
A SEMANTIC ANCHORING INFRASTRUCTURE FOR                                  

MODEL-INTEGRATED COMPUTING 

 
 

By 
 
 
 

Kai Chen 
 
 
 

Dissertation 

Submitted to the Faculty of the  

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
in 
 

Computer Science 
 

August, 2006 
 

 
Nashville, Tennessee 

 
Approved: 

Janos Sztipanovits 

Stephen R. Schach 

Gabor Karsai 

Gautam Biswas 

Sherif Abdelwahed 

Benoit Dawant 



 

 

 

 

 

 
 

 

 

献给我的父母和我的妻子 

To my parents  

& 
To my beloved wife, Yongjie 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ii



ACKNOWLEDGMENTS 

 

I am greatly appreciative and thankful to my advisor, Dr. Janos Sztipanovits, for 

his scientific vision, detailed guidance, great patience and tremendous encouragement 

throughout these years. Dr. Sztipanovits has guided me through my transition from an 

incoming graduate student to an outgoing researcher. I also thank Dr. Stephen R. Schach, 

Dr. Gabor Karsai, Dr. Gautam Biswas, Dr. Sherif Abdelwahed and Dr. Benoit Dawant 

for serving on my dissertation committee. I appreciate their guidance and advice. Dr. 

Schach, who advised me while I was in the Master’s program, introduced me to the 

Software Engineering research area, which has direct impact on my thesis.  

I would also like to thank the members of the Institute for Software Integrated 

Systems, especially Dr. Sandeep Neema, Dr. John Koo, Dr. Douglas Schmidt, Dr. 

Aniruddha Gokhale, Ethan Jackson, Matthew Emerson, Graham Hemingway, Gabor 

Madl, Andrew Dixon, Brian Williams and Christopher Buskirk. Our many discussions 

stimulated my research. 

Most importantly, I want to express my deepest gratitude to my loving family. I 

am indebted to my mom and dad for their support, encouragement, and belief in me. 

Special thanks to my lovely wife, Yongjie, who makes all my work worthwhile. This 

work is dedicated to them.  

Finally, thanks for the support and sponsorship given by the National Science 

Foundation through the Information Technology Research project, under contract number 

CCR-0225610.  

 

 

 iii



TABLE OF CONTENTS 
 
 

           Page 
 
ACKNOWLEDGMENTS ............................................................................................ iii 
 
LIST OF TABLES....................................................................................................... vii 
 
LIST OF FIGURES .................................................................................................... viii 
 
LIST OF ABBREVIATIONS........................................................................................xi 
 
Chapter 
 
I. INTRODUCTION ..............................................................................................1 
 
II. BACKGROUND ................................................................................................7 
 
        Model-Driven Software Engineering...........................................................7 
                         Model-Driven Architecture....................................................................8 
                         Model-Integrated Computing...............................................................15 
                         Model-Driven Software Development.................................................26      
        Modeling Languages..................................................................................34 
              The Unified Modeling Language.........................................................35 
              Hybrid System Interchange Format .....................................................39 
              Domain-Specific Modeling Language.................................................40 
        Formal Methods .........................................................................................42 
              Semantic Specification Methods..........................................................42 
              Formal Specification Languages..........................................................44 
              Abstract State Machine ........................................................................46 
 
III. A SEMANTIC ANCHORING INFRASTRUCTURE.....................................57 
 
        Formal DSML Specification......................................................................57 
        Semantic Anchoring Methodology ............................................................59 
        Semantic Anchoring Tool Suite.................................................................61 
              Abstract Syntax Modeling ...................................................................62 
              Set-Valued Structural Semantics for Metamodels...............................63 
              A Formal Framework for Specifying Semantic Units .........................65 
              A Formal Framework for Model Transformation................................67 
              The Abstract State Machine Language ................................................69 
 
 
IV. SEMANTIC ANCHORING CASE STUDY....................................................74 
 

 iv



        The FSM domain in Ptolemy.....................................................................74 
              The Basic FSM ....................................................................................75 
              The Hierarchical FSM..........................................................................76 
        The Syntax Definition for FML.................................................................78 
        The Semantic Unit Specification for FML ................................................79 
              AsmL Abstract Data Model for FML ..................................................80 
              Behavioral Semantics for FML............................................................83 
              Semantic Anchoring Specification ......................................................87 
 
V. A SEMANTIC UNIT FOR TIMED AUTOMATA  
            BASED MODELING LANGUAGES..............................................................95 
 
        Semantic Units ...........................................................................................95 
        Timed Automata ........................................................................................97 
              Timed Bϋchi Automata........................................................................98 
              Timed Safety Automata .......................................................................98 
        Timed Automata Semantic Unit ................................................................97 
               Overview of TASU...........................................................................100 
               Abstract Data Model .........................................................................105 
               Operational Semantics ......................................................................109 
               TASU Metamodel Specification.......................................................116 
         Semantic Anchoring to TASU................................................................120 
               Semantic Anchoring for the UPPAAL Language...............................121 
               Semantic Anchoring for the IF Language.........................................127 
 
VI. SEMANTIC UNIT COMPOSITION .............................................................137 
 
        Compositional Specification of Behavioral Semantics ...........................137 
        SEFSM Overview ....................................................................................140 
        Primary Semantic Units Used .................................................................146 
                         Finite State Machine Semantic Unit ..................................................146 
              Synchronous Dataflow Semantic Unit...............................................149 
        Compositional Semantics Specification for SEFSM Components..........153 
              Structural Composition ......................................................................153 
              Behavioral Composition ....................................................................156 
        Compositional Semantics Specification for SEFSM Systems.................160 
              Structural Composition ......................................................................160 
              Behavioral Composition ....................................................................162 
 
VII. RESULTS, CONCLUTIONS AND FUTURE WORK..................................165 
 
        Results......................................................................................................165 
              Precision of the Semantics Specification...........................................165 
              Validation Support .............................................................................167 
              Satisfaction of the EFSM Designers ..................................................167 
              Efficiency of the Compositional Semantic Specification Approach 167 

 v



        Conclusion ...............................................................................................169 
        Future Work .............................................................................................171 
 
REFERENCES ...........................................................................................................173 
 

 vi



LIST OF TABLES 
 

 

Table                      Page 

7-1.    Comparison between the CSSA and the traditional approach..........................168 
 
 
 

 vii



LIST OF FIGURES 
 

 

Figure                      Page 

2-1.    Model transformation .........................................................................................12 
 
2-2.    Overview of the MIC architecture......................................................................16 
 
2-3.    The metaprogrammable MIC tool suite..............................................................18 
 
2-4.    The GME architecture ........................................................................................19 
 
2-5.    The GReAT architecture ....................................................................................21 
 
2-6.    The DESERT design flow ..................................................................................22 
 
2-7.    The UDM framework architecture .....................................................................24 
 
2-8.    The OTIF architecture ........................................................................................26 
 
2-9.    The AMDD approach .........................................................................................32 
 
2-10.   Layout of the HSIF tool chain implementation .................................................39 
 
2-11.   Bold Stroke multi-threaded component interaction in ESML...........................41 
 
3-1.    Formal DSML specification ...............................................................................57 
 
3-2.    The semantic anchoring infrastructure ...............................................................60 
 
3-3.    The semantic anchoring tool suite ......................................................................62 
 
3-4.    Metamodel for a simple Automaton Language ..................................................64 
 
3-5.    Metamodel for a set of AsmL Data Structures ...................................................68 
 
4-1.    A basic FSM .......................................................................................................76 
 
4-2.    A hierarchical FSM ............................................................................................77 
 
4-3.    A UML class diagram for the FML metamodel .................................................78 
 
4-4.    Metamodel capturing AsmL Abstract Data Structures for FML........................88 
 
 

 viii



4-5.    Top-level model transformation rule for the FML  
          semantic anchoring specifications ......................................................................89 
 
4-6.    Model Transformation Rule: SetAttributes.........................................................90 
 
4-7.    Model Transition Rule: SetInitialState ...............................................................91 
 
4-8.    Model Transition Rule: CreateChildStateObject ...............................................92 
 
4-9.    A hierarchical FSM model for ComputerStatus .................................................93 
 
5-1.    A timed automaton example...............................................................................97 
 
5-2.    A timed safety automaton with location invariants ............................................98 
 
5-3.    The System and Declaration paradigms of the TASU metamodel...................117 
 
5-4.    The TimedAutomaton paradigm of the TASU metamodel...............................118 
 
5-5.    A TASU timed automaton (ComponentKindA)................................................119 
 
5-6.    Top-level model transformation rule for the UPPAAL  
          semantic anchoring specification......................................................................122 
 
5-7.    A pattern graph in the GReAT specification of the transformational rule  
          for UPPAAL locations with Location Invariants................................................124 
 
5-8.    Semantic anchoring for a UPPAAL automaton with location invariants...........125 
 
5-9.    Semantic anchoring for a UPPAAL automaton with urgent locations...............125 
 
5-10.   Semantic anchoring for a UPPAAL automaton with committed locations.......126 
 
5-11.   Semantic anchoring for a UPPAAL automaton with urgent synchronization...127 
 
5-12.   Semantic anchoring for an IF automaton with delayable transitions ..............129 
 
5-13.   An IF asynchronous model with policies #reliable, #urgent and #multicast...130 
 
5-14.   The semantic anchoring model for the IF asynchronous model 
            in Figure 5-13..................................................................................................132 
 
5-15.   The semantic anchoring model for the IF asynchronous model in Figure 5-13  
            with the delaying policies changed from #urgent to #delay[a, b]...................134 
 
5-16.   The semantic anchoring model for the IF asynchronous model in Figure 5-13 

 ix



            with the delaying policies changed from #urgent to #rate[a, b] .....................136 
 
6-1.    A graphical representation for semantic unit composition...............................139 
 
6-2.    A simple SEFSM component model ................................................................142 
 
6-3.    A simple SEFSM system model.......................................................................143 
 
6-4.    A paradigm in the SEFSM metamodel defining the system structure .............144 
  
6-5.    A paradigm in the SEFSM metamodel defining the component structure.......145 
 
6-6.    A compositional structure of the SEFSM component  
          originally shown in Figure 6-2..........................................................................154 
 
6-7.    The compositional structure of the SEFSM system  
           originally shown in Figure 6-3.........................................................................161 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 x



LIST OF ABBREVIATIONS 
 

 
AA-SU  ⎯  Action Automaton Semantic Unit 

AMDD  ⎯  Agile Model Driven Development 

AM  ⎯  Agile Modeling 

ASM  ⎯  Abstract State Machine 

AsmL  ⎯  Abstract State Machine Language 

CASE  ⎯  Computer Aided System Engineering 

CIM  ⎯  Computation Independent Model 

CCS  ⎯  Calculus of Communicating Systems 

CSP  ⎯  Communicating Sequential Processes 

CSSA  ⎯  Compositional Semantics Specification Approach 

DESERT  ⎯  Design Space Exploration Tool 

SDF  ⎯  Synchronous Dataflow 

SDF-SU  ⎯  Synchronous Dataflow Semantic Unit 

DSL  ⎯  Domain Specific Language 

DSML  ⎯  Domain-Specific Modeling Language 

EFSM  ⎯  Extended Finite State Machine Language 

EMF  ⎯  Eclipse Modeling Framework 

ESML  ⎯  Embedded System Modeling Language 

FML  ⎯  FSM Modeling Language 

FSM  ⎯  Finite State Machine 

FSM-SU  ⎯  Finite State Machine Semantic Unit 

 xi



GEF  ⎯  Graphical Editor Framework 

GME  ⎯  Generic Modeling Environment 

GReAT  ⎯  Graph Rewriting and Transformation 

HSIF  ⎯  Hybrid System Interchange Format 

ISIS  ⎯  Institute for Software Integrated Systems 

ITU  ⎯  Telecommunication Sector of the International Telecommunication Union 

LSL  ⎯  Larch Shared Language 

LOS  ⎯  Lines of Specification 

MDA  ⎯  Model-Driven Architecture  

MDSE  ⎯  Model-Driven Software Engineering 

MDSD  ⎯  Model-Driven Software Development 

MIC  ⎯  Model-Integrated Computing 

MIPS  ⎯  Model-Integrated Program Synthesis 

MoC  ⎯  Model of Computation 

MOF  ⎯  Meta Object Facility 

OCL  ⎯  Object Constraint Language 

OMG  ⎯  Object Management Group 

OMT  ⎯  Object Modeling Technique 

OOSE  ⎯  Object-Oriented Software Engineering 

OTIF  ⎯  Open Tool Integration Framework 

PIM  ⎯  Platform Independent Model 

PSM  ⎯  Platform Specific Model 

 xii



SEFSM  ⎯  Simple Extended Finite State Machine Language 

SDL  ⎯  Specification and Description Language 

TAML  ⎯  Timed Automata Based Modeling Language 

TASU  ⎯  Timed Automata Semantic Unit 

TDD  ⎯  Test Driven Development 

UDM  ⎯  Universal Data Model 

UML  ⎯  Unified Modeling Language 

UML-SPT  ⎯  UML Profile for Schedulability, Performance and Time 

VMC  ⎯  Vehicle Motion Control 

XMI  ⎯  XML Metadata Interchange 

 
 
 
 
 
 

 xiii



 
CHAPTER I 

 

INTRODUCTION 

 

Model-driven software engineering (MDSE) is a software engineering technology 

in which modeling techniques are applied in the software development process. The 

objective of MDSE is to raise the level of abstraction by applying modeling techniques 

during the software development process. Throughout the history of software 

engineering, raising the level of abstraction has been the main goal that has driven the 

significant advances in developer productivity. It is this goal that has driven the evolution 

of software design from assembly languages to Third Generation Languages (3GLs), 

such as FORTRAN and C, to the object-orient languages, such as Java and C++. Today, 

visual modeling languages are the state of the art computation languages adopted by 

MDSE.  

Currently the three most successful incarnations of MDSE are: Model-Driven 

Architecture (MDA) [2], Model-Integrated Computing (MIC) [7] and Model-Driven 

Software Development (MDSD) [28]. The MDA approach, proposed by OMG, allows a 

single model to specify the system functionality for multiple platforms through model 

transformation. The MIC approach, proposed and developed by ISIS at Vanderbilt 

University, emphasizes the adoption of domain-specific modeling languages (DSMLs) 

[13] in the software and system design processes. The MDSD refers to technologies that 

use models to automate the software development process in general. The term MDSD is 

 1



used when one does not wish to be associated with the OMG-only technology, 

vocabulary and vision. 

Modeling languages are essential tools for MDSE, just as objected-oriented 

languages are the keys to objected-oriented design. In general, modeling languages fall 

into three categories: unified (or universal) modeling languages (such as UML [48]), 

interchange languages (such as the Hybrid System Interchange Format [50]) and DSMLs. 

Unified modeling languages are intended to act as all-encompassing frameworks, capable 

of handling any domain or system category. Interchange languages are optimized to 

providing specific quantitative analysis capabilities in design flows by facilitating the 

integration of a group of tools. DSMLs are tailored to the particular concepts, constraints 

and assumptions of application domains. A well-made DSML captures the concepts, 

relationships among the concepts, well-formedness rules, and semantics of the 

application domain and allows users to program imperatively and declaratively through 

model construction. 

This research primarily focuses on MIC and DSMLs though some of the results 

are also applicable to the general MDSE approaches and modeling languages.   

In many industrial applications, MIC is required to support the specification, 

analysis, design, verification and validation of large, complex systems in a broad range of 

heterogeneous domains, including hardware, software, information, process, personnel 

and facilities. In order to satisfy the complicated industrial requirements for MIC 

applications, instead of designing a single monolithic DSML that can capture all 

domains, multiple DSMLs are designed to address different domains. For example, one 

might define a DSML for high-level system design, a DSML for simulation, and a DSML 

 2



for property verification. These DSMLs are integrated together to create a MIC tool chain 

and to support a highly domain-specific design flow. However, there are a few concerns 

that may jeopardize adoption of DSMLs and MIC tool chains: 

• The use of DSMLs with tightly integrated analysis tool chains leads to the 

accumulation of design assets as models defined in a DSML. Consequently, 

users run high risk of being “locked-in” to a particular tool chain.  

• Incomplete and informal specification of DSMLs makes precise 

understanding of their syntax and semantics difficult. While a tightly 

integrated tool chain seems to relieve users from the need to fully understand 

the syntax and semantics of DSMLs, the cost may be high: the lack of in-

depth understanding of models and analysis methods may prevent the 

organization from adopting new modeling and model analysis methods.  

• The lack of formally specified semantics of DSMLs and analysis tools create 

major risk in safety critical applications. Semantic mismatch between design 

models and modeling languages of analysis tools may result in ambiguity in 

safety analysis or may produce conflicting results across different tools. 

On the other hand, formal methods [63] [64] are mathematically based techniques 

for describing system properties. They are used to reveal ambiguity, incompleteness, and 

inconsistency in a system. When used early in the system development process, they can 

reveal design flaws that otherwise might be discovered only during the costly testing and 

debugging phases. When used later, they can help determine the correctness of a system 

implementation and the equivalence of different implementations. In recent years, formal 

methods have been widely employed to specify the semantics of modeling languages.  

 3



The MIC approach will be superficial and risky if the DSMLs it depends on have 

no precise semantics definition. However, many formal methods are too complicated and 

expensive for industrial applications. The challenge is to propose a lightweight DSML 

semantics specification approach without compromising the precision of the semantics. 

This research is to address this challenge in DSML design. The following 

research statement outlines the objectives of this research.    

 

The goal of this research is to propose and implement an affordable 

technology that can facilitate formal DSML design with precise syntax and 

semantics definition and to build a solid semantic infrastructure for the MIC 

approach. 

 

The main contribution of this research is the proposal and development of a 

semantic anchoring infrastructure that facilitates the transformational specification of 

DSML semantics. It is based on the observation that, in the embedded software and 

systems domain, there is a finite set of basic behavioral categories, such as Finite State 

Machine, Timed Automata, Discrete Event Systems and Synchronous Dataflow, each of 

which captures the behavioral pattern of a class of systems. The semantic anchoring 

infrastructure includes a set of semantic units that capture the behavioral semantics of 

basic behavioral categories using a formal method, Abstract State Machines [70], as the 

underlying semantic framework.  

If the semantics of a DSML can be directly mapped onto one of these basic 

categories, its semantics can be defined by simply specifying the model transformation 

 4



rules between the DSML and the Abstract Data Model of the semantic unit. However, in 

heterogeneous systems, the semantics is not always fully captured by a predefined 

semantic unit. If the semantics is specified from scratch (which is the typical solution if it 

is done at all) it is not only expensive but we lose the advantages of anchoring the 

semantics to a set of common and well-established semantic units. This is not only losing 

reusability of previous efforts, but has negative consequences on our ability to relate 

semantics of DSMLs to each other and to guide language designers to use well 

understood and safe behavioral and interaction semantic “building blocks” as well. We 

propose a compositional semantics specification approach to define semantics for 

heterogeneous DSMLs. 

This paper is organized as follows:  

Chapter I gives a short survey and summarizes the challenge, the goal and the 

main contribution of this research.   

Chapter II investigates the state of the art research in model-driven software 

engineering, modeling languages and formal methods. A particular formal method, 

Abstract State Machine, which is adopted as the semantic framework in the semantic 

anchoring infrastructure, is also introduced in this chapter. The purpose of the survey is to 

develop a deep understanding of the key issues pertaining to the modeling techniques. 

Chapter III presents the semantic anchoring infrastructure and the tool suite that 

supports the DSML semantics specification through semantic anchoring. It also discusses 

the advantages and disadvantages of two metamodeling strategies in specifying semantic 

units. 

 5



Chapter IV uses the FSM domain in Ptolemy as a case study to explain the 

semantic anchoring methodology and to illustrate how the semantic anchoring tool suite 

is applied to design DSMLs. 

Chapter V illustrates the semantic unit specification by defining a Timed 

Automata Semantic Unit (TASU). The precise semantics of a wide range of Timed 

Automata based modeling languages (TAMLs) can then be defined by specifying 

semantic anchoring rules between a domain-specific TAML and the TASU. 

Chapter VI introduces the compositional semantics specification approach, which 

defines the semantics of a DSML as the composition of multiple semantic units. An 

industrial-strength modeling language, EFSM (Extended Finite State Machine 

Language), is employed as a case study to illustrate compositional semantics 

specification. 

Chapter VII examines the results of the research and provides recommendations 

for future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 6



 
CHAPTER II 

 

BACKGROUND 

 

This chapter presents an overview of the state of the art research in Model-Driven 

Software Engineering, modeling languages and formal methods. The purpose of the 

survey is to develop a deep understanding of the key issues pertaining to the modeling 

techniques. 

The first part of this chapter surveys the most successful approaches for Model-

Driven Software Engineering, including Model-Driven Architecture, Model-Integrated 

Computing and Model-Driven Software Development. The second part introduces 

modeling languages employed in Model-Driven Software Engineering. The last part of 

this chapter presents formal methods. 

 

Model-Driven Software Engineering 

Today, software systems have become very complex. In many applications, they 

may be integrated with the physical systems that support safety critical functions, making 

them necessarily complex to develop, test and maintain. Models provide a good solution 

for the software developers to manage this complexity and to understand the design and 

associated risks by abstracting away irrelevant details while highlighting the relevant. 

More specifically, by modeling software, developers can: [1] 

 

 

 7



• Create and communicate software designs before committing additional 

resources. 

• Trace the design back to the requirements, helping to ensure that they are building 

the right systems. 

• Practice iterative development, in which models and other higher levels of 

abstraction facilitate quick and frequent changes. 

Three most successful approaches for Model-Driven Software Engineering are 

Model-Driven Architecture, Model-Integrated Computing and Model-Driven Software 

Development.  

 

Model-Driven Architecture 

The Model-Driven Architecture (MDA) [2], proposed by the Object Management 

Group (OMG), starts with the long established idea of separating the specification of the 

operation of a system from the details of the way that the system uses the capabilities of 

its platform. The primary goal of MDA is to realize portability, interoperability and 

reusability through architectural separation of concerns. The MDA defines an approach to 

IT system specification that separates the specification of system functionality from the 

specification of the implementation of that functionality on a specific technology 

platform. To that end, the MDA defines an architecture for models that provides a set of 

guidelines for structuring specifications expressed as models.  

The MDA approach and the standards that support it allow the model that 

specifies system functionality to be realized on multiple platforms through auxiliary 

mapping standards, or through point mappings to specific platforms. The approach also 

 8



allows different applications to be integrated by explicitly relating their models, enabling 

integration, interoperability and system evolution as platform technologies come and go 

[3]. 

MDA concepts are presented in terms of some existing or planned systems. A 

system may include anything: a program, a single computer system, some combination of 

parts of different systems, a federation of systems. Much of the discussion focuses on 

software within the system. 

A model of a system is a description or specification of that system and its 

environment for some certain purpose. A model is often presented as a combination of 

drawings and text. The term model-driven means that MDA provides a means for using 

models to direct the course of understanding, design, construction, deployment, 

operation, maintenance and modification. The architecture of a system is a specification 

of the parts and connectors of the systems and the rules for the interactions of the parts 

using connectors.  

A platform is a set of subsystem and technologies that provide a coherent set of 

functionality through interfaces and specified usage patterns, which any application 

supported by that platform can use without concern for the details of how the 

functionality provided by the platform is implemented. For example, CORBATM [4], 

CORBA Components [5] and Java 2 Enterprise Edition (J2EETM) [6] are some 

technology specific platform types. Platform independence is a quality, which a model 

may exhibit. A model is platform independent if its features can be interpreted on any 

platform.  

 9



A viewpoint of a system is a technique for abstraction using a selected set of 

architectural concepts and structuring rules, in order to focus on particular concerns 

within that system. The MDA specifies three viewpoints on a system, a computation 

independent viewpoint, a platform independent viewpoint and a platform specific 

viewpoint. 

The computation independent viewpoint focuses on the environment of the 

system, and the requirements for the system; the details of the structure and processing of 

the system are hidden or as yet undetermined. The platform independent viewpoint 

focuses on the operation of a system while hiding the details necessary for a particular 

platform. A platform independent view shows the part of the specification that does not 

change from one platform to another. The platform specific viewpoint combines the 

platform independent viewpoint with an additional focus on the detail of the use of a 

specific platform by a system. 

A computation independent model (CIM) is a view of a system from the 

computation independent viewpoint. The requirements for the system are modeled in a 

CIM by describing the situations in which the system will be used. A CIM is a model of a 

system that shows the system in the environment in which it will operate, and thus it 

helps in presenting exactly what the system is expected to do. It is useful, not only as an 

aid to understanding a problem, but also as a source of a shared vocabulary for use in 

other models. A CIM is sometimes called a business model. It may hide much or all 

information about the use of automated data processing systems. Typically such a model 

is independent of how the system is implemented. 

 10



A platform independent model (PIM) is a view of a system from the platform 

independent viewpoint. A PIM might consist of enterprise, information and 

computational Open Distributed Processing viewpoint specifications. A PIM exhibits a 

specific degree of platform independence so as to be suitable for use with a number of 

different platforms of similar type. A very common technique for achieving platform 

independence is to target a system model for a technology-neutral virtual machine. A 

virtual machine is defined as a set of parts and services (communication, scheduling, 

naming, etc.), which are defined independently of any specific platform and which are 

realized in platform-specific ways on different platforms. A virtual machine is a platform, 

and such a model is specific to that platform. But that model is platform independent with 

respect to the class of different platforms on which that virtual machine has been 

implemented.  

A platform specific model (PSM) is a view of a system from the platform specific 

viewpoint. A PSM combines the specification in the PIM with the details that specify 

how that system uses a particular type of platform. PSMs have to use the platform 

concepts, such as exception mechanisms, parameter types (including platform-specific 

rules about objects references, value types, semantics of call by value, etc.), and 

component models. 

 11



 

Figure 2-1 Model transformation 

Model transformation is a process of converting one model to another model of 

the same system. The transformation from PIM to PSM is a key part of MDA. Figure 2-1 

illustrates the MDA pattern, by which a PIM is transformed to a PSM. The PSM and 

other information are combined by the transformation to produce a PSM. The MDA 

proposes five approaches to realize the transformation from PIM to PSM, including 

marking, metamodel transformation, model transformation, pattern matching and model 

merging.  

Among many tools that support MDA, IBM Eclipse-based modeling tools [30] 

may be one of the most popular tools. The Eclipse Modeling Framework (EMF) allows 

model designers to input a data model, and generate simple table-based editors and XMI 

schema for such models. The Graphical Editor Framework (GEF) supplies functions and 

classes useful for specifying graphical editors for Eclipse data models. 

 

 

 

 12



Eclipse Modeling Framework (EMF) 

EMF [33] [34] is an open source framework and toolkit targeting MDA. It is the 

current implementation of a portion of MDA in the Eclipse family of tools. EMF extends 

Eclipse's Java Development Tool into the world of model-driven development and 

provides an easy way for users to define models, from which many common code-

generation patterns are generated.  

EMF provides a metamodel, called "Ecore", for describing EMF models. Ecore is 

based on a core subset of the OMG’s Meta Object Facility (MOF) API [35]. In the 

current proposal for MOF 2.0, a similar subset of the MOF model, which it calls EMOF 

(Essential MOF) is separated out. There are small, mostly syntactical, differences 

between Ecore and EMOF. However, EMF can transparently read and write serializations 

of EMOF. 

EMF uses XMI (XML Metadata Interchange) as its canonical form for a model 

representation [36]. Users have several ways of defining models in that form: (1) create 

the XMI document directly, using an XML or text editor; (2) export the XMI document 

from a modeling tool, such as Rational Rose; (3) annotate Java interfaces with model 

properties; (4) use XML Schema to describe the form of a serialization of the model. 

Once an EMF model is created, the EMF generator can create a corresponding set 

of Java implementation classes. Every generated EMF class extends the framework base 

class, EObject, which enables the objects to integrate and work in the EMF runtime 

environment. EObject provides an efficient reflective API for accessing the object's 

properties. In addition, change notification is an intrinsic property of every EObject and 

an adapter framework can be used to support open-ended extension of the objects. The 

 13



runtime framework also manages bidirectional reference handshaking, cross-document 

referencing including demand-load, and arbitrary persistent forms with a default generic 

XMI serialization that can be used for any EMF model. EMF also provides support for 

dynamic models (Ecore models are created in memory and then instantiated without 

generating code).  

These generated classes can be edited by adding methods and instance variables. 

If the EMF model is changed, the regenerated code will still keep the added code. If the 

code added depends on some changes in the model, the code is needed to be updated to 

reflect those changes; otherwise, the code is completely unaffected by model changes and 

regeneration. 

EMF consists of two fundamental frameworks: the core framework and 

EMF.Edit. The core framework provides basic generation and runtime support to create 

Java implementation classes for a model. EMF.Edit extends and builds on the core 

framework, adding support for generating adapter classes that enable viewing and 

command-based (undoable) editing of a model, and even a basic working model editor.  

Graphical Editor Framework (GEF) 

EMF only provides part of the solution for models: data storage, property sheets, 

tree or table-based browsing, and code generation framework. GEF provides the 

graphical support needed for building a diagram editor on top of the EMF framework 

[37] [38]. Note that GEF and EMF can be used separately and there is no dependency 

between the two frameworks. The only thing they share is their integration with Eclipse 

change notification.  

 14



Every GEF application uses a model to represent the state of the diagram being 

created and edited. GEF employs a Model-View-Controller architecture which relies on 

controllers that listen for model changes and update the view in response. As all EMF 

model objects notify change via EMF’s notification framework, notification to an EMF 

model is already in place. 

The GEF Model can be an EMF model, or something totally different. The GEF 

Controller is called an EditPart, and for each EMF model element class, a corresponding 

EditPart class must be created. EditParts have figures, which are their graphical view, 

implemented in the lower-level Draw2D graphical framework [39]. EditParts respond to 

events by way of an EditPolicy. The job of the EditPolicy is to turn the event request into 

a Command. GEF uses the Command pattern to implement an undo stack. 

 

Model-Integrated Computing 

Model-Integrated Computing (MIC) [7] [8] [9] has been developed by the 

Institute for Software Integrated System (ISIS) at Vanderbilt University for embedded 

software and system design. MIC focuses on the formal representation, composition, 

analysis and manipulation of models during the design process. It employs domain-

specific models to represent the software, its environment, and their relationships. With 

Model-Integrated Program Synthesis (MIPS), these models are then used to automatically 

synthesize the embedded applications. The MIC approach places models at the center of 

the entire life-cycle of systems, including specification, design, development, 

verification, integration, and maintenance.  

 15



Using MIC techniques, one can capture the requirements, actual architecture, and 

the environment of a system in the form of high-level models. The requirement models 

allow the explicit representation of desired functionalities and/or non-functional 

properties. The architecture models represent the actual structure of the system to be 

built, while the environment models capture the system environment. These models act as 

a repository of information that is needed for analyzing and generating the system.  

 

 

Figure 2-2 Overview of the MIC architecture [10] 

 

As shown in Figure 2-2, the MIC architecture has the following three levels of 

abstraction: 

Application Level represents the synthesized, adaptable software applications. The 

executable programs are specified in terms of a computation platform. 

MIPS Level comprises generic, customizable, domain-specific tools for model building, 

model analysis and application synthesis. The generic components in MIPS level include 

 16



a customizable graphical model builder, database for storing and accessing models and 

model interpreters.  

Meta-Level is a metaprogrammable interface, which provides metamodeling languages, 

metamodels, a metamodeling environment and meta-generators for creating domain 

specific tool chains on the MIPS level.       

A MIC application starts with the formal specification of a new application 

domain through a metamodeling process. The metamodels capture the modeling 

concepts, the relationship among these concepts, integrity constraints and visualization 

rules of the application domain. The visualization rules determines how domain models 

are to be visualized and manipulated in a visual modeling environment. Through the step 

called “Meta-Level Translation”, a MIPS environment can be generated from this 

application domain specification. The domain users create domain-specific models within 

the MIPS environment. The next step is to do model interpretation through model 

interpreters. Mode interpreters synthesize applications (application models), or translate 

models into input data structures for analysis tools. Internal tools are designed for specific 

MIPS environments, and typically include a model interpreter, an analysis algorithm and 

user interface. External tools are research tools that perform some static or dynamic 

analysis based on a domain independent abstract model.        

The MIC development is also an evolutionary process supporting both the 

application evolution and the environment evolution. The application evolution is the 

evolution of the computer-based system execution models. Since both the behavior and 

structure of the system is specified using models, any changes to that behavior are made 

to models and the updated system is generated from the models. The environment 

 17



evolution is the evolution of the domain specification. When the domain environment is 

evolved, the metamodels need to be modified to capture the changes. A new MIPS 

environment is generated from the updated metamodel.  

 

 

Figure 2-3 The metaprogrammable MIC tool suite 

 

Figure 2-3 presents the overview of the fully integrated metaprogrammable MIC 

tool suite developed by ISIS, Vanderbilt University. The tool suite includes the Generic 

Modeling Environment (GME), the Graph Rewriting and Transformation (GReAT) Tool 

Suite, the Design Space Exploration Tool (DESERT), the Universal Data Model (UDM) 

Framework and the Open Tool Integration Framework (OTIF). 

 

 

 

 18



Generic Modeling Environment (GME) 

GME [11] [12] is a configurable toolkit for creating domain-specific modeling 

and program synthesis environments. The configuration is accomplished through 

metamodels specifying the modeling paradigm of the application domain. The modeling 

paradigm contains the modeling concepts, the relationships among these modeling 

concepts, well-formedness rules, and concrete syntax of the domain. The modeling 

concepts will be used to construct models. The concrete syntax determines the 

organization and visualization of modeling concepts in domain models. 

 

 

Figure 2-4 The GME architecture 

Figure 2-4 presents the GME software architecture. The metamodeling language 

for GME is based on the UML class diagram and OCL constraints. The metamodels 

provide information that is used to automatically generate the target domain-specific 

modeling environment [13]. The generated domain-specific environment is then used to 

build domain models that are stored in a model database or in the XML format. These 

 19



domain models are used to automatically generate the applications or to synthesize input 

to different analysis tools. 

GME has a modular, extensible architecture that uses Microsoft COM for 

integration. GME is easily extensible; external components can be written in many 

languages, including C++, Java, Visual Basic, C# and Python. GME has many advanced 

features. A built-in constraint manager enforces all domain constraints during model 

building. GME supports multiple-aspect modeling. It provides metamodel composition 

for reusing and combining existing modeling languages and language concepts [14] [15]. 

It supports model libraries for reuse at the model level. Model visualization is 

customizable through decorator interfaces. 

The Graph Rewriting and Transformation (GReAT) Tool Suite 

GReAT [16] [17] is designed for the specification and implementation of model 

to model transformations. The GReAT tool suite, as shown in Figure 2-5, includes the 

GReAT Modeling Tool for constructing model transformation algorithms, the GReAT 

Engine that directly interprets and executes GReAT programs, and the GReAT Debugger 

that compiles GReAT programs into efficient code. The entire GReAT tool suite is fully 

integrated with GME. The MIC model transformation technology is based on graph 

transformation semantics and can be applied to integrate models by extracting 

information from separate model databases, translating domain models for simulation and 

analysis tools [18] and realizing domain model evolution [19].  

The GReAT language [20] is a graph-transformation based language that supports 

the high-level specification of complex model transformation programs. In this language, 

one describes the transformations as sequenced graph rewriting rules that operate on the 

 20



input models and construct an output model. The rules specify complex rewriting 

operations in a concise, yet precise manner, in the form of a matching pattern and a 

subgraph to be created as the result of the application of the rule. The rules always 

operate in a context: a specific subgraph of the input, and are explicitly sequenced for 

efficient execution. The rules are specified visually using a graphical model builder tool. 

 

 

Figure 2-5 The GReAT architecture 

 

The Design Space Exploration Tool (DESERT) 

DESERT [21] [22] is a meta-programmable tool for navigation and pruning of 

large design spaces using constraints. It provides a model synthesis tool suite that can 

represent large design space and can manipulate them by means of structural constraints. 

An expressive constraint language based on a subset of OCL allows expression of 

compositional, resources, and performance (time, energy, size, weight, cost) constraints. 

Internally, DESERT employs a powerful and highly scalable symbolic representation 

based on Ordered Binary Decision Diagrams [23], that allows for rapid, and efficient 

 21



manipulation of very large design spaces with constraints. In order to solve constraints 

that involve complex mathematical operations, DESERT interfaces with Mozart, a 

powerful environment for constraint logic programming based on the Oz constraint 

language [24]. An XML based input and output interfaces accompanied with a 

programmatic API, allows easy and semantically correct integration of DESERT with 

custom DSMLs. 

 

 

Figure 2-6 The DESERT design flow [21] 

 

The inputs to the DESERT are models and model components used for behavioral 

modeling and analysis. The overall DESERT design flow, as shown in Figure 2-6, 

includes the following steps: 

1. The Component Abstraction tool maps input model components into Abstract 

Components through the TA model transformation.  

2. The Design Space Modeling tool supports the construction of MD design 

spaces using Abstract Components.  

 22



3. The Design Space Encoding tool maps the MD design space into a 

representation form, which is suitable for manipulating/changing the space by 

restricting it with various design constraints. 

4. The Design Space Pruning tool performs the design space manipulation and 

enables the user to select a design, which meets all structural design 

constraints. 

5. The Design Decoding tool reconstructs the selected design from its encoded 

version.    

The Universal Data Model (UDM)  

UDM [25] is a metaprogrammable tool for providing uniform access to data 

structures that could be persistent. The tool uses UML class diagram as the language for 

defining the data structures and it generates C++ or Java class definitions for 

implementing the classes. Each attribute and association will have a corresponding 

setter/getter method in the generated code. The generated class implementations are 

handles pointing to generic objects that provide the real implementation: these generic 

objects can be persistent and be mapped into: XML files, GME project files, database 

tables, or CORBA structures. For each kind of generic object there is a separate back-end 

library that implements the objects in terms of the underlying technology (XML 

structures, GME objects, database tables, CORBA structs). 

 

 23



 

Figure 2-7 The UDM framework architecture [25] 

 

The UDM framework architecture is shown in Figure 2-7. The current storage 

technologies support XML with automatically generated DTD files, MGA (the native 

interface of GME) and memory-based storage. The framework consists of the following 

modules: 

• The GME UML environment with the GME UML paradigm and interpreter, 

which generates equivalent XML files from GME UML models. 

• THE Udm program, which reads in the XML files and generates the 

metamodel-dependent portion of the UDM API: a C++ source file, a C++ 

header file, and an XML document type description (DTD) or XML schema 

definition (XSD). 

 24



• The generic Udm included headers and libraries to be linked to the user’s 

program. 

• Utility programs to manipulate and query Udm data (UdmCopy, UdmPat). 

The Open Tool Integration Framework (OTIF) 

OTIF [26] [27] provides a reusable software framework and integration 

technology for composing tool chains to form specific tool integration solutions. 

Development of large-scale engineering systems (including the software development for 

distributed, real-time embedded systems) often necessitates the integration of various 

engineering tools. 

OTIF provides a set of reusable components and libraries, as well as a process to 

construct integrated tool chains. OTIF is based on a backplane-based architecture where 

tools can interchange data with each other. During interchange, the OTIF backplane 

schedules and executes appropriate transformations on the data (using translator 

elements), in a manner that is compliant with a modeled workflow across the tools. 

The OTIF architecture for a 3-tool integration solution is illustrated in Figure 2-8. 

In general, elements of OTIF include: 

• Backplane: a generic server component that includes the workflow engine, 

host tool metadata, and orchestrates the execution of the tool chain. The 

workflow engine enacts a workflow specified in visual model. 

• Manager: a generic component for configuring the backplane. 

• Tool adaptors: specific client components that reads and writes tool specific 

data, convert that data into/from a generic OTIF format. 

 25



• Semantic translator: specific client components that perform semantic 

translation on the data received from the backplane and send the results back 

to the backplane. 

 

Figure 2-8 The OTIF architecture [26] 

 

Model-Driven Software Development 

Model-Driven Software Development (MDSD) [28] [29] refers to technologies 

that apply information captured by models to automate software development process in 

general. The term MDSD is used when one does not wish to be associated with the 

OMG-only technology, vocabulary and vision. So, different tool vendors and 

organizations propose different approaches and tools to support MDSD. In this section, 

Microsoft Software Factories [31] and Agile Model Driven Development [32] are used as 

two examples to illustrate different MDSD versions. 

 

      

 26



Microsoft Software Factories 

The Microsoft approach to support MDSD is called Software Factories [40] [42], 

which is hosted by Microsoft Visual Studio .NET. The purpose of Software Factories is 

to provide a faster, less expensive and more reliable approach to application development 

by increasing the level of automation in application development, using modeling 

languages to enable rapid assembly and configuration of framework based components. 

Software Factories automate the packaging and delivery of the reusable assets, including 

models and model-driven tools, other types of tools, such as wizards, templates and 

utilities, development processes, implementation components, such as class libraries, 

frameworks and services, and content assets, such as patterns, style sheets, help files, 

configuration files, and documentation. With Software Factories, models are used not 

only for analysis and design, but to support many varied types of computation across the 

entire software life cycle.  

In a brief definition, a software factory is a software product line that configures 

extensible tools, processes and content using a software factory template based on a 

software factory schema to automate the development and maintenance a variants of an 

archetypical product by adapting, assembling and configuring framework based 

components [41].  

A software factory schema is a document that categorizes and summarizes the 

artifacts used to build and maintain a system, such as XML documents, models, 

configuration files, build scripts, source code files, SQL files, localization files, 

deployment manifests and test case definitions, in an orderly way, and that defines 

relationships between them. A software factory schema defines a recipe for building 

 27



members of a software product family. The viewpoints describe the ingredients and the 

tools used to prepare them. A process framework is constructed by attaching a micro 

process to each viewpoint, describing the development of conforming views, and by 

defining constraints like preconditions that must be satisfied before a view is produced, 

post-conditions that must be satisfied after it is produced, and invariants that must hold 

when the views have stabilized.  

For any given project, the software factory schema is customized to create a 

recipe for building that specific member of the product family. A software factory 

schema contains both fixed and variable parts. The fixed parts remain the same for all 

members of the product family, while the variable parts change to accommodate the 

unique requirements of each specific member. Different parts of the customization can be 

performed at different times, according to the needs of the project. Some parts, such as 

adding or dropping whole viewpoints, and relationships between them, might be 

performed up front, based on major variations in requirements, such as dropping 

personalization. Other parts, such as modifying viewpoints and the relationships between 

them, might be performed incrementally, as the project progresses, based on more fine 

grained variations in requirements, such as deciding what mechanisms to use to drive the 

user interface. 

A software factory template is an implementation of the software factory schema. 

With the software factory schema, the assets used to build family members can be 

described, but the concrete implementation of these assets is still missing. The software 

factory schema needs to be concretized by defining the domain specific languages 

(DSLs), patterns, frameworks and tools it describes, packaging them, and making them 

 28



available to product developers. Collectively, these assets form a software factory 

template. So, a software factory template includes code and metadata that can be loaded 

into extensible tools, like an Interactive Development Environment, or an enterprise life 

cycle tool suite, to automate the development and maintenance of family members. It is 

called a template because it configures the tools to produce a specific type of software, 

just as a document template loaded into a tool like Microsoft Word or Excel configures it 

to produce of a specific type of document. 

A software factory template also needs to be customized for a specific family 

member. While customizing a software factory schema customizes the description of the 

software factory for the family member, however, customizing a template customizes the 

assets used to build the family member. The software factory template is generally 

customized at the same time as the software by adding, dropping or modifying the assets 

associated with those viewpoints. Examples of software factory template customization 

include creating projects for the subsystems and components to be developed, populating 

a palette with patterns to be applied, setting up references to libraries to be used, and 

configuring builds. 

Assets for a software product may include the requirements, development process, 

architecture, components, deployment configuration and tests. They are specified, reused, 

managed and organized from the viewpoints defined by the customized software factory 

schema. Building a product using a Software Factory involves the following activities 

[41]: 

• Problem Analysis determines whether or not the product is in scope for the 

Software Factory. Depending on the fit, some or all of product may be built 

 29



outside the Software Factory. In some cases, the software factory schema and 

template need to be changed so that they better accommodate the parts that 

did not fit well in future products.  

• Product Specification defines the product requirements in terms of differences 

from the product line requirements. A range of product specification 

mechanisms can be used, depending on the extent of the differences in 

requirements, including property sheets, wizards, feature models, visual 

models and structured prose.  

• Product Design maps the differences in requirements to differences in the 

product line architecture and the product development process, producing a 

product architecture, and a customized product development process.  

• Product Implementation involves familiar activities, such as component and 

unit test development, builds, unit test execution, and component assembly. A 

range of mechanisms can be used to develop the implementation, depending 

on the extent of the differences, such as property sheets, wizards and feature 

models that configure components, visual models that assemble components 

and generate other artifacts like models, code and configuration files, and 

source code that completes frameworks extension points, or that creates, 

modifies, extends or adapts components.  

• Product Deployment involves creating or reusing default deployment 

constraints, logical host configurations and executable to logical host 

mappings, by provisioning facilities, validating host configurations, 

 30



reconfiguring hosts by installing and configuring the required resources, and 

installing and configuring the executables being deployed.  

• Product Testing involves creating or reusing test assets, including test cases, 

test harnesses, test data sets, test scripts and applying instrumentation and 

measurement tools. 

Agile Model Driven Development  

Agile Modeling (AM) defines a collection of values, principles and practices for 

modeling software that can be applied on a software development project in an effective 

and light-weight manner. The Agile Model Driven Development (AMDD) [43] describes 

an approach for applying AM in conjunction with agile implementation techniques such 

as Test Driven Development (TDD), code refactoring and database refactoring.     

Traditionally, models are thought as diagrams plus any corresponding non-visual 

documentation, such as use cases or a textual description of business rules. An agile 

model denotes a model that is just barely good enough [44]. By definition, an artifact is 

just barely good enough means that it is at the most effective point that it could possibly 

be at. Agile models are just barely good enough when they exhibit the following traits: 

• Agile models fulfill their purpose. 

• Agile models are understandable. 

• Agile models are sufficient accurate. 

• Agile models are sufficient detailed. 

• Agile models provide positive value. 

• Agile models are as simple as possible. 

 

 31



The goal of MDSD is typically to create comprehensive models, and then 

generate software from these models. This often requires computer aided system 

engineering (CASE) tools and IT professionals with sophisticated modeling skills. 

AMDD intends to describe how developers and stakeholders can work together 

cooperatively to create models which are just barely good enough. It assumes that each 

individual has some modeling skills, or at least some domain knowledge, that they will 

apply together in a team in order to get job done. AMDD allows developers to use 

modeling tools, but does not depend on these tools.  

 

 

Figure 2-9 The AMDD approach [45] 

 

Figure 2-9 depicts a high-level lifecycle for AMDD for the release of a system 

[45]. Each box represents a development activity. The initial modeling activity occurs 

 32



during cycle/iteration 0 and includes two main sub-activities, initial requirements 

modeling and initial architecture modeling. The other activities – model storming, 

reviews, and implementation – potentially occur during any cycle. The time indicated in 

each box represents the length of an average session.  

The initial modeling is typically performed during the first week of a project.  For 

short projects (perhaps several weeks in length) it may take a few hours and for long 

projects (perhaps on the order of twelve or more months) it may take two weeks. During 

the initial modeling, agile modelers are likely to identify high-level usage requirements 

models such as a collection of use cases or user stories; identify high-priority technical 

requirements and constraints; create high-level domain models. In cycle 0, the goal of 

initial modeling is to get something that is just barely good enough so that the software 

development team can get coding. In the later cycles both the initial requirements and the 

initial architecture models will need to evolve as modelers learn more.   

The model storming session quickly explore in detail a specific issue before it is 

implemented. Model storming is just in time modeling: identify an issue that needs to be 

resolved, grab a few team members who can help, the group explores the issue, and then 

everyone continues on as before. The model storming session typically lasts for five to 

ten minutes. 

The implementation practice may include code refactoring, database refactoring 

and Test-Driven Design. A code refactoring is a simple change to your code that 

improves its design but does not change its behavioral semantics. Common code 

refactorings include Rename Process, Remove Control Flag, Change Value to Reference, 

and Move Process. A database refactoring [46] is a simple change to a database schema 

 33



that improves its design while retaining both its behavioral and informational semantics. 

Database refactorings may focus on data quality, structural changes and performance 

enhancement. TDD [47] is an approach where tests are identified and written before code 

is written.   

With the AMDD approach, software developers do a little bit of modeling and 

then a lot of coding, iterating back when need to. The design efforts of developers are 

now spread out between your modeling and coding activities. AMDD enables software 

developers to think through larger issues before they move down into the implementation 

details. 

 

Modeling Languages 

As object-oriented programming languages, such as Java and C++, are the key for 

the object-oriented design, modeling languages are essential for the model-based design. 

In general, modeling languages fall into the following three categories: 

1. Unified (or universal) modeling languages, such as Unified Modeling 

Language (UML) [48] and Modelica [49], are designed with goals similar to 

programming languages; they optimized to be broad and intend to offer the 

advantage for adopters to remain in a single language framework 

independently from the domain and system category they concerned with. 

Necessarily, the core language constructs are tailored more toward an 

underlying technology (e.g. object modeling) rather then to a particular 

domain - even if extension mechanisms such as UML profiling allow some 

form of customizability. 

 34



2. Interchange languages, such as the Hybrid System Interchange Format (HSIF) 

[50], are designed for sharing models across analysis tools (hybrid system 

analysis). Interchange languages are optimized for providing specific 

quantitative analysis capabilities in design flows via facilitating the integration 

of a group of tools. Accordingly, they are optimized to cover concepts related 

to an analysis technology. 

3. Domain-specific modeling languages (DSMLs) [13] are tailored to the 

particular concepts, constraints and assumptions of application domains. They 

are optimized to be focused: the modeling language should offer the simplest 

possible formulation that is still sufficient for the modeling tasks. Model-

based design frameworks that aggressively use DSMLs, need to support the 

composition of modeling languages. For example, the MIC infrastructure uses 

abstract syntax metamodeling and meta-programmable tool suites [11] for the 

rapid construction of DSMLs with well defined syntax and semantics. 

 

The Unified Modeling Language (UML) 

The UML is a visual language for visualizing, specifying, constructing, and 

documenting the artifacts of a software-intensive system. The UML offers a standard way 

to write a system's blueprints, including conceptual things such as business processes and 

system functions as well as concrete things such as programming language statements, 

database schemas, and reusable software components [48]. The UML represents a 

collection of best engineering practices that have proven successful in the modeling of 

 35



large and complex systems. Using the UML also helps project teams communicate, 

explore potential designs, and validate the architectural design of the software.  

The UML emerges as the result of combining successful modeling constructs 

from several object-oriented modeling methods, mainly OMT (Object Modeling 

Technique) [51], Booch [52] and OOSE (Object-Oriented Software Engineering) [53]. In 

1997, the UML is standardized by OMG, as UML 1.1 [54]. Since this version, the Object 

Constraint Language (OCL) [55] has been adopted as the constraints description 

language for the UML models in general. Today, the UML is widely-used by the industry 

in developing object oriented software and the software development process.  

Currently, UML 2 [56] [57] is the latest version of UML. It builds on the 1.X 

versions and is a major update on the UML standards. The new version goes well beyond 

the Classes and Objects well-modeled by UML 1.X to add the capability to represent not 

only behavioral models, but also architectural models, business process and rules, and 

other models used in many different parts of computing and even non-computing 

disciplines. The main new features in UML 2 include: 

• Nested Classifiers: In UML 2, modelers can nest a set of classes inside the 

component that manages them, or embed a behavior (such as a state machine) 

inside the class or component that implements it. This capability also allows 

build up complex behaviors from simpler ones, the capability that defines the 

Interaction Overview Diagram. Different levels of abstraction can be layered 

in multiple ways.   

 36



• Improved Behavioral Modeling: In UML 2, all different behavioral models 

derive from a fundamental definition of a behavior (except for the Use Case, 

which is subtly different but still participates in the new organization).   

• Improved relationship between Structural and Behavioral Models: UML 2 

allows modelers designate that a behavior represented by (for example) a 

State Machine or Sequence Diagram is the behavior of a class or a component.   

Overall, UML 2 defines 13 basic diagram types, divided into two groups, 

Structural and Behavioral Modeling Diagrams. Structure Modeling Diagrams define the 

static architecture of a model. They are used to model the 'things' that make up a model - 

the classes, objects, interfaces and physical components. In addition, they are used to 

model the relationships and dependencies between elements. Structure Modeling 

Diagrams include: 

• Package Diagrams are used to divide the model into logical containers or 

'packages' and describe the interactions between them at a high level. 

• Class or Structural Diagrams define the basic building blocks of a model: the 

types, classes and general materials that are used to construct a full model.  

• Object Diagrams show how instances of structural elements are related and 

used at run-time.  

• Composite Structure Diagrams provide a means of layering an element's 

structure and focusing on inner detail, construction and relationships. 

•  Component Diagrams are used to model higher level or more complex 

structures, usually built up from one or more classes, and providing a well 

defined interface. 

 37



•  Deployment Diagrams show the physical disposition of significant artifacts 

within a real-world setting. 

Behavioral Modeling Diagrams capture the varieties of interaction and 

instantaneous state within a model as it 'executes' over time and include: 

• Use Case Diagrams are used to model user/system interactions. They define 

behavior, requirements and constraints in the form of scripts or scenarios.  

• Activity Diagrams have a wide number of uses, from defining basic program 

flow, to capturing the decision points and actions within any generalized 

process.  

• State Machine Diagrams are essential to understanding the instant to instant 

condition or "run state" of a model when it executes. 

• Communication Diagrams show the network and sequence of messages or 

communications between objects at run-time during a collaboration instance.  

• Sequence Diagrams are closely related to Communication Diagrams and show 

the sequence of messages passed between objects using a vertical timeline.  

• Timing Diagrams fuse Sequence and State Diagrams to provide a view of an 

object's state over time and messages which modify that state.   

• Interaction Overview Diagrams fuse Activity and Sequence Diagrams to 

provide allow interaction fragments to be easily combined with decision 

points and flows.   

 

 

 

 38



Hybrid System Interchange Format (HSIF) 

The Hybrid Systems Interchange Format (HSIF) [58] [59] is a XML-based 

interchange format for hybrid systems mainly developed researchers at Vanderbilt 

University and University of Pennsylvania as parts of the DARPA MoBIES project. The 

goal for HSIF is to share models between hybrid system modeling and analysis tools. 

Tools could either import HSIF models, export HSIF models or both as shown in Figure 

2-10. 

 

 

Figure 2-10 Layout of the HSIF tool chain implementation [60] 

 

HSIF models represent a system as a collection of hybrid automata called 

network. Each hybrid automaton is a finite state machine in which states include 

constraints on continuous behaviors and transitions describe discrete steps. Automata in a 

network communicate by means of variables. HSIF supports two kinds of variables: 

signals and shared variables. Signals are used to model predictable execution with 

 39



synchronous communication between automata. Shared variables are used for 

asynchronous communication between loosely coupled automata.   

HSIF is a powerful interchange format, but it only supports a restrict set of 

semantics of hybrid systems. For example, it does not support a hierarchical structure of 

FSMs and prevents “by-construction” zero-time loop among FSMs to eliminate the risk 

of nondeterministic behavior stemming out of a combination of deterministic subsystem. 

The limitations to its semantics may deter tool vendors from adopting this interchange 

format.   

 

Domain-Specific Modeling Language (DSML) 

In contrast to a general-purpose modeling language, such as UML, a DSML is a 

modeling language designed to be useful for a specific task in a fixed problem domain. 

DSMLs are gaining popularity in the field of software engineering to enhance 

productivity, maintainability, and reusability of software artifacts, and enable expression 

and validation of concepts at the level of abstraction of the problem domain.  

A well-made DSML captures the modeling concepts, relationships, integrity 

constraints, and semantics of the application domain and allows modelers to program 

declaratively through model construction. Domain experts can easily master a DSML, 

since the domain concepts with which they are already familiar with are incorporated in 

the modeling language. Unlike UML, both the modeling language and code generators of 

the DSML are individually tailored to the requirements of each domain. This allows 

DSML to offer full code generation from design models and produce the efficient code. 

 40



DSMLs are essential for MIC applications. They are convenient tools for the 

design and implementation of embedded software and systems. For example, the 

Embedded System Modeling Language (ESML) [61] is a DSML developed by the 

Vanderbilt DARPA MoBIES team for modeling real-time mission computing embedded 

avionics applications. It is successfully used by Boeing engineers to model component-

based avionics applications designed for the Bold-Stroke [62] component deployment 

and distributed middleware infrastructure. Figure 2-11 presents an example that models 

Bold Stroke multi-threaded component interaction in ESML. The underlying model 

interpreters for the ESML will generate XML files that are used during load-time 

configuration of Bold Stroke, and enable invasively modifying a very large code base 

from properties specified in an ESML model.    

 

 

Figure 2-11 Bold Stroke multi-threaded component interaction in ESML 

 

 41



Formal Methods 

Formal methods [63] [64] are mathematically based techniques for describing 

system properties. In most cases, formal methods provide frameworks within which users 

can specify, develop, and verify systems in a systematic manner. A method is called 

formal if it has a sound mathematical basis, typically given by a formal specification 

language. This mathematical basis provides the means of precisely defining notions like 

consistency, completeness, specification, implementation, and correctness. Formal 

methods are used to reveal ambiguity, incompleteness, and inconsistency in a system. 

When used early in the system development process, they can reveal design flaws that 

otherwise might be discovered only during costly testing and debugging phases. When 

used later, they can help determine the correctness of a system implementation and the 

equivalence of different implementations. In recent years, formal methods are widely 

applied in specifying formal semantics for modeling languages.  

This section first introduces widely-used semantics specification approaches. 

Then, formal specification languages in general and a particular formal specification 

language, Abstract State Machine, are presented. The last part is a short survey on recent 

research in formal semantics for modeling languages.   

 

Semantic Specification Methods  

Formal semantics [65] is concerned with rigorously specifying the meaning, or 

behavior, of programs, pieces of hardware etc. The actual semantics specification can be 

formalized in different ways. Three main formal semantics specification approaches are 

operational semantics, denotational semantics and axiomatic semantics.    

 42



Operational semantics: Specify a set of rules on how the state of an actual or 

hypothetical computer changes while executing a program. The overall state is typically 

divided into a number of components, e.g. stack, heap, registers etc. Each rule specifies 

certain preconditions on the contents of some components and their new contents after 

the application of the rule. It is similar in spirit to the notion of a Turing machine, in 

which actions are precisely described in a mathematical way. Typically, the definition of 

operational semantics of a system has two major steps: the choice or the definition of the 

virtual machine, the translation of the system into the source code of the machine. 

Denotational semantics [66]: Describe the meaning of programs in terms of 

mathematical functions on programs and program components. Programs are translated 

into mathematical functions about which properties can be proved using the standard 

mathematical theory of functions, and especially domain theory. Denotational semantics 

was developed by Christopher Strachey in mid 1960s. Dana Scott supplied the 

mathematical foundations in 1969. The idea of denotational semantics is to associate an 

appropriate mathematical object, such as a number, a tuple, or a function, with each 

phrase of the program. The phrase is said to denote the mathematical object, and the 

object is called the denotation of the phrase.  Both the denotational semantics and the 

operational semantics use the same basic idea that defines the semantics via mapping to 

some mathematical basis. However, while the operational semantics is done at high level 

of abstraction, usually by means of virtual machines, denotational semantics uses 

rigorous mathematical objects.   

Axiomatic semantics [67] [68]: Specify a set of assertions about properties of a 

system and how they are affected by program execution. The axiomatic semantics of a 

 43



program could include pre- and post-conditions for operations. In particular if you view 

the program as a state transformer (or collection of state transformers), the axiomatic 

semantics is a set of invariants on the state which the state transformer satisfies. Based on 

methods of logical deduction from predicate logic, axiomatic semantics are more abstract 

than denotational semantics in that there is no concept corresponding to the state of the 

machine. Rather, the semantic meaning of a program is based on assertions about the 

relationships that remain the same each time the program executes. The relation between 

an initial assertion and a final assertion following a piece of code captures the essence of 

the semantics of the code. Another piece of code that defines the algorithm slightly 

different yet produces the same final assertion will be semantically equivalent provided 

any initial assertions are also the same. The proofs that assertions are true do not rely on 

any particular architecture for the underlying machine; rather they depend on the 

relationships between the values of the variables. Although individual values of variables 

change as a program executes, certain relationships among them remain the same. These 

invariant relationships form the assertions that express the semantics of the program.  

 

Formal Specification Languages  

A formal specification language [69] is a language having a well defined syntax 

and semantics which is suitable for describing or specifying systems of some kind. 

Unlike most programming languages, which may also have precise syntax and semantics 

definition and are used to implement a system, specification languages are used during 

system analysis, requirements analysis and design. Formal specification languages 

describe the system at a much higher level than a programming language. Indeed, it is 

 44



considered as inappropriate if a requirement specification is cluttered with unnecessary 

implementation detail.  

In most cases, specifications must be subject to a process of refinement before 

they can actually be implemented. The result of such a refinement process is an 

executable algorithm, which is either formulated in a programming language, or in an 

executable subset of the specification language at hand. An important use of formal 

specification languages is enabling the creation of proofs of program correctness. In 

general, formal specification languages can be categorized as model-oriented 

specification language, algebraic specification language, and process modeling language. 

Model-oriented specification languages [75] specify a system in terms of a state 

model that is constructed using mathematical objects such as sets and sequences. An 

operation is a function which maps a value of the state together with values of parameters 

to the operation onto a new state value. A model-oriented specification language is 

typically used by describing in detail specific mathematical objects which are structurally 

similar to the corresponding software. It is then permitted to transform these 

mathematical objects, during the design and implementation of the system, in ways which 

preserve the essential features of the requirements as initially specified. Popular model-

oriented specification languages include Abstract State Machine (ASM) [70], VDM-SL 

[71], the specification language associated with VDM [72], the Z language [73] and the B 

language [74].  

Algebraic specification languages [75] apply methods derived from abstract 

algebra or category theory to specify systems. Abstract algebra is the mathematical study 

of certain kinds or aspects of structure abstracted away from other features of the objects 

 45



under study. Algebraic methods are beneficial in permitting key features of systems to be 

described without prejudicing questions which are intended to be settled later in the 

development process. While model-oriented specification languages are assumed to be 

suited better for the description of state based systems (abstract machines), algebraic 

specification languages are assumed to be better for abstract data type specifications. 

Popular algebraic specification languages include the OBJ language [76], the Larch 

Shared Language (LSL) [77], and ACT ONE [78]. 

Process modeling languages describe concurrent systems. In these languages, 

expressions denote processes, and are built up from elementary expressions which 

describe particularly simple processes by operations which combine processes to yield 

new potentially more complex processes. Popular process modeling languages contain 

Communicating Sequential Processes (CSP) [79] and Calculus of Communicating 

Systems (CCS) [80]. 

 

Abstract State Machine  

Abstract State Machine (ASM), formerly called Evolving Algebras, is a model-

oriented specification language. It was first introduced by Yuri Gurevich in [81]. 

Supporting materials on ASM can be found on ASM community web site [82], in a series 

of ASM introductory publications [83] [84] [85] [86], or the ASM book [87].  

ASM is mathematical machine that models a system or simulates its execution by 

operating on the global state of the system according to a set of transition rules. Like 

Turing machine [88], ASM gives operational semantics to algorithms. Turing machine 

simulation may be very clumsy. In particular, one step of the algorithm may require a 

 46



long sequence of steps of the simulating Turing machine. With ASM, the machine makes 

only a bounded number of steps to simulate one step of the given algorithm. Furthermore, 

an ASM may be tailored to an arbitrary abstraction level. The ASM thesis [83] claims 

that every sequential algorithm can be simulated by an ASM on a natural abstraction 

level.  

ASM has been successfully applied to specifying the semantics of many 

programming languages, including C [89], C++ [90], Java [91] [92] [93] [94], Oberon 

[95], Smalltalk [96], Prolog [97], Occam [98] and etc. ASM has also been used for 

describing the semantics of IEEE hardware description language VHDL [99] [100], as 

well as distributed systems [101] [102], real-time systems [103] [104] and hardware 

architectures [105] [106]. In particular, the International Telecommunication Union 

adopted an ASM-based formal semantics definition of SDL as part of SDL language 

definition [107] [108]. 

Basic Abstract State Machines 

A basic ASM consists of a basic ASM program together with a collection of states 

and sub-collection of initial states. Basic ASMs are sequential algorithms. Intuitively 

sequential algorithms are non-distributed algorithm with uniformly bounded parallelism. 

The latter means that the number of actions performed in parallel are bounded 

independently of the state or the input. It has been proved that, for every sequential 

algorithm, there is a basic ASM that simulates the algorithm step by step [109]. 

States 

The notion of ASM state is equivalent to the notion of first-order structure in 

mathematical logic. A vocabulary is a finite collection of function names; each name has 

 47



a fixed arity. Some names may be marked as relation names or static names, or both. 

Relational names may also be called predicates. Predicates are special kinds of functions 

that return Boolean values, and may be used to express all kinds of constraints. Every 

vocabulary contains the following static names: true, false, undef, the equality sign, and 

the names of the usual Boolean operations. According to whether or not the values of a 

function may change, functions are static or dynamic. Static functions give the basic 

structure of the system, while the dynamic functions explicitly reflect the dynamics of the 

system.  

A state A of a given vocabulary is a nonempty set X, together with interpretations 

of the function names (the basic functions of A) and the predicates (the basic relations of 

A). The set X is called the base set of A. A function name of arity j is interpreted as a j-ary 

operation over X. A nullary function name is interpreted as an element of X.  

Basic relations are seen as special basic functions whose only possible values are 

true and false and whose default value is false rather than undef. The value undef is the 

default value for basic functions. Formally a basic function f is total but, actually, it is 

partial in ASM. The intended domain of f consists of all tuples a with .  undefaf ≠)(

Many algorithms require additional space as they run. In the abstract setting, this 

seems to mean that the state acquires new elements. It is more convenient to have a 

source of new elements inside the state. In ASM, Every state A includes an infinite set 

called the reserve of A. The reserve of A contains of all elements of A such that  

• Every basic relation, with the exception of equality, evaluates to false if at 

least one of its arguments belongs to the reserve. 

 48



• Every non-relational basic function evaluates to undef if at least one of its 

arguments belongs to the reserve. 

• No basic function outputs an element of the reserve. 

The definition of an ASM state is very general. Any kind of static mathematical 

reality can be described as a first-order structure. In fact, second-order and higher-order 

structures of logic are special first-order structures. Many-sorted first-order structures 

(with several base sets called sorts) are special one-sorted structures. The roles of sorts 

are played by designated unary relations that are called universe in ASM.   

Updates 

A state can be viewed as a kind of memory that maps locations to values. 

Dynamic functions are those that can change during computation. A location of a state A 

is a pair where f is a j-ary dynamic function name in the vocabulary of 

A and  is a j-tuple of elements of A. The element 

)),,(,( 1 jxxfl …=

),,( 1 jxx … ),,( 1 jxxfy …= is the content 

of that location. 

An update of A is a pair ),( yl ′ , where l is a location of A and)),,(,( 1 jxxf … y′ is 

an element of A. must be true or false if f is a predicate. To fire the updatey′ ),( yl ′ , 

replace the old value at location l with the new value so that 

in the new state.  

),,( 1 jxxfy …= y′

yxxf j ′=),,( 1 …

An update set over a state A is simply a set of updates of A. A update set 

is consistent if the location are distinct. In other words, S is 

inconsistent if there are i, j such that 

)},(,),,{( 11 nn ylylS ′′= "

ji ll = but iy′  is distinct from . To fire a consistent jy′

 49



update set, fire all the updates simultaneously; to fire an inconsistent update set, so 

nothing. 

Rules and Programs 

Expressions are defined recursively, as in first-order logic: 

• A variable is an expression. 

• If f is an j-ary function name and e1, …, ej are terms, then f(e1, …, ej) is an 

expression. 

Ground expressions are expressions without variables. Atomic Boolean 

expressions are expressions of the form )(ef , where f is a relation name. Boolean 

expressions are built from atomic Boolean terms by means of the Boolean operations. 

An update rule R has the form: 

01 :),,( eeef j ="  

where f is a j-ary dynamic function name and each ei is an expression. To execute 

R, fire the update where ),( 0al )),,(,( 1 jaafl …= and each ai is the value of ei. 

The skip rule has the form: 

 skip 

A conditional rule R has the form: 

 if e then R1  
else R2 
endif 

where e is a Boolean expression and R1, R2 are rules. To execute R, evaluate the 

guard e. If e is true, then execute R1, otherwise execute R2. 

A do-in-parallel rule R has the form: 

 do in-parallel 

 50



      R1
       R2

  enddo 

where R1, R2 are rules. To execute R, execute rules R1, R2 simultaneously. 

An import rule R has the form: 

 import x 
     R0(x) 
 endimport 

where x is a variable and R0 is a rule. To execute R, fish out any element x of the 

reserve and execute the rule R0(x). 

A basic ASM program is just a rule. An ASM is give by a program, a collection 

of legal states and a subcollection of initial states. The program describes one step of the 

ASM. An ASM is supposed to execute until the state does not change. 

Parallel Abstract State Machines 

Parallel ASMs are supported by enriching basic rules with first-order expressions 

and introducing do-in-parallel construct.  

The expression {t(x) | x ∈ s where ϕ (x)} denotes the set of all values t(x) where x 

ranges over those elements of set s that satisfy ϕ (x). This presumes that s is a set 

expression and ϕ (x) is Boolean. Every state A is required to be closed under tuples and 

finite sets: if a1, …, an are elements of A then the tuple (a1, …, an) and the set {a1, …, an} 

are elements of A. A also contains standard operations over tuples and sets. 

A do-forall rule R has the form: 

 do forall x ∈ s 
     R0(x) 
 enddo      

 51



where x is a variable and R0(x) is a rule. To execute R, execute all subrules R0(x) 

with x in s at once. 

Parallel ASMs are parallel algorithm. It is proved in [110] that, for every parallel 

algorithm, there is a parallel ASM that simulates the given algorithm step by step. 

Nondeterministic Abstract State Machines 

Basic and parallel ASMs can be made nondeterministic by the use of 

nondeterministic choose rules.  

A choose rule R has the form: 

 choose x ∈ s 
       R0(x) 
 endchoose 

where R0(x) is a rule and x does not occur freely in the set expression s. To 

execute R, choose any element x of s and execute the subrule R0(x). 

 

Formal Semantics for Modeling Languages 

Many modeling language standards do not contain a formal semantics definition, 

and only have the syntax definition of the language. This is not because the syntactic 

notations for modeling languages are more important than their semantics. Instead, a 

formal semantics is one of the main goals for many modeling languages. For example, 

the 4th goal of seven design goals for UML is to “Provide a formal basis for 

understanding the modeling language” [111].  But, normally, the semantics definition is a 

much harder problem than the syntax definition. Instead of delaying a language standard 

because of the lack of a formal semantics, natural languages, such as English, are used to 

informally explain the semantics of a modeling language, and the formal semantics 

 52



definition is left to the research community. Researchers will propose different 

approaches for the formal semantics definition of the language. This process may take 

several years or even longer until a formal semantics of this modeling language is mature 

and is accepted by the language’s standardization committee.  Then, this formal 

semantics will be adopted as a part of the language standard. This section presents related 

researches in the formal semantics definition for two widely-used modeling languages: 

SDL and UML. 

Formal Semantics for SDL  

SDL (Specification and Description Language) [131] is a modeling language for 

specifying the behavior of distributed real-time systems in general and 

telecommunication systems in particular. SDL was first standardized by ITU 

(Telecommunication Sector of the International Telecommunication Union) in 1976, and 

after that, upgrades of the SDL standard are officially released every 4 years. Now, SDL 

has matured from a simple visual language for describing a set of communicating finite 

state machines to a sophisticated modeling technique with graphical syntax, data type 

constructs, structuring mechanisms, objected-oriented features, support for reuse, 

companion notations, tool environments and a formal semantics. It took more than 10 

years of language development until the semantics of SDL became defined formally in 

1988. This formal semantics was based on a combination of the VDM meta-language 

Meta-IV and a CSP-like communication mechanism. It has been maintained and 

extended for subsequent versions of SDL.   

   In November 1999, a new version of SDL called SDL-2000 was passed by ITU. 

SDL-2000 incorporates several new features, including object-oriented data types, a 

 53



unified agent concepts, hierarchical states, and exception handling. Based on the 

assessment that the existing Meta-IV program would be too difficult to extend and 

maintain, it was decided to conceive a new formal semantics for SDL-2000 from scratch. 

For this purpose, the SDL semantics group [132] was formed in 1998. The main design 

objectives for SDL semantics include intelligibility, maintainability, expressiveness and 

executability. After widely discussion and investigation, ASM was finally selected as the 

underlying formalism for defining SDL semantics.  

In November 2000, the formal semantics of SDL-2000 (about 350 pages), 

referred to as the ITU-T approach, was officially approved to become part of the SDL 

standard [108]. In ITU-T approach, the static semantics covers well-formedness rules and 

transformations from non-basic language constructs to the core SDL concepts. The 

dynamic semantics is given to syntactically correct SDL specifications satisfying the 

well-formed rules, after all transformations have been applied. For a given SDL 

specification, it defines the corresponding set of computations. The dynamic semantics 

builds on a so-called SDL Abstract Machine, which is defined using ASM. Next, the 

transitions of the SDL specification are compiled into code executable on this machine. 

Finally, a distributed operating system, which initializes and executes the agents of the 

SDL system, is defined. It is now official policy that if there is an inconsistency between 

the main body of SDL standard and the ASM-based semantics, then neither the main 

body of SDL standard nor ASM-based semantics takes precedence when this is corrected.  

In the same period, there have been a variety of approaches on formalizing the 

SDL semantics using various methods. For example, Bozga et al. [133] defined the SDL 

intermediate representation format IF as the basis for a systematic integration of the 

 54



ObjectGeode toolset with different validation tools supporting formal verification and 

automatic test case generation. In [134], Fischer and Dimitrov proposed a SDL Time 

Nets model, which is an extended Petri Nets, as a formal basis for verifying SDL protocol 

specifications. In [135], Bergstra and Middleburg defined a process algebra semantics for 

a restricted version of SDL. Broy [136] modeled various subsets of basic SDL using 

stream processing functions of FOCUS [137]. Lau and Prinz [138] proposed an Object-Z 

based model to define a universal core for SDL as a conceptual framework for dealing 

with the main building blocks of the SDL language. In [139] [140], Glässer and Karges 

defined the dynamic semantics of Basic SDL-92/96 in ASM. This work provides a 

conceptual framework which has further been developed and extended by combing it 

with the compilation-based view of [141] as well as fundamental concepts from [138] 

resulting in the final formal semantics of SDL-2000.   

Formal Semantics for UML 

Until now the goal to provide a formal semantics of UML is reached in a very 

limited way. The UML standard does not contain a formal semantics. English is used by 

the UML standard to informally describe the semantics. The UML standard includes a 

family of structural and behavioral modeling diagrams as described in section 3.1. Many 

researchers have proposed formal semantics for individual diagrams of the UML – e.g. 

[112] [113] on UML class diagram, [114] [115] on state machines, [116] [117] on 

collaboration diagrams, [118] [119] on use cases, [120] [121] on activity diagrams. In 

general, these approaches to formalize UML semantics can be divided into two main 

groups: set-valued semantics and translational approach. 

 55



In [122], M. Richters and M. Gogolla proposed to define the semantics of UML 

class diagrams and OCL based on set theory. In this approach, the semantics of a class 

diagram is described as a set of hypergraphs. Each hypergraph corresponds to a concrete 

configuration of object instances. The nodes correspond to objects and the edges to 

association links. The nodes are labeled with the attribute and value mappings, while 

edges are labeled with names for association ends. This approach directly provides set-

valued semantics for UML models and fits well for the definition of OCL constraints 

within UML models.  

The translational approach defines translation rules from UML diagrams to 

traditional formal specification languages. There exist, among others, translations to Z 

[123], Object-Z [124], B [125], Larch [126], CASL [127], π-calculus [120], X-machines 

[118], PVS [128], CSP [129], Petri Nets [130] and ASM [114]. The advantage of this 

approach is that tools that have already existed for the formal specification languages can 

be used for reasoning UML models after translation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 56



CHAPTER III 

 

A SEMANTIC ANCHORING INFRASTRUCTURE 

 

The proposed semantic anchoring infrastructure includes a formal metamodeling 

framework and a finite set of semantic units. This chapter presents the details of the 

semantic anchoring methodology and the tool suite for domain-specific modeling 

language (DSML) design through semantic anchoring.   

 

Formal DSML Specification 

Formally, a DSML is a five-tuple of concrete syntax (C), abstract syntax (A), 

semantic domain (S) and semantic and syntactic mappings (MS, and MC) [146]:  

L = {C, A, S, MS , MC } 

 

 

Figure 3-1 Formal DSML specification 

 

As shown in Figure 3-1, the concrete syntax C defines the specific notation used 

to express models, which may be graphical, textual or mixed. The abstract syntax A 

 57



defines the modeling concepts, relationships between these modeling concepts, and well-

formedness rules in the language. The semantic domain S is usually defined in a formal 

framework in terms of which the meaning of the models is explained. The syntactic 

mapping MC: C→A assigns modeling notations (graphical, textual or both) to the 

modeling concepts defined in the abstract syntax.  

The syntax and semantics are the fundamental components of a DSML. The 

syntax of a DSML provides the modeling constructs that conceptually form an interface 

to the semantic domain, while the semantics of a DSML gives the meaning behind well-

formed domain models. For example, in MIC applications, the semantics of a domain 

model often prescribes the behavior that simulates a computer-based system.  

DSML semantics are defined in two parts: a semantic domain S and a semantic 

mapping MS: A→S. The semantic domain S is usually defined in a formal, mathematical 

framework, in terms of which the meaning of the models is explained. The semantic 

mapping relates syntactic concepts to those of the semantic domain. In DSML 

applications, semantics may be either structural or behavioral. The structural semantics 

defines the correct structure of model instances: the abstract syntax defines the set of all 

correct domain models that satisfy the well-formedness rules. Accordingly, the semantic 

domain for structural semantics is a set-valued semantics. The behavioral semantics may 

describe the evolution of the state of the modeled artifact along with some time model. 

Hence, the behavioral semantics is formally captured by a mathematical framework 

representing the appropriate form of dynamics.  

 

 

 58



Semantic Anchoring Methodology 

Although DSMLs use many different notations, modeling concepts and model 

structuring principles for accommodating needs of domains and user communities, 

semantic domains for expressing basic behavior categories are more limited. A broad 

category of component behaviors can be represented by basic behavioral abstractions, 

such as Finite State Machine, Timed Automaton, Continuous Dynamics and Hybrid 

Automaton. This observation led us to the following strategy in defining behavioral 

semantics for DSMLs: 

1. Definition of a set of modeling languages {Li} for capturing semantics of the 

basic behavioral abstractions and development of the precise specifications for 

all components of Li = < Ci, Ai, Si, MSi, MCi >. We use the term “semantic units” 

to describe these basic modeling languages. 

2. Definition of the behavioral semantics of an arbitrary DSML,                        

L = < C, A, S, MS, MC >, is accomplished by specifying the MA: A→Ai mapping 

to a predefined semantic unit Li. The MS: A→S semantic mapping of L is then 

defined by the composition MS = MSi ○ MA, which indicates that the semantics of 

L is anchored to the Si semantic domain of the Li modeling language. 

To support the specification of the transformational rules between the abstract 

syntax of a DSML and the abstract syntax of the semantic unit, a formal metamodeling 

framework is adopted to support the abstract syntax specification by using MOF-based 

metamodels [35] and the transformational rule specification by using a formal metamodel 

transformation language. Semantic units are predefined to capture the behavioral 

semantics of a finite set of basic Models of Computations (MoCs), such as Finite State 

 59



Machine, Timed Automata, Discrete Event System and Synchronous Dataflow. In 

addition, to integrate semantic units with the formal metamodeling framework, a simple 

modeling language needs to be developed for each semantic unit. These simple modeling 

languages act as metamodeling interface of the semantic units.  

 

 

Figure 3-2 The semantic anchoring infrastructure   

 

The semantic anchoring infrastructure, shown in Figure 3-2, includes a finite set 

of semantic units and a formal MOF-based metamodeling framework. With this semantic 

anchoring infrastructure, a formal DSML specification can be accomplished with three 

steps. 

1. Specify the DSML syntax >< CMCA ,,  by using MOF-based metamodels. 

2. Select appropriate semantic units >=< SiiCiiii MSMCAL ,,,,  that can capture 

the behavioral aspects of the DSML. Note that a DSML may have multiple 

behavior aspects. Hence, multiple semantic units may be selected in this step.  

 60



3. Specify the semantic anchoring rules iA AAM →=  from the metamodel of the 

DSML to the metamodel of the selected semantic units by using a formal 

metamodeling transformation language. 

 

Semantic Anchoring Tool Suite

By integrating a set of existing tools, we develop a semantic anchoring tool suite, 

as shown in Figure 3-3, to support DSML design using the semantic anchoring 

methodology. The GME tool suit [11] is used for defining the abstract syntax, A, for a 

DSML, L = < C, A, S, MS, MC >, using UML Class Diagrams [56] and OCL [55] as 

meta-language. The  semantic unit is specified as an AsmL 

[147] specification in terms of (a) an AsmL Abstract Data Model (which corresponds to 

the A

>=< SiiCiiii MSMCAL ,,,,

i, abstract syntax specification of the modeling language defining the semantic unit 

in the AsmL framework), (b) the Si, semantic domain (which is implicitly defined by the 

ASM mathematical framework), and (c) the MSi, semantic mapping, defined as a model 

interpreter written in AsmL.  

The MA: A→ Ai semantic anchoring of L to Li is defined as a model transformation 

using the GReAT tool suite [16]. The abstract syntax A and Ai are expressed as 

metamodels. Connection between the GME-based metamodeling environment and the 

AsmL environment is provided by a XML-based syntax conversion. Since the GReAT 

tool suit generates a model transformation engine from the meta-level specification of the 

model transformation, any legal domain model defined in the DSML can be directly 

transformed into a corresponding AsmL data model and can be simulated by using the 

 61



AsmL native simulator. In the following, we give explanation of our methodology and 

the involved tools. 

 

 

Figure 3-3 The semantic anchoring tool suite  

 

Abstract Syntax Modeling 

In the standard OMG four-layer metamodeling architecture [56], a metamodel is 

used to define the abstract syntax of a DSML. A metamodel defines the modeling 

concepts, their relationships, and any well-formedness rules. Metamodels may be 

constructed using one of several different metamodeling languages, including the Meta 

Object Facility (MOF) [35] or UML Class Diagrams [56]. The Object Constraint 

Language (OCL) [55] is often used to define well-formedness rules.  

A DSML’s concrete syntax determines how domain models are represented in a 

domain specific modeling environment. The visualizations are related to the elements of 

the abstract syntax through the syntactic mapping. The mechanism for accomplishing the 

syntactic mapping is usually tool-dependent, because the type of representation used 

depends on the capabilities of the modeling tool which supports the DSML.   

 62



The Generic Modeling Environment (GME) is a meta-programmable tool that 

supports the OMG four-layer metamodeling architecture. GME allows users both to 

design and to model with domain-specific modeling environments. The GME modeling 

environments may be created by using GME itself through a process of metamodeling. 

The GME metamodel is based on UML class diagrams and OCL, and has recently been 

extended [148] to handle the OMG’s MOF standard. 

 

Set-Valued Structural Semantics for Metamodels 

The meaning of a DSML metamodel is defined by the set-valued structural 

semantics: a DSML metamodel defines a set space that contains all well-formed models 

in the domain. The basic elements in a metamodel are modeling concepts defined by 

UML classes. Semantically, each modeling concept is a set containing infinite number of 

instances (modeling objects) of the modeling concept. The relationships among modeling 

concepts describe the mathematical relationships that modeling objects in a domain 

model should satisfy. Since the capability for UML class diagrams to express 

relationships among modeling concepts is limited, OCL constraints are used to specify 

additional well-formedness rules, which can also be expressed as equivalent 

mathematical relationships that modeling objects need to satisfy. Hence, a metamodel 

uses modeling concepts to construct an initial set space. Then, the relationships and well-

formedness rules are added to reset the boundary of this set space. Every well-formed 

domain model is an element in the set space defined in the DSML metamodel. 

Figure 3-4 presents a metamodel for a simple Automaton Language, which 

includes modeling concepts: State, Intial (State) and Transition (edge from a source state 

 63



to a destination state). This metamodel is used as an example to explain the set-valued 

structural semantics for metamodels. Semantically, it defines a set space which contains 

all correct Automata models. This set can be mathematical expressed as 

AM = {m ∈ State × Transition × Initial | m[2]⊆ m[1]×m[1] ∧ m[3]⊆ m[1]}, 

where State, Transition and Initial are three sets defined by the UML classes State, 

Transition and Initial respectively. 

 

 

Figure 3-4 Metamodel for a simple Automaton Language 

 

The UML class diagram itself is not able to specify the constraint: if an automaton 

model has State objects, it should have exactly one Initial object. Hence, an OCL 

constraint,  

Self.parts(State)→size > 0 implies Self.parts(Initial)→size == 1, 

is added to assert this relationship. This OCL constraint mathematically means adding an 

additional restriction to set space defined by the UML class diagram. Now, the set AM is 

redefined as  

AM = {m ∈ State × Transition × Initial |  
m[2]⊆ m[1]×m[1] ∧ m[3]⊆ m[1] ∧ m[1].size>0 ⇒ m[3].size==1}. 

 

 

 64



A Formal Framework for Specifying Semantic Units 

Semantic anchoring requires the specification of semantic units in a formal 

framework using a formal language, which is not only precise but also manipulable. The 

formal framework must be general enough to represent all three components of the      

MS: A→S specification; the abstract syntax, A, with set-valued structural semantics, the S 

semantic domain to represent the dynamic behavior and the mapping between them.  

Different DSMLs may have varied best-fit formal specification languages to 

specify their behavioral semantics. However, if a single formal specification language is 

used to specify behavioral semantics of multiple DSMLs, it becomes easier to support the 

comparison and composition of multiple DSMLs. Of course, it is also easier for language 

designers to familiarize themselves with a single formal specification language than with 

many. Hence, we decided to select a single, easy-to-understand language for DSML 

behavioral semantics specification. This language must have the following features: 

• To avoid ambiguity, it must be mathematically precise.  

• It must be sufficiently rich and flexible enough to cover a wide variety of 

application domains. 

• It must support appropriate abstraction mechanisms to increase scalability. 

Designers should not be forced to over-specify in order to avoid syntactic errors. 

Specifying the semantics of a DSML should be a process of refinement from 

higher levels of abstraction to lower, more detailed levels. 

• It should use well-known notations and be easy to read and write to avoid 

cognitive formalization overhead. 

 65



• Since we are focused on behavioral semantics, the language should be executable 

with supporting tools for analysis and verification. 

Abstract State Machines (ASM) meets all these requirements and is finally 

selected as the formal specification language for specifying semantic units. ASM, 

formerly called Evolving Algebras [84], is a general, flexible and executable modeling 

structure with well-defined semantics. General forms of behavioral semantics can be 

encoded as (and simulated by) an abstract state machine [87]. ASM is able to cover a 

wide variety of domains: sequential, parallel, and distributed systems, abstract-time and 

real-time systems, and finite- and infinite-state domains. ASM has been successfully used 

to specify the semantics of numerous languages, such as C [89], C++ [90], Java [91], 

Prolog [97] and VHDL [99]. In particular, the International Telecommunication Union 

adopted an ASM-based formal semantics definition of SDL as part of the SDL language 

standard [108].    

The Abstract State Machine Language, AsmL [147], developed by Microsoft 

Research, provides an industrial-strength language to program ASM. AsmL 

specifications look like pseudo-code operating on abstract data structures. As such, they 

are straightforward for programmers to read and understand. A set of tools is also 

provided to support the compilation, simulation, test case generation and model checking 

for AsmL specifications. It needs to be mentioned here that the plentiful supporting tools 

for AsmL specifications was an important reason for us to select AsmL over other formal 

specification languages, such as Z [73], tagged signal model [149] and Reactive Modules 

[150].  

 

 66



A Formal Framework for Model Transformation 

We use model transformation techniques as a formal approach for specifying the    

MA: A→Ai mapping between the abstract syntax of a DSML and the abstract syntax of a 

semantic unit. Based on our discussion above, the A abstract syntax of the DSML is 

defined as a metamodel using UML class diagrams and OCL, and the Ai abstract syntax 

of a semantic unit is as an Abstract Data Model expressed using AsmL data structure. 

However, specification of the MA transformation between the two abstract syntax 

specifications requires using the same language. In our tool architecture, this common 

language is the abstract syntax metamodeling language (UML class diagrams and OCL), 

since the GReAT tool suite is based on this formalism.  

This choice requires building a UML/OCL–based metamodeling interface for the 

Abstract Data Model used in the AsmL specification of a semantic unit. One possible 

solution is to define a metamodel that captures the abstract syntax of the generic AsmL 

data structures. The other solution is to construct a metamodel that captures only the 

exact syntax of the AsmL Abstract Data Model of a particular semantic unit. Each 

solution has its own advantages and disadvantages. In the first solution, different 

semantic units can share the same metamodel and the same AsmL translator can be used 

to generate the data model in the native AsmL syntax. The disadvantage is that the model 

transformation rules and the AsmL specification translator are more complicated. Figure 

3-5 shows a simplified version of the metamodel of generic AsmL data structures as it 

appears in the GME metamodeling environment. In the second solution, a new 

metamodel is needed to be constructed for different semantic units, but the 

transformation rules are simpler and more understandable. Since the metamodel 

 67



construction is relatively easier compared with the specification of model transformation 

rules, we used the second solution to construct metamodels for the AsmL Abstract Data 

Models of semantic units. We will present metamodel examples using this approach in 

Chapter 4 (Figure 4-4).  

 

 

Figure 3-5 Metamodel for a set of AsmL Data Structures 

 

The MA: A→ Ai semantic anchoring is specified by using the Unified Model 

Transformation (UMT) language of the GReAT tool suite. UMT itself is a DSML and the 

transformation MA can be specified graphically using the GME tool. The GReAT tool 

uses GME and allows users to specify model-to-model transformation algorithms as 

 68



graph transformation rules between metamodels. The transformation rules between the 

source and the target metamodels form the semantic anchoring specifications of a DSML. 

The GReAT engine can execute these transformation rules and transform any allowed 

domain model to an AsmL model that is then stored in an XML format. Then the AsmL 

specification translator parses the XML file, performs specification rewriting and 

generates data model in the native AsmL syntax. Note that UMT provides designers with 

certain modeling constructs (e.g. “any match”) to specify non-deterministic graph 

transformation algorithms. However, we can always achieve a unique semantic anchoring 

result by using only the UMT modeling constructs that do not cause the non-determinism. 

In summary, semantic anchoring methodology specifies semantics of a DSML by 

the operational semantics of selected semantic units (defined in AsmL) and by the 

transformation rules (defined in UMT). The integrated semantic anchoring tool suite 

ensures that domain models defined in a DSML are simulated according to their 

“reference semantics” by automatically transforming them into AsmL data models using 

the transformation rules.  

 

The Abstract State Machine Language 

To actually program ASMs in industrial environments, an industrial-strength 

language is needed. AsmL (ASM Language) is such a language developed in Microsoft 

Research. A detailed introduction to AsmL is beyond the scope of this thesis. Here we 

focus on those aspects of AsmL that are most important for the general understanding and 

that are actually used in this thesis. For an in-depth understanding of AsmL, readers are 

referred to [147]. 

 69



Types 

Some ASM universes give rise to types in AsmL. Other universes are represented 

as finite sets. An AsmL model may first declare an abstract type C and later on concretize 

that type into a class, a structure, a finite enumeration, or a derived type. 

type C 
class C 

AsmL has an expressive type system that allows one to define new types using 

finite sets, finite maps, finite sequences, tuples, etc., combined in arbitrary ways. For 

example, if A and B are types then the type of all maps from A to sets of elements of B is 

this. 

Map of A to set of B  

Finite sets, sequences, maps are ordinary elements. The common operations on 

sets, sequences, maps and other built-in data types are available as built-ins. For instance, 

the binary operation apply(f, a) applies a map f to an element a. The shorthand notation 

for map application is f(a). 

Derived Functions 

Derived functions play an important role in application of ASMs. A derived 

function does not appear in the vocabulary; instead it is computed on the fly at a given 

state. In AsmL, derived functions are given by methods that return values. A derived 

function f from to B can be declared as a global method. na AAA "××0

 f(x0 as A0, x1 as A1, …, xn as An) as B 

The definition of how to compute f may be given together with the declaration or 

introduction later on in the code. Alternatively, if C is a class or a structure then f can be 

declared as a method of C. Notice that n can be 0.  

 70



 class C 
    f(x0 as A0, x1 as A1, …, xn as An) as B 

A nullary derived function can be introduced as a global method that takes no 

arguments. For instance 

 f( ) as Boolean return b 

where b is evaluate in a given state. 

Constants  

A nullary function that does not change during the evolution can be declared as a 

constant. 

 i as Integer = 0 

A unary static function from a class C to D can be declared as a constant field of 

C as in the following example. 

 class C 
   id as String 

Variables  

There are two kinds of variables, global variables and local variable fields of 

classes. Semantically, fields of classes are unary functions. 

 var b as Boolean 
 class C 
   var v as Integer 

Notice that v represents a unary dynamic function from C to integers. 

Dynamic functions of ASMs are represented by variables in AsmL. A dynamic 

function v from to B of any positive arity n can be represented as a 

variable map in AsmL. 

na AAA "××0

 var v as Map of (A1, …, An) to B 

 71



With the map representation, a normal ASM update b corresponds to a 

partial update of the map variable v. A set of consistent ASM updates to v corresponds to 

a set of consistent partial map updates that are combined into a single total update of v.  

av =:)(

Classes and Dynamic Universe 

AsmL classes are special dynamic universes. Classes are initially empty. Let C 

and D be two dynamic universes such that C is a subset of D and let f be a dynamic 

function from C to integers. 

 class D 
 class C extends D 
   var f as Integer 

The following AsmL statement adds a new reserve element c to C and D, and 

initializes f(c) to the value 0. 

 let c = new C(0) 

Classes are special dynamic universe in that one cannot programmatically remove 

an element from a class. In general, classes cannot be qualified over like sets but it is 

possible to check whether a given element is type C by using the is keyword. 

 if x is C then 

In order to keep track of elements of a class C, one can introduce a variable of 

type set of C that is initially empty. 

 var Cs as Set of C = { } 

Set-valued variables can be updated partially by inserting and removing 

individual set members. Several such pair-wise non-conflicting partial updates (i.e. do 

not both insert and remove the same element) are combined into a single total update at 

the end of the step. 

 72



 let c = new C (0) 
 Cs (c) := true 

Sets can be quantified over like in the following rule where all the invocations of 

R(x), one for every element x of the set s, happen simultaneously in one atomic step. 

 forall x in s 
   R (x) 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 73



CHAPTER IV 

 

SEMANTIC ANCHORING CASE STUDY:  
FSM DOMAIN IN PTOLEMY  

 

In this chapter, the FSM domain from Ptolemy is used as a case study to explain 

the semantic anchoring methodology and to illustrate how the semantic anchoring tool 

suite is applied to design DSMLs. The detailed implementation can be downloaded from 

[151].   

 

The FSM domain in Ptolemy 

Finite State Machine (FSM) has long been used to model the control logic of 

reactive systems, a class that includes most embedded systems and many software 

systems. However, conventional FSM models lack hierarchy and thus have a key 

weakness: the complexity of the model increases dramatically as the number of states 

increases. In 1987, David Harel proposed the Statecharts model [152], which extends the 

conventional FSM by supporting the hierarchical composition of states and concurrency. 

Many Statecharts variations have since been proposed to fit particular syntactic and 

semantic requirements. In 1999, Edward Lee proposed *charts [153], which allows the 

composition of hierarchical FSM with a variety of concurrency models and is later 

implemented as the FSM domain in the Ptolemy tool.  

For simplicity, we define a DSML called the FSM Modeling Language (FML) 

which only supports Ptolemy-style hierarchical FSM. In this section, we give a short 

 74



introduction on the basic FSM and hierarchical FSM. For a detailed description of *charts 

and the FSM domain in Ptolemy, readers may refer to [154]. 

 

The Basic FSM 

An FSM is a five tuple 

),,,,( 0sS σ∆∑  

where 

• S is a finite set of states. 

• Σ is an input alphabet, consisting of a set of input symbols. 

• ∆ is an output alphabet, consisting of a set of output symbols. 

• σ is a transition function, mapping ∑×S  to ∆×S . 

•  denotes the initial state. Ss ∈0

In one reaction, a FSM maps a current state Ss∈ and an input symbol ∑∈α to a next 

state and an output symbol St ∈ ∆∈β , where ),(),( βασ ts = . Give an initial state and 

a sequence of input symbols, a trace, which is a sequence of reactions, will produce a 

sequence of states and a sequence of output symbols. 

 A state transition graph shown in Figure 4-1 is a typical visualization for a FSM. 

In the figure, each node represents a state and each edge denotes a transition. A transition 

is labeled by “guard / action “, where guard ∈ Σ and action ∈ ∆. The action without a 

source state points to the initial state s. During one reaction of the FSM, one transition is 

taken, chosen from all enabled transitions. An enabled transition is an outgoing transition 

from the current state where the guard matches the current input symbol. The execution 

 75



of the transition produces the output symbol and set the destination state of the transition 

as the current state of the FSM. 

 

 

Figure 4-1 A basic FSM 

 

A FSM is deterministic if from any state there is at most one enabled transition 

for each input symbol. A FSM is reactive if from any state there is at least one enabled 

transition for each input symbol. To ensure FSMs to be reactive but not complicate 

notations, every state is equipped with an implicit self transition (a transition whose 

source state and destination state are the same) for each input symbol that is not a guard 

of an explicit out transition. Every self transition has a default output symbol, denoted by 

ε, which has to be an element of ∆.  

 

The Hierarchical FSM 

The basic FSM is flat and sequential and has a major weakness: most practical 

systems have a very large number of transitions and states. Hierarchy is one solution to 

alleviate this problem. In a hierarchical FSM, a state is allowed to be refined into another 

FSM. Figure 4-2 shows a simple hierarchical FSM in which state t is refined. The inside 

FSM is called the slave and the outside FSM is called the master. A state with a slave 

FSM, such as state t, is called a hierarchical state. A state without a slave FSM, such as 

 76



state p, is called an atomic state. The input events for the slave FSM are a subset of the 

input events for the master FSM. The output events from the slave FSM are a subset of 

the output events from the master FSM. 

    

 

Figure 4-2 A hierarchical FSM 

 

The hierarchy semantics defines how the slave FSM reacts to the reaction of its 

master FSM. This hierarchy semantics is defined by different tools. The *chart define one 

reaction of the hierarchical FSM as follow: If the current state is an atomic state, the 

hierarchical FSM behaves just like an FSM without hierarchy. If the current state is a 

hierarchical state, first the corresponding slave FSM reacts and then the master FSM 

reacts. In this way, two transitions are taken for one reaction. 

In fact, hierarchy does not reduce the number of states in a FSM. However, it can 

significantly reduce the number of transition and make a FSM more intuitive and easy to 

understand.  

 

 

 77



The Syntax Definition for FML 

The syntax of a DSML consists of an abstract syntax A, a concrete syntax C and a 

syntactic mapping MA: C→A. In our design methodology, a GME metamodel, which 

consists of UML class diagrams, OCL constraints, and visualization information, is able 

to define the syntax of a DSML. UML class diagrams define the modeling concepts and 

their relationships. The OCL constraints specify well-formedness rules for domain 

models using the concepts defined in the UML class diagrams. The syntactic mapping 

can be implemented in GME by specifying the visualization information for each class in 

the UML class diagrams. 

 

 
Figure 4-3 A UML class diagram for the FML metamodel 

 

Figure 4-3 presents a UML class diagram for the FML metamodel as represented 

in GME. The classes in the UML class diagram define the domain modeling concepts. 

 78



For example, the State class denotes the FSM domain concept of state. Instances (State 

objects) of the State class can be created in a domain model to represent the states of a 

specific FSM. Note that the State class is hierarchical – each State object can contain an 

entire child FSM. The LocalEvent class and the ModelEvent class represent respectively 

the Ptolemy FSM concepts: local event and model event. Local events are only visible 

within a single FSM model, whereas model events are globally visible.  

 A set of OCL constraints is added to the UML class diagram to specify well-

formedness rules that the UML class diagram itself may not capable of expressing. For 

example, the constrain  

Self.parts(State)→size>0 implies 
Self.parts(State)→select(s:State⏐s.initial)→size=1, 

is attached to the State class. It specifies that if a State object has child states, exactly one 

child state should be the initial state. 

 

The Semantic Unit Specification for FML 

An appropriate semantic unit for FML should be generic enough to express the 

behavior of FML models. Since our purpose in this chapter is restricted to demonstrate 

the key steps in the semantic anchoring methodology, we do not investigate the problem 

of identifying a generic semantic unit for the hierarchical FSM. We simply define a 

semantic unit, which is rich enough for FML, instead of defining a common semantic 

model for hierarchical FSM. In the next chapter, we will have detailed discussions on 

how to specify a semantic unit for a Model of Computation. 

The semantic unit specification includes two parts: an Abstract Data Model and a 

Model Interpreter defined as Operation and Transition Rules on the data structures 

 79



defined in the Abstract Data Model. The AsmL Abstract Data Model captures the abstract 

syntax of the semantic unit data models, and the Operation and Transition Rules specify 

the behavioral semantics of the semantic unit. Whenever we have a domain model in 

AsmL (which is a specific instance of the Abstract Data Model), this domain model and 

the semantic unit specification compose an abstract state machine, which gives the model 

semantics. The AsmL tools can simulate its behavior, perform the test case generation or 

perform model checking. Since the size of the full semantic unit specification is 

substantial, we only show the main part of the specification together with some short 

explanations. 

 

AsmL Abstract Data Model for FML 

In this step, we specify an Abstract Data Model using AsmL data structures, 

which will correspond to the semantically meaningful modeling constructs in FML. As 

we mentioned above, the Abstract Data Model does not need to capture every details of 

the FML modeling constructs, since some of them are only semantically-redundant 

syntactic sugar. The semantic anchoring (i.e. the mapping between the FML metamodel 

and the Abstract Data Model) will map the FML abstract syntax onto the AsmL data 

structures that we specify below.  

 80



interface Event 
 
structure ModelEvent implements Event 
 
structure LocalEvent implements Event 
 
class FSM 
  var outputEvents as Seq of ModelEvent  
  var localEvents  as Set of LocalEvent   
  var initialState as State 
  var children     as Set of State 

Event is defined as an AsmL abstract data type interface. ModelEvent and 

LocalEvent are AsmL structures. They implement the Event interface and may consist of 

one or more fields via the AsmL case construct. These fields are model-dependent 

specializations of the semantic unit, which give meaning to different types of events. In 

AsmL, classes may contain instance variables and are the only way to share memory. 

Structures may contain fields and do not share memory. The AsmL class FSM captures 

the top-level tuple structure of the hierarchical state machine. The field outputEvents is an 

AsmL sequence recording the chronologically-ordered model events generated by the 

FSM. If a generated event is a local event, its generation order does not need to be 

recorded. So, it will be recorded in the field localEvents which is an unordered AsmL set. 

The field initialState records the start state of a machine. The children field is an AsmL 

set that records all state objects which are the top-level children of the machine. 

class State 
  var active         as Boolean = false  
  var initial        as Boolean 
  var initialState   as State? 
  var master         as State? 
  var slaves         as Set of State 
  var outTransitions as Set of Transition 

State is defined as the first-class type. Note that the variable field initalState of the 

State class records the start state of any child machine contained within a given state 

 81



object. Initially, a state object is inactive. When the active filed is set to true, the state 

object becomes the current state in its parent machine. The initial filed denotes whether 

the state object is an initial state. The initalState filed will be undefined whenever a state 

has no child states. This possibility forces us to add the ? modifier to express that the 

value of the field may be either a State instance or the AsmL null value. For the similar 

reason, we add the ? modifier after the master field that refers to the parent state. The 

slaves filed is a set that recodes all the child states within the state objects. If this state is 

an atomic state, this set will be empty. The outTransitions filed records all transitions out 

from the state object. 

class Transition 
  var guard          as Boolean 
  var preemptive     as Boolean 
  var triggerEvent   as Event? 
  var outputEvent    as Event? 
  var src            as State 
  var dst            as State 

The AsmL class Transition captures the structure of the corresponding modeling 

concept Transition in FML.  The guard field records the Boolean value of the guard of 

the transition object. The preemptive field indicated whether the transition object is a 

preemptive or non-preemptive transition. The triggerEvent and outputEvent fields record 

the input event and output event for the transition object respectively. The src and dst 

fields respectively record the source state object and destination state object of the 

transition object.    

 

 

 

 82



Behavioral Semantics for FML 

We are now ready to specify the behavioral semantics for FML as Operation and 

Transition rules, which manipulate the AsmL data structures defined above. The 

specifications start from the top-level machine, and proceeds toward the lower levels. 

Top-level FSM Operations 

A FSM instance waits for input events. Whenever an allowed input event arrives, 

the FSM instance reacts in a well-defined manner by updating its data fields and 

activating enabled transitions. To avoid non-determinism, the Ptolemy FSM domain 

defined its own priority policy for transitions, which supports both the hierarchical 

priority concept and preemptive interrupts. The operational rule fsmReact specifies this 

reaction step-by-step. Note that the AsmL keyword step introduces the next atomic step 

of the abstract state machine in sequence. The operations specified within a given step all 

occur simultaneously. 

fsmReact (fsm as FSM, e as ModelEvent) = 
  step 
    let s as State = getCurrentState (fsm, e) 
  step 
    let t as Transition? = getPreemptiveTrasition (fsm, s, e) 
  step 
    if t <> null then  
      doTransition (fsm, s, t) 
    else  
      step 
        if isHierarchicalState (s) then  

    invokeSlaves (fsm, s, e) 
      step 
        let npt as Transition? = getNonpreemptiveTranstion (fsm, s, e) 
      step 
        if npt <> null then  
          doTransition (fsm, s, npt) 

First, the rule determines the current state, which might be an initial state. Next, it 

checks for enabled preemptive transitions from the current state. If one exists, then the 

 83



machine will take this transition and end the reaction. If a preemptive transition is taken, 

the slaves of the current state will not be invoked. If there is no enabled preemptive 

transition, the rule will first determine if the current state has any child states. If it does, 

the rule will invoke the slaves (child states) of the current state. Next, it checks for en-

abled non-preemptive transitions from the current state. If one exists, then the rule will 

take this transition and end this reaction. Otherwise, it will do nothing and end this 

reaction. 

Invoke Slaves 

The operational rule invokeSlaves describes the operations required to invoke the 

child machine in a hierarchical state (the master state). The AsmL construct require is 

used here to assert that this state should be a hierarchical state, and it should have a start 

state in its child machine. The rule first determines the current slave in the child machine. 

If there is an active slave, this active slave is the current slave. Otherwise, the start slave 

is the current slave. The rest of this operational rule is the same as the fsmReact rule. The 

similarity between the reactions of the top-level state machine and any child machine 

facilitates the Ptolemy style composition of different Models of Computations. 

 84



function invokeSlaves (fsm as FSM, s as State, e as Event) = 
  require isHierarchicalState (s) and s.initialState <> null  
  step 
    let cs as State = getCurrentSlave (fsm, s, e) 
  step 
    let t as Transition? = getPreemptiveTrasition (fsm, cs, e) 
  step 
    if t <> null then  
      doTransition (fsm, ids, pt) 
    else  
      step 
        if isHierarchicalState (ids) then  
          invokeSlaves (fsm, ids, e) 
      step 
        let npt as Transition? = getNonpreemptiveTranstion (fsm,ids,e) 
      step 
        if npt <> null then  
          doTransition (fsm, ids, npt) 

Do Transition 

The operational rule doTransition specifies the steps through which a machine 

takes an enabled transition. The assertion for this rule is that the source state of the 

transition must be the current active state. First, exit the source state of the transition. 

Next, if the current transition mandates an output event, perform an emit event operation. 

Finally, make the destination state of the transition an active state. 

doTransition (fsm as FSM, s as State, t as Transition) = 
  require s.active  
  step 
    exitState (s) 
  step 
    if t.outputEvent <> null then 
      emitEvent (fsm, t.outputEvent) 
  step  
    activateState (fsm, t.dst) 

Activate State 

The operational rule activateState describes the operations required to activate a 

state. The rule first sets the active field of the state. Then, it determines whether the state 

is a hierarchical state. If it is not, then the rule attempts to find an enabled instantaneous 

 85



transition out of the current state. In Ptolemy, an instantaneous transition is defined as 

any transition that is outgoing from an atomic state and lacks a trigger event. An 

instantaneous transition must be taken immediately after entering its source state. If such 

a transition exists, the rule forces this transition and returns. 

activateState (fsm as FSM, s as State) = 
  step 
    s.active := true  
  step 
    if isAtomicState (s) then 
      step  
        let t as Transition? = getInstantaneousTransition (s) 
      step 
        if t <> null then 
          doTransition (fsm, s, t) 

Get Instantaneous Transition 

The operational rule getInstantaneousTransition finds all the enabled 

instantaneous transitions from an atomic state. The AsmL construct require is used here 

to assert that this state should be an atomic state. Since the Ptolemy FSM domain does 

not support non-determinism, the rule will report a nondeterministic error when more 

than one transition is enabled. If exactly one is enabled, return the enabled instantaneous 

transition. Otherwise, return null. 

getInstantaneousTransition (s as State) as Transition? = 
  require isAtomicState (s) 
  step 
    let ts = {t | t in s.outTransitions where t.triggerEvent = null  
      and t.guard } 
  step 
    if Size (ts) > 1 then 
      error "non-deterministic error" 
  step 
    choose t in ts 
      return t 
    ifnone  
      return null  

 

 86



Semantic Anchoring Specification 

Having the abstract syntax of FML and an appropriate semantic unit specified, we 

are now ready to describe the semantic anchoring specifications for FML. We use UMT, 

a language supported by the GReAT tool, to specify the model transformation rules 

between the metamodel of FML (Figure 3-3) and the metamodel for the semantic unit 

shown in Figure 4-4. As we have discussed in Chapter 3, there are two approaches in 

defining metamodels for semantic units. One solution is to define a UML/OCL-based 

metamodel that captures the abstract syntax of the generic AsmL data structures. The 

other solution is to construct a metamodel that captures only the exact syntax of the 

AsmL Abstract Data Model of a particular semantic unit. We have discussed the 

advantages and disadvantages of both approaches. The second approach is applied in this 

example. Figure 4-4 presents a metamodel capturing the exact syntax of the FML 

Abstract Data Model.  

The semantic anchoring specification in UMT consists of a sequence of model 

transformation rules. Each rule is finally expressed using pattern graphs. A pattern graph 

is defined using associated instances of the modeling constructs defined in the source and 

destination metamodels. Objects in a pattern graph can play three different roles as 

follows:  

1. bind: Match object(s) in the graph. 

2. delete: Match objects(s) in the graph, then, remove the matched object(s) from the 

graph. 

3. new: Create new objects(s) provided all of the objects marked Bind or Delete in 

the pattern graph match successfully. 

 87



 

Figure 4-4 Metamodel capturing AsmL Abstract Data Structures for FML 

 

The execution of a model transformation rule involves matching each of its 

constituent pattern objects having the roles bind or delete with objects in the input and 

output domain model. If the pattern matching is successful, each combination of 

matching objects from the domain models that correspond to the pattern objects marked 

delete are deleted and each new domain objects that corresponds to the pattern objects 

marked new are created.  

We give an overview of the model transformation algorithm with a short 

explanation for selected role-blocks below. The transformation rule-set consists of the 

following steps: 

1. Start by locating the top-level state machine in the input FML model; create an 

AsmL FSM object and set its attribute values appropriately.  

 88



2. Handle Events: Match the model event and local event definitions in the input 

model and create the corresponding variants through the Case construct in Event.   

3. Handle States: Navigate through the FML FSM object; map its child State objects 

into instances of AsmL State class, and set their attribute values appropriately. 

Since the State in FML has a hierarchical structure, the transformation algorithm 

needs to include a loop to navigate the hierarchy of State objects. 

4. Handle Transition: Navigate the hierarchy of the input model; create an AsmL 

Transition object for each matched FML Transition object and set its attribute 

values appropriately. 

 

 

Figure 4-5 Top-level model transformation rule for  
the FML semantic anchoring specifications 

 

Figure 4-5 shows the top-level transformation rule that consists of a sequence of 

sub-rules. These sub-rules are linked together through ports within the rule boxes. The 

connections represent the sequential flow of domain objects to and from rules. The ports 

FSMIn, and AsmLIn are input ports, while ports FSMOut and AsmLOut are output ports. 

In the top-level rule, FSMIn and AsmLIn are bound to the top-level state machine in the 

 89



FSM model that is to be transformed, and the root object (a singleton instance of 

AsmLADS) in the semantic data model that is to be generated, respectively. The four key 

steps in the transformation algorithm, as described above, are corresponding to the four 

sub-rules contained in the top level rule. 

The figure also shows a hierarchy, i.e., a sub-rule may be further decomposed into 

a sequence of sub-rules. The CreateStateObjects rule outlines a graphical algorithm 

which navigates the hierarchical structure of a state machine. It starts from the root state, 

does the bread-first navigation to visit all child state objects and creates corresponding 

AsmL State objects. 

 

 

Figure 4-6 Model Transformation Rule: SetAttributes 

 

Figure 4-6 presents the SetAttributes rule. This rule sets the attribute values for the 

newly created AsmL State object. First, the sub-rule SetInitialState checks whether the 

current FML State object is a hierarchical state and has a start state. If it has a start state, 

set the value of the attribute initialState to this start state. Otherwise set the value to null.  

Then, the sub-rule SetSlaves searches for all hierarchically-contained child states in the 

current state and adds them as members into the attribute Slave whose type is a set. 

Finally, the transitions out from the current state are added as members to the attribute 

OutTransitions by the sub-rule SetOutTransitions. 

 90



 

 

Figure 4-7 Model Transition Rule: SetInitialState 

 

The final contents of model transformation rules are pattern graphs that are 

specified in UML class diagrams. Figure 4-7 shows a part of the SetInitialState rule, 

which is a pattern graph. This rule features a GReAT Guard code block and a GReAT 

AttributeMapping code block. This rule is executed only if the graph elements match and 

the Guard condition evaluates to true. The AttributeMapping block includes code for 

reading and writing object attributes. In Figure 4-7, the Guard condition claims that the 

ChildState object should be an initial state.  

 

 91



 

Figure 4-8 Model Transition Rule: CreateChildStateObject 

 

The CreateChildStateObejct rule, shown in Figure 4-8, creates a new AsmL State 

object when a FML child State object is matched. It also enables the hierarchy 

navigation. Through a loop specified in the CreateStateObjects rule (Figure 4-5), the 

child State object output by the Child port will come back as an input object to the Parent 

port. 

 

 92



start stop reset

zero one

start

reset
stop

zero

one

one

zero

Initial

Initial

start stop reset

zero one

start

reset
stop

zero

one

one

zero

Initial

Initial

 

Figure 4-9 A hierarchical FSM model for ComputerStatus 

 

In the semantic anchoring process, the GReAT engine takes a legal FML domain 

model, executes the model transformation rules and generates an AsmL data model. As 

an example, we design a simple hierarchical FSM model in the GME modeling 

environment (Figure 4-9), which simulates the status of a computer. An XML file storing 

the AsmL data model is generated through the semantic anchoring process. We 

developed an AsmL specification translator, which can parse this XML file and generate 

the data model in native AsmL syntax as shown in Figure 4-10. The newly created AsmL 

data model plus the previously-defined AsmL semantic domain specifications compose 

an abstract state machine that gives the semantics to the FSM ComputerStatus model. 

 93



With these specifications, the AsmL tools can simulate the behavior, do the test case 

generation and model checks. For more information about the AsmL supported analysis, 

readers are referred to [147]. 

interface  Event 
structure ModelEvent implements Event 
  case start 
  case stop 
  case reset 
structure LocalEvent implements Event 
  case zero 
  case one 
var ChecksumMaching = new FSM ([], {}, OFF, {ON, OFF}) 
var OFF = new State (false, true, null, null, {}, {T1}) 
var ON  = new State (false, false, ZERO, null, {ONE, ZERO}, {T3, T2}) 
var ZERO= new State (false, true, null, ON, {}, {T13, T11}) 
var ONE = new State (false, false, null, ON, {}, {T14, T12}) 
var T1  = new Transition (true, false, ModelEvent.start, null, OFF, ON) 
var T2  = new Transition (true, false, ModelEvent.stop, null, ON, OFF) 
var T3  = new Transition (true, false, ModelEvent.reset, null, ON, ON) 
var T11 = new Transition (true, false, LocalEvent.one, null, ZERO, ONE) 
var T12 = new Transition (true, false, LocalEvent.one, null, ONE, ZERO) 
var T13 = new Transition (true, false,LocalEvent.zero, null,ZERO, ZERO) 
var T14 = new Transition (true, false, LocalEvent.zero, null, ONE, ONE) 

Figure 4-10: Part of the AsmL data model generated from the ComputerStatus model 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 94



CHAPTER V 

 

A SEMANTIC UNIT FOR  
TIMED AUTOMATA BASED MODELING LANGUAGES  

 

A key issue in the semantic anchoring methodology is the specification of 

semantic units. This chapter proposes a semantic unit, which captures the Timed 

Automata behavior, and uses this as an example to illustrate the whole process of the 

semantic unit specification. The precise semantics of a wide range of Timed Automata 

based modeling languages (TAMLs) can then be defined by specifying semantic 

anchoring rules between a domain-specific TAML and the Timed Automata Semantic 

Unit.  

 

Semantic Units 

Semantic units are designed to capture the operational semantics of a finite set of 

basic Models of Computations (MoCs), such as Finite State Machine, Timed Automata, 

Discrete Event System and Synchronous Dataflow. They sever as reusable semantic 

models in the semantic anchoring infrastructure so that the semantics of an application 

DSML can be defined by specifying semantic anchoring rules to appropriated semantic 

units.  

By using the semantic anchoring tool suite, a semantic unit is specified in AsmL 

specification including two parts: an Abstract Data Model and a Model Interpreter 

defined as Operation and Transition Rules on the abstract data structures. In order to 

integrate the semantic unit specification with the formal metamodeling framework, which 

 95



supports DSML syntax design, a metamodel is designed to capture the Abstract Data 

Model of the semantic unit. This metamodel can be thought as a metamodeling interface 

for the semantic unit to support the specification of semantic anchoring rules. 

To successfully define a semantic unit for a MoC, the most important task is to 

understand what the semantics of the MoC is. A MoC may have an evolution history and 

many modeling language variants. Typically, a MoC is firstly proposed with a 

mathematical definition to address a certain behavioral pattern. Then, it is implemented 

by many tool-defined modeling languages which may extend the basic semantics with 

some tool-defined semantic concepts. As the later evolution of these modeling languages, 

the semantics may be further changed or new semantic concepts may be added.  

Modeling language variants enrich the application and also contribute the further 

development of a MoC. However, they make the precise semantics definition of a MoC 

difficult.  

If a semantic unit only covers the basic semantics of a MoC, many tool-defined 

semantic concepts that are very useful and have been widely accepted by the related 

communities may not be captured by the semantic unit. On the contrary, if the semantic 

unit contains all tool-defined semantic concepts, the semantic unit may be too 

complicated and some properties (such as analyzability and verifiability) of a MoC may 

be impaired. It is necessary to do a deep analysis on different modeling language variants 

of a MoC and make clear the essential semantic concepts needed to be captured in the 

semantic unit. 

       

 

 96



Timed Automata  

Timed Automata were firstly proposed by Rajeev Alur and David L. Dill [155] 

for modeling and verification of real-time systems. A timed automaton is a finite-state 

automaton extended with real-value variables. Such an automaton may be considered as 

an abstract model of a timed system. The variables model the logical clocks in the 

system, and are initialized with zero when the system is started, and then increase 

synchronously in the same rate. Clock constraints (i.e. guards on transitions) are used to 

restrict the behavior of the automaton. A transition can be taken when the evaluation of 

clock variables satisfy the guard. Clock variables can be reset to zero when a transition is 

taken.  

 

 

Figure 5-1 A timed automaton example 

 

A timed automaton is typically represented as a graph containing a finite set of 

nodes or locations and a finite set of labeled edges. Figure 5-1 shows a simple timed 

automaton example. The timing behavior of the automaton is controlled by the clock 

variable x. The automaton starts from the start location where x is zero initially. It may 

leave start when x equals 10. If it goes from start to work, x will be reset to zero. Then, it 

needs stay at work unless x reach 10. When x is between 10 and 20, the automaton may 

go from work to end and reset the clock x, etc.  

 97



Timed Bϋchi Automata  

A guard on an edge of an automaton is only an enabling condition of the 

transition represented by the edge. However, it can not force the transition to be taken. In 

other words, an automaton can stay forever in any location idly. In the initial work by 

Alur and Dill [155], this problem is solved by introducing Bϋchi-acceptance condition. A 

subset of the locations in a automaton are marked as accepting, and only those execution 

passing through an accepting location infinitely often are considered valid behaviors of 

an automaton. As the example is Figure 5-1, if the end location is marked as accepting, 

all legal execution of the automaton must visit end infinitely many times. This imposes 

implicit conditions on start and work. The start location must be left when x equals 10, 

otherwise, the automaton will get stuck in start and never be able to enter the location 

end. Likewise, the automaton must leave the work location when x is at most 20 to be 

able to enter the end location. 

 

 

Figure 5-2 A timed safety automaton with location invariants 

 

 

Timed Safety Automata 

In order to force a transition to be taken, timed safety automata [159] introduce a 

more intuitive notion of progress. Instead of accepting conditions, in timed safety 

 98



automata, location may be put local timing constraints called location variants. An 

automaton may remain in a location as long as the clocks values satisfy the invariant 

condition of the location. For instance, Figure 5-2 presents a timed safety automaton 

which is equivalent to the timed automaton in Figure 5-1 with the end location marked as 

an accepting location. The location invariants claim that the automaton must leave the 

start and end location when x is at most 10, and must leave the work location when x is at 

most 20.     

 

Timed Automata Semantic Unit 

Since Timed Automata were proposed, several analysis tools for real time 

systems, such as UPPAAL [156], IF toolset [157] and Kronos [158], were developed based 

on this modeling approach. They use TAMLs that have tool dependent differences in 

their approaches to express communication among concurrent components and action 

(transition) priorities. The similarities and differences in the syntax and semantics of 

varied TAMLs may confuse designers and lead to mistakes. There are plenty of examples 

for language constructs that may appear similar while they express essentially different 

semantics and language constructs that appear different but have essentially the same 

semantics. 

In this section, we propose a Timed Automata Semantic Unit (TASU) with a 

support for action priorities as a common semantic model for TAMLs. Semantics of 

varied TAMLs can be defined by specifying the transformation rules between them and 

the TASU. The explicit representation of transformation rules, the formal operational 

semantics specification of TASU and the behavioral simulation support allow designers 

 99



to understand and compare languages with different timed automata semantics and help 

the integration of different analysis tools in design flows. Also, the TASU can work as a 

semantic reference model for DSMLs with timed automata related behavioral aspects. 

  

Overview of TASU 

The initial timed automata model assumes a strong synchrony assumption is 

adopted for time progress, which means that all clock variables progress at the same rate. 

Transitions are executed instantly and time progresses only when an automaton is in a 

location. Constraints on clock variables can be used as conditions for enabling transitions. 

Transitions can be associated with actions that reset clock variables. 

In order to facilitate modeling concurrent real-time systems, many TAMLs (e.g. 

UPPAAL and IF) extend the original timed automata with parallel composition to specify 

networks of automata. The supported communication mechanisms vary across tools. In 

general, such communication can be achieved through shared variables, synchronous 

signaling, or asynchronous message passing. The asynchronous form of communication 

can be reduced to a synchronous communication plus a buffering mechanism. To keep 

balance between the expressiveness and complexity, our proposed semantic unit supports 

communication only through shared variables and synchronization. If needed, 

asynchronous communication semantics can be specified via mapping to a composition 

of synchronous communication and buffering using model transformation. 

Transition priority is a very useful concept for reducing non-determinism in 

models and for modeling interrupts or preemption in real-time systems. Also, dynamic 

priorities match well with practical implementations of real-time systems. Priority 

 100



information is implicitly expressed in certain language constructs of a TAML. For 

instance, an urgent location in UPPAAL indicates that transitions out from this location 

have a higher priority than that of the time progress transition. The priority of a transition 

is, in general, time dependent. For example, a delayable transition in IF semantically 

implies that the priority of this transition jumps to a higher value than that of time 

progress when the enabling condition of this transition is about to be violated by time 

progress. 

Although priority hierarchies of TAMLs are tool-dependent, they have many 

common features. In order to compare and integrate models from varied TAMLs, we 

need to establish a generic priority scheme that is capable of capturing all these priority 

hierarchies. A fundamental common feature is that all these tool-defined priority schemes 

are built with respect to the time progress priority, which enables modeling urgency of 

actions in real-time systems. An urgent action in real-time systems is modeled as a 

transition having higher priority than that of time progress. In some TAMLs, urgent 

transitions are additionally divided into two groups: normal urgent transitions and 

critically urgent transitions. A critically urgent transition prohibits the execution of any 

other transitions including time progress and is modeled by an atomic action. An atomic 

action is composed of a sequence of sub-actions and no interrupts is allowed during the 

execution of these sub-actions.  

In TASU, the priority hierarchy has three layers: the bottom priority (the time 

progress priority), the top priority, and the urgent priority, which has a series of urgency 

degrees. No transition can have priority lower than the time progress priority, since such 

a transition will always be blocked by time progress and have no chance to be executed. 

 101



The top priority enables modeling of atomic actions. All transitions in urgent priority 

block time progress, and their relative priorities are determined by their urgency degrees. 

We will show that this priority hierarchy is capable of expressing varied priority 

hierarchies defined by TAMLs. 

In the proposed TASU, a real-time system contains a set of concurrent 

components. Each component is modeled by a timed automaton. Components 

communicate among each other through shared variables and synchronization. The 

priority of an action can be dynamically updated with respect to time progress. Enabled 

actions with higher priorities will block actions with lower priorities. Non-determinism is 

supported by allowing multiple enabled actions with the same priority. Based on the 

timed automata model defined in [150], we present an abstract mathematical definition 

for a timed automaton in the semantic unit. 

Given a finite set of variables V, a valuation for the variables is a function ν ∈ ℜV 

that assigns a value for each variable from the domain of real numbers. If |V| = n the 

valuation can be represented as the vector nv ℜ∈ . We denote the valuation for an element 

 in V as vNi∈ i. A linear expression )(vφ  over V can be expressed as  where 

 (  denotes a set containing all integers) and

∑ iiva

Ζ∈ia Ζ Vvi ∈ . A linear constraint γ is of the 

form )(vφ  op c where )(vφ  is a linear expression over V, op ∈ {=, <, ≤, >, ≥} and c ∈ Ζ. 

We denote the set of linear constraints over the set of variables V as LC(V). A linear 

assignment over V is defined as cv +A , where A is an nn×  matrix with coefficients 

from Z and c  is a vector of nZ . We denotes a set of linear assignment over the set of 

 102



variable V as LA(V). The set of simple assignment SA(V) corresponding to the case when 

all entries of A are 0 and 0≥c . 

A timed automaton is defined over a set C of resetable clocks and a set V of 

integer variables. A timed automaton in the semantic unit is a 7-tuple 

iElLVC Pr,,,,,, 0Σ  where: 

• C is a finite set of n clock variables, 

• V is a finite set of integer-valued variables, 

• ∑ is a finite set of symbols defining the system events, 

• L is a nonempty set of locations, 

•  is the initial location, Ll ∈0

• LVCVCLE ×∪×∪×∑×⊆ )(LA)(SA)(LC  is a set of edges. An edge 

ll ′,,,,, γβϕα  represents a transition from location l to location l’ on symbol 

α. ϕ is a guard over clock and integer variables. β represents simple assignment 

for clock variables and γ is linear assignment over integer variables, 

•  is a map that assigns to each edge its priority, which is a 

non-negative integer value, with respect to a give clock evaluation , so 

that  is the priority of edge e at clock value v.  

+→× NREi n:Pr

nRv∈

),(Pr vei

A state of the timed automaton is defined as , where , denoting the 

current location of the automaton, and c, v are valuation of the clock C and integer V 

variables, respectively. The set of all state is denoted S. The  step relation denotes 

a jump transition which is a discrete and instantaneous transition that changes the 

location of the automaton as well as the assignment of the integer variables and clocks. 

),,( vcl Ll∈

⎯→⎯α

 103



The  step relation denotes a time transition that advances all clock variables at the 

same value. A time transition may affect the priority of edges through the function Pri. 

The priority of a time transition is assumed a constant value, zero. 

⎯→⎯t

The semantics of a timed automaton model iElLVCM Pr,,,,,, 0Σ=  in TASU 

is given as a transition system ),,( 0 →= sSTM  where S is the set of states, s0 is the initial 

state where c0 = 0, and the step relation → is the union of the jump transition: 

•  iff ),,(),,( vclvcl ′′′⎯→⎯α Elle ∈=∃ ',,,,, γβϕα  such that 

o )()(),( vvcctruevc γβϕ =′∧=′∧= , and 

o Elle ∈′′′′′=′∀ ,,,,, γβϕα , ),(Pr),(Pr),( ceiceitruevc ′≥⇒=′ϕ .   

and time transition: 

•  iff  ),,(),,( vtclvcl t +⎯→⎯

        Elle ∈=∀ ',,,,, γβϕα  and tt ≤≤∀ '0 , 0),(Pr),( =′+⇒=′+ tceitruevtcϕ . 

A run of the timed automata is a finite or infinite sequence of alternating jump and time 

transition of TM : . "4
2

3
2

2
1

1
1

0 sssss tt ⎯→⎯⎯→⎯⎯→⎯⎯→⎯= ααρ

The operational semantics for TASU is specified as a Control State ASM. The 

specification includes two parts: an Abstract Data Model, Operations and Transition 

Rules. In the ASM formulation, the Abstract Data Model captures the abstract syntax of 

TASU. The Operations and Transition Rules form a model interpreter that specifies the 

operational semantics on the data structure defined in the Abstract Data Model. An 

instance of the Abstract Data Model (we will refer to it as Date Model) and the 

operational semantics specification form an ASM that specifies the model semantics. 

 104



Here, we present only a part of the specification together with short explanations. The full 

TASU specification can be downloaded from [151]. 

 

Abstract Data Model 

We choose to define the Abstract Data Model for TASU by using AsmL classes. 

The Clock defines a type for clock variables. The variable field time represents the logical 

time of a clock variable. All clock variables progress at the same rate. For the purpose of 

model simulation, we introduce an AsmL constant CLOCKUNIT to set the granularity of 

time progress. A system might define a set of global clocks and each component might 

define its own local clocks. The globalClocks is an AsmL set containing all global clocks. 

Note that the set globalClocks is empty in the specification of the Abstract Data Model. 

Elements of this set are model-dependent and will be specified in instances of the 

Abstract Data Model (in the Data Models). When the Boolean variable TimeBlocked is 

set to true, the system explicitly blocks time progress. 

class Clock  
  var time        as Double = 0 
 
const CLOCKUNIT   as Double 
 
var globalClocks  as Set of Clock = {} 
 
var TimeBlocked   as Boolean =  false 

Location is defined as a first-class type. The Boolean field initial indicates 

whether this location is the initial location of an automaton. The field outTransitions is a 

set that contains all transition objects that are out from this location. 

 105



class Location 
  const id             as String  
  const initial        as Boolean 
  const outTransitions as Set of Transition   

Transition is also defined as a first-class type. The constant fields blockTime and 

setPrior in Transition indicate whether this transition is a special transition to block time 

progress or to set the priority of the owner automaton to the top priority. The blockTime 

transition is used by an automaton to explicitly block time progress, while the setPrior 

transition is employed by an automaton to explicitly claim that it is in the process of 

executing an atomic action, and enabled transitions in all other automata as well as time 

progress should be prohibited. Note: these two special transition types are adopted for 

software implementation convenience. They are also represented as edges whose source 

and destination locations are the same. (See further explanation in the operational 

semantics specification.) A transition can participate in a synchronous communication in 

one of two roles: SEND and RECEIVE, which are defined by the enumeration type 

SYNROLE. 

class Transition 
  const id             as String 
  const blockTime      as Boolean 
  const setPrior       as Boolean 
  const dstLocationID  as String 
 
enum SYNROLE 
  SEND 
  RECEIVE 

The class SignalChannel captures the synchronous communication among 

automata. The variable field senders and receivers record a set of signal senders and 

receivers, respectively. The Boolean field broadcast indicates whether the signal channel 

is a broadcasting channel. In a broadcasting channel, a sender publishes events without 

 106



waiting for receivers and the event will be broadcasted to all receivers that are waiting for 

it. The event will be lost, if there are no receivers that are waiting for it. A non-

broadcasting channel is enabled to fire when there are at least one sender and one 

receiver that are waiting for synchronization. Only one sender and one receiver can take 

part in a synchronization communication and a synchronization pair is chosen non-

deterministically when several combinations are enabled. 

class SignalChannel 
  const id        as String 
  const broadcast as Boolean 
  var senders     as Set of (TimedAutomaton, Transition) = {} 
  var receivers   as Set of (TimedAutomaton, Transition) = {} 

The abstract class TimedAutomaton defines the base structure for a timed 

automaton. The variable field currentLocation refers to the current location of an 

automaton. Initially, it refers to the AsmL null value. The AsmL construct Location? 

indicates that the value of this field may refer to either a Location instance or to the null 

value. When an automaton is in the top priority layer, its prior field is set to true. 

The TimedAutomaton class also holds a set of read-only abstract properties and 

abstract methods. These abstract properties define an abstract data structure that captures 

the tuple structure of an automaton. The abstract property locations and transitions are 

sets that contain all instances of Location and Transition in an automaton respectively. 

The abstract property localClocks is set of all local clock variables defined in an 

automaton. The abstract property syns is a map whose domain consists of transitions that 

require synchronization. If t is a transition in this domain, then syns(t) returns a 2-tuple 

whose first element refers to the corresponding signal channel and whose second element 

indicates whether t acts as a sender or a receiver. The abstract method TimeGuard(t) and 

 107



DataGuard(t) return a Boolean-valued expression of time conditions and data conditions 

that are attached to the transition t, respectively. The abstract method DoAction(t) 

executes actions attached to a transition t. The abstract method Priority(t) returns the 

priority of a transition. Since the priority value of a transition might be dynamically 

updated, Priority(t) returns either an integer value or an integer-valued expression. All 

these abstract members of TimedAutomaton are model-dependent specifications for the 

semantic unit and will be further specified by a concrete automaton template. 

abstract class TimedAutomaton 
  const id            as String 
  var currentLocation as Location? = null 
  var prior           as Boolean   = false 
 
  abstract property locations   as Set of Location 
    get 
 
  abstract property transitions as Set of Transition 
    get  
 
  abstract property localClocks as Set of Clock 
    get  
 
  abstract property syns as Map of <Transition,(SignalChannel,SYNROLE)> 
    get    
 
  abstract TimeGuard (t as Transition) as Boolean 
 
  abstract DataGuard (t as Transition) as Boolean 
 
  abstract DoAction  (t as Transition) 
 
  abstract Priority  (t as Transition) as Integer 

The AsmL class RTSystem captures the top-level structure of a real-time system 

that is modeled by timed automata. The components field holds concurrent components 

contained in the system. Each component is an instance of a concrete timed automaton 

template. These components communicate through a set of signal channels, which are 

recorded in the field signalChannels. 

 108



class RTSystem 
  const components     as Set of TimedAutomaton  
  const signalChannels as Set of SignalChannel 

 

Operational Semantics 

We are now ready to specify the operational semantics for TASU as AsmL 

Operations and Transition Rules, which interpret the Abstract Data Model defined above. 

The specifications start from the top-level system, and proceed toward the lower levels. 

class RTSystem   
  Run() 
    step Initialize() 
    step until fixpoint 
      step  
        RegisterSignalChannels() 
      step  
        let T as (TimedAutomaton?,Transition?) = GetNextTransition() 
      step  
        if TimeBlocked then  
          if T.Second = null then  
            error("The system is blocked.") 
          else  
            T.First.DoTransition(t.Second) 
        else 
          if T.Second = null then  
            TimeProgress() 
          else 
            if T.First.GetPriority()=0 and RandomDecisionIsTrue() then 
              TimeProgress() 
            else                   
              T.First.DoTransition(t.Second) 

An active RTSystem instance executes enabled transitions or advances time. The 

operational rule Run of RTSystem specifies the top-level system operations as a set of 

updates. (Note that the AsmL keyword step introduces a set of operations that updates the 

ASM states. All operations within a single step occur simultaneously.) The rule Run first 

initializes all components in the system, which makes the field currentLocation of each 

component refer to its initial location. The next step is executed until the operations 

 109



inside the step causes no state changes in the ASM (fixpoint). The stopping condition for 

an AsmL fixpoint loop is met if no non-trivial updates have been made in the step. 

Updates that occur to variables declared in ASMs that nested inside this loop are not 

considered. An update is considered non-trivial if the new value is different from the old 

value. 

Within the loop, the rule first registers all current transitions that are enabled to 

participate in synchronization to the corresponding signal channels. A transition is called 

current if it is a transition from the current location of an automaton. Then the signal 

channels are able to judge whether they are enabled to trigger communication among 

components. Next, the rule checks all current transitions and selects an enabled one that 

has the highest priority as a candidate for the next execution. If such enabled transitions 

exist, the selected candidate is recorded as a 2-tuple whose first element refers a 

component and whose second element refers an enabled transition in that component. 

Otherwise, the second element of the 2-tuple must be a null value. Afterwards, the rule 

checks a set of current system properties and makes decisions on whether to execute the 

candidate transition or to advance time. There are four possible cases: 

1. If time progress is explicitly blocked and the system has no enabled 

transitions, the rule returns an error message that indicates the system will be 

blocked indefinitely. 

2. If time progress is explicitly blocked and the system has a candidate 

transition, this candidate transition is executed. 

3. If time progress is allowed and the system has no enabled transitions, the rule 

forces time progress. 

 110



4. If time progress is allowed and the system has a candidate transition, the rule 

checks the priority of this candidate transition. This candidate transition is 

executed when it has a higher priority than that of time progress. Otherwise, 

the rule randomly determines to advance time or to execute the candidate 

transition. 

abstract class TimedAutomaton  
  IsTransitionEnabled (t as Transition) as Boolean  
    if (TimeBlocked and t.blockTime) or t.setPrior then 
      return false 
    else 
      return t in currentLocation. outTransitions and TimeGuard(t) and    
        DataGuard(t) and IsSynEnabled(t) 

The operational rule IsTransitionEnabled of TimedAutomaton examines if a 

transition is enabled or not. The subrule IsSynEnabled(t) checks whether the 

corresponding signal channel is ready to activate a synchronization among transitions. If 

the transition t does not require to synchronize with other transitions, IsSynEnabled(t) 

always returns true.  

The block time transition and the setPrior transition are two special transitions. A 

block time transition has an implicit guard, which checks if the TimeBlocked field is 

false, and has an implicit action that sets the TimeBlocked field to true so that the system 

knows time is explicitly blocked. This implicit guard is added to avoid the infinitely 

execution of a block time transition. A setPrior transition has no guard, but has one more 

implicit action that sets its owner component as a prior component. It must be enforced 

immediately after a component enters a location that has a setPrior transition. A setPrior 

transition is always considered disabled by the rule IsTransitionEnabled of 

TimedAutomaton, since if a setPrior transition exists in the current location, it must 

 111



already be executed when the current location is first entered. After an execution of a 

normal transition (transitions other than the block time transition and the setPrior 

transition), the priority status of the system will be refreshed - the prior field of a 

component and the TimeBlocked field of the system will be reset to false. 

For a normal transition, its enabling condition should satisfy all the flowing 

conditions: (1) its source location refers to the current location; (2) its timing guard is 

true; (3) its data guard is true; (4) it does not need to synchronize with other transitions or 

the corresponding synchronization channel is ready to fire.   

abstract class TimedAutomaton 
  GetEnabledTransition() as Transition? 
    let ET = {t | t in transitions where IsTransitionEnabled(t)} 
    if Size(ET) = 0 then 
      return null 
    else 
      choose t in ET where t.blockTime  
        return t 
      ifnone  
        return (any t | t in ET where not  
          (exists t2 in ET where Priority(t2) > Priority(t))) 

The operational rule GetEnabledTransition chooses a transition with the highest 

priority from all enabled transitions in a component. The rule returns a null value if the 

component has no enabled transition. In short, a block time transition has higher priority 

than normal transitions. For a normal transition, the larger its priority value, the higher its 

priority. If there are multiple enabled transitions with the same highest priority value, one 

of them is randomly selected. This non-determinism is specified by using the AsmL 

construct any. The AsmL specification  

(any t| t in ET where not  
                    (exists t2 in ET where Priority(t2) > Priority(t))) 

 

 112



means that a transition is selected from the set ET , which contains all enabled transitions, 

so that no other transitions in ET can have higher priority value than the priority of the 

selected transition.  

abstract class TimedAutomaton        
  DoTransition (t as Transition)  
    require IsTransitionEnabled(t) 
    if t.blockTime then 
      TimeBlocked := true 
    else 
      if t in syns then  
        step 
          let CHAN as SignalChannel = syns(t).First 
          let MODE as SYNROLE = syns(t).Second 
        step  
          CHAN.Synchronize(me, t, MODE) 
      else  
        step  
          FinishTransition(t) 

The operational rule DoTransition of TimedAutomaton specifies the steps through 

which a system executes an enabled transition. We use the AsmL require construct to 

assert that this transition must be an enabled one. The semantic unit has two special 

transitions, the block time transition and the setPrior transition. Both of these two 

transitions are system priority related transitions, and neither of them changes the current 

location of a component. A block time transition has an implicit action to set the 

TimeBlocked true and has no other actions to do. A setPrior transition has one more 

implicit action that sets its component as a prior component. If a transition needs to 

synchronize with transitions in other components, the corresponding signal channel 

organizes synchronization and finishes remaining operations related to the execution of 

this transition. Otherwise, the operational rule FinishTransition is applied to finish the 

DoTransition operation.  

 113



abstract class TimedAutomaton 
  FinishTransition (t as Transition) 
    step DoAction (t) 
    step  
      choose l in locations where location.id = t.dstLocationID  
        currentLocation := l 
      ifnone  
        error(t.id + " has no effective destination location.") 
    step 
      if exists t1 in outTransitions(currentLocation) where t.setPrior  
        then 
        me.prior := true 
        TimeBlocked := true 
      else 
        me.prior := false 
        TimeBlocked := false  

The FinishTransition rule first executes actions attached to this transition. Next, 

makes the field currentLocation refer to the destination location of the transition. A 

setPrior transition must be enforced immediately after entering its source location to set 

the priority of its component to the top priority. This enables the owner component to 

claim that it is in the process of execution an atomic action and no other components and 

time progress can interrupt this process.  

class RTSystem 
  GetNextTransition() as (TimedAutomaton?, Transition?) 
    choose c in components where c.prior  
      return (c, c.GetEnabledTransition()) 
    ifnone  
      let EC = {c | c in components where c.HasEnabledTransition()} 
      choose c in EC where c.GetEnabledTransition().blockTime 
        return (c, c.GetEnabledTransition()) 
      ifnone  
        choose c in EC where not  
          (exists c2 in EC where c2.Priority() > c.Priority()) 
          return (c, c.GetEnabledTransition()) 
        ifnone  
          return (null, null) 

The rule GetNextTransition of RTSystem describes the algorithm for the system to 

select a candidate transition for the next execution. It first looks for components that are 

in the top priority. If one exists, the subrule GetEnabledTransition of TimedAutomaton is 

 114



then applied to select an enabled transition from this component. If this component has 

no enabled transitions, GetEnabledTransition returns a null value. The system will be 

blocked indefinitely, since a component in the top priority blocks enabled transitions in 

other components as well as time progress. If no component is in the top priority, the rule 

chooses a transition with the highest priority from enabled transitions in all components. 

If no component has enabled transitions, the rule GetNextTransition returns a tuple whose 

two elements are both null value. 

class SignalChannel 
  Synchronize (ta as TimedAutomaton, t as Transition, m as SYNROLE)  
  require IsEnabled()  
    if (broadcast) then  
      step forall e in senders + receivers 
          (e.First).FinishTransition(e.Second) 
          (r.First).FinishTransition(r.Second) 
    else 
      match m  
        SEND:  
          ta.FinishTransition(t) 
          choose r in receivers  
            (r.First).FinishTransition(r.Second) 
        RECEIVE: 
          ta.FinishTransition(t)  
          choose s in senders  
            (s.First).FinishTransition(s.Second) 

The operational rule Synchronize specifies operations for a signal channel to 

organize synchronization among transitions. The subrule IsEnabled asserts that this 

signal channel must be enabled to fire. If the signal channel is a broadcasting channel, the 

rule synchronizes all transitions waiting for sending and receiving the signal. Otherwise, 

the signal channel randomly chooses a synchronization pair from its senders or receivers 

set. Here, the non-determinism is specified by using AsmL construct choose. The 

operational rule FinishTransition is utilized to do actions that are attached with the 

corresponding transition, and reset the current location of the component. Note that there 

 115



is no order for the execution of transitions that participate in synchronization. All of these 

transitions are executed simultaneously in a single abstract state machine update step. 

 

TASU Metamodel Specification 

The semantic anchoring tool suite as shown in Figure 3-3 assumes that model 

transformation between a TAML and TASU is defined in terms of their abstract syntax 

metamodels using the graph transformation language UMT and the GReAT tool. 

Consequently, we need to create an “interface” toward the semantic anchoring tool suite 

by defining a metamodel for TASU. Since the metamodeling language in MIC is 

UML/OCL (or MOF), the metamodel is simply the UML/OCL based representation of 

the TASU Abstract Data Model.  

There are two approaches to specify a metamodel capturing the TASU Abstract 

Data Model. One approach is to define a metamodel that captures the abstract syntax of 

the generic AsmL data structures (Figure 3-5). The other approach is to construct a 

metamodel that captures only the exact syntax of the TASU Abstract Data Model. As it is 

discussed in Chapter 3, each approach has its advantages and disadvantages. Here, we 

adopt the second approach. The metamodel for TASU Abstract Data Model includes 

three paradigms as shown in Figure 5-3 and Figure 5-4. In GME, a paradigm sheet is a 

place where users can construct metamodels or models. A GME model typically contains 

parts, such as atoms and other models. A GME atom is an atomic part and can not have 

internal structure. As in Figure 5-3, the System is a root model, which contains four kinds 

of parts: ComponentInstance, Chan, Declaration and TimedAutomaton. The atom 

ComponentInstance models a component which is an instance of a timed automaton. Its 

 116



attribute template refers to a concrete TimedAutomaton model that defines the internal 

structure of this component. The atom Chan corresponds to the SignalChannel class in 

the TASU Abstract Data Model. The model Declaration and TimedAutomaton are GME 

references whose actual internal structures are defined in separate paradigm sheets. The 

Declaration model contains data and clock types. The TimedAutomaton captures the 

tuple structure of the corresponding class TimedAutomaton in TASU Abstract Data 

Model. It is easy to see the close correspondence between the two. 

 

 

Figure 5-3 The System and Declaration paradigms of the TASU metamodel 

 

 117



 

Figure 5-4 The TimedAutomaton paradigm of the TASU metamodel  

 

In order to represent a TASU data model (an instance of the TASU Abstract Data 

Model) more intuitively, we also adds concrete syntax information in the metamodel so 

that a TASU model can have a graphical representation in the GME modeling 

environment. Note that a graphical representation for a semantic unit data model is only 

for the representation convenience in the rest of this chapter and is not necessary for the 

semantic anchoring methodology, since the graphical representation and the underlying 

XML representation are only different expressions for the same information.  

  

 118



 
Figure 5-5 A TASU timed automaton (ComponentKindA) 

class ComponentKindA extends TimedAutomaton 
  L0  as Location   = new Location ("L0",true, {T1,TBT}) 
  L1  as Location   = new Location ("L1",false,{T2,TSP}) 
  L2  as Location   = new Location ("L2", false, {}) 
  T1  as Transition = new Transition ("T1",false,false,“L1”) 
  T2  as Transition = new Transition ("T2",false,false,“L2”) 
  TBT as Transition = new Transition ("TBT",true,false,“L0”) 
  TSP as Transition = new Transition ("TSP",false,true,“L1”) 
  c   as Clock      = new Clock () 
  override property locations as Set of Location 
    get  
      return {L0, L1, L2} 
  override property transitions as Set of Transition 
    get  
      return {T1, T2, TBT, TSP} 
  override property localClocks as Set of Clock 
    get  
      return {c} 
  override property syns as Map of <Transition,(SignalChannel,SYNROLE)> 
    get  
      return { T1 -> (EXIT, SEND)} 
  override TimeGuard (t as Transition) as Boolean 
    match t.id 
      "T1" : return c.time >= 10 
      "T2" : return c.time == 0 
      "TBT": return c.time >= 20 
      _    : return true  
  override DataGuard (t as Transition) as Boolean 
    match t.id  
      _   : return true 
  override DoAction (t as Transition) 
    match t.id 
      "T1": c.time := 0 
      _   : skip 
  override Priority (t as Transition) as Integer 
    match t.id 
      _   : return 0    

 

 119



The semantic anchoring tool suite provides a translator, which translates TASU 

models built in the GME modeling environment into data models in native AsmL syntax. 

To illustrate this process, we show the visual representation of a simple TASU timed 

automaton as an example in Figure 5-3. After the translation, the equivalent AsmL 

specification is presented below the figure. The AsmL class ComponentKindA is a 

concrete timed automaton that overrides the abstract members of the abstract 

TimedAutomaton class defined the TASU Abstract Data Model. 

In the TASU domain modeling environment, a normal transition is represented as 

a continuous direct-line. Information attached to a normal transition includes five 

segments ordered in sequence: a signal channel, a time guard, a data guard, priority and 

actions. The corresponding segment is left empty if a transition does not have that 

information. A block time transition (e.g. TBT in Figure 6-5) is represented by a dot direct-

line. Only a time guard can be attached to a block time transition. A dash direct-line is 

utilized to represent a setPrior transition, e.g. TSP in Figure 5-5. No additional 

information might be put on a setPrior transition, since the information attached to a 

setPrior transition is predefined by the semantic unit and can not be modified by a 

component.  

 

Semantic Anchoring to TASU 

Semantic anchoring of a TAML means defining the transformation rules to 

TASU. In MIC, the transformation rules are specified in terms of the TAML and TASU 

metamodels. As it is shown in Figure 3-3, the GReAT tool can understand the 

transformational specification (which is the transformational semantics of the selected 

 120



TAML) and generate a model transformer, which can translate any legal TAML models 

to TASU models. The TASU models (as we showed it above) can then be translated to 

AsmL data models. It is AsmL data model plus the operational semantics specification 

that defines the semantics of the corresponding TAML model. In this section, we 

illustrate the semantic anchoring process using the two popular TAMLs, UPPAAL and IF 

languages. It must be noted that we do not need to verify the semantic equivalence 

between our specification and those used internally by the tools, since the semantics of 

TAMLs is defined by the TASU specification and the semantic anchoring rules. Some 

semantic anchoring rules are explained briefly in the rest of this section. The full 

specifications by using the semantic anchoring tool suite can be downloaded from [151]. 

 

Semantic Anchoring for the UPPAAL Language 

We give an overview of the model transformation algorithm with a short 

explanation for selected role-blocks below. Figure 5-6 shows the specification of the top-

level transformation rule in the GReAT tool. The transformation rule-set consists of the 

following steps: 

1. Start by locating the system in the input UPPAAL model; create a System object in 

the TASU model and set its attributes values appropriately. 

2. Create Declaration: Match the global clock variables, integer variables and 

constants in the input UPPAAL model; create the corresponding objects in the 

TASU model.   

3. Create Timed Automaton: Match the Timed Automaton templates in the input 

UPPAAL model; create the corresponding TASU TimedAutomaton objects.  

 121



4. Create Signal Channnel: Match the signal channels in the input UPPAAL model; 

create the corresponding Chan objects in the TASU model and set the attributes 

values appropriately.  

5. Create Components: Match the components in the input UPPAAL model; create the 

corresponding ComponentInstance objects in the TASU model and set the 

attributes values appropriately.  

 

 

Figure 5-6 Top-level model transformation rule for  
the UPPAAL semantic anchoring specification 

 

The third step is the key step in the transformation from a UPPAAL model to a 

TASU model. We give some explanations for sub-rules contained in this step. A trivial 

 122



one-to-one mapping can realize the mapping for those modeling constructs that are the 

same both in the UPPAAL automaton and in the TASU automaton.  

Location invariants 

The notion of location invariants was first introduced by the Timed Safety 

Automata [159], which is then adopted by the UPPAAL language. Time constraints put on 

locations are called location invariants. An automaton may remain in a location as long 

as the clock variables satisfy the invariant condition of that location. When the invariant 

condition is about to be violated by time progress, the automaton must be forced to leave 

this location. 

A location with an invariant condition in UPPAAL is semantically equivalent to a 

location in TASU with a blocked time transition whose time guard is the critical 

condition of the invariant condition. The pseudo code for this transformation rule is  

 foreach location in a UPPAAL automaton  
  create a new location in the corresponding TASU automaton 
  set the attributes in the new location 

if the UPPAAL location has location invariants then 
   create a block time transition on the new created TASU location 
   set the time guard in the block time transition 
  endif 
  …… 
 end foreach.  

Figure 5-7 shows a pattern graph, which is a part of the GReAT specification of 

the transformational rule for UPPAAL locations with location invariants. This pattern 

graph actually implements the pseudo code between if and endif. The Guard implements 

the if condition. If the Guard is true, a new block time transition is created (the blue-color 

Transition in the pattern graph). The AttributeMapping includes code that set the time 

guard in the new created transition object.  

 123



 

Figure 5-7 A pattern graph in the GReAT specification of  
the transformational rule for UPPAAL locations with Location Invariants  

 

An example shown in Figure 5-8 is presented to further illustrate this 

transformation rule. In the figure, a simple UPPAAL time automaton (Figure 5-8 (a)) 

whose start location has an invariant condition on the clock variable c can be mapped to 

an equivalent timed automaton in TASU (Figure 5-8 (b)). We briefly explain the behavior 

of the TASU automaton. Before the critical condition, c equals 5, is satisfied, the block 

time transition TBT is not enabled and the automaton may stay in or leave the location 

start. If the automaton is still in the start location when the critical condition is reached, 

the block time transition TBT is taken immediately. Now time is not allowed to progress 

until the automaton leaves the start location. 

 

 124



 
Figure 5-8 Semantic anchoring for a UPPAAL automaton with location invariants 

 

For the rest of transformational rules, we will not present the pseudo code and the 

corresponding GReAT specification. Instead, only examples are used to explain the 

transformational rules. With examples and the corresponding explanations, it is easy for 

readers to derive the pseudo code. The completed GReAT specification can be 

downloaded from [151]. 

Urgent/Committed locations 

There are three kinds of locations in UPPAAL that are normal locations with or 

without invariants, urgent locations and committed locations. Time may not pass in 

urgent or committed locations. However, urgent locations allow instantaneous 

interleaving with other components, while committed location does not. In UPPAAL, a 

location marked ∪ denotes an urgent location and the one marked C is committed. 

 

 

Figure 5-9 Semantic anchoring for a UPPAAL automaton with urgent locations 

 

 125



In the anchoring, an urgent location is mapped to a normal location plus a block 

time transition with no time guard. Figure 5-9 shows a simple example. In the figure, (a) 

is a UPPAAL automaton, and (b) is the anchoring automaton in TASU. In anchoring 

automaton, the time is blocked as long as the automaton stays in the location L1, but the 

enabled transitions in other automata (components) can be execute in this period. This is 

semantically equivalent to the UPPAAL automaton in Figure 5-9 (a).  

 

 

Figure 5-10 Semantic anchoring for a UPPAAL automaton with committed locations 

 

An automaton in a committed location blocks both time progress as well as 

enabled transitions in all other automata. This functionality is equivalent to a setPtior 

transition in TASU, which sets the priority of the owner automaton to the top priority. 

With the execution of a setPtior transition, an automaton claims that it is in the process of 

executing an atomic action, and enabled transitions in all other automata as well as time 

progress should be prohibited until the atomic action is finished. As shown in Figure 5-

10, (a) is a UPPAAL automaton and (b) is the semantic equivalent automaton in TASU 

after transformation. 

 

 126



 

Figure 5-11 Semantic anchoring for a UPPAAL automaton with urgent synchronization 

 

Urgent synchronizations 

A signal channel in UPPAAL may be declared as urgent. If a transition with an 

urgent channel is enabled, time delay must not occur before this transition is taken. 

TASU does not have the urgent channel concept, but the same effects can be achieved 

through setting the priority of a transition to be an integer greater than zero (depending on 

the relative priority with respect to other actions). Since the transition has higher priority 

than that of time progress, there will be no time delay before the execution of this 

transition if it is an enabled transition. Figure 5-11 shows an example to illustrate the 

transformation for urgent synchronization. Note that the signal channel EXIT in (a) is 

declared elsewhere as an urgent channel, while the one in (b) is only a normal channel in 

TASU. 

 

Semantic Anchoring for the IF Language 

The IF language is another well-known TAML to model asynchronous 

communicating real-time systems. In IF, a real-time system contains a set of processes, 

which are running in parallel and interacting through asynchronous signal routes. Each 

process is modeled by an extended timed automaton. This section is focused on the 

semantic anchoring for the IF specialized language constructs including: transitions with 

 127



three types of deadline, unstable states and asynchronous signal routes with different 

policies. 

Lazy/Delayable/Eager transitions 

The IF language does not support location invariants explicitly, but the same 

behavior can be achieved through utilizing transitions with different deadlines. An IF 

transition may have one of three types of deadlines (lazy, delayable and eager), which 

indicates the priority of a transition with respect to time progress. A lazy transition is 

never urgent and always allows time progress. An eager transition is urgent and prohibits 

time progress as soon as it is enabled. A delayable transition becomes urgent when it is 

about to be disabled by time progress and allows time progress otherwise. A lazy 

transition is equivalent to a normal transition in TASU with a priority value zero (the 

priority of time progress). The same behavior for an eager transition can be achieved by 

setting the priority of the corresponding transition in TASU to be an integer greater than 

zero (depending on the relative priority with respect to other actions). 

A delayable transition implies that the priority of this transition jumps to a higher 

value than that of time progress when the enabling condition of this transition is about to 

be violated by time progress. An example for the transformation is shown in Figure 5-12. 

Note that the transition T1 in (a) is an IF delayable transition while the one in (b) is a 

normal transition in TASU. We give a briefly explanation for the behavior of the IF 

automaton in (a). During 10 <= c < 20 (where c is a clock variable), the transition T1 is 

enabled but the system can randomly make choices on whether it takes this transition or 

advances time. When c reaches 20, the transition T1 will be disabled by any further time 

progress. At this moment, the system should execute T1 before advancing time. The 

 128



automaton in the Figure 5-12 (b) employs the expression if c == 20 return1 else return 0 

to specify the dynamic priority of this transition. The priority of the T1 transition jumps 

to a higher value than the time progress priority (zero), which ensures T1 to be executed 

as soon as c reaches 20, if the automaton is still in the start location. 

 

 

Figure 5-12 Semantic anchoring for an IF automaton with delayable transitions 

 

Unstable locations 

Unstable locations in IF have similar meaning to committed locations in UPPAAL. 

A process entering an unstable location must continue immediately by firing some 

transitions at that location and soon on, until a stable location will be reached. Unstable 

locations is an IF way to define an atomic action as a sequence of transitions from one 

stable location to another stable location. So the anchoring approach for an IF unstable 

location is also the same as that for a UPPAAL committed location. Like the approach 

shown in Figure 5-10, each unstable location in IF is mapped to a normal location with a 

setPrior transition in the semantic unit. 

Asynchronous signal routes 

The IF language imports a language construct, the signal route, to facilitate 

modeling the asynchronous communications among processes. Signal routes can be 

thought as specialized processes for the delivery of signals between normal processes. 

The behavior of signal routes is implicitly defined by a set of policies:  

 129



• queueing policy denotes how the message in transit are tackled by the signal route. 

Two options are available respectively, #fifo, order-preserving, using a queue-based 

storage, and #multiset, no order-preserving, using a multiset storage;  

• delivering policy denotes how the messages are delivered. Three options are 

available here, respectively, #peer, which means delivery to the instance indicated in 

the output action using the to construct, #unicast, means delivery to one of the 

running instances and #multicast, means delivery to all running instances existing at 

the signal route endpoint; 

• reliability policy has two options, #reliable, which means that message are not lost, 

or #lossy, which means that messages could be lost when transiting through the 

signal route; 

• delaying policy denotes the delay associated with the signal route and can be 

respectively, #urgent, means immediate (0-time) delivery, #delay[a, b], means that 

any message entering the signal route will eventually leave it after a and not later 

than b units of time, and #rate[a, b], means that it takes between a and b units of time 

per message to be delivered by the signal route.  

 

 
Figure 5-13 An IF asynchronous model with policies #reliable, #urgent and #multicast 

 130



To ensure analyzability, the TASU can only handle simple events. In particular, 

we assume that communication events are only signals and are not attached with data. In 

this situation, two queueing policy options, #fifo and #multiset, are equivalent with 

respect to our semantic unit. An IF asynchronous model, with other three different 

policies, will result in different anchoring models in TASU. However, the general ideas 

that guide the anchoring approaches for an IF asynchronous model with different policies 

are very close. We use an example to illustrate our anchoring approach for different 

policies. The left part of Figure 5-13 depicts an Event Publish system, in which a sender 

process multicasts events to N receiver processes through an asynchronous signal route. 

The right part of the Figure is the IF specification for this system. The sender process is 

defined by the process template Source and the receiver process is defined by the process 

template Listener. The sender and receivers are connected through a signal route Link 

whose transmission policies are set to #reliable, #urgent and #multicast. The detailed 

structures of the Source and Listener processes are not shown, since they do not affect the 

anchoring approach for the signal route. 

During an asynchronous communication, the Source process first publishes an 

event and continues its following tasks without waiting. The signal route Link receives 

and buffers this event immediately. The buffered events will be delivered to target 

processes according to the pre-specified policies of the signal route. The option #reliable 

indicates that all events will be transmitted successfully without loss. The option #urgent 

denotes that the time required for a complete event transmission is zero. The option 

#multicast means that the signal route multicast events to all receiver processes. 

 131



Figure 5-14 presents the structure of the anchoring model in TASU. The signal 

route in IF is a black box that realizes the asynchronous communication among 

processes. In a TASU model, it is explicitly modeled as an automaton representing a 

Transmitter to transmit events plus a set of automata representing Buffers to buffer events 

for receivers. Figure 5-14 (a) displays the overall structure of the system. The Transmitter 

receives events from the Source process through the non-broadcasting signal channel e, 

and publishes events to N Buffers through the broadcasting signal channel eR. Each 

Buffer saves events and delivers them to the corresponding Listener process through the 

corresponding non-broadcasting signal channel eRi. All signal channels in Figure 5-14 

are synchronous channels in TASU. 

 

 

Figure 5-14 The semantic anchoring model for the IF asynchronous model in Figure 5-13 

 

 132



Figure 5-14 (b) presents the structure of the Transmitter automaton. The 

Transmitter starts from the empty location. When it receives an event, it moves to the 

loaded location. The Transmitter will stay in the loaded location, and execute the 

receiving (T3) or publishing (T4) events transition as long as it has at lest one buffered 

event after the transition. If it publishes its last buffered event, the Transmitter takes the 

T2 transition and moves back to the empty location. The integer variable i is employed to 

record the number of buffered events. Figure 5-14 (c) shows the structure of the 

automaton representing the ith Buffer, which has the similar structure as the Transmitter 

automaton. The priority values of all transitions in both automata are set to 1, which 

indicates that these transitions are urgent. So, there is no time delay during the event 

delivery.  

In this report, we omit the verification for the semantic equivalence between the 

IF asynchronous model in Figure 5-13 and the TASU synchronous model in Figure 5-14. 

If the policies of an asynchronous model are changed, the synchronous model also needs 

to be modified to capture the changed behavior. In fact, there may have multiple solutions 

to capture the changed behavior. However, we give a simple solution as a clue for other 

possible approaches. 

The behavior of the reliability policy #lossy can be achieved through adding 

transitions in the loaded location of the Transmitter, which randomly drop buffered 

events. If the signal channel eR is set as a non-broadcasting channel, the model in Figure 

5-14 has the same behavior as the model in Figure 5-13 with the delivering policy set to 

#unicast, which means that an event is delivered to a randomly selected receiver process. 

If the delivery policy is set to #peer, the source process must specify a specific target 

 133



process to send events. In this case, the synchronous model has only one Listener process 

and one Buffer process. Therefore, it runs in the same manner as the corresponding 

asynchronous model applying the delivery policy #peer.  

 

 

Figure 5-15 The semantic anchoring model for the IF asynchronous model  
in Figure 5-13 with the delaying policies changed from #urgent to #delay[a, b] 

 

The delaying policy #delay[a, b] can be achieved by adding local clock variables 

to measure the buffered time for each received event, and adding time conditions and 

dynamic priorities on the publishing events transitions of Transmitter to control the delay 

for the event delivering. Figure 5-15 shows the structure of the anchoring model for the 

IF asynchronous model in Figure 5-13 with the delaying policies changed from #urgent 

to #delay[a, b]. Comparing Figure 5-15 with Figure 5-14, only the Transmitter automaton 

is changed to reflect the modification of the delivering policy. The Transmitter automaton 

 134



defines a clock variable c and an integer array buf whose size is b. The buf[i] (i is 

between zero and b-1) records the number of events that have been delayed for i time 

units. 

Initially, the Transmitter automaton starts from the location start and the clock 

variable c and all elements in the buf array are zero. When an event comes, the transition 

T1 is taken immediately and buf[0] is set to 1. The Transmitter automaton will always 

stay in the work location after the execution of the T1 transition. If more events come, the 

transition T2 will be taken immediately which increases the value of buf[0]. Whenever 

the time progress for one unit, the transition T4 will be enabled and should be taken 

immediately, which reset the clock variable c and do function delay(). The function 

delay() increases the delay time for all buffered events by one time unit, which 

sequentially sets the value of buf[i] to the value of buf[i-1], where i moves from b-1 to 1, 

and the set buf[0] to zero. The transition T3 is a crucial one that controls the event 

delivery. The function enabled() (if exist i, where a-1 ≤ i ≤  b-1, buf[i] > 0 then return 

true else return false) checks whether there exist events that have been buffered for more 

than a time units. The priority of transition T4 is a dynamic value set by the function 

priority() (if buf[b-1] > 0 then return 1 else return 0). This means that time progress 

should be blocked if there are events that have been buffered for b time units. The send() 

function randomly chooses an i, where a-1 ≤ i ≤  b-1 and buf[i] > 0, and reduce the value 

of buf[i] by one.     

 

 135



 

Figure 5-16 The semantic anchoring model for the IF asynchronous model  
in Figure 5-13 with the delaying policies changed from #urgent to #rate[a, b] 

 

Likewise, the delaying policy # rate[a, b] can be captured by adding a local clock 

variable to measure the time passing for the Transmitter automaton, and setting time 

guards and dynamic priorities on the publishing events transitions to control the rate of 

the event delivering. Figure 5-16 shows the semantic anchoring model for the IF 

asynchronous model in Figure 5-13 with the delaying policies changed from #urgent to 

#rate[a, b]. The Transmitter automaton defines a clock variable c to control the rate of the 

event delivery.  

 

 

 

 

 136



CHAPTER VI 

 

SEMANTIC UNIT COMPOSITION                                                                   

 

In Chapter 3, we state that a DSML may have multiple behavioral aspects that are 

associated with different behavioral categories. In this case, the semantics of a DSML can 

be specified as the composition of multiple semantic units. Semantic unit composition 

reduces the required effort from DSML designers and improves the quality of the 

specification. In this chapter, we discuss the general rules that can guide semantic unit 

composition. An industrial-strength modeling language, EFSM (Extended Finite State 

Machine Language), is used as a case study to illustrate the compositional semantics 

specification.   

 

Compositional Specification of Behavioral Semantics  

In the semantic anchoring infrastructure, we define a finite set of semantic units, 

which capture the semantics of basic behavioral and interaction categories. If the 

semantics of a DSML can be directly mapped onto one of these basic categories, its 

semantics can be defined by simply specifying the model transformation rules between 

the DSML and the Abstract Data Model of the semantic unit. However, in heterogeneous 

systems, the semantics is not always fully captured by a predefined semantic unit. If the 

semantics is specified from scratch (which is the typical solution if it is done at all) it is 

not only expensive but we loose the advantages of anchoring the semantics to (a set of) 

common and well-established semantic units. This is not only loosing reusability of 

 137



previous efforts, but has negative consequences on our ability to relate semantics of 

DSMLs to each other and to guide language designers to use well understood and safe 

behavioral and interaction semantic “building blocks” as well. 

Our proposed solution is to define semantics for heterogeneous DSMLs 

compositionally. If the composed semantics specifies a behavior which is frequently used 

in system design, (for example composition of SDF interaction semantics with FSM 

behavioral semantics defines semantics for modeling signal processing systems [162]) the 

resulting semantics can be considered a derived semantic unit, which is built on primary 

semantic units, and could be offered up as one of the set of semantic units for future 

anchoring efforts. The composition method we describe in the rest of the paper is 

strongly influenced by Gossler and Sifakis framework for composition [163] and has 

commonalities with composition approaches used in Ptolemy [162] and Metropolis [164] 

by clearly separating behavior and interaction. In the following we provide a brief 

overview of the composition approach that will be followed by a detailed case study. 

Mathematically, a composed semantics is represented as a tuple CS = <A, R>. 

Similarly to [163], we model semantic unit composition as structural and behavioral 

compositions (see Figure 6-1). In the Figure, we represented ASM instances that include 

an m data model, the R rule set and the S dynamic state variables updated during runs. 

The structural composition defines relationships among selected elements of Abstract 

Data Models using partial maps. In Figure 6-1, we demonstrate semantic composition 

with two semantic units, SU1 and SU2. The structural composition yields the composed 

Abstract Data Model A = <AC, ASU1, ASU2, g1, g2 >, where g1, g2 are the partial maps 

between concepts in AC, ASU1, and ASU2. 

 138



Behavioral composition is completed by the RC set of rules that together with RSU1 

and RSU2 form the R rule set for the composed semantics. The role of the RC set of rules is 

to receive the possible sets of actions that can be offered by the embedded semantic units 

using the Get(…) calls, to restrict these sets according to the interactions created by the 

structural composition and to send back selected subset of actions through the Run(…) 

call to complete their next step. The executable actions are represented as partial orders 

above the set of actions. (This will be shown in detail in the following Sections.) 

 

RC

SC

m∈ MC = I(AC)

RSU1

SSU1

mSU1 ∈ MSU1 = 
= I(ASU1)

RSU2

SSU1

mSU2 ∈ MSU2 = 
= I(ASU2)

g1 : AC → ASU1 g2 : AC → ASU2

Get_()

Run_()

Get_()

Run_()

SU1 SU2

CS = <A, R>
A    = <AC ,ASU1, ASU2, g1, g2>
R    = <RC,RSU1,RSU2>

 

Figure 6-1 A graphical representation for semantic unit composition 

 

Remark: The behavioral composition specifies a controller, which restricts the 

executions of actions. Since the behavior of the embedded semantic units can be 

 139



described as partial orders on the sets of actions they can perform, the behavioral 

composition can be modeled mathematically as a composition of the partial orders.    

In the rest of this paper, we first describe a simplified version of EFSM, called 

SEFSM, which only includes the modeling constructs that determine the core behavioral 

semantics of EFSM. Then, we apply structural and behavioral composition for two 

primary semantic units, Finite State Machine (FSM-SU) and Synchronous Dataflow 

(SDF-SU), to define the semantics of SEFSM. As the first step in the composition 

sequence, we define semantics for Action Automata (AA). We use the semantics of AA 

as a new derived semantic unit (AA-SU) that we further compose with SDF-SU to 

SEFSM as the composition of individual components whose semantics are defined by 

obtaining the semantics for EFSM. Due to space limitations, we need to omit many 

details of the specification. The full semantics specifications can be downloaded from 

[151].   

 

SEFSM Overview 

EFSM has been developed by General Motors Research to specify vehicle motion 

control (VMC) software [165]. In order to satisfy the requirements of the VMC domain, 

EFSM provides a narrow and precisely-defined set of modeling constructs that can 

represent concurrent FSMs, mathematical functions, data types, physical units, value 

ranges, and a hierarchical signal and event type structure. Because the semantic 

anchoring methodology focuses on the behavioral semantics of a DSML, many modeling 

constructs in EFSM, such as those related to type structures, physical units and value 

ranges, have little influence on the behavioral semantics specification. Hence, we 

 140



introduce a simplified version of EFSM, called SEFSM, which only includes those 

modeling constructs in EFSM that determine the core behavioral semantics of EFSM. 

A SEFSM model is a synchronous reactive system including a set of components 

communicating through event channels and data channels. The connections do not form 

event and data propagation loops. Global states are considered as delay variables that 

may be read and updated during reactions. In each computation cycle, a SEFSM system 

is first activated by an incoming event; this event is then propagated through event 

channels and activates internal components; the reaction of internal components may 

produce additional events; new generated events will continue the propagation and 

activation cycle until conclusion. According to the synchrony assumption, a computation 

cycle will be finished before the next incoming event triggers a new reaction. 

A SEFSM model integrates a set of stateless computational functions t = f(t1,…, 

tn) that consume input data and produce output data. SEFSM separates events from data 

as they are for different purposes. Events determine which components are to be activated 

and the order of activations. An incoming event, while activating a component, also 

affects the decision on which functions within that component are to be executed. All 

input data required by the functions to be executed should be available already when the 

owner component is activated. 

  

 

 141



 

Figure 6-2 A simple SEFSM component model 

 

A SEFSM component is an FSM-based model. We use a simple component 

model shown in Figure 6-2 as an example to explain the structure and the behavior of 

SEFSM components. The component communicates with other components through 

ports, including a single input event port (IEP), an output event port (OEP), two input 

data ports (IDP1 and IDP2) and two output data ports (ODP1 and ODP2). As shown in 

the figure, the component includes an FSM, where transitions are labeled with a trigger 

event, a guard, an output event and set of actions. Guards and actions are computational 

functions within the component and receive their input data through input data ports. The 

execution of an action (a function) may produce new data, while the execution of a guard 

only returns a Boolean value for the true or false evaluation. Therefore, an action has a 

set of output data ports while a guard does not. 

Whenever a component receives an event, it consumes the event and evaluates 

which transition is enabled. A transition is enabled if its source state is the current state, 

 142



its trigger event matches the incoming event and the evaluation of its guard function 

returns true. For safety reasons, EFSM intentionally prohibits non-determinism. If the 

enabled transition is labeled with an output event and actions, the component generates 

the output event and executes the actions, which may produce output data. The new 

created event and data are stored in the corresponding event and data ports. Note that the 

output event and output data of a component should be delivered to destination 

components simultaneously and the delivery process takes logical (per the synchrony 

assumption) zero time.        

  

 

Figure 6-3 A simple SEFSM system model 

 

A SEFSM system consists of a set of components, event channels, data channels, 

an input and an output event port, and a set of input and output data ports. To illustrate 

this, Figure 6-3 presents a simple SEFSM system model, including three components A, 

B and C. Event channels are represented as dashed lines and data channels are shown as 

concrete lines. Multiple event channels can be connected to the same output event port, 

 143



but only one event channel can be connected to an input event port. This restriction 

eliminates the possibility that a component may receive multiple events during one 

reaction. A data port is also not allowed to receive multiple data since this will cause a 

non-deterministic decision on which data is to be used in the computation. However, data 

channels are allowed to merge, if at most one of the merged data channels actually 

delivers data in one computation cycle. When a component is activated by an event, some 

of its input data ports may be empty. However, those data ports that provide data for 

evaluating guards and for executing actions must contain data. 

 

 

Figure 6-4 A paradigm in the SEFSM metamodel defining the system structure  

 

 144



 

Figure 6-5 A paradigm in the SEFSM metamodel defining the component structure  

 

The abstract syntax of SEFSM is defined by a UML/OCL-based metamodel, 

including two paradigms as shown in Figure 6-4 and 6-5. The paradigm in Figure 6-4 

defines the system-level structure and the one in Figure 6-5 defines the component-level 

structure. Note that the InDataPortRefProxy and OutDataPortRefProxy classes in Figure 

6-5 refer to the InDataPort and OutDataPort classes in Figure 6-4, respectively. In this 

way, data ports in a Guard or an Action are enforced to refer to the corresponding data 

ports defined in the component.  

Figures 5 and 6 show the abstract syntax metamodel of SEFSM in MetaGME [9] 

(a UML/OCL-based metamodeling language).  The metamodel in Figure 5 and 6 define 

the sub-language for representing the system-level structure and for the component-level 

structure, respectively. A set of OCL (Object Constraint Language) constraints [55] are 

 145



added to the SEFSM metamodel to specify well-formedness rules for the models. For 

example, the OCL constrain,  

self.connectedAs("dst")->size()=1 and 
self.connectedAs("src")->size()=1, 

is attached to the Transition class in Figure 6, which claims a transition object should 

have a single source state and a single destination state. 

It is easy to see that the abstract syntax metamodels and the textual description of 

the behavior are insufficient for the precise understanding of the semantics of SEFSM. 

For example, the metamodel specification does not reveal the complex interdependency 

between the event flow and the data flow structure of the components that both define 

partial orders for the evaluation of guards and execution of actions. 

 

Primary Semantic Units Used 

In the following section we briefly elaborate the primary semantic units FSM-SU 

and SDF-SU that we use to compose the semantics of, first SEFSM Components, and 

then SEFSM Systems. We describe these semantics unit here directly with their AsmL 

specifications as they are readable and executable. 

 

Finite State Machine Semantic Unit 

The Finite State Machine Semantic Unit (FSM-SU) defines the behavioral 

semantics of the basic non-deterministic FSM, which can be mathematically defined as a 

5-tuple 

〉∆∑〈 0,,,, sS σ  

where 

 146



• S is a finite set of states; 

• Σ is an input alphabet, consisting of a set of input symbols; 

• ∆ is an output alphabet, consisting of a set of output symbols; 

• SS ×∆×∑×⊆σ is a set of transitions; 

•  denotes the initial state. Ss ∈0

The specification contains two parts as we mentioned earlier: an Abstract Data 

Model AFSM-SU and Operations and Transformation Rules RFSM-SU on the data structures 

defined in A. The AsmL abstract class FSM prescribes the top-level structure of a FSM, 

including a set of states, transitions, relationships between states and transitions, and 

relationships between transitions and event types. All the abstract members of FSM are 

further specified by a concrete FSM, which is an instance of the Abstract State Model.    

structure Event 
  eventType  as String 
class State 
  id         as String 
  initial    as Boolean 
  var active as Boolean = false 
class Transition 
  id as String 
abstract class FSM 
  id as String 
  abstract property states         as Set of State 
    get 
  abstract property transitions    as Set of Transition 
    get 
  abstract property outTransitions as Map of <State, Set of Transition> 
    get 
  abstract property dstState         as Map of <Transition, State> 
    get 
  abstract property triggerEventType as Map of <Transition, String> 
    get 
  abstract property outputEventType  as Map of <Transition, String> 
    get 

The operational semantics of FSM-SU is specified as a set of AsmL rules. Two 

rules that are important in behavioral composition are briefly explained here. The rule 

 147



Run specifies the top-level system reaction of a FSM when it receives an event. Note that 

the ‘?’ modifier after Event means the return from the Run rule may be either an event or 

an AsmL null value. 

abstract class FSM 
  React (e as Event) as Event? 
    step 
      let CS as State = GetCurrentState () 
    step 
      let enabledTs as Set of Transition = {t | t in outTransitions 
(CS) where e.eventType = triggerEventType(t)} 
    step 
      if Size (enabledTs) = 1 then 
        choose t in enabledTs 
          step 
            CS.active := false 
          step 
            dstState(t).active := true 
          step 
            if t in me.outputEventType then 
              return Event(outputEventType(t)) 
            else 
              return null 
      else 
        if Size(enabledTs) > 1 then 
          error ("NON-DETERMINISM ERROR!") 
        else 
          return null 

The operational rule GetCurrentState returns the current state of a FSM. A state is 

considered as the current state if it is active. If a FSM has multiple active states, the rule 

reports an error. If it has no active state, the initial state is considered as the current state.  

 148



abstract class FSM 
  GetCurrentState () as State 
    step 
      let currents = {s | s in me.states where s.active} 
    step 
      if Size (currents) > 1 then 
        error ("FSM has multiple active states") 
      else 
        if Size (currents) = 0 then 
          return GetInitialState () 
        else 
          choose s in currents 
            return s 

 

Synchronous Dataflow Semantic Unit 

The Synchronous Dataflow Semantic Unit (SDF-SU) defines the behavioral 

semantics of the Synchronous Dataflow (SDF) that can be mathematically expressed as a 

5-tuple 

〉〈 opip ffCPN ,,,,  

where:  

• N is a finite set of nodes; 

• P is a finite set of ports; 

•  is a finite set of channels; PPC ×⊆

•  is a map that assigns each node to its input ports; P
ip Nf 2: →

•  is a map that assigns each node to its output ports. P
op Nf 2: →

The AsmL specification of the Abstract Data Model ASDF-SU is shown below.  

Token is defined as an AsmL structure to package data. (We included only three types of 

data (integer, double and Boolean) in the specification using the AsmL construct case.) 

Port and Channel are defined as first-class types. The Boolean attribute exist of a port 

indicates whether the port has a valid data token. When all the input ports of a node have 

 149



valid data tokens, the node is enabled to fire. In the semantics specification, Fire is an 

abstract function. A concrete node will override the abstract function Fire with a 

computational function. The AsmL abstract class SDF captures the top-level structure of 

a model. The abstract property inputPorts contains a sequence of the SDF model’s input 

ports that does not belong to any internal nodes. The abstract property outputPorts 

expresses the similar meaning.      

structure Value 
  case IntValue 
    v as Integer 
  case DoubleValue 
    v as Double 
  case BoolValue 
    v as Boolean 
 
//Data Token, it may contain a value or a null data     
structure Token 
  value as Value? 
 
//Data Port, when exist is true, the port has an effective data token    
class Port 
  id        as String 
  var token as Token   = Token (null) 
  var exist as Boolean = false 
class Channel 
  id as String 
  srcPort as Port 
  dstPort as Port 
 
abstract class Node 
  id as String 
  abstract property inputPorts  as Seq of Port 
    get 
  abstract property outputPorts as Seq of Port 
    get 
  abstract Fire () 

 

 150



abstract class SDF 
  id as String 
  abstract property nodes       as Set of Node 
    get 
  abstract property channels    as Set of Channel 
    get 
  abstract property inputPorts  as Seq of Port 
    get 
  abstract property outputPorts as Seq of Port 
    get 

Two key operational rules in the RSDF-SU specification are explained here. The 

operational rule GetEnabledNode returns a set of nodes in a SDF model that are ready to 

fire. 

abstract class SDF 
  GetEnabledNodes () as Set of Node 
    return {n | n in me.nodes where forall p in n.inputPorts where 
p.exist} 

The operational rule Fire specifies the behaviors that a SDF model takes to fire a 

node. The AsmL construct require asserts that the node to fire should be an enabled one. 

The Fire function of Node is defined by the node itself. However, it should consume the 

data tokens in all input ports of the node and produce data tokens to all output ports of the 

node. Otherwise, the rule will report an error. If an output port of the node is connected 

with multiple channels, the data token in it will be duplicated and propagated along all 

these channels. If the destination port of a channel already has an effective data token, the 

rule will report a non-deterministic error since it does not know which data token should 

be placed in the port.        

 151



abstract class SDF 
  Fire (n as Node) 
    require n in me.GetEnabledNodes () 
    step 
      n.Fire () 
    step 
      if exists p in n.inputPorts where p.exist then 
        error ("After the firing of a node, all input tokens should be 
consumed by the node.") 
    step 
      if exists p in n.outputPorts where not p.exist then 
        error ("After the firing of a node, each of its output port 
should have one effective token.") 
    step 
      forall c in me.channels where c.srcPort in n.outputPorts 
        if c.dstPort.exist then 
          error ("Non-deterministic error.") 
        else 
          c.dstPort.token := c.srcPort.token 
          c.dstPort.exist := true 
        c.srcPort.exist := false 

The operational rule Run specifies the steps it takes to execute a set of nodes. This 

rule can be considered as a composition interface for SDF-SU. In the beginning, some of 

the nodes in the set may not be enabled, but they are supposed to be enabled by the 

execution of already enabled ones. The rule non-deterministically chooses an enabled 

node from the set and fires it. The execution of a node consumes the data tokens in all 

input ports of the node and produce them to all output ports as well. The operational rule 

Fire executes the node and propagates data tokens produced by the execution of the node 

through all the connected channels. The rule Run reports error if there are no enabled 

nodes in the set while the set is not empty. 

 152



abstract class SDF 
  Run (ns as Set of Node) 
    step while Size(ns) <> 0  
      choose n in ns where n in GetEnabledNodes () 
        remove n from ns 
        Fire (n) 
      ifnone  
        error ("Some Nodes are not enabled to fire.") 

 

Compositional Semantics Specification for SEFSM Components 

As we described before, the behavior of individual SEFSM components can be 

divided into two different behavioral aspects: the FSM-based behavior expressing 

reactions to events and the SDF-based behavior controlling the execution of 

computational functions (actions and guards). In this section, we formally specify the 

behavioral semantics of SEFSM components as composition of two primary semantic 

units: FSM-SU and SDF-SU. The compositional semantics specification consists of two 

parts: (1) an Abstract Data Model defining the structural composition                         

<AC, AFSM-SU, ASDF-SU, g1, g2>, where g1: AC→AFSM-SU , and g2: AC→ ASDF-SU are structural 

relation maps; and (2) Operations and Transformation Rules specifying the behavioral 

composition <RC , RFSM-SU , RSDF-SU > . 

 

Structural Composition 

The structural composition defines mapping from elements in the Abstract Data 

Model of the composed semantic unit to elements in the FSM-SU model and those in the 

SDF-SU model. Figure 6-6 shows the role of the FSM-SU and SDF-SU in the SEFSM 

component model by restructuring the example in Figure 6-2. In the modified structure, 

the FSM model controls the event-related behaviors, while the SDF model takes charge 

 153



of the data-related computations. Comparing Figure 6-2 and 6-6, we can find that the 

overall structure of the FSM model closely matches that of the original SEFSM 

component, except for events, guards and actions. The trigger events and the output 

events in the FSM model are renamed. The guards and actions are represented as nodes in 

the SDF model. The relationships between the FSM model and the SDF model are 

specified by two maps: GuardMap and ActionMap. In this section, we only briefly 

explain how these two maps help to relate the FSM model with the SDF model. More 

details will be introduced in the following behavioral composition section. 

 

 

Figure 6-6 The compositional structure of the SEFSM component  
originally shown in Figure 6-2 

 

The new compositional structure is built in a way that each transition in the 

original component is decomposed into three parts: a transition in the FSM model, a node 

 154



representing the guard and a node representing the action in the SDF model. In the 

original component, a transition can be unambiguously located by the combination of the 

source state, the trigger event, and the guard. In the compositional structure, the 

information can be expressed by a 3-tuple (s, e, n), where s refers a state in the FSM 

model; e is a local trigger event in the FSM model; and n represents a node in the SDF 

model. When a component receives an event, this event is a global event and will not be 

directly forwarded to the FSM model. The GuardMap maps this global event to a set of 

3-tuples, each tuple referring to a transition in the original component whose trigger event 

matches this global event. Using the example in Figure 6-2 again, the event α is the 

trigger event only for the transition T1. In the compositional structure as shown in Figure 

6-6, the T1 transition is decomposed into the t1 transition in the FSM model, whose 

source state is s and trigger event is e1in, and the guard1 and action1 node in the SDF 

model. As a result, GuardMap assigns the event α to the set {(s, e1in, guard1)}. 

class EventPort 
  id         as String 
  var evnt   as Event  = Event ("") 
  var exist  as Boolean = false 
abstract class Component 
  id      as String 
  abstract property inPort as EventPort 
    get 
  abstract property outPort as EventPort 
    get 
  abstract property GuardMap as Map of <String, Set of(String, String, 
Node?)> 
    get 
  abstract property ActionMap as Map of <String, (Set of Node, 
String?)> 
    get 
  abstract property fsm as FSM 
    get 
  abstract property sdf as SDF 
    get 

 

 155



Behavioral Composition 

In essence, the behavioral composition specifies the rules RC, which is akin to a 

component-level controller (or scheduler) that orchestrates the executions and 

interactions of the FSM model and the SDF model.  

The execution of a transition in the original (SEFSM) component can be 

decomposed into a three-step process: (1) the evaluation of the guard functions for all 

outgoing transitions from the current state as nodes in the SDF model; (2) selection of an 

enabled transition in the FSM model; and (3) the execution of actions of the transition as 

nodes in the SDF model. The three steps are related to each other by the maps GuardMap 

and ActionMap. The output event produced by the execution of a transition in the FSM 

model is a local event. ActionMap maps it to a 2-tuple ({n}, e), where {n} refers to a set of 

nodes (actions) in the SDF model and e refers to a global output event that will be 

propagated out of the component. For instance, the execution of the t2 transition of the 

FSM model in Figure 6-6 generates a local event e2out. As the t2 transition corresponds 

to the T2 transition in the original component (Figure 6-2), which is attached with 

actions: action2, action3 and action4, and an output event v, the ActionMap maps the 

local event e1out to a 2-tuple ({action2, action3, action4}, v) accordingly. 

The rules verbalized above are specified in AsmL as Operation and Transition 

Rules. The operational rule Run of Component specifies the top-level component 

operations as a sequence of updates. The AsmL construct require asserts that the 

component’s input event port must have a valid event. The rule first consumes the event 

in the port and checks whether this event triggers further updates in the component. If the 

event does, the rule MapToLocalInputEvent returns the corresponding local event used to 

 156



trigger the FSM model; if not, a null value is returned and the reaction is completed. If a 

valid local event is returned, it activates the FSM model. The reaction of the FSM model 

returns a local output event. If the SEFSM component produces an output event in this 

reaction, the rule MapToGlobalOutputEvent maps the local event to the global output 

even, which is then stored in the output port of the component.       

abstract class Component 
  React () 
    require inPort.exist 
    step 
      inPort.exist := false       
      let localEvent as Event? = MapToLocalInputEvent (inPort.evnt) 
    step 
      if localEvent <> null then 
        step 
          let e as Event? = fsm.React (localEvent) 
        step 
          let globalEvent as Event? = MapToGlobalOutputEvent (e) 
        step 
          if globalEvent <> null then 
           outPort.evnt := globalEvent 
           outPort.exist := true 

The operational rule MapToLocalInputEvent maps the global event received by 

the component to a local event that activates the FSM model, and evaluates guards placed 

as nodes in the SDF model. First, GuardMap maps the received event to a set of        3-

tuples {(s, e, n)}, each of which can locate a transition in the component whose trigger 

event matches this event. A transition is an enabled one if it satisfies all the three 

conditions: (1) its trigger event matches the received event; (2) its source state is the 

current state; (3) the evaluation of its guard is true. 

GuardMap returns the set of all tuples that satisfy the first condition. Then, the 

rule enquires the current state of the FSM model using the operational rule 

GetCurrentState and removes those tuples whose first element does not refer to the 

current state. The third element in the tuple refers to a node in the SDF which is actually 

 157



a guard in the component. If this element is a null value, it indicates the corresponding 

guard is default true. The rule evaluates the guards and removes those tuples whose guard 

evaluation returns false. All the remaining tuples in the set then refer to the current 

enabled transitions in the component. If the size of this set is larger than 1, the rule 

reports a non-deterministic error; if the set is empty, the rule returns a null value due to 

no enabled transition; otherwise, the rule creates and returns a local input event to 

activate the FSM model.        

abstract class Component 
  MapToLocalInputEvent (e as Event) as Event? 
    step 
      if e.eventType in GuardMap then 
        step 
          var enabledTransitions as Set of (String, String, Node?) = 
GuardMap (e.eventType) 
        step 
          let s as State = fsm.GetCurrentState () 
        step 
          forall g in enabledTransitions 
            if g.First <> s.id then 
              remove g from enabledTransitions 
        step 
          forall g in enabledTransitions where g.Third <> null 
            if not EvaluateGuard (g.Third) then 
              remove g from enabledTransitions 
        step 
          if Size(enabledSet) > 1 then 
            error ("NON-DETERMINISM ERROR") 
          else 
            if Size (enabledSet) = 1 then 
              choose g in enabledSet 
                return Event (g.Second) 
            else 
              return null 
      else 
        return null 

The operational rule MapToGlobalOutputEvent maps a local event produced by 

the FSM model to a global output event, and executes actions placed as nodes in the SDF 

model. First, ActionMap maps a local output event to a 2-tuple ({n}, e). If the component 

 158



needs to execute actions in this reaction, {n} refers to a set of nodes in the SDF model 

which encapsulates those actions. If the component produces an output event in this 

reaction, e is the type of that output event; otherwise, e is a null value. If e is not a null 

value, the rule creates and returns the corresponding global output event; otherwise, the 

rule returns a null value.   

abstract class Component 
  MapToGlobalOutputEvent (e as Event) as Event? 
    step 
      if e.eventType in ActionMap then 
        step 
          let actionTuple as (Set of Node, String?) = 
ActionMap(e.eventType) 
        step 
          sdf.Run (actionTuple.First) 
        step 
          if actionTuple.Second <> null then 
            return Event (actionTuple.Second) 
          else 
            return null 

The semantics of SEFSM components is defined as the composition of the two 

semantic units: FSM-SU and SDF-SU.  We observe that this behavioral semantics 

specification is not limited to the SEFSM components. It actually specifies the semantics 

of a common behavioral category that captures the reactive computation behaviors. 

Therefore, we can consider the compositional semantics specification of SEFSM 

components as a new derived semantic unit, called Action Automaton Semantic Unit 

(AA-SU). We leverage this AA-SU in the following section to compositionally specify 

the semantics of SEFSM Systems. 

 

 

 

 159



Compositional Semantics Specification for SEFSM Systems 

A SEFSM system is composed of a set of components, which communicate with 

each other through event channels and data channels. The semantics of SEFSM systems 

is defined as the composition of AA-SU and SDF-SU. The compositional semantics 

specification for SEFSM includes: (1) an Abstract Data Model defining the structural 

composition <AC, AAA-SU, ASDF-SU, g1, g2>, where g1: AC→AAA-SU, and g2: AC→ASDF-SU are 

structural relation maps; and (2) Operations and Transformation Rules specifying the 

behavioral composition <RC , RAA-SU , RSDF-SU >.    

 

Structural Composition 

The structural composition defines the communication relationships among 

components, in terms of an event flow and a data flow. The event flow is constructed 

using event channels connecting the input/output event ports. The data flow is created by 

connecting the input/output data ports with data channels. As it is shown in Figure 6-7, 

we reuse again the SDF-SU semantic unit to model the interaction semantics for the data 

flow. It is important to note that although the SDF sections of the individual components 

together with the SDF interaction among the components are integrated into a single SDF 

model, this is still a model system. Due to the integration with the FSM sections, always 

only a subset of the SDF nodes is involved in a reaction of the SEFSM system. We chose 

not to declare the event flow interaction model as a semantic unit. Figure 6-7 presents the 

role of the AA-SU, SDF-SU and the event flow interactions in the SEFSM system model 

by restructuring the example in Figure 6-3. This new structure gives a much clearer 

 160



expression for the control dependency among components and the data dependency 

among computational functions (actions and guards).  

 

 

Figure 6-7: The compositional structure of the SEFSM system  
originally shown in Figure 6-3 

 

The AsmL abstract class System captures the top-level structure of a SEFSM 

system. The abstract property components is a set that holds all components in a system. 

The control dependency among components is expressed by a set of event channels 

contained in the abstract property channels. The data dependency among computational 

functions is described by a SDF model. Each component has a reference to this SDF 

model. The relationship between a component and the SDF model is defined by the AA-

SU (e.g. the abstract property GuardMap and ActionMap in the class Component).  

 161



class EventChannel 
  id      as String 
  srcPort as EventPort 
  dstPort as EventPort 
 
abstract class System 
  abstract property inPort     as EventPort 
    get 
  abstract property outPort    as EventPort 
    get 
  abstract property components as Set of Component 
    get 
  abstract property channels   as Set of EventChannel 
    get 
  abstract property sdf        as SDF 
    get 

 

Behavioral Composition 

The behavioral composition of the SEFSM system defines a system-level 

controller (or scheduler) that controls the executions and the order of the executions of 

components, event channels and the SDF model. The operational rule Runt of System 

specifies the top-level system operations as a sequence of updates. The AsmL construct 

require asserts that the system should have a valid input event. Firstly, the rule 

propagates the event in the input event port of the system along all the connected event 

channels to the destination ports that refer to the input event ports of components. In the 

meantime, the operational rule Initialize, defined in the SDF-SU, propagates the data 

tokens in the input ports of the SDF model along the connected data channels to the 

destination ports that refer to the input ports of nodes. The next step is to keep running 

until the operations inside the step cause no further state updates in the ASM (fixpoint). 

The stopping condition for an AsmL fixpoint loop is met if no non-trivial updates have 

been made in the step. Updates that occur to variables declared in ASMs that nested 

 162



inside this loop are not considered. An update is considered non-trivial if the new value is 

different from the old value. 

Within the loop, the rule first activates all the components who receive an event. 

The reactions of these components then produce new events. If new events are produced, 

the rule propagates them to the destination components and continues the loop; 

otherwise, the loop is stopped. Finally, the rule ClearPorts defined in SDF-SU is utilized 

to clear all the input data ports in the SDF model because the SEFSM system does not 

store the data generated in the last computation cycle.      

abstract class System 
  Run () 
    require inPort.exist 
    step 
      forall c in me.channels where c.srcPort.exist 
        c.dstPort.evnt := c.srcPort.evnt 
        c.srcPort.exist := false 
        c.dstPort.exist := true 
      ddf.Initialize () 
    step until fixpoint 
      step 
        forall comp in me.components where comp.inPort.exist 
          comp.React () 
      step 
        forall c in me.channels where c.srcPort.exist 
          c.dstPort.evnt := c.srcPort.evnt 
          c.dstPort.exist := true 
          c.srcPort.exist := false 
    step 
      ddf.ClearPorts () 

This behavioral semantics is actually not unique to SEFSM. Rather, it captures the 

common behavior of event-driven synchronous reactive systems. Therefore, we can 

consider the compositional semantics specification of SEFSM as a new derived semantic 

unit for event-driven synchronous reactive systems. Details of the specification clearly 

demonstrates the similarities between the semantics of SEFSM and well known event-

 163



driven synchronous reactive systems and opens up the possibility of utilizing a rich 

variety of analytical techniques that have been developed in that domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 164



CHAPTER VII 

 

RESULTS, CONCLUTIONS AND FUTURE WORK  

 

Results 

This section evaluates the semantic anchoring methodology from four aspects: the 

precision of the semantics specification, the validation support, the satisfaction of DSML 

designers, and the efficiency of the compositional semantic specification approach 

(CSSA). The evaluation is based on the empirical data from applying the semantic 

anchoring methodology to the definition of the EFSM semantics and the Ptolemy FSM 

domain semantics. In order to have a more thorough and objective evaluation on this 

methodology, more empirical data from real applications may be needed, but that is 

beyond the scope of this thesis. 

 

Precision of the Semantics Specification  

Originally, the EFSM semantics was informally described by the designers in 

English. Because of the ambiguity of natural languages, it is difficult for the designers to 

find the hidden errors and ambiguities in EFSM. After explicitly specifying the EFSM 

semantics in AsmL, the precision property of the AsmL specification expose some 

hidden errors and ambiguities in the original EFSM documents, some of which are listed 

here: 

• In the original EFSM definition there is no difference between an event port and a 

data port in a FSM. We find that the event port should be differentiated from the 

 165



data port. A FSM should have a single input event port and a single output event 

port, and may have multiple input and output data ports. 

• The original EFSM does not explicitly specify the composition semantics of 

FSMs. This is an error since two possible composition approaches, the parallel 

composition and the sequential composition, will generate totally different system 

behaviors.  

• The original EFSM does not explicitly specify the communication semantics 

among FSMs. This is also an error since two possible communication 

mechanisms, the synchronous communication and the asynchronous 

communication, will significantly change the system behaviors. 

• In the original EFSM, the input arguments in both a FSM and a computational 

function are required to have valid data when the FSM or the function is to be 

executed. However, this requirement is not true for a FSM. When a FSM is 

activated by an input event, its input arguments are not required to have valid 

data. 

• The original EFSM does not explicitly specify whether a transition allows a single 

action or multiple actions. If multiple actions are allowed, it should have means 

for users to specify the order of these actions.    

It is difficult for language designers to find errors and ambiguities when only a 

natural language is used to describe the semantics of a DSML. When the semantics of a 

DSML is precisely specified in AsmL, many of these errors and ambiguities are 

discovered. It is a meaningful improvement to find semantic faults in the early stages of 

the DSML lifecycle, since these faults will be very costly in the downstream stages. 

 166



Validation Support 

Another way to determine the correctness of a specification is to execute the 

specification directly. The AsmL specification is executable and allows DSML designers 

to test for errors in the specification. With the behavioral semantics specification of 

EFSM, the AsmL tools support the simulation and the test case generation of EFSM 

models, which allows designers to have a better understanding of the semantics and find 

possible errors by testing. 

 

Satisfaction of the EFSM Designers 

We have closely cooperated with the EFSM designers when specifying the EFSM 

semantics. Whenever we found any possible ambiguities or errors in the original EFSM 

documents, we discussed them with the designers to confirm that they are semantic 

faults. If they are, we also gave suggestions on how to correct them. Overall, the EFSM 

designers are satisfied with the AsmL semantics specification and are willing to accept 

our specification as the formal semantics definition for EFSM.  

 

Efficiency of the Semantic Anchoring Methodology  

We measure the efficiency of the semantic anchoring methodology from two 

aspects: the efficiency of the compositional semantics specification approach (CSSA) and 

the time effort of specifying the semantic anchoring rules. 

Both the CSSA and the transitional semantics specification approach (specifying 

semantics from scratch without reusing semantic units) are applied to define the 

semantics of EFSM. Table 7-1 shows the comparison between these two approaches. 

 167



Though the CSSA produces a larger specification, it requires less new lines of 

specification (LOS) and takes fewer man-hours because existing semantic units are 

reused. This experiment confirms the efficiency of CSSA compared with the traditional 

approach when a DSML has multiple behavioral aspects associated with different 

behavioral categories.    

 

Table 7-1: Comparison between the CSSA and the traditional approach 

Specification Approaches Total LOS New LOS Time (man-hours) 

CSSA ~ 400 ~ 150 ~ 20 

Traditional Approach ~ 300 ~ 300 ~ 30 

 

We measure the time effort for specifying the semantic anchoring rules by using a 

case study on the semantics definition of the Ptolemy FSM domain (Chapter IV). The 

time to specify the semantic anchoring rules, which map any Ptolemy FSM models to the 

AsmL data models, is about 24 man-hours, while the time to specify the AsmL 

specification is about 80 man-hours. Therefore, it is safe for us to estimate that specifying 

the semantic anchoring rules takes less time efforts than specifying the semantics directly 

in AsmL. When the semantic units are predefined, DSML designers only need to specify 

the semantic anchoring rules. Hence, in this situation, the semantic anchoring 

methodology reduces the overall semantics definition time. When DSML designers need 

to specify the semantics from scratch (in the worst case), the effort to specify the 

semantic anchoring rules is still worthwhile since the semantic anchoring rules enable the 

direct execution of domain models, which helps designers to test for errors in the 

specification. 

 168



 

Conclusion 

A survey on Model-Driven Software Engineering reveals a trend towards the 

adoption of DSMLs in model-based design. Among the many approaches, Model-

Integrated Computing (MIC) is a pioneer in advocating DSMLs. Though DSMLs have 

many successful applications, the lack of formal semantics definition is the main concern 

that slows down the adoption of DSMLs.  

While abstract syntax metamodeling alleviates part of this problem, explicit and 

formal semantics specification has been an unsolved problem whose significance has not 

even recognized. For instance, the UML SPT profile (UML Profile for Schedulability, 

Performance and Time) does not have precisely defined semantics [142], which creates 

possibility for semantic mismatch between design models and modeling languages of 

analysis tools. This is particularly problematic in the safety critical real-time and 

embedded systems domain, where semantic ambiguities may produce conflicting results 

across different tools. The research community has put forth much effort to define 

semantics of modeling languages by means of informal mathematical text [58] or formal 

mathematical notations [160]. In either case, precise semantics specification for DSMLs 

remains a challenge.  

This thesis proposes a semantic anchoring infrastructure for MIC, which includes 

a finite set of well-made semantic units and a formal MOF-based metamodeling 

framework. A semantic unit is a formal semantics specification defining the semantics of 

a behavioral category that captures the behavioral pattern of a class of systems. In the 

embedded software and systems domain, there exists a finite set of basic behavioral 

 169



categories such as Finite State Machine, Timed Automata, Discrete Event System and 

Synchronous Dataflow. A semantic unit is called a primary semantic unit if it specifies 

the semantics of a basic behavioral category. A finite set of primary semantic units are 

predefined in a formal specification language AsmL. 

We have also developed a semantic anchoring tool suite that enables the 

transformational specification of DSML semantics to semantic units. If the semantics of a 

DSML falls into the finite set of basic behavioral categories, its semantics can be defined 

by specifying the semantic anchoring rules to a primary semantic unit. When a DSML 

has multiple behavioral aspects associated with different behavioral categories, a single 

primary semantic unit can not capture the semantics of this DSML. Alternatively, we 

proposed a compositional semantics specification approach (CSSA), which defines the 

semantics of a heterogeneous DSML as the composition of primary semantic units. This 

approach can reduce the required effort from DSML designers and improve the quality of 

the specification.  

If the composed semantics specifies a behavior which is frequently used in system 

design, (for example composition of SDF interaction semantics with FSM behavioral 

semantics defines semantics for modeling signal processing systems [162]) the resulting 

semantics can be considered a derived semantic unit, which is built on primary semantic 

units, and could be offered up as one of the set of semantic units for future anchoring 

efforts.  

This thesis also includes three case studies for different purposes. The FSM 

domain in Ptolemy is used as a case study to explain the semantic anchoring 

methodology and to illustrate how the semantic anchoring tool suite is applied to design 

 170



DSMLs. The Timed Automata Semantic Unit (TASU) is defined as an example to 

illustrate how to specify semantic units. An industrial-strength modeling language, 

EFSM, is employed as a case study to explain the compositional semantics specification 

approach. 

 

Future Work 

Semantic anchoring describes an approach towards formal DSMLs and a solid 

semantic foundation for the MIC approach, but it is still in its early stages. Substantial 

further research is required to mature and concretize this approach. Some of the research 

directions are listed as following:  

• Identify the best underlying formal semantic framework, which is general enough 

to cover a broad range of behavioral categories and also has a strong tool support. 

The current semantic anchoring tool suite adopts ASM as the formal semantic 

framework, and, correspondingly, AsmL as the formal specification language. 

ASM has many advantages, but it can not specify continuous behaviors. Some 

other promising formal methods, such as PVS [161] and tagged signal model 

[149], may be considered.      

• Identify and specify an appropriate set of semantic units. In this thesis, we defined 

a semantic unit that captures a common semantics for Timed Automata based 

modeling languages. The semantic anchoring infrastructure needs to be filled with 

a set of well-made semantic units. In the embedded software and system domain, 

the semantic unit candidates may include semantic units for hybrid automata, 

synchronous languages, discrete event systems and synchronous dataflow. 

 171



• Integrate semantic units with the corresponding analysis and verification tools. A 

set of commercial or academic tools may support the simulation, analysis, 

modeling checking and verification of models whose behaviors satisfy certain 

behavioral categories. If the semantic units are integrated with the corresponding 

analysis tools, the semantic anchoring will not only define the semantics of 

DSMLs but also provide the tool-supported analysis of DSMLs.   

• Identify the composition patterns among semantic units and build a framework to 

automate the semantic unit composition. This thesis proposes a compositional 

semantics specification approach that defines the semantics of a heterogeneous 

DSML as a composition of semantic units. This approach moderates some 

specification efforts from DSML designers, but it still requires substantial 

specification work. Further research is needed to identify the composition patterns 

among semantic units and develop a framework to automate semantic unit 

composition.   

 

 

 

 

 

 

 

 

 

 172



REFERENCES 

 

[1] Gary Cernosek, Eric Naiburg, “The Value of Modeling”, IBM White Papers, June 
10, 2005. 

[2] Object Management Group, “Overview and Guide to OMG's Architecture”, OMG 
Document omg/03-06-01, June 21, 2003. 

[3] Object Management Group, “Model Driven Architecture (MDA)”, OMG 
Document ormsc/2001-07-01, July 9, 2001. 

[4] Object Management Group, “Common Object Request Broker Architecture”, 
http://www.omg.org/technology/documents/formal.corba_iiop.htm. 

[5] Object Management Group, “CORBA Component Model”, 
http://www.omg.org/technology/documents/formal/components.htm. 

[6] Sun Microsystems, “Java 2 Enterprise Edition (J2EE)”, http//java.sun.com/j2ee/. 

[7] Sztipanovits J., Karsai G., “Model-Integrated Computing”, IEEE Computer, pp. 
110-112, April, 1997. 

[8] Karsai G., Sztipanovits J., Ledeczi A., Bapty T., “Model-Integrated Development 
of Embedded Software”, Proceedings of the IEEE, Vol. 91, Number 1, pp. 145-
164, January, 2003. 

[9] Model-Integrated Computing, the web site 
http://www.isis.vanderbilt.edu/research/mic.html. 

[10] Ledeczi A., Bakay A., Maroti M., “Model-Integrated Embedded Systems”, in 
Robertson, Shrobe, Laddaga (eds) Self Adaptive Software, Springer-Verlag 
LNCS,  Vol. 1936, February, 2001. 

[11] The Generic Modeling Environment, http://www.isis.vanderbilt.edu/Projects/gme/ 

[12] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., 
Nordstrom G., Sprinkle J., Volgyesi P., “The Generic Modeling Environment”, 
Workshop on Intelligent Signal Processing (WISP 2001),  Budapest, Hungary, 
May, 2001. 

[13] Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle J., Karsai 
G., “Composing Domain-Specific Design Environments”, Computer, Vol. 34, No. 
11, pp. 44-51, November, 2001. 

[14] Karsai G., Maroti M., Ledeczi A., Gray J., Sztipanovits J., “Composition and 
Cloning in Modeling and Meta-Modeling”, IEEE Transactions on Control System 
Technology, Vol. 12, No. 2, March 2004. 

[15] Ledeczi A., Nordstrom G., Karsai G., Volgyesi P., Maroti M., “On Metamodel 
Composition”, IEEE CCA 2001, CD-Rom, Mexico City, Mexico, September 5, 
2001. 

 173

http://www.omg.org/technology/documents/formal.corba_iiop.htm
http://www.omg.org/technology/documents/formal/components.htm
http://www.isis.vanderbilt.edu/Projects/gme/


[16] The Graph Rewriting and Transformation,   
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp#GREAT. 

[17] Agrawal A., Karsai G., Shi F., “Graph Transformations on Domain-Specific 
Models”, ISIS Technical Report, ISIS-03-403, November, 2003. 

[18] Szemethy T., Karsai G., “Platform Modeling and Model Transformations for 
Analysis”, Journal of Universal Computing Science, 10, 10, pp. 1383-1408, 
November 23, 2004. 

[19] Sprinkle J., Karsai G., “A Domain-Specific Visual Language for Domain Model 
Evolution”, Journal of Visual Languages and Computing, vol. 15, no. 2, April, 
2004. 

[20] Agrawal A., “A Formal Graph-Transformation Based Language for Model-to-
Model Transformations”, PhD Dissertation, Vanderbilt University, Dept of EECS, 
August, 2004. 

[21] Neema S., Sztipanovits J., Karsai G., .Ken Butts, “Constraint-Based Design-
Space Exploration and Model Synthesis”, Proceedings of the Fifth ACM 
International Conference on Embedded Software (EMSOFT 2003), LNCS 2855, 
Philadelphia, PA, October, 2003. 

[22] Mohanty S., Prasanna V., Neema S., Davis J., “Rapid Design Space Exploration 
of Heterogeneous Embedded Systems using Symbolic Search and Multi-Granular 
Simulation”, Workshop on Languages, Compilers, and Tools for Embedded 
Systems (LCTES), Berlin, Germany, June, 2002. 

[23] Bryant R., “Symbolic Manipulation with Ordered Binary Decision Diagrams”, 
School of Computer Science, Carnegie Mellon University, Technical Report 
CMU-CS-92-160, July 1992.  

[24] The Mozart Project, http://www.mozart-oz.org/. 

[25] Magyari E., Bakay A., Lang A., Paka T., Vizhanyo A., Agrawal A., Karsai G., 
“UDM: An Infrastructure for Implementing Domain-Specific Modeling 
Languages”, The 3rd OOPSLA Workshop on Domain-Specific Modeling, 
OOPSLA 2003, Anahiem, California, October 26, 2003. 

[26] WOTIF, http://repo.isis.vanderbilt.edu/tools/get_tool?WOTIF. 

[27] Zonghua Gu, Shige Wang, Sharath Kodase, and Kang G. Shin, “An End-to-End 
Tool Chain for Multi-View Modeling and Analysis of Avionics Mission 
Computing Software”, 24th IEEE International Real-Time Systems Symposium 
(RTSS 2003), Cancun, Mexico. 

[28] Model-Driven Software Development, http://www.mdsd.info/ 

[29] Bran Selic, “The Pragmatics of Model-Driven Development”, IEEE Software, 
Vol. 20, issue 5, 2003.  

[30] Eclipse Modeling Framework, http://www.eclipse.org/emf/. 

[31] Software Factories, 
http://msdn.microsoft.com/vstudio/teamsystem/workshop/sf/default.aspx. 

 174

http://www.mozart-oz.org/
http://repo.isis.vanderbilt.edu/tools/get_tool?WOTIF
http://www.mdsd.info/


[32] Agile Modeling, http://www.agilemodeling.com/. 

[33] Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, Timothy Grose, 
“Eclipse Modeling Framework”, Published by Addison Wesley Professional, 
August, 2003. 

[34] Frank Budinsky, “The Eclipse Modeling Framework – Moving into Model-
Driven Development”, Dr. Dobb’s Journal August, 2005. 

[35] Object Management Group, “Meta Object Facility (MOF) 2.0 Core 
Specification”, ptc/04-10-15, October, 2003. 

[36] Gary Cernosek, “Next-Generation Model-Driven Development”, IBM White 
Paper, December 2004.    

[37] Graphical Editing Framework, http://eclipse.org/gef/. 

[38] S. Kelly, “Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM”, 
http://www.softmetaware.com/oopsla2004/kelly.pdf, access November 20, 2004. 

[39] Daniel Lee, “Display a UML Diagram using Draw2D”, Eclipse Corner Article, 
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html. 

[40] J. Greenfield and K. Short, “Moving to Software Factories”, Software 
Development Magazine, July 2004. 

[41] J. Greenfield and K. Short, S. Cook and S. Kent, “Software Factories: Assembling 
Applications with Patterns, Models, Frameworks and Tools”, Wiley. 2004. 

[42] Mauro Regio and Jack Greenfield, “A Software Factory Approach To HL7 
Version 3 Solutions”, Microsoft White Paper, June 2005. 

[43] Agile Modeling Documents, “Agile Model Driven Development”, 
http://www.agilemodeling.com/essays/amdd.htm. 

[44] Scott W. Ambler and Ron Jeffries, “Agile Modeling: Effective Practices for 
Extreme Programming and the Unified Process”, John Wiley & Sons, March 
2002. 

[45] Scott W. Ambler, “The Object Primer: Agile Model-Driven Development with 
UML 2.0”, Cambridge University Press, 3 edition, March 2004.  

[46] Scott W. Ambler, “Agile Database Techniques: Effective Strategies for the Agile 
Software Developer”, John Wiley & Sons, 2003. 

[47] Astels. D, “Test Driven Development: A Practical Guide”, Upper Saddle River, 
NJ: Prentice Hall, 2003.  

[48] Object Management Group, UML Project, http://www.uml.org/.  

[49] Peter Fritzson and Peter Bunus Modelica, “A General Object-Oriented Language 
for Continuous and Discrete-Event System Modeling and Simulation”, 
Proceedings of the 35th Annual Simulation Symposium, Apr., 2002. 

[50] The Hybrid System Interchange Format, 
http://www.isis.vanderbilt.edu/Projects/Mobies/downloads.asp#HSIF. 

 175

http://www.agilemodeling.com/
http://eclipse.org/gef/
http://www.softmetaware.com/oopsla2004/kelly.pdf
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html
http://www.agilemodeling.com/essays/amdd.htm


[51] James R Rumbaugh, Michael R. Blaha, William Lorensen, Frederick Eddy and 
William Premerlani, “Object-Oriented Modeling and Design”, Prentice Hall, 
Englewood Cliffs, 1991. 

[52] Grady Booch, “Object Solutions: Managing the Object-Oriented Project 
(Addison-Wesley Object Technology Series)”, Addisson Wesley, 1995. 

[53] I. Jacobson, “Object-Oriented Software Engineering: A Use Case Driven 
Approach (Addison-Wesley Object Technology Series)”, Addisson Wesley, 1994. 

[54] Object Management Group, “Unified Modeling Language Specification, v1.1”, 
January 1997.  

[55] Object Management Group, “UML 2.0 OCL final adopted specification”, ptc/03-
1014, 2003. 

[56] Object Management Group, “UML 2.0 Infrastructure”, ptc/04-10-14, November 
2004. 

[57] Object Management Group, “UML Superstructure Specification, v2.0”, 
formal/05-07-04, August 2005. 

[58] MoBIES Group, “HSIF semantics”, The University of Pennsylvania, 2002. 

[59] Agrawal A., Simon G., Karsai G., “Semantic Translation of Simulink/Stateflow 
models to Hybrid Automata using Graph Transformations”, International 
Workshop on Graph Transformation and Visual Modeling Techniques, Electronic 
Notes in Theoretical Computer Science, Vol. 109, December 2004. 

[60] Jonathan Sprinkle, “Generative Components for Hybrid Systems Tools”, Journal 
of Object Technology, Vol. 4, No. 3, 2005. 

[61] The Embedded System Modeling Language, 
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp?newlogin=2#ESM
L. 

[62] David C. Sharp, “Component-Based Product Line Development of Avionics 
Software”, First Software Product Lines Conference (SPLC), Denver, Colorado, 
August 2000.  

[63] Wing, J.M., “A Specifier's Introduction to Formal Methods”, Computer, Vol. 23, 
Issue 9, September 1990. 

[64] Hall, A., “Seven myths of formal methods”, IEEE Software, Vol. 7, Issue 5, 
September 1990. 

[65] Hanne Riis Nielson, Flemming Nielson, “Semantics with Applications: A Formal 
Introduction”, Wiley Professional Computing, Wiley, Revised Edition 1999. 

[66] Joseph E. Stoy, “Denotational semantics: The Scott-Strachey Approach to 
Programming Language Theory”, MIT Press, 1977. 

[67] C. A. R. Hoare, “An axiomatic basis for computer programming”, 
Communications of the ACM, Vol. 12, Issue 10, October 1969. 

 176



[68] Kenneth Slonneger and Barry L. Kurtz, “Syntax and Semantics of Programming 
Languages, A Laboratory Based Approach”, Addison-Wesley, 1995. 

[69] Formal Specification Languages, http://www.rbjones.com/rbjpub/cs/csfm02.htm. 

[70] E. Boerger and R. Staerk, “Abstract State Machines: A Method for HighLevel 
System Design and Analysis”, Springer-Verlag, 2003. 

[71] Dawes, John, “VDM-SL Reference Guide”, Pitman 1991. 

[72] C. B. Jones, “Systematic Software Development Using VDM”, Prentice-Hall 
1989. 

[73] Antoni Diller, Z An Introduction to Formal Methods, John Wiley & Sons Inc., 
1994. 

[74] Kevin Lano, “The B Language and Method: A Guide to Practical Formal 
Development”, Springer-Verlag, FACIT series, 1996. 

[75] J.L. TURNER & T.L. McCLUSKEY, “The Construction of Formla 
Specifications: An. Introduction to the Model-based and Algebraic Approaches”, 
McGraw Hill, 1994.  

[76] Joseph Goguen and Grant Malcolm, “Algebraic Semantics of Imperative 
Programs”, MIT Press, 1997. 

[77] J. V. Guttag and J. J. Horning, “A Larch shared language handbook”, Science of 
Computer Programming, Vol. 6, Issue 2, March 1986. 

[78] Jan de Meer, Rudolf Roth and Son Vuong, “Introduction to algebraic 
specifications based on the language ACT ONE”, Computer Networks and ISDN 
Systems, Vol. 23,  Issue 5, February 1992.  

[79] C.A.R. Hoare, “Communicating Sequential Processes”, Communications of the 
ACM Vol. 21, Issue 8, August 1978. 

[80] R. Milner, “A Calculus of Communicating Systems”, Springer-Verlag, 1982. 

[81] Yuri Gurevich, “Logic and the Challenge of Computer Science”, Chapter in 
Current Trends in Theoretical Computer Science, ed. E. Boerger, Computer 
Science Press, 1988. 

[82] Abstract State Machines - A Formal Method for Specification and Verification, 
http://www.eecs.umich.edu/gasm/. 

[83] Yuri Gurevich, "Evolving Algebras: An Attempt to Discover Semantics", Current 
Trends in Theoretical Computer Science, eds. G. Rozenberg and A. Salomaa, 
World Scientific, 1993. 

[84] Yuri Gurevich, "Evolving Algebras 1993: Lipari Guide", Specification and 
Validation Methods, ed. E. Börger, Oxford University Press, 1995. 

[85] Yuri Gurevich, "May 1997 Draft of the ASM Guide", University of Michigan 
EECS Department Technical Report CSE-TR-336-97. 

 177

http://www.rbjones.com/rbjpub/cs/csfm02.htm


[86] Yuri Gurevich, "Sequential Abstract State Machines Capture Sequential 
Algorithms", ACM Transactions on Computational Logic, Vol. 1, NO. 1, July 
2000. 

[87] Egon Börger and Robert Stärk, “Abstract State Machines: A Method for High-
Level System Design and Analysis”, Springer-Verlag, 2003. 

[88] Alan M. Turing, “On Computable Numbers with an Application to the 
Entscheidungsproblem”, Proc. London Math. Soc. (2), 42, 1937. 

[89] Yuri Gurevich and James K. Huggins, "The Semantics of the C Programming 
Language". Computer Science Logic (CSL'92), Springer-Verlag LNCS 702, 
1993. 

[90] Charles Wallace, "The Semantics of the C++ Programming Language", 
Specification and Validation Methods, ed. E. Börger, Oxford University Press, 
1995. 

[91] Egon Börger and Wolfram Schulte, "A Programmer Friendly Modular Definition 
of the Semantics of Java". In J. Alves-Foss, ed., "Formal Syntax and Semantics of 
Java", Springer-Verlag LNCS 1523, 1998. 

[92] Egon Börger and Wolfram Schulte, "A Practical Method for Specification and 
Analysis of Exception Handling: A Java/JVM Case Study", IEEE Transactions on 
Software Engineering, Vol. 26, NO. 10, October 2000. 

[93] Yuri Gurevich, Wolfram Schulte, and Charles Wallace, "Investigating Java 
Concurrency using Abstract State Machines", In Y. Gurevich, P. Kutter, M. 
Odersky, and L. Thiele, eds., Abstract State Machines: Theory and Applications, 
Springer-Verlag LNCS 1912, 2000. 

[94] Robert Stärk, Joachim Schmid, and Egon Börger, Java and the Java Virtual 
Machine: Definition, Verification, Validation, Springer-Verlag, 2001. 

[95] Philipp W. Kutter and Alfonso Pierantonio, "The Formal Specification of 
Oberon", Journal of Universal Computer Science, Vol. 3, NO. 5 (1997). 

[96] Marcin Mlotkowski, Specification and Optimization of the Smalltalk programs, 
Ph.D. Thesis, University of Wroclaw, 2001. 

[97] Egon Börger and Dean Rosenzweig, "A mathematical definition of full Prolog", 
In Science of Computer Programming, 1994. 

[98] Yuri Gurevich and Lawrence S. Moss, "Algebraic Operational Semantics and 
Occam", 3rd Workshop on Computer Science Logic (CSL'89), Springer-Verlag 
LNCS 440, 1990. 

[99] Egon Börger, Uwe Glässer, and Wolfgang Muller, "Formal Definition of an 
Abstract VHDL'93 Simulator By EA-Machines", In C. Delgado Kloos and P.T. 
Breuer, eds., Formal Semantics for VHDL, Kluwer Academic Publishers, 1995. 

[100] Hisashi Sasaki, Kazunori Mizushima, and Takeshi Sasaki, "Semantic Validation 
of VHDL-AMS by an Abstract State Machine", In Proceedings of IEEE/VIUF 

 178

http://www.ii.uni.wroc.pl/~marcinm/


International Workshop on Behavioral Modeling and Simulation (BMAS'97), 
Arlington, VA, October 20-21, 1997. 

[101] Zsolt Németh and Vaidy Sunderam, "A Formal Framework for Defining Grid 
Systems". In Proceedings of the Second IEEE/ACM International Symposium on 
Cluster Computing and the Grid, CCGRID2002, Berlin, May 2002.  

[102] Paula Glavan and Dean Rosenzweig, "Communicating evolving algebras", In E. 
Börger, H. Kleine Büning, G. Jäger, S. Martini, and M. M. Richter, editors, 
"Selected papers from CSL'92 (Computer Science Logic)", Springer-Verlag 
LNCS 702, 1993. 

[103] Yuri Gurevich and James K. Huggins, "The Railroad Crossing Problem: An 
Experiment with Instantaneous Actions and Immediate Reactions", In Computer 
Science Logic, Selected papers from CSL'95, ed. H.K. Büning, Springer-Verlag 
LNCS 1092, 1996. 

[104] Danièle Beauquier and Anatol Slissenko, "Verification of Timed Algorithms: 
Gurevich Abstract State Machines versus First Order Timed Logic", In Y. 
Gurevich, P. Kutter, M. Odersky, and L. Thiele, eds., Abstract State Machines -- 
ASM 2000, International Workshop on Abstract State Machines, Monte Verita, 
Switzerland, Local Proceedings, TIK-Report 87, Swiss Federal Institute of 
Technology (ETH) Zurich, March 2000. 

[105] Egon Börger and Giuseppe Del Castillo, "A formal method for provably correct 
composition of a real-life processor out of basic components (The APE100 
Reverse Engineering Study)", In Y. Gurevich and E. Boerger, "Evolving Algebras 
Mini-Course", Technical Report BRICS- NS-95- 4, BRICS, University of Aarhus, 
July 1995. 

[106] Egon Börger and S. Mazzanti, "A Practical Method for Rigourously Controllable 
Hardware Design", in J.P. Bowen, M.G. Hinchey, D. Till, eds., ZUM'97: The Z 
Formal Specification Notation, Springer-Verlag LNCS 1212, 1997. 

[107] Uwe Glässer and René Karges, "Abstract State Machine Semantics of SDL”, 
Journal of Universal Computer Science, Vol. 3, NO. 12, 1997. 

[108] ITU-T recommendation Z.100 annex F: SDL formal semantics definition. 
International Telecommunication Union, Geneva, 2000. 

[109] Yuri Gurevich, “Sequential Abstract State Machines Capture Sequential 
Algorithms”, ASM Transaction on Computational Logic, Vol. 1, NO. 1, July 
2000. 

[110] Andreas Blass and Yuri Gurevich, “Abstract State Machines Capture Parallel 
Algorithms”, ACM Transactions on Computational Logic, Vol. 4, Issue 4, 
October 2003.   

[111] Object Management Group, “What is OMG-UML and Why Is It Important?”, 
1997, http://www.omg.org/news/pr97/umlprimer.html. 

 179

http://www.omg.org/news/pr97/umlprimer.html


[112] William E. McUmber and B.H.C. Cheng, “A General Framework for Formalizing 
UML with Formal Languages”, Proceedings of the 23rd International Conference 
on Software Engineering, 2001. 

[113] Heinrich Hussmann, “Loose Semantics for UML/OCL”, In H. Ehrig, B.J.Krämer, 
A.Ertas (eds), Proceedings of the 6th World Conference on Integrated Design and 
Process Technology (IDPT 2002), Pasadena, California, June 23-28, 2002. 

[114] Egon Börger, Alessandra Cavarra and Elvinia Riccobene, “Modeling the 
Dynamics of UML State Machines”, Proceedings of the International Workshop 
on Abstract State Machines, Theory and Applications, Springer-Verlag, LNCS 
Vol. 1912, 2000. 

[115] Gihwon Kwon, “Rewrite rules and operational semantics for model checking 
UML statecharts”, In Andy Evans, Stuart Kent, and Bran Selic, editors, 
Proceedings of the Third International Conference on the Unified Modeling 
Language (UML 2000), Springer-Verlag, LNCS, Vol. 1939, 2000.   

[116] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel and Stefan Sauer, 
“Dynamic Meta Modeling: A Graphical Approach to the Operational Semantics 
of Behavioral Diagrams in UML”, Proceedings of 3rd International Conference 
on the Unified Modeling Language (UML2000), October, 2000. 

[117] Reiko Heckel and Stefan Sauer, “Strengthening UML Collaboration Diagrams by 
State Transformations”, 4th International Conference on Fundamental 
Approaches to Software Engineering (FASE 2001), Springer-Verlag, LNCS, Vol. 
2029, 2001. 

[118] D.Dranidis, K.Tigka and P.Kefalas, “Formal Modelling of Use Cases with X-
machines”, Proceedings of the 1st South-East European Workshop on Formal 
Methods (SEEFM’03), November 2003, Thessaloniki, Greece. 

[119] Gunnar Övergaard and Karin Palmkvist, “A Formal Approach to Use Cases and 
Their Relationships”, Selected papers from the First International Workshop on 
The Unified Modeling Language «UML»'98: Beyond the Notation, Springer-
Verlag, LNCS Vol. 1618, 1998.   

[120] Yang Dong and Zhang ShenSheng, “Using π-calculus to Formalize UML Activity 
Diagram”, 10th IEEE International Conference and Workshop on the Engineering 
of Computer-Based Systems (ECBS'03), 2003. 

[121] Börger, E., Cavarra, A. and Riccobene, E., “An ASM Semantics for UML 
Activity Diagrams”, Proceedings of the 8th international Conference on Algebraic 
Methodology and Software Technology, Springer-Verlag, LNCS Vol. 1816, 
2000. 

[122] Richters, M. and Gogolla, M, “On Formalizing the UML Object Constraint 
Language OCL”, Proceedings of the 17th international Conference on Conceptual 
Modeling, T. W. Ling, S. Ram, and M. Lee, Eds. Springer-Verlag, LNCS, Vol. 
1507, November 1998. 

 180



[123] J.-M. Bruel and R. B. France, “Transforming UML Models to Formal 
Specifications”, UML’98: The Unified Modeling Language, Mulhouse, France, 
Springer-Verlag, LNCS Vol. 1618, 1998. 

[124] S.-K. Kim and D. Carrington, “A Formal Mapping Between UML models and 
Object-Z Specifications”, ZB 2000: Formal Specification and Development in Z 
and B, York, UL, Springer-Verlag, LNCS Vol. 1878, 2000. 

[125] Meyer, E. and Souquières, J., “A Systematic Approach to Transform OMT 
Diagrams to a B Specification”, Proceedings of the Wold Congress on Formal 
Methods in the Development of Computing Systems-Volume I - Volume I, J. M. 
Wing, J. Woodcock, and J. Davies, Eds. Springer-Verlag, LNCS, Vol. 1708, 
1999. 

[126] R. Bourdeau and B. Cheng, “A Formal Semantics for Object Model Diagrams”, 
IEEE Transactions on Software Engineering 21(10), 1995. 

[127] Reggio, G., Cerioli, M. and Astesiano, E., “Towards a Rigorous Semantics of 
UML Supporting Its Multiview Approach”, Proceedings of the 4th international 
Conference on Fundamental Approaches To Software Engineering, LNCS, Vol. 
2029, Springer-Verlag, 2001. 

[128] M. Kyas, H. Fecher, F. S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag, T. 
Arons and H. Kugler, ” Formalizing UML Models and OCL Constraints in PVS”, 
International Workshop on Semantic Foundations of Engineering Design 
Languages (SFEDL'04). 

[129] Muan Yong Ng and Michael Butler, "Towards Formalizing UML State Diagrams 
in CSP," First International Conference on Software Engineering and Formal 
Methods (SEFM'03),  2003. 

[130] Luciano Baresi and Mauro Pezzè, “Petri Nets as Semantic Domain for Diagram 
Notations”, Electr. Notes Theor. Comput. Sci. 127(2): 29-44 (2005). 

[131] ITU-T Recommendation Z.100(11/99), Languages for telecommunications 
applications – Specification and Description Language (SDL), International 
Telecommunication Union, Geneva, 2000. 

[132] SDL Formal Semantics Project, ITU-T Study Group 10: SDL Semantics Group, 
http://rn.informatik.uni-kl.de/projects/sdl/. 

[133] Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-Pierre 
Krimm, Laurent Mounier and Joseph Sifakis, “IF: An intermediate representation 
for SDL and its applications”, SDL '99 The Next Millennium, 9th International 
SDL Forum, Montréal, Québec, Canada, June 1999. 

[134] J. Fischer and E. Dimitrov, “Verification of SDL Protocol Specifications Using 
Extended Petri Nets”, Proceedings of the Workshop on Petri Nets and Protocols 
of the 16th  International Conference on Applications and Theory of Petri Nets, 
Torino, Italy, 1995. 

 181

http://rn.informatik.uni-kl.de/projects/sdl/


[135] J.A. Bergstra and C.A. Middleburg, “Process Algebra Semantics of φ SDL”, 
Technical Report, UNU/IIST Report No. 68, UNU/IIST, The United Nations 
University, April 1996. 

[136] M. Broy, “Toward A Formal Foundation of the Specification and Description 
Language SDL”, Formal Aspects of Computing 3 (3), 1991. 

[137] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas Gritzner 
and Rainer Weber, “The Design of Distributed Systems - An Introduction to 
FOCUS”, Technical Report, TUM-I9202, Technische Universität München, 
January 1992. 

[138] S. Lau and A. Prinz, “BSDL: The Language--Version 0.2”, Technical Report, 
Department of Computer Science, Humboldt University, Berlin, August 1995. 

[139] U. Glässer and R. Karges, “Abstract state machine semantics of SDL”, Journal of 
Universal Computer Science 3 (12), 1997. 

[140] U. Glässer, “ASM Semantics of SDL: Concepts, Methods, Tools”, Proceedings of 
1st  Workshop of the SDL Forum Society on SDL and MSC (SAM 98), Berlin, 
Germany, June 29- July 1, 1998. 

[141] R. Gotzhein, B. Geppert, F. Rößler and P. Schaible, “Towards a New Formal SDL 
Semantics”, Proceedings of 1st  Workshop of the SDL Forum Society on SDL 
and MSC (SAM 98), Berlin, Germany, June 29- July 1, 1998. 

[142] Susan Graph, Ileana Ober: “How Useful is the UML profile SPT Without 
Semantics?”, Workshop on the usage of the UML profile for Scheduling, 
Performance and Time (SIVOES '04), Toronto Canada, 2004. 

[143] Kai Chen, Janos Sztipanovits, Sandeep Neema, Matthew Emerson and Sherif 
Abdelwahed, “Toward a Semantic Anchoring Infrastructure for Domain-Specific 
Modeling Languages,” Proceedings of the Fifth ACM International Conference 
on Embedded Software (EMSOFT’05), September 19-22, 2005, Jersey City, New 
Jersey, USA. 

[144] Kai Chen, Janos Sztipanovits, Sherif Abdelwahed and Ethan Jackson, “Semantic 
Anchoring with Model Transformations”, European Conference on Model Driven 
Architecture -Foundations and Applications (ECMDA-FA), November 7-10, 
Nuremberg, Germany, LNCS 3748. 

[145] Kai Chen, Janos Sztipanovits and Sherif Abdelwahed, "A Semantic Unit for 
Timed Automata Based Modeling Languages", Accepted by 12th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS 2006), 
April 4 - 7, 2006. 

[146] T. Clark, A. Evans, S. Kent and P. Sammut, “The MMF Approach to Engineering 
Object-Oriented Design Languages”, Workshop on Language Descriptions, Tools 
and Applications, April, 2001. 

[147] The abstract state machine language. 
http://www.research.microsoft.com/fse/asml. 

 182

http://www.research.microsoft.com/fse/asml


[148] Emerson M., Sztipanovits J., Bapty T., “A MOF-Based Metamodeling 
Environment”, Journal of Universal Computer Science, 10, October 2004, pp. 
1357-1382. 

[149] E. Lee and A. Sangiovanni-Vincentelli, “A denotational framework for comparing 
models of computation”, IEEE Trans. on Computer-Aided Design of Integrated 
Circuits and Systems, 17(12), 1998. 

[150] R. Alur and T. A. Henzinger, “Reactive modules”, Form. Methods Syst. Des., 
15(1), 1999, pp. 7–48. 

[151] The semantic anchoring tool suite. http://www.isis.vanderbilt.edu/SAT. 

[152] D. Harel, “Statecharts: A visual formalism for complex systems”, Science of 
Computer Programming, 8(3):231–274, 1987. 

[153] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state machines with 
multiple concurrency models”, IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, 18(6):742–760, June 1999. 

[154] B. Lee, Specification and Design of Reactive Systems. PhD thesis, University of 
California, Berkeley, 2000. 

[155] Rajeev Alur and David L. Dill, “A Theory of Timed Automata”, Journal of 
Theoretical Computer Science, 126 (2), 1994, pp. 183-235. 

[156] Kim G. Larsen, Paul Pettersson and Wang Yi, “UPPAAL in a Nutshell”, Springer 
International Journal of Software Tools for Technology Transfer 1(1+2), 1997. 

[157] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober and Joseph Sifakis, “Tools 
and Applications II: The IF Toolset”, In Flavio Corradinni and Marco 
Bernanrdo,editors, Proceedings of SFM'04 (Bertinoro, Italy), LNCS vol. 3185, 
Springer-Verlag, 2004. 

[158] Sergio Yovine, “Kronos: a Verification Tool for Real-time Systems”, Journal on 
Software Tools for Technology Transfer, 1, October 1997. 

[159] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine, 
“Symbolic Model Checking for Real-time Systems”, Journal of Information and 
Computation, 111(2), 1994, pp. 193-244.  

[160] G. Hamon and J. Rushby. “An Operational Semantics for Stateflow”, In 
Fundamental Approaches to Software Engineering: 7th International Conference, 
Springer-Verlag, 2004, pp. 229–243. 

[161] Judy Crow, Sam Owre, John Rushby, N. Shankar, and Dave Stringer-Calvert, 
“Evaluating, Testing, and Animating PVS Specifications”, CSL Technical Report, 
March 30, 2001. 

[162] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef 
Ludvig, Stephen Neuendorffer, Sonia Sachs, Yuhong Xiong, “Taming 
Heterogeneity The Ptolemy Approach”, Proceedings of the IEEE, volume 91, 
pages 127–144, 2003. 

 183

http://www.isis.vanderbilt.edu/SAT


[163] Gossler, G., Sifakis, J., “Composition for Component-Based Modeling”, Science 
of Computer Programming, vol. 55, 2005. 

[164] Balarin, F., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A. L., Sgroi, M., 
and Watanabe, Y., “Modeling and Designing Heterogeneous Systems”, In 
Concurrency and Hardware Design, Advances in Petri Nets Lecture Notes In 
Computer Science, vol. 2549, pages 228-273, Springer-Verlag, London, 2002. 

[165] S. Birla, S. Wang, S. Neema, and T. Saxena, “Addressing cross-tool semantic 
ambiguities in behavior modeling for vehicle motion control”, In Automotive 
Software Workshop 2006, San Diego, CA, April 2006. 

 
 
 
 
 
 

 184


