
E-THEORY FOR Lp ALGEBRAS AND THE DUAL NOVIKOV CONJECTURE

By

Fan Fei Chong

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

August, 2014

Nashville, Tennessee

Approved:

Ph.D. Committee Members:

Professor Gennadi Kasparov (Chair)

Professor Guoliang Yu

Professor Ioana Suvaina

Professor Kalman Varga



ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my advisor, Professor Gennadi Kasparov. Without his

patient guidance and exhortation, this project would not have been possible. I would also like to thank all

the faculty members of my dissertation committee for your careful reading of my work and the insightful

questions you raised. Special thank to my loving wife Teng Sun for your unfailing support at my neediest

moments. Your many sacrifices will always be in my heart.

Last but not least, all thanks go to my Heavenly Father, who in all things works for the good of those

who have been called for His purpose. Thank You for bringing me safely through this journey.

ii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Chapter

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II.1 Banach space theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II.2 K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

III. E-THEORY FOR LP-ALGEBRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

III.1 Asymptotic Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
III.2 Tensor Products and Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
III.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
III.4 Additive Structure and Definition of E(A,B) . . . . . . . . . . . . . . . . . . . . . . . . 10
III.5 Existence of Quasicentral Approximate Unit . . . . . . . . . . . . . . . . . . . . . . . . 11
III.6 Asymptotic morphism associated to an extension. . . . . . . . . . . . . . . . . . . . . . 14
III.7 Bott Periodicity and Exact Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
III.8 Mayer-Vietoris Exact Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

IV. APPLICATION: DUAL NOVIKOV CONJECTURE. . . . . . . . . . . . . . . . . . . . . . . 32

IV.1 Equivariant E-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
IV.2 RE-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
IV.3 Clifford algebras of Lp space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
IV.4 Banach algebra of a lp space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
IV.5 Dual Novikov Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



CHAPTER I

INTRODUCTION

Kasparov [Kas81] invented KK-theory, a bivariant K-theory for C∗-algebra which generalizes Hirzebruth-

Atiyah’s topological K-theory and its dual theory (K-homology), at the beginning of 1980s. Since its in-

troduction, the theory has found deep applications in geometry and topology, including index theorems,

homotopy invariance of higher signatures (e.g. Novikov conjecture), problem of positive scalar curvature

and the Baum-Connes Conjecture[Bla98, Section 24].

As of today, there are various variants of the bivariant K-theory available, each invented with its appli-

cation in mind and therefore comes with its limitation. In the study of Baum-Connes Conjecture (which is a

priori a result concerning K-theory of reduced group C∗-algebras), it was discovered that it may be advanta-

geous to cast the problem in a slighly more general setting, i.e. to consider not only unitary representations

but also isometric representations in Banach spaces. This moves us from the realm of C∗-algebras to the

more general realm of Banach algebras. Lafforgue [Laf02] introduced Banach KK-theory in his 2002 paper

and got good results. Nevertheless, the generality of his theory comes at a price - it is lacking some essential

features of bivariant K-theory, namely product and exact sequences.

In this paper, we develop a bivariant theory for Banach Lp-algebras. Our theory is closely related to

Connes-Higson’s E-theory (which was defined for C∗-algebras), but also contains construction specifically

designed to overcome challenges in this more general setting. (C∗-algebra can be considered as algebra of

operators on Hilbert space, hence is a L2-algebra). We showed that our theory has product, Bott periodicity,

six-term and Mayer-Vietoris exact sequences. We also proved a result related to Novikov Conjecture with

our theory. The approach to the Novikov conjecture that we use has its origin in two joint works of Kasparov

and Yu [KY05; KY12]. In [KY12], the Strong Novikov conjecture was proved for groups acting on Lp-

spaces. What we proved in this paper is for (Dual) Lp Novikov conjecture - a related but different conjecture.

The relation will be explained in greater detail in the last section of this paper.
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CHAPTER II

PRELIMINARIES

II.1 Banach space theory

The first concept we would like to recall is that of Fredholm operator and Fredholm Index. It is a great

example of the interaction between operator theory and algebraic topology. We will follow the notation in

[Pal65].

Definition II.1.1. If X and Y are Banach space, an element T of L(X ,Y ) (Banach algebra of bounded linear

operator from X to Y ) is called a Fredholm operator from X to Y if

1. kerT = T−1(0) is finite dimensional;

2. cokerT = Y/T (X) is finite dimensional.

We denote the set of Fredholm operators from X to Y by F(X ,Y ) and define the index function:

ind : F(X ,Y )→ Z

by ind(T ) = dimkerT −dimcokerT .

Theorem II.1.2 (Atkinson’s Theorem). [Pal65, Thm 2] Let X and Y be Banach spaces, T ∈ L(X ,Y ) is a

Fredholm operator if and only if T is invertible modulo compact operator.

More precisely, if there exists S,S′ ∈ L(Y,X) such that ST − IX ∈ K(X ,X) and T S′− IY ∈ K(Y,Y ) then

T ∈ F(X ,Y ). Conversely, if T ∈ F(X ,Y ), there is in fact S ∈ L(Y,X) such that ST − IX and T S− IY have

finite rank, and hence belong to K(X ,X) and K(Y,Y ) respectively. (compact operators are by definition

norm limits of finite rank operators)

A corollary of the above characterization of Fredholm operator is the following:

Corollary II.1.3. If T ∈ F(X ,Y ) and k ∈ K(X ,Y ), then T + k ∈ F(X ,Y ). If we have additionally that

S ∈ F(Y,Z), then ST ∈ F(X ,Z).

What gives Fredholm operator an algebraic topology taste is the following result about the stability of

Fredholm index:

Theorem II.1.4. [Pal65, Thm 4] ind(T + k) = ind(T ) for any T ∈ F(X ,Y ) and k ∈ K(X ,Y ). We have

also that ind : F(X ,Y )→ Z is constant on a continuous path of in F(X ,Y ) and hence is constant on each

component of F(X ,Y ).

The following classical result from functional analysis will be useful for proving the boundedness of

infinite sum of projections in the construction of quasicentral approximate unit for K in the section of Bott

Periodicity.
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Theorem II.1.5 (Uniform Boundedness Principle). Let X be a Banach space and Y be a normed vector

space. Suppose that F is a collection of continuous linear operators from X to Y . If for all x in X one has

supT∈F ‖T (x)‖Y < ∞ then supT∈F ‖T‖B(X ,Y ) < ∞.

Our construction of algebra A (X) in Section IV.4 requires that the Banach space X possess an increasing

sequence of finite dimensional subspaces with some good property. If X is a Hilbert space, we will just take

the linear span of the first n elements of the orthonormal basis. In general Banach spaces, it is not so easy to

determine such a sequence. Here we would like to introduce the notion of Schauder Basis for Banach space.

Definition II.1.6. [Sch27] Let V denote a Banach space over the field F .A Schauder basis is a sequence

{en} of elements of V such that for every element v ∈V there exists a unique sequence {αn} of scalars in F

so that

v =
∞

∑
n=0

αnen

where the convergence is understood with respect to the norm topology. A Schauder basis {en} is uncondi-

tional if there exists a constant C such that

‖
n

∑
k=0

εkαkek‖V ≤C‖
n

∑
k=0

αkbk‖V

for all integer n, all scalar coefficients {αk} and all signs εk =±1.

Not all Banach space has a Schauder basis, but most of the classical spaces do. The well-known example

of Lp(0,1) for p ∈ (1,∞) has an unconditional (Schauder) basis [Sch] consisting of Haar functions defined

below:

Definition II.1.7. Let T = {(n, j) : n ∈ N0, j = 0,1, ...,2n−1}∪{0}. We will define the Haar basis (ht)t∈T

and the normalized Haar basis (h(p)
t )t∈T in Lp[0,1] as follows:

1. h0 = h(p)
0 ≡ 1 on [0,1]

2. For n ∈ N0 and j = 0,1,2, . . .2n− 1, h(n, j) is defined as subtracting the characteristic function of

[( j+ 1
2)2
−n,( j+1)2−n) from that of [ j2−n,( j+ 1

2)2
−n)

3. h(p)
(n, j) = 2n/ph(n, j)

II.2 K-Theory

There are at least three different types of K-theory: topological, operator algebraic, algebraic. We will be

most interested in the second type in this paper. It can be viewed as some sort of ’homology’ theory on the

category of (local) Banach algebra. K-theory for Operator Algebra has its root in the topological K-theory (a

cohomological theory on the space) by Atiyah-Hirzebruch. Let us first recall the central definition of latter.

If X is a compact Hausdorff space, then K0(X) is the abelian group generated by the isomorphism classes

of complex vector bundles over X , subject to the relations:

[E]+ [F ] = [E⊕F ]
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for vector bundles E and F . A (finite-dimensional) complex vector bundles over X may be described as

the range of a continuous projection-valued map p : X → Mn(C) for some n sufficiently large. (p(x)2 =

p(x) ∀x ∈ X) By a standard classification theorem, in the limit as n→ ∞, there is a one-to-one corre-

spondence between isomorphism classes of vector bundles over X and homotopy class of projection-valued

functions. So, K0(X) may be reformulated as the abelian group generated by homotopy classes of maps

from X to the space of projections in Mn(C), as n runs over the natural numbers. Since a continuous map

from X to the space of projections in Mn(C) is equivalent to a projection in the Banach algebra Mn(C(X))

of n× n matrices over C(X). It is then natural to introduce the following definition of K-theory for unital

Banach algebra.

Definition II.2.1. [HR01, Def 4.1.1] Let A be a unital Banach algebra. Denote by K0(A) the abelian group

with one generator, [p], for each projection p in each matrix algebra Mn(A), and the following relations:

(a) if both p and q are projections in Mn(A), for some n, and if p and q are joined by a continuous path of

projections in Mn(A), then [p] = [q],

(b) [0] = 0, for any size of (square) zero matrix, and

(c) [p]+ [q] = [p⊕q], for any sizes of projection matrices p and q

K0(A) has the following properties: [Bla98, Sec 5.2, 5.6]

1. FUNCTORIALITY: If φ : A→ B is a continuous homomorphism of Banach algebras, then φ induces

a map φ∗ : K0(A)→ K0(B) by applying φ coordinate-wise to elements in M∞(A) = lim
→

Mn(A)

2. HOMOTOPY INVARIANCE: If φ ,ψ : A→ B are homotopic, then φ(e)∼h ψ(e) for any idempotents

in M∞(A) and hence φ∗ = ψ∗.

3. DIRECT SUMS: If A = A1⊕A2, then K0(A) = K0(A1)⊕K0(A2).

4. INDUCTIVE LIMITS: If A = lim
→

(Ai,φi j), then K0(A)∼= lim
→

K0(Ai)

If A is non-unital, then we define K0(A) to be the kernel of π∗ induced by the map π : A+→ C where A+ is

the unitization of A.

The functor K0 is not exact, but is HALF-EXACT.

Theorem II.2.2. [Bla98, Thm 5.6.1] If J is a closed two-sided ideal in A, then the sequence K0(J)
i∗−→

K0(A)
π∗−→ K0(A/J) is exact in the middle, i.e. ker(π∗) = im(i∗).

This will later allow us to convert a short exact sequence of Banach algebras into a long exact sequence

of K-theory groups.

To obtain a homology theory on category of Banach algebras, = [ we would need the higher K-groups.

Let the suspension of A, denoted ΣA, be C0((0,1),A) the algebra of continuous functions from (0,1) to A

which vanishes at the endpoints. We define Kn(A)=K0(Σ
nA). It can be shown that K1(A) can also be defined

by the group of homotopy classes of invertible elements in matrix algebra over A+ which = 1n mod Mn(A).
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We can define a connecting map ∂ : K1(A/J)→ K0(A) which makes a long exact sequence

K1(J)
i∗−→ K1(A)

π∗−→ K1(A/J) ∂−→ K0(J)
i∗−→ K0(A)

π∗−→ K0(A/J)

∂ is called the index map because in the special case of A=B(H),J =K(H), and K0(K) is identified with Z
in the standard way, the map ∂ is exactly the map which sends a unitary in the Calkin algebra to its Fredholm

index. We can obtain connecting maps from Kn+1(A/J) to Kn(J) for each n by suspension, and an infinite

long exact sequence:

· · · ∂−→ Kn(J)
i∗−→ Kn(A)

π∗−→ Kn(A/J) ∂−→ Kn−1(J)
i∗−→ ·· · π∗−→ K0(A/J).

Last but not least, we have to mention the important result of Bott Periodicity, which roughly says that

only K0 and K1 groups matter because the higher K-groups are all duplicates of them.

Theorem II.2.3 (Bott Periodicity). [Bla98, Thm 9.2.1] K0(A) is naturally isomorphic to K1(SA) and hence

to K2(A) via the Bott homomorphism:

βA : K0(A)→ K1(SA)

defined by βA([e]− [pn]) = [ fe f−1
pn

] where fe(z) = ze+(1− e) ∈ C(S1,GLn(A+)) for any idempotent e ∈
Mn(A+).
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CHAPTER III

E-THEORY FOR LP-ALGEBRAS

III.1 Asymptotic Morphisms

Definition III.1.1. Let A and B be Banach algebras. A pre-asymptotic morphism from A to B is a family

{φt}(t ∈ [1,∞)) of maps from A to B with the following properties:

(i) t→ φt(a) is continuous and norm-bounded for every a ∈ A

(ii) The set {φt} is asymptotically linear and multiplicative:

lim
t→∞
||φt(a+λb)− (φt(a)+λφt(b))||= 0

lim
t→∞
||φt(ab)− (φt(a)φt(b))||= 0

for all a,b ∈ A, λ ∈ C.

From the definition above, we see that a pre-asymptotic morphism from A to B defines an algebra homo-

morphism from A to B∞ = Cb([1,∞),B)/C0([1,∞),B). Unlike in the C∗−algebra case, we do not have the

map A to B∞ automatically continuous in the Banach algebra case. For technical reason regarding compo-

sition, we will consider only pre-asymptotic morphisms where the induced map from A to B∞ is continuous

(and is hence a Banach algebra homomorphism). We call this type of maps asymptotic morphisms.

Two asymptotic morphisms {φt} and {ψt} are equivalent if for all a ∈ A

lim
t→∞
||φt(a)−ψt(a)||= 0

A homotopy between asymptotic morphisms {φ (0)
t } and {φ (1)

t } from A to B is an asymptotic morphism

{φt} from A to C([0,1],B) such that the evaluations of φt(a) at 0 and 1 are equal to φ
(0)
t (a) and φ

(1)
t (a)

respectively for all a and t.

Denote the set of homotopy classes of asymptotic morphisms from A to B by [[A,B]]

Two asymptotic morphisms define the same Banach algebra homomorphism if and only if they are

equivalent. Conversely, if φ : A→ B∞ is a Banach algebra homomorphism, any set-theoretic cross section

for φ is an asymptotic morphism from A to B, and any two such are equivalent.

By Bartle-Graves Selection Theorem [Micr, Prop 7.2], we get a continuous section 1 to the continu-

ous, onto quotient map from Cb([1,∞),B) to B∞. Composing this with the Banach algebra homomorphism

defined by any asymptotic morphism, we obtain a continuous map A to Cb([1,∞),B). This gives an asymp-

totic morphism between A and B . An asymptotic morphism coming from a continuous map from A to

Cb([1,∞),B) is called uniform in the literature ([Bla98, p. 25.1.5c], [Con94, Appendix B, β ]). The above

1not necessarily linear, but it can be chosen to be homogeneous of degree 1, i.e. f (αx) = α f (x) for all scalars α . This fact is
important for computation in the Long Exact Sequence section.
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argument shows that every asymptotic morphism is equivalent to a uniform asymptotic morphism. This is

an important property that is needed in the definition of composition of asymptotic morphisms.

III.2 Tensor Products and Suspensions

We will be mostly interested in Lp-algebras in this work. A is an Lp-algebra means that A is closed subalgebra

of L (Lp(Z,µ)), the Banach algebra of all bounded linear operators on Lp(Z,µ), Banach space of all p-

integrable functions on Z.

Thanks to the following special case of a result of Beckner[Bec75], we may define the Lp-tensor product

for two Lp-algebras. Let Si ∈L (Lp(Zi,µi)). For fi ∈ Lp(Zi,µi), define S1⊗S2( f1⊗ f2) := S1( f1)⊗S2( f2),

we have:

Proposition III.2.1. ‖S1⊗S2 : Lp(Z1,µ1)⊗Lp(Z2,µ2)→ Lp(Z1,µ1)⊗Lp(Z2,µ2)‖= ‖S1‖‖S2‖

This in particular means that the algebraic tensor product of two Lp-algebras (Ai) may be identified as

a subalgebra of L (Lp(Z1× Z2,µ1× µ2)). Take completion with respect to this norm and we obtain the

Lp-tensor products of Lp-algebras.

Unlike in the C∗-algebra case, where all cross norms on tensor products of two C∗-algebras with one

of them nuclear coincides. This is in general not true for Banach algebras or Lp-algebras. We choose the

Lp-tensor product to make our bounded estimate for ”connecting asymptotic morphism” work. There is

however a positive result that will be useful later:

Lemma III.2.2. A⊂L (Lp(Z)) is a Lp-algebra for σ -finite Z, then Σ⊗A⊂L (Lp((0,1)×Z)) is isometri-

cally isomorphic to ΣA =C0((0,1),A).

Sketch of proof. We will use the elementary result that for Y,Z σ -finite measure space, we have Lp(Y×Z)∼=
Lp(Y,Lp(Z)). Noticing that the representation of C0(Y ) and of L (Lp(Z)) commute with each other, we may

then apply Lemma III.6.3 and obtain the said result.

There is a tensor product functor on the homotopy category of asymptotic morphisms which associate

to the asymptotic morphisms φi (from Ai to Bi, i = 1,2) a tensor product asymptotic morphism from A1⊗A2

to B1⊗B2 where φ1⊗φ2(a1⊗a2) = φ1(a1)⊗φ2(a2). A reference of this may be found in [Bla98, p. 25.2].

In particular, if we denote by Σ the algebra C0(0,1), then for any φ , an asymptotic morphism from A to

B, there is a well-defined suspension Σφ = idΣ⊗φ from ΣA = Σ⊗A to ΣB = Σ⊗B

III.3 Composition

We will define the composition of asymptotic morphisms. The key result here is essentially the same as in

[Bla98, p. 25.3.1]. The analogous statement for Banach algebra is posted below for the convenience of the

reader:

Theorem III.3.1. a) A, B, C are separable Banach algebras, and {φt}, {ψt} are uniform asymptotic mor-

phisms from A to B and B to C respectively, then for any increasing [1,∞) to [1,∞) function r growing

7



sufficiently quickly the family {ψr(t) ◦φt} is an asymptotic morphism from A to C.

b) The resulting asymptotic morphism depends up to homotopy only on the homotopy class of {φt} and {ψt},
and thus defines a ”composition” [[A,B]]× [[B,C]]→ [[A,C]].

c) Composition is associative, commutes with tensor products, and agrees with ordinary composition for

homomorphisms.

The bulk of the agrument in the proof for this result translates just fine to the Banach algebra case.

Nevertheless, there are also two major differences.

The first one is that the automatic norm-decreasing property for ∗-homomorphisms between C∗-algebras

got replaced by requiring the induced homomorphism between Banach algebras to be continuous. We will

define some notations, state two elementary lemmas and give an example how the new requirement may be

used in the proof of this result.

Notation 1. 1. Unless otherwise specified, A and B are always separable Banach algebras. Let B∞ denote

the quotient algebra Cb([1,∞),B)/C0([1,∞),B).

2. Let f ∈Cb([1,∞),B). We will denote the norm of f in Cb([1,∞),B) and the norm (of its equivalence

class) in B∞ by || f ||b and || f ||∞ respectively.

3. Let {φt} be an asymptotic morphism from A to B. We will denote the induced map from A to

Cb([1,∞),B) by φ̃ 2. The induced Banach algebra homomorphism from A to B∞ will be denoted

by φ .

With the notations defined, we will introduce two lemmas which are useful in understanding the proof

for Theorem III.3.1.

Lemma III.3.2. Let f ∈Cb([1,∞),B), then || f ||∞ = limsupt→∞ || f (t)||

The proof amounts to an elementary argument examining the definition for norm of quotient space and

limsup and realizing both as infimum. The second lemma deals with the property of uniform asymptotic

morphisms. Notice that, norm of the induced Banach algebra homomorphism ||φ || is involved in the third

property below.

Lemma III.3.3. Let {φt} : A → B be a uniform asymptotic morphism, i.e. the induced map φ̃ : A →
Cb([1,∞),B) is continuous. Then for any K, compact subset of A, given any ε > 0, there exists t0 > 0

such that

1. ||φt(x+λy)−φt(x)−λφt(y)||< ε

2. ||φt(xy)−φt(x)φt(y)||< ε

3. ||φt(x)||< ||φ || · ||x||+ ε

for all x,y ∈ K, t > t0 and |λ | ≤ 1

2Note that φ̃ is not necessarily continuous. When it is, we call {φt} a uniform asymptotic morphism.
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Proof for property 3 uses Lemma III.3.2, continuity of φ and φ̃ and a standard argument involving taking

finite subcover of an open cover of the compact set K. Proof for the other two properties are similar, just

that the fact {φt} being an asymptotic morphism is used in place of Lemma III.3.2.

The full argument may be found in [Bla98, p. 25.3.1]. It starts with first choosing a dense σ -compact

subalgebra of A (e.g. the polynomials in a countable generating set). Write A0 = ∪Kn, where Kn is compact,

Kn +Kn ⊂ Kn+1, KnKn ⊂ Kn+1, λKn ⊂ Kn+1 for |λ | ≤ n. Inductively choose tn ≥ tn−1, tn ≥ n, such that φt

satisfies the conditions of the previous lemma with ε = 1/n and K = Kn for all t ≥ tn. Let K′n = {φt(a) :

a ∈ Kn, t ≤ tn+1}. K′n is a compact subset of B. Let K′′1 = K′1, and inductively let K′′n+1 = K′n+1 ∪ (K′′n +

K′′n )∪ (K′′n K′′n )∪ (λK′′n : |λ | ≤ n}. Choose rn such that ψt satisfies the conditions of the previosu lemma with

ε = 1/n and K = K′′n+2. Then let r(t) be any increasing function with r(tn)≥ rn for all n. We provide here a

proof for the boundedness of the composition {ψr(t) ◦φt(x)} for a fixed x ∈ A0, which was not needed in the

C∗-algebra case.

First, the continuity of {ψr(t) ◦φt(x)} in t is easy to see. After we have continuity, because continuous

image of compact set is compact (in particular bounded), we just need to show

Claim 1. limsupt ψr(t) ◦φt(x)< ∞

Proof. Take x ∈ A0, then x ∈ Kn for some n. Given ε > 0, there exists N > n such that ||ψ||+1
N < ε . By

definition of {ti}, we have ||φt(x)|| ≤ ||φ || · ||x||+1/N for all t > tN .

For any i ∈ N, when t ∈ (tN+i−1, tN+i], we have φt(x) ∈ K′N+i−1 ⊂ K′N+i+1. By the defining property of r, we

have r(t)≥ r(tN+i−1)≥ rN+i−1, therefore

||ψr(t) ◦φt(x)|| ≤ ||ψ|| · ||φt(x)||+1/(N + i−1)

≤ ||ψ|| · ||φ || · ||x||+ ||ψ||+1
N

≤ ||ψ|| · ||φ || · ||x||+ ε

This proof actually shows more than what was claimed. By Lemma III.3.2, we have

||(ψ ◦φ)3(x)||∞ ≤ ||ψ|| · ||φ || · ||x|| for x ∈ A0

This shows that {ψr(t) ◦ φt} defines a continuous algebra homomorphism from A0 to C∞ with norm

less than or equal to ||ψ|| · ||φ ||, hence extends to a Banach algebra homomorphism from A to C∞. This

is the crucial bit needed to extend the composition of two uniform asymptotic morphisms from the dense

subalgebra A0 to the whole algebra A.

3for lack of a better notation, we are using ψ ◦ φ to denote the algebra homomorphism A→ C∞ induced by {ψr(t) ◦ φt} the
composition of the asymptotic morphisms
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III.4 Additive Structure and Definition of E(A,B)

In this section, we will explore two possible notions of addition for asymptotic morphisms. We will arrive at

a definition of E(A,B) which gives an additive strucure on asymptotic morphisms. From this point onward,

K will always mean K(Lp(Z,µ)) - the Banach algebra of compact operators on the Lp space of p-summable

functions on the space Z with a σ -finite measure µ .

The first notion is for [[A,B⊗K]]. To define it, we will first fix an isomorphism M2⊗K ∼= K. For

example, we can take the one induced from isomorphism Lp[0,1]⊕ Lp[0,1] ∼= Lp[0,1/2]⊕ Lp[1/2,1] ∼=
Lp[0,1] where the first isomorphism is obtained by a ”domain-squeezing” map.

Then given any two asymptotic morphisms φ ,ψ : A→ B⊗K, we may take the orthogonal sum

A→ (B⊗K)⊕ (B⊗K) ↪−→M2(B⊗K)∼= B⊗K

The resulting sum is well-defined up to homotopy and makes [[A,B⊗K]] an abelian semi-group. It is in

general not a group.

The second notion is for [[A,ΣB]]. Note that the interval (0,1) can be continuously deformed to any of

its open sub-interval. Hence given any two asymptotic morphisms φ ,ψ : A→ ΣB, by modifying the S part

of the map alone, we may obtain a homotopy to asymptotic morphisms φ ′,ψ ′ ”supported” on (0,1/2) and

(1/2,1) respectively. A sample homotopy on the S part is as follows:

f (x) ∈ S =C0(0,1); then for s ∈ [0,1], fs(x) =

{
f (x · 1

0.5(s+1)) : x ∈ (0,0.5(s+1))

0 : otherwise

This notion of ”addition” is easily seen to be associative, with proof involving homotopies similar to that in

the concatenation of loops for fundamental group. [[A,ΣB]] under this ”addition” is a group, with the inverse

of an asymptotic morphism φ is φ ◦ (ρ⊗ id), where ρ : S→ S is given by (ρ( f ))(s) = f (1− s) [Bla98, Prop

25.4.3]. However, this ”addition” is in general not commutative.

So far, we have explored two notions of ”addition”, each lacking some essential feature for addition.

With some exercise in homotopy, we can see that the two notions agree on [[A,ΣB⊗K]] [Bla98, Prop

25.4.3]. This gives an additive structure on [[A,ΣB⊗K]] and turns it into an abelian group. Now we want

to make sure the structure we define allows for composition of asymptotic morphisms, which leads to the

following definition.

Definition III.4.1. If A and B be separable Banach algebras, then E(A,B) := [[ΣA⊗K,ΣB⊗K]]

With this, one may obtain a composition E(A,B)×E(B,C)→ E(A,C).

In some situations, it may be more convenient to define the group E(A,B) in an ”asymmetric” manner:

E(A,B) = [[ΣA,ΣB⊗K]]. There exists a natural map from this definition to ours, given by tensoring on the

identity map on K then composing with the isomorphism between K⊗K and K. This is a bijection since

the map from K to K⊗K given by x→ x⊗ e11 is homotopic to an isomorphism. [Bla98, p. 25.4.1]
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III.5 Existence of Quasicentral Approximate Unit

In the C∗-algebra case, one of the most important examples of asymptotic morphisms is the ”connecting

morphism” associated to a short exact sequence of C∗-algebra. We would like to emulate the construction

here. However, there is a major difficulty for Banach algebra: unlike ideals in separable C∗-algebra [Voi76],

ideals in separable Banach algebra do not automatically have a quasicentral approximate unit. In this section,

we will show that with a certain assumption concerning our Banach algebras, we may produce a quasicentral

approximate unit.

Let us start with recalling the definition of quasicentral approximate unit.

Definition III.5.1. Let J be a closed two-sided ideal in a Banach algebra B. Then a net of elements (hλ )⊂ J

of norm ≤C, indexed by a directed set λ ∈ Λ is called a quasicentral bounded approximate unit in J with

respect to B if:

1. lim‖hλ y− y||= lim‖yhλ − y||= 0 for all y ∈ J

2. lim‖hλ x− xhλ‖= 0 for all x ∈ B

We will make the following assumption concerning our Banach algebras.

Definition III.5.2. A Banach algebra J is called σ -unital if it possesses a countable bounded approximate

unit contained in a closed subalgebra isomorphic to C0(Y ) for some locally compact space Y . In the case

with an action of a locally compact group G on J, the subalgebra C0(Y ) must be G-invariant and the G-action

on C0(Y ) must be induced by the G-action on Y .

In the case of C∗-algebras, this coincides with the usual definition of σ -unitality (cf. [AK69]). The

following proposition shows that this assumption is exactly what we need for the existence of quasicentral

approximate unit. We will describe the explicit construction of a quasicentral approximate unit from a given

approximate unit of a σ -unital ideal.

Proposition III.5.3. Let J be a closed two-sided ideal in a Banach algebra B. Assume that J is σ -unital

and the quotient B/J is separable. Then there is a quasicentral bounded approximate unit in J with respect

to B.

If additionally, B is acted upon in a pointwise norm-continuous manner by a locally compact, σ -compact

topological group G by automorphism, the approximate unit will be asymptotically G-invariant in the sense

that for any K, compact subset of G, we have:

lim
n→∞

sup
g∈K
‖gun−un‖= 0

Proof. According to the previous definition, let {vi} be a bounded approximate unit for J contained in the

subalgebra C0(Y ) ⊂ J. We will consider elements vi as functions on Y . We may assume that all vi are

compactly supported on Y .

Under these assumptions, we may choose another approximate unit for J consisting of positive functions

with compact support on Y and sup-norm 1. Indeed, for any a ∈ J, if ‖via− a‖ < ε and supp(vi) ⊂ K (a

11



compact set), then for any function w ∈ C0(Y ) which is equal to 1 on K, one has: ‖wa− a‖ ≤ ‖w(a−
via)‖+‖via−a‖ ≤ (‖w‖+1)ε . The existence of w is guaranteed by the complete regularity of Y , which is

a consequence of its being both Hausdorff and locally compact.

Next, we choose a compact subset D ⊂ B such that the closure of its linear span modulo J is equal to

B/J. This is possible because of our assumption that B/J is separable and that any countable dense subset

may be re-normalized to become a compact generating (as linear space) set with limit point at 0.

Then we define inductively a sequence of integers {ki} and {um} our quasicentral approximate unit. Let

k1 = 1. Suppose k1, . . .km are already defined, choose km+1 so that for any d ∈ D and i≤ m, one has:

1. (1− vkm+1) · vki = 0,

2. ‖(1− vkm+1) ·d · vki‖= ‖(1− vkm+1) · (dvki)‖ ≤ 2−(m+1), and

3. ‖vki ·d · (1− vkm+1)‖= ‖(vkid) · (1− vkm+1)‖ ≤ 2−(m+1)

The compactness of D and the fact that {vi} is an approximate unit for J are used to guarantee the existence

of km+1 which satisfies conditions 2 and 3. Define

um =
2m

∑
i=m+1

vki

m

It is clear that {um} is again an approximate unit for J. We will prove that {um} is quasicentral with respect

to B, by proving the following two claims.

Claim 2. Given any d ∈ D, we have dum−umd→ 0 as m→ ∞.

Claim 3. Given any a ∈ B, we have aum−uma→ 0 as m→ ∞.

Proof to Claim 3 is a straightforward exercise using the density of span(D)/J in B/J once we have Claim

2, so we will focus on proving Claim 2 for the remainder of this proof.

We have

dum−umd =
2m

∑
i=m+1

dvki− vkid
m

(III.1)

Setting bi = vki− vki−1 , i > 1, we can rewrite (III.1) by using the following relations:

1. vki = ∑
i
j=1 b j

2. 1 = ∑
∞
j=1 b j (in the sense of ”strict topology”, i.e. y = y(∑∞

j=1 b j) = (∑∞
j=1 b j)y for all y ∈ J, which

follows from definition of approximate unit)

And (III.1) becomes:
1
m

∞

∑
r=1

2m

∑
i=m+1

i

∑
j=1

(brdb j−b jdbr)

After rearranging and collecting terms, we manage to eliminate one of the indices and obtain

∞

∑
r=1

m+1

∑
j=1

(
m
m
)(br ·d ·b j−b j ·d ·br)+

∞

∑
r=1

2m

∑
j=m+2

(2− j−1
m

)(br ·d ·b j−b j ·d ·br)
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Noticing that all terms with both r and j less than or equal to m+1 exist in pairs with opposite coefficients,

so they cancel with each other and we are left with:

∞

∑
r=m+2

m+1

∑
j=1

(
m
m
)(br ·d ·b j−b j ·d ·br)+

∞

∑
r=1

2m

∑
j=m+2

(2− j−1
m

)(br ·d ·b j−b j ·d ·br) (III.2)

We then divide the terms in (III.2) into two groups according to their indices:

Group 1 |r− j| ≥ 2

Group 2 |r− j|= 1

To take care of Group 1, we will need the following estimate derived from the assumptions used in

defining ki’s.

Claim 4. If r− j ≥ 2, then ‖br ·d ·b j‖ ≤ 3
2r−1

Proof.

‖br ·d ·b j‖= ‖((vr− vr−1)d(v j− v j−1)‖

≤ ‖(vr−1)dv j‖+‖(1− vr−1)dv j‖+‖(vr−1)dv j−1‖+‖(1− vr−1)dv j−1‖

≤ 2
2r +

2
2r−1 =

3
2r−1

Using this estimate, we see that all the terms in Group 1 can be estimated to have magnitude

<
∞

∑
r=m+2

(m+1) · 3
2r−2 +

∞

∑
r=m+4

2 · 3
2r−2 · (m−1)+

2m

∑
j=m+2

2 · 3
2 j−2 · (2m−2)

<
1

2m (33m−21)

Now we will take care of Group 2. The sum is easily seen to be equal to

1
m
·

2m

∑
i=m+1

(bi+1 ·d ·bi−bi ·d ·bi+1)

It is enough to show that the norm ‖∑
2m
i=m+1(bi+1 ·d ·bi−bi ·d ·bi+1)‖ is bounded when m→ ∞.

To evaluate the norm of s = ∑
2m
i=m+1 bi · d · bi+1, we express it as the sum of four sums ∑

3
k=0 s̃k, where

s̃k = ∑ j b4 j+k · d · b4 j+k+1, and the summation over j goes in the interval m+ 1 ≤ 4 j + k ≤ 2m. Each of

the s̃k’s is then approximated by the corresponding product sk = (∑ j b4 j+k) ·d · (∑ j b4 j+k+1). The difference

s̃k−sk consists of terms of the form b4 j1+k ·d ·b4 j2+k+1 where j1 6= j2, i.e. the indices for the two b’s are more

than 2 apart, and hence the estimate in Claim 4 may apply. We see that s̃k− sk ∼ O(m2

2m ) which converges to

0 as m→ ∞. Each of the four products sk is clearly bounded:

‖sk‖ ≤ ‖∑
j

b4 j+k‖ · ‖d‖ · ‖∑
j

b4 j+k+1‖ ≤ ‖d‖
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The last inequality follows from the fact that all vi’s are assumed to have sup-norm 1 and the first assumption

in our procedure of choosing {ki}. The other sum ∑
2m
i=m+1 bi+1 ·d ·bi is evaluated similarly.

In the case of G-action, we require an additional condition in choosing km+1:

4. ‖(1− vkm+1) · (gvki)‖ ≤ 2−(m+1) for all g ∈ Gm+1

where {Gm} is an ascending exhaustive sequence of compact subset of G. Because G acts on B by automor-

phism, g ·1 = 1 for all elements in G. We may write gun−un as 1 ·gun−un · (g ·1) and similar calculation

as in the no G-action case (following III.1) would give our desired result.

The above proposition gives {um}m∈N, a countable bounded approximate unit of J. We may extend

it to a continuous approximate unit {ut} by interpolating between the integers, namely usn+(1−s)(n+1) :=

sun +(1− s)un+1,s ∈ [0,1]. This will be useful for our upcoming construction.

III.6 Asymptotic morphism associated to an extension

Having shown the existence of quasicentral approximate unit for σ -unital Banach algebra, we are ready

to introduce an important class of asymptotic morphisms - ”connecting morphism” associated to an exact

sequence of σ -unital Banach algebra. Unlike in the C∗-algebra case, SA (projective tensor product) is not

necessarily isomorphic to ΣA (injective tensor product) for A Banach algebra. This creates certain trouble

because the original approach of Connes-Higson employs the maximal tensor product definition, but we

need ΣA to formulate a reasonable Bott periodicity and Mayer-Vietoris exact sequence. Additionally, algebra

homomorphism between Banach algebras is not automatically bounded. Extra caution is needed to define

”connecting morphism” associated to an extension of Banach algebras.

As noted in Section 2 of this chapter, ΣA is isomorphic to the Lp-tensor product Σ⊗A. We managed to

extend the construction to σ -unital extensions of Lp-algebras, i.e. Banach algebras which are isomorphic to

some subalgebra of the algebra of bounded operators on some Lp(Z,µ).

Proposition III.6.1. [Bla98, c.f. Prop 25.5.1]

(a) Let 0→ J → A
q−→ A/J → 0 be an exact sequence of separable Lp algebras. Suppose J is σ -unital

(call such extension σ -unital extension) and hence has a continuous approximate unit {ut} which is

quasicentral for A (its existence is guaranteed by Proposition III.5.3). Then we have an asymptotic

morphism from Σ(A/J) to J.

(b) The class εq of this asymptotic morphism in [[Σ(A/J),J]] is independent of the choice of σ and {ut}.

As in the C∗-algebra case, a lemma dealing with property of f (ut) is essential to the proof. We provide

a Banach algebra analogue and extend it slightly to better suit for results like ”the asymptotic morphism

associated to a split exact sequence is homotopic to the 0 asymptotic morphism”. The proof is completely

analogous.

Lemma III.6.2. [Bla98, Lemma 25.5.2] Let D be a Banach algebra with {uλ}⊂C0(Y )⊂D a net of positive

elements with norm ≤ 1. Let x ∈ D and f ∈C0(0,1],g ∈C0(0,1).
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1. if limλ→∞[uλ ,x] = 0, then limλ→∞[ f (uλ ),x] = 0

2. if limλ→∞ uλ x = x, then limλ→∞ g(uλ )x = 0. It is not necessary that limλ→∞ f (uλ )x = 0

We will break up the proof of the above Proposition into the following four steps:

1. an estimate for the norm of finite sums

2. define a norm-decreasing map from A to J∞

3. show that the map is linear and multiplicative

4. ΣA/J ∼= ΣA/ΣJ

Step 1: An estimate for the norm of Finite Sums

Lemma III.6.3. [Kas75, Lemma 3.1] Let A ⊂L (Lp(Z)) be an Lp-algebra. If we have {χi}n
i=1 ⊂ C0(Z),

{xi}n
i=1 ⊂ A such that ∑

n
i=1 χi ≤ 1 and χi ≥ 0 for all i, then ‖∑ χixi‖ ≤maxi ‖xi‖+∑i ‖[χ

1/p
i ,xi]‖

Proof. Let M = maxi ‖xi‖. Using the fact that the dual space of Lp(Z) is isomorphic to Lq(Z) (where

1/p+1/q = 1), we have:

‖∑χixi‖= sup
η∈S(Lp),ξ∈S(Lq)

|(∑
i

χixiη ,ξ )|

= sup
η∈S(Lp),ξ∈S(Lq)

|(∑
i
(χ

1/q
i xiχ

1/p
i +χ

1/q
i [χ

1/p
i ,xi])η ,ξ )|

≤ sup |∑
i
(xiχ

1/p
i η ,χ

1/q
i ξ )|+∑

i
‖[χ1/p

i ,xi]‖ (0≤ χ
1/p
i ≤ 1)

≤M sup∑
i
(‖χ1/p

i η‖p · ‖χ1/q
i ξ‖q)+ · · · (Hölder’s Inequality for Lp and Lq)

≤M sup(∑
i
‖χ1/p

i η‖p
p)

1/p · (∑
i
‖χ1/q

i ξ‖q
q)

1/q + · · · (Hölder’s Inequality for lp and lq)

= M sup(∑
i

∫
χi|η |pdµ)1/p(∑

i

∫
χi|ξ |qdµ)1/q + · · · (by definition)

= M sup‖η‖p · ‖ξ‖q + · · ·= max
i
‖xi‖+∑

i
‖[χ1/p

i ,xi]‖

Step 2: Define a Norm-Decreasing Map from ΣA to J∞

For simiplicity, we will fix a sequence of open coverings of [0,1], {Uk,i} (where the index k means

kth-level), such that:

1. kth-covering consists of exactly 2k elements,

2. (k+1)th-covering is a refinement of the kth-covering, with every two of (k+1)-elements coming from

the same k-element, and with less than 2/3 of the length of latter. Uk,l =Uk+1,2l−1∪Uk+1,2l

3. in each level, 0 and 1 is covered only by Uk,1 and Uk,2k , and no other elements of the covering

15



4. in each level, all the even-indexed elements are disjoint from each other; the same is true for all the

odd-indexed ones

After such a sequence of coverings is chosen, we will also fix a sequence of partition of unity, {φk,i} ,

subordinated to the coverings and a sequence of points {sk,i} such that sk,i ∈Uk,i and sk,1 = 0,sk,2k = 1 for

all k 4. Additionally, to simplify computation later, we require

φk,l = φk+1,2l−1 +φk+1,2l

Given any f ∈ ΣA, define fk(s) = ∑
nk
i=1 φk,i(s) · f (sk,i). Define

ε f ,k = max
i
{ sup

x,y∈Uk,i

‖ f (x)− f (y)‖}

Because f is uniformly continuous and length(Uk,i)→ 0 as k→∞, we have ε f ,k→ 0 and hence ‖ fk− f‖→ 0

as k→ ∞.

Again for simplicity, we will fix a sequence of {tk}. We will prove a lemma later to show that the image

of f in J∞ is independent of the sequence of {tk} we choose. We define:

tk = inf{T :∀t > T max(‖[φ 1/p
k,i (ut), f (I)]‖,‖[φ 1/p

k+1,i(ut), f (I)]‖)< 1
23(k+1) ,

max(‖[φk,i(ut), f (I)]‖,‖[φk+1,i(ut), f (I)]‖)< 1
23(k+1) ∀t > T}

This definition is made possible by Lemma III.6.2 and a simple compactness argument on [0, 1].

Next we will define the map Φ : ΣA→ J∞. Define Φ̃t( f ) ∈Cb([1,∞),J) as follows:

t ∈ [1, t1]
2

∑
i=1

φ1,i(ut) f (s1,i) = 0 due to our choice of s1,1 and s1,2

t ∈ [tk, tk+1]
tk+1− t
tk+1− tk

2k

∑
i=1

φk,i(ut) f (sk,i)+
t− tk

tk+1− tk

2k+1

∑
i=1

φk+1,i(ut) f (sk+1,i)

It is clear that we get a continuous path of elements in J with the above definition, the boundedness will

be taken care of by the following computation. Denote the image in the quotient algebra, J∞ by Φt( f ), then

4this is to ensure that we won’t have to worry about f (ut) for f 6∈C0(0,1) later
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we have the following norm estimate:

‖Φt( f )‖= lim sup
t→∞

‖Φ̃t( f )‖ (by Lemma III.3.2)

≤ lim sup
t→∞,k→∞

‖
2k

∑
i=1

φk,i(ut) f (sk,i)‖

≤ ‖ f‖+ limsup
2k

∑
i=1
‖[φ 1/p

k,i (ut), f (sk,i)]‖ (by Lemma III.6.3)

= ‖ f‖

This shows that Φ is norm-decreasing.

Step 3: Show that the map is Linear and Multiplicative
We will state and prove a lemma which shows that Φ( f ) is independent of the choice of {tk}. This will

be helpful for simplifying proof of linearity and mulplicativity.

Lemma III.6.4. If we replace {tk} by {t̃k} such that t̃k > t̃k−1 and t̃k > tk, then the corresponding paths in J

are asymptotic equivalent. In other words, they yield the same element of J∞.

Sketch of proof. Let t ∈ (tk+m, tk+m+1)∩ (t̃k, t̃k+1), then the norm of the difference between the two paths

involve three terms with may be estimated similar to the following one.

‖∑
i

φk,i(ut) f (sk,i)−∑
j

φk+m, j(ut) f (sk+m, j)‖

= ‖∑
j

φk+m, j(ut)[ f (sk,d j/2me)− f (sk+m, j)]‖

≤max
j
‖ f (sk,d j/2me)− f (sk+m, j)‖+2∑

j
‖[φ 1/p

k+m, j(ut), f (I)]‖ (Lemma III.6.3)

≤ ε f ,k +2 ·2k+m · 1
23(k+m+1)

This goes to 0 as k→ ∞ (t→ ∞).

Proposition III.6.5. Φ is multiplicative.

Sketch of proof. By the above lemma(III.6.4), up to replacing with another sequence {t ′k} where t ′k ≥ tk∀k,

we may assume that tk for the functions f ,g and f g match up. This simplifies the situation and we need

only verify the difference Φ( f g)−Φ( f ) ·Φ(g) for at most on consecutive levels. For t ∈ (tk, tk+1), a sample
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calculation is the following:

‖
2k

∑
i=1

φk,i(ut)[ f (sk,i)g(sk,i)]−
2k

∑
i=1

φk,i(ut) f (sk,i)
2k+1

∑
j=1

φk+1, j(ut)g(sk+1, j)‖

= ‖∑
i, j

φk,i(ut)φk+1, j(ut) f (sk,i)[g(sk,i)−g(sk+1, j)]+∑
i, j

φk,i(ut)[φk+1, j(ut), f (sk,i)]g(sk+1, j)‖

≤ max
i, j:Uk,i∩Uk+1, j 6=∅

‖ f (sk,i)[g(sk,i)−g(sk+1, j)]‖+2∑
i, j
‖[φk,i(ut)

1/p
φk+1, j(ut)

1/p, f (I)g(I)]‖

+(2k ·2k+1) ·1 · 1
(2k+1)3 · ‖g‖

It is easy to see that the first and the third term goes to 0 as t→ ∞. The middle term can be estimated using

the following elementary commutator identity:

[AB,CD] = A[B,C]D+AC[B,D]+ [A,C]DB+C[A,D]B

to be≤ 2 ·2k ·2k+1 ·4max{‖ f‖,‖g‖}· 1
23(k+1) ·1 = max{‖ f‖,‖g‖}/2k−1 which again goes to 0 as t (and hence

k) approaches ∞.

Step 4: Σ(A/J)∼= ΣA/ΣJ

Lemma III.6.6. Let J be a closed two-sided ideal in a Banach algebra A, then we have Σ(A/J)∼= ΣA/ΣJ.

Proof. Let Q : A→ A/J be the natural quotient map. Consider the map ΣQ : ΣA→ Σ(A/J) given by f 7→
Q◦ f . It is easy to see that kerΣQ = ΣJ. Left to show that ΣQ is a surjective map.

Identify (0,1) as a subspace of S1 by the map t 7→ e2πit . Given any f̄ ∈ Σ(A/J), it can be viewed as an

element of C(S1,A/J) whose value at 1 is 0. By the fact that ”injective tensor product with C(K) respects

metric surjections” ([DF93, pp. 4.4, 4.5]), there exists f ′ ∈C(S1,A) such that Q◦ f ′ = f̄ and f ′(1) ∈ J. Let

f = f ′− f ′(1), then we have Q◦ f = f̄ , f (1) = 0 and hence can be viewed as an element of ΣA. This shows

that ΣQ is surjective and hence our result.

Lemma III.6.7. The map Φ (which we defined in Step 2) is 0 on ΣJ.

Given any element of ΣJ, this is a consequence of Lemma III.6.2, by possibly replacing {tk} with

another increasing sequence of {t ′k} (where t ′k ≥ t ′k∀k) which would not impact the resulting element in J∞

(Lemma III.6.4).

Combining the above two lemmas, we see that the map Φ factors through ΣA/ΣJ ∼= Σ(A/J). This con-

cludes the four steps and gives an asymptotic morphism from Σ(A/J) to J∞.

III.7 Bott Periodicity and Exact Sequences

In this section, we will prove that our E-theory has six-term exact sequences. We will need three ingredients

for its proof, with the first one being Bott Periodicity.
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Definition III.7.1. Given f ∈ Lp(R) (1 < p < ∞), define its Hilbert Transform to be the function

H f (x) :=
1
π

p.v.
∫

∞

−∞

f (y)
x− y

dy =
1
π

lim
ε→0

∫
|x−y|>ε

1
x− y

f (y)dy

Stein shows that the Hilbert Transform is a bounded linear operator on Lp(R) ([Ste71, II.2 Theorem 1])

for 1 < p < ∞. Furthermore, H(H( f ) =− f for f a sufficiently regular function ([Tit48, p.120]). Since the

algebra of compactly supported smooth function is dense in Lp(R), we have that H2 =−1 on Lp(R) by the

boundedness of H.

We will show one additional property of H and use that to construct an asymptotic morphism to prove

Bott Periodicity. Before that, let’s recall an estimate regarding the norm of integral operators from Lp to Lq

spaces (it is not necessary that 1/p+1/q = 1).

Lemma III.7.2. [Lev, Lemma 2.3] Let p,q ∈ [1,∞] (p∗,q∗ are the conjugates of p and q respectively), let

kernel k satisfies the bound

‖k‖Lq∗ (dν ;Lp∗ (dµ)) =

((∫
|k(x,y)|p∗dµ(x)

)q∗/p∗

dν(y)

)1/q∗

< ∞

Then for every u ∈ Lp(dµ) and v ∈ Lq(dν) we have∫ ∫
|k(x,y)u(x)v(y)|dµ(x)dν(y)≤ ‖k‖Lq∗ (Lp∗ )‖u‖Lp‖v‖Lq .

Since the left-hand-side is bounded below by | < Ku,v > |, this implies in particular that ‖K‖L (Lp,Lq∗ ) ≤
‖k‖Lq∗ (Lp∗ )

Proposition III.7.3. Given any f ∈ C0(R), we have [H, f ] ∈ K(Lp(R)) - the Banach algebra of compact

operators on Lp(R).

Proof. If f ∈C∞
c (R), then [H, f ] is an integral operator with kernel

h(x,y) f (y)− f (x)h(x,y) =
f (y)− f (x)

y− x

which can be made into the smooth kernel k(x,y) by removing the sigularity on the diagonal:

k(x,y) =


f (y)− f (x)

y−x x 6= y

f ′(x) x = y

If k(x,y) is compactly supported, it is approximable by functions of the form ∑
n
i=1 fi(x)gi(y) where

f ,g ∈Cc(R) in ’Iterated Norm’(Lemma III.7.2). Integral operator with kernel of the above form is a finite-

rank operator. This shows that integral operator with compactly supported smooth kernel is norm limit of

finite-rank operator, hence a compact operator.

Let χN be a cut-off function supported on [−N,N]× [−N,N]. Define kN = k ·χN . If ‖k‖Lp(Lp) < ∞, then

limN→∞ ‖k− kN‖Lp(Lp) = 0 and hence KN → K in L (Lp,Lp). The last thing to show is that ‖k‖Lp(Lp) < ∞.
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This can be done by using Fubini-Tonelli Theorem to estimate the integral on the 4 infinite bands of form

similar to [−R,R]× [R,∞).

We have that [H, f ] is compact for f any smooth compactly supported function on R. And it is one easy

step to generalize to f ∈C0(R).

Next, we will define a Dirac asymptotic mophism following the procedure we used to define the asymp-

totic morphism associated to a σ -unital extension of Lp-algebras. Let

P =
iH +1

2

where i is the square root of -1. We have P2 = P ∈ L (Lp(R)). Let B be the closed linear subspace of

L (Lp(R)) generated by K(Lp(R)) (will be denoted by K from this point onwards) and the set { f P : f ∈
C0(R) or f = 15}. It is straightforward to verify that B is an algebra by the commutation property of H

above. We have also that K E B and that B/K is separable. The latter follows from the separability of

C0(R), due to the fact that it is a subspace of the separable metric space C(S1). If K is σ -unital, then by

Proposition III.5.3, we can obtain an approximate unit of K that is quasi-central with respect to B. In our

case, we have a slightly weaker condition than σ -unital, but can nevertheless still obtain the quasi-central

approximate unit.

Proposition III.7.4. K possesses a countable bounded approximate unit that is contained in a closed com-

mutative subalgebra, and is quasicentral with respect to B.

Proof. To start with, we will define Pk,n as projection onto the characteristic function χk,n of the segment

[k/2n,(k+1)/2n], for all integers k and all positive numbers n. Let

un =
n·2n−1

∑
−n·2n

Pk,n

which is the sum of all projections onto characteristic functions onto subintervals of length 1/2n in [−n,n].

Claim: {un} forms an approximate unit of K.
We will first define for any f ∈ Lp(R), g∈L q(R) (where 1/p+1/q= 1) the rank-one operator θ f ,g ∈K:

θ f ,g(ξ ) = f (
∫

gξ ) ∀ξ ∈ Lp(R)

Since any compact operators may be approximated in norm by finite rank operators, and the algebra of

continuous function of compact support is dense in any Lp(R) for p ∈ (1,∞), it suffices to prove that for f ,g

compactly supported continuous functions;

‖unθ f ,g−θ f ,g‖→ 0 and ‖θ f ,gun−θ f ,g‖→ 0

5we require our approximate unit to have good commutation with P so that a calculation involving operators F and G (which
we are to define later) will work out in the proof of Bott Periodicity
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The former is an easy consequence of the definition, so we will focus on proving the latter, which is equiva-

lent to

lim
n→∞

sup
‖ξ‖p=1

‖θ f ,gun(ξ )−θ f ,g(ξ )‖= 0

Pick n large enough such that suppg⊂ [−m,m] and m < n, we have the following estimate:

sup
‖ξ‖p=1

< g,unξ −ξ >

= sup∑
k
< gχk,n,Pk,nξ −ξ χk,n >

= sup∑
k
< gχk,n,(2n

∫
ξ χk,n)χk,n−ξ χk,n >

= sup∑
k
[(2n

∫
gχk,n)(

∫
ξ χk,n)− (

∫
gξ χk,n)]

= sup∑
k
[
∫
(k,n)

(ḡk,n−g)ξ ] (ḡk,n=”average value” of g over [k/2n,(k+1)/2n])

≤ sup
∫
[−m,m]

|(ḡk,n−g)ξ |

≤ sup‖ḡk,n−g‖q‖ξ‖p (Hölder’s inequality)

Because ‖ḡk,n−g‖→ 0 uniformly for all k as n→ ∞, we have obtained the said result.

Claim: {un} is a bounded approximate unit, with norm uniformly bounded by 1 for p ∈ (1,∞)

We notice that ‖χk,n‖p =
1

2n/p and Pk,nξ = χk,n ·2n < χk,n,ξ >. Now for ξ ∈ Lp(R), we have the following

estimate:

‖unξ‖p = {
∫
|∑

k
(
∫

k,n
ξ )2n

χk,n|p}1/p

= 2n{∑
k
(
∫

k,n
1p)|

∫
k,n

ξ |p}1/p

≤ 2n{∑
k

1
2k (
∫

k,n
|ξ ·1|)p}1/p

≤ 2n(1−1/p){∑
k
(
∫

k,n
|ξ |p) · (

∫
k,n

1q)p/q}1/p (Hölder’s Inequality)

=
2n(1−1/p)

2n/q (
∫
[−n,n]

|ξ |p)1/p

≤ ‖ξ‖p

Claim: [un,un+l] = 0 (they commute with each other)
We take arbitrary ξ ∈ Lp(R). Since un’s are linear operators, if un ·un+l and un+l ·un agree on ”segments”
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of ξ they will agree when applied to ξ . Choosing the segment [k/2m,(k+1)/2m], suppose we have

χk,m =
2l

∑
j=1

χk̃+ j,m+l

Computing umum+l(ξ χk,m) and um+lum(ξ χk,m), it is easy to see that they are both equal to 2m ·(
∫ (k+1)/2m

k/2m
ξ )χk,m

or 2m · (
∫ (k+1)/2m

k/2m
ξ )(

2l

∑
j=1

χk̃+ j,m+l).

Claim: The construction in the proof for Proposition III.5.3 works with our weaker condition on
K.

By the previous claim, we know that all the un’s commute with each other, and they generate a com-

mutative subalgebra of K. What we don’t know is that this subalgebra is isomorphic to C0(Y ) for some

locally compact space Y . However, if we fix a number n and restrict ourselves to the first n elements of our

approximate unit, taking the characteristic function for intervals of length 1/2n in [−n,n] as basis, we may

obtain matrix representation of the first n elements. Recalling the fact that a set of commuting diagonalizable

matrices is simultaneously diagonalizable - i.e. there exists a basis for the finite dimensional linear space of

characteristic functions we mentioned above, in which our first n elements can all be represented as diagonal

matrices. The set of diagonal matrices is isomorphic to the space of (continuous) function on finite number

(equal to dimension of the matrix) of points, and hence we may repeat this procedure for each v j to obtain a

corresponding w.

Another delicate point happens near the end of the proof to Proposition III.5.3, when we estimate ‖sk‖
by sums like ‖∑ j b4 j+k‖. Because we do not assume that un are functions on the same locally compact space

Y , we would have to further analyze the property of bk. We see that bk are projections onto different parts of

Haar basis, an unconditional Schauder basis on Lp(R). Because of the unconditional property, we have that

given any combination of plus and minus signs, ∑±bnξ converges for any ξ . This in particular means that

supk ‖∑
k
n=1±bnξ‖ is finite for all ξ . By Uniform Boundedness Principle, we have that supk ‖∑

k
n=1±bn‖ is

finite. ∑ j b4 j+k can be obtained by taking the average of two such sums of bn’s, each uniformly bounded in

norm, hence is itself bounded.

The rest of the proof follows without problem.

The above proposition gives us a countable approximate unit of K. WLOG, we may assume {un} is

quasi-central with respect to B and we will define a Dirac asymptotic morphism out of it.

Proposition III.7.5. There is an asymptotic morphism η : ΣC0(R) K, which we call the Dirac asymptotic

morphism.

Sketch of proof. To define the asymptotic morphism Σ2 → K, take any f = f (x,y) ∈ Σ2, and let P be the

projection of the Hilbert transform. We do not need to approximate f with ∑i φi fi(y). Just take the ap-

proximate unit vi for K(Lp[0,1]), choose the sequence {k j} such that ||(1− vk j)Pvk j || < 2− j, and also

||(1−vk j(y)) f (x,y)||< 2− j for any x ∈ [0,1]. Then we put as usual u j = vk j ,b j = u j−u j−1. Our asymptotic

morphism is t 7→ f (ut ,y)P, where ut = ∑
2m
m+1 u j/m, and m→ ∞ with t→ ∞.
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It is easy to calculate that f (ut ,y)P = ∑
2m
m+1 f (λ j,y)b jP, where λ j = (2m− j + 1)/m for m + 1 ≤

j ≤ 2m. Since b j = u j − u j−1, we get: f (ut ,y)P = ∑
2m
m+1( f (λ j,y)− f (λ j+1,y)u jP. Note that the sum

∑
2m
m+1( f (λ j,y)− f (λ j+1,y)) is equal to 0. Therefore, in view of the condition ||(1− vk j(y)) f (x,y)|| < 2− j,

all sums f (ut ,y)P = ∑
2m
m+1( f (λ j,y)− f (λ j+1,y)u jP will be bounded in norm uniformly in m.

Theorem III.7.6 (Bott Periodicity; c.f. Blackadar 25.5.9). For any separable Lp algebras B1 and B2, there

are canonical isomorphisms E(B1,B2) ∼= E(Σ2B1,B2) ∼= E(B1,Σ
2B2) ∼= E(ΣB1,ΣB2),which are natural in

B1 and B2.

Specifically, the asymptotic morphism η given in the previous proposition defines an element d of E0(C0(R2),C).
There exists an element b of E0(C,C0(R2)) such that b ◦ d = [idC0(R2)] and d ◦ b = [idC]. Then the isomor-

phism from E(B1,B2) to E(Σ2B1,B2) is given by composing on the right by [d⊗ idΣB1 ], and the isomorphism

E(B1,B2)∼= E(B1,Σ
2B2) is given by composing on the left by [b⊗ idB2 ].

Proof. We will show that there exists an element b ∈ E(C,C0(R2)) such that η ◦b = 1C ∈ E(C,C). Instead

of working directly with E(C,C0(R2)) = [[Σ,ΣC0(R2)⊗K)]] we define b ∈ [[C,C0(R2)⊗K]] (we can get

an element of E(C,C0(R2)) by tensoring with idΣ). We then realize η ◦ b as a (0,∞)-path of projection in

B(Lp(Z))/K(Lp(Z)), which gives an element in K0(B(Lp(Z))/K(Lp(Z))⊗C0(0,∞)). Identifying C0(0,∞)

and Σ, we obtain by Bott Periodicity of K-theory an element in K1(B(Lp(Z))/K(Lp(Z))). Finally, applying

the half-exactness of K-theory to the exact sequence:

0→K(Lp(Z))→B(Lp(Z))→B(Lp(Z))/K(Lp(Z))→ 0

we obtain by the boundary map in the associated long exact sequence in K-theory an element in K0(K(Lp(Z))).

We will show that this is the element 1 ∈ K0(K)∼= Z. We would use Atiyah’s Rotation Trick to obtain iden-

tity for the other composition.

After this, we note that tensoring by idΣ gives an isomorphism [[A⊗K,B⊗K]]→ [[ΣA⊗K,ΣB⊗K]].

This can be proved by first showing that tensoring by idΣ2 is an isomorphism for any Lp-algebras A,B

through the following commutative diagram:

Σ2A⊗K
η⊗1 //

1⊗α

��

A⊗K

1⊗α

��
Σ2B⊗K

η⊗1 // B⊗K

This provides the justification for our initial choice to work with [[C,C0(R2)⊗K]] instead of E(C,C)
(dropped a Σ).

We will give more details to the first part of the proof. This is essentially the same as the proof to Lemma

7.5 in [HK01]. We adapt it into the context of E-theory.

Step 1: Define b ∈ [[C, Σ̃2⊗M2⊗K]] 6

6For convenience of notation, we are working in unitized algebra Σ̃2 ∼= C(S2). This can be related back to the non-unitalized
case via the split exact sequence 0→ Σ2→C(S2)→ C→ 0 and the split-exactness in both variables of E-theory.
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b is given by the homomorphism which sends 1 ∈C to a projection valued function (in complex coordi-

nate of the Riemann sphere) z 7→

(
1

1+|z|2
z

1+|z|2
z̄

1+|z|2
|z|2

1+|z|2

)
.

Step 2: Compute η ◦b

Starting with η : ΣC0(R) K, we first define ηt = tη1 for t ≤ 1; we then extend ηt unitally to unitalized

algebra Σ̃2 7; and then pass to matrices to obtain a unital map

{η+
t } : M2(Σ̃2)→M2(K̃⊗C0(0,∞)).

To simplify notation, the following proof is given using the Connes-Higson definition of connecting

morphism (instead of our stepwise approach introduced earlier using partition of unity), which defines the

map on simple tensors and extend to the completion in maximal tensor norm. This is justifiable because

both Σ and C0(R) are C∗-algebras and the maximal tensor norm and the injective tensor norm coincide for

the pair.

Note that in the construction for η given in the previous proposition, we are identifying Σ2 with C0((0,1)×
R). Let f = 1 ∈C(S2) = C0((0,1)×R)̃, we are to map f to the corresponding unit in K̃, hence we would

need to add 1−P in our definition of η to obtain η+:

η̃
+
t ( f ⊗g) = f (ut)[gP+ lim

y→∞
g(y)(1−P)]

Now to compute the composition η ◦b, we would need to first identify Σ2 with the C0- functions on the prod-

uct (0,1)×R. Writing the projection-valued function we have from the previous step in polar coordinate,

we have

(r,θ) 7→

(
1

1+r2
reiθ

1+r2

re−iθ

1+r2
r2

1+r2

)

where r ∈ [0,∞),θ ∈ [0,2π] Setting x = 1
1+r2 , y = tan θ−π

2 , we have the function on (0,1)×R:

(x,y) 7→

(
x

√
x− x2 exp(i(2tan−1 y+π))√

x− x2 exp(−i(2tan−1 y+π)) 1− x

)

Passing η+ to matrices and applying to this matrix, we obtain an asymptotic morphism which maps 1 ∈ C
to the following path of elements in M2(K̃):

(x,y) 7→

(
ut

√
ut −u2

t [g(y)P+(1−P)]√
ut −u2

t [(1/g(y))P+(1−P)] 1−ut

)
t ≥ 0

where g(y) = exp(2tan−1 y+π) = y2−1
y2+1 −

2y
y2+1 i. Here we extend the definition of ut from t ≥ 1 to t ≥ 0 by

setting ut = tu1 for t ≤ 1. If we let F = g(y)P+(1−P) and G = (1/g(y))P+(1−P), it will be verified in

Step 3 that it forms a Fredholm pair for all p ∈ [2,∞), which means that there exists h,k ∈ K(Lp(R)) such

7In reality, we are extending the defintion to C([0,1]×S1)
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that: FG = 1−h

GF = 1− k

By a simple computation, we see that the difference between the square of the matrix and itself forms a

norm continuous path (over t) in K. Norm of the difference is determined by the magnitude of

[F,
√

ut −u2
t ], [G,

√
ut −u2

t ], [F,ut ], [G,ut ],(ut −u2
t )h,(ut −u2

t )k

Now, F,G are both contained in the algebra B (defined in the remark after Proposition III.7.3), with respect to

which our approximate unit {ut} was chosen to be quasicentral, and hence ‖[F,ut ]‖, ‖[G,ut ]‖ both approach

0 as t → ∞.
√

x− x2,x− x2 are both C0(0,1) functions, hence by Lemma III.6.2, we have all six terms

approach 0 in norm as t → ∞. Since ut = tu1 for t < 1, we have ut → 0 in norm as t → 0 and hence all six

terms also approach 0 in norm as t→ 0. This means that the difference is an element of K(Lp(R)⊗C0(0,∞)),

and by the definition of K-theory, we have an element of K0(B(Lp(R))/K(Lp(R))⊗C0(0,∞)).

If now we define

wt =

t, t ≤ 1

1, t ≥ 1

then the straight line homotopy from ut to wt gives a homotopy of K-theory element to the family(
wt

√
wt −w2

t [g(y)P+(1−P)]√
wt −w2

t [(1/g(y))P+(1−P)] 1−wt

)
t ≥ 0

This homotopy allows us to identify this with an element of K0(K) given by the index of [g(y)P+(1−P)]

through the boundary map in long exact sequence in K-theory. [Bla98, Def 8.3.1]

Step 3: Show that d ◦b gives an index 1 operator in M2(K̃) We have Bott periodicity for E-theory of

C∗-algebras, which are subalgebra for the algebra of bounded operator on some L2(Z). In this case, we know

that d ◦ b will give an index 1 element. To use this result, we will first prove a proposition about the index

of a continuous (over p) family of Fredholm operators on Lp(Z). We will then show that [g(y)P+(1−P)

gives a contiuous family of Fredholm operator for p ∈ [2, p0] and hence has the same index as its p = 2

representative. This finishes the proof.

Proposition III.7.7. Let Fp be a family of Fredholm operators in Lp(Z) for p ∈ [2, p0], such that there exists

another family Gp ∈B(Lp(Z)) such thatFpGp = 1−hp

GpFp = 1− kp where hp,kp ∈K(Lp(Z))

Additionally, hp,kp are assumed to be continuous in the sense that given any p1 ∈ [2, p0],ε > 0, there exists

a neighborhood of p1 such that hp,kp are approximable to within ε (in Lp-norm) by finite rank operator

involving at most first n basis element. Then index(Fp) = dimkerFp−dimkerGp is constant over p.
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Proof. Recall that Fredholm index is invariant under compact perturbation. In other words, if F is a Fred-

holm operator, T any compact operator, then index(F +T )=index(F). We will replace Fp,Gp by a family of

their compact perturbation F ′p,G
′
p, such that F ′pG′p will be a finite codimension projection for all p ∈ [2, p0]

and G′p,F
′
p will be a continuous family of projection and hence the rank should be constant over the whole

path. This shows that index of Fp is constant.

Fix a family of basis {en} across p, this is possible because separable non-atomic Lp(Z) are all isometric

to Lp(0,1) where Hahr basis forms a monotonic basis. Let qn =projection on span{e1, · · · ,en}. By our

continuity assumption, for each p1 ∈ [2, p0], there exists n such that ‖(1− qn)hp(1− qn)‖ < ε for p in a

neighborhood of p1. By the compactness of [2, p0], there exists n such that ‖(1−qn)hp(1−qn)‖< 1/2 for

all p ∈ [2, p0]. Let h̃p = (1−qn)hp(1−qn). We have qnh̃p = h̃pqn = 0 and (1−qn)h̃p = h̃p(1−qn) = h.

What follows is similar to that on p.556 of [Kas81]. Let l = (1− qn)(1− h̃p)
−1/2 where (1− h̃p)

−1/2

is given by the binomial series with radius of convergent 1. Note that l commutes with (1−qn) because h̃p

does. Finally, we may define G′p = Gpl(1−qn) and F ′p = (1−qn)lFp. This is a compact perturbation of Gp

and Fp because (1− qn)l = (1− qn)(1− convergent series involving hp) and both qn and hp are compact

operators.

We verify that:

F ′pG′p = (1−qn)lFpGpl(1−qn)

= l(1−qn)(1−hp)(1−qn)l

= l(1−qn− h̃p)l

= l(1− h̃p)l− lqnl

= 1−qn−0

So F ′pG′p is a fixed projection across p.

We check also that (G′pF ′p)
2 = G′p(F

′
pG′p)F

′
p = Gpl(1− qn)(1− qn)(1− qn)lFp = G′pF ′p. Let k̃p = 1−

G′pF ′p. k̃p is a projection because G′pF ′p is. Additionally, F ′p and G′p are compact perturbation of the Fredholm

pair Fp,Gp means that k̃p ∈ K(Lp(Z), so k̃p is a continuous family of finite rank projection and thus has

constant rank. This gives that dimkerF ′pG′p−dimkerG′pF ′p = rk qn− rk k̃p is also constant over p.

Proposition III.7.8. Fp = g(y)P+(1−P) and Gp = (1/g(y)P)+(1−P) forms a family of Fredholm oper-

ators which satisfy the hypothesis of the previous proposition.

This can be easily verified by writing g(y) = 1+ g1(y), 1/g(y) = 1+ g2(y), then gi(y) ∈ C0(R) and

[gi(y),P] ∈K(Lp(R)) (Lemma III.7.3).

Now that we have proved one direction of the composition, namely d ◦b = [idC]. The other composition

would follow from Atiyah’s Rotation Trick. [HKT98, pp. 2.16-2.18] The main idea is captured by the
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following diagram (which can be checked to commute asymptotically):

Σ2 1⊗η //

b⊗1
��

K b⊗1 // Σ2⊗K

f lip
��

Σ2Σ2 f lip // Σ2Σ2 η⊗1 // K⊗Σ2

The top row represents the composition b◦d. Going down and across can be shown to induce isomorphism

on K-theory by a computation which is detailed in [HKT98, Lem 2.18], of which our earlier result of

d ◦b = [idC] is a central ingredient.

Next we will introduce the second ingredient: half-exactness of E-theory. We will start with recalling

the definition of mapping cone.

Definition III.7.9. Let φ : A→ B be a Banach algebra homomorphism. Let CB = C0([0,1),B) 8, C̃B =

C0((0,1],B). Let π0 : CB→ B be evaluation at 0. Then the pullback of (A,CB) along (φ ,π0) is called the

mapping cone of φ , denote Cφ . In other words, an element of Cφ is a pair (a,(b(s))s∈[0,1)) with b(0) = φ(a).

Here is our main theorem:

Theorem III.7.10 (c.f. Blackadar 25.5.10). E is half-exact: for any σ -unital (defined at the beginning of

this section) extension 0→ J i−→ A
q−→ B→ 0 of separable Lp algebras, and every separable Banach algebra

D, the sequences

E(D,J) i∗−→ E(D,A)
q∗−→ E(D,B),

E(B,D)
q∗−→ E(A,D)

i∗−→ E(J,D)

are exact in the middle, where i∗ [resp. i∗] is composition on the right [resp. on the left] with [i] ∈ E(J,A),

etc.

We need the following two lemmas for its proof. If 0→ J i−→ A
q−→ B→ 0 is a σ -unital exact sequence as

above, let 0→ ΣJ→CA
p−→Cq→ 0 be the associated mapping cone sequence. Let α be the projection map

from Cq to A.

Lemma III.7.11 (c.f. Blackadar 25.5.11). [Σi◦ εp] = [Σα] in [[ΣCq,ΣA]].

In the above Lemma, recall that ΣA=C0((0,1),A). If ht is an asymptotic morphism between two Banach

algebras A and B, then (Σh)t maps f ∈ ΣA to the function s 7→ ht( f (s)) for all s ∈ (0,1). It can be proved by

some routine calculation that

a) Σh gives an asymptotic morphism between ΣA and ΣB

b) Σ(h◦ i) = Σh◦Σi for any asymptotic moprhism (in particular, Banach algebra homomorphism) i

c) if [h] = [h̃] ∈ [[A,B]], then [Σh] = [Σh̃] ∈ [[ΣA,ΣB]]

8Some authors may prefer to have the function vanishes at 0 instead of 1, the choice here makes the proof of Lemma III.7.11
more convenient – not having to reverse the orientation of the function.
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Proof to this lemma is almost the same as the one in Blackadar, except one minor change: our ”connect-

ing morphism”, εp, is defined explicitly on the middle term (CA in our case) of the sequence. To compare

the two maps, we will first need to take a lift from ΣCq to ΣCA. On the lifted algebra, Σα will be replaced by

Σev0 because given x ∈Cq, take any lift x̃ ∈CA, x̃(0)(= ev0(x̃)) will always be equal to α(x) by definition

of mapping cone. The rest of the proof, which is essentially ly a sequence of homotopy, goes as in the

C∗-algebra case.

Lemma III.7.12 (c.f. Blackadar 25.5.12). Let 0→ J i−→ A
q−→ B→ 0 be a σ -unital extension of separable Lp

algebras, and D a separable Banach algebra.

1. If h is an asymptotic morphism from D to A, and [q ◦ h] = [0] in [[D,B]], then there is an asymptotic

morphism k from ΣD to ΣJ such that [Σi◦ k] = [Σh] in [[ΣD,ΣA]].

2. If h is an asymptotic morphism from A to D, and [h ◦ i] = [0] in [[J,D]], then there is an asymptotic

morphism k from Σ2B to Σ2D such that [k ◦Σ2q] = [Σ2h] in [[Σ2A,Σ2D]].

Sketch of proof. The proof for the first statement goes exactly as in the C∗-algebra case. One fact that is

used in both statements is that: if [φ ] = [0] ∈ [[A,B]], this means that φ is homotopic to the 0 asymptotic

morphism, or in other words, there exist an asymptotic morphism Φ from A to CB such that Φ(0) = φ and

Φ(1) = 0.

For the first statement, we obtain from the hypothesis, Φ, an asymptotic morphism in [[D,CB]] such that

Φ(0) = q◦h and Φ(1) = 0. Define Ψ = h⊕Φ an asymptotic morphism in [[D,Cq]], then [α ◦Ψ] = [h]. Taking

Σ on both sides and apply Lemma III.7.11, we have [Σi] ◦ [εp ◦ΣΨ] = [Σh]. In other words, we can take k

any asymptotic morphism in the homotopy class of εp ◦ΣΨ.

For the second statement, the proof in Blackadar works with a slight change in the definition of Ψr
t due

to the fact that we are using Lp-tensor product (or equivalently the injective tensor product if Σ is involved)

instead of projective tensor product. We will sketch the two parts of the proof here.

First, assuming [h ◦α] = [0] in [[Cq,D]], we obtain Φ ∈ [[Cq,CD]] as indicated in the first paragraph

above. By restricting Φ to ΣB, an ideal of Cq, we obtain an element of [[ΣB,ΣD]] due to the fact that α is 0

on ΣB. We denote this restricted Φ by k. The claim is that [k ◦Σq] = [Σh] ∈ [[ΣA,ΣD]]. This can be done by

showing that the two asymptotic morphisms are homotopic via Ψ
(r)
t ∈ [[ΣA,C([0,1],ΣD)]]. Notice that the

0-end of Φ contains h, we will try to construct a map to bridge that with Σh. Define βr : [r,1]→ [0,1] be a

scaling homeomorphism. Then we have for f ∈ ΣA:

[Ψ
(r)
t ( f )](s) =

ht( f (s)) s≤ r

Φ
βr(s)
t ( f (r)⊕ (Σq)( f ◦β−1

r )) s > r

Continuity in s at s = r for fixed r and continuity in r as r→ 1 for fixed f is a routine computation.

Second, we would have to relate the assumption with the hypothesis given. We have that [Σh ◦Σi] =

[Σ(h◦ i)] = 0, so [Σh◦Σα] = [Σh]◦ [Σi◦εp] = 0 by Lemma III.7.11. By the first part of the argument, we get

k ∈ [[Σ2B,Σ2D]] with the desired property.
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Proof of Theorem III.7.10 follows immediately from Lemma III.7.12 and the Bott Periodicity (Theo-

rem III.7.6) result that E(D,J)∼= E(ΣD,ΣJ) and E(B,D)∼= E(Σ2B,Σ2D).

The last ingredient to exact sequences for E is a general result about half-exact and homotopy invariant

functor.

Theorem III.7.13. [Kas81, p. 564][Bla98, Lem 21.4.1-21.4.3] Let F be a homotopy-invariant, half-exact

covariant functor from S, the category of separable Banach algebras, to Ab, the category of abelian groups.

Then F has long exact sequences: if 0→ J
j−→ A

q−→ B→ 0 is a short exact sequence in S, then there is a

natural long exact sequence

· · · j∗−→ F(ΣA)
q∗−→ F(ΣB) ∂−→ F(J)

j∗−→ F(A)
q∗−→ F(B).

Analogous results hold if F is a contravariant instead of covariant functor from S to Ab.

Sketch of proof. First step of the proof is showing that j∗ gives an isomorphism between F(J) and F(A)

when B is contractible. Assuming B is contractible, we obtain from half-exactness applied to the original

exact sequence the surjectivity of j∗. To obtain injectivity, we introduce the algebra Z = { f : [0,1] →
A| f (1) ∈ J}. It can be shown that k, the constant embedding of J into Z is a homotopic equivalence, and

hence induces isomorphism between F(J) and F(Z). Now apply half-exactness to the following exact

sequences: 0→CJ→ Z π−→Cq→ 0 and 0→ ΣB→Cq
p−→ A→ 0. We obtain that π∗ and p∗ are both injective.

Since j = p◦π ◦ k, we have the map j∗ = p∗ ◦π∗ ◦ k∗ is also injective.

For the general case, apply the preliminary result to the exact sequence 0→ J e−→Cq→CB→ 0. This

shows that the map e(x) = (x,0) induces an isomorphism between F(J) and F(Cq). Set ∂ = e−1
∗ ◦ i∗ (i is the

inclusion map of ΣB into Cq).

Because of Lemma III.6.6, we have that Σ takes short exact sequence to short exact sequence. It remains

to check that the sequence is exact at F(ΣB) and F(J). The exactness at F(J) comes from half-exactness

applied to the exact sequence 0→ ΣB→Cq→ A→ 0 and the isomorphism between F(J) and F(Cq) given

by e∗. The exactness at F(ΣB) follows from half-exactness applied to

0→C0((−1,0),A)→ T →Cq→ 0

where T is the algebra defined by T = {( f ,g) : g(0) = q( f (0))} ⊂C0((−1,0],A)⊕C0([0,1),B). A useful

fact for this last bit is that the canonical embedding k : ΣB→ T induces an isomorphism because the quotient

T/k(ΣB) is isomorphic to CA by First Isomorphism Theorem.

The proof for contravariant functor is analogous.

Combining all three ingredients together and we have the desired six-term exact sequences.

Corollary III.7.14 (c.f. Blackadar 25.5.13). E-theory for Lp-algebras has six-term exact sequences in each

variable for σ -unital 9 extensions of separable Lp-algebras. Specifically, if 0→ J
j−→ A

q−→ B→ 0 is a short

9While Theorem III.7.13 gives a long exact sequence for functor F for any short exact sequence of separable Banach algebras,
E-theory for Lp-algebra is only half-exact for σ -unital extensions (Theorem III.7.10), hence we need the σ -unitality assumption
here.
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exact sequence of separable Lp-algebras where J is σ -unital, and D is any separable Banach algebras, then

the following six-term sequences are exact:

E(B,D)
q∗ // E(A,D)

i∗ // E(J,D)

ε∗q
��

E(ΣJ,D)

ε∗q

OO

E(ΣA,D)
i∗oo E(ΣB,D)

q∗oo

E(D,J)
i∗ // E(D,A)

q∗ // E(D,B)

εq∗
��

E(D,ΣB)

εq∗

OO

E(D,ΣA)
q∗oo E(D,ΣJ)

i∗oo

III.8 Mayer-Vietoris Exact Sequence

Equipped with the results about exact sequences in the previous section, we are ready to derive the Mayer-

Vietoris Exact Sequence for E-theory for Banach algebras:

Theorem III.8.1. [HRY93] Let A and B be closed, two-sided ideals in a Banach algebra M, such that both

A∩B and M are σ -unital Banach algebras. Assume that A+B = M, then there is a Mayer-Vietoris sequence

in both variables of E− theory. I.e. let D be any separable Banach algebras, we have the following long-

exact sequence:

· · · → En(D,A∩B)
j∗−→ En(D,A)⊕En(D,B) i∗−→ En(D,M)

∂−→ En−1(D,A∩B)→ ···

· · · → En(M,D)
i∗−→ En(A,D)⊕En(B,D)

j∗−→ En(A∩B,D)
∂−→ En+1(M,D)→ ···

Notation 2. 1. Let D be a Banach algebra, let D[0,1] := C([0,1],D), D[0,1) := C0([0,1),D) = CD

(Def III.7.9) and D(0,1] = C̃D.

2. Let A,B, and M be as above, define C = { f ∈ M[0,1] : f (0) ∈ A, f (1) ∈ B}, T = { f ∈ (M/(A∩
B))[0,1] : f (0) ∈ A/(A∩B), f (1) ∈ B/(A∩B)}

Lemma III.8.2. T is contractible.

Proof. Since A+B=M, by elementary algebra, we have A/(A∩B)⊕B/(A∩B)∼=M/(A∩B). Thus we have

(M/(A∩B))[0,1] = (A/(A∩B))[0,1]⊕ (B/(A∩B))[0,1] by projection to the two components. This implies

that any f ∈ (M/(A∩B))[0,1] has a unique decomposition into fA + fB where fA ∈ (A/(A∩B))[0,1], fB ∈
(B/(A∩B))[0,1].

Now since (A/(A∩B))∩ (B/(A∩B)) = 0, for any f ∈ T , we have fB(0) = 0 and fA(1) = 0. This shows

that in fact fB ∈ C̃(B/(A∩B)), fA ∈ C(A/(A∩B)) and T = C(A/(A∩B))⊕ C̃(B/(A∩B)) – sum of two

contractible Banach algebras, hence contractible.
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Proof of Theorem. We will prove the covariant case. The contravariant case is analogous.

Consider the map C → A⊕ B by evaluation at the endpoints 0 and 1. This is a surjective continuous

homomorphism with kernel ΣM, which is a closed two-sided ideal in C . ΣM is σ -unital because M is (by

assumption). This gives the following σ -unital extension:

0→ ΣM i−→ C
q−→ A⊕B→ 0

By Theorem III.7.13, for separable Banach algebra D, we have the following long exact sequence

· · · → En(D,C )
q∗−→ En(D,A)⊕En(D,B) ∂−→ En−1(D,ΣM)

i∗−→ En−1(D,C )→ ···

Next we will consider the natural quotient map from M[0,1] to (M/(A∩B))[0,1]. This is a surjection because

of the fact that injective tensor product with C(K) (in our case K = [0,1]) preserves quotient operator10

[Rya02, Prop 3.5]. When we restrict this map to C , it is easy to see that the image is all of T and the kernel

is (A∩B)[0,1]. This gives the following short exact sequence:

0→ (A∩B)[0,1]→ C →T → 0

By the assumption that A∩B is σ -unital, we have that (A∩B)[0,1] is also σ -unital. By Theorem III.7.13

and Lemma III.8.2, we have that En(D,(A∩B)[0,1]) ∼= En(D,C ). Similarly, by considering the following

σ -unital extension:

0→ (A∩B)(0,1]→ (A∩B)[0,1]→ A∩B→ 0

we have En(D,(A∩B)[0,1]) ∼= En(D,A∩B). Applying theese two results to the long exact sequence of E-

theory above, and by Bott Periodicity (Theorem III.7.6), which gives En−1(D,ΣM) ∼= En(D,M), we obtain

the following long exact sequence:

· · · → En(D,A∩B)
q∗−→ En(D,A)⊕En(D,B) ∂−→ En(D,M)

i∗−→ En−1(D,A∩B)→ ···

10Q : Z → Y is a quotient operator is equivalent to the fact that Y is isometrically isomorphic to the quotient space Z/kerQ
[Rya02, p.18]
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CHAPTER IV

APPLICATION: DUAL NOVIKOV CONJECTURE

IV.1 Equivariant E-Theory

In this section, we will discuss changes necessary to make the E-theory we defined earlier suitable for the

study of Dual Novokov Conjecture (to be defined in the next section), where group action is involved. As

mentioned briefly in the Introduction, this approach to the Novikov conjecture that we use here has its origin

in the two joint work of Kasparov and Yu, [KY05; KY12]. In particular, algebras similar to A (X), which

we are to define in Section IV.4, were also used in these references and works of others [HK01; HKT98].

In the following, G will be a fixed locally compact σ -compact topological group. A separable Banach

algebra with a pointwise norm-continuous action of G by automorphisms will be called a G-algebra. Let A

and B be G-algebras.

First, we will define the object of our study - equivariant asymptotic morphisms. They are asymptotic

morphisms {φt} which are (pointwise) asymptotically equivariant, i.e. satisfying the additional condition:

lim
t→∞
‖φt(g ·a)−g ·φt(a)‖= 0, g ∈ G,a ∈ A

Recall that in the non-equivariant case, we define composition of asymptotic morphisms on their uni-

formly continuous representatives (obtained from Bartle-Graves Selection Theorem). Uniformly continuous

estimate are also important for defining composition of equivariant asymptotic morphisms.

Definition IV.1.1. [Tho, Def 1.1.9] Let A, B and C be G-algebras, and let φ = {φt}t∈[1,∞) : A→ B and

ψ = {ψt}t∈[1,∞) : B→C be uniformly continuous asymptotic equivariant homomorphisms. A composition

pair for ψ and φ , is a dense subset Y ⊂ A which is the union of a sequence of compact subsets containing 0

and a parametrization r : [1,∞)→ [1,∞) such that

i) limt→∞ sups≥r(t) ‖ψs ◦φt(ab)−ψs ◦φt(a)ψs ◦φt(b)‖= 0 for all a,b ∈ Y ,

ii) limt→∞ sups≥r(t) ‖ψs ◦φt(a+λb)−ψs ◦φt(a)−λψs ◦φt(b)‖= 0 for all a,b ∈ Y and all λ ∈ C,

iii) limt→∞ sups≥r(t) ‖ψs ◦φt(a)‖ ≤ ‖ψ‖‖φ‖‖a‖ for all a ∈ Y ,

iv) for every compact subset K ⊂ G, every pair a,b ∈ Y and every ε > 0 there is a t0 ∈ [1,∞) such that

sup
s≥r(t)

‖g ·ψs ◦φt(a)−ψs ◦φt(h ·b)‖ ≤ ‖g ·a−h ·b‖+ ε

for all g,h ∈ K when t ≥ t0

Note that if (Y,r) is acomposition pair for φ and ψ , then so is (Y,r′) for any parametrization r′ such that

r′ ≥ r.
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Proposition IV.1.2. [Tho, Prop 1.1.10] Let A, B and C be G-algebras. Let φ : A B and ψ : B C be

uniformly continuous equivariant asymptotic morphisms, and let Y ⊂ A be a dense subset which is the union

of a countable family of compact sets containing 0.

a) There is then a parametrization r : [1,∞)→ [1,∞) such that (Y,r) is a composition pair for ψ and φ .

b) When K1 ⊂ K2 ⊂ K3 ⊂ ·· · are compact subsets of X with ∪nKn = Y , we can arrange that the following

holds: For all n and all ε > 0 there is a t0 ∈ [1,∞) such that

sup
s≥r(t)

‖ψs ◦φt(a)−ψs ◦φt(b)‖ ≤ ‖a−b‖+ ε

for all a,b ∈ Kn and all t ≥ t0

Proof of the proposition goes exactly the same as for the corresponding result in the non-equivariant

case (Proposition III.3.1), by recursively picking tn to approximate to increasing precision on the sequence

of exhausting compact subset Kn.

Next, we will discusss equivariant asymptotic morphisms associated to extension of G-algebras. An

extension 0→ J
j−→ E

p−→ A→ 0 of Banach algebras, where A,E and J are G-algebras, is said to be an

extension of G-algebras (or just a G-extension) when j and p are G-equivariant. We need first a result

about the existence of quasicentral approximate unit that is compatible with group action, which we call

asymptotically G-invariant approximate unit. It is a quasicentral approximate unit {ut} with the additional

condition:

lim
t→∞

sup
g∈K
‖g ·ut −ut‖= 0 for every compact subset K ⊂ G

This is given in the second part of Proposition III.5.3 for J σ -unital, closed two-sided G-ideal in a G-algebra

B such that the quotient B/J is separable.

We observe that our construction for ”connecting morphism” (Proposition III.6.1) yields a equivariant

asymptotic homomorphism for a σ -unital extension of G-Lp-algebras when {ut} is a continuous asymptoti-

cally G-invariant approximate unit.

Let A and B be separable G-Lp-algebras. We define [[A,B]]G to be the semi-group consisting of homotopy

classes of G-equivariant asymptotic morphisms from A to B. We define

EG(A,B) = [[ΣA⊗K(Lp(Z,Lp(G)),ΣB⊗K(Lp(Z,Lp(G))]]G

.

IV.2 RE-theory

In this section, we will define RE-theory. The notation is inspired by the definition of RKKG(X ;A,B) in

[Kas88], which generazlies both KKG(A,B) and the representable K-functor group RK0(X) of a locally

compact, σ -compact space X . According to the remark in the proof to Proposition 2.20 in [Kas88], any pair
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(E ,T )∈ RKKG(X ;A,B) gives rise to a continuous field of Hilbert B-modules Ex and operators Tx on Ex over

X .

Definition IV.2.1. We define a continuous family of (equivariant) asymptotic morphism over Z to be a family

of asymptotc morphism over Z:

φt,z : A B

such that:

a) For each a, t, the map z 7→ φt,z(a) is norm continuous

b) For each a ∈ A, t 7→ φt,z(a) is uniformly continuous on compact subset of Z. This means that for K

compact subset of Z, given t0,ε > 0, there exists δ > 0 such that for all t ∈ B(t0,δ ):

sup
z∈K
‖φt,z(a)−φt0,z(a)‖< ε

c) For each a1,a2 ∈ A, λ ∈ C, K compact subset of Z, we have:

lim
t→∞

sup
z∈K
‖φt,z(a1 +λ2)− (φt,z(a1)+λφt,z(a2))‖= 0

lim
t→∞

sup
z∈K
‖φt,z(a1a2)−φt,z(a1)φt,z(a2)‖= 0

lim
t→∞

sup
z∈K
‖φt,z(g ·a1)−g ·φt,z(a1)‖= 0 (additional condition for equivariant case)

REG(Y ;A,B) is defined as group of homotopy classes of continuous family of equivariant asymptotic mor-

phism over Y from ΣA⊗K(Lp(Z,Lp(G)) to ΣB⊗K(Lp(Z,Lp(G)) while the non-equivariant version RE(Y ;A,B)

is defined as the group of homotopy classes of continuous family of asymptotic morphism over Y from

ΣA⊗K(Lp(Z)) to ΣB⊗K(Lp(Z))

Note that RE(Y ;A,B) is isomorphic to E(A,C0(Y,B)) when Y is a compact space. This will be a use-

ful fact in our proof of the dual Novikov conjecture. We note also that RE(BΓ;C,C) can be identified

as RK0(BΓ), the representable K-theory group of the classifying space of group Γ. And more generally,

RE(Y ;C,C)∼= RK0(Y ) for locally compact set Y .

IV.3 Clifford algebras of Lp space

Let X be Lp(Z,µ), the space of real-valued p-integrable function over a µ-measureable space Z. X is a

Banach space over R for p ≥ 1. We know that X∗, its dual space, is isomorphic to the real Banach space

Lq(Z,µ) where 1/p+1/q = 1. Denote by ⊗n
algX the vector space tensor product

n︷ ︸︸ ︷
X⊗·· ·⊗X for n≥ 1, and

also put ⊗0X = R.

The norm on ⊗0X is the standard norm. For n≥ 1, we give ⊗n
algX the Lp tensor norm. Given Lp(Z1,µ)

and Lp(Z2,ν) two Lp Banach space, their Lp tensor product is defined as completion of the algebraic tensor
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product in a tensor norm such that:

Lp(Z1,µ)⊗Lp(Z2,ν)∼= Lp(Z1×Z2,µ×ν)

Define ⊗nX to be the completion of ⊗n
algX with respect to the above norm.

Let

T (X) =

{
∞

⊕
n=0

an : an ∈ ⊗nX ,
∞

∑
n=0
‖an‖p <+∞

}
.

Then T (X) is a Banach space over R with the norm ‖
∞

⊕
n=1

an‖p = ∑
∞
n=0 ‖an‖p.

If we have a bilinear pairing q : X×X→R, we can define a Clifford algebra as follows. Let Iq(X) be the

closed two-sided ideal in T (X) generated by all elements of the form: x1⊗ x2 + x2⊗ x1−q(x1,x2), x1,x2 ∈
X . The Clifford algebra Cl(X ,q) is defined as the complexified quotient Banach algebra: Cl(X ,q) =

(T (X)/Iq(X))⊗C. Note that there is a bounded linear map X → T (X)→Cl(X).

If we have two Lp spaces X1 and X2 equipped with bilinear pairings q1 and q2 respectively, we can define

the Clifford algebra Cl(X1⊕X2,q1⊕q2). There are uniquely defined natural homomorphisms Cl(X1,q1)→
Cl(X1⊕X2,q1⊕q2) and Cl(X2,q2)→Cl(X1⊕X2,q1⊕q2).

Moreover, we can define a Banach algebra Cl(X1,q1)⊗̂Cl(X2,q2) as the Lp tensor product of Banach

spaces Cl(X1,q1) and Cl(X2,q2) with the product given by (a1⊗a2)(b1⊗b2) = (−1)dega2·degb1a1b1⊗a2b2.

There is a natural homomorphism Cl(X1,q1)⊗̂Cl(X2,q2)→ Cl(X1 ⊕ X2,q1 ⊕ q2) which extends the two

above homomorphisms of Cl(X1,q1) and Cl(X2,q2).

Let us now apply this construction to the Banach space W = X⊕X∗. We define a pairing q : W×W →R
by q(w1,w2) = (x1,y2)+ (x2,y1) for all w1 = x1⊕ y1, w2 = x2⊕ y2 ∈W = X ⊕X∗. The Clifford algebra

Cl(W,q) will be denoted Cl(W ). In the case of a finite-dimensional space V , the algebra Cl(V ⊕V ∗) is

isomorphic to L (Λ∗C(V )), the full matrix algebra of the exterior algebra space Λ∗C(V ).

IV.4 Banach algebra of a lp space.

In this section, we will define an algebra A(X) associated to a Banach space X . We will first define A(V ) for

finite-dimensional subspace V of X , and then define A(X) using the direct limit construction as in the case

of a Hilbert space X [HK01]. A necessary conditionfor his construction is that X has property π [Cas01],

which means that there exists an increasing sequence of finite dimensional subspace {Vn} of X , such that

the corresponding projections Pn : X →Vn satisfies:

1. ∪Vn is dense in X

2. supn ‖Pn‖< ∞

In the following discssion, we will assume that X is lp(N) (also known as lp), the space of p-summable

sequence of real numbers, where the norm for an element v = (an)is given by

‖v‖p = (
∞

∑
n=1
|an|p)1/p

35



Its dual space X∗ is given by lq(N) where 1/p+1/q = 1. The pairing between X and X∗ is given by:

((an),(bn)) =
∞

∑
n=1

anbn for (an) ∈ X ,(bn) ∈ X∗

If we denote by en the sequence which is 1 at position n and 0 everywhere else. Then en is a unit vector in

lp(N) for any p≥ 1 for each n. For clarity, we will use the notation e∗n to distinguish a unit vector in X∗ from

its counterpart in X in this paper.

We will start our construction by defining a certain subalgebra S of C0(R).
Denote by Cl1 the complex Clifford algebra generated by the elements {1,ε} with the relation: ε2 = 1.

The norm is: ||a+bε||= |a|+ |b|. Our algebra S will be a completion of an algebra of compactly supported

continuous functions f : R+→ Cl1 in the norm given below. The functions of the algebra have the form:

f (s) = f0(s2)+ εs f1(s2), where both f0 and f1 are complex-valued continuous functions on R+, vanishing

at ∞. We will consider f0(s2) and s f1(s2) as the even and the odd part of a continuous function on R.

We define the norm on S by || f ||= sups∈R+
(| f0(s2)|+ |s f1(s2)|). The algebra S has a natural grading

induced by the grading of Cl1. If we consider the algebra S as ungraded, it isomorphic to C0(R) (the

isomorphism is not isometric).

We define a sequence of finite-dimensional subspaces of X and X∗. Let Vj = span{e1,e2, ...,e j} ⊂ X

and Wj = span{e∗1,e∗2, ...,e∗j} ⊂ X∗. We also define a ”star” map (*) between X and X∗ which maps Vj to the

corresponding Wj.

∗ : X → X∗; ∑anen 7→∑an|an|p−2e∗n

It is easy to verify that the image sequence belongs to lq by using the relation 1/p+ 1/q = 1. We have

also that (v,v∗) = ‖v‖p
p. To simplify notation below, we will define the notation a∗n = an|an|p−2. Define

ψ : X×X →Cl(X⊕X∗) by:

((an),(bn)) 7→ ((an +bni))⊕
((

(a∗n−b∗ni)
ana∗n +bnb∗n

(ana∗n +bnb∗n)+ i(bna∗n−anb∗n)

))
Assuming norm of the complexified X (respectively X∗) is given simply by taking the sum of pth (re-

spectively qth) power of the modulus of each complex number in the sequence. This is a reasonable com-

plexification as defined in [MST99] and hence is equivalent to any other reasonable complexification norms

on X and X∗ (see [MST99, Prop 3]).

We will show that the image is contained in complexified X⊕X∗. First note that, (an),(bn) ∈ lp implies

that (|an|),(|bn|)∈ lp because they have the same lp norm. Because lp is a linear space, this means that (|an|+
|bn|) ∈ lp and hence (an+bni) ∈ lp (complexified) because |an+bni| ≤ |an|+ |bn| by triangle inequality. On

the other hand, noticing that |(ana∗n + bnb∗n)+ i(bna∗n− anb∗n)| ≥ |(ana∗n + bnb∗n)| (modulus of any complex

number is larger than absolute value of its real part), similar argument as above shows that the second

component indeed belongs to complexified lq.
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We also compute [ψ(v,w)]2, by definition of the Clifford algebra, we have that it is equal to:(
((an +bni)),

((
(a∗n−b∗ni)

ana∗n +bnb∗n
(ana∗n +bnb∗n)+ i(bna∗n−anb∗n)

)))
which is equal to ∑n(ana∗n+bnb∗n) = ∑n(|an|p+ |bn|p). Notice that [ψ(v,w)]2→∞ as v→∞ or w→∞. This

is important for guaranteeing that the Bott map we are to define below maps to elements which vanish at

infinity of the input vector space.

For any V finite dimensional subspace of X , we define A(V ) = S ⊗̂C0(V ×V,Cl(V ⊕V ∗)). Let Vj1 ⊂
Vj2 ⊂ X and Wj1 ⊂Wj2 ⊂ X∗, we will use the identifications V ∗k 'Wk. We have the map Cl(Vj1 ⊕Wj1)→
Cl(Vj2 ⊕Wj2). Vectors in Vj2 ×Vj2 can be mapped to Vj1 ×Vj1 via projection. This gives the map from

C0(Vj1 ×Vj1 ,Cl(Vj1 ⊕Wj1)) to the multiplier algebra of C0(Vj2 ×Vj2 ,Cl(Vj2 ⊕Wj2)). We will illustrate this

with a function f ∈C0(Vj1×Vj1 ,Cl(Vj1⊕Wj1)). We may define f̃ ∈M (C0(Vj2×Vj2 ,Cl(Vj2⊕Wj2))) by:

f̃ : Vj2×Vj2
pro jection−−−−−→Vj1×Vj1

f−→Cl(Vj1⊕Wj1)→Cl(Vj2⊕Wj2)

Now let Y1 ⊂Vj2 be the orthogonal complement of Wj1 in Vj2 and Z1 ⊂Wj2 the orthogonal complement

of Vj1 in Wj2 . Recall that (en) and (e∗n) form a biorthogonal system, so there is a neat representation for

both of the orthogonal complement as the span of some finitely many members of (en) or (e∗n). We have

direct sum decompositions: Vj2 =Vj1⊕Y1,Wj2 =Wj1⊕Z1, which allow us to write Cl(Vj2⊕Wj2) as Cl(Vj1⊕
Wj1)⊗̂Cl(Y1⊕Z1).

Let R+ be the positive half-line {s ∈ R|s≥ 0}. For any f ∈S , we define a multiplier of A(Vj2) by the

formula

(s,v,w) 7→ f0(s2 +ψ(v,w)2)+ f1(x2 +ψ(v,w)2)(sε⊗̂1+1⊗̂ψ(v,w))

where v ∈ Y1,w ∈ Y1. This gives the Bott map S → A(Y1). In fact, the Bott map S → A(Vn) is defined for

any Vn ⊂ X by the same formula.

Finally, the homomorphism ρ j1, j2 : A(Vj1)→ A(Vj2) is defined by the formula:

f ⊗̂h 7→ f0(s2 +ψ(v,w)2)1⊗̂h⊗̂1+ f1(s2 +ψ(v,w)2)(sε⊗̂h⊗̂1+1⊗̂h⊗̂ψ(v,w))

where f ⊗̂h ∈S ⊗̂C0(Vj1×Vj1 ,Cl(Vj1⊕Wj1)).

The system of transition maps {ρi j : A(Vi)→ A(Vj)|i < j} defined above is transitive (similar calculation

as that in [HKT98, Prop 3.2], by comparing the two maps on e−x2
and xe−x2

, the two generators of S ), hence

we have an inductive system {A(Vn),ρi j}.
We may then define A(X) as the inductive limit lim−→A (Vn). The K-theory of the finite dimensional

algebra A(V ) is known to be isomorphic to that of S via the Bott map defined above, so the same is true for

A(X).

As in [HK01, Prop 4.9], A(X) contains a large commutative subalgebra A0(X) such that A0(X) ·A(X) is

dense in A(X). We will explain its construction and describe its maximal ideal space, which will be helpful

for our argument later in the proof of Dual Novikov Conjecture. Let CX = R+×X×X .

37



Define A0(Vn) to be the center of A(Vn). It is equal to S ev⊗C0(Vn×Vn), where S ev is the subalgebra

of all even functions in S . This algebra is isomorphic to the algebra of continuous functions, vanishing at

infinity, on the locally compact space [0,∞)×Vn×Vn. The maps of our inductive system, ρi j : A(Vi)→A(Vj),

corresponding to the embedding Vi ⊂ Vj, carry these subalgebras into each other: A0(Vi)→ A0(Vj). So we

can form the direct limit A0(X). It has the property that A0(X) ·A(X) is dense in A(X). The maximal ideal

space of the algebras get mapped in the opposite direction and form an inverse system of topological space:

R+← R+×V1×V1← R+×V2×V2← ···

Proposition IV.4.1. The space CX = [0,∞)×X×X endowed with the weakly topology in which all functions

{s2 +ψ(v− a,w− b)2|a ∈ Vn,b ∈Wn for some n ∈ N} are continuous, is a dense subspace of the maximal

ideals space MX of A0(X). Any subset of CX which is bounded in the metric of CX (i.e. any subset on which

the function x2 +ψ(v,w)2 is bounded) has compact closure in MX , and vice versa: the intersection of any

compact subset of MX with CX is bounded in the metric of CX .

Proof. The first assertion follows from the fact that the functions {(s2+ψ((v,w)− (a,b))2)|a ∈Vn,b ∈Wn}
separate points in CX . The second assertion follows from the fact that the same set of functions are bounded

exactly on bounded subsets of CX , and neighborhoods of infinity of the maximal ideal space of A0(X) are

complements of the compact sets of the type {(s2 +ψ((v,w)− (a,b))2)≤ const}

IV.5 Dual Novikov Conjecture

In this section, we will apply the machinery developed in the previous section to prove a result related to the

Novikov Conjecture. Let’s begin with the statement of Novikov conjecture.

Let Mn be an oriented, closed, smooth maniford. Denote by L∗(Mn) ∈ H∗(Mn;Q) its Pontrjagin-

Hirzebruch characteristic class. Then the Hirzebruch signature theorem [Hir] states that:

signature(M) =< L∗(Mn), [Mn]>

this shows that the value of L∗(Mn) on the fundamental cycle [Mn] of Mn is a homotopy invariant of Mn.

Fixing a countable discrete group π and denote by Bπ its classifying space. For any continuous map f :

Mn→ Bπ and any element x ∈ H∗(Bπ;Q), S.P. Novikov defined the higher signatures of Mn:

< L∗(Mn)∪ f ∗(x), [Mn]>

and conjectured that [Nov70] for any π, f and x, they depend only on a homotopy type of Mn. When

translated into the language of K-theory, this is a consequence of the Strong Novikov Conjecture [Kas75],

which asserts that the following assembly map is injective:

β ⊗Q : RK∗(Bπ)⊗Q→ K∗(C∗(π))⊗Q

In the C∗-algebra case, there is a natural pairing between K∗(C∗(π) and R∗(π) - the ring of Fredholm
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representations of the group π , which relates the assembly map above with the following natural map:

α : R∗(π)→ RK∗(Bπ)

When Bπ is compact, the surjectivity of α would imply the injectivity of β ⊗Q because they are dual.

Hence the surjectivity of α is called the Dual Novikov Conjecture.

The example of application of the above asymptotic E-theory for Banach Lp-algebras presented here

will be an lp-version of the dual Novikov conjecture which naturally leads to the lp Novikov conjecture. The

Strong Novikov conjecture (but not an Lp Novikov conjecture) was proved for groups acting on Lp-spaces

in [KY12].

Theorem IV.5.1. Let X be an lp Banach space. Assume that a discrete torsion-free group Γ acts on X

isometrically and metrically properly. Then the map

ν : E∗Γ(C,C)→ RE∗Γ(EΓ;C,C)' RK∗Γ(EΓ)' RK∗(BΓ),

where EΓ means the universal free Γ-space, is surjective.

The RE group on the right is defined as the group of continuous families of E-theory elements parametrized

by the space EΓ. The space EΓ is realized as a locally compact space. The group Γ acts both on the param-

eter space and on the algebras involved.

The main diagram:

E∗
Γ
(A (X),C) −→ RE∗

Γ
(EΓ;A (X),C)' RE∗(BΓ;A (X),C)y y

E∗
Γ
(S ,C) −→ RE∗

Γ
(EΓ;S ,C)' RE∗(BΓ;S ,C).

In this diagram, the horizontal arrows map a single E-theory element into the family which is constant

over EΓ. The vertical arrows are induced by the Bott maps.

We have to prove that the upper horizontal arrow and the right vertical arrow are isomorphisms. The

surjectivity of the bottom horizontal arrow will follow.

Let’s recall Milnor’s lim1 exact sequence [Mil62].

Lemma IV.5.2. Let W be the category of all pairs (X ,A) such that both X and A have homotopy type of a

CW-complex; and all continuous maps between such pairs. Consider a telescope of CW-complexes:

K1 ⊂ K2 ⊂ K3 ⊂ ·· ·

with union K, each Ki subcomplex of K. Let H∗ be an additive cohomology theory on W , then we have the

following exact sequence

0→ lim
←

1(Hn−1(Ki))→ Hn(K)→ lim
←

(Hn(Ki))→ 0
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Lemma IV.5.3. The right vertical arrow is an isomorphism.

Proof. First of all, the isomorphisms of the RE∗-groups on the right of the diagram follow from the fact

that Γ acts on EΓ freely and properly. In fact, any non-equivariant asymptotic morphism parametrized by

BΓ naturally lifts to an equivariant one. In the opposite direction, we use averaging over Γ of an asymptotic

morphism parametrized by EΓ after multiplying it by a cut-off function on EΓ.

The Bott map S →A (X) naturally induces the homomorphism

RE∗(BΓ;A (X),C)→ RE∗(BΓ;S ,C).

To show that it is an isomorphism, we will use a realization of the space BΓ as a telescope of its compact

CW -subspaces. More specifically, we recall the infinite join construction of Milnor[Mil56], which states

that EΓ = Γ∗Γ∗Γ∗ · · · and BΓ = EΓ/Γ. Since Γ is discrete, we may assume that its element to be {xn}∞
n=1.

We may define Kn to be the space of orbits of the n-fold join of the set {x1, · · · ,xn}:

({x1, · · · ,xn}∗ · · · ∗ {x1, · · · ,xn})Γ/Γ

We have that Kn is compact CW for each n and that limKn = BΓ.

It is enough to prove that for any compact CW -space Z, the homomorphism RE∗(Z;A (X),C) →
RE∗(Z;S ,C) is an isomorphism. This follows from exact sequences in the second argument, using in-

duction on dimension of Z and the 5-lemma. The assertion for BΓ will follow from Milnor’s lim1 exact

sequence.

We first note that for any compact space Z, we can rewrite our RE∗-groups as E∗(A (X),C(Z)) and

E∗(S ,C(Z)) respectively. Define HEA(Z) := E(A(X),C0(Z)) and HES(Z) := E(S ,C0(Z)). HEA(Z) and

HES(Z) are both additive, homotopy invariant contravariant functors and have Mayer-Vietoris exact se-

quence. So the proof for Milnor’s lim1 exact sequence applies and if we have a telescope of comapct

CW-complexes {Kn} and isomorphism between the two functors on each Kn as follows:

· · · // HE∗A(Kn) //

∼=
��

HE∗A(Kn−1) · · · //

∼=
��

HE∗A(K1)

∼=
��

· · · // HE∗S (Kn) // HE∗S (Kn−1) · · · // HE∗S (K1)

we have the following natural maps between the corresponding Milnor’s lim1 sequence:

0 //

��

lim
←

1(HEn−1
A (Ki)) //

��

HEn
A(K) //

��

lim
←

(HEn
A(Ki))

��

// 0

��
0 // lim

←
1(HEn−1

S (Ki)) // HEn
S (K) // lim

←
(HEn

S (Ki)) // 0

Because the left two and right two vertical arrows are isomorphisms, we have the isomorphism in the middle

by the five lemma.
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Lemma IV.5.4. The upper horizontal arrow is an isomorphism.

Before we go into the proof of the second lemma, let’s recall some definitions about different notions of

properness.

The affine isometric action of Γ on X can be written in the following form [HK01]:

g · v = π(g)v+κ(g)

where π is a linear isometric representation of Γ on X and κ is a one-cocycle on Γ with values in X . Thus κ

is a continuous function from Γ into X such that κ(g1g2) = π(g1)κ(g2)+κ(g1).

Definition IV.5.5. [HK01; Kas88; KY05] The affine isometric action of Γ on X is metrically proper if

limg→∞ ‖κ(g)‖= ∞.

Action of a group G on a locally compact Z is called proper if for any two compact subsets K and L in Z the

set {g ∈ G|g(K)∩L 6= } is compact in G. If G is discrete, then the said set would be finite.

A, a Banach algebra with continuous action of G by automorphism, is called a proper G-algebra if there is

a locally compact, second-countable, proper G-space Z and an equivariant Banach algebra homomorphism

from C0(Z) into the center of the multiplier algebra of A such that C0(Z) ·A is dense in A.

Because Γ acts metrically proper on X , it acts metrically proper on the space CX as well. By Proposi-

tion IV.4.1, Γ acts properly on the MX , the maximal ideal space of A0(X). Additionally, A0(X) ·A (X) is

dense in A (X), so A (X) is a proper Banach Γ-algebra.

Proof. Let Y be an open Γ-invariant subspace of the maximal ideal space of the algebra A0(X). The in-

tersection of Y with CX is open in CX . The subset Y defines a closed two-sided ideal in A (X), namely,

C0(Y ) ·A (X). Call it A (X)Y .

Note that since the group Γ is torsion-free by our assumption and the action of Γ on X is metrically

proper, any subset Y as above is a free and proper locally compact Γ-space. We can choose an exhaustive

countable system {Yi} of such open subsets of the maximal ideal space of A0(X) so that each Yi+1 =Yi∪Ũi,

where Ũi is a product Ui×Γ, Ui is open and the action of Γ on Ui is trivial.

Note that the algebra A (X) is the inductive limit of its subalgebras A ((X)Yi . Using the Mayer-

Vietoris exact sequence and induction on i, we can show that the homomorphisms E∗
Γ
(A (X)Yi ,C) →

RE∗
Γ
(EΓ;A (X)Yi ,C) are all isomorphisms if the homomorphisms E∗

Γ
(A (X)Ũi

,C)→ RE∗
Γ
(EΓ;A (X)Ũi

,C)
are isomorphisms. Here in order to obtain the Mayer-Vietoris exact sequence for the groups RE∗

Γ
(EΓ;A (X)Yi ,C),

one can use the same trick as in the proof of the previous lemma: first get rid of the Γ-action: RE∗
Γ
(EΓ;A (X)Yi ,C)'

RE∗(BΓ;A (X)Yi ,C), then reduce the assertion to the case of a compact CW space Z instead of BΓ, and then

replace the group RE∗(Z;A (X)Yi ,C) with E∗(A (X)Yi ,C(Z)).

Next, we show that E∗
Γ
(A (X)Ũi

,C)→ RE∗
Γ
(EΓ;A (X)Ũi

,C) are isomorphisms. In this case, there is

an isomorphism E∗
Γ
(A (X)Ũi

,C) ' E∗(A (X)Ui ,C), and similarly for RE∗
Γ
(EΓ;A (X)Ũi

,C). Because EΓ is

contractible, the assertion is clear.

Finally, we use Milnor’s lim1 sequence to show that E∗
Γ
(A (X)Yi ,C) ' RE∗(BΓ;A (X)Yi ,C) implies

E∗
Γ
(A (X),C)' RE∗(BΓ;A (X),C).
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