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CHAPTER I

INTRODUCTION

Advances in health information technology have facilitated the collection of detailed, patient-level clin-

ical data to enable ef�ciency, effectiveness, and safety in healthcare operations [1]. Such data are often

stored in electronic medical record (EMR) systems [2, 3] and are increasingly repurposed to support clinical

research (e.g., [4, 5, 6, 7]). Recently, EMRs have been combined with biorepositories to enable genome-

wide association studies (GWAS) with clinical phenomena in the hopes of tailoring healthcare to genetic

variants [8]. To demonstrate feasibility, EMR-based GWAS have focused on static phenotypes; i.e., where

a patient is designated as disease positive or negative (e.g., [9, 10, 11]). As these studies mature, they will

support personalized clinical decision support tools [12] and will require either repeated data (i.e., data with

replicated diagnosis information) for improved diagnostic certainty [13] or longitudinal data (i.e., repeated

data with temporal information) to understand how treatment in�uences a phenotype over time [14, 15].

Meanwhile, there are challenges to conducting GWAS on a scale necessary to institute changes in health-

care. First, to generate appropriate statistical power, scientists may require access to populations larger than

those available in local EMR systems [16]. Second, the cost of a GWAS - incurred in the setup and applica-

tion of software to process medical records as well as in genome sequencing - is non-trivial [17]. Thus, it can

be dif�cult for scientists to generate novel, or validate published, associations. To mitigate this problem, the

U.S. National Institutes of Health (NIH) encourages investigators to share data from NIH-supported GWAS

[18] into the Database of Genotypes and Phenotypes (dbGaP) [19].

This, however, may lead to privacy breaches if patients' clinical or genomic information is associated

with their identities. As a �rst line of defense against this threat, the NIH recommends investigators de-

identify data by removing an enumerated list of attributes that could identify patients (e.g., personal names

and residential addresses) prior to dbGaP submission [20]. However, a patients' DNA may still be re-

identi�ed via residual demographics [21] and clinical information (e.g., standardized International Classi�-

cation of Diseases (ICD) codes) [22] as we demonstrate in later chapters.

Methods to mitigate re-identi�cation via demographic and clinical features [23, 24] have been proposed,

but they are not applicable to the data considered in this thesis. These methods assume the clinical pro�le is

devoid of temporal or replicated diagnosis information. Consequently, these methods produce data that are
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unlikely to permit meaningful clinical investigations.

This thesis addresses a number of important questions regarding the anonymization of repeated and

longitudinal data. Speci�cally, our work makes the following speci�c contributions:

• We propose an algorithm to guard against re-identi�cation attacks on repeated data. We realize our

approach in an automated algorithm which attempts to maximize the number of repeated diagnosis

codes that can be safely released. We illustrate the effectiveness of our approach in retaining repeated

comorbidities using a patient cohort from the Vanderbilt University Medical Center (VUMC) EMR

system. The content of this chapter, in edited form, was published in the proceedings of the 2010

American Medical Informatics Association (AMIA) Annual Symposium as a research paper (see

[25]).

• We propose a framework to guard against re-identi�cation attacks on longitudinal data. The frame-

work transforms each longitudinal patient record so that it is indistinguishable from a certain set of

other patients' records with respect to potentially identifying information. This is achieved by itera-

tively clustering records and applying generalization, which replaces ICD codes and age values with

more general values, and suppression, which removes ICD codes and age values. We evaluate our

approach with several cohorts of patient records from the VUMC EMR system. Our results demon-

strate that the anonymized data derived by our framework allow many studies focusing on clinical

case counts to be performed accurately. The content of this chapter is currently under peer-review.

The remainder of the thesis is organized as follows. In Chapter II, we review related research on

anonymization and its application to biomedical data. In Chapter III, we present our anonymization method-

ology for repeated data. In Chapter IV, we focus on more complex longitudinal data and propose a frame-

work to formally anonymize such data. In Chapter V, we discuss the extensions of our methods and highlight

the limitations of this study. Finally, Chapter VI concludes the thesis.
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CHAPTER II

RELATED RESEARCH

Re-identi�cation concerns for clinical data via seemingly innocuous attributes were �rst raised in [26].

Speci�cally, it was shown that patients could be uniquely re-identi�ed by linking publicly available voter

registration lists to hospital discharge summaries via demographics, such as date of birth, gender, and 5-

digit residential zip code. The re-identi�cation phenomenon for clinical data has since attracted interest in

domains beyond healthcare, and numerous techniques to guard against attacks have emerged (see [27, 28]

for surveys). In this chapter, we survey research related to privacy-preserving data publishing, with a focus

on biomedical data. We note that the re-identi�cation problem is not addressed by access control and

encryption-based methods [29, 30, 31] because regulations such as the HIPAA Privacy rule permit de-

identi�ed data to be publicly shared beyond a small number of authorized recipients.

II.1 Relational Data

We �rst discuss methods for preventing re-identi�cation when sharing relational data, such as demographics,

in which records have a �xed number of attributes and one value per attribute.

The �rst category of protection methods transforms attribute values so that they no longer correspond

to real individuals. Popular approaches in this category are noise addition, data swapping, and synthetic

data generation (see [32, 33, 34] for surveys). While such methods generate data that preserve aggregate

statistics (e.g., the average age), they do not guarantee data that can be analyzed at the record level. This

is a signi�cant limitation that hampers the ability to use these data in various biomedical studies, including

epidemiological studies [35] and GWAS [23]. As an example, consider a pharmaceutical researcher mining

published patient-level clinical data to discover previously unknown side effects of a drug. The results of

such an analysis are of no use if the data contain noisy or randomized patient records [36].

In contrast, methods based on generalization and/or suppression (e.g., [37, 38, 39]) preserve the truthful-

ness of the original data at the record level. Many of these methods are based on a privacy principle, called

k-anonymity [26, 37], which states that each record of the published data must be equivalent to at least k−1

other records with respect to quasi-identi�ers (QI) (i.e., attributes that can be linked with external informa-
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tion for re-identi�cation purposes) [40]. To minimize the information loss incurred by anonymization, these

methods employ various search strategies, including binary search [37, 38], partitioning [39], clustering

[41, 42], and evolutionary search [43]. Furthermore, there exist methods that have been successfully applied

by the biomedical community [38, 44].

k-Anonymity is a speci�c realization of a more general data privacy model known as k-map [26, 45]. The

latter principle enhances data utility by relaxing the k-anonymity requirement. Speci�cally, k-map ensures

that each record in the published data can be associated with no less than k records in the population with

respect to a QI.

II.2 Transactional Data

Next, we turn our attention to approaches that deal with more complex data. Speci�cally, we consider

transactional data, in which records have a large and variable number of values per attribute (e.g., the set

of diagnosis codes assigned to a patient during a hospital visit). Transactional data can also facilitate re-

identi�cation in the biomedical domain. For instance, de-identi�ed clinical records can be linked to patients

based on combinations of diagnosis codes that are additionally contained in publicly available hospital

discharge summaries and EMR systems from which the records have been derived [22]. As it was shown

in [22], more than 96% of 2700 patient records, collected in the context of a GWAS, are susceptible to

re-identi�cation based on diagnosis codes.

From the protection perspective, there are several approaches that have been developed to anonymize

transactional data. Notably, Terrovitis et al. [46] proposed the km-anonymity principle, along with several

heuristic algorithms, to prevent attackers from linking an individual to less than k records. This model

assumes that the adversary knows at most m values of any transaction. To anonymize patient records in

transactional form, Loukides et al. [23] introduced a privacy principle to ensure that sets of potentially iden-

tifying diagnosis codes are protected from re-identi�cation, while remaining useful for GWAS validations.

To enforce this principle, they proposed an algorithm that employs generalization and suppression to group

semantically close diagnosis codes together in a way that enhances data utility [23, 24].

The work in this thesis differs from the aforementioned research along three principal dimensions. First,

we prevent re-identi�cation in repeated and longitudinal data publishing. Second, contrary to the approaches

of [23, 24] which employ k-anonymity as their privacy principle, our repeated data anonymization method
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is more general and realizes a variant of k-anonymity to enhance data utility. Third, the approaches of

[23, 24] group diagnosis codes together whereas our longitudinal data anonymization framework is based

on grouping of records, an approach that has been shown to be highly effective in retaining data utility

because of the direct recognition of records being anonymized [41, 42, 47].

II.3 Spatiotemporal Data

Spatiotemporal data are related to the longitudinal data anonymization problem. They are time and location

dependent, and these unique characteristics make them challenging to protect against re-identi�cation. Such

data are typically produced as a result of queries issued by mobile subscribers to location-based service

providers, who, in turn, supply information services based on speci�c physical locations.

The principle of k-anonymity has been extended to anonymize spatiotemporal data. Abul et al. [48]

proposed a technique to group at least k objects that correspond to different subscribers and appear within

a certain radius of the path of every object in the same time period. In addition to generalization and

suppression, [48] considered adding noise to the original paths so that objects appear at the same time

and spatial trajectory volume. Assuming that the locations of subscribers constitute sensitive information,

Terrovitis et al. [49] proposed a suppression-based methodology to prevent attackers from inferring these

locations. Finally, Nergiz et al. [47] proposed an approach that employs k-anonymity, enforced using

generalization together with reconstruction (i.e., randomly sampling speci�c records from the area covered

by the anonymized data) for improved protection. Our heuristics for anonymizing longitudinal data are

inspired from [47], however, we employ both generalization and suppression to further enhance data utility,

and we do not use reconstruction to preserve data truthfulness.

The aforementioned approaches are developed for anonymizing spatiotemporal data and cannot be ap-

plied to longitudinal data due to different semantics. Speci�cally, the data considered in this thesis record

patients' diagnoses and not their locations. Consequently, the objective of our approach is to prevent re-

identi�cation based on patients' diagnosis and time information, not to hide their locations.
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CHAPTER III

ANONYMIZATION OF REPEATED DIAGNOSIS CODES DERIVED FROM ELECTRONIC

MEDICAL RECORDS

In this chapter, we present Greedy Code Censoring (GCCens) which is the �rst approach to formally

anonymize EMR-derived repeated data. As we noted in Chapter I, such data consist of replicated diagnoses

with no temporal information and, thus, are a special case of more complex longitudinal data. This chapter,

therefore, serves as a pilot study for anonymizing longitudinal data. More speci�cally, in this chapter, we

�rst demonstrate the privacy problem, and present the notation and the materials. We then formalize the risk

measure, the GCCens algorithm, and the data utility measure. We conclude the chapter with an experimental

evaluation of the proposed approach using a patient cohort derived from the EMR system of the VUMC.

Figure 1: A depiction of the repeated data privacy problem. (a) and (b) depict repeated data and identi-

�ed EMR, respectively. A 2-map based on the proposed approach and information loss incurred by this

protection are depicted in (c) and (d), respectively.

III.1 Motivating Example

As an example of the problem studied in this chapter, consider the repeated data in Figure 1a. Each record

corresponds to a �ctional de-identi�ed patient and is comprised of ICD codes and a DNA sequence. The �rst

record, for instance, denotes that a patient was diagnosed with diabetes mellitus (code 250) and has the DNA

sequence `CT...A'. The clinical and genomic data are derived from an EMR system and a research project

beyond primary care (i.e., they are not contained in the EMR system), respectively. Publishing the data of
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Figure 1a could allow a hospital employee with EMR access to associate Tom with his DNA sequence. This

is because the identi�ed record, shown in Figure 1b, can only be linked to the second record in Figure 1a

based on the combination of ICD codes `272, 272, 724'.

III.2 A Formal Model of the System

Before proceeding, we formalize the privacy problem considered in this chapter. Let U = {d1, ...,dh} be

the set of distinct ICD codes stored in an EMR system. The dataset P = {p1, ..., pn} represents the medical

records of the patient population. Each record pi is of the form < IDi,Di >, where IDi is an identi�er

associated with a patient and Di is a set of ICD codes for the patient (which are not necessarily distinct)

derived fromU . Figure 1b depicts a population that is comprised of seven records. For instance, p5 has ID5

= Tom and D5 = {272,272,724}.

A second dataset S = {s1, ...,sm} represents a sample of patient records to be shared. Each record s j is

of the form < D j,DNA j > and corresponds to a patient whose record is in the population. D j is a set of

ICD codes derived from U and DNA j represents genomic sequence data. For instance, s1 in Figure 1a has

DNA1 = {CT...A} and D1 = {250} which was derived from p6.

The re-identi�cation attack we consider assumes an attacker knows the identifying information and ICD

codes about a patient whose record is in the sample. This could occur through various routes. First, a data

recipient may be an employee of the institution from which the data were derived, with access to the EMR

system. The recipient, alternatively, may have knowledge about a neighbor or coworker. Or, in certain cases,

a recipient may use public information; e.g., she may link de-identi�ed hospital discharge summaries with

identi�ed resources, such as voter registration lists [21, 26].

III.3 Materials

For this study, we worked with the de-identi�ed version of StarChart, the EMR system of the VUMC [50].

We constructed P using a set of 301,423 patients' records that contain at least one of the following ICD

codes: 250 (diabetes mellitus), 272 (disorders of lipoid metabolism), 401 (essential hypertension), and 724

(other and unspeci�ed disorders of back). We selected these ICD codes because they appear frequently in

the EMR system, they are interesting phenotypes, and they are critical covariates for a wide range of other

clinical phenotypes [11].
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The research sample S contains 2,676 patient records and was extracted for the purposes of a GWAS on

native electrical conduction within the ventricles of the heart [11]. The sample represents a `heart healthy'

group with no prior heart disease, no heart conduction abnormalities, no electrolyte abnormalities, and no

use of medications that can interfere with conduction.

A record in S, on average, consists of 3.5, 2.3, 4.4, and 2 repeats of the ICD codes 250, 272, 401, and

724, respectively. A record in P, on average, consists of 2.2, 1.3, 2.5, and 0.9 repeats of the same ICD codes.

It was shown in previous research [22] that this cohort is appropriate for studying privacy threats in samples

derived from the VUMC EMR system.

III.4 Risk Measure

We measure the level of privacy protection afforded to the sample using the distinguishability measure [22].

This measure is applied to determine how many records are susceptible to re-identi�cation based on shared

ICD codes. Speci�cally, given s j, distinguishability (which we refer to as a function dis) is equal to the

number of records in P that contain all ICD codes in D j. A patient is said to be uniquely identi�able if her

record has a distinguishability of 1. Distinguishability is the inverse of the probability of re-identifying a

patient. For example, in Figure 1a, dis(272,724) = 2 because two records (i.e., p5 and p7) in P contain all

of these ICD codes. Note the probability of correctly identifying one of these records is 1/2.

III.5 Censoring Algorithm

Greedy heuristics are commonly employed to anonymize data due to their ability to retain both privacy and

utility [51]. Along these lines, GCCens is designed to limit the number of ICD codes that are released in

patient records in a greedy manner. A notable strength of GCCens is that it signi�cantly enhances data

utility by employing k-map as its privacy principle. In our setting, S satis�es k-map when, for each D j in S,

dis(D j)≥ k. This ensures that each record in S can be associated with no less than k records in P based on

the released ICD codes, and implies that the probability of performing a re-identi�cation attack is no greater

than 1/k per disclosed record.

The k-map model tends to offer `high' data utility, but assumes no knowledge of whether an individual's

record is contained in S. However, such knowledge is dif�cult (if not impossible) to be acquired by an

attacker in the context of the data sharing we consider. This is because, typically, a random fraction of
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EMRs with identical ICD codes are associated with DNA information and released.

The GCCens algorithm accepts the following inputs: a sample S, a population P, a privacy parameter k

and a set of censoring thresholdsC = {c1, ...,c|U |}. The algorithm outputs Y , a version of S that is k-mapped

to P. The parameter k expresses the minimum allowable number of records in P that can be mapped to a

record of Y based on ICD codes, while C is a set of thresholds (called caps), each of which corresponds

to an ICD code in U (i.e., cm is the cap value of the ICD code dm) and expresses the maximum allowable

number of times a particular ICD code can appear in a record of Y . The caps, in effect, act as an initial

acceptable censor for the distribution of repeat counts. In this work, we follow the standard assumptions

[26, 52] in that we assume k and C are speci�ed by data owners according to their expectations about an

attacker's knowledge. We also note that it is possible to specifyC automatically by scanning S and recording

the maximum number of occurrences of each distinct ICD code in all records.

Algorithm 1 GCCens(P, S, k, C)

Require: Population P, sample S, privacy parameter k, cap setC

Return: Y : k-mapped version of S

1: Y ← preprocess(S) such that no ICD code appears more than its cap

2: while there exists D j ∈ Y such that dis(D j) < k do

3: R←{r1, ...,r|U |} ⊲ re is a set associated with the ICD code de
4: for each ICD code dm do

5: for each record yn ∈ Y do

6: if dm appears cm times in yn then

7: rm← rm∪ yn
8: end if

9: end for

10: end for

11: o← argmin f∈{1...|U |}{|r f |}
12: for each record yt ∈ ro do
13: remove do from yt
14: end for

15: co← co−1

16: end while

17: return Y

The pseudocode of GCCens is illustrated in Algorithm 1. In step 1, the algorithm invokes a helper

function called preprocess(), which iteratively censors ICD codes (i.e., removes one of their instances)

from S until there is no ICD code that appears more than its cap in S. The result of preprocess() is assigned

to a sample Y . Then, in steps 2-16, GCCens iterates over Y until k-map is satis�ed. More speci�cally, in

step 3, GCCens generates a set of sets, each of which corresponds to an ICD code inU . Then, in steps 4-10,
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GCCens computes the number of ICD code instances that need to be censored for each distinct ICD code

dm. This is achieved by iterating over all records in Y (step 5-9), counting the number of records in Y that

harbor dm exactly cm times and assigning these records to rm (steps 6-8). Then, in steps 11-14, GCCens

determines the ICD code do that requires the least amount of censoring and removes one instance of it from

all records in ro. To minimize the number of ICD codes that need to be modi�ed, we remove one instance

of do per iteration. Subsequently, the cap co for do is decremented by 1 (step 15). Finally, GCCens releases

a sample that satis�es k-map in step 17.

Example 1. Consider applying GCCens to the records in Figure 1a. We assume k= 2 and the cap set forU =

{250,272,401,724} isC= {2,2,0,1}. First,Y is set equivalent to S because no ICD code appears more than

its cap. Next, GCCens �nds that 2-map is not satis�ed because dis(D3 = {250,250,272}) = 1. So, GCCens

censors one occurrence of 250 from y3 (i.e., 250 is selected because its cap value is 2 and only one record

in Y has 2 instances of 250). After censoring, the cap value for 250 is decremented by 1, soC = {1,2,0,1}.

At this point, GCCens �nds that 2-map is still not satis�ed because dis(D2 = {272,272,724}) = 1. Thus,

one occurrence of 272 is censored from y2. Finally, Y satis�es 2-map and GCCens terminates. The resulting

solution is depicted in Figure 1c.

III.6 Data Utility Measure

When ICD code repeats are censored, there is a decrease in the utility of the data. To measure this utility loss,

we introduce a measure called Censoring Utility Loss (CUL). This is de�ned as the number of censored ICD

codes in a record s divided by the total number of ICD codes in s. As an example, assume that we remove

one instance of 272 from the second record in Figure 1a. In this case, CUL equals 1/3 because there were

three ICD codes in this record, one of which is censored. We note that the greedy heuristic in GCCens is

designed to minimize the sum of CUL values in each iteration by choosing to censor the ICD code that

incurs the minimum utility loss (see step 11 in Algorithm 1). The CUL values for the records in Figure 1c,

computed with respect to the anonymization in Example 1, are depicted in Figure 1d.
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Figure 2: Distinguishability of the original patient records in the sample. A distinguishability of 1 means

that a patient is uniquely identi�able.

III.7 Experimental Evaluation

III.7.1 Risk of Re-identi�cation

Figure 2 summarizes the risk of associating a patient's record from the de-identi�ed sample to their corre-

sponding record in the population. This �gure is a cumulative distribution and depicts the percent of patients

in the sample (y-axis) that have a distinguishability score of a particular value or less (x-axis) with respect

to the population from which they were derived. As can be seen, approximately 9% of the patients con-

tained in the sample would be uniquely identi�able if the original data were disclosed. This con�rms that a

re-identi�cation attack is feasible in practice and there is a need for developing a formal protection method.

III.7.2 Effect of k on Data Utility

Next, we recognize that not all data recipients will be comfortable working with a sample that is capped to

varying degrees. Thus, we evaluated the effectiveness of GCCens in preserving utility when it is applied

with all caps set to 3 (i.e., C = {3,3,3,3}) and various k values between 5 and 25. Table 1 reports the

mean, standard deviation, median, and skewness1 of the distribution of the CUL values for all records in

the sample. As expected, as we increase k we �nd an increase in the mean of the CUL distribution. This

is because GCCens needs to censor a larger number of ICD codes to meet a stricter privacy requirement.

However, it is notable that GCCens retained 95.4% of the ICD codes on average when k = 5 as is often

applied in practice (i.e., the mean of the CUL distribution was 0.046) [23]. We note that while 4.6% of the

1Skewness is a standard measure of the asymmetry of the distribution [53].
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ICD codes in a record were censored on average, GCCens only modi�ed 16% of the records in the sample.

We also observed a positive skew in the CUL distribution for all tested values of k, which implies that the

number of censored codes is closer to 0 for most patient records.

Table 1: Statistics on the distribution of CUL when GCCens was applied with all caps set to 3.

k Mean Std. Dev. Median Skewness

5 0.046 0.123 0 3.016

10 0.046 0.123 0 3.016

25 0.091 0.156 0 1.501

III.7.3 Effect ofC on Data Utility

Finally, we evaluated the impact of forcing all values in C to be equivalent. For this set of experiments,

we �xed k to 5 and varied the cap between 3 and 10. The results are summarized in Table 2. Notice that

GCCens performed a greater amount of censoring when larger cap values are supplied. This is expected

because large cap values permit more information to be released, which makes it more dif�cult to generate a

suf�cient privacy solution [22, 28, 52]. However, GCCens managed to retain a reasonably large percentage

of the ICD codes in all tested cases. In particular, 92% of the ICD codes were retained when the cap was

set to 4 (i.e., the mean of the CUL distribution was 0.08). We believe this result is promising because the

data derived by GCCens in this experiment was deemed to be useful for comorbidity analysis by a clinician.

Moreover, when releasing at most 5 repeats of the ICD codes, GCCens retained, on average, 88.1% of the

codes. We also observed a positive skew in the CUL distribution for all tested cap values, which implies that

the number of censored codes is closer to 0 for most patient records.

III.8 Summary

This chapter considered repeated data, a special case of more complex longitudinal data. Speci�cally, we

�rst demonstrated the feasibility of a re-identi�cation attack based on repeated diagnoses derived from real

patient-speci�c clinical data. We then developed an algorithm to provide formal computational guarantees

against such attacks. Our experiments verify that the proposed approach permits privacy-preserving patient

record dissemination while retaining much of the information of the original records.
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Table 2: Distribution statistics of CUL when GCCens was applied with k = 5 and all caps set to a particular

value.

Cap Mean Std. Dev. Median Skewness

3 0.046 0.123 0 3.016

4 0.080 0.152 0 2.042

5 0.119 0.183 0 1.383

6 0.141 0.209 0 1.131

7 0.156 0.229 0 1.050

8 0.191 0.270 0 0.952

9 0.197 0.279 0 0.939

10 0.213 0.282 0 0.898

13



CHAPTER IV

ANONYMIZATION OF LONGITUDINAL DATA DERIVED FROM ELECTRONIC MEDICAL

RECORDS

In Chapter III, we performed a pilot study on repeated data, which are a special case of more complex

longitudinal data, and proposed a methodology to anonymize such data. In this chapter, we focus on the

broader problem and present Longitudinal Data Anonymizer (LDA) which is the �rst approach to formally

anonymize EMR-derived longitudinal data. Speci�cally, we �rst demonstrate the privacy problem, and

formalize the notions of privacy and utility. We then present LDA and a baseline comparison algorithm. We

conclude the chapter with an experimental evaluation of the proposed approach using several patient cohorts

derived from the VUMC EMR system.

Figure 3: A depiction of the longitudinal data privacy problem. (a) and (b) depict longitudinal data and

identi�ed EMR, respectively. A 2-anonymization based on the proposed approach is depicted in (c).

IV.1 Motivating Example

As an example of the problem studied in this chapter, consider the longitudinal data in Figure 3a. Each

record corresponds to a �ctional de-identi�ed patient and is comprised of ICD codes, patient's age when

a code was received, and a DNA sequence. For instance, the second record denotes that a patient was

diagnosed with benign essential hypertension (code 401.1) at ages 38 and 40 and has the DNA sequence

`GC...A'. The clinical and genomic data are derived from an EMR system and a research project beyond

primary care (i.e., they are not contained in the EMR system), respectively. Publishing the data of Figure
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3a could allow a hospital employee with access to the EMR to associate Jane with her DNA sequence. This

is because the identi�ed record, shown in Figure 3b, can only be linked to the second record in Figure 3a

based on the ICD code 401.1 and ages 38 and 40.

IV.2 Background and Problem Formulation

This section begins with a high-level overview of the proposed approach. Next, we present the notation and

the de�nitions for the privacy and adversarial models, the data transformation strategies, and the information

loss metrics. We conclude the section with a formal problem description.

Figure 4: A general architecture of the longitudinal data anonymization process.

IV.2.1 Architectural Overview

Figure 4 provides an overview of the data anonymization process. The process is initiated when the data

owner supplies the following information: (1) a dataset of longitudinal patient records, each of which con-

sists of (ICD, Age) pairs and a DNA sequence and (2) a parameter k that expresses the desired level of pri-

vacy. Given this information, the process invokes our anonymization framework. To satisfy the k-anonymity

principle, our framework forms clusters of at least k records of the original dataset, which are modi�ed using

generalization and suppression.
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IV.2.2 Notation

A dataset D consists of longitudinal records of the form <T,DNAT>, where T is a trajectory1 and DNAT

is a genomic sequence. Each trajectory corresponds to a distinct patient in D and is a multiset2 of pairs

(i.e., T = {t1, ..., tm}) drawn from two attributes, namely ICD and Age (i.e., ti = (u ∈ ICD,v ∈ Age)), which

contain the diagnosis codes assigned to a patient and their age, respectively. |D| denotes the number of

records in D and |T | the length of T , de�ned as the number of pairs in T . We use the `.' operator to refer to

a speci�c attribute value in a pair (e.g., ti.icd or ti.age). To study the data temporally, we order the pairs in

T with respect to Age, such that ti−1.age≤ ti.age.

IV.2.3 Adversarial Model

We assume an adversary has access to the original dataset D, such as in Figure 3a. An adversary may

perform a re-identi�cation attack in several ways, such as:

• Using identi�ed EMR data: The adversary links D with the identi�ed EMR data, such as those of

Figure 3b, based on (ICD, Age) pairs. This scenario requires the adversary to have access to the

identi�ed EMR data, which is the case of an employee of the institution from which the longitudinal

data were derived.

• Using publicly available hospital discharge summaries and identi�ed resources: The adversary �rst

linksDwith hospital discharge summaries based on (ICD, Age) pairs to associate patients with certain

demographics. In turn, these demographics are exploited in another linkage with public records, such

as voter registration lists, which contain identity information [21, 26].

Note that in both cases, an adversary is able to link patients to their DNA sequences, which suggests a formal

approach to longitudinal data anonymization is desirable.

IV.2.4 Privacy Model

The formal de�nition of k-anonymity in the longitudinal data context is provided in De�nition 1. Since each

trajectory often contains multiple (ICD, Age) pairs, it is dif�cult to know which can be used by an adversary

1We use the term trajectory since the diagnosis codes at different ages can be seen as a route for the patient throughout his life.
2Contrary to a set, a multiset can contain an element more than once.
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to perform re-identi�cation attacks. Thus, we consider the worst-case scenario in which any combination

of (ICD, Age) pairs can be exploited. Regardless, k-anonymity limits an adversary's ability to perform re-

identi�cation based on (ICD, Age) pairs, because each trajectory is associated with no less than k patients.

De�nition 1. (k-Anonymity) An anonymized dataset �D, produced from D, is k-anonymous if each trajectory

in �D, projected over QI, appears at least k times for any QI in D.

IV.2.5 Data Transformation Strategies

Generalization and suppression are typically guided by a domain generalization hierarchy (De�nition 2)

[54].

De�nition 2. (Domain Generalization Hierarchy) A domain generalization hierarchy (DGH) for attributeA,

referred to as HA, is a partially ordered tree structure which de�nes valid mappings between speci�c and

generalized values of A. The root of HA is the most generalized value of A, and is returned by a function

root.
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Figure 5: An example of the domain generalization hierarchy for Age.

Example 2. Consider HAge in Figure 5. The values in the domain of Age (i.e., 33, 34, ..., 40) form the leaves

of HAge. These values are then mapped to two, to four, and eventually to eight-year intervals. The root of

HAge is returned by root(HAge) as [33−40].

Our approach does not impose any constraints on the structure of an attribute's DGH, such that the data

owners have complete freedom in its design. For instance, for ICD codes, data owners can use the standard

ICD-9-CM hierarchy.3 For ages, data owners can use a pre-de�ned hierarchy (e.g., the age hierarchy in the

HIPAA Safe Harbor Policy4) or design a DGH manually.5

3More information is available at http://www.cdc.gov/nchs/icd.htm
4The Safe Harbor standard of the HIPAA Privacy Rule states all ages under 89 can be retained intact, while 90 or greater must

be grouped together. More information is available at http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/
5We further note that our approach can be extended to other categorical attributes, such as SNOMED-CT and Date, provided

that a DGH can be speci�ed for each of the attributes. Such extensions, however, are beyond the scope of this thesis.
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According to De�nition 3, each speci�c value of an attribute generalizes to its direct ancestor in a DGH.

However, a speci�c value can be projected up multiple levels in a DGH via a sequence of generalizations.

As a result, a generalized value Ai is interpreted as any one of the leaf nodes in the subtree rooted by Ai in

HA.

De�nition 3. (Generalization and Suppression) Given a node Ai 6= root(HA) in HA, generalization is per-

formed using a function f :Ai→A j which replaces Ai with its direct ancestor A j. Suppression is a special

case of generalization and is performed using a function g:Ai→Ar which replaces Ai with root(HA).

Example 3. Consider the last trajectory in Figure 3c. The �rst pair (401.1, [39−40]) is interpreted as either

(401.1,39) or (401.1,40).

IV.2.6 Information Loss

Generalization and suppression incur information loss because values are replaced by more general ones

or eliminated. To capture the amount of information loss incurred by these operations, we quantify the

normalized loss for each ICD code and Age value in a pair based on the Loss Metric (LM) (De�nition 4)

[43].

De�nition 4. (Loss Metric) The information loss incurred by replacing a nodeAi with its ancestor A j in HA

is:

LM(Ai,A j) =
A
△
j −A

△
i

|A|

where A
△
i and A

△
j denote the number of leaf nodes in the subtree rooted by Ai and A j in HA, respectively,

and |A| denotes the domain size of attribute A.

Example 4. Consider HAge in Figure 5. The information loss incurred by generalizing [33−34] to [33−36]

is 4−2
8

= 0.25 because the leaf-level descendants of [33−34] are 33 and 34, those of [33−36] are 33, 34, 35

and 36, and the domain of Age consists of the values 33 to 40.

To introduce the combined LM, which captures the total LM of replacing two nodes with their ancestor,

provided in De�nition 6, we use the notation of lowest common ancestor, provided in De�nition 5.

De�nition 5. (Lowest Common Ancestor) The lowest common ancestor (LCA) Aℓ of nodes Ai and A j in

HA is the farthest node (in terms of height) from root(HA) such that (1) Ai = Aℓ or f n(Ai) = Aℓ and (2)

A j = Aℓ or fm(A j) = Aℓ, and is returned by a function lca.
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De�nition 6. (Combined Loss Metric) The combined LM of replacing nodes Ai and A j with their LCA Aℓ

is:

LM(Ai +A j,Aℓ) = LM(Ai,Aℓ)+LM(A j,Aℓ)

Next, we de�ne the LM for an anonymized trajectory (De�nition 7) and dataset (De�nition 8), which

we keep separate for each attribute.

De�nition 7. (LossMetric for an Anonymized Trajectory) Given an anonymized trajectory �T and an attribute

A, the LM with respect to A is computed as:

LM( �T ,A) =
| �T |
å
i = 1

LM(�ti.A, �t∗i .A)

where �t∗i .A denotes the value �ti.A is replaced with.

De�nition 8. (Loss Metric for an Anonymized Dataset) Given an anonymized dataset �D and an attribute A,

the LM with respect to attribute A is computed as:

LM( �D,A) =
1

| �D| å�T ∈ �D

LM( �T ,A)
| �T |

For clarity, we refer to LM for the attributes ICD and Age using ILM and ALM, respectively (e.g., we

use ILM( �D) instead of LM( �D, ICD)).

IV.2.7 Problem Statement

The longitudinal data anonymization problem is formally de�ned as follows.

Problem: Given a longitudinal dataset D, a privacy parameter k, and DGHs for attributes ICD and

Age, construct an anonymized dataset �D, such that (i) �D is k-anonymous, (ii) the order of the pairs in each

trajectory of D is preserved in �D, and (iii) ILM( �D)+ALM( �D) is minimized.

IV.3 Anonymization Framework

In this section, we present our framework for longitudinal data anonymization.

Many clustering algorithms can be applied to produce k-anonymous data [55, 56]. This involves orga-

nizing records into clusters of size at least k, which are anonymized together. In the context of longitudinal
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data, the challenge is to de�ne a distance metric for trajectories such that a clustering algorithm groups sim-

ilar trajectories. We de�ne the distance between two trajectories as the cost (i.e., incurred information loss)

of their anonymization as de�ned by the LM. The problem then reduces to �nding an anonymized version

�T of two given trajectories such that ILM( �T ) + ALM( �T ) is minimized.

Finding an anonymization of two trajectories can be achieved by �nding a matching between the pairs

of trajectories that minimizes their cost of anonymization. This problem, which is commonly referred

to as sequence alignment, has been extensively studied in various domains, notably for the alignment of

DNA sequences to identify regions of similarity in a way that the total pairwise edit distance between the

sequences is minimized [57, 58].

To solve the longitudinal data anonymization problem, we propose Longitudinal Data Anonymizer

(LDA), a framework that incorporates alignment and clustering as separate components, as shown in Figure

4. The objective of each component is summarized below:

1. Alignment attempts to �nd a minimal cost pair matching between two trajectories, and

2. Clustering interacts with the Alignment component to create clusters of at least k records.

Next, we examine each component in detail and develop methodologies to achieve their objectives.

IV.3.1 Alignment

There are no directly comparable approaches to the method we developed in this chapter. So, we introduce a

simple heuristic, called Baseline, to establish a minimum performance benchmark for comparison purposes.

Given trajectories X = {x1, ...,xm} and Y = {y1, ...,yn}, ILM(X) and ALM(X), and DGHs HICD and HAge,

Baseline aligns X and Y by matching their pairs on the same index.6

The pseudocode for Baseline is provided in Algorithm 2. This algorithm initializes an empty trajectory �T

to hold the output of the alignment and then assigns ILM(X) and ALM(X) to variables i and a, respectively

(steps 1-2). Then, it determines the length of the shorter trajectory (step 3) and performs pair matching

(steps 4-9). Speci�cally, for the pairs of the trajectories that have the same index, Baseline constructs a pair

containing the LCAs of the ICD codes and Age values in these pairs (step 5), appends the constructed pair

to �T (step 6), and updates i and a with the information loss incurred by the generalizations (steps 7− 8).

Next, Baseline updates i and a with the amount of information loss incurred by suppressing the ICD codes

6
ILM(X) and ALM(X) are provided as input because X may already be an anonymized version of two other trajectories.
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Algorithm 2 Baseline(X , Y )

Require: Trajectories X = {x1, ...,xm} and Y = {y1, ...,yn}, ILM(X) and ALM(X), DGHs HICD and HAge

Return: Anonymized trajectory �T , ILM( �T ) and ALM( �T )
1: �T ← /0

2: i← ILM(X), a← ALM(X)
3: s← the length of the shorter of X and Y

4: for all j ∈ [1− s] do
⊲Construct a pair containing the LCAs of x j and y j

5: p← (lca(x j.icd,y j.icd,HICD), lca(x j.age,y j.age,HAge))
⊲Append the constructed pair to �T

6: �T ← �T ∪ p
⊲Information loss incurred by generalizing x j with y j

7: i← i+ ILM(x j + y j, p.icd)
8: a← a+ALM(x j + y j, p.age)
9: end for

10: Z← the longer of X and Y

11: for all j ∈ [(s+1)−|Z|] do
⊲Information loss incurred by suppressing z j

12: i← i+ ILM(z j,root(HICD))
13: a← a+ALM(z j,root(HAge))
14: end for

15: return { �T , i, a}

and Age values from the unmatched pairs in the longer trajectory (steps 10-14). Last, this algorithm returns

�T along with i and a, which correspond to ILM( �T ) and ALM( �T ), respectively (step 15).

To help preserve data utility, we provide Alignment using Generalization and Suppression (A-GS), an

algorithm that uses dynamic programming to construct an anonymized trajectory that incurs minimal cost.

Before discussing A-GS, we brie�y discuss the application of dynamic programming. The latter tech-

nique can be used to solve problems based on combining the solutions to subproblems which are not in-

dependent and share subsubproblems [59]. A dynamic programming algorithm stores the solution of a

subsubproblem in a table to which it refers every time the subsubproblem is encountered. To give an exam-

ple, for trajectories X = {x1, ...,xm} and Y = {y1, ...,yn}, a subproblem may be to �nd a minimal cost pair

matching between the �rst to the j-th pairs. A solution to this subproblem can be determined using solutions

for the following subsubproblems and applying the respective operations:

• Align X = {x1, ...,x j−1} and Y = {y1, ...,y j−1}, and generalize x j with y j

• Align X = {x1, ...,x j−1} and Y = {y1, ...,y j}, and suppress x j

• Align X = {x1, ...,x j} and Y = {y1, ...,y j−1}, and suppress y j
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Each case is associated with a cost. Our objective is to �nd an anonymized trajectory �T , such that

ILM( �T ) + ALM( �T ) is minimized, so we examine each possible solution and select the one with minimum

information loss.

.

.

..401

. .. .. .. ..401.0 . ..401.1 . ..401.9

Figure 6: An example of the hypertension subtree in the ICD domain generalization hierarchy.

For a more speci�c example, consider the alignment of X = {(401.1,34) (401.1,35) (401.1,37)} and

Y = {(401.1,34) (401.1,36)} using the DGHs shown in Figures 5 and 6. A solution for this problem can be

determined using solutions for the following subproblems and applying the respective operations:

• Align X = {(401.1,34) (401.1,35)} andY = {(401.1,34)}, and generalize (401.1,37)with (401.1,36)

• Align X = {(401.1,34) (401.1,35)} and Y = {(401.1,34) (401.1,36)}, and suppress (401.1,37)

• Align X = {(401.1,34) (401.1,35) (401.1,37)} and Y = {(401.1,34)}, and suppress (401.1,36)

The solution for the �rst subproblem is �T = {(401.1,34)}. The second pair of X (i.e., (401.1,35))

is suppressed, thus, the ILM and ALM associated with this solution are both 1. Furthermore, the �rst

solution speci�es that the last pair of X and Y (i.e., (401.1,37) and (401.1,36)) are generalized together.

The ILM associated with this operation is 0 as the pairs contain the same ICD code. According to the

DGH for Age in Figure 5, the LCA of 36 and 37 is [33−40], thus, the ALM associated with this operation

is 1 ∗ 2 = 2. Therefore, the total LM for the �rst solution is 4. The solution for the second subproblem

is �T = {(401.1,34) (401.1, [35− 36])}7 and this solution is associated with an ILM of 0 and ALM of

2

8
∗2= 0.5. Furthermore, the second solution speci�es that the last pair of X (i.e., (401.1,37)) is suppressed.

The ILM and ALM associated with this operation are both 1. Therefore, the total LM for the second solution

is 2.5. Similarly, the total LM for the third solution is 6. The solution with minimum information loss is the

second one, thus, the alignment of X and Y is determined as �T = {(401.1,34) (401.1, [35−36])}.

A-GS uses a similar approach to align trajectories. The algorithm accepts the same inputs, as well as

weights wICD and wAge. The weights allow A-GS to control the information loss incurred by anonymizing

7This is because when this subproblem is divided into its subsubproblems, this is the solution with minimum information loss.
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the values of each attribute. The data owners specify the attribute weights such that wICD ≥ 0, wAge ≥ 0 and

wICD +wAge = 1. The pseudocode for A-GS is provided in Algorithm 3.

In step 1, A-GS initializes three matrices; i, a and r. The �rst row (index 0) of each of these matrices

corresponds to a null value, and starting from index 1, each row corresponds to a value in X . Similarly,

the �rst column (indexed 0) of each of these matrices corresponds to a null value, and starting from index

1, each column corresponds to a value in Y . Speci�cally, for indices h and j, rh, j records which of the

following operations incurs minimum information loss: (i) generalizing xh and y j (denoted with <↖>), (ii)

suppressing xh (denoted with <↑>), and (iii) suppressing y j (denoted with <←>). The entries in ih, j and

ah, j keep the total ILM and ALM for aligning the subtrajectories Xsub = {x1, ...,xh} and Ysub = {y1, ...,y j},

respectively.

In step 2, A-GS assigns ILM(X) and ALM(X) to i0,0 and a0,0, respectively. We include null values in the

rows and columns of i, a and r because at some point during alignment A-GS may need to suppress some

portion of the trajectories. Therefore, in steps 3− 7 and 8− 12, A-GS initializes i, a and r for the values

in X and Y , respectively. Speci�cally, for indices h and j, ih,0 and i0, j keep the ILM for suppressing every

pair in the subtrajectories Xsub = {x1, ...,xh} and Ysub = {y1, ...,y j}, respectively. Similar reasoning applies

to matrix a. The �rst row and column of r holds <↑> and <←> for suppressing values from X and Y ,

respectively.

In steps 13−25, A-GS performs dynamic programming. Speci�cally, for indices h and j, A-GS deter-

mines a minimal cost pair matching of the subtrajectories Xsub = {x1, ...,xh} and Ysub = {y1, ...,y j} based on

the three cases listed above. Speci�cally, in steps 15−21, A-GS constructs two temporary arrays, c and g, to

store the ILM and ALM for each possible solution, respectively. Next, in steps 22−23, A-GS determines the

solution with the minimum information loss and assigns the ILM, ALM and operation associated with the

solution to ih, j, ah, j and rh, j, respectively. If there is a tie between the solutions, A-GS selects generalization

as the operation for the sake of retaining more information.

In steps 26−36, A-GS constructs the anonymized trajectory �T by traversing the matrix r. Speci�cally,

for two pairs in the trajectories, if generalization incurs minimum information loss, A-GS appends to �T a pair

containing the LCAs of the ICD codes and Age values in these pairs. The unmatched pairs in the trajectories

are ignored during this process because A-GS suppresses these pairs. Finally, in step 37, Baseline returns �T

along with im,n and am,n, which correspond to ILM( �T ) and ALM( �T ), respectively.
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Algorithm 3 A-GS(X , Y )

Require: Trajectories X = {x1, ...,xm} and Y = {y1, ...,yn}, ILM(X) and ALM(X), DGHs HICD and HAge,

weights wICD and wAge

Return: Anonymized trajectory �T , ILM( �T ) and ALM( �T )
1: {i,a,r}← generate (m+1)× (n+1) matrices

2: i0,0← ILM(X),a0,0← ALM(X)
⊲Initialize i, a and r with respect to X

3: for all h ∈ [1−m] do
4: ih,0← ih−1,0 + ILM(xh,root(HICD))×wICD

5: ah,0← ah−1,0 +ALM(xh,root(HAge))×wAge

6: rh,0← <↑>
7: end for

⊲Initialize i, a and r with respect to Y
8: for all j ∈ [1−n] do
9: i0, j← i0, j−1 + ILM(y j,root(HICD))×wICD

10: a0, j← a0, j−1 +ALM(y j,root(HAge))×wAge

11: r0, j← <←>
12: end for

13: for all h ∈ [1−m] do
14: for all j ∈ [1−n] do
15: {c,g}← generate arrays with indices <↖>,<←>,<↑>

⊲Compute the ILM for the possible solutions
16: c<↖>← ih−1, j−1 + ILM(xh + y j, lca(xh.icd,y j.icd,HICD))×wICD

17: c<←>← ih, j−1 + ILM(y j,root(HICD))×wICD

18: c<↑>← ih−1, j + ILM(xh,root(HICD))×wICD

⊲Compute the ALM for the possible solutions
19: g<↖>← ah−1, j−1 +ALM(xh + y j, lca(xh.age,y j.age,HAge))×wAge

20: g<←>← ah, j−1 +ALM(y j,root(HAge))×wAge

21: g<↑>← ah−1, j +ALM(xh,root(HAge))×wAge

⊲Solution with the minimum overall LM
22: w← argminu∈{<↖>,<←>,<↑>}{cu +gu}
23: ih, j← cw, ah, j← gw, rh, j← w

24: end for

25: end for

26: �T ← /0

27: h← m, j← n

⊲Construct the anonymized trajectory �T

28: while h≥ 1 or j ≥ 1 do

29: if rh, j = <↖> then

30: p← (lca(xh.icd,y j.icd,HICD), lca(xh.age,y j.age,HAge))
31: �T ← �T ∪ p
32: h← h−1, j← j−1

33: end if

34: if rh, j = <←> then j← j−1 end if

35: if rh, j = <↑> then h← h−1 end if

36: end while

37: return { �T , im,n, am,n}
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Figure 7: Matrices i, a and r for T1 and T4 in Figure 3a. The columns and rows of these matrices correspond

to the values in T1 and T4, respectively. This alignment uses the domain generalization hierarchies in Figures

5 and 6, and assumes that wICD = wAge = 0.5.

Example 5. Consider applying A-GS to T1 and T4 in Figure 3a using the DGHs shown in Figures 5 and 6

and assuming that wICD = wAge = 0.5. The matrices i, a and r are illustrated in Figure 7. As T1 and T4 are

not anonymized, we initialize i0,0 = a0,0 = 0. Subsequently, A-GS computes the values for the entries in the

�rst row and column of the matrices. For instance, i0,3 keeps the ILM for suppressing all ICD codes from T1

and has a value of 1+(1∗0.5) = 1.5. This is computed by summing the ILM for suppressing the �rst two

ICD codes (i.e., the value stored in i0,2) with the weight-adjusted ILM for suppressing the third ICD code.

Then, A-GS performs dynamic programming. The process starts with aligning T1,sub = {(401.1,33)} and

T4,sub = {(401.9,33)}. The possible solutions for this subproblem are:

• Align T1,sub = { /0} and T4,sub = { /0}, and generalize 401.1 with 401.9 and 33 with 33

• Align T1,sub = {(401.1,33)} and T4,sub = { /0}, and suppress 401.9 and 33

• Align T1,sub = { /0} and T4,sub = {(401.9,33)}, and suppress 401.1 and 33

The ILM and ALM for the subsubproblem in the �rst solution are stored in i0,0 and a0,0, respectively.

Generalizing the ICD code 401.1 with the ICD code 401.9 has an ILM of (1+1)∗0.5= 1, and generalizing

the age 33 with the age 33 has an ALM of 0. Therefore, the �rst solution has a total LM of 1. The ILM and

ALM for the subsubproblem in the second solution are stored in i0,1 and a0,1, respectively. The suppression
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of the ICD code 401.9 and the age 33 has an ILM and ALM of 1∗0.5= 0.5. Therefore, the second solution

has a total LM of 2. Similarly, the third solution has a total LM of 2. The solution with the minimum

information loss is the �rst one, hence, A-GS stores 1, 0 and <↖> in i1,1, a1,1 and r1,1, respectively. After

the values for the remaining entries are computed, A-GS uses the matrix r to construct the anonymized

trajectory �T . The process starts with examining the bottom-right entry, which denotes a generalization.

As a result, A-GS appends (401.1,35) to �T . The process continues by following the symbols and A-GS

returns �T = {(401.1,33),(401.1,34),(401.1,35)} along with i4,3 and a4,3, which correspond to ILM( �T )

and ALM( �T ), respectively.

IV.3.2 Clustering

We base our methodology for the clustering component on the Maximum Distance to Average Vector

(MDAV) algorithm [60], an ef�cient heuristic for k-anonymity. The algorithm iteratively selects the most

frequent trajectory in a longitudinal dataset, �nds its most distant trajectory, and forms a cluster of at least k

records around the latter. We de�ne the distance between two trajectories as the cost of their anonymization.

As such, the most distant trajectory to a given trajectory is the one which maximizes the sum of ILM and

ALM returned from A-GS.

A similar reasoning applies while we form a cluster, i.e., we choose to add the trajectory which mini-

mizes the sum of ILM and ALM returned from A-GS. The clustering component returns �D, a k-anonymized

version of the longitudinal dataset, along with ILM( �D) and ALM( �D).

IV.4 Experimental Evaluation

This section presents an experimental evaluation of the anonymization framework. We compare the anonymiza-

tion methods on data utility, as indicated by the LM measure and aggregate query answering accuracy. Fur-

thermore, we verify the ability of our approach to preserve the utility of certain values that are important for

known biomedical analysis.

IV.4.1 Experimental Setup and Metrics

We conducted experiments with three datasets derived from the Synthetic Derivative (SD), a collection

of de-identi�ed information extracted from the EMR system of the VUMC [50]. Figure 8 summarizes our
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Figure 8: Dataset creation process. The function Q is used to issue a query.

dataset creation process. We �rst issued a query to retrieve the records of patients whose DNA samples were

genotyped and stored in BioVU, VUMC's DNA repository linked to the SD. Then, using the QRS pheno-

type speci�cation in [61], we identi�ed the patients eligible to participate in a GWAS on native electrical

conduction within the ventricles of the heart. Subsequently, we created a dataset called D
Pop
50

by restricting

our query to the 50 most frequent ICD codes that occur in at least 5% of the records in BioVU. Next, we cre-

ated a dataset called D
Pop
4

, which is a subset of D
Pop
50

, containing the following comorbid ICD codes selected

for Chapter III and [25]: 250 (diabetes mellitus), 272 (disorders of lipoid metabolism), 401 (essential hyper-

tension), and 724 (other and unspeci�ed disorders of the back). Finally, we created a dataset called D
Smp
4

,

which is a subset of D
Pop
4

, containing the records of patients who actually participated in the aforementioned

GWAS [62]. A variant ofD
Smp
4

has been used in Chapter III and [25] with no temporal information and more

records because some patients had invalid year of birth values in the SD, and thus, could not be included to

D
Smp
4

. We further note that D
Smp
4

is expected to be deposited into the dbGaP repository. The characteristics

of our datasets are summarized in Table 3. Note that D
Pop
4

is a reduced version of D
Pop
50

in terms of domain

size, and similarly, D
Smp
4

is a reduced version of D
Pop
4

in terms of dataset size. Hence, our datasets will allow

us to capture the effects of domain and dataset size on anonymization.

Table 3: Descriptive summary statistics of the datasets.

D |D| |(ICD, Age)| |ICD| |Age| Avg. (ICD, Age) per T Avg. ICD per T Avg. Age per T

D
Pop
50

27639 4246 50 102 9.32 5.88 3.10

D
Pop
4

16052 354 4 97 4.05 1.65 2.78

D
Smp
4

1896 322 4 90 6.39 1.96 4.04
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Throughout our experiments, we varied k between 2 and 15, noting that k = 5 tends to be applied in

practice [44]. Initially, we set wICD = wAge = 0.5, and we measured the impact of varying these parameters

in a later subsection. We implemented all algorithms in Java and conducted our experiments on an Intel

2.8GHz powered system with 4GB RAM.

To quantify information loss, we assumed a scenario in which a scientist issues queries on anonymized

data to retrieve the number of trajectories that harbor a combination of (ICD, Age) pairs that appear in the

original trajectories. Such queries are typical in many biomedical data mining applications [52]. To quantify

the accuracy of answering such a workload of queries, we used the Average Relative Error (AvgRE) measure

[39].

Given a workload of queries, the AvgRE captures the accuracy of answering these queries on an anonymized

dataset. The queries we consider can be modeled as follows:8

Q: SELECT COUNT(*)

FROM dataset

WHERE (u ∈ ICD, v ∈ Age) ∈ dataset, ...

Let a(Q) be the answer of a COUNT() query Q when it is issued on the original dataset. The value of

a(Q) can be easily obtained by counting the number of trajectories in the original dataset that contain the

(ICD, Age) pairs in Q.

Let e(Q) be the answer of Q when it is issued on the anonymized dataset. This is an estimate because a

generalized value is interpreted as any leaf node in the subtree rooted by that value in the DGH. Therefore,

an anonymized pair may correspond to any pair of possible ICD codes and Age values, assuming each pair

is equally likely. The value of e(Q) can be obtained by computing the probability that a trajectory in the

anonymized dataset satis�es Q, and then summing these probabilities across all trajectories.

To illustrate how an estimate can be computed, assume that a data recipient issues a query for the number

of patients diagnosed with ICD code 401.1 at age 39 using the anonymized dataset in Figure 3c. Referring

to the DGHs in Figures 5 and 6, it can be seen that the only trajectories that may contain (401.1,39) are the

last two since they contain the generalized pair (401.1, [39−40]). Furthermore, observe that 401.1 is a leaf

node in Figure 6, hence the set of possible ICD codes is {401.1}. Similarly, the subtree rooted by [39−40]

in Figure 5 consists of two leaf nodes, hence the set of possible Age values is {39,40}. Therefore, there are
8The queries we consider form the basis for other query types such as range queries which return the number trajectories that

harbor a combination of ICD codes in a given range of Age values.
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two possible pairs: {(401.1,39),(401.1,40)}, and the probability that one of the trajectories was originally

harboring (401.1,39) is 1

2
. Then, an approximate answer for the query is computed as 1

2
×2 = 1.

The Relative Error (RE) for an arbitrary query Q is computed as RE(Q) = |a(Q)−e(Q)|/a(Q). For

instance, the RE for the above example query is |1−1|/1= 0 since the original dataset in Figure 3a contains

one trajectory with (401.1,39).

The AvgRE for a workload of queries is the mean RE of all issued queries. It re�ects the mean error in

answering the query workload.

IV.4.2 Capturing Data Utility Using LM

We �rst compared the algorithms with respect to the LM.
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Figure 9: A comparison of information loss for D
Pop
50

using various k values.

Figure 9 depicts the results with D
Pop
50

. The ILM and ALM increase with k for both algorithms, which is

expected because as k increases, a larger amount of distortion is needed to satisfy a stricter privacy require-

ment. Note that Baseline incurred substantially more information loss than A-GS for all k. In fact, Baseline

failed to construct a practically useful result when k > 2, as it suppressed all values from the dataset.

Figure 10 shows the results of the same experiment performed on D
Pop
4

. Observe that A-GS achieved a

much better result than Baseline for all tested k values. Interestingly, A-GS incurred less information loss

on D
Pop
4

than D
Pop
50

, which is important because a relatively small number of ICD codes may suf�ce to study

a range of different diseases [11, 25].

The results shown in Figure 11 for D
Smp
4

are qualitatively similar to that of Figure 10. Again, A-GS

signi�cantly outperformed Baseline. It is also worthwhile to note that the information loss incurred by our

approach remains relatively low (i.e., below 0.5), even though the ILM and ALM values are slightly larger
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Figure 10: A comparison of information loss for D
Pop
4

using various k values.
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Figure 11: A comparison of information loss for D
Smp
4

using various k values.

than those of Figure 10. This is attributed to the fact that D
Smp
4

is more sparse than D
Pop
4

, which implies that

it is more dif�cult to anonymize [63].

IV.4.3 Capturing Data Utility Using AvgRE

We next analyzed the effectiveness of our approach for supporting general biomedical analysis using the

AvgRE measure with a workload of queries that are comprised of the combination of (ICD, Age) pairs that

appear in at least 1% of the original trajectories of a dataset.

Figure 12 shows the AvgRE scores of running A-GS on our datasets. The results for Baseline are not

reported because they were more than 6 times worse than our approach for k = 2, and the worst possible

for k > 2. This is because Baseline suppressed all values. As expected, we �nd an increase in AvgRE

scores as k increases, which is due to the privacy/utility tradeoff. Nonetheless, A-GS allows fairly accurate

query answering on each dataset by having an AvgRE score of less than 1 for all k. The results suggest

our approach can be effective, even when a high level of privacy is required. Furthermore, we observe that

30



0.0

0.2

0.4

0.6

0.8

1.0

A
vg

R
E

2 5 10 15
k

D
Pop
50

D
Pop
4

D
Smp
4

Figure 12: A comparison of query answering accuracy for D
Pop
50

, D
Pop
4

and D
Smp
4

using various k values.

the AvgRE scores for D
Pop
4

are lower than those of D
Smp
4

, which are in turn lower than those of D
Pop
50

. This

implies that query answers are more accurate for small domain sizes and large datasets.

IV.4.4 Capturing Data Utility Using Histograms

We also investigated how the distributions of ICD and Age are affected by anonymization. Figures 13 and

14 report the percent of ICD codes and Age values at each level of the DGHs after anonymizing D
Pop
50

and

D
Pop
4

using k = 5, respectively. Note that the standard ICD-9-CM hierarchy consists of 5 levels (i.e., 5-digit

ICD codes, 3-digit ICD codes, Sections, Chapters, and Any which corresponds to the least speci�c ICD

code of 001− 999). The domain of Age consists of the values 1 to 128, and the DGH for Age is a 8-level

full binary tree9. The results for Baseline are not reported because it suppressed all values in the datasets

(i.e., all ICD codes and Age values appear in the Any and 128-year levels, respectively). For D
Pop
50

, observe

that A-GS retained more than 30% of the ICD codes at the 3-digit level or below. Similarly, more than 60%

of the Age values are retained at the 16-year level or below. For D
Pop
4

, we did not observe any ICD code

at the 5-digit and Section levels because D
Pop
4

consists of 3-digit ICD codes and the LCA of any two ICD

codes in this dataset is located at the Chapter and Any levels. As can be seen, A-GS retained more than 55%

of the ICD codes at their original, 3-digit, level. Notably, more than 70% of the Age values are retained at

the 16-year level or below. These results are promising as they suggest that the anonymized data derived by

our approach may be utilized in longitudinal clinical investigations. We, however, note that further research

is necessary to determine how the resulting anonymizations impact speci�c clinical phenotype de�nitions

9A full binary tree is a tree in which every node other than the leaves has two children [59].
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of interest.
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Figure 13: The histogram of ICD and Age after anonymizing D
Pop
50

using A-GS with k = 5.

IV.4.5 Prioritizing Attributes

Next, we investigated how con�gurations of attribute weighting affect information loss. Figure 15 reports the

results for D
Pop
50

and k = 2 when our algorithm is con�gured with weights ranging from 0.1 to 0.9. Observe

that when wICD = 0.1 and wAge = 0.9, A-GS distorted Age values much less than ICD values. Similarly,

A-GS incurred less information loss for ICD than Age when we speci�ed wICD = 0.9 and wAge = 0.1. This

result implies that data managers can use weights to bias utility towards either attribute.

IV.4.6 Real World Anonymized Data

Finally, we analyzed some of the anonymized trajectories derived by our approach. Table 4 presents two

clusters generated for D
Smp
4

using k = 5. These clusters are selected because they contain generalized and

suppressed values (i.e., there are other clusters with less information loss). Note that the trajectories in the
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Figure 14: The histogram of ICD and Age after anonymizing D
Pop
4

using A-GS with k = 5.

�rst cluster convey more information than those in the second cluster. Speci�cally, we are certain that the

patients in the �rst cluster were assigned the ICD code 250 when they were between 45 and 48 years old,

later they were assigned an ICD code in the range 240 and 279 when they were 50 years old, and �nally they

were again assigned the ICD code 250 when they were between 57 and 64 years old. We are less certain

about the pro�les of the patients in the second cluster. We know that they were assigned an ICD code when

they were 31 years old, assigned an ICD code in the range 240 and 279 when they were between 33 and 40

years old, assigned the ICD code 724 when they were 41 years old, and �nally assigned an ICD code when

they were between 49 and 52 years old.

IV.5 Summary

In this chapter, we developed a framework to provide formal computational guarantees against re-identi�cation

attacks on longitudinal data. Our experiments verify that the proposed approach permits privacy-preserving

publishing of longitudinal patient records while retaining the information of the original records signi�-
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Table 4: Example clusters derived for D
Smp
4

using k = 5.

(250, [45−48]) ([240−279],50) (250, [57−64])

(250, [45−48]) ([240−279],50) (250, [57−64])

(250, [45−48]) ([240−279],50) (250, [57−64])

(250, [45−48]) ([240−279],50) (250, [57−64])

(250, [45−48]) ([240−279],50) (250, [57−64])

([001−999],31) ([240−279], [33−40]) (724,41) ([001−999], [49−52])

([001−999],31) ([240−279], [33−40]) (724,41) ([001−999], [49−52])

([001−999],31) ([240−279], [33−40]) (724,41) ([001−999], [49−52])

([001−999],31) ([240−279], [33−40]) (724,41) ([001−999], [49−52])

([001−999],31) ([240−279], [33−40]) (724,41) ([001−999], [49−52])

cantly more than a competitive baseline. This work is an important step towards increasing the type of

information that can be made available to researchers while preserving patients' privacy. This is partly be-

cause our approach can be directly utilized by researchers when sharing longitudinal data for research with

biorepositories.
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CHAPTER V

DISCUSSION

In this chapter, we discuss how our methods can be extended to prevent a privacy threat in addition to

re-identi�cation. Additionally, we address the limitations of our work.

V.1 Attacks Beyond Re-identi�cation

Beyond re-identi�cation is the threat of sensitive itemset disclosure, in which a patient is associated with a

set of diagnosis codes, such as HIV, that reveal some sensitive information. Neither k-map nor k-anonymity

guarantees preventing sensitive itemset disclosure, since a large number of records that are indistinguishable

with respect to the potentially identifying diagnosis codes can still contain the same sensitive itemset [52].

We note that our methods can be extended to prevent this attack. This is possible by controlling general-

ization and suppression to ensure that an additional principle is satis�ed, such as ℓ-diversity [64], which

dictates how sensitive information is grouped in the anonymized data. This extension, however, is beyond

the scope of this thesis.

V.2 Limitations

The work in this thesis is limited in certain aspects, which we highlight to suggest opportunities for further

research. First, our algorithms do not limit the amount of information loss incurred by generalization and

suppression. Designing algorithms that provide this type of guarantee is important to enhance the utility

of anonymized datasets, but is also computationally challenging due to the large search spaces involved,

particularly for longitudinal data. Second, our algorithms do not guarantee that the released data remain

useful for scenarios in which pre-speci�ed analytic tasks, such as the validation of known GWAS [23], are

known to data owners a priori. To address such scenarios, we plan to modify our algorithms so that they take

the tasks for which data are anonymized into account. We believe such tasks can be incorporated into our

methods using constraints that denote which values are generalized together during anonymization. Third,

we intend to evaluate the utility of the data our algorithms derive with other general and special information

loss metrics, such as the ILoss metric [65] which is a variant of the LM and the classi�cation metric [43]
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which measures the classi�cation error on the anonymized data.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

The work in this thesis was motivated by the growing need to disseminate more detailed information to

researchers without compromising patients' privacy rights. To the best of our knowledge, our methods for

longitudinal data and the special case of repeated values are the �rst to allow sharing such data while pro-

viding computational privacy guarantees. Our investigations suggest that our methods can generate data that

remain useful for various biomedical studies. This was illustrated through extensive experiments with real

data derived from the EMRs of thousands of patients. The methods are not guided by speci�c utility (e.g.,

satisfaction of GWAS validation), but we are con�dent they can be extended to support such endeavors. We

also note that further research is necessary to determine if our methods can derive data with an information

loss that is suf�ciently low for clinical phenotype discovery.
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