statistically	 significant	 difference	 between	 each	 of	 the	 image	 populations	 using	 this	

metric	 p	 	0.01 .	The	B‐mode	centroid	error	values	for	the	uncorrected,	patient‐specific	corrected,	

and	 generic	 corrected	 tumor	 borders	 were	 7.6	 	 2.6	 mm,	 2.0	 	 0.9	 mm,	 and	 2.6	 	 1.1	 mm,	

respectively.	The	Wilcoxon	test	again	found	the	three	image	populations	to	be	significantly	different	

from	one	another	based	on	this	metric	 p	 	0.01 .	

	 With	 respect	 to	 the	 strain	 images,	 the	 strain	 MHD	 values	 for	 the	 uncorrected,	 patient‐

specific	corrected,	and	generic	corrected	tumor	borders	were	5.6	 	1.1	mm,	2.0	 	0.5	mm,	and	2.2	

	 0.5	 mm,	 respectively.	 The	Wilcoxon	 test	 found	 all	 three	 image	 populations	 to	 be	 statistically	

different	using	 the	MHD	metric	 p	 	0.01 .	The	 strain	 centroid	error	values	 for	 the	uncorrected,	

patient‐specific	corrected,	and	generic	corrected	tumor	borders	were	8.0	 	1.6	mm,	3.0	 	0.9	mm,	

and	 3.3	 	 1.1	mm,	 respectively.	 The	Wilcoxon	 test	 also	 found	 all	 three	 image	 populations	 to	 be	

statistically	different	using	the	centroid	error	metric	 p	 	0.01 .	

	



 
 
 

109 
 

	

Figure 35. Alignment error results for the B‐mode (a & b) and strain  imaging (c & d) modalities for the 
organ‐like phantom (n = 178 for B‐mode, and n = 83 for strain). The position of tumor borders  in each 
modality was evaluated in terms of Modified Hausdorff Distance to the co‐aligned CT borders (a & c), as 
well as the distance between the centroid of the ultrasound tumor with the co‐planar CT tumor border 
(b & d). The edges of the boxes are the 25th and 75th percentiles, and the whiskers extend to the most 
extreme data points not considered as outliers. 

VI.5.3 Clinical Case 

	 The	 quantitative	 results	 of	 the	 clinical	 case	 in	 Figure	 36	 show	 the	 MHD	 and	 co‐planar‐

centroid	 distances	 as	 error	 metrics	 in	 comparing	 the	 ultrasound	 tumor	 borders	 with	 the	 co‐

registered	 CT	 borders,	 for	 both	 B‐mode	 and	 strain	 images.	 The	 B‐mode	 MHD	 values	 for	 the	

uncorrected,	patient‐specific	corrected,	and	generic	corrected	tumor	borders	were	5.4	 	0.1	mm,	

2.6	 	0.1	mm,	and	2.9	 	0.1	mm,	respectively.	A	Wilcoxon	signed	rank	test	was	computed	for	the	
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null	hypothesis	 that	 the	median	difference	between	the	error	metrics	was	zero.	 It	was	 found	that	

there	was	 a	 statistically	 significant	 difference	 between	 each	 of	 the	 image	 populations	 using	 this	

metric	 p	 	0.01 .	The	B‐mode	centroid	error	values	for	the	uncorrected,	patient‐specific	corrected,	

and	 generic	 corrected	 tumor	 borders	 were	 7.2	 	 0.2	 mm,	 3.5	 	 0.4	 mm,	 and	 3.8	 	 0.4	 mm,	

respectively.	The	Wilcoxon	test	again	found	the	three	image	populations	to	be	significantly	different	

from	one	another	based	on	this	metric	 p	 	0.01 .	

	

Figure 36. Alignment error results for the clinical case (n = 118 B‐mode  images). The position of tumor 
borders was evaluated in terms of Modified Hausdorff Distance to the co‐aligned MR borders (a), as well 
as the distance between the centroid of the ultrasound tumor with the co‐planar MR tumor border (b). 
The edges of the boxes are the 25th and 75th percentiles, and the whiskers extend to the most extreme 
data points not considered as outliers. 
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VI.5.4 Computational Efficiency 

	 A	breakdown	of	the	various	computational	costs	in	terms	of	execution	time	for	the	patient‐

specific	correction	and	generic	correction	is	given	in	Table	5.		

Table 5. Approximate execution  time  for each  step  in  the patient‐specific and  the generic  correction 
pipelines. Times were determined using a single thread of an Intel Core2 Quad CPU at 2.4 GHz. 

	 Patient‐Specific	

Correction

Generic	Correction

Preoperative	Phase	

Image	Segmentation 30	min ‐	

Mesh	Construction 5	min 2	min

Mesh	Calibration N/A 2	min

Stiffness	Matrix

Pre‐construction

N/A 1	min

TOTAL 35	min 5	min

Intraoperative	Phase	

Boundary	Condition	

Determination

50	ms 50	ms

Stiffness	Matrix	

Construction

40	s N/A	

Model	Solve 12	s 10	ms

Ultrasound	Tumor	

Interpolation

0.4	s 20	ms

TOTAL 52.5	s 80	ms

	

In	the	case	of	the	patient‐specific	method,	the	mesh	is	created	from	preoperative	imaging,	

which	 typically	 requires	 at	 least	 30	 min	 assuming	 that	 some	 manual	 oversight	 of	 the	 image	

segmentation	 is	 required.	 Creation	 of	 the	 mesh	 from	 the	 segmentation	 mask	 takes	 at	 least	 5	
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minutes.	In	terms	of	actual	intraoperative	expense,	the	construction	of	the	32967	x	32967	stiffness	

matrix	K	and	the	solution	of	equation	 17 	were	conducted	together	in	approximately	50	s,	and	this	

represented	the	vast	majority	of	the	total	intraoperative	computation	time	of	52.5	s.	

In	 the	 case	 of	 the	 generic	 method,	 the	modified	 stiffness	matrix	 given	 by	 21 	 was	 pre‐

computed	for	the	block	mesh	prior	to	collection	of	ultrasound	data.	There	were	only	697	nodes	in	

the	 ultrasound	 plane	 region	 of	 the	 mesh,	 and	 so	 the	 condensed	 stiffness	 matrix	 in	 this	 case	

contained	2091	x	2091	entries.	For	each	model	correction,	the	vector	given	by	 22 	was	modified	

with	the	detected	compression	vectors	and	 20 	was	solved	for	the	plane	node	displacements.	The	

inverse	of	the	modified	stiffness	matrix	in	 21 	was	stored	and	the	solution	time	for	the	model	was	

approximately	10	ms.	The	overall	intraoperative	computation	time	was	approximately	80	ms.	

VI.6 Discussion 

VI.6.1 Simulations 

	 The	 mesh	 resolution	 sensitivity	 study	 showed	 in	 Figure	 32	 that	 there	 is	 less	 than	 10%	

difference	between	mesh	solutions	when	the	element	edge	length	is	at	least	below	approximately	7	

mm.	Given	 that	 there	 is	motivation	 to	use	a	mesh	with	as	 few	nodes	as	possible	due	 to	 the	 time	

needed	to	solve	the	linear	system	of	equations,	the	primary	conclusion	of	this	simulation	is	that	an	

element	 edge	 length	 of	 approximately	 5	 mm	 is	 an	 appropriate	 tradeoff	 between	 speed	 and	

accuracy.	

	 The	 second	 simulation	 study	 showed	 how	 the	 block	 mesh	 size,	 tumor	 size,	 and	 tumor	

stiffness	affect	the	model	solution.	The	first	observation	is	that	the	size	of	 the	block	mesh	did	not	

affect	the	solution	at	the	tumor	nodes	until	 the	size	was	much	larger	than	the	depth	at	which	the	

tumor	was	located	 recall	the	tumor	was	placed	at	3	cm	to	be	in	the	center	of	a	6	cm	US	image .	The	

solutions	at	the	tumor	nodes	were	similar	when	utilizing	block	sizes	of	10	x	10	x	5	cm	and	10	x	10	x	

10	cm,	but	at	the	10	x	10	x	15	cm	size	the	tumor	solutions	tended	to	become	less	variable	across	
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different	 tumor	 sizes	 and	 stiffness.	 One	 trend	 to	 note	 from	 Figure	 33	 is	 that	 there	 is	 very	 little	

impact	on	the	model	solution	from	the	size	of	a	tumor	or	its	stiffness	ratio	at	low	levels	of	surface	

compression.	However,	as	the	surface	compression	becomes	quite	large,	there	is	a	divergence	in	the	

solutions	 on	 the	 basis	 of	 both	 tumor	 size	 illustrated	 by	 the	 displacement	 magnitudes	 in	 each	

graph 	 and	 the	 stiffness	 ratio	 the	 vertical	 axis	 on	 each	 graph .	 Larger	 tumor	 size	 resulted	 in	

greater	overall	tumor	boundary	deformation,	which	was	expected	because	a	larger	tumor	diameter	

implies	that	a	greater	proportion	of	tumor	nodes	were	closer	to	the	surface	deformation,	since	all	

three	 tumors	 were	 placed	 at	 the	 same	 tissue	 depth.	 It	 is	 especially	 worth	 observing	 that	 the	

importance	 of	 tumor	 stiffness	 increased	 with	 increasing	 tumor	 size.	 In	 the	 case	 of	 the	 10	 mm	

diameter	 tumor	 at	 the	maximum	 surface	 displacement	 of	 10	mm,	 the	 difference	 in	mean	 tumor	

displacements	 when	 using	 the	 1:1	 and	 30:1	 stiffness	 ratios	 varied	 by	 approximately	 1	 mm.	

However,	 in	 the	case	of	 the	40	mm	diameter	 tumor,	 the	difference	 in	mean	 tumor	displacements	

when	using	 the	1:1	and	30:1	stiffness	 ratios	varied	by	approximately	3	mm	 for	 the	 same	surface	

displacement	 magnitude.	 These	 simulations	 indicate	 that	 although	 in	 many	 cases	 the	 tumor	

geometry	 and	material	 properties	 do	 not	 greatly	 impact	 the	model	 solution,	 these	 variables	 can	

become	 important	 when	 the	 target	 is	 a	 large	 tumor	 with	 a	 much	 different	 stiffness	 from	 the	

surrounding	normal	tissue.	

VI.6.2 Phantom Experiments 

	 The	results	of	the	compression	correction	methods	shown	in	Figure	35	clearly	demonstrate	

the	 improvement	 offered	 by	 both	 the	 patient‐specific	 and	 generic	 methods	 to	 the	 alignment	

between	 ultrasound	 and	 co‐registered	 tomograms	 in	 the	 phantom	 experiments.	 The	 MHD	 error	

metric	showed	a	significant	decrease	in	misalignment	after	application	of	both	methods,	but	with	a	

greater	 decrease	 for	 the	 patient‐specific	method.	 The	 centroid	 distance	 error	metric	 showed	 an	

even	 clearer	 improvement	 after	 applying	 the	 two	 model‐based	 corrections	 compared	 to	 the	

uncorrected	ultrasound	images.	A	similar	trend	was	noted	with	respect	to	the	corrections,	 in	that	
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the	patient‐specific	method	resulted	in	a	greater	decrease	in	error	overall	compared	to	the	generic	

model	correction.	However,	although	the	correction	was	significantly	better	for	the	patient‐specific	

method	according	 to	 the	Wilcoxon	 test,	 the	mean	difference	between	 the	 resultant	errors	 for	 the	

corrections	 was	 submillimetric	 for	 both	 the	 B‐mode	 and	 strain	 images.	 This	 result	 is	 important	

because	 it	 indicates	 that	 the	 generic	 model	 correction	 performs	 nearly	 as	 well	 as	 the	 patient‐

specific	method,	making	it	a	reasonable	alternative	for	cases	in	which	a	patient‐specific	model	may	

not	be	available.		

VI.6.3 Clinical Case 

	 The	 results	 of	 the	 clinical	 case	 in	 Figure	 36	 showed	 a	 clear	 improvement	 in	 alignment	

between	the	tracked	B‐mode	and	MR	tumor	borders	after	both	of	the	correction	methods.	The	same	

trend	from	the	phantom	dataset	was	noted	in	this	case,	which	was	that	the	patient‐specific	model	

correction	yielded	a	slightly	greater	reduction	in	error	than	the	generic	model	correction.	However,	

as	with	the	phantom	data,	the	difference	in	the	mean	error	for	both	metrics	was	submillimetric	in	

comparing	the	two	corrections.	This	reinforces	the	idea	that	the	generic	model	correction	could	be	

used	 to	perform	a	 comparable	 compression	correction	 in	 the	absence	of	 a	patient‐specific	model	

from	preoperative	imaging.	

VI.6.4 Computational Efficiency 

	 It	 was	 found	 that	 the	 patient‐specific	 method	 on	 average	 needed	 approximately	 50	 s	 to	

provide	 a	 compression	 correction	 update	 to	 each	 individual	 ultrasound	 frame	 during	 freehand	

movement	of	 the	probe.	This	 long	computation	 time	was	primarily	a	 consequence	of	 the	need	 to	

reassign	boundary	condition	types	to	surface	nodes	in	the	patient‐specific	mesh	as	the	probe	was	

moved	around	the	tissue,	thus	necessitating	a	full	reconstruction	of	the	stiffness	matrix	K	for	each	

correction.	The	stiffness	matrix	for	the	patient‐specific	mesh	was	much	larger	than	the	mesh	in	the	

generic	correction	due	to	the	greater	number	of	nodes	needed	to	represent	the	full	patient	organ,	

thus	 leading	 to	 a	 longer	 solution	 time	 as	well.	 This	 correction	 time	 removes	 one	 of	 the	 primary	
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advantages	 of	 ultrasound	 as	 an	 interventional	 imaging	 modality,	 which	 is	 its	 real‐time	 data	

acquisition.	There	is	clearly	motivation	to	provide	both	a	corrected	image	while	maintaining	a	high	

frame	rate.	

	 By	 contrast,	 the	 generic	 correction	 method	 was	 shown	 to	 provide	 a	 model	 solution	 in	

approximately	 10	 ms	 using	 the	 condensation	 method	 to	 only	 solve	 for	 the	 mesh	 nodes	 in	 the	

immediate	vicinity	of	the	ultrasound	plane.	This	essentially	represents	the	removal	of	the	primary	

computational	 bottleneck	 from	 the	 patient‐specific	 correction,	 which	 was	 the	 50	 s	 required	 for	

construction	 and	 solution	 of	 the	 stiffness	matrix	 for	 a	 large	 organ‐shaped	mesh.	 The	 rest	 of	 the	

intraoperative	steps	consisted	of	determining	boundary	conditions	prior	to	the	model	solution	and	

then	 interpolating	 the	model	 solution	 to	 the	 ultrasound	 data.	 The	 other	 steps	 combine	with	 the	

model	 solution	 to	 give	 a	 total	 intraoperative	 correction	 time	 of	 approximately	 80	 ms,	 which	 is	

nearly	real‐time	at	12.5	frames	per	second.	In	addition,	this	work	was	implemented	on	only	a	single	

CPU,	 and	 could	 possibly	 be	 further	 improved	 by	 the	 use	 of	 GPU	 programming.	 This	 work	

demonstrated	that	although	there	is	a	slight	reduction	of	the	accuracy	of	the	solution	provided	by	

the	generic	correction	versus	the	patient‐specific	method,	the	considerable	computational	benefits	

provided	 by	 the	 former	 makes	 it	 attractive	 for	 maintaining	 a	 near	 real‐time	 workflow	 during	

ultrasound	imaging.	

VI.6.5 Additional Comments 

	 The	proposed	generic	model	correction	shares	many	of	the	same	limitations	of	the	patient‐

specific	 correction	 enumerated	 in	 188 .	 For	 example,	 the	 generic	 correction	 is	 still	 subject	 to	

several	 sources	 of	 propagating	 error	 in	 the	 image	 guidance	workflow.	 It	 heavily	 relies	 upon	 the	

optical	 tracking	 system,	 which	 imparts	 an	 inherent	 error	 to	 each	 measurement	 made	 with	 the	

device,	 including	 the	 surface	 digitization	 using	 a	 tracked	 pointer	 or	 LRS,	 as	 well	 as	 the	 tracked	

ultrasound	 data.	 It	 also	 retains	 the	 assumption	 from	 the	 patient‐specific	 method	 that	 the	 user	

applies	the	probe	purely	in	the	depth	direction	for	each	image	acquisition.	This	again	simplified	the	
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creation	 of	 boundary	 conditions	 for	 the	model,	which	 is	 a	 challenge	 shared	 by	 both	methods.	 In	

addition	to	the	accuracy	of	the	boundary	conditions,	the	geometry	of	the	mesh	itself	was	likely	the	

primary	cause	for	the	difference	in	error	observed	between	the	generic	model	correction	and	the	

patient‐specific	 correction.	 A	 block	 of	 tissue	 is	 clearly	 a	 very	 simplistic	 representation	 of	 most	

anatomical	structures	on	which	this	method	would	be	used.	The	size	of	the	block	mesh	also	needs	

to	be	chosen	before	the	correction	can	occur.	Although	a	10	x	10	x	10	cm	cube	was	used	for	each	

generic	model	correction	 for	 the	phantoms	and	clinical	case	 in	 this	study,	 it	would	be	possible	 to	

pre‐construct	block	meshes	of	various	sizes	based	on	prior	knowledge	of	the	anatomy	of	interest,	

which	 could	 be	 selected	 during	 the	 procedure	 depending	 on	 the	 tissue	 depth.	 It	would	 be	 fairly	

trivial	 to	exchange	various	preconstructed	block	meshes	of	different	depths	 intraoperatively.	The	

most	 computationally	 expensive	 operation	 during	 the	 procedure	 would	 be	 computing	 the	

compression	depth	using	the	LRS	or	pointer	point	cloud,	and	then	performing	the	interpolation	of	

the	solution	to	the	ultrasound	data.	It	would	conceivably	be	possible	to	perform	these	operations	at	

a	real‐time	frame	rate	if	efficiently	implemented	and	with	the	support	of	GPU	programming.	

	 Another	 assumption	 retained	 in	 the	 generic	 correction	 method	 was	 the	 assignment	 of	

material	 properties	 to	 the	 finite	 element	 mesh.	 Accurate	 intraoperative	 measurement	 of	 tissue	

mechanical	 properties	 is	 very	 challenging	 in	 practice.	 The	 approach	 taken	 in	 this	 work	 was	 to	

assume	 the	mesh	was	 composed	of	 a	 single	homogenous	 tissue	 type.	Under	 this	 assumption,	 the	

biomechanical	 model	 solution	 would	 become	 less	 accurate	 with	 increasing	 contrast	 in	 tissue	

stiffness	between	various	tissue	types	within	the	tissue	of	interest.	It	should	be	noted	that	only	the	

relative	stiffness	values	would	affect	the	solution	of	the	model	in	either	the	patient‐specific	or	the	

generic	model	correction,	as	only	Dirichlet	boundary	conditions	drive	the	solution.	Absolute	values	

for	 Young’s	 modulus	 would	 only	 affect	 the	 solution	 if	 force	 conditions	 were	 integrated	 into	 the	

approach	in	the	future.	
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	 The	 overall	 result	 of	 this	 work	 is	 that	 information	 in	 tracked	 ultrasound	 data	 can	 be	

corrected	 in	 near	 real‐time,	 provided	 that	 a	 measure	 of	 tissue	 compression	 is	 available	

intraoperatively.	 The	 immediate	 benefits	 are	 obviously	 in	 providing	 the	 clinician	 with	 more	

accurate	size	and	position	measurements	of	subsurface	targets.	This	is	important	in	a	wide	variety	

of	procedures	and	anatomy,	such	as	determining	resection	or	ablation	margins.	Additionally,	there	

are	 implications	 for	 more	 speculative	 work	 using	 subsurface	 information	 in	 other	 ways.	 One	

example	is	the	image	registration	method	presented	by	Lange	et	al.	 in	which	they	proposed	using	

subsurface	 targets	 such	 as	 blood	 vessel	 centerlines	 or	 bifurcations	 to	 align	 intraoperative	 space	

with	 a	 preoperative	 model	 191 .	 The	 localization	 accuracy	 of	 such	 subsurface	 target	 locations	

could	certainly	affect	registration	accuracy,	and	correction	of	compression	error	would	impact	the	

result	 of	 these	 registrations.	 An	 analysis	 of	 the	 effects	 of	 integrating	 corrected	 and	 uncorrected	

ultrasound	 data	 in	 a	 registration	 framework	would	 be	 interesting,	 and	we	 leave	 that	 work	 to	 a	

future	study.	

VI.7 Conclusions 

	 In	this	work	we	proposed	and	validated	a	novel	method	for	correcting	tissue	compression	

error	exerted	by	an	ultrasound	probe.	In	this	method,	a	generic	tissue	model	was	used	to	estimate	

physical	 tissue	deformation	as	a	 result	of	pressing	 the	 tracked	probe	 into	 the	 tissue	 surface.	The	

model	solution	was	used	to	transform	the	ultrasound	images	to	an	undeformed	state.	The	generic	

model	 correction	was	 compared	 to	 a	 previously	 developed	 correction	method	which	 required	 a	

patient‐specific	model	constructed	from	preoperative	imaging.	These	two	correction	methods	were	

validated	 in	 phantoms	 and	 a	 clinical	 case,	 and	 showed	 that	 alignment	 of	 freehand	 tracked	

ultrasound	 with	 co‐registered	 tomographic	 images	 was	 significantly	 improved	 compared	 to	 the	

uncorrected	 data.	 The	 experimental	 results	 indicate	 that	 the	 generic	 model	 correction	 method	

could	 assist	 in	 providing	more	 accurate	 intraoperative	 data	 to	 clinicians	 in	 procedures	 in	which	
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patient‐specific	 models	 may	 not	 be	 available	 from	 preoperative	 imaging,	 and	 has	 future	

implications	in	registration	strategies	utilizing	subsurface	features.	
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CHAPTER VII 

OTHER STUDIES TOWARDS USING ULTRASOUND IMAGE CONTENT 

VII.A Geometric Reconstruction Using Tracked Ultrasound Strain Imaging 

VII.A.1 Introduction and Significance of Study 

	 One	of	the	compelling	aspects	of	using	ultrasound	as	an	intraoperative	guidance	tool	is	that	

it	can	offer	imaging	information	which	complements	the	information	offered	by	preoperative	CT	or	

MR,	 due	 to	 the	 difference	 in	 underlying	 contrast	 mechanisms.	 While	 conventional	 B‐mode	

ultrasound	 has	 been	 long	 established	 as	 an	 interventional	 imaging	 modality,	 other	 ultrasound‐

based	modalities	have	yet	to	be	widely	realized	in	a	surgical	navigation	role.	Strain	imaging,	ARFI,	

and	SWEI	have	emerged	in	the	ultrasound	literature	as	ways	to	estimate	subsurface	tissue	stiffness,	

which	 is	 well	 recognized	 in	 the	 medical	 community	 as	 being	 a	 biomarker	 for	 many	 diseases,	

especially	 surgical	 targets	 such	 as	 cancerous	 lesions.	 Given	 that	 tissue	 stiffness	 is	 a	 different	

contrast	mechanism	than	what	is	used	in	B‐mode	imaging,	there	are	open	questions	with	respect	to	

the	accuracy	with	which	target	borders	can	be	identified	in	3D	space	using	tracked	strain	imaging.	

In	 this	 work,	 ultrasound	 strain	 imaging	 was	 integrated	 into	 a	 tracked	 surgical	 navigation	

framework	 and	was	 analyzed	with	 respect	 to	 the	 accuracy	 of	 a	 3D	 strain	 volume	 reconstructed	

from	multiple	tracked	2D	strain	images,	compared	with	a	co‐registered	CT	volume.	This	study	was	

presented	as	a	conference	paper	at	SPIE	Medical	Imaging	by	Dr.	Michael	I.	Miga	in	2013.	

	

Appearing	 in:	T.	S.	Pheiffer,	A.	L.	Simpson,	 J.	E.	Ondrake,	and	M.	 I.	Miga.	Geometric	reconstruction	

using	tracked	ultrasound	strain	imaging.	In:	Image‐Guided	Procedures,	Robotic	Interventions,	and	

Modeling,	SPIE	Medical	Imaging	Orlando,	FL,	2013.	
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VII.A.2 Abstract 

	 The	accurate	identification	of	tumor	margins	during	neurosurgery	is	a	primary	concern	for	

the	surgeon	in	order	to	maximize	resection	of	malignant	tissue	while	preserving	normal	function.	

The	use	of	preoperative	imaging	for	guidance	is	standard	of	care,	but	tumor	margins	are	not	always	

clear	even	when	contrast	agents	are	used,	and	so	margins	are	often	determined	intraoperatively	by	

visual	 and	 tactile	 feedback.	 Ultrasound	 strain	 imaging	 creates	 a	 quantitative	 representation	 of	

tissue	 stiffness	which	can	be	used	 in	 real‐time.	The	 information	offered	by	 strain	 imaging	can	be	

placed	 within	 a	 conventional	 image‐guidance	 workflow	 by	 tracking	 the	 ultrasound	 probe	 and	

calibrating	 the	 image	 plane,	 which	 facilitates	 interpretation	 of	 the	 data	 by	 placing	 it	 within	 a	

common	 coordinate	 space	with	 preoperative	 imaging.	 Tumor	 geometry	 in	 strain	 imaging	 is	 then	

directly	 comparable	 to	 the	 geometry	 in	 preoperative	 imaging.	 This	 paper	 presents	 a	 tracked	

ultrasound	strain	imaging	system	capable	of	co‐registering	with	preoperative	tomograms	and	also	

of	 reconstructing	a	3D	surface	using	 the	border	of	 the	strain	 lesion.	 In	a	preliminary	 study	using	

four	 phantoms	 with	 subsurface	 tumors,	 tracked	 strain	 imaging	 was	 registered	 to	 preoperative	

image	volumes	and	then	tumor	surfaces	were	reconstructed	using	contours	extracted	from	strain	

image	slices.	The	volumes	of	the	phantom	tumors	reconstructed	from	tracked	strain	imaging	were	

approximately	between	1.5	to	2.4	cm3,	which	was	similar	to	the	CT	volumes	of	1.0	to	2.3	cm3.	Future	

work	will	be	done	to	robustly	characterize	the	reconstruction	accuracy	of	the	system.	

VII.A.3 Purpose 

Image‐guided	neurosurgical	procedures	 largely	rely	on	the	premise	that	the	tumor	can	be	

clearly	demarcated	 in	preoperative	 tomograms,	but	 this	 is	not	always	possible	with	gliomas.	The	

tumor	boundaries	seen	in	image	volumes	are	often	not	in	agreement	with	histological	examination	

of	 surrounding	 tissue.	 It	 has	 been	 shown	 that	 in	 both	 contrast‐enhanced	 computed	 tomography	

CT 	 192 	 and	magnetic	 resonance	 MR 	 scans	 193 ,	 cancer	 cells	 can	 infiltrate	 far	 beyond	 the	

region	of	high	contrast	uptake	which	defines	the	tumor	boundary	in	these	imaging	modalities.	It	is	
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widely	 recognized	 in	 the	 medical	 community	 that	 most	 tumors	 commonly	 have	 significantly	

different	mechanical	properties	than	the	surrounding	soft	tissue.	The	biological	basis	for	this	effect	

is	due	to	changes	in	tissue	composition,	such	as	varied	expression	of	collagen	and	greater	numbers	

of	 fibroblasts	 194,	 195 .	 The	 contrast	 in	 mechanical	 properties	 is	 an	 important	 tactile	 cue	 in	

guiding	 the	 surgeon	 during	 resection.	 Technology	 which	 leverages	 this	 mechanism,	 such	 as	

ultrasound	 strain	 imaging,	 can	 potentially	 assist	 in	 identification	 of	 cancerous	 tissue	 during	

surgery.		

Strain	imaging	employs	a	combination	of	image/signal	processing	and	measurements	of	the	

physical	 deformation	 of	 tissue	 to	 create	 a	 relative	 representation	 of	 the	 mechanical	 strength	 of	

structures	 inside	 the	organ	of	 interest	 196,	197 .	The	central	premise	of	 this	work	 is	 that	 strain	

imaging	can	detect	margins	that	are	otherwise	undetectable	in	contrast‐enhanced	tomograms,	and	

that	these	margins	should	complement	conventional	contrast	mechanisms,	given	the	link	between	

biomechanical	 changes	 and	 pathology.	 It	 would	 be	 significantly	 helpful	 to	 establish	 a	 clear	

understanding	 of	 the	 accuracy	with	which	 a	 strain	 imaging	 system	 can	detect	 lesion	 boundaries.	

This	work	presents	 an	 analysis	 of	 the	 ability	 of	 strain	 imaging	 to	 characterize	 a	 target	 shape,	 by	

placing	all	of	the	strain	images	within	a	consistent	spatial	and	temporal	context	via	3D	tracking.	

VII.A.4 Novel Contributions to be Presented 

In	the	recent	literature,	several	groups	have	begun	to	investigate	the	use	of	intraoperative	

ultrasound	 strain	 imaging	 in	neurosurgery	 136,	 198,	 199 .	 Chakraborty	 et	 al.	 utilized	 a	 tracking	

system	 to	 track	 the	 tip	 of	 an	 ultrasound	probe	 in	 order	 to	 help	 position	 the	probe	 over	 a	 lesion	

before	calculating	a	strain	 image.	However,	 they	did	not	present	any	quantitative	data	describing	

the	 accuracy	with	which	 their	 strain	 imaging	 system	 could	 localize	 a	 target.	 Another	 group	used	

tracking	 of	 an	 ultrasound	 probe	 to	 help	 select	 RF	 frames	 for	 block‐matching	 such	 that	 the	

movement	between	frames	is	primarily	in	the	axial	direction	 200 .	The	tracking	information	in	that	

case	was	 used	 to	 improve	 the	 generation	 of	 quality	 elastograms,	 rather	 than	 to	 provide	 surgical	
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guidance.	To	date,	work	to	assess	the	ability	of	strain	imaging	to	accurately	localize	surgical	targets	

in	a	guidance	setting	remains	relatively	scarce.	

	 The	novel	 aspect	of	 this	paper	 is	 the	merging	of	 strain	 imaging	with	a	 tracking	system	to	

create	a	surgical	guidance	method	which	offers	information	not	routinely	available	with	any	other	

intraoperative	tool.	The	strain	image	plane	was	calibrated	to	the	ultrasound	probe	such	that	strain	

images	 could	 be	 generated	 from	 the	 surgical	 field	 with	 automatic	 alignment	 to	 preoperative	

tomograms	 through	 tracking	 and	 registration.	 Co‐registered	 strain	 images	 and	 tomograms	were	

then	directly	compared	to	each	other.	A	phantom	study	was	performed	to	assess	the	ability	of	strain	

imaging	to	reconstruct	the	shape	of	a	subsurface	target,	using	contrast‐enhanced	CT	and	tracked	B‐

mode	image	segmentation	of	the	target	for	comparison.		

VII.A.5 Methods 

The	ultrasound	machine	used	 in	 this	study	was	an	Acuson	Antares	with	a	VFX13‐5	 linear	

array	transducer	at	10	MHz	and	depth	setting	of	6	cm.	The	ultrasound	was	capable	of	standard	B‐

mode	 imaging,	 as	 well	 as	 strain	 imaging	 through	 the	 commercial	 eSie	 Touch	 elasticity	 software	

module	 Siemens	 Inc.,	 Munich,	 Germany .	 Ultrasound	 data	 was	 tracked	 in	 3D	 space	 by	

synchronizing	 the	 ultrasound	 video	 and	 tracking	 data	 using	 software	 based	 primarily	 on	 the	

Visualization	Toolkit	 VTK 	on	a	host	computer	 120,	121 .	The	ultrasound	video	was	captured	by	a	

Matrox	 Morphis	 Dual	 card	 Matrox	 Imaging,	 Dorval,	 Canada ,	 which	 recorded	 the	 analog	 video	

output	of	the	ultrasound	machine	in	real	time.	The	ultrasound	probe	was	tracked	with	a	NDI	Polaris	

Northern	Digital	Inc.,	Waterloo,	Canada 	via	the	attachment	of	a	passive	optical	target	to	the	probe	

as	shown	in	Figure	37.		
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Figure 37. The tracked ultrasound system consisted of a Polaris optical tracking system (a) and a passive 
target attached to the ultrasound probe (b). 

	

Figure 38. Calibration of  the  tracked ultrasound  system. The ultrasound beam  is approximated  to be 
planar,  and  is  sampled with  a  tracked  pen  probe  (a)  to  produce  bright  corresponding  points  in  the 
ultrasound images (b). A calibration transformation is computed which best matches the image points to 
the physical probe points. 

The	 ultrasound	 images	 were	 calibrated	 for	 tracking	 by	 the	method	 of	 Muratore	 et	 al.	 as	

shown	in	Figure	38,	in	which	the	ultrasound	beam	was	approximated	as	a	plane	and	was	sampled	

with	a	tracked	stylus	to	generate	a	calibration	transformation	which	mapped	from	image	space	to	

physical	 space	 for	 each	 pixel	 in	 the	 images	 74 .	 The	 combination	 of	 calibration	 and	 tracking	
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matrices	transformed	each	ultrasound	image	to	a	physical	pose	based	on	the	pose	of	the	ultrasound	

probe.	The	 tracked	ultrasound	data	 could	 then	be	 registered	 to	preoperative	 images	 in	 the	 same	

manner	as	other	intraoperative	information,	such	as	data	from	a	tracked	pen	probe	or	laser	range	

scanner	 173 .	

A	 phantom	 experiment	 was	 performed	 to	 assess	 the	 ability	 of	 tracked	 strain	 imaging	 to	

localize	 a	 subsurface	 target	 shape	 within	 a	 co‐registered	 coordinate	 system	 with	 preoperative	

tomograms.	 To	 perform	 this	 study,	 four	 compliant	 polyvinyl	 alcohol	 PVA 	 gel	 phantoms	 were	

constructed	 in	 an	 anthropomorphic	 organ‐shaped	 mold,	 using	 a	 polyester	 sphere	 mock	 tumor	

doped	with	 barium	 sulfate	 for	 CT	 contrast,	 and	 embedded	 glass	 beads	 in	 the	 surface	 to	 provide	

landmarks	for	registration	 140 .	The	phantoms	were	fixed	to	a	wooden	base	along	with	a	tracked	

reference	 target.	 The	 phantoms	 were	 then	 each	 imaged	 with	 an	 xCAT	 ENT	 mobile	 CT	 scanner	

Xoran	 Technologies,	 Ann	 Arbor,	MI 	 at	 640	 x	 640	 x	 356	with	 0.4	mm	 isotropic	 voxels.	 The	 CT	

volumes	were	registered	to	physical	space	with	a	point‐based	registration	using	Horn’s	method	and	

the	surface	beads	localized	with	a	tracked	stylus	and	manually	selected	in	the	image	volumes	 129 .	

The	bulk	phantom	and	tumor	were	each	segmented	from	the	surrounding	structures	with	Analyze	

9.0	 Mayo	 Clinic,	 Rochester,	 MN 	 and	 the	 resulting	 segmentations	 were	 used	 to	 create	 digital	

surfaces	with	a	standard	marching	cubes	algorithm	 112 .	An	example	of	one	phantom	with	the	CT	

tumor	and	co‐registered	ultrasound	strain	images	is	shown	in	Figure	39.		

	

Figure  39.  Embedded  tumor  surface  generated  from  CT  (a)  and  corresponding  lesion  shown  in  two 
roughly cross‐sectional tracked strain images (b) and as a volume reconstructed from strain contours (c). 
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The	phantoms	were	 then	 imaged	 freehand	using	 the	 tracked	ultrasound	probe	 at	 several	

positions	above	the	subsurface	target,	with	care	taken	to	ensure	that	the	probe	was	applied	only	in	

the	axial	direction	for	quality	strain	image	generation.	B‐mode	images	were	collected	in	a	series	of	

several	 swabs	 over	 the	 tumors.	 Strain	 images	 were	 collected	 incrementally	 with	 the	 probe	 at	

several	angles,	to	minimize	undesirable	out‐of‐plane	motion	during	strain	image	formulation.	Each	

ultrasound	acquisition	lasted	approximately	10	seconds.	Lesion	borders	in	each	ultrasound	image	

slice	were	 segmented	 semi‐automatically	 using	 a	 VTK	 implementation	 of	 the	 livewire	 technique	

based	 on	 Dijkstra’s	 algorithm	 201 .	 The	 segmentation	 resulted	 in	 a	 contour	 of	 points	

corresponding	 to	 the	 lesion	 border	 in	 B‐mode	 and	 strain	 images.	 These	 points	 were	 then	

transformed	 to	 physical	 space	 using	 the	 ultrasound	 calibration	 from	 above.	 When	 a	 target	 was	

imaged	from	multiple	points	of	view,	tracking	was	used	to	place	each	border	contour	in	its	proper	

pose	with	respect	 to	each	other	contour.	Thus,	 the	 tracked	strain	 images	generated	a	point	cloud	

which	 described	 the	 target	 shape	 based	 on	 the	 observed	 relative	 tissue	 stiffness.	 A	 volumetric	

representation	 of	 the	 point	 cloud	was	 created	 by	 performing	 a	 3D	Delaunay	 triangulation	 of	 the	

contour	points	to	produce	a	tetrahedral	mesh	 202 .	The	volume	of	the	tumor	mesh	from	B‐mode	

and	strain	imaging	was	then	compared	to	the	volume	of	the	CT	tumor	mesh.	

VII.A.6 Results 

The	 result	 of	 the	 point‐based	 registration	 is	 shown	 in	 Figure	 39.	 This	 figure	 shows	 the	

alignment	 of	 CT	 and	 tracked	 ultrasound	 images,	 as	 well	 as	 the	 ability	 of	 the	 strain	 imaging	 to	

localize	the	phantom	tumor.	Note	that	the	borders	of	the	strain	image	lesion	were	very	well	defined.	

The	location	and	orientation	of	the	strain	images	qualitatively	displayed	good	agreement	with	the	

CT	tumor	as	a	result	of	the	point‐based	registration	done	to	align	physical	and	CT	space.	The	ability	

to	 accurately	 align	 ultrasound	 tumor	 borders	with	 borders	 from	 preoperative	 imaging	 is	 a	 very	

important	 component	 of	 a	 tracked	 strain	 imaging	 system,	 and	 this	 aspect	will	 be	 explored	more	
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thoroughly	in	a	future	work.	The	primary	focus	of	this	work	was	to	assess	the	capability	of	a	series	

of	tracked	strain	image	contours	to	generate	a	volume.	

	

Figure 40. An example of the CT tumor dimensions (a), the corresponding strain tumor dimensions (b), 
and the B‐mode tumor dimensions (c). 

	 In	order	 to	reconstruct	 the	shape	of	 the	phantom	tumors,	 the	borders	of	 the	 lesions	were	

extracted	from	contours	segmented	from	tracked	B‐mode	and	strain	images	acquired	from	various	

positions	 above	 the	 target.	 Figure	 40	 shows	 an	 example	 of	 the	 tumor	 geometry	 in	 CT,	 strain	

imaging,	 and	B‐mode.	For	 a	quantitative	 comparison,	 the	volume	of	 the	 tumors	 in	 each	phantom	

measured	by	each	modality	is	shown	below	in	Table	6.		

Table 6. Results of geometric reconstruction of the phantom tumor volumes using CT, tracked B‐mode 
images, and tracked strain images. 

Phantom	#	 CT	Volume	 cm3 B‐mode	Volume	 cm3 Strain	Volume	 cm3

1	 1.17	 1.50 1.70	

2	 2.25	 1.77 1.50	

3	 1.98	 1.59 2.39	

4	 1.01	 1.95 1.90	
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	 The	volume	of	the	physical	tumors	during	phantom	construction	was	intentionally	variable,	

and	this	was	reflected	in	the	segmented	CT	tumor	volumes,	which	ranged	from	approximately	1.0	

to	 2.3	 cm3.	 The	 volumes	 of	 the	 tumors	 reconstructed	 from	 tracked	 ultrasound	 contours	 were	

slightly	different	 from	 the	 corresponding	CT	 volumes,	 but	were	on	 the	 same	order	of	magnitude	

and	 ranged	 from	 1.5	 to	 2.4	 cm3.	 In	 addition,	 the	 ultrasound‐based	 volumes	were	 typically	more	

similar	to	each	other	than	to	the	CT	volume.	This	behavior	was	probably	due	to	a	combination	of	

factors,	 particularly	 compression	of	 the	 tissue	by	 the	ultrasound	probe,	 as	well	 as	 the	 scarcity	of	

ultrasound	border	data	compared	to	CT.	

Table 7. Height‐to‐width ratios for the phantom tumor volumes from CT, B‐mode reconstructions, and 
strain  imaging  reconstructions.  Height  and width were measured  approximately  through  the  tumor 
centroids. 

Phantom	#	 CT	Height/Width B‐mode	Height/Width Strain	Height/Width

1	 1.14	 0.734 0.842	

2	 1.02	 1.11 0.643	

3	 1.13	 1.21 0.728	

4	 1.67	 1.33 0.931	

	

Height‐to‐width	ratios	for	the	phantom	tumors	were	measured	through	the	tumor	centroids	

along	axes	defined	by	the	CT	slicing,	and	these	results	are	shown	in	Table	7.	The	height‐to‐width	

ratio	of	the	tumor	in	the	strain‐reconstructed	tumor	volumes	showed	a	tendency	to	be	smaller	than	

either	the	CT	or	B‐mode	ratios.	This	could	be	partially	attributed	to	compressional	effects	from	the	

probe,	 as	 a	 certain	 level	 of	 pre‐compression	 of	 the	 tissue	 was	 sometimes	 needed	 in	 order	 to	

generate	proper	tissue	displacements	for	calculation	of	strain	images.	It	should	also	be	noted	that	

although	the	CT	in	this	case	was	considered	the	gold	standard,	the	CT	contrast	enhancement	of	the	

tumor	was	imperfect	due	to	uneven	distribution	of	the	contrast	agent.	This	was	verified	using	the	B‐

mode	images	such	as	the	example	in	Figure	40,	which	displayed	a	larger	cross‐sectional	area	than	
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the	CT	through	the	tumor	centroid.	This	uncertainty	could	be	reduced	or	eliminated	in	the	future	by	

using	a	tumor	manufactured	with	known	dimensions	with	a	machined	mold.	

VII.A.7 Conclusions 

	 We	 conclude	 that	 combining	 tracking	 data	 with	 ultrasound	 strain	 imaging	 is	 a	 feasible	

method	of	 reconstructing	 the	 shape	of	 a	 subsurface	 target.	Given	 its	unique	contrast	mechanism,	

tracked	strain	 imaging	shows	promise	as	a	complementary	 intraoperative	data	source	 for	 image‐

guided	 procedures.	 Future	 work	 will	 include	 further	 testing	 of	 the	 robustness	 of	 shape	

reconstruction	 in	 phantoms,	 as	 well	 as	 the	 development	 of	 novel	 methods	 which	 leverage	 the	

tracking	system	to	correct	for	tissue	displacement	during	strain	imaging.		
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VII.B Intraoperative Segmentation of Tracked Ultrasound Images 

VII.B.1 Introduction and Significance of Study 

	 One	of	the	current	limitations	with	ultrasound	as	an	interventional	imaging	modality	is	the	

difficulty	 in	 image	 interpretation	and	structure	 identification.	This	study	presents	an	 initial	effort	

toward	 expanding	 the	 utility	 of	 intraoperative	 ultrasound	 by	 creating	 a	 tool	 to	 assist	 in	

interpretation	of	 image	 features.	This	tool	 took	the	form	of	a	semi‐automatic	 image	segmentation	

approach	 designed	 to	 identify	 the	 margins	 of	 subsurface	 surgical	 targets	 such	 as	 tumors.	 The	

segmentation	 algorithm	was	 formulated	 specifically	 to	 take	 advantage	 of	 the	 tracked	 ultrasound	

and	 biomechanical	 model	 correction	 pipeline	 previously	 developed	 in	 order	 to	 delineate	 target	

borders	 with	 an	 appropriate	 spatial	 and	 temporal	 context.	 The	 following	 sections	 describe	 the	

segmentation	 framework	 and	 give	 preliminary	 results	 in	 clinical	 data,	 with	 a	 further	 discussion	

regarding	the	limitations	of	the	proposed	technique.	

VII.B.2 Abstract 

	 Identification	of	objects	 is	an	 important	and	challenging	 task	 in	 interventional	ultrasound	

imaging.	 This	 work	 proposes	 an	 algorithm	 to	 semi‐automatically	 segment	 targets	 in	 ultrasound	

images	using	both	intensity	information	and	co‐registration	with	preoperative	imaging	modalities	

to	help	guide	the	segmentation.	A	level	set	formulation	was	used	as	the	overall	framework,	which	

included	 terms	 for	 advection,	 curvature,	 propagation,	 and	 a	 shape	 model	 constructed	 from	 the	

preoperative	 image	volume.	The	proposed	segmentation	method	was	shown	to	produce	contours	

which	matched	manually	created	contours	to	within	0.71	and	1.29	mm	in	B‐mode	and	strain	image	

datasets,	respectively.		

VII.B.3 Introduction 

	 Ultrasound	 image	 segmentation	 is	 a	 challenging	 task	 due	 to	 the	 characteristic	 noise	 and	

artifacts	 which	 are	 often	 prevalent	 in	 the	 images.	 The	 presence	 of	 speckle,	 attenuation,	 and	

shadowing	 in	 the	 data	 often	 complicate	 segmentation	 techniques	 traditionally	 used	 in	 other	



 
 
 

130 
 

imaging	modalities.	In	addition,	the	contrast	between	various	tissue	types	of	interest	can	be	quite	

low	 in	B‐mode.	These	 issues	have	motivated	 interest	 in	 segmentation	 algorithms	which	 leverage	

the	unique	characteristics	of	ultrasound	imaging	or	 information	from	other	imaging	modalities	to	

assist	in	the	segmentation	problem	at	hand.	Much	effort	has	been	made	toward	tissue	segmentation	

for	diagnostic	purposes,	but	image‐guided	interventions	are	emerging	as	an	important	application	

in	which	image	segmentation	may	have	a	strong	clinical	impact.			

A	review	of	 the	ultrasound	segmentation	 literature	 from	the	 last	decade	 is	given	by	 109,	

110 .	 Generally	 speaking,	 the	 most	 prevalent	 segmentation	 strategies	 primarily	 target	 B‐mode	

images	rather	 than	 the	raw	radiofrequency	 RF 	signals,	as	most	clinical	ultrasound	machines	do	

not	provide	convenient	access	to	those	forms	of	data.	Although	several	machines	now	exist	which	

offer	research	interfaces	to	the	raw	data,	this	work	deals	with	segmentation	of	B‐mode	images.	The	

two	 most	 popular	 frameworks	 for	 B‐mode	 segmentation	 have	 been	 the	 ‘snakes’	 and	 level	 set	

propagation	 approaches,	 in	 large	 part	 due	 to	 the	 relative	 ease	 and	 speed	 of	 implementation.	

Regardless	of	the	chosen	framework,	it	is	almost	always	necessary	to	constrain	the	segmentation	in	

some	way	due	to	the	noisy	characteristics	of	ultrasound.	Common	constraints	include	the	B‐mode	

intensity	distribution,	gradient,	phase,	and	 texture.	 In	addition,	prior	knowledge	of	general	shape	

can	be	used	to	guide	segmentation	using	the	image	intensity‐based	constraints	above.		

The	primary	contribution	of	this	work	is	the	investigation	of	an	intraoperative	ultrasound	

tumor	 segmentation	 technique	which	 utilizes	 optical	 tracking,	 tissue	 deformation	modeling,	 and	

tomogram	 co‐registration	 to	 provide	 shape	 guidance.	 A	 level	 set	 framework	was	 chosen	 for	 the	

ability	 to	 evolve	 contours	 that	 change	 topology,	 such	 as	 might	 be	 the	 case	 with	 tumors	 having	

complex	shapes,	without	the	need	to	parameterize	these	objects.	The	governing	level	set	equation	

was	 formulated	 with	 terms	 for	 controlling	 edge	 advection,	 overall	 contour	 propagation,	 and	

contour	curvature.	In	addition,	a	term	for	enforcing	a	general	shape	to	the	contour	propagation	was	
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included	 utilizing	 novel	 shape	 prior	 information	 from	 co‐registered	 model‐updated	 tomogram	

segmentations.		

VII.B.4 Methods 

The	 proposed	 segmentation	 method	 is	 one	 part	 of	 a	 general	 intraoperative	 guidance	

pipeline.		In	the	following	sections	we	describe	the	preoperative	data	collection	and	preprocessing	

steps	 necessary	 for	 the	 pipeline,	 followed	 by	 the	 intraoperative	 data	 collection	 and	 the	

segmentation	procedure	itself.	

VII.B.4.1 Preoperative Patient Model 

Prior	 to	 the	 image‐guided	 intervention,	 the	 patient	 is	 imaged	 with	 magnetic	 resonance	

imaging	 MRI .	The	MR	volume	in	this	study	was	acquired	with	dimensions	256	x	256	x	216	at	1	x	1	

x	1.2	mm	voxels.	The	organ	and	tumor	were	both	segmented	from	these	 images	and	triangulated	

surfaces	are	created	using	the	marching	cubes	algorithm	 112 .	Some	amount	of	manual	interaction		

is	 often	 necessary	 for	 the	 tumor	 segmentation,	 due	 to	 blurred	 edges	 occurring	 due	 to	 diffuse	

infiltration	 of	 the	 lesion	 into	 normal	 tissue.	 After	 the	 organ	 and	 tumor	 surfaces	 were	 created,	

custom	software	was	used	to	create	a	tetrahedral	mesh	of	the	organ	geometry	 113 .	

VII.B.4.2 Intraoperative Tracked Ultrasound 

The	 ultrasound	 machine	 used	 in	 this	 study	 was	 an	 Acuson	 Antares	 Siemens,	 Munich,	

Germany 	with	 a	 VFX13‐5	 linear	 array	 probe	 at	 10	MHz.	 The	 pose	 of	 the	 ultrasound	 probe	was	

detected	by	a	Polaris	Spectra	optical	tracking	camera	 Northern	Digital	 Inc.,	Waterloo,	Canada .	A	

passively‐tracked	optical	target	was	rigidly	attached	to	the	probe	and	calibrated	using	the	method	

of	 Muratore	 et	 al.	 74 .	 The	 probe	 tracking	 data	 and	 ultrasound	 video	 were	 collected	 and	

synchronized	 on	 a	 host	 computer	 120,	 121 ,	 and	 the	 ultrasound	 images	 were	 captured	 with	 a	

Morphis	Dual	frame‐grab	card	 Matrox	Imaging,	Dorval,	Canada .	Each	image	was	stored	along	with	

its	pose	in	3D	space	given	by	the	tracking	data.	
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VII.B.4.3 Soft‐Tissue Deformation Correction  

Our	 group	 currently	 employs	model‐based	 correction	 strategies	 to	 address	misalignment	

between	intraoperative	and	preoperative	data	due	to	non‐rigid	tissue	movement	during	brain	 94,	

96‐98,	 101,	 163,	 180,	 203,	 204 	 and	 liver	 159,	 162,	 164 	 surgeries.	 The	 general	 approach	 is	 to	

measure	surface	displacements	from	the	organ	of	interest,	and	apply	these	as	boundary	conditions	

to	 a	 biomechanical	 model	 of	 the	 tissue.	 Most	 recently,	 a	 method	 was	 proposed	 which	 utilizes	 a	

patient‐specific	finite	element	model	of	tissue	to	predict	subsurface	target	movement	due	to	tissue	

compression	 exerted	 by	 the	 probe	 during	 ultrasound	 imaging	 188 .	 This	 method	 was	 found	 to	

improve	 the	 alignment	 of	 compressed	 ultrasound	 targets	 with	 co‐aligned	 tomogram	 targets	 to	

within	2	 to	3	mm	of	error.	 In	 this	work,	 this	correction	method	was	employed	to	ensure	that	 the	

shape	 priors	 from	 co‐registered	 tomograms	 discussed	 further	 in	 the	 next	 section 	 were	

positionally	 and	 geometrically	 consistent	 with	 the	 ultrasound	 data	 during	 the	 segmentation	

procedure.	

VII.B.4.4 Segmentation Procedure 

Our	 approach	utilizes	 level	 sets	with	 geodesic	 active	 contours	 205 .	 The	 signed	distance	

function,	ψ,	was	chosen	as	the	embedding	function	for	the	zero	level	set	 206 .The	movement	of	the	

contour	is	controlled	by	the	generic	level‐set	equation:	

	
ψ ∙ ψ | ψ| | ψ| 24

where	A	is	an	advection	term,	P	is	an	expansion	term,	and	Z	is	a	spatial	modifier	term	for	the	mean	

curvature	κ	 207 .	Scalar	constants	α,	β,	and	γ	are	used	to	weight	the	relative	contributions	of	the	

three	terms	to	the	curve	evolution.	The	contour	is	extracted	at	any	time	as	the	zero	level‐set	

	 , ψ , 0 25
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The	function	ψ	is	solved	at	each	time	step	in	a	finite	difference	scheme	to	create	an	image	field	of	

function	 values.	 The	 best	 approximation	 of	 the	 object	 surface	 is	 then	 to	 calculate	 the	 image	

positions	corresponding	to	zero	crossings	in	function	values.	

The	geodesic	active	 contours	equation	 in	 24 	may	be	extended	with	an	additional	 shape	

prior	term.	We	used	the	formulation	of	this	term	presented	by	Leventon	et	al.:	

	 ψ∗ ψ 26

where	ψ*	is	the	best	estimate	of	the	final	curve	as	determined	by	a	maximum	a	posteriori	approach		

and	λ	is	a	scalar	weight	constant	 208 .	The	estimate	of	the	final	curve	can	be	calculated	by	

	 〈 , 〉 argmax
, , |ψ, 27

which	seeks	to	maximize	the	probability	of	a	set	of	shape	parameters,	α,	and	rigid	pose	parameters,	

r,	 both	defined	later 	given	the	surface	ψ	at	some	point	in	time	and	the	gradient	of	the	image,	 .	

Equation	 27 	can	be	expanded	using	Bayes’	Rule:	

	
, |ψ,

ψ| , | , ,ψ
ψ,

28

where	the	denominator	can	be	discarded	as	it	does	not	depend	on	shape	or	pose.	The	first	term	in	

the	numerator	 is	modeled	as	 a	Laplacian	density	 function	over	Voutside,	 the	volume	of	 the	 current	

curve	ψ	which	lies	outside	the	estimated	final	curve	ψ*:	

	 ψ| , exp 29

The	 second	 term	describes	 the	 probability	 of	 observing	 a	 given	 image	 gradient	 given	 the	

current	and	final	curves.	It	can	be	assumed	that	when	the	curve	correctly	outlines	the	boundary	of	

an	object,	its	relationship	with	| |	should	be	Gaussian.	Thus	this	term	is	modeled	as	a	Laplacian	of	

the	goodness	of	fit	of	the	Gaussian	 ψ∗ 	to	the	samples	 ψ∗, | | :	

	 | , ,ψ exp ψ∗ | | 30

The	third	term	is	the	probability	distribution	of	the	shape	prior	parameters.	The	typical	strategy	for	

computing	a	prior	on	shape	variation	is	to	build	a	shape	model	given	a	set	of	training	images.	Given	
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n	training	images,	the	training	set	R , , … , 	consists	of	the	signed	distance	maps	for	each	

image.	 The	 mean	 surface,	 μ,	 is	 computed	 as	 the	 mean	 of	 the	 signed	 distance	 maps,	 ∑ .	

Principle	component	analysis	 PCA 	is	used	to	compute	the	shape	variance.	First,	the	mean	shape	is	

subtracted	from	each	 	to	create	mean‐offset	maps,	which	are	then	each	placed	as	column	vectors	

in	an	N	x	n‐dimensional	matrix	M,	where	N	is	the	number	of	samples	 pixels 	in	each	distance	map.	

Instead	 of	 performing	 the	 eigen	 decomposition	 on	 the	 large	 N	 x	 N	 covariance	matrix	M*MT,	 we	

decompose	the	much	smaller	n	x	n	inner	product	matrix	MT*M.	The	resulting	eigen	vectors,	E,	are	

then	multiplied	 by	 the	matrix	M	 to	 get	 the	 principle	 component	 images,	 U.	 The	 object	ψ	 can	 be	

estimated	by	the	first	k	principle	components	as	a	k‐dimensional	vector	of	shape	parameters,	α:	

	 Uk
T ψ 31

The	shape	prior	probability	term	is	thus	modeled	as	a	Gaussian	with	shape	variance	Σk:	

	 1

2 |Σ |
exp

1
2

TΣ 32

where	Σk	is	a	diagonal	matrix	containing	the	first	k	eigenvalues.		

The	last	term,	 ,	is	the	probability	of	observing	a	set	of	pose	parameters.	We	currently	do	

not	assume	any	pose	more	likely	than	another,	and	so	merely	assume	a	uniform	distribution	over	

these	parameters.	The	approximate	signed	distance	map	to	the	shape	prior	can	computed	as	

	
ψ∗ 	 ∗ ∗ 33

where	 	are	the	square	root	of	the	eigenvalues,	and	T x 	is	a	transform	which	defines	the	pose	of	

the	 shape,	 which	 we	 chose	 to	 be	 a	 rigid	 transform	 function	 with	 parameters,	 r,	 of	 rotation	 and	

translation.	 The	 shape	 prior	 term	 in	 26 	 is	 thus	 constructed	 at	 each	 iteration	 of	 the	 level	 set	

evolution	by	 referring	 to	 the	PCA	description	of	 the	object	 shape	and	 then	using	an	optimizer	 to	

solve	for	a	set	of	shape	and	pose	parameters	which	maximize	the	posterior	probability	in	 28 .	The	
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segmentation	algorithm	described	above	was	 implemented	 in	C 	primarily	using	 ITK	 Kitware	

Inc.,	Clifton	Park,	NY 	and	the	segmentation	pipeline	is	shown	in	Figure	41.	

	

Figure 41. Ultrasound image processing and segmentation pipeline using the shape model derived from 
a co‐registered tomogram segmentation. 

		 The	 segmentation	 is	 performed	 after	 soft	 tissue	 movement	 has	 been	 corrected	 with	 our	

model‐based	approach.	Each	ultrasound	image	is	thus	associated	with	a	specific	model	deformation	

derived	from	the	position	of	the	ultrasound	probe	in	the	tissue.	The	statistical	shape	model	is	then	

created	 from	 intersections	 of	 the	 ultrasound	 beam	 with	 the	 co‐registered	 tomogram	 target	

segmentation	as	shown	in	Figure	42.	Typically	it	 is	desirable	to	create	a	shape	model	from	a	very	

large	dataset,	and	since	this	is	not	available	in	practice	for	irregular	patient‐specific	structures	such	
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as	 tumors,	 the	 approach	 here	 was	 to	 perturb	 the	 ultrasound	 beam	 in	 the	 elevational	 directions	

several	millimeters	 in	each	direction	and	record	 the	varying	 intersected	 target	borders.	This	was	

done	for	several	planes	in	either	direction	in	order	to	gather	at	least	five	shape	images	with	which	

to	create	the	shape	model.	

	

Figure 42. Creation of  statistical  shape model  from co‐registered  tomogram  target  for  the ultrasound 
segmentation pipeline. 

VII.B.4.5 Experiments 

	 The	 segmentation	method	was	applied	 to	 a	B‐mode	 image	 and	 strain	 image	 from	a	brain	

tumor	resection	patient	at	Vanderbilt	Medical	Center.	Prior	to	the	study,	informed	written	consent	

was	obtained	from	the	patient	with	the	approval	of	our	Institutional	Review	Board.	For	each	image,	

the	 tumor	 was	 first	 segmented	 manually,	 and	 then	 the	 tumor	 was	 segmented	 using	 the	 semi‐

automatic	approach	over	a	series	of	six	trials.	In	the	first	trial,	the	four	weighting	parameters	for	the	

level	 set	 equation	 were	 chosen	 empirically	 to	 give	 a	 reasonable	 segmention.	 In	 each	 of	 the	

remaining	trials,	the	weighting	parameters	were	altered	in	the	manner	given	in	Table	8.	These	trials	



 
 
 

137 
 

were	not	 intended	to	be	a	 fully	comprehensive	sensitivity	study	of	 the	weighting	parameters,	but	

rather	provide	an	idea	of	at	least	the	variability	of	the	resulting	segmentation	contour	based	upon	

selection	of	these	parameters.	

Table 8. The level set weighting parameters used for each of the segmentation trials (six trials for both 
the B‐mode and strain  image). The parameters  in Trial 1 were chosen empirically to give a satisfactory 
segmentation, and then following trials modified one weighting factor at a time (bolded). 

Level	Set	

Parameter	

Trial	1	 Trial	2 Trial	3 Trial	4 Trial	5	 Trial	6

Advection	 6	 12	 6 6 6	 6

Propagation	 1.5	 1.5	 1.5 3 1.5	 1.5

Curvature	 1	 1	 2 1 1	 1

Shape	 0.2	 0.2	 0.2 0.2 0.4	 0

	

VII.B.5 Results 

Figure	 43	 shows	 an	 example	 of	 the	 shape	 model	 constructed	 from	 the	 intersection	 of	 a	

tracked	ultrasound	image	with	the	co‐registered	MR	tumor	borders.	The	mean	image	and	first	two	

modes	are	shown	and	give	an	idea	of	how	the	shape	given	by	the	MR	changed	with	respect	to	the	

intersection	with	the	ultrasound	plane.	
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Figure 43. Example of the statistical shape model created from intersection of a tracked ultrasound slice 
with a co‐registered MR tumor, showing the mean image (left) and three standard deviations of the first 
and second modes (middle and right). 

	 Figure	44	shows	a	B‐mode	image	slice	of	a	tumor	collected	prior	to	surgical	resection	of	the	

brain	tumor,	and	also	shows	the	registration	between	the	tracked	ultrasound	data	and	preoperative	

MR.	This	alignment	was	used	to	construct	the	shape	model	from	the	MR	tumor	as	described	above.	

	

Figure 44. A B‐mode image of the brain tumor (left), and the tracked ultrasound image in 3D space with 
the co‐registered MR tumor (right). 
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The	 manual	 B‐mode	 segmentation	 and	 the	 results	 of	 the	 segmentation	 trials	 using	 varying	

weighting	parameters	are	visualized	in	Figure	45.		

 

	

Figure  45.  Illustration  of  the  segmentation  variability  in  the  B‐mode  image  according  to  level  set 
weighting parameters. A manual user‐drawn segmentation  is shown  in  (a).  (b) shows the result of the 
semi‐automatic segmentation using empirically selected weighting parameters to give a contour similar 
to  the manual  contour.  The  contours  given  in  (c‐g)  show  some  examples of  altering  the  parameters 
chosen  for  (b):  (c)  is  the  result  of  doubling  the  advection weight;  (d)  is  the  result  of  doubling  the 
curvature weight;  (e)  is the result of doubling the propagation weight;  (f)  is the result of doubling the 
shape model weight;  and  (g)  is  the  result  of  eliminating  the  shape model  term  from  the  level  set 
equation. 
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The	comparison	of	each	B‐mode	semi‐automatic	segmentation	contour	with	the	manually	created	

segmentation	contour	in	terms	of	MHD	value	is	given	in	Table	9.	

Table  9.  Comparison  of  the  semi‐automatic  contours  generated  for  the  B‐mode  image with  various 
weighting parameters, compared to the manual segmentation. 

	 Trial	1	 Trial	2 Trial	3 Trial	4 Trial	5	 Trial	6

MHD	 mm 	 0.71	 16.89 0.98 13.70 2.10	 8.70

	

Figure	46	 shows	a	 strain	 image	 slice	 of	 the	 same	 tumor	 shown	 in	Figure	44,	 and	 also	 shows	 the	

registration	of	the	tracked	strain	image	with	the	preoperative	MR.	

	

Figure 46. A strain  image of the brain tumor (left), and the tracked ultrasound  image  in 3D space with 
the co‐registered MR tumor (right). 

The	manual	 strain	 image	 segmentation	 and	 the	 results	 of	 the	 segmentation	 trials	 using	 varying	

weighting	parameters	are	visualized	in	Figure	47.	
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Figure 47. Illustration of the segmentation variability in the strain image according to level set weighting 
parameters.  A manual  user‐drawn  segmentation  is  shown  in  (a).  (b)  shows  the  result  of  the  semi‐
automatic segmentation using empirically selected weighting parameters to give a contour similar to the 
manual contour. The contours given in (c‐g) show some examples of altering the parameters chosen for 
(b): (c) is the result of doubling the advection weight; (d) is the result of doubling the curvature weight; 
(e) is the result of doubling the propagation weight; (f) is the result of doubling the shape model weight; 
and (g) is the result of eliminating the shape model term from the level set equation. 

The	 comparison	 of	 each	 strain	 image	 semi‐automatic	 segmentation	 contour	 with	 the	 manually	

created	segmentation	contour	is	given	in	Table	10.	
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Table  10.  Comparison  of  the  semi‐automatic  contours  generated  for  the  strain  image  with  various 
weighting parameters, compared to the manual segmentation. 

	 Trial	1	 Trial	2 Trial	3 Trial	4 Trial	5	 Trial	6

MHD	 mm 	 1.29	 2.75 2.52 7.59 5.07	 26.46

	

VII.B.6 Discussion 

	 The	 results	 of	 the	 B‐mode	 segmentation	 shown	 in	 Figure	 45	 demonstrate	 the	 effects	 of	

altering	 the	 level	 set	weighting	 parameters	 for	 the	 advection,	 propagation,	 curvature,	 and	 shape	

prior	terms.	Figure	45b	shows	that	when	the	parameters	are	chosen	carefully,	the	semi‐automatic	

method	can	produce	a	final	contour	which	is	very	similar	to	the	manually	created	contour	shown	in	

Figure	45a.	However,	Figure	45c‐g	show	that	modifying	any	of	the	four	weighting	parameters	has	

significant	 effects	 on	 the	 segmentation.	 Figure	 45c	 shows	 that	 when	 the	 advection	 weight	 is	

increased,	the	contour	is	more	likely	to	adhere	to	very	strong	edges	which	can	be	outside	or	inside	

the	bounds	of	the	desired	object,	as	shown	by	the	lower	left	and	lower	right	edges	of	the	resulting	

contour,	respectively.	Figure	45d	shows	that	when	the	curvature	weight	is	increased,	the	contour	is	

overall	 forced	to	have	 fewer	regions	of	high	curvature,	such	as	on	the	 left	portion	of	 the	contour,	

and	some	finer	details	may	be	lost	as	a	consequence.	Figure	45e	shows	that	when	the	propagation	

weight	is	inceased,	the	contour	expands	well	beyond	the	edges	of	the	tumor.	Figure	45f	shows	that	

when	the	shape	model	weighting	is	increased,	the	contour	is	forced	to	conform	more	to	the	shape	of	

the	 co‐registered	MR	 tumor	 border	 not	 shown .	 Finally,	 Figure	 45f	 shows	 that	when	 the	 shape	

term	is	eliminated	completely,	the	level	set	propagates	and	tends	to	adhere	to	image	edges	which	

do	 not	 necessarily	 correspond	 to	 the	 tumor.	 The	 MHD	 values	 comparing	 the	 semi‐automatic	

segmentation	contours	to	the	manual	contours	in	Table	9	further	demonstrate	the	variability	of	the	

segmentation	 performance.	 In	 the	 case	 of	 Trial	 1,	 in	 which	 the	 segmentation	 parameters	 were	

empirically	chosen	by	the	user,	the	contour	MHD	error	value	was	only	0.71	mm,	indicating	that	the	

overall	 shape	 and	 size	 of	 the	 semi‐automatic	 contour	was	 quite	 similar	 to	 the	manually	 created	
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contour.	However,	over	the	other	trials,	the	MHD	errors	ranged	from	0.98	to	16.89	mm	depending	

on	the	weighting	parameters	which	were	altered.	This	range	is	obviously	much	larger	than	would	

be	 acceptable	 for	 the	 intended	 purposes	 of	 accurately	 detecting	 the	 size	 and	 position	 of	

intraoperative	targets,	indicating	the	importance	of	the	level	set	weights	in	this	method.	

	 The	same	overall	trends	were	observed	in	Figure	47	with	respect	to	the	segmentation	of	the	

tumor	 in	 the	 strain	 image.	 The	 primary	 finding	 was	 that	 alterations	 of	 any	 of	 the	 weighting	

parameters	 can	 lead	 to	 drastic	 differences	 in	 the	 final	 segmentation	 contour.	 The	 differences	

observed	between	Figure	47	and	Figure	45	are	primarily	due	to	the	difference	in	intensity	profiles	

between	the	strain	and	B‐mode	image,	which	also	points	to	the	difference	 in	contrast	mechanism	

between	the	two	modalities.		The	strain	image	MHD	values	in	Table	10	also	show	a	trend	similar	to	

the	B‐mode	image.	The	Trial	1	MHD	error	was	the	lowest,	with	a	value	of	1.29	mm.	Over	the	other	

five	 trials,	 the	MHD	error	 ranged	 from	2.52	 to	 26.46	mm	depending	on	 the	 selection	of	 level	 set	

parameters.	

	 The	 reliance	 of	 the	 proposed	 segmentation	 algorithm	 upon	 the	 choice	 of	 weighting	

parameters	 does	 present	 a	 significant	 obstacle	 toward	 adoption	 within	 a	 general	 intraoperative	

ultrasound	 framework.	 There	 is	 generally	 no	way	 to	 predict	 the	 optimal	 weights	 to	 produce	 an	

acceptable	 result	 unless	 the	 image	 intensity	 profile	 is	 well	 understood	 beforehand,	 which	 is	 a	

challenging	 requirement	 for	 intraoperative	 ultrasound	 due	 to	 the	 freehand	 nature	 of	 the	

acquisitions.	The	simplest	technical	solution	is	to	acquire	the	ultrasound	images	and	then	manually	

alter	the	weights	until	a	satisfactory	contour	is	observed.	However,	this	would	be	a	large	disruption	

to	 normal	 surgical	 workflow	 for	 most	 procedures,	 since	 the	 semi‐automatic	 segmentation	 using	

shape	priors	takes	approxmiately	10	to	20	seconds	on	one	thread	of	an	Intel	Core	2	Quad	CPU	at	2.4	

GHz.	Future	work	should	most	 likely	 focus	on	ways	to	 improve	the	speed	of	the	segmentation,	or	

identify	 interventions	 in	which	 very	 consistent	 ultrasound	 images	 are	 routinely	 produced	which	

could	take	advantage	of	a	priori	knowledge	of	useful	weighting	values	for	the	level	set	equation.	
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VII.B.7 Conclusions 

	 This	study	presented	a	level	set	method	for	intraoperatively	segmenting	ultrasound	images	

using	 the	 image	 intensity	 information	 in	 the	 ultrasound	 data	 in	 combination	 with	 co‐registered	

preoperative	segmentations	from	tomographic	image	volumes.	The	method	was	shown	to	produce	

contours	 which	 were	 similar	 to	 manually	 created	 contours,	 but	 required	 careful	 selection	 of	

weighting	 parameters	 in	 the	 level	 set	 equation.	 The	 dependence	 of	 the	 segmentation	 on	 these	

parameters	 presents	 an	 obstacle	 to	 the	 broad	 adoption	 of	 this	 method	 for	 image‐guided	

interventions,	 as	 the	 time	 to	 determine	 proper	 parameters	 intraoperatively	 is	 a	 significant	

workflow	 hinderance.	 A	 possible	 avenue	 of	 future	 research	 is	 to	 determine	whether	 ultrasound	

images	 of	 certain	 anatomy	 are	 consistent	 enough	 that	 certain	 parameter	 presets	 could	 be	 used	

without	the	need	for	intraoperative	determation	of	the	proper	parameters.		 	
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CHAPTER VIII 

SUMMARY AND FUTURE DIRECTIONS 

This	dissertation	presented	studies	that	evaluated	devices	and	methodology	in	support	of	a	

tracked	ultrasound	 system	 for	 accurate	 intraoperative	 image	 guidance.	 Chapter	 IV	 presented	 the	

design	and	characterization	of	a	novel	laser	range	scanner	to	be	used	as	a	highly	accurate	surface	

digitization	 tool.	 This	 device	 was	 a	 key	 component	 in	 an	 intraoperative	 pipeline	 by	 enabling	

surface‐based	image‐to‐physical	registrations,	and	measuring	soft	tissue	deformations.	The	tracked	

data	 from	 this	 device	 led	 to	 the	 identification	 of	 a	 fundamental	 problem	 of	 tracked	 ultrasound	

systems,	 which	 is	 the	 registration	 error	 introduced	 by	 soft	 tissue	 deformation	 exerted	 by	 the	

ultrasound	probe	on	the	organ	of	interest.	Chapter	V	introduced	a	novel	method	of	correcting	this	

registration	 error	 by	 utilizing	 a	 biomechanical	 model	 approach.	 This	 method	 utilized	 the	 rigid	

registration	from	the	LRS	or	tracked	pointer	in	order	to	align	the	tracked	ultrasound	probe	to	the	

preoperative	patient	model.	The	position	of	 the	probe	within	 the	model	was	 then	used	 to	 create	

boundary	 conditions	 for	 a	 forward	 model	 solution,	 given	 a	 set	 of	 assumptions	 regarding	 the	

handling	of	the	probe	by	the	user,	and	the	solution	was	used	to	correct	for	the	tissue	deformation.	

That	chapter	demonstrated	that	this	method	is	capable	of	reducing	alignment	error	due	to	surface	

compression	from	up	to	1	cm	down	to	a	clinically	relevant	range	of	2	to	3	mm	after	correction.	The	

compression	correction	was	demonstrated	in	that	chapter	in	a	brain	tumor	case,	but	is	applicable	in	

a	variety	of	surgical	domains,	as	shown	by	the	examples	below	in	Figure	48.	
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Figure 48. Examples of the compression correction applied in a clinical brain case (a&b), a liver phantom 
(c&d) and a clinical breast case  (e&f  from  [209]).  In each pair of  images,  the  first  image shows a slice 
from  the  preoperative  tomogram,  and  the  second  shows  an  overlay  of  the  co‐registered  ultrasound 
image after compression correction. 

Chapter	 VI	 then	 presented	 a	more	 generalized	method	 for	 compression	 correction	which	 can	 be	

extended	to	any	tracked	ultrasound	system	without	the	need	for	preoperative	imaging,	and	which	

also	 has	 the	 potential	 for	 real‐time	 corrections.	 The	 generic	 model	 correction	 method	 was	

compared	 to	 the	 previously	 developed	 patient‐specific	 correction	 method	 and	 was	 found	 to	

improve	alignment	with	co‐registered	tomograms	with	only	submillimetric	differences	between	the	

two	methods.	Finally,	Chapter	VII	presented	other	studies	utilizing	ultrasound	image	information	to	

designate	features	intraoperatively.	

	 There	are	many	avenues	for	further	improvement	to	the	methodology	in	this	dissertation.	

For	instance,	the	compression	compensation	methods	presented	in	Chapters	V	and	VI	relied	on	an	

assumption	 of	 homogenous	 material	 properties	 in	 the	 imaged	 tissue	 in	 order	 to	 simplify	 the	

problem	 of	 modeling	 the	 deformation.	 The	 reality	 of	 surgical	 interventions	 often	 involves	

heterogeneous	regions	of	tissue	due	to	the	presence	of	disease	or	various	other	normal	tissue	types	

in	 close	 proximity.	 Large	 differences	 in	 material	 properties	 between	 tissue	 types	 can	 lead	 to	

significant	error	in	the	biomechanical	model	solution	if	the	assumption	of	homogeneity	is	kept.	The	
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ability	 to	 accurately	 designate	 material	 properties	 in	 the	 model	 intraoperatively	 would	 be	 a	

valuable	 addition	 to	 the	 field.	 A	 particularly	 attractive	 approach	 would	 be	 to	 utilize	 ultrasound	

strain	 imaging	 to	 provide	 at	 least	 relative	 stiffness	 values	 in	 real‐time	 see	 Appendix	 A .	 The	

compression	correction	methods	in	Chapters	V	and	VI	used	only	Dirichlet	boundary	conditions	to	

drive	the	solution,	implying	that	stiffness	ratios	are	sufficient	to	solve	the	model	and	that	absolute	

material	properties	would	not	be	necessary.	Strain	imaging	would	be	both	able	to	satisfy	this	input	

requirement	and	would	also	utilize	the	same	tracked	ultrasound	framework	in	order	to	place	the	

data	 in	 a	 consistent	 spatial	 context	 with	 all	 other	 data.	 Preliminary	 work	 has	 been	 done	 to	 co‐

register	 tracked	 strain	 imaging	 with	 other	 surgical	 data	 198,	 210 	 during	 image‐guided	

interventions,	 but	 so	 far	 strain	 imaging	 has	 not	 been	 extensively	 used	 to	 estimate	 material	

properties	 intraoperatively	 to	 improve	 guidance	 within	 the	 framework	 of	 a	 predictive	

biomechanical	tissue	model.	One	potential	obstacle	to	this	approach	would	be	the	potential	need	for	

extended	intraoperative	imaging	time	with	the	ultrasound	machine	to	acquire	the	strain	images	in	

addition	to	normal	B‐mode	images.		

An	 alternative	 strategy	 would	 be	 to	 compute	 material	 properties	 from	 preoperative	

information,	 and	 then	 align	 this	 preoperative	 data	 to	 the	 intraoperative	 space	 using	 standard	

registration	 techniques.	Previous	work	has	shown	that	modality‐independent	elastography	 MIE 	

can	 be	 used	 on	 typical	 preoperative	 CT	 or	 MR	 images	 to	 produce	 estimates	 of	 tissue	 stiffness	

throughout	 the	 image	 volume	 211‐214 .	 	 For	 example,	 Figure	 49	 shows	 stiffness	 contrast	 of	 a	

tumor	located	in	the	center	of	two	breast	volumes	reconstructed	using	MIE.	
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Figure  49.  Example  of MIE  applied  to  a  CT  breast  volume  (a) with  cross‐section  showing  tumor‐to‐
normal elasticity contrast (b), and an MR breast volume (c) with cross‐section showing similar contrast 
(d). [215] 

Recent	advancements	to	MIE	workflow,	such	as	the	automation	of	boundary	conditions	in	

the	 tissue	 model	 see	 Appendix	 B ,	 indicate	 that	 MIE	 could	 potentially	 be	 performed	 prior	 to	

surgery	with	minimal	disruption	to	normal	surgical	preparation	or	workflow	 215 .	Most	recently,	

MIE	 is	 being	 validated	 in	 preclinical	 breast	 cancer	 models	 216,	 217 .	 Integrated	 knowledge	 of	

material	 properties	 in	 some	 form	 during	 surgery,	 whether	 from	 MIE	 or	 another	 source,	 would	

greatly	 complement	 the	 advancements	 presented	 in	 this	 work	 toward	 a	 more	 accurate	 and	

streamlined	ultrasound	guidance	system.	

In	 addition	 to	 the	 issue	 of	 material	 properties,	 one	 of	 the	 primary	 caveats	 of	 the	

compression	 correction	methods	presented	 in	 this	 dissertation	was	 that	 the	user	must	press	 the	

probe	directly	in	the	depth	direction	of	the	ultrasound	beam.	This	assumption	was	made	because	in	

practice	 it	 is	 a	 very	 challenging	 task	 to	 measure	 the	 intraoperative	 probe‐tissue	 interactions	 in	
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other	compression	scenarios	such	as	dragging.	Although	it	was	shown	in	the	preceding	studies	that	

it	is	feasible	to	account	for	purely	depth‐wise	compression,	there	are	ultrasound‐guided	procedures	

in	 which	 it	 is	 much	 more	 difficult	 for	 the	 user	 to	 carefully	 control	 the	 tissue	 interaction.	 For	

example,	 image‐guided	 breast	 surgery	 is	 a	 procedure	which	 is	 recently	 emerging	 as	 a	 target	 for	

navigational	 methodology	 including	 tracked	 ultrasound.	 One	 major	 hurdle	 in	 translating	

established	 image‐guidance	 techniques	 to	 this	 anatomy	 is	 the	 greater	 potential	 for	 large	 tissue	

movements	during	imaging.	This	is	illustrated	below	in	data	obtained	from	a	healthy	volunteer	with	

benign	 cysts.	 In	 this	 dataset,	 an	 image‐to‐physical	 registration	 was	 performed	 to	 a	 supine	 MR	

volume	using	skin	fiducials.	The	tracked	ultrasound	data	was	acquired	by	an	experienced	surgeon	

in	one	continuous	swab	while	attempting	to	 localize	every	cyst.	 In	 this	case,	 the	surgeon	was	not	

given	special	instruction	with	respect	to	manipulation	of	the	tissue	with	the	ultrasound	probe,	and	

so	this	dataset	is	representative	of	normal	target	localization	in	the	breast	domain.	Each	ultrasound	

slice	in	which	a	cyst	was	visible	was	segmented	and	the	contour	was	rendered	in	3D	space.	

	

Figure 50. An example of tracked ultrasound data acquired during a breast examination of a patient with 
benign cysts (a), showing the registration of LRS cloud to MR surface (b). The swabbed ultrasound cyst 
contours are spread over a wide volume due to dragging of the tissue (c), which was confirmed  in the 
probe tracking vector history (d). 
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Figure	50c	 shows	a	 large	amount	of	 tissue	dragging	due	 to	 the	 swabbing	 search	 for	 each	

cyst.	 It	 can	be	 seen	 that	 the	majority	 of	 the	ultrasound	 contours	 are	 spread	out	 in	broad	 swaths	

which	are	not	spatially	consistent	with	the	MR	cyst	segmentations.	The	misalignment	 in	this	case	

was	 not	 only	 just	 in	 the	 depth	 direction	 of	 the	 ultrasound	 images,	 but	 rather	 it	 was	 in	 the	

lateral/elevational	 directions	 as	 well.	 Analysis	 of	 the	 tracking	 data	 during	 the	 tissue	 swab	

confirmed	large	lateral	components	to	the	probe	movement.	The	probe	trajectory	vectors	from	the	

tracking	data	tended	to	be	very	spatially	consistent	with	the	direction	of	misalignment	between	the	

ultrasound	and	MR	data,	as	shown	in	Figure	50d.	In	general	the	direction	in	which	the	probe	was	

moving	 immediately	 prior	 to	 an	ultrasound	 slice	 corresponded	 to	 the	misalignment,	 indicating	 a	

dragging	 effect	 exerted	 on	 the	 tissue.	 Obviously	 this	 phenomenon	 confounds	 the	 compression	

correction	methods	previously	presented	 in	 this	dissertation,	which	did	not	 integrate	any	way	 to	

compensate	for	lateral	movement.	

	 The	data	in	Figure	50	above	was	obtained	with	no	special	instruction	to	the	breast	surgeon,	

and	 so	 one	 preliminary	 attempt	 at	 resolving	 this	 issue	 was	 to	 take	 extra	 precautions	 to	 avoid	

dragging	 effects	 during	 the	 swab	 procedure.	 The	 same	 patient	 was	 imaged	 again,	 but	 when	 the	

largest	cyst	was	located	during	the	swab,	the	surgeon	lifted	the	probe	off	of	the	breast	surface	in	an	

attempt	 to	 let	 the	 tissue	 settle	 from	 the	dragging	manipulation	back	 into	 the	 rest	 state.	Then	 the	

probe	 was	 brought	 back	 perpendicularly	 to	 the	 tissue	 and	 the	 cyst	 was	 imaged	 from	 several	

different	 angles.	 The	 resulting	 ultrasound	 surface	 and	 its	 unmodified	 registration	 with	 the	 MR	

based	on	a	rigid	breast	surface	registration,	as	before 	is	shown	below	in	Figure	51a.	
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Figure 51. Example of an ultrasound cyst surface  (red) misaligned with the corresponding MR surface, 
with the prior swab trajectory visualized as a blue arrow (a). The known vector of misalignment between 
the ultrasound and MR centroids was computed and the closest vector in the previous three seconds of 
tracking data was used to translate the ultrasound cyst to an earlier position in the swab. 

Figure	51	illustrates	that	even	after	the	precautions	taken	with	respect	to	careful	swabbing	

there	 can	 still	 be	 lingering	 effects	 from	 tissue	 swabbing,	 although	 likely	 exaggerated	 in	 this	 case	

because	 the	 benign	 breast	 cysts	 were	 noted	 by	 the	 surgeon	 as	 being	 highly	 mobile	 targets.	

Examination	of	 the	probe	 tracking	data	 showed	again	 that	 immediately	prior	 to	 locating	 the	 cyst	

and	lifting	the	probe	off	of	the	surface,	the	swab	trajectory	closely	corresponded	to	the	direction	of	

misalignment	 between	MR	 and	ultrasound.	 In	 order	 to	 further	 bolster	 the	 hypothesis	 that	 tissue	
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dragging	 was	 the	 cause	 of	 the	 cyst	 misalignment,	 a	 crude	 correction	 was	 devised	 in	 which	 the	

known	misalignment	vector	between	the	MR	and	ultrasound	centroids	was	calculated,	and	then	the	

tracking	 data	 from	 three	 seconds	 prior	 was	 searched	 for	 the	 swab	 vector	 which	 most	 closely	

matched	 the	 centroid	 vector.	 The	 best	 tracking	 vector	 was	 then	 used	 to	 naively	 translate	 the	

ultrasound	cyst	surface	backward	along	the	swab	path,	which	resulted	in	the	alignment	shown	by	

Figure	51b.	While	this	approach	would	not	be	robust	enough	to	deploy	in	a	general	sense,	it	does	

serve	 to	 illustrate	 a	 scenario	 in	 which	 a	 more	 sophisticated	 correction	 method	 is	 needed	 to	

reconstruct	all	of	the	tissue	movement.	

	 One	 possible	 approach	 to	 this	 problem	 may	 be	 to	 record	 surface	 movement	 during	

ultrasound	 imaging	 with	 another	 device,	 such	 as	 an	 LRS.	 The	 movement	 of	 surface	 landmarks	

visible	 in	 the	 textured	 point	 cloud	 data	 could	 be	 used	 to	 more	 accurately	 formulate	 boundary	

conditions	for	the	model‐based	correction.	However,	the	LRS	is	not	an	ideal	solution	because	it	 is	

intrusive	 to	 workflow	 and	 cannot	 provide	 real‐time	 surface	 acquisitions.	 A	 technology	 which	 is	

emerging	 as	 an	 alternative	 to	 the	 laser‐based	 measurement,	 however,	 is	 stereo‐pair	 surface	

reconstruction	 156,	218 .	In	this	method,	two	cameras	in	a	stereo	configuration	are	calibrated	to	

construct	a	3D	point	cloud	of	a	target	surface,	as	shown	below	in	Figure	52.	

	

Figure 52. Example of a stereovision reconstruction on a cortical surface phantom, showing the left and 
right camera views and the resulting 3D point cloud [219]. 

It	was	shown	by	Kumar	et	al.	that	a	stereovision	surgical	microscope	system	can	be	used	to	

create	point	clouds	with	accuracy	in	the	0.46	–	1.5	mm	range	 219 .	While	this	is	not	quite	as	good	

as	what	can	be	achieved	with	the	LRS,	the	stereovision	approach	can	be	performed	in	real‐time.	In	
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addition,	 this	 approach	 can	 potentially	 be	 performed	 continuously	 throughout	 a	 procedure	 to	

provide	surface	measurements	with	little	interruption	to	normal	workflow,	as	long	as	the	cameras	

are	pointed	at	the	surgical	field.	Integration	of	this	data	into	the	model	corrections	developed	in	this	

dissertation,	along	with	 the	possibility	of	using	more	sophisticated	 friction	models	 for	 the	probe‐

tissue	 interactions,	 could	 further	 advance	 the	 broader	 utility	 of	 ultrasound	 as	 a	 quantitative	

interventional	localization	tool.	
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APPENDIX 

A. Monitoring surgical resection of tumors with ultrasound strain imaging 

A.1 Introduction and Significance of Study 

	 There	 are	 several	 ultrasound‐based	 imaging	modalites,	 such	 as	 strain	 imaging,	 ARFI,	 and	

SWEI,	which	offer	measurements	of	tissue	stiffness.	Although	the	clinical	importance	of	stiffness	as	

a	biomarker	 for	disease	extent	 is	well	recognized,	 these	modalities	have	not	thus	 far	been	widely	

utilized	 in	a	 guidance	 role	 for	 surgical	 resection	of	 interventional	 targets.	This	 study	presents	 an	

initial	feasibility	assessment	of	the	ability	of	strain	imaging	to	consistently	localize	a	phantom	lesion	

during	resection	even	with	the	presence	of	a	resection	cavity	and	irrigation	with	fluids.	This	work	

was	presented	at	the	International	Tissue	Elasticity	Conference	in	2012.	

	

Appearing	 in:	T.	 S.	Pheiffer,	B.	C.	Byram,	M.	 I.	Miga.	Monitoring	 surgical	 resection	of	 tumors	with	

ultrasound	strain	imaging.	In:	Clinical	and	Animal	Applications,	ITEC	Deauville,	France,	2012.	

	

A.2 Background 

Resection	of	tumors	is	often	performed	by	the	surgeon	using	tactile	sensory	information	to	

distinguish	 between	 normal	 and	 abnormal	 tissue.	 Ultrasound	 strain	 imaging	 has	 potential	 to	

supplement	conventional	guidance	methods	with	quantitative	information	about	tissue	stiffness	at	

depth.	 	 It	 has	 been	 suggested	 that	 strain	 imaging	 may	 be	 capable	 of	 distinguishing	 tumor	 from	

normal	 tissue	 during	 surgery	 136,	 198,	 199 .	 With	 respect	 to	 diagnostic	 lesion	 inspection,	

localization	with	strain	imaging	of	a	potential	surgical	target	is	well	understood.	 	In	this	work,	we	

assess	the	efficacy	of	this	modality	to	monitor	resection.	
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A.3 Aims 

The	aim	of	this	work	is	to	demonstrate	the	feasibility	of	using	ultrasound	strain	imaging	to	

monitor	a	tumor	remnant	during	surgical	resection.	

A.4 Methods 

A	 phantom	 was	 constructed	 of	 tissue‐mimicking	 polyvinyl	 alcohol	 gel	 with	 graphite	

scatterers	and	a	fabric	sphere	to	serve	as	the	target	lesion.		The	tumor	was	incrementally	resected	

in	 three	 stages,	 with	 larger	 amounts	 excised	 at	 each	 stage	 until	 complete	 removal	 was	

accomplished.	Strain	imaging	was	performed	of	the	tumor	remnant	at	each	stage	of	resection,	and	

the	 tumor	 cavity	 was	 irrigated	 with	 water	 to	 eliminate	 air	 pockets	 introduced	 by	 the	 resection	

process.	 An	 Acuson	 Antares	 ultrasound	 machine	 Siemens,	 Munich,	 Germany 	 was	 used	 with	 a	

VFX13‐5	 probe	 at	 a	 frequency	 of	 11.4	MHz.	 Strain	 images	were	 generated	 using	 the	 eSie	 Touch	

Elasticity	 Imaging	software	on	the	ultrasound	machine.	All	 imaging	was	conducted	 freehand	with	

the	probe	in	approximately	the	same	location	lateral	to	the	resection	site.	

A.5 Results 

The	 strain	 images	 show	 the	 tumor	 mass	 with	 clear	 contrast	 against	 the	 bulk	 phantom	

material	 prior	 to	 resection.	 After	 resection	 of	 approximately	 one	 third	 of	 the	 tumor	 volume,	 the	

lesion	 still	 appears	 in	 the	 strain	 images	 with	 a	 corresponding	 reduction	 in	 image	 slice	 cross	

sectional	area.	After	resection	of	another	third	of	the	tumor,	the	tumor	mass	still	clearly	appears	in	

the	 strain	 images	 but	 with	 a	 more	 noticeable	 decrease	 in	 cross	 sectional	 area.	 Following	 the	

complete	resection	of	the	entire	tumor	mass,	strain	imaging	no	longer	showed	a	region	of	low	strain	

in	the	resection	cavity.	
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Figure 53. Effects of tumor resection on strain imaging in a cryogel phantom. Boxes (a), (c), (e), and (g) 
show increasing amounts of tumor resection, from no resection to total resection. Boxes (b), (d), (f), and 
(h) show the corresponding strain images of the tumor remnant. 

A.6 Conclusions 

The	phantom	study	performed	shows	the	feasibility	of	using	ultrasound	strain	imaging	as	a	

tool	for	monitoring	surgical	resection	of	lesions.	It	was	shown	that	the	excision	of	tumor	mass	and	

the	 creation	 of	 a	 resection	 cavity	 did	 not	 obstruct	 the	 creation	 of	 strain	 images.	 In	 addition,	 the	

lesion	 area	 in	 the	 images	 decreased	 in	 correlation	 with	 decreasing	 remnant	 tumor	 volume.	

Ultrasound	 strain	 imaging	 shows	 promise	 as	 a	 surgical	 localization	 method	 and	 awaits	 further	

studies	within	the	clinical	environment.	
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B. Automatic Generation of Boundary Conditions Using Demons Non‐Rigid Image Registration for Use in 

3D Modality‐Independent Elastography 

 
B.1 Introduction and Significance of Study 

	 This	 study	 demonstrates	 a	 novel	 approach	 to	 solving	 a	 workflow	 problem	 in	 modality‐

independent	 elastography	 MIE ,	 which	 utilizes	 a	 finite	 element	 model	 approach	 to	 estimating	

material	 properties	 in	 tissue.	 The	 general	 framework	 of	 MIE	 is	 to	 acquire	 pre‐	 and	 post‐

deformation	images	of	tissue	subjected	to	a	mechanical	loading	condition,	and	then	to	optimize	the	

material	 property	 distribution	 in	 the	 tissue	 model	 until	 the	 model‐prediction	 of	 the	 subsurface	

tissue	movement	matches	 the	observed	 tissue	movement	 in	 the	 images.	A	necessary	 input	 to	 the	

finite	 element	 model,	 however,	 are	 boundary	 conditions	 which	 accurately	 reflect	 the	 physical	

loading	 conditions	 applied	 to	 the	 tissue.	 These	 boundary	 conditions	 are	 difficult	 to	 measure	 in	

practice,	and	previously	required	a	large	amount	of	effort	to	generate	using	surface	fiducials.	In	this	

work,	 the	 boundary	 condition	 generation	 step	 was	 automated	 through	 the	 use	 of	 the	 demons	

deformable	 registration	 algorithm	 to	 detect	 boundary	 displacements	 using	 the	 image	 volumes	

themselves.	 This	 brings	 the	 MIE	 method	 closer	 to	 clinical	 deployment,	 in	 which	 the	 ready	

availability	 of	 tissue	 material	 properties	 has	 implications	 in	 a	 variety	 of	 domains,	 including	 the	

model‐based	 ultrasound	 corrections	 presented	 in	 this	 dissertation.	 This	 work	 was	 published	 in	

IEEE	Transactions	on	Biomedical	Engineering	in	2011.	

	

Appearing	 in:	 T.	 S.	 Pheiffer,	 J.	 J.	 Ou,	 R.	 E.	 Ong	 and	M.	 I.	Miga.	 Automatic	 Generation	 of	 Boundary	

Conditions	 Using	 Demons	 Nonrigid	 Image	 Registration	 for	 Use	 in	 3‐D	 Modality‐Independent	

Elastography.	IEEE	Transactions	on	Biomedical	Engineering	58,	2607‐2616	 2011 .	
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B.2 Abstract 

Modality‐independent	elastography	 MIE 	is	a	method	of	elastography	that	reconstructs	the	

elastic	 properties	 of	 tissue	 using	 images	 acquired	 under	 different	 loading	 conditions	 and	 a	

biomechanical	 model.	 	 Boundary	 conditions	 are	 a	 critical	 input	 to	 the	 algorithm,	 and	 are	 often	

determined	by	 time‐consuming	point	correspondence	methods	requiring	manual	user	 input.	This	

study	 presents	 a	 novel	 method	 of	 automatically	 generating	 boundary	 conditions	 by	 non‐rigidly	

registering	 two	 image	 sets	with	 a	demons	diffusion‐based	 registration	 algorithm.	The	use	of	 this	

method	 was	 successfully	 performed	 in	 silico	 using	 magnetic	 resonance	 and	 X‐ray	 computed	

tomography	 image	 data	 with	 known	 boundary	 conditions.	 These	 preliminary	 results	 produced	

boundary	 conditions	 with	 accuracy	 of	 up	 to	 80%	 compared	 to	 the	 known	 conditions.	 Demons‐

based	boundary	conditions	were	utilized	within	a	3D	MIE	reconstruction	to	determine	an	elasticity	

contrast	ratio	between	tumor	and	normal	tissue.	Two	phantom	experiments	were	then	conducted	

to	further	test	the	accuracy	of	the	demons	boundary	conditions	and	the	MIE	reconstruction	arising	

from	 the	 use	 of	 these	 conditions.	 Preliminary	 results	 show	 a	 reasonable	 characterization	 of	 the	

material	properties	on	this	first	attempt	and	a	significant	improvement	in	the	automation	level	and	

viability	of	the	method.	

B.3 Introduction 

An	 imaging	 methodology	 that	 utilizes	 the	 mechanical	 properties	 of	 tissue	 is	 known	 as	

elastography.	Elastography	employs	a	combination	of	 image	processing	and	measurements	of	 the	

physical	 deformation	 of	 the	 tissue	 to	 create	 a	 representation	 of	 the	 mechanical	 strength	 of	

structures	inside	an	organ	 220,	221 .	The	overall	principle	behind	elastography	for	use	in	cancer	

imaging	is	that	regional	changes	in	tissue	architecture	resulting	from	the	manifestation	of	disease	

result	 in	 detectable	 changes	 in	 mechanical	 properties.	 For	 example,	 breast	 cancers	 have	 been	

widely	recognized	in	the	medical	community	as	much	firmer	to	the	touch	than	the	surrounding	soft	

tissue.	The	biological	 basis	 for	 this	 effect	 is	 due	 to	 changes	 in	 tissue	 composition,	 such	 as	 varied	
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expression	of	collagen	and	greater	numbers	of	fibroblasts	 194,	195 .	The	exploitation	of	a	contrast	

mechanism	 based	 on	 elastic	 properties	 may	 have	 considerable	 potential	 to	 characterize	 disease	

states.		

Several	 kinds	 of	 elastography	 exist,	 such	 as	 ultrasound	 elastography	 USE 	 and	magnetic	

resonance	 elastography	 MRE 	which	have	 already	 shown	promise	 in	diagnosing	 solid	 lesions	 in	

breast	 tissue	 and	 other	 physiological	 locations.	 The	 first	 introduction	 of	 USE	 demonstrated	 that	

images	 from	A‐line	 ultrasound	 could	 provide	 axial	 strain	 estimates	 222 .	 Elastography	 has	 also	

been	applied	within	the	MR	imaging	domain	whereby	motion‐sensitized	gradient	sequences	were	

used	 to	 visualize	 and	quantify	 strain	wave	propagation	 in	media	 223 .	A	 relatively	new	method	

known	 as	 modality‐independent	 elastography	 MIE 	 has	 recently	 shown	 potential	 for	

supplementing	other	 imaging	modalities	 such	as	MR	and	CT	 for	detection	of	 solid	 tumors	 in	 soft	

tissue	 224 .	MIE	has	the	benefit	of	being	flexible	with	regard	to	its	inputs,	and	unlike	USE	and	MRE,	

it	 is	not	reliant	on	a	particular	 imaging	modality.	MIE	 involves	 imaging	a	 tissue	of	 interest	before	

and	after	compression,	and	then	applying	a	finite	element	 FE 	soft‐tissue	model	within	a	nonlinear	

optimization	framework	in	order	to	determine	the	elastic	properties	of	the	tissue.	The	group	of	Shi	

et	al.	also	has	used	FE	biomechanical	models	 to	estimate	material	properties	of	 the	heart	using	a	

priori	information	 225 .	A	requirement	of	the	MIE	method	is	that	appropriate	boundary	conditions	

be	designated	 for	use	 in	 the	biomechanical	model.	Generation	of	accurate	boundary	conditions	 is	

problematic	 because	 soft‐tissue	 organs	 are	 non‐rigid	 structures,	 which	 invalidates	 the	 use	 of	

standard	rigid	registration	techniques.	Techniques	which	have	addressed	this	issue	in	the	past	have	

required	a	significant	amount	of	user	interaction.	The	goal	of	this	work	is	to	develop	and	validate	a	

method	of	generating	boundary	conditions	automatically	by	registering	organ	surfaces	before	and	

after	mechanical	 loading.	While	breast‐like	phantoms	are	used	as	a	demonstration	of	 the	method,	

the	 intention	 is	 to	make	a	more	broadly	 applicable	method	 that	may	be	applied	 to	 other	organs,	

such	as	the	brain,	liver,	or	lung.	



 
 
 

178 
 

The	previous	 gold	 standard	 in	 generating	boundary	 conditions	 for	MIE	has	been	 feature‐

based	 registration	 methods	 211 .	 	 Conventionally	 this	 entails	 employing	 point	 correspondence	

methods	facilitated	by	attached	fiducials	and	assisted	by	thin‐plate	spline	 TPS 	interpolation	 226 	

to	 create	 boundary	 conditions	 that	 non‐rigidly	map	 the	pre‐deformed	organ	 surface	 to	 the	 post‐

deformed	 organ	 surface.	 This	 registration	 process	 requires	 the	 tedious	 task	 of	 applying	 and	

subsequently	 localizing	 numerous	 surface	 markers	 within	 the	 image	 space,	 determining	 point	

correspondence,	creating	a	thin‐plate	spline	interpolation,	and	finally	calculating	a	set	of	Dirichlet	

boundary	conditions	for	use	in	the	MIE	method.	Initial	attempts	to	reduce	the	complexity	and	level	

of	 user	 interaction	have	 focused	 on	 the	 use	 of	 two	 energy	minimization	 techniques	 227 .	 These	

techniques	 relied	 upon	 partial	 differential	 equation	 PDE 	 solutions	 of	 Laplace’s	 equation	 or	 the	

diffusion	 equation,	 respectively,	 across	 the	 surface	 of	 the	 organ	 geometry	 in	 the	 pre‐	 and	 post‐

deformed	 states.	 	 Like‐valued	 isocontours	 from	 the	 solutions	 on	 each	 surface	 i.e.	 pre‐deformed,	

and	post‐deformed 	act	as	‘virtual’	fiducials	to	assist	in	correspondence	using	a	symmetric	closest	

point	 approach	 228 .	 	 Dirichlet	 boundary	 conditions	 are	 generated	 after	 the	 assigned	

correspondence	 is	determined	and	this	completes	 the	required	 input	 for	 the	MIE	algorithm.	Both	

methodologies	required	conditions	to	be	manually	specified	to	various	regions	of	the	mesh.	While	

the	results	presented	by	 227 	indicated	better	performance	via	the	Laplacian	method,	the	diffusion	

method	did	not	require	the	difficult	task	of	assigning	a	boundary	condition	to	the	chest	wall	in	both	

pre‐	 and	 post‐deformed	 mesh	 domains.	 These	 methods,	 as	 well	 as	 the	 TPS	 method,	 will	 be	

compared	to	the	intensity‐based	approach	in	this	paper.	

While	the	above	PDE‐based	methods	represented	an	improvement	in	automation	over	the	

TPS	 method	 for	 generating	 boundary	 conditions	 for	 the	 MIE	 algorithm,	 the	 ideal	 boundary	

condition	method	would	be	both	 fully	automated	and	require	no	 fiducials.	There	 is	precedent	 for	

using	non‐rigid	image	registration	to	generate	boundary	conditions	for	FE	tissue	volume	models,	as	

presented	by	Tanner	et	al.	 229 .	There	is	a	wide	variety	of	non‐rigid	registration	algorithms	based	
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on	intensity,	such	as	the	B‐spline	registrations	of	Rueckert	 230 	or	various	diffusive	flow	methods	

231,	 232 .	 This	 study	 presents	 an	 approach	 for	 automatically	 generating	 boundary	 conditions	

through	the	use	of	a	non‐rigid	 image	registration	algorithm	called	demons	diffusion.	The	demons	

method	was	 arbitrarily	 chosen	based	 on	 its	 popularity	 and	 ease	 of	 implementation.	 The	demons	

method	was	first	proposed	by	Thirion	 233 ,	and	is	well‐understood	to	have	a	strong	mathematical	

foundation	as	 in	the	works	of	Pennec	et	al.	 234 ,	Cachier	et	al.	 235 ,	and	Modersitzki	 236 .	The	

basic	premise	presented	by	Thirion	in	 233 	is	to	use	an	optical	flow	model	governed	by	the	idea	of	

Maxwell’s	 demons	 to	 drive	 the	 registration.	 In	 this	 model,	 the	 intensity	 of	 a	 moving	 object	 is	

considered	 to	 be	 constant	 with	 time,	 which	 implies	 that	 some	 level	 of	 correspondence	 can	 be	

achieved	 between	 deformed	 and	 undeformed	 images,	 as	 long	 as	 the	 intensity	 profiles	 are	 very	

similar.	The	object	boundaries	in	one	image	are	characterized	as	semi‐permeable	membranes,	and	

the	 other	 image	 is	 allowed	 to	 diffuse	 through	 these	 membranes	 based	 upon	 the	 optical	 flow	

equation:	

	 D X ∙ X m X f X 34

where	f X 	is	the	fixed	target	image,	m X 	is	the	source	image	being	deformed	for	the	registration,	

and	 D X 	 is	 the	 displacement	 field	 mapping	 the	 source	 to	 the	 target	 image	 through	 an	

instantaneous	optical	flow.	Thirion	reformulated	 34 		to	an	algorithmic	iterative	form	as	follows:	

	

DN X DN‐1 X ‐
m X DN‐1 X ‐f X f X

‖ f‖2 m X DN‐1 X ‐f X
2 35

The	displacement	field	obtained	from	 35 	is	smoothed	with	a	Gaussian	filter	between	each	

iteration	 in	order	 to	 regularize	 the	registration.	The	popularity	of	 the	demons	algorithm	has	also	

helped	 it	 remain	 an	 active	 area	 of	 research.	 Vercauteren	 et	 al.	 recently	 introduced	 symmetric	

diffeomorphic	demons	 237‐239 ,	and	improvements	to	the	registration	regularization	continue	to	

be	 made	 by	 Cahill	 et	 al.	 240 ,	 Mansi	 et	 al.	 241 	 and	 other	 groups.	 In	 this	 paper,	 the	 demons	

algorithm	was	 used	 to	 perform	 image	matching	 of	 pre‐	 and	 post‐deformation	 images	 and	 tested	
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against	a	controlled	in	silico	simulation	with	known	boundary	conditions.	The	generated	boundary	

conditions	were	also	used	to	perform	an	MIE	elasticity	reconstruction	to	evaluate	its	effectiveness	

in	determining	 the	 elasticity	 contrast	 of	 a	 previously	 characterized	 system.	The	 simulation	 study	

was	followed	by	two	phantom	experiments	to	further	stress	the	abilities	of	this	new	approach.	

B.4 Methodology 

B.4.1 Automatic Generation of Boundary Conditions 

	 As	described	in	previous	work,	the	MIE	algorithm	is	comprised	of	three	major	components:	

1 	 a	 biomechanical	 FE	 model	 of	 soft‐tissue	 deformation	 based	 on	 material	 properties,	 2 	 a	

similarity	 metric	 with	 which	 to	 compare	 images,	 and	 3 	 an	 optimization	 routine	 to	 update	 the	

material	properties	in	the	model	 242 .	

The	 process	 of	 generating	 an	 elasticity	 reconstruction	 begins	 with	 the	 acquisition	 of	 an	

image	of	the	organ.	A	mechanical	load	is	then	applied	to	the	tissue,	and	the	organ	is	imaged	again.	

These	pre‐	and	post‐deformation	images	comprise	the	primary	input	to	the	MIE	algorithm,	and	are	

referred	 to	as	 the	source	and	 target	 images,	 respectively.	The	organ	boundary	 is	 then	segmented	

manually	 in	 the	 pre‐deformed	 source	 image	 and	 its	 surface	 geometry	 is	 extracted	 using	 the	

marching	cubes	algorithm,	which	allows	a	finite	element	mesh	of	tetrahedrons	to	be	created	from	

the	 surface	 information.	 The	mesh	 is	 partitioned	 into	 'regions'	 to	which	 elasticity	 properties	 are	

assigned,	 which	 defines	 the	 resolution	 of	 the	 elastographic	 reconstruction.	 The	 biomechanical	

model	used	for	the	reconstruction	is	a	linear	elastic	model,	which	holds	that	the	strain	experienced	

is	 proportional	 to	 the	 applied	 stress.	 We	 further	 assume	 that	 the	 materials	 of	 the	 FE	mesh	 are	

isotropic	and	nearly	 incompressible	 in	nature.	Although	breast	 tissue	 is	known	to	not	be	 linearly	

elastic,	the	system	may	be	approximated	as	linear	elastic	with	sufficiently	small	strains	 all	strains	

in	this	work	are	less	than	15% .	In	work	not	presented	here,	it	was	found	that	a	Poisson’s	ratio	of	

0.485	was	 optimal	 for	 use	 in	MIE,	 and	was	 used	 for	 all	 of	 the	 following	 experiments.	 The	 other	

critical	 material	 property	 in	 the	 model	 is	 Young’s	 modulus,	 ,	 which	 is	 solved	 for	 by	 the	 MIE	
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framework.	The	ability	of	the	biomechanical	model	to	accurately	deform	the	mesh	of	the	candidate	

tissue	volume	is	dependent	on	the	accuracy	of	its	boundary	conditions.	Once	boundary	conditions	

have	been	designated,	the	model	is	run	and	the	FEM	displacement	solution	for	all	the	nodes	in	the	

mesh	is	obtained.	The	displacements	are	then	used	to	deform	the	original	pre‐deformation	image,	

which	 is	 then	 compared	 with	 the	 known	 post‐deformation	 target	 image	 to	 generate	 an	 image	

similarity	 measurement.	 A	 non‐linear	 optimization	 framework	 is	 used	 to	 update	 the	 material	

properties	of	the	mesh	based	on	the	modeled	deformation.	The	optimization	is	the	minimization	of	

the	objective	function:	

	  | | 36

where	 	is	the	similarity	value	achieved	when	comparing	the	target	image	to	itself	and	 	is	

the	 similarity	 between	 the	 target	 and	 model‐deformed	 source	 images.	 Differentiating	 36 	 with	

respect	to	the	elasticity	distribution	and	setting	the	resulting	expression	equal	to	zero	gives	a	series	

of	nonlinear	equations	which	is	solved	using	the	Levenberg‐Marquardt	method:	

	 ∆ 37

where	 	 is	 the	 Jacobian	 matrix	 whose	 size	 is	 determined	 by	 the	 number	 of	 material	 property	

regions,	∆ 	 is	 the	vector	of	updates	 to	 the	material	property	distribution	defined	by	 the	regions,	

and	 	is	an	empirical	regularization	parameter	determined	by	the	methods	of	Joachimowicz	 243 .	

Modulus	values	 in	 the	mesh	are	updated	by	∆ 	until	 an	error	 tolerance	on	 the	 relative	objective	

function	 error	 evaluation	 is	 reached,	 at	 which	 point	 the	 reconstructed	 elastographic	 image	 is	

created	from	the	current	distribution	of	 	values	in	the	mesh	regions.	

	 The	 implementation	 of	 the	 demons	 algorithm	 used	 in	 this	 work	 to	 generate	 boundary	

conditions	for	the	above	model	was	based	on	the	Insight	Toolkit	 ITK 	 207,	244 ,	and	was	derived	

from	 the	 original	 demons	 registration	 presented	 by	 Thirion.	 This	 included	 the	 use	 of	 simple	

Gaussian	smoothing	of	the	deformation	field	as	the	regularization	of	the	registration.	 It	should	be	

noted	 that	 there	 are	 a	multitude	 of	 regularization	 schemes	 in	 the	 literature,	 including	 those	 that	
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imitate	 linear	elasticity	 245 ,	or	elastic‐like	vector	 filters	 246 ,	which	could	potentially	 improve	

the	results	presented	here.	The	two	parameters	of	 the	registration	were	the	number	of	 iterations	

single‐resolution	registrations 	and	the	standard	deviation	of	the	Gaussian	smoothing	kernel.	The	

number	of	iterations	required	was	chosen	separately	for	each	data	set	such	that	the	updates	to	the	

deformation	field	were	observed	to	become	very	small	by	the	end	of	the	registration.	In	results	not	

presented	here,	a	brief	sensitivity	analysis	was	performed	on	the	sigma	value	for	the	registration	of	

the	simulations,	and	it	was	found	that	over	a	range	of	0	to	3	voxels	for	sigma,	that	1.5	resulted	in	the	

most	accurate	deformation	field.	As	the	smoothing	became	stronger	than	1.5,	we	noticed	that	the	

error	became	greater	around	the	area	of	the	depressions,	as	the	kernel	began	to	excessively	smooth	

the	depression	displacements.	Therefore,	this	number	was	used	in	all	of	the	reported	experiments.	

When	 the	 registration	 is	 executed,	 it	 produces	 displacements	 at	 the	 centroid	 of	 every	 voxel.	 The	

displacement	vectors	are	then	interpolated	onto	the	nodal	coordinates	of	the	FE	mesh	using	a	cubic	

3D	interpolation.	The	displacements	which	are	assigned	to	boundary	nodes	are	thus	designated	as	

Type	I	boundary	conditions	for	the	biomechanical	model.	

B.4.2 Simulations 

	 In	 order	 to	 evaluate	 the	 demons	 method	 of	 generating	 boundary	 conditions	 for	 MIE	 as	

described	 above,	 a	 controlled	 experiment	 was	 conducted	 by	 obtaining	 a	 CT	 and	 an	 MR	 image	

volume	 of	 human	 breast	 tissue	 and	 registering	 them	 to	 target	 images	 created	 by	 simulated	

mechanical	loads.	The	two	image	sets	 CT	and	MR 	of	normal	tumor‐free	human	breast	tissue	were	

obtained	 from	 the	 UC‐Davis	 Department	 of	 Radiology	 and	 the	 Vanderbilt	 University	 Institute	 of	

Imaging	 Science,	 respectively,	 for	 use	 in	 this	 work.	 The	 surface	 of	 each	 tissue	 volume	 was	

segmented	 from	 the	 surrounding	 structures	 in	 the	 images	 with	 ANALYZE	 8.1	 Mayo	 Clinic,	

Rochester,	 MN 	 and	 the	 resulting	 segmentation	 was	 used	 to	 create	 a	 3D	 FE	 mesh	 using	 a	

tetrahedral	mesh	generation	algorithm	 113 .	For	both	the	CT	set	and	the	MR	set,	a	2‐cm	spherical	

tumor	was	synthetically	implanted	in	the	center	of	the	respective	mesh	and	assigned	an	elasticity	
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value	 six	 times	 higher	 than	 the	 surrounding	 material,	 which	 is	 consistent	 with	 breast	 cancer	

elasticity	contrasts	in	the	literature	 247 .	This	contrast	ratio	of	6:1	was	thus	considered	to	be	the	

goal	for	reconstruction	in	both	cases.		

Each	finite	element	mesh	was	deformed	by	applying	a	depression	to	one	side	of	the	tissue	

volume.	The	displacements	predicted	by	the	model	were	then	used	to	deform	the	CT	and	MR	source	

images	to	provide	simulated	target	images.		Using	the	pre‐	and	post‐deformed	image	volumes,	the	

demons	registration	could	be	executed	and	compared	to	the	known	displacements	responsible	for	

the	simulated	tissue	deformations.		In	addition,	the	surface	displacements	could	be	used	to	test	the	

accuracy	 and	 fidelity	 of	 the	 3D	 MIE	 reconstructions	 conducted	 with	 demons‐based	 boundary	

conditions.	The	registration	for	both	simulations	utilized	2,500	iterations	with	a	σ	of	1.5	voxels.	

B.4.3 Phantom Experiment 1 

	 After	 demonstrating	 the	 efficacy	 of	 the	 demons	method	 in	 this	 highly	 controlled	 in	 silico	

simulation	 study,	 the	 next	 step	 was	 to	 apply	 the	 same	 tests	 to	 real‐world	 data	 with	 realistic	

amounts	 of	 noise	 and	 uncertainty.	 To	 this	 end,	 phantom	 images	 were	 acquired	 to	 evaluate	 the	

ability	 of	 the	 demons	 method	 to	 produce	 accurate	 boundary	 conditions	 when	 compared	 to	 the	

current	gold	standard	method.	

As	described	in	 227 ,	the	phantom	used	in	this	study	 hereafter	referred	to	as	Phantom	1 	

was	 created	 from	 an	 8%	 w/v	 solution	 of	 polyvinyl	 alcohol	 Flinn	 Scientific,	 Batavia,	 IL 	 in	 an	

anthropomorphic	breast	mold.	To	provide	intrinsic	fiducial	markers,	34	1‐mm	stainless	steel	beads	

were	distributed	over	the	phantom	directly	under	its	surface.	It	should	be	noted	that,	except	for	the	

beads,	 there	was	 little	 to	provide	 intensity	heterogeneity	within	 this	phantom.	A	mechanical	 load	

was	applied	to	the	phantom	in	a	custom‐built	acrylic	chamber	via	a	neoprene	sphygmomanometer	

air	bladder	 W.A.	Baum,	Copiague,	NY 	positioned	on	the	side	of	the	phantom.	

The	phantom	was	subjected	to	three	levels	of	compression	by	inflation	of	the	air	bladder:	no	

compression,	inflation	with	50%	of	the	maximum	bladder	pressure,	and	full	inflation	of	the	bladder.	
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At	each	state	of	compression,	CT	images	were	acquired	with	dimensions	512	x	512	x	174,	and	0.54	

x	0.54	x	1	mm	voxel	 size.	The	 images	were	 then	 segmented	and	 triangular	meshes	were	 created	

from	 the	 surface	 geometry	 of	 the	 phantom.	 From	 the	 surface	meshes,	 the	 fiducial	 bead	 centroid	

positions	 were	 localized	 and	 then	 used	 in	 a	 TPS	 interpolation	 to	 provide	 the	 gold	 standard	

boundary	 conditions	 for	 two	 scenarios:	 1 	 deforming	 from	 the	 uncompressed	 state	 to	 the	 50%	

compression	state,	and	2 	deforming	from	the	uncompressed	state	to	the	100%	compression	state.	

In	 generating	 the	 TPS	 boundary	 conditions,	 33	 of	 the	 beads	 were	 used	 in	 calculating	 the	

interpolation,	while	the	last	fiducial	was	used	to	evaluate	the	target	registration	error	 TRE .	In	an	

effort	 to	evaluate	 the	error	over	 the	entire	surface,	 the	TPS	registration	was	conducted	34	 times,	

each	time	using	a	different	fiducial	for	the	TRE	calculation.	The	final	TRE	for	the	TPS	gold	standard	

was	the	average	of	these	repetitions.	The	demons	method	was	then	used	independently	to	generate	

boundary	conditions	mapping	 from	the	pre‐	 to	 the	post‐deformed	surface	of	 the	phantom	for	 the	

two	 scenarios,	 and	 compared	 to	 the	 control	 TPS	 result,	 as	well	 as	 the	 previous	 semi‐automated	

methods	 Laplace	 equation	 and	 diffusion	 methods .	 The	 registration	 in	 both	 scenarios	 utilized	

120,000	iterations	and	σ	of	1.5	voxels.		

B.4.4 Phantom Experiment 2 

	 Following	the	evaluation	of	the	performance	of	the	demons	method	in	generating	boundary	

conditions	 in	 the	 above	 phantom	 study,	 a	 second	 phantom	 experiment	was	 designed	 to	 test	 the	

performance	of	demons‐based	boundary	conditions	in	the	context	of	a	full	MIE	reconstruction.	Two	

more	phantoms	 hereafter	referred	to	as	Phantom	2	and	Phantom	3 	were	constructed	of	polyvinyl	

alcohol	 cryogel	 PVA‐C 	 to	 test	 the	 accuracy	 of	 the	 reconstruction	when	 validated	with	material	

testing	data.	As	described	by	 248 ,	the	two	new	phantoms	were	created	in	a	manner	similar	to	the	

first	 phantom.	 However,	 these	 phantoms	 each	 included	 a	 25‐mm	 diameter	 phantom	 tumor	

composed	of	a	stiffer	gel	than	the	bulk	gel.	Barium	sulfate	was	mixed	with	the	tumor	gel	and	was	

randomly	added	in	streams	to	the	bulk	gel	to	provide	contrast	for	the	CT	images.	Similar	to	the	first	
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phantom	study,	polytetrafluoroethylene	 spherical	beads	 McMaster‐Carr,	Atlanta,	GA 	with	a	1.6‐

mm	diameter	were	distributed	just	under	the	surface	of	the	phantoms	in	order	to	facilitate	a	TPS	

interpolation	to	act	as	the	gold	standard	boundary	conditions.	Phantom	2	received	35	beads,	while	

Phantom	3	received	32	beads.	The	TRE	for	the	TPS	registration	was	calculated	as	before.	To	provide	

validation	 for	 MIE	 reconstructions	 in	 Phantoms	 2&3,	 independent	 mechanical	 tests	 were	

performed	on	samples	of	the	two	gel	elasticity	constituents	of	the	phantom.	A	sample	from	each	gel	

tumor	 and	 normal 	 was	 set	 aside	 for	 this	 testing	 during	 fabrication.	 Each	 was	 subjected	 to	

compression	 testing	 using	 an	 ElectroForce	 3100	 material	 tester	 Bose,	 Eden	 Prairie,	 MN .	 The	

instrument	 was	 programmed	 to	 provide	 fixed	 displacements	 to	 the	 cryogels	 when	 the	 samples	

were	mounted	on	a	platform	over	a	22.5	N	load	cell.	Each	sample	was	subjected	to	five	cycles	of	a	

load	rate	of	0.15	mm/s	and	then	held	for	300	s	for	strains	of	2,	5,	10,	and	15%	in	compliance	with	

small	deformation	theory.	Average	elastic	modulus	values	for	the	two	gels	were	obtained	from	the	

slope	of	the	stress‐strain	curves	of	the	steady‐state	loading	phases.	

The	 phantoms	were	 imaged	 in	 the	 previously	 described	 air	 bladder	 chamber	 using	 a	 CT	

scanner	 Philips	 Medical,	 Bothell,	 WA .	 The	 Phantom	 2	 CT	 images	 pre‐	 and	 post‐deformation 	

were	reconstructed	with	dimensions	of	512x512x143	and	voxel	spacing	of	0.27	x	0.27	x	0.8	mm,	

while	 the	Phantom	3	CT	 images	were	 reconstructed	with	dimensions	of	 512x512x139	and	voxel	

spacing	of	0.26	x	0.26	x	0.8	mm.	The	pre‐deformed	source	image	surfaces	were	then	used	to	create	

tetrahedral	meshes.	The	Phantom	2	mesh	was	constructed	of	30,900	nodes	and	166,509	elements,	

while	 the	 Phantom	 3	 mesh	 was	 constructed	 of	 33,930	 nodes	 and	 183,609	 elements.	 The	 TPS	

boundary	conditions	were	generated	using	 the	 implanted	beads	as	control	points	 for	a	 thin‐plate	

spline	 interpolation	 between	 the	 pre‐	 and	 post‐deformation	 surfaces	 for	 each	 phantom	 set.	 The	

PDE‐based	 and	 demons	 methods	 were	 then	 utilized	 to	 independently	 generate	 boundary	

conditions	for	the	two	phantoms.	The	demons	registration	was	set	to	run	for	30,000	iterations	with	

a	σ	of	1.5	voxels.	
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The	 accuracy	 of	 the	 demons‐based	boundary	 conditions	was	 evaluated	by	 comparing	 the	

gold	standard	TRE	of	the	TPS	method,	the	TRE	of	the	PDE‐based	methods,	and	the	TRE	of	the	points	

when	used	in	the	demons	method.	The	appropriateness	of	demons‐based	boundary	conditions	was	

then	 tested	 by	 employing	 them	 in	 a	 MIE	 reconstruction	 comparing	 elastic	 modulus	 values	 to	

independent	 measurements.	 To	 constrain	 the	 problem,	 only	 two	 regions	 of	 material	 properties	

were	designated	in	the	mesh:	the	tumor	and	the	bulk	normal	gel.	A	priori	knowledge	of	the	location	

of	 the	 tumor	was	also	used	by	segmenting	the	tumor	margins	 from	the	normal	gel	beforehand	 in	

order	to	assign	the	material	types	to	their	corresponding	elements	in	the	FE	model.	The	results	of	

the	 MIE	 reconstruction	 using	 demons‐based	 boundary	 conditions	 were	 also	 compared	 to	 the	

results	of	the	reconstruction	when	using	TPS	boundary	conditions,	and	those	derived	from	the	PDE	

methods.	The	Poisson’s	ratio	used	in	the	model	for	both	experiments	was	0.485	to	approximate	an	

incompressible	tissue‐mimicking	material.	

B.5 Results 

B.5.1 Simulations 

	 The	 CT	 and	 MR	 image	 source	 images	 were	 acquired	 and	 then	 deformed	 with	 the	 set	 of	

known	boundary	conditions	as	shown	in	Figure	54.	The	deformations	applied	 in	both	cases	were	

approximately	 Gaussian	 in	 distribution	 across	 the	 depressions.	 The	 maximum	 displacement	

experienced	by	the	CT	set	was	approximately	13	mm	whereas	the	maximum	experienced	by	the	MR	

set	was	approximately	12	mm.	
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Figure 54. Representative slices from the two data sets used for the simulations. Slices (a) and (b) show 
the pre‐ and post‐deformed CT set, whereas slices (c) and (d) show the pre‐ and post‐deformed MR set, 
respectively. 

The	demons	method	was	then	used	to	register	the	source	images	to	their	respective	target	

images	and	automatically	generate	boundary	conditions	for	the	source	meshes.	The	TRE	calculated	

from	the	boundary	nodes	was	then	calculated,	and	is	visualized	in	Figure	55.	

	

Figure 55. TRE distribution (in mm) across the surfaces of the CT mesh (a) and the MR mesh (b) for the 
demons‐based boundary conditions compared to the known conditions. 

The	 light	 surfaces	 of	 the	mesh	 correspond	 to	 areas	 that	 experienced	 greater	 error	when	

compared	to	the	known	boundary	conditions.	Averaging	over	all	the	nodes	on	the	boundary,	the	CT	
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set	 experienced	 a	 mean	 error	 of	 0.6	 mm	 0.3	 mm	 with	 a	 maximum	 error	 of	 1.5	 mm,	 which	

represents	an	average	difference	of	about	17%	between	the	magnitude	of	the	TRE	vectors	and	the	

magnitudes	of	the	known	displacement	vectors.	The	MR	set	experienced	a	mean	error	of	0.5	mm	 	

0.3	mm	with	a	maximum	error	of	1.9	mm,	which	represents	a	mean	difference	of	about	23%.	The	

demons‐based	boundary	conditions	were	 then	utilized	 in	an	MIE	reconstruction	 in	an	attempt	 to	

recapture	 the	 known	 6:1	 contrast	 in	 the	 simulations.	 The	 tumor‐to‐normal	 elasticity	 contrast	

calculated	by	the	MIE	algorithm	was	3.63:1	for	the	CT	set,	and	was	5.46:1	for	the	MR	set.	The	results	

of	the	boundary	condition	accuracy	and	the	resulting	contrast	ratios	are	shown	in	Table	11,	as	well	

as	a	comparison	with	the	results	of	the	three	other	boundary	condition	methods.	

Table 11. Comparison of boundary condition mapping error and MIE reconstruction results between the 
four methods for the simulations (*[249], **[211]). 

Boundary	Condition	Mapping	Error MIE	Reconstruction	Results	 x:1

CT	

Mean	TRE	 max 	mm	

MR

Mean	TRE	 max 	

mm	

CT

Elasticity	Contrast	

Ratio	

MR

Elasticity	

Contrast	

Ratio

	

TPS	 40	

pts. *	
0.30	 2.6 	*	 0.033	 0.6 * 5.66** 6.26**

Laplace*	 0.53	 2.6 *	 0.48	 2.5 * 5.02** 673**

Diffusion*	 1.5	 8 *	 0.61	 2.9 * 17.5** 348**

Demons	 0.60	 1.5 	 0.50	 1.9 3.63 5.46

	

Figure	56	 illustrates	the	relationship	between	elasticity	contrast	ratios	 tumor‐to‐normal 	

and	 the	 associated	 objective	 function	 values	 in	 the	MIE	 optimization	 routine.	 The	minima	 in	 the	

objective	 function	 space	 correspond	 to	 elasticity	 contrast	 values	 which	 resulted	 in	 an	 optimally	
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deformed	image.	Shown	in	the	figure	are	the	objective	function	values	of	the	deformations	using	the	

known	boundary	conditions	 as	the	control 	and	the	demons	boundary	conditions.	

	

Figure 56. Objective  function maps  for  the CT simulation  (a) and  the MR simulation  (b). The objective 
function value calculated by the optimization framework is plotted on the ordinate axis against selected 
elasticity  contrast  ratios  (tumor‐to‐normal)  as  affected  by  the  boundary  conditions.  Shown  are  the 
objective maps  of  the  demons  case  (solid  lines)  and  the  known  boundary  conditions  as  the  control 
(dashed lines). The ordinate is scaled in both cases. 

B.5.2 Phantom Experiment 1 

11B In	the	first	phantom	experiment	CT	images	of	Phantom	1	were	acquired	at	no	compression,	

50%	 compression,	 and	 100%	 compression	 and	 segmented	 from	 the	 compression	 chamber.	 The	

demons	method	was	used	to	generate	Type	I	boundary	conditions	to	map	from	the	uncompressed	

state	to	the	50%	state,	and	another	set	of	boundary	conditions	to	map	from	the	uncompressed	state	

to	the	100%	state.	The	implanted	beads	on	the	surface	of	the	phantom	were	used	to	calculate	the	

TRE	of	this	surface	registration	in	both	cases.	The	average	TRE	for	50%	compression	when	using	
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the	demons	boundary	conditions	was	approximately	3.3	mm	 1.32	mm,	with	a	maximum	TRE	of	

6.1	mm.	 The	 average	 TRE	 for	 100%	 compression	was	 approximately	 6.8	mm	 3.2	mm,	which	 a	

maximum	 of	 14.2	 mm.	 The	 Phantom	 1	 results	 are	 directly	 compared	 in	 Table	 12	 to	 the	 gold	

standard	 TPS	 result	 and	 the	 results	 of	 the	 previous	 semi‐automated	 methods,	 as	 well	 as	 to	

analogous	results	from	Phantom	2	and	Phantom	3.	

Table  12.  Comparison  of  boundary  condition mapping  error  between  the  four methods  for  the  two 
phantom experiments (*[249], **Based on work in [250]) 

	

	

	

Boundary	Condition	Mapping	Error

Phantom	1 Phantom	2 Phantom	3

50%	

Compression	

Mean	TRE	 max 	

mm	

100%	

Compression	

Mean	TRE	 max 	

mm

Single	Compression	

Mean	TRE	 max 	mm	

Single	

Compression	

Mean	TRE	

max 	mm

TPS	 1.1	 3.4 *	 1.7	 5.1 * 1.4	 7.08 ** 1.24	 4.9 **

Laplace	 3.4	 8.6 *	 6.3	 15.3 * 4.22	 7.26 2.24	 4.74

Diffusion	 2.7	 6.9 *	 5.7	 13.6 * 4.11	 6.57 2.35	 6.36

Demons	 3.3	 6.1 	 6.8	 14.2 1.55	 4.92 1.85	 4.34

	

B.5.3 Phantom Experiment 2 

	 In	the	second	phantom	experiment,	CT	images	of	Phantom	2	and	Phantom	3	were	acquired	

and	segmented	from	the	compression	chamber	for	pre‐	and	post‐depression.	Phantom	2	is	shown	

in	Figure	57	as	an	example.	The	embedded	tumor	in	Phantom	2	was	about	12	mm	from	the	surface.	

The	tumor	in	Phantom	3	was	located	further	from	the	site	of	depression,	at	about	26	mm	from	the	

surface.	 Qualitatively,	 the	 streams	 of	 barium	 sulfate	 which	 were	 distributed	 throughout	 the	 gel	
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provided	 an	 increase	 in	 the	 image	 texture	of	 these	phantom	 images	over	 the	Phantom	1	 images,	

which	lacked	this	texture	enhancement.	

	

Figure 57. Representative source  (a) and target  (b) geometry of  the anthropomorphic phantoms, with 
center slices. Phantom tumors as shown here were present in Phantoms 2&3 only. 

The	demons	method	was	applied	to	both	phantoms	to	acquire	Type	I	boundary	conditions	

for	each	mesh.	The	TRE	of	the	demons‐based	conditions	was	evaluated	by	comparing	to	the	known	

point	correspondence	of	the	implanted	surface	beads.	The	average	demons‐based	TRE	for	Phantom	

2	was	calculated	to	be	approximately	1.6	mm	 1.0	mm,	with	a	maximum	experienced	TRE	of	4.9	

mm.	For	Phantom	3,	the	average	TRE	was	1.9	mm	 1.2	mm,	with	a	maximum	TRE	of	4.3	mm.	These	

values	are	directly	compared	in	Table	12	to	the	performance	of	the	gold	standard	TPS	interpolation	

method	and	two	previous	semi‐automated	methods,	as	well	as	the	Phantom	1	results.	As	the	results	

showed	that	 the	PDE‐based	methods	were	not	notably	more	accurate	 for	Phantoms	2	and	3	 than	

the	 TPS	 or	 demons	 methods,	 only	 the	 demons	 method	 and	 TPS	 method	 were	 used	 in	 MIE	

reconstructions	for	comparison.	The	material	testing	data	resulted	in	an	average	contrast	ratio	of	

4.10:1	 for	 the	 gels.	 The	 demons‐based	 boundary	 conditions	 were	 then	 used	 in	 an	 MIE	

reconstruction	 for	 each	 phantom.	 The	 tumor‐to‐normal	 elasticity	 contrast	 for	 Phantom	 2	 was	

calculated	by	the	MIE	algorithm	to	be	4.70:1.	

The	elasticity	contrast	for	Phantom	3	was	calculated	to	be	2.46:1.	In	Table	13,	these	values	

are	 compared	 to	 the	 contrast	 ratios	 that	 were	 calculated	 by	 MIE	 using	 the	 gold	 standard	 TPS	
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boundary	 conditions,	 and	 to	 the	material	 testing	 data	 as	 validation	 for	 the	 accuracy	 of	 the	MIE	

method.	

Table 13. MIE‐reconstructed elasticity contrast  ratios  for phantoms 2&3 and gel material  testing data 
(*[211]) 

	

Phantom	2	

Reconstructed

Contrast	Ratio

Phantom	3

Reconstructed

Contrast	Ratio

Material	Tester	Contrast	Ratio*	

TPS*	 3.81	 3.06
4.10	

Demons	 4.70	 2.46

	

Figure	58	 illustrates	the	relationship	between	elasticity	contrast	ratios	 tumor‐to‐normal 	

and	the	associated	objective	 function	values	 in	 the	MIE	optimization	routine.	Shown	in	 the	 figure	

are	 the	 objective	 function	 values	 of	 the	 deformations	 using	 the	TPS	boundary	 conditions	 as	 the	

control 	and	the	demons	boundary	conditions.	
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Figure 58. Objective  function maps  for Phantom 2  (a) and  the Phantom 3  (b). The objective  function 
value calculated by the optimization framework is plotted on the ordinate axis against selected elasticity 
contrast ratios (tumor‐to‐normal) as affected by the boundary conditions. Shown are the objective maps 
of the demons case (solid  lines) and the known boundary conditions as the control (dashed  lines). The 
ordinate is scaled in both cases. 

B.6 Discussion 

B.6.1 Simulations 

	 The	 demons‐based	 boundary	 conditions	 resulted	 in	 deformed	meshes	 for	 the	 simulation	

experiment	which	were	qualitatively	very	close	in	appearance	to	the	known	target	meshes	for	both	

the	CT	and	MR	data	sets.	Quantitatively,	the	average	difference	between	the	demons	conditions	and	

the	 known	 conditions	was	 about	 20%	 for	 both	 sets,	which	was	 an	 encouraging	 indication	 of	 the	

ability	 of	 the	 demons	methods	 to	 automatically	 provide	 boundary	 conditions	which	would	 have	
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adequate	accuracy	for	use	in	MIE.			In	Figure	55	it	can	be	seen	that	the	largest	errors	were	spread	

across	 the	 regions	 of	 high	 curvature	 around	 the	 tip	 of	 the	 tissue	 volume	 and	 in	 the	 dip	 of	 the	

artificial	 depression	 for	 the	 CT	 set,	 while	 in	 the	MR	 set	 the	 errors	 were	mostly	 localized	 to	 the	

depression	area.	

The	accuracy	of	the	demons‐based	boundary	conditions	for	the	simulations	were	compared	

to	 the	 results	 of	 past	 methods	 in	 Table	 11.	 Unsurprisingly,	 the	 TPS	method	 remained	 the	 most	

accurate	of	the	four	methods	when	considering	the	average	boundary	condition	error.	The	demons	

method	 performed	 about	 as	well	 as	 the	 Laplace	method,	 and	 clearly	 outperformed	 the	 diffusion	

method	 for	 the	 CT	 set	 in	 terms	 of	 the	 average	 error.	 However,	 the	 demons	 method	 performed	

favorably	 compared	 to	 all	 of	 the	 other	 methods	 in	 terms	 of	 maximum	 TRE	 for	 that	 set,	 as	 its	

maximum	error	was	well	below	those	of	the	other	methods.	 In	terms	of	average	surface	TRE,	the	

demons	method	was	also	comparable	 to	 the	PDE‐based	method	 for	 the	MR	set	as	well.	However,	

with	the	exception	of	the	TPS	method,	the	demons	boundary	conditions	again	compared	favorably	

against	the	other	methods	in	terms	of	the	maximum	error	experienced	on	the	boundary.	

The	results	of	the	boundary	condition	accuracy	experiment	were	encouraging	and	indicated	

that	 demons‐based	 boundary	 conditions	were	 a	 feasible	 solution	 to	 the	MIE	 boundary	 condition	

problem.	The	results	of	the	MIE	reconstruction	for	the	CT	and	MR	simulation	sets	were	shown	in	

Table	 11	 and	 compared	 to	 the	 results	 of	 reconstructions	 which	 utilized	 boundary	 conditions	

generated	 from	 the	other	 three	methods.	Unsurprisingly,	 the	 table	 shows	 that	 the	TPS	boundary	

conditions,	which	were	the	most	accurate	of	the	four,	resulted	in	elasticity	contrast	ratios	for	both	

sets	that	were	closer	to	the	known	ratio	of	6:1	than	any	of	the	other	boundary	conditions.	For	the	

application	of	the	demons	registration‐based	boundary	conditions	to	the	CT	data	set,	the	elasticity	

reconstruction	with	spatial	a	priori	knowledge	of	the	tumor	converged	to	a	contrast	ratio	of	3.63:1.	

Similarly,	 the	MR	data	 resulted	 in	a	 contrast	 ratio	of	5.46:1.	 	Compared	 to	 the	known	designated	

material	contrast	of	6:1,	there	is	clearly	a	discrepancy	in	these	reconstruction	behaviors	that	needs	
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to	 be	 investigated.	 The	 difference,	 particularly	 between	 the	 different	modalities	 of	 input	 data,	 is	

likely	due	to	a	combination	of	factors	including	mesh	geometry	and	image	quality.	In	addition,	the	

distance	 of	 the	 tumor	 from	 the	 area	 of	 greatest	 displacement	 likely	 affects	 the	 accuracy	 of	 the	

reconstruction	 since	 the	 displacements	 of	 nodes	 are	 expected	 to	 decrease	 the	 further	 they	 are	

located	 away	 from	 the	 depression.	 These	 simulations	 did	 not	 investigate	 the	 effect	 of	 tumor	

distance	on	 the	 reconstruction.	Notably,	 the	diffusion	method	resulted	 in	 a	much	higher	 contrast	

ratio	for	the	CT	set	than	the	demons	method,	while	the	Laplace	method	resulted	in	a	contrast	ratio	

that	was	closer	to	6:1	but	was	an	underestimation	rather	than	an	overestimation	of	the	true	value.	

The	ability	of	the	demons‐based	conditions	to	provide	a	contrast	that	was	more	accurate	than	the	

diffusion	method	for	the	CT	simulation	was	encouraging.	Even	more	suggestive	was	the	behavior	of	

the	MR	reconstruction.	The	Laplace	and	diffusion	boundary	conditions	introduced	instabilities	into	

the	MIE	 algorithm,	which	 resulted	 in	 contrast	 estimates	 that	were	 unreasonably	 higher	 than	 the	

true	 value.	 The	 demons‐based	 conditions	 allowed	 the	 algorithm	 to	 provide	 a	 contrast	 estimate	

which	was	closer	to	the	known	value.	

Introducing	 the	 inexact	demons	boundary	conditions	 to	 the	model	had	a	noticeable	effect	

on	the	objective	function	profile,	as	shown	in	Figure	56	by	shifting	the	minimum	objective	function	

value	to	a	different	optimal	elastic	contrast	ratio	for	both	the	CT	and	the	MR	simulation.	The	shift	

was	much	more	pronounced	 for	 the	CT	simulation,	 for	which	 the	new	optimal	objective	 function	

value	 corresponded	 to	 a	 contrast	 ratio	 of	 about	 3.80:1	 instead	of	 6:1	 as	 predicted	by	 the	 known	

boundary	conditions.	Additionally,	the	convexity	of	the	function	was	altered	significantly,	with	very	

little	variation	 in	 the	objective	 function	 for	contrast	 ratios	 in	 the	 immediate	vicinity	of	 the	global	

minimum.	 The	 MR	 simulation	 also	 experienced	 a	 shift	 in	 the	 optimal	 objective	 function	 when	

demons	 boundary	 conditions	 were	 used	 instead	 of	 the	 known	 conditions,	 with	 a	 new	 optimal	

contrast	of	about	5.50:1.	This	represented	only	a	 slight	decrease	 from	the	desired	6:1	prediction.	

The	objective	function	values	arise	from	the	image	similarity	metric,	which	again	suggests	that	the	
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difference	 in	 objective	 maps	 between	 the	 two	 simulations	 is	 influenced	 by	 the	 image	 texture	

characteristics.	 	 It	 is	 also	 clear	 that	 the	 addition	 of	 inaccuracies	within	 the	 boundary	 conditions	

alters	 the	 nature	 of	 the	 objective	 function	 by	 injecting	 local	 minima	 and	 undesirable	 variations,	

which	may	necessitate	a	filtering	approach	to	ensure	global	minima	are	found.	

B.6.2 Phantom Experiment 1 

	 While	 the	efficacy	of	 the	automated	demons	method	was	 shown	by	 the	 simulations	 to	be	

comparable	 to	 the	 semi‐automated	 Laplace	 method	 and	 somewhat	 better	 than	 the	 diffusion	

method,	 the	 simulations	 were	 in	 several	 ways	 performed	 under	 optimal	 conditions.	 The	 image	

volumes	 qualitatively	 had	 a	 great	 deal	 of	 heterogeneity	 and	 texture	 on	 which	 the	 demons	

registration	 could	act,	 and	with	which	 the	MIE	optimization	 routine	 could	use	 to	help	accurately	

update	material	property	assignments.	There	was	also	an	absolute	truth	with	which	to	compare,	in	

the	 form	 of	 known	 boundary	 conditions.	 The	 first	 phantom	 experiment	 sought	 to	 provide	

additional	challenge	to	the	demons	method	in	its	ability	to	generate	reasonably	accurate	boundary	

conditions.	

In	the	first	phantom	experiment,	the	results	of	the	demons	method	were	compared	to	the	

results	of	the	three	other	methods	in	Table	12	for	the	two	compression	states	applied	to	Phantom	1.	

The	table	shows	that	the	demons	algorithm	performed	about	as	well	 in	relation	to	the	other	PDE	

methods	 as	 it	 did	 in	 the	 simulation	 experiment.	 	 Note	 that	 Phantom	 1	 had	 very	 little	 image	

heterogeneity	 and	 would	 indicate	 that	 with	 a	 lack	 of	 image	 intensity	 contrast	 that	 the	 demons‐

based	registration	is	at	least	no	worse	than	that	achieved	by	the	PDE	methods.	The	gold	standard	

TPS	method	 gave	 the	 lowest	 error.	 As	 seen	 in	 Table	 12,	 the	 errors	 given	 by	 all	 of	 the	methods	

increased	when	a	larger	deformation	was	applied	to	Phantom	1.	The	demons	boundary	conditions	

became	slightly	worse	in	relation	to	the	other	methods	at	the	increased	level	of	compression,	which	

suggests	that	the	number	of	iterations	used	by	the	demons	algorithm	may	need	to	be	increased	to	
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accommodate	larger	differences	between	pre‐	and	post‐deformation	images,	or	that	the	algorithm	

may	be	somewhat	more	sensitive	to	the	lack	of	image	intensity	heterogeneity.		

In	moving	from	simulation	data	to	“real‐world”	phantom	data,	the	errors	experienced	by	all	

four	 of	 the	 methods	 increased	 significantly.	 The	 Phantom	 1	 image	 data	 was	 different	 from	 the	

simulation	 data	 in	 several	 key	 respects.	 For	 example,	 the	 target	 image	 volume	 of	 Phantom	 1	

represents	a	completely	new	acquisition,	whereas	in	the	simulation	work	post‐deformed	image	sets	

were	generated	from	the	pre‐deformed	set.	This	discrepancy	in	target	image	acquisition	introduces	

some	uncertainty	to	the	determination	of	source‐to‐target	correspondence.	Another	major	change	

from	the	simulation	experiment	was	the	markedly	smaller	presence	of	texture	in	the	images	due	to	

the	homogeneity	of	the	gel.	 	More	specifically,	the	TRE	performance	varied	among	the	Phantom	1,	

Phantoms	2&3,	 and	 simulation	 results	which	are	 listed	 respectively	 in	 terms	of	 increasing	 image	

texture.	 	Qualitatively	observing	the	results	across	Table	11	and	Table	12,	the	trend	of	decreasing	

TRE	with	increasing	texture	for	the	demons‐based	approach	can	be	observed.		

B.6.3 Phantom Experiment 2 

	 It	 was	 shown	 in	 the	 first	 phantom	 experiment	 that	 the	 demons	 method	 could	 produce	

reasonably	accurate	boundary	conditions	compared	 to	 the	semi‐automated	Laplace	and	diffusion	

methods.	 The	 second	 phantom	 experiment	 introduced	 another	 set	 of	 real‐world	 data,	 but	 the	

images	 from	this	experiment	had	more	 texture	 in	 the	 form	of	barium	sulfate	as	a	 contrast	agent,	

which	 was	 intended	 to	 allow	 the	 demons	 registration	 to	 provide	 more	 accurate	 boundary	

conditions	as	needed	by	the	MIE	algorithm.	In	addition,	the	presence	of	the	stiff	tumor	allowed	for	a	

test	 of	 the	 MIE	 algorithm’s	 ability	 to	 distinguish	 elasticity	 contrast	 in	 a	 phantom	 while	 using	

demons‐based	 boundary	 conditions.	 This	 experiment	 was	 thus	 the	 first	 in	 which	 demons‐based	

boundary	conditions	were	used	 in	an	MIE	reconstruction	for	which	the	true	boundary	conditions	

were	not	absolutely	known.		
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The	surface	errors	calculated	from	the	fiducial	point	correspondence	for	the	TPS,	Laplace,	

diffusion	 and	 demons	 methods	 were	 compared	 in	 Table	 12	 for	 Phantom	 2	 and	 Phantom	 3.	

Unsurprisingly,	 the	 TPS	 method	 performed	 better	 with	 respect	 to	 mean	 accuracy.	 Notably,	 the	

maximum	error	experienced	by	the	demons	method	was	 less	than	that	of	 the	TPS	method,	which	

was	similar	to	the	result	of	the	CT	simulation	study.	The	two	PDE‐based	methods	presented	error	

which	 was	 similar	 in	 scope	 to	 their	 Phantom	 1	 results.	 Overall,	 the	 demons	method	 performed	

considerably	better	on	these	two	phantom	sets	than	it	did	on	Phantom	1,	and	notably	outperformed	

the	Laplacian	and	diffusion	methods.	This	is	most	likely	due	to	the	increase	in	image	texture	which	

can	be	qualitatively	observed	from	visual	inspection	of	the	images.	Given	that	clinical	images	tend	

to	have	even	more	image	texture	and	geometric	heterogeneity	than	found	in	these	phantom	images,	

further	investigation	into	the	efficacy	of	the	demons	method	seems	merited.	

The	 utilization	 of	 the	 demons	 boundary	 conditions	 in	MIE	 reconstructions	 in	 the	 second	

phantom	experiment	successfully	resulted	in	realistic	tumor‐to‐normal	modulus	contrast	ratios	for	

both	phantoms.	Due	 to	 the	observation	 that	 the	demons	method	resulted	 in	boundary	conditions	

with	comparable	 and	sometimes	superior 	accuracy	to	the	Laplace	and	diffusion	methods,	only	the	

TPS	 and	demons	boundary	 conditions	were	utilized	 in	 these	 reconstructions.	 The	 results	 for	 the	

TPS‐	and	demons‐based	MIE	reconstructions	were	compared	to	each	other	in	Table	13	as	well	as	to	

the	material	tester	results.	As	the	table	shows,	the	elasticity	contrast	ratios	for	each	phantom	when	

using	 TPS	 boundary	 conditions	 were	 reconstructed	 to	 values	 with	 14‐40%	 difference	 from	 the	

material	 testing	data	average.	The	reconstructions	using	demons	boundary	conditions	resulted	 in	

contrast	ratios	which	were	very	similar	to	those	of	the	TPS‐based	reconstructions,	with	only	a	slight	

drop	in	contrast.	This	suggests	that	the	demons	boundary	conditions	were	sufficiently	accurate	for	

the	MIE	algorithm	to	provide	a	reasonable	estimate	of	the	actual	gel	contrast.	

Compared	to	the	control	TPS	boundary	conditions,	the	demons	conditions	had	a	noticeable	

effect	by	shifting	the	minimum	objective	function	value	to	a	different	optimal	elastic	contrast	ratio	
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for	both	phantoms,	as	shown	in	Figure	57.	Additionally,	 the	convexity	of	the	 function	was	altered	

slightly	 for	 each.	 The	 global	 minimum	 of	 the	 Phantom	 2	 objective	 function	 was	 located	 at	 an	

approximate	 contrast	 ratio	 of	 4.20:1,	which	was	more	 similar	 to	 the	material	 testing	 average	 of	

4.10:1	 than	 the	 case	 in	 which	 TPS	 boundary	 conditions	 were	 used.	 The	 actual	 contrast	 ratio	 to	

which	 the	 MIE	 reconstruction	 converged	 was	 4.70:1,	 which	 was	 located	 on	 the	 slope	 of	 a	 local	

minimum.	 This	 behavior	 was	 most	 likely	 a	 result	 of	 the	 regularization	 parameters	 used	 in	 the	

Levenberg‐Marquardt	 optimization.	 In	 the	 case	 of	 Phantom	 3,	 the	 global	 minimum	 was	 about	

2.50:1,	which	was	the	approximate	value	to	which	the	algorithm	converged.	In	this	case,	the	global	

minimum	decreased	slightly	when	using	demons	instead	of	TPS	conditions.	

Observations	of	Figure	56	and	Figure	58	indicate	the	change	in	algorithm	performance	with	

respect	to	simulation	and	physical	data.		While	the	nature	of	a	simulation‐to‐real	transition	may	be	

responsible	for	the	increased	error	in	reconstruction,	there	are	several	other	likely	factors	involved.		

Over‐constraint	of	the	problem	is	a	possible	candidate	with	the	incorporation	of	the	spatial	prior.		

The	MIE	method	works	by	sampling	similarity	regionally,	i.e.	the	method	breaks	up	evaluation	into	

many	similarity	zones	 usually	over	100 	distributed	spatially	over	the	domain.		The	method	tries	

to	improve	the	similarity	among	all	the	zones	with	the	use	of	only	two	parameters	in	this	case	 the	

elasticity	of	the	background	and	tumor .		This	constraint	within	this	type	of	problem	can	lead	to	this	

type	 of	 oscillatory	 behavior.	 	 Another	 possible	 reason	 is	 the	 inaccuracy	 in	 boundary	 condition	

determination	due	to	the	dramatic	difference	in	image	heterogeneity	between	simulation	and	real	

data.	This	is	supported	by	the	change	in	TRE.		Related	to	this,	it	is	interesting	to	note	the	difference	

between	CT	and	MR	reconstruction	for	the	simulation	work	associated	with	Figure	56	and	in	light	

of	Table	11.	 	The	 first	observation	can	be	made	by	comparing	 the	control	objective	 function	map	

across	CT	and	MR	simulation	 sets	 in	Figure	56.	 	Both	 simulation	 sets	had	a	 contrast	 ratio	of	6:1,	

with	 the	only	difference	being	 the	 level	 of	 intensity	heterogeneity,	 and	potential	different	 tissue‐

volume/tumor	geometries/locations.	 	The	CT	control	had	a	shallower	minimum	which	may	affect	
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the	reconstruction.	 	When	adding	to	 this	observation	the	objective	 function	maps	associated	with	

the	demon‐based	boundary	condition	it	would	seem	that	the	CT	reconstruction	may	perform	better	

due	to	its	convexity;	but	when	observing	how	the	minimum	has	been	shifted,	and	the	shape	of	the	

control	that	has	no	error	in	boundary	conditions,	it	can	be	seen	that	in	fact	the	MR	demons‐based	

objective	function	maps	more	closely	to	its	control	which	is	reflected	in	the	elasticity	contrast	ratio.	

B.7 Conclusions 

	 The	simulations	and	phantom	experiments	conducted	in	this	work	indicate	that	while	TPS	

interpolation	 remains	 the	 most	 accurate	 method	 used	 thus	 far	 in	 MIE	 for	 generating	 boundary	

conditions,	the	demons	method	shows	promise	 in	situations	where	fiducial	point	correspondence	

data	 may	 not	 be	 available.	 In	 addition,	 when	 transitioning	 from	 simulation	 to	 real	 data,	 the	

discrepancy	 in	 performance	 between	 TPS	 and	 the	 demons‐based	 boundary	 condition	 mapping	

becomes	 less	 at	 least	 in	 cases	 where	 image	 intensity	 contrast	 within	 the	 domain	 is	 available .		

Furthermore,	while	 the	higher	accuracy	of	 the	TPS	method	 is	desirable,	 the	much	higher	 level	of	

manual	user	 interaction	and	numerous	fiducials	needed	 for	the	method	make	clear	the	desire	 for	

alternative	methods	of	boundary	condition	generation.	The	demons	method	proposed	represents	a	

fully	automated	approach.	

While	the	results	are	encouraging,	the	challenge	of	predicting	 prior	to	workflow	initiation 	

how	well	a	pre‐post	deformation	image	set	will	fare	prior	to	execution	of	the	demons	registration	

and	 MIE	 optimization	 routine	 still	 remains.	 Since	 the	 demons	 registration	 algorithm	 possesses	

diffusive	behavior	based	upon	intensity	contours	as	described	in	 233 ,	it	is	obvious	that	the	images	

require	a	certain	level	of	texture	and	intensity	heterogeneity	in	order	to	provide	these	membranes	

a	meaningful	registration.	This	is	one	of	the	likely	causes	of	the	varying	performance	of	the	demons	

method	in	generating	accurate	boundary	conditions	among	the	experiments	presented	in	this	work.	

In	work	 not	 presented	 here,	 our	 group	 observed	 similar	 error	 performance	when	 using	 a	more	

recent	 diffeomorphic	 log‐domain	 version	 of	 the	 demons	 registration	 algorithm.	 While	 the	
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registration	error	was	virtually	the	same	as	the	original	demons	implementation,	it	is	possible	that	

with	 noisier	 images,	 the	 diffeomorphic	 nature	 of	 the	 more	 recent	 demons	 may	 help	 minimize	

phenomena	such	as	collapsed	mesh	elements	due	to	overlapping	displacements.	Development	of	a	

feasibility	metric	which	can	predict	the	success	of	applying	the	MIE	algorithm	to	a	given	image	set	is	

a	needed	next	step	for	the	project.	

In	addition	to	a	threshold	criterion	to	evaluate	the	potential	for	a	successful	reconstruction,	

the	 need	 to	 generate	 more	 realistic	 phantoms	 with	 controllable	 stiffness	 properties	 is	 also	

necessary.		The	breast	has	a	complex	image	signature	even	within	CT	and	the	reproduction	of	those	

patterns	coupled	with	controllable	elasticity	properties	is	very	challenging.		While	obstacles	remain,	

the	 results	 presented	 here	 demonstrate	 the	 potential	 of	 treating	 elastographic	 reconstructions	

using	 non‐rigid	 image	 registration	 approaches	 and	 that	 the	 possibility	 of	 full	 automation	 is	 also	

within	reach.	
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