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CHAPTER I 
 

INTRODUCTION 

 

The tissue repair process following a myocardial infarction 

Coronary heart disease resulting in myocardial infarction (MI) is the 

leading cause of death in both men and women, contributing to 1 in 3 deaths 

(Mozaffarian et al., 2015). Each year about 735,000 people in the U.S. have an 

MI and most suffer irreversible tissue damage, leading to ventricular remodeling, 

hypertrophy, deficient contractility, dilatation, and eventually heart failure (HF) 

(McMurray, 2010; Braunwald, 2015).  Despite the fact that overall death rates 

due to cardiovascular disease have decreased 30% over the last few decades, 

the number of deaths caused by end-stage heart failure has not changed, 

demonstrating a need for improving treatments following an acute cardiac injury 

such as an MI (Braunwald, 2015).   

 

Overview 

Following an MI, the adult heart undergoes a sequence of molecular and cellular 

events that delineate the different stages of tissue repair (Saxena et al., 2015) 

(Figure 1). Cardiomyocytes within infarcted myocardium begin to die via necrosis 

and apoptosis within minutes after coronary artery occlusion (Itoh et al., 1995; 

Konstantinidis et al., 2012; Reimer and Jennings, 1979). Toxic products and 

signals, known as danger associated molecular patterns or DAMPS, released 

from dying cells induce endothelial cell adhesion proteins, as well as cytokines 
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and chemokines, to recruit inflammatory cells that remove tissue debris as well 

as secrete proteases such as matrix metalloproteinase (MMPs) to degrade 

extracellular matrix (Timmers et al., 2012; Frangogiannis, 2014). After debris is 

cleared, the gap is filled with granulation tissue that is composed of proliferating 

cells, mainly endothelial cells that form new capillaries, and myofibroblasts that 

secrete collagen and other matrix proteins (Boudoulas and Hatzopoulos, 2009; 

Frangogiannis, 2012). Two to three weeks after the MI, the infarct tissue begins 
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to mature into a dense, cross-linked, collagen-based scar (Virag and Murry, 

2003). These well-documented stages that comprise the tissue repair process 

are highly regulated in a spatiotemporal manner. However, what regulates these 

processes both temporally and spatially is not entirely understood.  We have 

recently demonstrated that canonical Wnt signaling activation after MI attenuates 

fibrosis and promotes arteriole formation and cardiogenesis, suggesting that 

developmental pathways, critical for embryonic cardiac development, are re-

activated after injury in the adult heart to regulate tissue repair (Aisagbonhi et al., 

2011; Paik et al., 2015).  

Activated inflammatory cells that infiltrate the heart during the initial stages 

of the tissue repair process can damage surrounding, relatively healthy tissue by 

inducing secondary apoptosis and necrosis through the secretion of pro-

inflammatory cytokines such as TNFα, and by secreting matrix degrading 

proteins, thereby expanding the size of the initial injury (Entman et al., 1992). 

Overactive or unresolved inflammation delays and weakens scar formation; 

preventing proper wound healing (Kattman et al., 2011; Kruithof et al., 2006; 

Lenhart et al., 2011; Zhang et al., 2014). As a result, deregulated inflammation in 

MI patients can worsen LV dilative remodeling and systolic function, leading to 

HF (Frangogiannis, 2014).  Therefore a better understanding of how the 

inflammatory process is regulated is critical for generating therapies that could 

lead to the improvement of the prognosis of heart failure.   
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Inflammatory phase of recovery 

The inflammatory phase begins with the accumulation of DAMPs, the 

molecules released by dead or dying cells or generated from the damaged 

extracellular matrix examples of which include low molecular weight hyaluronic 

acid and fibronectin fragments.  These DAMPs then serve as ligands to activate 

the complement cascade and Toll-Like receptors. The complement cascade 

consists of the classical cascade, which activates immunoglobins, and the lectin 

cascade, which is traditionally associated with a response to microbials, all of 

which activate C3, leading to the subsequent activation of phagocytosis and 

neutrophil infiltration.  

Free radicals present in the injury area such as reactive oxygen species 

induce the expression of cytokines and chemokines such as TNFα and IL-1β by 

endothelial cells, mast cells, and cardiac cells (Figure 2A).   These cytokines in 

turn, induce the expression of other chemokines (i.e. MCP-1, IL-6, SDF-1) and 

cell adhesion molecules present on endothelial cells through NFκB and 

JAK/STAT pathways activation (Christia and Frangogiannis, 2013; 

Frangogiannis, 2012; Ma et al., 2013; Zhang et al., 2014). In parallel, DAMPS 

also activate the NFκB pathway by activating Toll-like receptors or TLRs (Akira 

and Takeda, 2004; Timmers et al., 2012). NFκB signaling also induces the 

expression of pro-inflammatory cell adhesion molecules such as E-selectin and 

VCAM (vascular cell adhesion molecule), which are required for the capture, 

rolling, adhesion, and extravasation of circulating leukocytes through the 

endothelial cell layer to the site of injury (Figure 2B).   
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Platelets are the first responding population of cells to enter the site of 

injury and act to provide a provisional matrix and secrete pro-inflammatory 

cytokines such as IL-1β, as well as activate the complement cascade.  Leukocyte 

cell populations then enter the scene, beginning with neutrophils, followed by the 
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pro-inflammatory monocytes/macrophages, and finally adaptive immune cell 

populations such as regulatory T cells, B cells, and Natural Killer cells 

(Frangogiannis, 2008; Kain et al., 2014; Yan et al., 2013).  These immune cell 

populations are recruited from a splenic reservoir through Angiotensin II 

activation, the bone marrow, and heart-draining lymph nodes (Kain et al., 2014; 

Ma et al., 2013; Swirski and Nahrendorf, 2013; Weirather et al., 2014; Zhang et 

al., 2014) They act to clear the cellular debris, phagocytose dead cells, secrete 

MMPs, release pro-inflammatory cytokines. 

Resolution of the inflammatory response is a dynamic and active process.  

The sequence of events that occurs during resolution is initiated by apoptotic 

neutrophils.  These neutrophils express “find me” and “eat me” signals, which 

include fractalkine, ATPs, and lactoferrin; or annexin and phosphatidylserine 

respectively.  The release of these proteins causes an expansion of the T-reg cell 

population as well as a phenotypic switch in macrophages, where they transition 

from a pro-inflammatory phenotype to a reparative phenotype. After this 

transition, macrophages no longer induce the expression of the pro-inflammatory 

cytokines, and instead, along with T-reg cells, secrete cytokines responsible for 

resolving inflammation, TGFβ1 and IL-10.  TGFβ1 induces the expression of 

matrix metalloproteinases (MMPs) that cleave both the CC and CXC families of 

chemokines and reduces cell-adhesion molecule expression.  Il-10 promotes the 

presence of chemokine receptors such as CCR1, CCR2, and CCR5 thereby 

trapping circulating cytokines, inhibits production of pro-inflammatory cytokines 

through mRNA de-stabilization, and contributes to matrix stabilization through the 
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induction of tissue inhibitor of MMPs (TIMPs) (Christia and Frangogiannis, 2013; 

Frangogiannis, 2012; Krishnamurthy et al., 2009; Ortega-Gómez et al., 2013; 

Zhang et al., 2014).  

Patients that exhibited increased levels of inflammatory biomarkers also 

had an increase in the extent of heart failure (Anzai et al., 1997; Frangogiannis, 

2014; Ma et al., 2013; Ørn et al., 2009; Zhang et al., 2014). Therefore due to the 

apparent therapeutic potential, previous clinical trials have attempted to down-

regulate the inflammatory response. However, the first trial using the 

glucocorticoid methylprednisolone actually had detrimental effects to the 

recovery of the patient group (da Luz et al., 1976).  As the understanding of the 

inflammatory process post-MI has improved, additional clinical trials have been 

attempted.  The ATTACH, RENAISSANCE, and the following larger trial 

RENEWAL used a recombinant TNFα receptor that prevented TNFα ligand-

receptor interactions.  These trials also led to increased morbidity and worse 

outcomes for those patients treated with the TNFα antagonist (Mann et al., 

2004).  Several trials took more specific approaches and targeted the leukocyte 

integrin CD11/CD18, following the success seen in animal models.   However 

this treatment did not result in a reduction of infarct size or an improvement in 

cardiac function in human patients (Baran et al., 2001; Faxon et al., 2002). Using 

an antibody that binds to a component of the complement cascade also resulted 

in no change in morbidity (APEX AMI Investigators et al., 2007; Granger et al., 

2003).  Most recently, intravenous immunoglobulin treatment was used in hopes 

to balance the cytokine response post-MI but also resulted in no change in infarct 
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size and cardiac function (Gullestad et al., 2013).  On the other hand, inhibitors of 

activated T-cells such as cyclosporine (Piot et al., 2008) and the P-selectin 

antagonist inclacumab (Tardif et al., 2013) did show promising results, indicating 

that modulating inflammation can be beneficial for cardiac repair after MI. 

Unfortunately, the benefits of cyclosporine use after MI could not be replicated in 

a larger clinical trial (Cung et al., NEJM 2015). Altogether, the clinical data 

underscore the need to better understand the mechanisms that regulate the 

inflammatory response after cardiac tissue injury. 

 

BMP signaling in cardiac development 

In order to gain insight into the molecular mechanisms that regulates the 

cardiac tissue repair process, the Hatzopoulos lab looked to pathways important 

for cardiac development that are often re-activated during tissue repair and 

regeneration.  One such pathway is the Bone Morphogenetic Protein (BMP) 

signaling pathway.  Originally discovered in the context of bone formation 

(Umulis et al., 2009), the pathway has since been extensively studied in the 

context of patterning and development using various models such as chicken 

embryos, mice, and zebrafish (Dudley et al., 1995; Furtado et al., 2008; 

Hammerschmidt et al., 1996; Jones et al., 1991; Luo et al., 1995; Schlange et al., 

2002; Weaver et al., 1999; Winnier et al., 1995; Wozney et al., 1988). 

Specifically, BMP signaling has been shown to play an important role during 

various stages of the complex cardiac development process and is necessary for 

the initiation of the cardiac gene program.  
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The process of cardiac differentiation begins with the formation of a linear 

cardiac tube.  The tube then undergoes a series of looping and jogging events in 

order to generate the 4-chambered heart (Figure 3).   

 

 

Each of these stages is highly regulated and requires different members and 

levels of the activated BMP pathway. In fact, Bmp2-/- mice are embryonic lethal 

and die shortly after heart tube formation, demonstrating that Bmp2 is essential 

for cardiac development to proceed (Zhang and Bradley, 1996). This is in part 

likely due to the fact that Bmp2 is responsible for inducing early cardiogenic 

differentiation of the mesoderm into myocardial and epicardial cell lineages, 

expression of cardiogenic transcription factors as well as Bmp10, and genes 

encoding various components of the contractile apparatus (Chen et al., 2004; 

Jain et al., 2015; Kattman et al., 2011; Kruithof et al., 2006; de Pater et al., 2012; 

Wang et al., 2007).  Bmp2 and Bmp4 are also required for atrial-ventricular canal 

and outflow tract formation (van Wijk et al., 2007).  
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BMP ligands and cardiac differentiation 

BMP signaling is responsible for the left-right asymmetry required for 

normal cardiac morphogenesis to occur.  This has been evidenced by its 

regulation of target genes such as Pitx2, promotion of cardiac chamber identity, 

and through the loss of jogging and looping events when it is inhibited. BMP 

ligands such as Bmp4, Bmp6, and Bmp7 are then again required for cardiac 

cushion formation through their regulation of cellular events such as endothelial 

to mesenchymal transition (EndMT), valve and ventricular septation, and 

endocardial cushion cell number (Kim et al., 2001; Liu et al., 2004; Ma et al., 

2005; McCulley et al., 2008; Solloway and Robertson, 1999).    

 

BMP antagonists and cardiac development 

It is also clear that it is not just the presence, but also the level of BMP 

signaling that is necessary for normal cardiac development. In fact, it has been 

extensively shown that the level of active canonical BMP signaling directly affects 

cardiac chamber identity and proportion (Chocron et al., 2007; Furtado et al., 

2008; Lenhart et al., 2011; Marques and Yelon, 2009).  The regulation of active 

BMP signaling is done primarily through the activity of BMP antagonists. 

Evidence suggests that these proteins are also important for cardiac 

developmental processes.  For example, mice that lack the BMP antagonist 

Noggin exhibit a thicker myocardium that is rescued with the addition of Bmp4 

(Choi et al., 2007).  Therefore, it appears that cardiac development requires 

tightly regulated BMP signaling activity through the action of antagonists.   
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BMP signaling in cardiac repair and inflammation 

BMP signaling is also induced after ischemic injury in the adult mouse 

heart.   Previous work has shown that Bmp4 expression is induced in mice after 

pressure overload, angiotensin II production, or a permanent coronary artery 

ligation and was implicated in regulating cardiomyocyte apoptosis during 

ischemia/reperfusion injury through the non-canonical JNK pathway.  Treatment 

with the endogenous antagonist Noggin, as well as chemical inhibitors 

dorsomorphin and DMH1 reduced mouse infarct size and cardiac hypertrophy. 

BMP4, and BMP receptors BMPR1a and BMPRII, are also expressed in human 

cardiac tissue during end-stage heart failure or ischemic heart disease (Derwall 

et al., 2012; Morrell et al., 2015; Pachori et al., 2010; Sun et al., 2013; Wu et al., 

2014).   Bmp2 levels are significantly increased specifically in the myocardium 

and not in the serum, which was confirmed using histological analyses that 

showed strong induction of Bmp2 in the peri-infarct cardiomyocytes (Chang et 

al., 2008). However the exact role of BMP signaling in cardiac tissue repair and 

how BMP signaling is regulated after cardiac injury is not well understood.   

Previous studies have also linked BMP ligands to the stimulation of the 

pro-inflammatory phenotypes.  The pro-inflammatory cytokine TNFα induces 

BMP2 expression via mRNA stabilization and transcriptional up-regulation in an 

NFκB dependent manner.  This occurs via the NFκB binding sites located within 

the promoter region of BMP2 (Feng et al., 2003; Fukui et al., 2006).  Shear stress 

and pressure overload leads to the BMP driven adhesion of leukocytes to 

endothelial cells in vitro (Csiszar et al., 2005, 2006; Helbing et al., 2011; Sorescu 
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et al., 2003; Sucosky et al., 2009).  Likewise, BMP signaling has been associated 

with promotion of inflammation in models of atherosclerosis and with anemia 

caused by chronic inflammatory conditions.  For example, Bmp2 and Bmp4 

produced by vascular smooth muscle cells in atherosclerotic lesions induce 

monocyte chemotaxis through BmpRII (Chen et al., 2004; Sucosky et al., 2009; 

Pi et al., 2012; Simões Sato et al., 2014; Steinbicker et al., 2011; Zhao et al., 

2013; Mayeur et al., 2014).  Conversely, BMP antagonists such as BMPER and 

Gremlin 1 in the context of atherosclerosis, and Noggin in the aortic valve (AV) 

leaflet and in diabetic mice, can inhibit inflammation by reducing the expression 

of pro-inflammatory cell adhesion molecules (Koga et al., 2013; Pi et al., 2012; 

Sucosky et al., 2009) and administration of chemical inhibitors of BMP signaling 

such as LDN-193189 and dorsomorphin reduced vascular inflammation and 

atherosclerosis (Derwall et al., 2012; Helbing et al., 2011; Morrell et al., 2015; 

Saeed et al., 2012).  

 

BMP signaling 

Bone Morphogenetic Proteins (BMPs) belong to a subclass of the 

Transforming Growth Factor β (TGF-β) superfamily of heterodimeric secreted 

ligands. They contain a cystine knot structure common to this family of proteins. 

BMP ligands bind to hydrophobic type I and type II receptors, leading to 

phosphorylation in the GS box of the N-terminal kinase domain and activation of 

the type I receptor by its type II partner.  When BMP dimers bind to their 

heterotetrameric receptor complexes, the type I receptor binds to what is called 
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the wrist epitope of the BMP ligands and the type II receptors binds to the 

knuckle region.   Type I receptors are often referred to as activin receptor-like 

kinase (ALK). The type I receptors fall into 2 categories based on structural 

similarity and have distinct binding properties conferring signal specificity. For 

example BMP2/4 specifically bind to type I receptors ALK3/6 (Bragdon et al., 

2011; Lowery and de Caestecker, 2010; Miyazono et al., 2010; Sieber et al., 

2009) (Figure 4).   

 

Canonical BMP signaling occurs through SMADs 

Activated type I receptors phosphorylate SMAD1/5/8 at the SXS motif at 

the C-terminus, leading to the formation of a complex with SMAD4 and 

subsequent translocation of the complex to the nucleus (Euler-Taimor and  

Heger, 2006).  SMAD proteins contain two homology domains, mad homology or 

MH1 and MH2.  MH1 contains the nuclear localization signal as well as the DNA   

binding domain, whereas MH2 interact with the Type I receptor.  Smad 

complexes then bind DNA at AGAC where they regulate expression of target 

genes such as the ID family of transcriptional repressors (Hinck, 2012; Yadin et 

al., 2015).  ID’s are inhibitors of DNA binding and thereby inhibit the   

differentiation of certain cell lineages.  They belong to the helix-loop-helix family 

of transcription factors, however they lack the DNA-binding domain. Instead, they 

associate with other members of the family and prevent their binding to DNA or 
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from forming active heterodimers.  They most commonly interact with enhancer 

or E-box proteins that bind to the enhancer region located upstream transcription 

start sites (ID family of HLH proteins) (Miyazono et al., 2005).  In addition to 

canonical signaling, there is also a branch of non-canonical signaling, where 

MAPKs such as JNK and ERK are activated in lieu of SMADs (Sieber et al., 

2009).   
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BMP antagonists 

BMP signaling is modulated in the extracellular space by a large number 

of secreted, structurally diverse antagonists, such as Chordin, Noggin and 

members of the DAN family (Yanagita, 2005).  These antagonists also contain 

the cystine knot structure common in the ligands themselves and predominantly 

act by binding to the BMP ligands and thereby prevent ligand binding to their 

receptors. Namely, the large protein members such as Noggin and BMPER bind 

to both the type I and type II receptors binding domains present on the BMP 

ligands.  However, a unique form of antagonism exists in the Chordin, Tolloid, 

and Twisted gastrulation (Tsg) system.  Intact Chordin forms a complex with Tsg 

and BMP to inhibit BMP.  Tolloid cleaves Chordin and twisted gastrulation’s 

presence ensures this cleavage, freeing BMPs to interact with their receptors 

(Groppe et al., 2002; Umulis et al., 2009; Walsh et al., 2010; Zhang et al., 2008).  

Besides extracellular antagonist interactions, other modes or models of 

antagonism are thought to occur.  The exchange model occurs when low 

concentrations of the antagonist actually provides BMP ligands to the receptors 

and prevent any non-specific binding, whereas high concentrations sequester 

ligands.  The sink-source model, where BMP activity is decreased in a spatial as 

well as concentration dependent manner, is thought to contribute to the 

generation of signaling gradients (Ramel and Hill, 2012).  Extracellular regulation 

also occurs through heparin sulfate proteoglycans interactions that are capable 

of binding to BMPs and thereby limit their interaction with their receptors (Walsh 

et al., 2010).  These mechanisms are in place in order to generate the level or 
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gradient of BMP morphogen signaling that is required for its pleiotropic effects on 

several developmental and physiological processes.   

 
 

Gremlin 2 

Gremlin 2 (Grem2), also called Protein Related to Dan and Cerberus 

(PRDC), belongs to the DAN family of BMP antagonists together with its close 

paralog Gremlin 1 (54% identity), Dan, Dante (or Coco), Cerberus-like 1, Uterine 

sensitization-associated gene-1 (USAG-1), and Sclerostin.  The Dan family 

consists of single domain proteins that have a conserved 8-membered cystine 

ring contained within the highly conserved “Dan” domain (Avsian-Kretchmer and 

Hsueh, 2004; Nolan and Thompson, 2014; Pearce et al., 1999).   It is this Dan 

domain, a hydrophobic region at the dimer interface that binds to BMP ligands.  

In the case of Grem2, this cystine ring consists of an odd number of cysteines, 

leaving one un-paired.  Grem2 uniquely consists of 2 independent head to tail 

protein dimers, which differs from Noggin head to head dimerization (Figure 5).  

These dimers are in fact highly stable and resistant to di-sulfide bond reduction 

due to the fact that hydrogen bonding and van der Waal forces are what are 

responsible for keeping the tertiary structure of the protein together due to the 

un-paired cysteine. The N-terminus of Grem2 includes two N-linked glycosylation 

consensus sequences, as well as a flexible latch that allows for the required 

large hydrophobic interactions between antagonist-ligand.  It also works to hide 

the BMP binding epitope to prevent any non-specific binding.  Purified Grem2, 

prepared in the collaborating laboratory of Dr. Tom Thompson, was used to 
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asses its binding affinity to BMP ligands and was calculated to have an IC50 of 

less than 1nM, (Figure 6) (Kattamuri et al., 2012a, 2012b; Nolan et al., 2013).  

Grem2 was first discovered 15 years ago (Pearce et al., 1999), but its 

biological function and mechanism of BMP inhibition have remained largely 

obscure. Grem2 expression has been detected in the developing spinal cord and 

lung mesenchyme (Lu et al., 2001; Minabe-Saegusa et al., 1998), and Grem2 

has been implicated in follicle, neuronal, bone and craniofacial development 

(Ideno et al., 2009; Kriebitz et al., 2009; Sudo et al., 2004; Zuniga et al., 2011). 

Grem2 in vivo has been shown to inhibit canonical BMP signaling and in vitro 
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inhibits Bmp2 and Bmp4, but not Tgfβ or Activin (Sudo et al., 2004). Several 

DAN-family members such as Dante and Grem1 have been linked to a number 

of pathophysiological states.  Dante has been shown to promote cancer 

metastasis, and Gremlin 1 has been shown to be induced in endothelial cells 

during pulmonary arterial hypertension, in fibroblasts during idiopathic pulmonary 

fibrosis, and actually promotes Tgfβ directed epithelial to mesenchymal 

transition.  Grem1 is induced during chronic kidney disease such as diabetic 

nephropathy and is known to promote the cancer stem phenotype (Cahill et al., 

2012; Gao et al., 2012; Koli et al., 2006; Lappin et al., 2002; Owens et al., 2015).  

Although other members of the DAN family have been implicated in various 

pathological conditions, little is known about the role of Grem2 in disease. 

 
Grem2 in cardiac development and differentiation  

The Hatzopoulos laboratory recently established that during embryonic 

development in zebrafish, grem2 first appears in the ventral portion and 
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pharyngeal arch mesoderm next to the forming heart tube (Figure 7) (Müller et 

al., 2006; Muller et al., 2013). Loss- and gain-of-function approaches 

demonstrated that Grem2 is necessary for proper cardiac tube jogging and 

looping, cardiac laterality, to promote normal cardiac rhythm and cardiomyocyte 

differentiation by suppression of Smad1/5/8 phosphorylation (Figure 8) (Muller et 

al., 2013).   

Moreover, Grem2 is expressed in the cardiac field in E8 mouse embryos 

and promotes differentiation of pluripotent mouse embryonic stem (ES) cells to 

atrial-like cardiomyoctyes through activating atrial transcription factors and 

suppressing ventricular (Figure 9).  Grem2 expression begins during the 

differentiation stages of mesodermal and endodermal progenitor cells and that 

Grem2 treatment on CGR8 ES cells lead to an increase in p-JNK that was not 

seen with the treatment of other antagonists such as Noggin.  The increase in 

cardiomyoctyes via Grem2 was diminished when cells were treated with the JNK 

pathway inhibitor SP60 but not the BMP pathway inhibitor dorsomorphin.   

Therefore, Grem2-induced cardiomyocyte differentiation occurs via activation of 

the non-canonical BMP pathway JNK (Tanwar et al., 2014). 
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Summary and hypothesis  

 The cardiac tissue repair process following an acute injury such as a 

myocardial infarction is highly regulated in both a temporal and spatial dependent 

manner.  The inflammatory phase of tissue repair is a highly dynamic process 

and has been directly implicated with patient outcome and survival.  Previous 

clinical studies targeting direct players of the inflammatory process has produced 

mixed results. Taking clues from cardiac developmental processes that often get 
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re-activated during an injury response, focus has been brought to the BMP 

signaling pathway.  BMP signaling is necessary for normal cardiac 

morphogenesis to occur and is re-activated post-MI.  The level of BMP signaling 

is important for its downstream effects, and BMP antagonists are responsible for 

regulating the canonical BMP pathway.  We recently determined that a relatively 

unstudied antagonist, Grem2, is important for cardiac development, and 

therefore sought to determine if it also plays a role during the cardiac tissue 

repair process.   

According to current work conducted by the Hatzopoulos laboratory, 

Grem2 is not essential for mouse embryonic development.  However, in the adult 

heart, Grem2 is highly induced in peri-infarct cardiomyocytes at the end of the 

inflammatory phase after MI. Based on the role of BMP signaling during 

inflammation, we hypothesized that Grem2 regulates the inflammatory response 

and keep inflammation in check through suppression of canonical BMP signaling.  

We therefore investigated the role of Grem2 in the cardiac tissue repair process 

and in functional recovery.   
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CHAPTER II 

 
BMP SIGNALING AND GREM2 ARE INDUCED IN THE HEART AFTER A 

MYOCARDIAL INFARCTION 
 
 
 

Introduction 

The cardiac repair process following an acute injury such as a myocardial 

infarction consists of well-documented stages that are highly spatiotemporally 

regulated. However, the molecular pathways that regulate these processes are 

not entirely understood.  The Hatzopoulos laboratory has recently demonstrated 

that developmental pathways necessary for cardiac morphogenesis are re-

activated after injury and in fact play important roles in the recovery process 

(Aisagbonhi et al., 2011; Paik et al., 2015), and that a BMP antagonist, Grem2 is 

important for cardiac development and differentiation (Muller et al., 2013; Tanwar 

et al., 2014). BMP signaling is a pathway that has been extensively studied in the 

context of cardiac development and has been shown to be induced after 

ischemic injury in the adult mouse heart (Pachori et al., 2010; Wu et al., 2014).  

Histological analyses placed BMP signaling induction in peri-infarct 

cardiomyocytes (Chang et al., 2008).  However the exact role of BMP signaling 

and whether it is regulated after cardiac injury has not been extensively studied.   

To place BMP signaling components within the context of the MI repair 

process, we analyzed whole mouse heart RNA samples prepared at distinct time 

points after left anterior descending (LAD) artery ligation, namely at day 0 

(baseline, prior to injury), 1, 2, 3, 5, 7 and 21 after MI.  We also conducted 
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histological analysis in order to determine the localization of canonical BMP 

signaling components, namely the cell types producing both pathway 

components as well as important pathway regulators.   

 

Materials and methods 

Experimental MI 

Mice underwent open chest surgery, a 10-0 nylon suture was placed 

through the myocardium into the anterolateral left ventricular wall around the left 

anterior descending (LAD) artery and the vessel was permanently ligated 

(Aisagbonhi et al., 2011).  Male mice at 12-16 weeks of age fed with a normal 

chow diet were euthanized at defined time points following surgery to obtain 

cardiac tissue for molecular and histological analyses.   

 

RNA analysis by Reverse Transcription and quantitative Polymerase Chain 

Reaction (RT-qPCR) 

Whole hearts were dissected at the indicated time points after MI, 

perfused to remove blood cells and RNA was obtained using TriZol Reagent 

according to the manufacturer’s instruction (Life Technologies). Reverse 

transcription was conducted by incubating 100 ng of oligo(dt)15 (Promega) with 3 

µg RNA for 5 min at 70°C.  20 mM of dNTPs (GE Healthcare), 200 U/µl of Mo-

MLV reverse transcriptase with 5x associated buffer (Promega), 40 U/µl RNasin 

(Promega) and water were added to the RNA solution and incubated at 40°C for 

1 hour, followed by a 5 minute incubation at 95°C in order to inactivate enzyme 
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activity.  1:100 of the final cDNA solution or ~20 ng served as template for 

quantitative Real Time PCR with GoTaq qPCR Master Mix (Promega) using a 

C1000 Thermal Cycler (BioRad) as previously described (Aisagbonhi et al., 

2011).  0.5 µM of Gapdh primers were included as an internal control and relative 

gene induction levels were determined using the 2(–DDCt) formula (Beck et al., 

2008; Livak and Schmittgen, 2001).  Experiments were done in triplicates.  The 

sequences of gene-specific primers have been included in Table 1.  

 

Immunofluorescence and immunohistochemistry analyses  

For IF on cardiac tissue sections, freshly isolated hearts were perfused 

with 1X Phosphate Buffered Saline (PBS), bisected transversely, embedded in 

Optimal Cutting Temperature (OCT) compound, frozen on dry ice, cut into 10 µm 

thick sections and stored at -70oC until use.  Before antibody staining, slides 

were thawed at room temperature, immersed in cold 1:1 acetone: methanol and 

fixed for 5 minutes on ice.  Slides with cardiac tissue sections were washed three 

times in 1X PBS for 5 minutes each wash, and incubated with blocking buffer 

containing 1% bovine serum albumin (BSA) and 0.05% saponin in 1X PBS for 1 

hour at room temperature.  Next, sections were stained with primary antibodies 

overnight at 4°C in blocking buffer.  Afterwards, slides were washed five times in 

1X PBS for 5 minutes each, incubated with secondary antibodies and DAPI for 1 

hour at room temperature in blocking buffer, washed in 1X PBS three times for 5 

minutes each, and mounted with VECTASHIELD fluorescent mounting medium 
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(Vector Laboratories). The Vanderbilt Histology Core provided histological 

services, including tissue sectioning.   

Primary antibodies used for IF analysis were as follows: rat monoclonal 

anti-mouse CD31/PECAM1 (BD Pharmingen; 1:100, Cat. No. 553370), rabbit 

monoclonal anti-mouse p-Smad1/5/8 (Cell Signaling; 1:50, Cat. No. 9511), 

mouse monoclonal anti-mouse MF20 (Developmental Studies Hybridoma Bank; 

1:5, Cat. No. MF 20, RRID:AB_2147781), rabbit polyclonal anti-human Grem2 

(GeneTex; 1:100, Cat. No. GTX108414), rabbit monoclonal Id2 (Biocheck Can. 

No. BCH-3/#9-2-8), and mouse monoclonal α-Actinin (Sigma; 1:800, Cat. No. 

A7811).  Secondary antibodies used for IF were: goat anti-mouse Cy3-

conjugated (Cat. No. 115-165-146), goat anti-rat Cy3 (Jackson 

ImmunoResearch, Cat. No. 712-165-150), and goat anti-rabbit Alexa-Fluor-488-

conjugated (Life Technologies, Cat. No. A21206).  Cy3 antibodies were used at a 

1:200 dilution and Alexa-Fluor-488 was used at a 1:400 dilution.  Cardiac tissue 

sections were stained with the fluorescent dye 4’,6-diamidino-2-phenylindole 

(DAPI, 1:5000 dilution; Invitrogen) to mark cellular nuclei.  Images were taken on 

the Olympus FV-1000 inverted confocal microscope and processed using the 

FV10-ASW 1.6 Viewer software (Olympus).   

p-Smad1/5/8+ cardiomyocytes were quantified using ImageJ 1.46r (NIH) 

color thresholding, as a percentage of cells double positive for MF20 and p-

Smad1/5/8 amongst all DAPI positive cells in the viewing field; at least 4 viewing 

fields were used for calculations.   
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The human heart tissue samples were obtained from Vanderbilt 

Cardiology Main Heart Registry/Biorepository. The study was approved by 

Vanderbilt Institutional Review Board and written informed consent was obtained 

from all heart tissue donors or organ donor families. Explanted heart from 

patients with ischemic cardiomyopathy or organ donors whose heart were 

unmatched for transplantation was collected into the Biorepository. At the time of 

explantation, a section of left ventricular (LV) free wall tissue was immediately 

frozen in liquid nitrogen, and a small piece of LV tissue from the same section 

was embedded in OCT media and stored at -80oC until used for 

immunofluorescence analysis.  

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  Data 

are represented as the mean ± SEM.  Student’s two-tailed unpaired t-test was 

used for comparison between two groups, one-way ANOVA was used to 

compare multiple groups, and two-way ANOVA was used to compare gene 

induction in each mouse model over time.  Dunnett’s and Bonferroni’s multiple 

comparisons test was used post-hoc.  *P<0.05, **P<0.01, ***P< 0.001, 

****P<0.0001 were considered significant.  

 



	
  
	
  
29	
  

Results 

Dynamic induction patterns exist for members of the inflammatory and fibrotic 

pathways 

Using qPCR, with typical inflammatory gene markers, such as Il-1β and E-

selectin, and markers of granulation tissue formation and fibrosis, such as Tgfβ1 

and alpha Smooth Muscle Actin (αSma), we determined that pro-inflammatory 

genes are induced early and peak at days 1-2 after MI, whereas fibrosis genes 

are induced at day 5, as expected (Frangogiannis, 2014; Paik et al., 2015; Virag 

and Murry, 2003).  Gene induction of inflammatory genes returned to baseline 

levels between days 3 to 5, whereas Tgfβ1 expression returned to baseline at 

day 21.  αSma levels declined, but were still detectable at day 21, reflecting the 

presence of myofibroblasts during the scar maturation phase (Figure 10A).  

 

Dynamic changes in the expression of BMP pathway components and their 

antagonists occur after a myocardial infarction 

Investigation of BMP ligands after MI showed that Bmp2 is the earliest 

induced ligand of the BMP family at day 1 with its expression peaking at day 3, a 

pattern that corresponds to the inflammatory stage of cardiac repair.  Previous 

work documented Bmp2 protein induction occurs primarily in peri-infarct area 

cardiomyocytes and not in recruited immune cells (Chang et al., 2008).  Bmp2 is 

subsequently downregulated to pre-injury levels by day 7 after MI.  Bmp2 

suppression coincides with up-regulation of Bmp4, Bmp6, and Bmp10, the 

expression of which starts around day 5 and persists during fibrosis and scar 
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formation (Figure 10B).   Consistent with the induction of distinct BMP ligands 

during different stages after MI, there was an overlapping expression of the only 

BMP signaling target gene that showed a significant induction post-MI throughout 
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the repair process, Id2 (Figure 11A).  BMP receptor induction illustrated that 

BmpR2 was the only receptor with a significant induction (Figure 11C).  In 

contrast, analysis of BMP signaling antagonists showed minimal changes in their 

expression levels after MI with the notable exception of Grem2 that is induced at 

day 2, peaks at day 5 after MI and returns to pre-injury levels at day 21 (Figure 

10C, with absolute expression values after GAPDH normalization in Figure11B). 

The Grem2 induction pattern follows the pattern of Bmp2 with one-day delay.   

We did not detect a signal for its close paralog Grem1 at baseline, or at the 

tested time points after MI (Figure 11B).  Although Grem2 is the most 

prominently induced BMP antagonist after MI, absolute expression values 

indicate that during homeostasis the heart maintains expression of Dan, Sost, 

Twsg1 and Chordin which, however are at least 40 (Chordin) to 400 (Dan, 

Twsg1) times less potent BMP inhibitors than Grem2, or do not bind directly to 

BMP ligands (Sost) (Figure 11B; Nolan et al., 2015; Zhang et al., 2008).  

Consistent with the Bmp2 induction pattern after MI, immunofluorescence 

(IF) analysis at day 2 post-MI, using antibodies recognizing the phosphorylated, 

i.e., activated form of Smad1/5/8, demonstrated activation of canonical BMP 

signaling in endothelial cells in the peri-infarct area and cardiomyocytes at the 

border zone of the infarcted tissue.  In contrast, we did not detect active 

Smad1/5/8 within ventricular tissue prior to injury (Figure 10D).   
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BMP pathway components are expressed in the border zone and infarct areas 

post-MI 

 Immunofluorescence analysis indicated that BMP pathway components 

are expressed at higher levels in the border zone and infarct area compared to 

distal or uninjured tissue areas.  IF staining with antibodies recognizing the 

phosphorylated, i.e., active form of Smad1/5/8, showed that canonical BMP 

signaling is active in peri-infarct cardiomyocytes of WT mice in agreement with 

previous reports showing that BMP ligands are expressed in this region and not 

present in cardiomyoctyes distal to the infarct (Chang et al., 2008).   (Figure 12A 

and B). Id2 expression is mainly localized within the infarct, likely in inflammatory 

cells (Figure 12C).  

Antibody staining revealed that the robust induction of Grem2 protein 

expression after MI takes place primarily in peri-infarct cardiomyocytes with no 

Grem2 detected in distal areas away from the infarct (Figure 12D). In the case of 

human patients, very little Grem2 is expressed within the heart tissue of healthy 

patients, however Grem2 is expressed within the cardiomyocytes of ischemic 

cardiomyopathy patients (Figure 12E). 
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Discussion 

In conclusion, our data indicate a bi-phasic pattern of BMP ligand 

induction after MI, i.e., early upregulation of Bmp2 expression during the 

inflammatory stage, followed by a second phase during granulation tissue and 

scar formation that is dominated by several ligands, including Bmp4, Bmp6, and 

Bmp10.   Conversely, Grem2 is the prominent BMP antagonist induced after MI 

with its expression starting at day 2, peaking during the transition from 

inflammation to granulation tissue formation, and returning to baseline levels 

during scar formation.  BMP pathway components are being induced in the 

infarct or border zone areas, with Grem2 being produced by cardiomyocytes in 
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both the mouse model of acute MI as well as human ischemic cardiomyopathy 

patients.   

 The cellular response following a myocardial infarction has been well 

described, but the molecular pathways responsible for regulating each phase of 

the response is not entirely understood (Boudoulas and Hatzopoulos, 2009).  Our 

data indicate that BMP signaling is involved in the cardiac repair process after 

MI, as has been previously reported (Chang et al., 2008; Pachori et al., 2010; Wu 

et al., 2014).  However, to our knowledge, ours is the first study to show that 

canonical BMP signaling activation after MI coincides with the induction of 

inflammatory process genes.  We are also the first group to investigate the roles 

of endogenous antagonists in the cardiac repair process. Specifically, we show 

that the BMP antagonist Grem2 is robustly and transiently induced after 

myocardial infarction during the late inflammatory phase and early proliferative 

phase of granulation tissue formation.  Grem2 protein is synthesized primarily in 

peri-infarct cardiomyocytes, a domain that overlaps both with the expression of 

Bmp2 after MI and the area of p-Smad1/5/8, i.e., canonical BMP signaling 

activation.  Some p-Smad1/5/8 persists in cardiomyocytes, even with Grem2 

induction, which may be due to the presence of ligands such as GDFs or Activins 

that can induce Smad1/5/8 phosphorylation, but are not inhibited by Grem2 

(Sudo et al., 2004).  Persistent activity suggests that additional canonical BMP 

signaling inhibition may be required after MI to supplement Grem2. Previous 

reports have linked activation of BMP signaling to cardiomyocyte apoptosis 

(Pachori et al., 2010) during the early stages of ischemia/reperfusion injury, as 
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well as fibrosis and hypertrophy (Sun et al., 2013), so Grem2 may also have 

direct cardioprotective properties. 

However, the question remains if the timing of BMP pathway induction 

directly correlates with the regulation of the inflammatory process following a 

myocardial infarction.  In order to test if this is a case, mouse models that are 

engineered to have changes in the expression of BMP pathway components 

could be challenged with an MI.  Since Bmp2 is the ligand induced during the 

inflammatory phase, a conditional cardiac cell specific knockout mouse could be 

used to test if its presence is necessary for the inflammatory phase to occur, or if 

lack of Bmp2 alters the inflammatory response in any way.  This would lead to 

determining whether BMP signaling regulates the inflammatory response, but 

would not lead to directly determining a therapeutic target.  Since our data also 

demonstrate that the relatively unstudied protein, Grem2 is the only endogenous 

antagonist induced at the end of the inflammatory response, it would therefore be 

valuable to investigate if Grem2 is necessary to regulate the inflammatory 

response post-MI.  These investigations are the topics of the following chapters.  

 

Acknowledgements  

I thank members of the Cardiovascular Pathophysiology and 

Complications Core of the Mouse Metabolic Phenotyping Center, the Cell 

Imaging Shared Resource, the Translational Pathology Shared Resource, the 

Transgenic Mouse/ES Cell Resource, and the Molecular Cell Biology Resource 

at Vanderbilt University Medical Center for technical assistance.  This work also 



	
  
	
  
37	
  

utilized the core(s) of the Vanderbilt Diabetes Research and Training Center 

funded by grant 020593 from the National Institute of Diabetes and Digestive and 

Kidney Disease. I thank Lianli Ma and Lin Zhong for performing mice surgeries; 

Mark Magnuson and Jennifer Skelton for generation of the Grem2 mouse lines; 

Daniel Levic and Ela W. Knapik for help with histological analyses; and David T. 

Paik for assistance in providing mouse heart samples for histological analysis.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
  
	
  
38	
  

CHAPTER III 

 

LOSS OF GREM2 LEADS TO AN INCREASE IN THE MAGNITUDE OF 
INFLAMAMTION, THEREBY WORSENING CARDIAC FUNCTION POST-MI 

 

 

Introduction 

The inflammatory phase following a myocardial infarction is a highly 

dynamic process that exerts pleiotropic effects on the subsequent stages of the 

cardiac repair process.    The purpose of inflammation in this context is to clear 

the cellular debris present after the loss of blood flow that leads to massive cell 

death.  However the inflammatory response that gets activated after acute injury 

may be more severe (i.e. prolonged) than is necessary.  As a result, excessive 

inflammation leads to an increase in cell death and in the fibrotic response; all 

together leading to the injury into what was previously healthy tissue 

(Frangogiannis, 2014).  

Excessive inflammation has been linked to worse outcomes after a 

myocardial infarction in both animal models and in human patients.  Therefore 

several clinical trials have been attempted in order to limit this inflammatory 

response.  However so far these trials have been largely unsuccessful since they 

have directly targeted components of the inflammatory response, a process that 

is necessary for cardiac repair to occur (Christia and Frangogiannis, 2013).    

BMP signaling has been implicated in promoting inflammation as well as 

induced by pro-inflammatory mediators in other disease states such as 
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atherosclerosis and anemia (referenced in CHAPTER I).  Our data also indicate 

that BMP signaling is activated during the inflammatory phase of cardiac 

recovery post-MI and is followed by the induction of the pathway antagonist 

Grem2.  Therefore we hypothesized that pro-inflammatory mediators increase 

the inflammatory response in both magnitude and duration by activating the BMP 

pathway post-MI, and that Grem2 is necessary to limit and terminate this 

inflammatory response.   

 

Materials and methods 

 Generation of genetically engineered Grem2 mice 

In order to inactivate the Grem2 gene and generate Grem2-/- mice, Dr. 

John Schoenhard and Amrita Mukerjee in our laboratory first constructed an 

insertion vector (kindly provided by Dr. Mark Magnuson) containing two 

fragments from the Grem2 gene locus (fragments B and C, each 0.5 kb in length) 

flanking a kanamycin selection gene cassette under the synthetic EM7 

prokaryotic promoter (EM7neo) and a fusion puromycin/truncated herpes simplex 

virus thymidine kinase gene [pu(Δ)TK; Figure 13A)]. Fragment B is located 

within the Grem2 single intron just upstream of exon 2, which contains the entire 

Grem2 coding sequence.  Fragment C resides within the 3’ UTR.  The truncated 

thymidine kinase was incorporated to facilitate clone selection in future 

recombination strategies. Homologous recombination between a BAC containing 

the WT Grem2 locus and the insertion vector replaced the entire coding 

sequence and part of the 3’ UTR of the Grem2 gene with the pu(Δ)TK/EM7neo 
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cassette.  A vector containing two additional small fragments of the Grem2 gene 

locus (Fragments A and D), also 0.5 kb in length, were used to retrieve the 

resultant targeting vector from the modified BAC (Figure 13A). 

200 g of the targeting vector were linearized and double-electroporated 

into 3.5 x 107 129/Sv mouse embryonic stem cells at the Vanderbilt Transgenic 

Mouse/Embryonic Stem Cell Shared Resource (TMESCSR).  After puromycin 

selection at 1.5 g/ml, 483 colonies were picked and 25 colonies were identified 

as having properly recombined by Southern blotting using 5’ and 3’ probes 

outside the targeting vector (the location of the probes are marked in Figure 

13A).  The targeting efficiency was 5.2%.  Six positive clones were subsequently 

expanded and confirmed by secondary screening.  Two selected clones were 

then injected into C57BL/6 blastocysts and blastocysts were transplanted into 

pseudopregnant females.  Both clones gave germline transmission generating 

two independent Grem2-/- mouse lines that displayed identical physiological 

phenotypes and response to myocardial ischemic injury.  The Grem2-/- mice and 

littermate WT controls (WTmix) were kept on a mixed C57BL/6 and 129/Sv 

background.   

Histological, molecular and flow cytometric analyses were conducted 

using male mice at 12-16 weeks of age fed with a normal chow diet.  

 

Experimental MI 

See CHAPTER II. 
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Echocardiography 

Mice underwent echocardiography measurements in order to assess 

cardiac function post-surgery.  Mice were rested and calmed before 

echocardiography was performed. All mice were conscious and unsedated 

during imaging using the VEVO 2100 machine and transducer MS-400 

(VisualSonics) to measure and calculate cardiac parameters.  The left ventricle 

was located in B-Mode and was traced over five consecutive beats in M-Mode.  

Left ventricular internal dimension and volume in diastole and systole (LVIDd, 

LVIDs, LVvold, LVvols) were measured from M-Mode using the short axis and 

used to calculate fractional shortening and ejection fraction (Paik et al., 2015).  

  

RNA analysis by Reverse Transcription and quantitative Polymerase Chain 

Reaction (RT-qPCR) 

 See CHAPTER II.  The sequences of gene-specific primers used in this 

chapter have been also included in Table 1. 

 

Immunofluorescence and immunohistochemistry analyses 

See CHAPTER II. 

Primary antibodies used for IF analysis were as follows: rabbit polyclonal 

anti-human Tie1 (Santa Cruz Biotechnology, 1:100, Cat. No. sc-342 (C-18), rat 

monoclonal anti-mouse CD31/PECAM1 (BD Pharmingen; 1:100, Cat. No. 

553370), Cat. No. MF 20, RRID:AB_2147781), rabbit polyclonal anti-human 

Grem2 (GeneTex; 1:100, Cat. No. GTX108414), rat monoclonal anti-mouse 
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CD62E/E-selectin (BD Pharmingen; 1:100, Cat. No. 550290), rat monoclonal 

anti-mouse CD45 (BD Pharmingen; 1:100, Cat. No. 550539), and mouse 

monoclonal -Actinin (Sigma; 1:800, Cat. No. A7811).  

 

Flow Cytometry 

Together with Dr. Mohamed Saleh in Dr. David Harrison’s laboratory, we 

prepared single cell suspensions of cardiac cells depleted of cardiomyocytes 

from freshly isolated whole hearts perfused with 1X PBS to remove blood cells.  

Briefly, hearts were digested with Collagenase D (2 mg/ml; Roche) and DNase I 

(100 µg/ml) in a solution of RPMI 1640 (Gibco) containing 10% FBS using an 

AUTOMacs Dissociator (Miltenyi Biotech), and then incubated at 37°C for 30 

minutes in an orbital shaker to prepare single cell suspensions.  The digested 

tissue was then passed through a 70-micron cell strainer and centrifuged at 500 

g for 10 minutes.  The cell pellet was suspended in 2 ml 1X PBS and centrifuged 

at 300 g for 5 minutes. Two more centrifugation/wash steps followed, and the 

pellet was suspended in 100 µl of FACS buffer (1% BSA, 0.5% NaN3 in 1X PBS).  

We then added 2 µl of Fc blocker (eBioscience) and cells were incubated for 10 

minutes at 4°C to prevent non-specific antibody binding, then washed with 1 ml 

of FACS buffer and centrifuged at 300 g for 5 minutes.  The cells were 

resuspended in 100 µl of FACS buffer and antibodies were added at 1 µl or 0.25 

µg per 1 million cells and incubated for 30 minutes at 4°C.  The antibodies used 

were Brilliant Violet 510–conjugated (BV510) anti-CD45 antibody (Biolegend, 

Cat. No. 103107), Alexa Fluor 488–conjugated anti-F4/80 antibody (Biolegend, 
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Cat. No. 123119), PE-Cy7-conjugated anti-Ly6C (eBioscience, Cat. No. 25-5932-

80), Brilliant Violet 421-conjugated anti-CCR2 (Biolegend, Cat. No. 150605), PE-

conjugated anti-Ly6G (Biolegend, Cat. No. 127607), and APC-Cy7-conjugated 

anti-CD3 (BD Pharmingen, Cat. No. 557596).   

After incubation, cells were centrifuged at 300 g for 5 minutes and washed 

twice with 1ml FACS buffer.  5 µl of 7-AAD (eBioscience) was added to 100 µl of 

the solution and incubated for 10 minutes at room temperature for live/dead 

staining.   After 300 µl of FACS staining buffer was added, cells samples were 

analyzed by flow cytometry using the BD FACSCanto II cytometer.  Total cell 

number was determined by adding 50 µl of counting beads (~49500-52000 

beads per µl; Life Technologies).  Flow-minus-one was used for gating. Low 

voltage gating was conducted in order to capture the counting bead population. 

All leukocyte populations were quantified within the CD45+ gate.  Data acquisition 

was completed using FloView.   

Regarding total blood flow sorting, 100 µl of fresh heparinized blood was 

directly stained with 1.5 µl of each of the previously mentioned antibodies for 30 

minutes at 4°C.  The samples were then washed with FACS buffer. 2ml of red 

blood cell lysis buffer was applied per 100µl of blood for 4 minutes at room 

temperature. Two additional rounds of washing and centrifugation at 1500g for 3 

minutes followed.  7-AAD staining was conducted as described for the heart 

samples.   
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TTC Staining 

 Whole mouse hearts were isolated 24 hours post-MI, flash frozen, and 

then cut into 1mm sections as instructed by Dr. Rich Gumina.  The sections were 

incubated in 1.5% TTC at 37°C for 30 minutes and then fixed in 10% formalin 

overnight, and finally imaged. ImageJ 1.46r (NIH) was used to outline infarct 

(white) tissue. Infarct size is reported as a percentage of the total left ventricular 

(LV) area.   

 

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  Data 

are represented as the mean ± SEM.  Student’s two-tailed unpaired t-test was 

used for comparison between two groups, one-way ANOVA was used to 

compare multiple groups, and two-way ANOVA was used to compare gene 

induction in each mouse model over time.  Dunnett’s and Bonferroni’s multiple 

comparisons test was used post-hoc. *P<0.05, **P<0.01, ***P< 0.001, 

****P<0.0001 were considered significant.  

 

Results 

Loss of Grem2 leads to an increase of endothelial pro-inflammatory markers after 

MI  

To determine whether Grem2 has a role in cardiac repair, we generated a 

loss of function (Grem2-/-) mouse model by deleting most of exon 2 via 
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homologous recombination  (Figure 13A; Figure 14A-C; see also Methods).  
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This approach deleted the entire coding sequence and most of the 3’ 

untranslated region of the Grem2 gene, leading to complete loss of Grem2 

protein. Grem2-/- mice are viable without major structural or physiological defects 

or apparent differences in heart size, cardiac tissue morphology and cardiac 

function as compared to WT siblings, with the exception of a small increase in 

heart rate (Table 2; Figure 14D,E).  Thus, although the Grem2 expression 

pattern has been conserved in zebrafish and mouse embryos, where Grem2 is 
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first expressed in the area of the secondary heart field (Muller et al., 2013; 

Tanwar et al., 2014), Grem2 appears to be dispensable for mouse development.  

Antibody staining revealed that the robust induction of Grem2 protein expression 

after MI takes place primarily in peri-infarct cardiomyocytes (Figure 13B).  There 

was no Grem2 detected in distal areas away from the infarct (data not shown).  

There was also a complete absence of Grem2 protein in Grem2-/- mice, further 

corroborating their null phenotype (Figure 13B). 

In order to test whether the sequential induction of Bmp2 and Grem2 

during the inflammatory phase plays a role in inflammation after acute injury, we 

challenged Grem2-/- and WT sibling mice with experimental MI by permanent 

ligation of the LAD coronary artery.  We then isolated whole heart RNA at day 0, 

2, 7 and 21 after MI and analyzed the expression of pro-inflammatory genes.   

Our data show that induction of genes encoding endothelial cell membrane 

proteins implicated in the rolling and adhesion of circulating immune cells to the 

vascular wall are higher in Grem2-/- hearts compared to WTs. Specifically, RNA 

analysis showed that expression of E-selectin, Vcam1, and Icam1 are further 

upregulated compared to WT controls at day 2 and 7 after MI; however, their 

expression decreases at day 21 to levels comparable to WT hearts (Figure 13C).  

Consistent with the gene induction results, IF analysis of cardiac tissue sections 

at day 7 after MI revealed that endothelial cells (Tie1) within the infarct and peri-

infarct areas stain positively for E-selectin protein in Grem2-/- mice, whereas, at 

this stage, E-selectin is almost undetectable in WT controls (Figure 13D). 

Comparison of chemokine expression such as Ccl2, Il-8, and Il-1β showed, that 
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although chemokines are induced after MI as expected, relative expression 

levels were comparable between Grem2-/- and WT mice, except a further 1.7-fold 

increase of Ccl2 expression in Grem2-/- mice compared to WT  (Figure 15).  

Thus, our data show that lack of Grem2 enhances the pro-inflammatory 

phenotype of endothelial cells in and around the injury site after MI.   

 

Loss of Grem2 leads to an increase in the magnitude of inflammation and spread 

of inflammation 

To test whether increased expression of pro-inflammatory makers after MI 

augments infiltration of immune cells, we isolated hearts at day 5 after MI and 

analyzed histological sections with an antibody recognizing the leukocyte marker, 

CD45.  The results showed that infiltration of CD45+ cells after MI appeared more 

abundant in Grem2-/- hearts compared to WT (Figure 16A).  To quantify the 
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increase in inflammatory infiltrate and better characterize the corresponding cells, 
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we prepared single cell suspensions of non-cardiomyocyte cells and conducted 

flow cytometry using antibodies recognizing various immune cell markers such 

as CD45, Ly6C, Ly6G, CD3, F4/80, and Ccr2 (Nahrendorf et al., 2007; Yan et al., 

2013; Hulsman et al 2016).  As shown in Figure 16B, there was a 3-fold increase 

in the inflammatory cells, identified as CD45+ cells, in Grem2-/- hearts after MI as 

compared to WTs.  Within the CD45+ population, there was a 2-3-fold increase in 

Ly6Chi cells that represent mostly monocytes (but may also include neutrophils 

and T-cells that express intermediate levels of Ly6C), neutrophils (Ly6G+), T-cell 

lymphocytes (CD3+), and macrophages (F4/80+).  There was a similar increase in 

Grem2-/- hearts compared to WTs of pro-inflammatory F4/80+ macrophages 

expressing high levels Ly6C (F4/80+/Ly6Chi), the Monocyte chemoattractant 

protein-1 (MCP-1, or Ccl2) receptor Ccr2 (F4/80+/Ccr2hi), or both 

(F4/80+/Ly6Chi/Ccr2hi).  The gating strategy and representative flow cytometry 

plots are shown in Figures 17 and 18.  

Analysis of the initial necrosis area using Triphenyl tetrazolium chloride 

(TTC) staining 1 day after MI showed that infarct sizes were comparable between 

WT and Grem2-/- mice, suggesting that the observed differences in the 

inflammatory response are not due to more severe infarcts in Grem2-/- mice 

(Figure 19).  Furthermore, flow cytometry analysis on blood CD45+ cells isolated 

from Grem2-/- and WT mice at baseline and 5 days after MI revealed that 

leukocyte numbers in the blood were not significantly different at baseline.  After 

MI, circulating leukocyte numbers were increased as expected (Swirski et al., 

2009), albeit numbers were ~2 times higher in Grem2-/- mice, likely because 
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circulating leukocyte numbers correlate with the magnitude of the inflammatory 

response (Figure 20; Chia et al., 2009).   

 

 



	
  
	
  
52	
  

 

Finally, we investigated whether loss of Grem2, besides increased 

inflammatory cell infiltration, also leads to prolonged inflammation.  To this end, 

we quantified inflammatory cells by flow cytometry at day 14 after MI, a time point 

when inflammatory cell numbers return close to baseline levels in WT mice.  Our 

results showed a dramatic drop in inflammatory cells in Grem2-/- mice to levels 

comparable to WT controls (Figure 16C), consistent with the eventual 

downregulation of cell adhesion molecules in Grem2-/- hearts after MI (Figure 

16D).  Specifically, CD45+ cell numbers in Grem2-/- decreased 40-fold from day 5 
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to 14, Ly6C+ cells 80-fold, and F4/80+ cells 10-fold (Figure 16A,C).  Furthermore, 

molecular analysis indicated an increase in the induction of genes encoding 

proteins involved in the resolution of inflammation such as Tgfβ1 and Il-10 in 

Grem2-/- mice compared to WT animals, which may account for the clearing of 

excessive inflammatory cells in Grem2-/- cardiac tissue (Figure 16D).  Taken 

together, our results indicate Grem2 is necessary to regulate the magnitude, but 

not the duration of the inflammatory cell infiltration after MI. 
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Loss of Grem2 leads to worse cardiac function post-MI 

Excessive inflammation has been linked to poor prognosis after MI both in 

animal models and human patients (Lefer et al., 1993; Simpson et al., 1988; 

Anzai et al., 1997; Gonzalez-Quesada and Frangogiannis, 2009; de Lemos et al., 

2007; Christia and Frangogiannis, 2013).  To determine the effects of Grem2 

loss-of-function on cardiac recovery, we compared cardiac functional parameters 

among WT controls and Grem2-/- mice by M-mode echocardiography at various 

time points after MI (Figure 21).  Grem2-/- mice have worse cardiac function 

compared to their corresponding WT siblings of mixed C57BL/6 and 129/Sv 

background (WTmix) as evidenced by higher fractional shortening (FS) and 

ejection fraction (EF) values 21 days after MI (Figure 21A).   Specifically, systolic 

diameters were higher in Grem2-/- mice compared to WTmix controls, 

demonstrating that the changes to cardiac function are likely due to the changes 

in the magnitude of inflammation, since systolic dysfunction is often linked to 

these phenotypes (Figure 21B; (Frangogiannis, 2014; Saxena et al., 2015). 

Grem2-/- mice have comparable ventricular dimensions and functional values to 

corresponding WT control mice at baseline (Figure 21B).  These data indicate 

that Grem2 levels directly correlate with functional recovery after acute MI.  

Original M-mode echocardiography images are shown in Figure 21C.   
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Discussion 

 The mechanisms responsible for inducing the inflammatory response after 

MI have been well described, but those that regulate the magnitude or spread of 

inflammatory cells are less well understood (Frangogiannis, 2014).  Our results 

suggest that Grem2 controls the magnitude but not the duration of the 

inflammatory response, likely due to the fact that lack of Grem2 also triggers 

overexpression of cytokines and growth factors involved in the resolution of 

inflammation such as Tgf1 and Il-10.  The effects of Grem2 loss in increasing the 

inflammatory response correlate with ventricular function after MI, as evidenced 

by deteriorated systolic parameters in Grem2-/- mice as compared to WT 

littermate controls. This represents the first time Grem2 has been implicated in 

the adult cardiac repair program and in the regulation of a disease state such as 

inflammation.     

The Hatzopoulos laboratory has previously shown that Grem2 is 

necessary for cardiac asymmetry and atrial development in zebrafish.  However, 

it appears that Grem2 is dispensable for mouse development.  This result is not 

without precedent among BMP signaling components.  For example, single 

Bmp5, Bmp6, and Bmp7 knockout mice are viable, but double knockouts of 

either Bmp5/7 or Bmp6/7 are embryonic lethal due to cardiac developmental 

defects (Kingsley et al., 1992; Dudley et al., 1997; Kim et al., 2001; Solloway et 

al.,1998; Solloway et al., 1999). It is likely that, as with Bmp ligands, there is 

redundancy among BMP antagonists in cardiac development. Such redundancy 

may also happen in the adult heart.  
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Although Grem2 is the highest induced BMP antagonist induced after MI, 

the heart maintains expression of a number of BMP antagonists such as Chordin, 

Sost, Twsg1 and Dan.  There are also low levels of Noggin expression.  Sost 

does not inhibit BMP2 and thus is unlikely to play a role in the inflammatory 

response, which is dominated by BMP2 expression.  Dan, Chordin and Twsg1 

are weaker antagonists than Grem2 and may not compensate for Grem2 in the 

peri-infarct area where Grem2 is prominently induced (Nolan et al., 2015; Zhang 

et al., 2008). It would be informative to generate double loss of function mice by 

crossing the Grem2-/- mice to mice with conditional inactivation of other BMP 

antagonists such as Grem1 or Noggin to directly test redundant functions during 

development or after injury. 

Again, due to the global, constitutive nature of our knockout model, the 

possibility remains that some of the phenotypic effects observed could be caused 

by the system compensating for the lack of Grem2.   This could be examined by 

removing the expression of Grem2 only during the inflammatory phase of 

recovery by utilizing a conditional knockout model.  If the loss of Grem2 during 

the inflammatory response results in an increase in the magnitude of 

inflammation, then it is unlikely that other mechanisms are directly involved.   

 Although our findings suggest that Grem2 is necessary to control the 

magnitude of inflammation, it does not demonstrate whether it is sufficient.  In 

order to determine if additional Grem2 has a beneficial effect on inflammation 

and the cardiac repair process, a gain of Grem2 function animal model should be 

utilized to determine if the inflammatory response is augmented, and if more 
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importantly, this leads to positive effects on cardiac functional recovery.  The 

Hatzopoulos laboratory has generated a transgenic model of Grem2 

overexpression, and the results of these studies are the topic of the subsequent 

chapter.   
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CHAPTER IV 
 

 
 
GAIN OF GREM2 FUNCTION LEADS TO A DECREASE IN THE MAGNITUDE 

OF INFLAMMATION AND AN IMPROVEMENT IN CARDIAC FUNCTION 
 

 

Introduction 

 BMP signaling antagonists have been implicated in the regulation of the 

inflammatory phenotype present in vascular disease states, such as 

atherosclerosis. Endogenous inhibitors such as Noggin, BMPER, and Grem1 and 

chemical inhibitors such as dorsomorphin have previously been demonstrated to 

inhibit the pro-inflammatory effect of BMP signaling on endothelial cells (Chen et 

al., 2004; Helbing et al., 2011; Pi et al., 2012; Simões Sato et al., 2014; 

Steinbicker et al., 2011; Sucosky et al., 2009).  Despite the fact that such 

antagonists have extensively been studied in the context of disease, a relatively 

unstudied Bmp antagonist is Grem2, has not previously been implicated in 

disease states, with exception of atrial fibrillation (Tanwar et al., 2014).   

In addition to inflammation, BMP antagonism has also been shown to 

exert beneficial effects on the cardiac repair process (Pachori et al., 2010; Sun et 

al., 2013).  Since the data described in the previous chapter illustrated that 

Grem2 is necessary for the regulation of the magnitude inflammation, as 

evidenced by a Grem2 loss-of-function model, I wanted to determine if Grem2 

was also sufficient for the regulation of the inflammatory process following an MI.  
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In order to test this, the Hatzopoulos laboratory generated a transgenic (TG) 

gain-of-function model for Grem2.  

 

Materials and methods 

Generation of genetically engineered Grem2 mice 

The MHC-Grem2 plasmid was generated by inserting the full-length 

Grem2 cDNA into the αMHC (Myh6) gene promoter-polyA hGH cloning vector 1 

(kindly provided by Dr. J. Robbins; (Subramaniam et al., 1991)).  The αMHC-

Grem2 transgenic (TGGrem2) mice were generated by pronuclear microinjection of 

the construct into fertilized oocytes at the TMESCSR.  TGGrem2 mice and WT 

littermate controls were raised in C57BL/6 background.   

Histological, molecular and flow cytometric analyses were conducted 

using male mice at 12-16 weeks of age fed with a normal chow diet.  

 

Experimental MI and Grem2 administration 

See CHAPTER II. 

Grem2 protein for mouse administration was provided by the laboratory of 

Dr. Thomas Thompson at the University of Cincinnati and was synthesized, 

purified and measured activity as previously described (Kattamuri et al., 2012a; 

Nolan et al., 2013).  WT mice were injected with 1 µg Grem2 protein per gram of 

body weight or vehicle (sterile 1X PBS) via intraperitoneal injection (IP) once per 

day at day 2, 3, and 4 following MI.   
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Echocardiography 

See CHAPTER III. 

  

RNA analysis by Reverse Transcription and quantitative Polymerase Chain 

Reaction (RT-qPCR) 

See CHAPTER II.  The sequences of gene-specific primers for this 

chapter have also been included in Table 1.  

 

Flow Cytometry 

See CHAPTER III. 

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  Data 

are represented as the mean ± SEM.  Student’s two-tailed unpaired t-test was 

used for comparison between two groups, one-way ANOVA was used to 

compare multiple groups, and two-way ANOVA was used to compare gene 

induction in each mouse model over time.  Dunnett’s and Bonferroni’s multiple 

comparisons test was used post-hoc. *P<0.05, **P<0.01, ***P< 0.001, 

****P<0.0001 were considered significant.  
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Results 

Grem2 overexpression attenuates the inflammatory response after MI 

To explore the possibility that Grem2 controls the extent of inflammation 

after MI, we generated a transgenic mouse line where Grem2 is postnatally 

overexpressed in adult cardiomyocytes under the control of regulatory elements 

from the alpha-myosin heavy chain (MHC or Myh 6) promoter that are active in 

the adult heart (TGGrem2; Figure 22A; Figure 23; see also Methods).  TGGrem2 

mice did not exhibit differences in cardiac morphology and function as compared 

to WT counterparts (Table 3; Figure 23). 

TGGrem2 and WT siblings underwent permanent LAD ligation and whole 

heart RNA was isolated at day 0, 1, 2, 3, 5, and 7 after MI.  qPCR analysis 

showed that gain-of-Grem2-function led to a significant reduction in the induction 

levels of inflammatory gene markers such as E-selectin and Vcam1 after MI with 

no changes in the induction of pro-inflammatory cytokines (Figure 22B, Figure 

16).  Flow cytometry of cardiac cells 5 days after MI, excluding cardiomyocytes, 

confirmed that reduced expression of pro-inflammatory markers led to a 

significant decrease in the number of CD45+leukocytes, Ly6C+ monocytes, and 

F4/80+ macrophages within cardiac tissue (Figure 22C; original flow graphs are 

shown in Figure 24). Attenuation of inflammation correlated with reduced 

induction of genes encoding the anti-inflammatory Il-10 cytokine and Tgf1 

(Figure 22D).  These data indicate Grem2 overexpression is able to contain the 

magnitude of the inflammatory response after MI.  



	
  
	
  
63	
  



	
  
	
  
64	
  

 



	
  
	
  
65	
  

Grem2 promotes functional recovery after MI 

The phenotypic analysis of TGGrem2 mice indicates that Grem2 levels are 

inversely related to the magnitude of inflammation after MI.  Excessive 

inflammation has been linked to poor prognosis after MI both in animal models 

and human patients (Lefer et al., 1993; Simpson et al., 1988; Anzai et al., 1997; 

Gonzalez-Quesada and Frangogiannis, 2009; de Lemos et al., 2007; Christia 

and Frangogiannis, 2013).  To determine the effects of Grem2 gain-of-function 

on cardiac recovery, we compared cardiac functional parameters among WT 

controls, TGGrem2 mice by M-mode echocardiography at various time points after 

MI (Figure 25).   

Our data show that TGGrem2 mice have better preserved cardiac function 

compared to WT littermate controls of C57BL/6 background, as evidenced by 

higher fractional shortening (FS) and ejection fraction (EF) values 21 days after 

MI (Fig. 25A).  

Functional recovery in TGGrem2 mice was due to preservation of both 

systolic and diastolic dimensions with lower overall values compared to WT 

control mice at day 21 after MI (Figure 25B). TGGrem2 mice have comparable 

ventricular dimensions and functional values to corresponding WT control mice at 

baseline (Figure 25B).  These data indicate that Grem2 levels directly correlate 

with functional recovery after acute MI.  Original images from M-mode 

echocardiography are shown in Figure 25C.   
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Systemic Grem2 administration attenuates inflammation after MI  

The results obtained in TGGrem2 mice suggest that Grem2 is sufficient to 

attenuate cardiac tissue inflammation after ischemic injury.  To test whether this 

activity is confined to a specific time window after MI and does not depend on 

structural or functional changes caused by permanent Grem2 overexpression in 

the heart of TGGrem2 mice, we injected WT mice intraperitoneally with Grem2 

protein at day 2, 3, and 4 after MI, during the critical time window of the 

inflammatory phase, isolated hearts at day 5 after MI, prepared single cell 

suspensions of non-cardiomyocyte cells and performed flow cytometry using 

antibodies recognizing specific immune cell types.  As shown in Figure 26A, 

there was a significant decrease in the leukocytes (CD45+), monocytes (Ly6C+), 

and macrophages (F4/80+) as compared to saline-injected control mice (original 

flow graphs in Figure 26B).  These results demonstrate that the anti-

inflammatory phenotype in TGGrem2 after MI can be recapitulated by systemic 

administration of Grem2 protein during the inflammation phase of cardiac tissue 

repair.  We were also able to confirm that Grem2 exerted direct effects in the 

hearts of as evidenced by a decrease in Id2 gene induction 5 days post-MI 

(Figure 26C).  
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Discussion 

 Gain of Grem2 function resulted in a decrease in cell adhesion molecule 

induction as well as inflammatory cell infiltration post-MI, phenotypes opposite to 

what was seen in the Grem2 loss of function animal.  Taken together, the data 
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presented here demonstrate that Grem2 is both necessary and sufficient for the 

regulation of the inflammatory response following a myocardial infarction.  The 

capability of Grem2 to augment the inflammatory response subsequently proved 

to be beneficial for functional cardiac recovery. Grem2 also appears to be playing 

a direct role on the inflammatory response, since the injection of Grem2 protein 

during the short time window that is the inflammatory response, lead to a 

decrease in inflammatory cell infiltrate.  Altogether demonstrating that two 

independent methods of Grem2 delivery lead to an improved cardiac recovery.   

Despite the fact that our data suggest Grem2 inhibits the magnitude of 

inflammation by decreasing the number of infiltrating inflammatory cells, the 

possibility remains that Grem2 reduces inflammation by increasing the induction 

of signals that actively lead to its resolution.  Our current data, illustrating that the 

induction cytokines involved in activating the resolution of inflammation (Tgfβ and 

Il-10) is decreased in our gain of Grem2 function model, suggest that this is not 

the case.  However, we did not assess the presence of reparative macrophages 

or regulatory T-cells.  Future analysis to determine if Grem2 directly regulates the 

resolution of inflammation could include determining if Grem2 injection during the 

inflammatory phase changes the induction levels of the aforementioned 

resolution cytokines as well as determine if changes in Grem2 expression lead to 

changes in the presence of reparative macrophages or regulatory T-cells via flow 

cytometry.   

 The ability to treat mice with exogenous Grem2 protein several days 

following the MI, demonstrates that Grem2 has translational and therapeutic 
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potential.   Most current therapies are administered within the first several hours 

after the MI (McMurray, 2010).  Since Grem2 acts directly on decreasing the 

extent of the inflammatory phase of recovery while inflammation is occurring, it 

has the potential to offer a treatment plan that can continue after the first several 

hours following an acute cardiac injury.  It remains to be seen however, what the 

long-term effects are of Grem2, for example if administration of Grem2 during 

inflammation leads to improved recovery during the later stages of repair.  

Further investigations into any long-term effects as well as the ability of Grem2 

administration to improve cardiac functional recovery are ongoing, for example if 

the administration of Grem2 post-MI leads to an improved functional recovery 21 

days post-MI.   

 Previous clinical trials testing whether blocking inflammation improves 

outcomes have so far produced mixed results.  For example, inhibitors of the 

complement system, TNF, or integrins required for immune cell binding showed 

no significant improvement of infarct size and MI outcomes (Christia and 

Frangogiannis, 2013).  Glucocorticoids actually had severe adverse effects, likely 

due to their interference with functions that are essential for healing (Roberts et 

al., 1976).  On the other hand, inhibitors of the P-selectin antagonist inclacumab 

(Tardif et al., 2013), did show promising results, indicating that moderating 

inflammation can be beneficial for cardiac repair after MI.  This work 

demonstrates a novel method of regulating the inflammatory phase without 

targeting direct components of the pathway.  It should also be noted that the 

ability of Grem2 to modulate the inflammatory response could have vast 
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implications. Previous genome wide association studies (GWAS) have correlated 

Grem2 with the human response to the smallpox vaccine (Hindorff et al., 2009; 

Ovsyannikova et al., 2012).  Therefore, our findings could be translatable to 

various inflammatory disease states besides the inflammatory response following 

an acute cardiac injury.  

In order to generate a therapeutic target based on the function of Grem2, 

a comprehensive understanding of its mechanism of action is required.  Although 

Grem2 is classically known to be a BMP antagonist, it contains a unique 

structure.  Therefore it has the potential to have a novel mechanism of action. 

Previous work demonstrating the pro-inflammatory activity of BMP signaling has 

shown to act through the non-canonical activation of NFκB (Csiszar et al., 2006).  

Therefore further analysis is needed in order to determine if canonical BMP 

signaling is responsible for the pro-inflammatory phenotype and if Grem2 

regulates canonical BMP signaling in the context of cardiac recovery.  The role of 

canonical BMP signaling in cardiac repair is addressed in the subsequent 

chapter.  
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CHAPTER V 

 

GREM2 REGULATES CANONICAL BMP SIGNALING POST-MI 
 

 

Introduction 

 BMP signaling occurs through binding and activation of the type 1 and 

type 2 receptor complexes.  During canonical signaling, receptor Smads 

(Smad1/5/8) become phosphorylated and then form a complex with co-Smads 

that then translocate to the nucleus and activate target gene transcription such 

as IDs.  BMP signaling is known to be important for cardiac and vascular 

development and has also been implicated in vascular disease (Lowery and de 

Caestecker, 2010).   

 Previous work has implicated that BMP signaling is also induced following 

a cardiac injury.  However, its role during cardiac repair is not entirely 

understood. Using gene expression and immunofluorescence analysis, we found 

that BMP signaling is activated in border zone cardiomyoctyes during the 

inflammatory phase of recovery.  Due to the fact that I determined that a BMP 

signaling antagonist, Grem2, regulates the magnitude of inflammation following 

an MI (CHAPTERS III and IV) and since the Hatzopoulos laboratory has 

previously shown that Grem2 regulates canonical BMP signaling in vivo during 

development (Muller et al., 2013), I therefore wanted to determine if Grem2 

regulates the canonical BMP signaling pathway in the context of cardiac repair. 
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We hypothesized that canonical BMP signaling is responsible for increasing the 

magnitude and spread of inflammation following a myocardial infarction.    

 

Materials and methods 

Generation of genetically engineered Grem2 mice 

See CHAPTERS III and IV. 

 

Experimental MI and administration of Grem2 protein and DMH1 

See CHAPTER II. 

For administration of DMH1 (Sigma), Grem2-/- mice were injected IP with 

13 µg DMH1 (Helbing et al., 2011) per gram of body weight or vehicle (DMSO) 

once per day at 2, 3 and 4 days following MI as previously described (Hao et al., 

2014). 

 

RNA analysis by Reverse Transcription and quantitative Polymerase Chain 

Reaction (RT-qPCR) 

See CHAPTER II. The sequences of gene-specific primers for this chapter 

have also been included in Table 1.  

 

Immunofluorescence and immunohistochemistry analyses  

See CHAPTER II. 

Primary antibodies used for IF analysis were as follows: rabbit monoclonal 

anti-mouse p-Smad1/5/8 (Cell Signaling; 1:50, Cat. No. 9511), mouse 
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monoclonal anti-mouse MF20 (Developmental Studies Hybridoma Bank; 1:5, 

Cat. No. MF 20, RRID:AB_2147781), rabbit monoclonal anti-Id2 (Biocheck Can. 

No. BCH-3/#9-2-8) and rat monoclonal anti-mouse CD45 (BD Pharmingen; 

1:100, Cat. No. 550539).  

p-Smad1/5/8+ cardiomyocytes were quantified using ImageJ 1.46r (NIH) 

color thresholding, as a percentage of cells double positive for MF20 and p-

Smad1/5/8 amongst all DAPI positive cells in the viewing field; at least 4 viewing 

fields were used for calculations.  N=3 mice for each group.  

 

Flow Cytometry 

 See CHAPTER III. 

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  Data 

are represented as the mean ± SEM.  Student’s two-tailed unpaired t-test was 

used for comparison between two groups, one-way ANOVA was used to 

compare multiple groups, and two-way ANOVA was used to compare gene 

induction in each mouse model over time.  Dunnett’s and Bonferroni’s multiple 

comparisons test was used post-hoc.  *P<0.05, **P<0.01, ***P< 0.001, 

****P<0.0001 were considered significant.  
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Results 

Changes in Grem2 expression leads to changes in BMP pathway component 

induction post-MI 

 Grem2-/-, TGGrem2, and their corresponding WT siblings underwent 

permanent LAD ligation and whole heart RNA was isolated at the indicated days 

after MI. qPCR analysis showed that changes in Grem2 expression led to 

changes in the induction of BMP ligands.  Namely, the loss-of Grem2 function 

resulted in an increase in Bmp2 and Bmp4 induction, with no significant changes 

in Bmp6 induction.  However the gain-of Grem2 function significantly increased 

and decreased the induction of Bmp4 and Bmp6 respectively, with no change in 

the induction of Bmp2 (Figure 27A).  

Dynamic changes to BMP antagonist induction also occurred with 

changes in Grem2 expression.  The antagonists that exhibited a modest 

induction in WT mice post-MI were analyzed (Dan and Noggin). The expression 

level of Grem2 directly correlated with the induction of Dan. However the loss-of 

Grem2 resulted in an increase in the induction of Noggin and gain-of Grem2 

function did not affect Noggin levels (Figure 27B).   

To assess if the level of Grem2 expression affects the induction levels of 

BMP signaling target genes, Id2 induction was analyzed since this was the only 

BMP target gene that exhibited a significant increase in WT mice post-MI.  As 

expected, levels of Grem2 expression inversely correlated with the induction of 

Id2 at 7 days post-MI (Figure 27C).  These results suggest that Grem2 is acting 

as a canonical BMP signaling antagonists during this time.   



	
  
	
  
77	
  

 

However, despite the fact that dynamic changes occur in these BMP 

pathway component genes, most genes do not exhibit effects that are dependent 

upon Grem2 expression levels.  Therefore it is difficult to make any conclusion 

that Grem2 affects the expression of these genes, which is corroborated by their 

timing of peak induction in WT mice post-MI (CHAPTER II).  It is more likely that 
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the changes observed are due to systemic changes that occur in order to 

compensate for the level of Grem2.   

 

Grem2 regulates canonical BMP signaling in border zone cardiomyocytes  

Grem2 is known to inhibit the canonical BMP signaling pathway by 

preventing BMP ligand-mediated phosphorylation of Smad1/5/8 and activation of 

target gene transcription (Nolan et al., 2013; Sudo et al., 2004).  To test whether 

Grem2 regulates canonical BMP signaling in the heart, we analyzed cardiac 

tissue sections at day 7 after MI from WT, Grem2-/- and TGGrem2 mice.  IF staining 

with antibodies recognizing expression of the target gene Id2 showed that Id2 is 

increased in the Grem2-/- animals compared to WT controls, however the 

increase in Id2+ cells could be due the increase in the number of what are likely 

inflammatory cells in the infarct area (Figure 28A).  However, despite the fact 

that the BMP target gene Id2 is present in infiltrating cells, leukocytes (CD45, 

red) do not show active canonical BMP signaling activity (p-Smad1/5/8, green), 

demonstrating that inflammatory cells are not the target cells of Grem2 (Figure 

28B).  IF staining with antibodies recognizing the phosphorylated, i.e., active 

form of Smad1/5/8, showed that intensity of p-Smad1/5/8 was increased in 

Grem2-/- mice and decreased in TGGrem2 hearts as compared to WTs (Figure 

28C,D). However, unlike the early stages after MI (Figure 10D), we did not 

detect p-Smad1/5/8 in endothelial cells. 
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The p-Smad changes overlap with the Grem2 expression domain 

(Chapter II) in peri-infarct area cardiomyocytes, suggesting Grem2 acts as a 

barrier to limit the infiltration of inflammatory cells into neighboring, relatively 
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healthy cardiac tissue.  In agreement with this notion, we observed inflammatory 

cells in the peri-infarct tissue past the infarct border zone in Grem2-/- hearts, 

whereas inflammatory cells were confined within the infarct area in WT controls 

(Figure 28E).  

 

Inflammatory cell infiltration post-MI is regulated by canonical BMP signaling 

To test whether the increased inflammatory cell infiltration is due to p-

Smad1/5/8 mediated signaling, we injected Grem2-/- mice with the canonical BMP 

signaling chemical inhibitor DMH1 (Ao et al., 2012) and vehicle control (DMSO) 

on day 2, 3, and 4 after MI, which correspond to the peak days of inflammation.  

DMH1 is highly specific to canonical BMP signaling without known off-target 

effects, as tested in various mouse disease models (Owens et al., 2015; Ao et 

al., 2012; Hao et al., 2014; Sun et al., 2013).  We found that DMH1 treatment 

rescued the pro-inflammatory phenotype in Grem2-/- mice.  Flow cytometry 

analysis at day 5 after MI showed that treated Grem2-/- hearts had a dramatic 

decrease in infiltrated leukocytes (CD45+), monocytes (Ly6C+), and 

macrophages (F4/80+) as compared to vehicle injected controls (Figure 29).   
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Discussion 

Our data indicate that BMP signaling plays an important role in the cardiac 

repair process after MI.  Although it was known that BMP ligands cause 

cardiomyocyte apoptosis during the early stages of ischemia/reperfusion injury, 
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to our knowledge, ours is the first study to show that canonical BMP signaling 

activation after MI controls the magnitude of the inflammatory response.   

Specifically, our data indicate that in the absence of Grem2, increased p-Smad-

mediated BMP signaling in the infarct border-zone is responsible for excessive 

infiltration of inflammatory cells.  Canonical BMP signaling is also responsible for 

limiting inflammatory cell infiltrate, since canonical BMP inhibition rescues the 

loss-of-Grem2-phenotype.  Taken together, inhibition of canonical BMP signaling 

is required to limit the extent and spread of the inflammatory response following 

an acute cardiac injury, and Grem2 may be critical in reducing and eventually 

stopping the recruitment of circulating leukocytes. Therefore, recognizing the role 

of BMP signaling and the mechanisms of its inhibition in cardiac tissue repair 

after MI may offer novel insights in the cardiac healing process and provide new 

ways to regulate inflammation in a physiological manner.  

Due to the wide interest in regulating BMP signaling in bone fractures, 

osteoporosis and cancer (Gao et al., 2012; Hayashi et al., 2009; Khosla et al., 

2008; Kua et al., 2012; Sneddon et al., 2006; Tang et al., 2013; Yan et al., 2014), 

a number of chemical compounds and peptides, to either promote or hinder BMP 

signaling, are being developed for clinical use (Cao et al., 2014; Sanvitale et al., 

2013; Yu et al., 2008). Our findings may facilitate future repurposing of these new 

pharmacological resources for potential treatment of MI patients to expand 

current strategies that aim to restore circulation to infarcted areas with 

thrombolytics and percutaneous interventions.  
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Despite our current data demonstrating that Grem2 limits inflammation by 

inhibiting canonical BMP signaling post-MI, the possibility remains that other 

pathways could be regulated by changes in the expression of Grem2.  Our 

previous work in mouse embryonic stem cells illustrated Grem2 treatment 

resulting in a counter activation of the non-canonical BMP signaling component, 

JNK (Tanwar et al., 2014), therefore Grem2 is capable of acting in ways that 

differ from its classical role as a canonical BMP antagonist.  The ability of Grem2 

to act in this way could lead to downstream effects on other pathways during the 

cardiac repair process, such as the JNK pathway, the Wnt pathway, and the TAK 

pathway, all of which have been implicated to be either regulated by Grem2 or 

BMP signaling as well as induced post-MI (Matsumoto-Ida et al., 2006; Pachori 

et al., 2010; Paik et al., 2015; Wu et al., 2015; Yamaguchi et al., 1999).    

Determining if Grem2 has an effect on the activation of these pathways during 

cardiac repair will be the topic of future investigations.   

Besides determining that BMP signaling is involved in the regulating the 

inflammatory response post-MI, the context and exact mechanism of action 

remains to be elucidated.  Since pro-inflammatory cell adhesion molecules bring 

circulating leukocytes into the site of injury, it is possible that Grem2 limits the 

magnitude of inflammation through inhibiting the pro-inflammatory effect of BMP2 

in these cells. Molecular insight into how exactly Grem2 limits inflammation is the 

topic of the subsequent chapter.   
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CHAPTER VI 

 

GREM2 INHIBITS THE PRO-INFLAMMATORY EFFECT OF BMP2 ON 
ENDOTHELIAL CELLS 

 

 

Introduction 

 BMP signaling has previously been shown to be pro-inflammatory in 

several vascular disease states (Simões Sato et al., 2014; Sorescu et al., 2003).  

The majority of this work provides evidence that BMP signaling exerts these pro-

inflammatory effects on endothelial cells, specifically by increasing their 

expression of pro-inflammatory cell adhesion molecules (Csiszar et al., 2005, 

2006; Sucosky et al., 2009). BMP signaling antagonists such as BMPER and 

Noggin are able to inhibit this effect (Helbing et al., 2011; Koga et al., 2013; Pi et 

al., 2012).  

 Work described in the previous chapters demonstrates that canonical 

BMP signaling is induced during the inflammatory phase of cardiac repair within 

border zone endothelial cells and later in border zone cardiomyocytes, and is 

responsible for increasing the magnitude of inflammation as evidenced by loss 

and gain of function models of the BMP antagonist Grem2 as well as through 

injection of the canonical BMP signaling inhibitor DMH1.  Grem2 is also induced 

directly after the peak of BMP2 ligand induction.  Therefore Grem2 exerts 

autocrine effects on these cardiomyocytes in order to limit inflammation. However 

BMP ligands and antagonists, including Grem2, are secreted proteins and are 
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likely to have paracrine effects on neighboring cell types.  Therefore in order to 

gain a greater insight on the molecular interplay between BMP signaling, Grem2, 

and inflammation, we used a human endothelial cell line in order to delve into the 

activation of the inflammatory response through the induction of pro-inflammatory 

cell adhesion molecules present on these cell types. 

 

Materials and methods 

Cell culture 

Human Microvascular Endothelial cells (HMECs) (Ades et al., 1992) were 

kindly provided by Dr. Sergey Ryzhov.  Cells used for experiments were between 

the third and fourth passages and cultured in 199 media (Gibco 11150) 

containing 15% FBS, 10 U/ml Heparin (Sigma), and 30 µg/ml endothelial cell 

growth supplement (Biomedical Technologies).  Cells were grown in full growth 

serum and then seeded in 12-well plates.  Prior to growth factor addition, cells 

were incubated with serum starvation media (same as normal media with 1% 

FBS) over night.   Cells were subsequently treated with rhTNF (R&D; 10 ng/ml), 

rhBMP2 (R&D; 100 ng/ml-250 ng/ml), Grem2 (100 ng/ml), and DMH1 (10µM) or 

the equivalent volume of vehicle solution (PBS or DMS0).  After 4 hours, 24 

hours, or 48 hours of treatment, cells were lysed for RNA extraction.  Data is 

representative of at least two independent experiments.   

For binding assays, HMEC cells were grown for three days until they 

reached monolayer confluency (3 x 104 cells/well within a 96-well plate).  Calcein 

AM labeled (1 µM, 30 min) human monocytes (THP-1 cells) were added to the 
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HMEC monolayer at a concentration of 10 x 104 cells per well (EC:THP-1 ratio – 

1:3) and incubated together for 30 minutes.  After incubation, non-adherent THP-

1 cells were aspirated off and the remaining cells were washed with PBS 5 times. 

The fluorescence intensity was measured using the Modulus microplate 

multimode reader. The number of adherent THP-1 cells was calculated from a 

calibration curve prepared using increasing concentrations (ranging from 0.1 to 

100 x 103 cells) of THP-1 cells. 300 ng/ml of BMP2, 100 ng/ml of Grem2 and 

100ng/ml of TNFα were used alone or combination for 24 hours.   

 

RNA analysis by Reverse Transcription and quantitative Polymerase Chain 

Reaction (RT-qPCR) 

See CHAPTER II. RNA was obtained from cells in culture using the 

RNeasy Mini Kit (Qiagen). The sequences of gene-specific primers for this 

chapter have also been included in Table 1.  

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  Data 

are represented as the mean ± SEM.  Student’s two-tailed unpaired t-test was 

used for comparison between two groups, one-way ANOVA was used to 

compare multiple groups, and two-way ANOVA was used to compare gene 

induction in each mouse model over time.  Dunnett’s and Bonferroni’s multiple 

comparisons test was used post-hoc.  *P<0.05, **P<0.01, ***P< 0.001, 

****P<0.0001 were considered significant. 



	
  
	
  
88	
  

Results 

Grem2 inhibits the pro-inflammatory effect of Bmp2 on endothelial cells  

The data described above indicate that secretion of Grem2 protein by peri-

infarct cardiomyocytes affects directly or indirectly the pro-inflammatory 

phenotype of cardiac endothelial cells and that canonical BMP signaling is 

induced in endothelial cells during the inflammatory phase.  Further gene 

expression analysis at various time points after MI showed that TN is induced 

first, followed by Bmp2 and then Grem2 (Figure 30A).  To investigate whether 

the sequential temporal induction patterns of the three genes after MI are linked; 

we tested the effects of TNFα, BMP2 and Grem2 on the human microvascular 

endothelial cell line HMEC-1.  We found that TNFα induces expression of E-

SELECTIN and BMP2, suggesting early pro-inflammatory cytokines contribute to 

the induction of the Bmp2 gene after MI in vivo (Figure 31 and Figure 30B).   

BMP2 in turn induces E-SELECTIN expression in endothelial cells as well as 

Grem2, suggesting BMP2 induces a negative regulatory loop to limit its own 

activity (Figure 30C, D).  
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To determine whether: a) BMP2 acts synergistically with TNFαand, b) 

Grem2 blocks the pro-inflammatory effect of BMP2 on endothelial cells, we 

treated HMEC-1 with TNFα, BMP2 and Grem2 in different combinations (Figure 

30E, Figure 32).  When protein factors were added alone, both TNFαand BMP2 

induced E-SELECTIN expression.  Co-stimulation with TNFα and BMP2 led to E-

SELECTIN induction levels higher than either factor alone, suggesting TNFα and 

BMP2 have a synergistic or additive effect.  Grem2 did not affect the TNFα 

induction of E-SELECTIN, but completely inhibited the BMP2 effect.   In similar 

fashion, co-incubation with TNFα, BMP2 and Grem2 specifically abrogated the 

BMP2 effect, reducing E-SELECTIN levels to those induced by TNFα treatment 

alone (Figure 30E).  In accordance with its function as a canonical BMP 

signaling antagonist, Grem2 blocked induction of BMP signaling target ID2, 

whereas TNFα alone had no effect on ID2 expression, although it reduced the 



	
  
	
  
91	
  

fold induction of ID2 by BMP2 (Figure 32).  Treating cells with the chemical 

inhibitor of canonical BMP signaling DMH1 showed similar effects as Grem2, 

indicating that that BMP2-induction of E-SELECTIN is due to activation of 

canonical BMP signaling (Figure 30F).   

 

To test the functional significance of the modulation of pro-inflammatory 

gene expression in endothelial cells by Grem2, we performed cell adhesion 

assays of monocytes to endothelial cells in vitro in collaboration with Dr. Sergey 

Ryzhov.  These assays showed that pre-incubation of endothelial cells with 

BMP2 increased adhesion of monocytes to endothelial cells and further 

enhanced the TNFα effect.  Incubation with Grem2 abolished the BMP2 effect, 

but not that of TNFα (Figure 30G).   In contrast, pre-incubation of monocytes 

with BMP2 and/or Grem2 had no effect on their adhesion to endothelial cells 
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(Figure 33).  Moreover, immunofluorescence analysis of infarct areas with 

antibodies recognizing p-Smad1/5/8 and CD45 to determine canonical BMP 

signaling activity in infiltrating inflammatory cells showed no detectable p-

Smad1/5/8 i.e., canonical BMP signaling in inflammatory cells, and this pattern 

did not change in the Grem2-/- mice (CHAPTER V, Figure 28B).   These data 

further support the idea that the primary cellular targets of Grem2 are the 

endothelial cells.   

 

Discussion 

In conclusion, we provide evidence to suggest that pro-inflammatory 

cytokines such as Tnfα induces Bmp2 and Bmp2 further increases the pro-

inflammatory phenotype of endothelial cells. BMP2 then induces the expression 

of its own antagonist, Grem2 as a negative feedback loop, thereby inhibiting 

canonical BMP signaling and the positive effect of Bmp2 on inflammatory gene 

expression.  

Histological analysis demonstrated that Grem2 as well as canonical BMP 

signaling components are produced in peri-infarct cardiomyocytes, however 
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canonical BMP signaling is also present in endothelial cells (CHAPTERS II and 

V). Therefore, Grem2 acts both in an autocrine fashion to inhibit p-Smad 

activation in cardiomyocytes, as well as in a paracrine fashion to suppress 

expression of the pro-inflammatory genes in adjacent endothelial cells.  

This induction of Grem2 appears to be an integral part of an orchestrated 

sequence of events that regulates the inflammatory response.  Our in vitro 

analyses suggest that this sequence starts with induction of Bmp2 by Tnfα, which 

is released shortly after cardiac tissue injury.  Bmp2 then further increases the 

Tnfα effect in the induction of pro-inflammatory cell interaction membrane 

proteins in endothelial cells, as the Tnfα effects decrease.  The pro- inflammatory 

action of Bmp2 is then blocked by Grem2, which itself is induced by Bmp2, thus 

forming a negative regulatory loop.  This concept is supported by in vivo data, 

which show sequential induction of Tnfα, Bmp2 and Grem2 after MI, each 

approximately 24 hours apart.  The in vitro assays that show BMP2 acts on 

endothelial cells to promote cell adhesion of monocytes, the consistent changes 

in the number of inflammatory cells across a wide spectrum of various immune 

cell types, and histological analyses showing minimal changes in BMP signaling 

in infiltrating leukocytes, all suggest that the main cellular target of Grem2 in the 

regulation of the inflammatory response in the heart are the endothelial cells.  

However, at present we cannot exclude that Grem2 may also affect the 

inflammatory cell differentiation, activation or mobilization prior to their 

recruitment in the infarct area.  
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We have previously shown that Grem2 promotes the cardiogenic potential 

of mouse ES cells (Tanwar et al., 2014).  Interestingly, we found that Grem2 has 

distinct biological effects from other BMP antagonists such as Noggin, Cerberus-

like 1 and Dan on cardiac differentiation of ES cells, suggesting a Grem2-specific 

and unique mechanism of BMP signaling regulation (Tanwar et al., 2014). While 

the mechanism for how Grem2 blocks BMP-ligand receptor interactions is 

unknown, it is likely that structural differences of the antagonists give rise to 

distinct binding strategies.  We currently test whether the unique structural 

arrangement of Grem2 is also critical for its function in cardiac repair.  Future 

biochemical analyses may identify critical structural motifs, which could be 

exploited to design molecules that would mimic the Grem2 biological effects in 

the attenuation of inflammation.   

To summarize the data presented thus far, we have determined a 

mechanism whereby Grem2 limits the magnitude and spread of inflammation 

post-MI by inhibiting canonical BMP signaling, which in turn inhibits the pro-

inflammatory effect of BMP2 in the context of cardiac repair following an acute 

injury.  Our data also suggests that the magnitude of inflammation has a direct 

correlation to cardiac functional recovery.  However, it is still unclear if Grem2 

affects the cellular processes that occur during the later stages of recovery.  

Insight into the affect of Grem2 on cellular proliferation as well as fibrosis 

formation will help determine how Grem2 affects these stages and is the topic of 

the investigations in the following chapter.    
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CHAPTER VII 

 
THE ROLE OF GREM2 DURING THE PROLIFERATIVE PHASE OF 

RECOVERY POST-MI 
 

 

Introduction 

 The cardiac repair process that occurs following an acute injury such as a 

myocardial infarction consists of several defined phases, the inflammatory phase, 

the proliferative phase, and the remodeling phase.  After inflammation clears 

cellular debris, granulation tissue begins to be deposited, consisting of reparative 

macrophages and proliferating endothelial cells as well as fibroblasts.  It is due to 

these populations of proliferating cells gives that this stage of recovery is called 

the proliferative phase.  After the granulation tissue is deposited, it eventually 

forms into a mature collagen based scar.  It is the presence of this dense 

inflexible scar that leads to cardiac remodeling and heart failure (Boudoulas and 

Hatzopoulos, 2009; Frangogiannis, 2008; Virag and Murry, 2003).   

 The Hatzopoulos laboratory has previously determined that other cellular 

processes, namely endothelial to mesenchymal transition (EndMT), play an 

important part of the proliferative phase of recovery (Aisagbonhi et al., 2011), as 

well as found that the canonical Wnt pathway regulates post-infarct angiogenesis 

and fibrosis (Paik et al., 2015).  Aside from Wnt signaling, Tgfβ has also been 

implicated in the regulation of epithelial to mesenchymal transition (EMT) and 

fibrosis post-MI (Shinde and Frangogiannis, 2014; Zeisberg et al., 2007). Due to 

the fact that Grem2 has previously been linked to Wnt signaling and since its 
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close paralog Grem1 has been shown to be pro-fibrotic through promoting Tgfβ, 

we wanted to determine if Grem2 plays a role during the proliferative phase of 

cardiac recovery (Im et al., 2007; Li et al., 2012; Rodrigues-Diez et al., 2012).   

 

Materials and methods 

Generation of genetically engineered Grem2 mice 

 See CHAPTERS III and IV. 

 

Experimental MI 

See CHAPTER II. 

 

RNA analysis by Reverse Transcription and quantitative Polymerase Chain 

Reaction (RT-qPCR) 

See CHAPTER II.  The sequences of gene-specific primers for this 

chapter have also been included in Table 1.  

 

Immunofluorescence analyses  

See CHAPTER II. 

Primary antibodies used for IF analysis were as follows: rat monoclonal 

anti-mouse CD31/PECAM1 (BD Pharmingen; 1:100, Cat. No. 553370), rabbit 

anti-mouse Ki67 (Abcam 1:100 Ab15580), and rabbit anti-mouse collagen I 

(Abcam 1:400 Ab292).  



	
  
	
  
98	
  

Ki67+ cells were quantified using ImageJ 1.46r (NIH) color thresholding, as 

a percentage of cells double positive for DAPI and Ki67 amongst all DAPI 

positive cells in the viewing field; at least 4 viewing fields were used for 

calculations.   

 

Flow Cytometry 

 See CHAPTER III. 

 

Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software.  Data 

are represented as the mean ± SEM.  Student’s two-tailed unpaired t-test was 

used for comparison between two groups, one-way ANOVA was used to 

compare multiple groups, and two-way ANOVA was used to compare gene 

induction in each mouse model over time.  Dunnett’s and Bonferroni’s multiple 

comparisons test was used post-hoc.  *P<0.05, **P<0.01, ***P< 0.001, 

****P<0.0001 were considered significant.  

 

Results 

Gain of Grem2 function results in increased endothelial cell gene expression and 

proliferation post-MI 

 Granulation tissue formation is marked by endothelial cell proliferation that 

acts to re-vascularize the infarcted tissue.  To determine if Grem2 affects this 

phase of recovery, Grem2-/-, TGGrem2, and their corresponding WT siblings 
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underwent permanent LAD ligation and whole heart RNA was isolated at the 

indicated days after MI. qPCR analysis showed that gain of Grem2 function led 

an increase in the induction of genes that are involved in blood vessel formation. 

Vascular markers such as Angiopoietin 1 (Ang1) and Ve-cadherin, exhibited 

higher levels of induction in TGGrem2 animals compared to their respective WT 

counterparts. Conversely, the phenotype seen in the Grem2-/- mice was modest 

and not statistically significant, demonstrating that Grem2 is not required for the 

induction of angiogenic genes post-MI.  Therefore the overexpression of Grem2 

specifically results in a positive effect on vascular formation (Figure 34A).   

To determine if Grem2 affects the proliferation of these cells, histological 

analysis using antibodies for Ki67, a marker of proliferation, and CD31, a marker 

for endothelial cells, was conducted in Grem2-/-, TGGrem2, and WT controls at day 

5 post-MI.  The overexpression of Grem2 resulted in an increase in Ki67+ 

endothelial cells in the infarct border zone, whereas the loss of Grem2 did not 

result in a significant change in the number of proliferating cells (Figure 34B, C).   

Taken together with the data mentioned above, Grem2 is not necessary for the 

induction of the vascular gene program or proliferation of endothelial cell 

populations, but its overexpression promotes vascular integrity post-MI.   

Flow cytometry of cardiac cells 5 days after MI, excluding cardiomyocytes, 

was used to determine if changes seen in gene programs and proliferation 

resulted in changes to the number of cells present in cardiac tissue at this time 

point post-MI.  Grem2-/-, TGGrem2, and WT controls did not exhibit a significantly 

different amount in the number of CD31+ endothelial cells (Figure 34D).  
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However, the possibility remained that BMP signaling could be responsible for 

regulating the level of cells present post-MI.  To test whether the number of 

endothelial cell populations is correlated with p-Smad1/5/8 mediated signaling, 

we injected Grem2-/- mice with the canonical BMP signaling chemical inhibitor 

DMH1 (Ao et al., 2012) and vehicle control (DMSO) on day 2, 3, and 4 after MI.  

DMH1 is highly specific to canonical BMP signaling without known off-target 
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effects, as tested in various mouse disease models (Owens et al., 2015; Ao et 

al., 2012; Hao et al., 2014; Sun et al., 2013).  We found that DMH1 treatment did 

not change the number of endothelial cells present in Grem2-/- mice (Figure 

34E).  Therefore, our current data demonstrates a positive role for Grem2 in 

vascular biology. However, it is not necessary nor results in changes to the 

actual vasculature of the heart post-MI.  

 

The Wnt pathway is induced during the proliferative phase of recovery and is 

affected by Grem2 expression levels 

Work previously published by our laboratory demonstrates that canonical 

Wnt signaling is induced during the proliferative phase of cardiac recovery 

(Aisagbonhi et al., 2011).  Using qPCR analysis, we subsequently determined 

that a particular canonical Wnt ligand, Wnt10b demonstrates a peak induction 

that follows the induction of known components of this phase of repair such as 

Tgfβ1 (Figure 35A, from Paik et al., 2015).  Other Wnt ligands were analyzed via 

qPCR, however Wnt4 was the only ligand found to be robustly induced post-MI 

(Figure 35B).   

Since the overexpression of Wnt10b conferred positive effects on the 

recovery process through the induction of angiogenesis (Paik et al., 2015), we 

investigated if changes in the expression of Grem2 resulted in changes to the 

induction of Wnt pathway components.  Grem2+/-, Grem2-/-, TGGrem2, and WT 

mice underwent permanent LAD ligation and whole heart RNA was isolated at 

the indicated days post-MI.  qPCR analysis showed that changes in Grem2 
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expression were directly correlated with levels of Wnt4 induction (Figure 35B).  

To further explore the effect of Grem2 on Wnt signaling activation, the induction 

level of the canonical Wnt target gene Axin2 post-MI was analyzed in Grem2-/-, 

TGGrem2, and their corresponding WT siblings.  Interestingly, the loss-of Grem2 

did not affect Axin2 induction levels, and the gain-of Grem2 function resulted in a 

complete lack of Axin2 induction (Figure 35C).  Taken together, these data 

demonstrate that Grem2 directly affects the induction levels of Wnt ligands, 

however it appears to have a negative effect on the activation of canonical Wnt 

signaling.   

 

Grem2 does not affect scar formation post-MI 

  EndMT gene induction such as Vimentin was assessed via qPCR and was 

not affected by the overexpression of Grem2.  The loss of Grem2 function 

however, resulted in the significant increased induction of Vimentin post-MI 
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(Figure 36A).  Genes that represent the mesenchymal or fibrotic pathway such 

as Fsp-1 and αSma exhibited dynamic changes in each of the Grem2 models. 

Fsp-1 was increased in both the loss-of and gain-of function models, the cause of 

which likely differs in each model (Figure 36B).  The enhanced inflammatory 

response in the loss-of-function model could lead to an increase in the induction 

of pro-fibrotic genes.  However, Grem2 may also itself be pro-fibrotic, due to the 

fact that the literature suggests its close paralog Grem1, is pro-fibrotic in the 

heart as well as in other disease states. Therefore, an increase in Grem2 

expression would lead to an increase in the induction of fibroblasts (Koli et al., 

2006; Li et al., 2012; Mueller et al., 2013; Rodrigues-Diez et al., 2012)(kidney 

paper, EMT paper).  Conversely, the induction levels of the myofibroblast marker 

αSma exhibited an inverse correlation with the expression levels of Grem2 

(Figure 36C).  Therefore the induction of a myofibroblast gene program may be 

directly affected by the extent of the inflammatory response post-MI.   

Flow cytometry as described above, was used to determine if Grem2 

regulated the number of fibroblasts present in cardiac tissue post-MI.  Grem2-/-, 

TGGrem2, and WT controls did not contain different amounts of CD140a+ 

fibroblasts (Figure 36D).  The inhibition of canonical BMP signaling via DMH1 

treatment also did not change the number of fibroblasts present in Grem2-/- mice 

(Figure 36D).  Therefore, neither Grem2 nor the inhibition of canonical BMP 

signaling changes the number of fibroblasts present in the heart post-MI, despite 

the changes seen at the gene induction level.   
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Due to the effect of Grem2 on the inflammatory phase of recovery as well 

as its effect on fibroblast gene induction, molecular and histological analysis was 

conducted in order to measure scar component gene induction, scar morphology, 

and scar size.  Grem2-/-, TGGrem2, and WT mice underwent permanent LAD 

ligation and whole heart RNA was isolated at the indicated days post-MI. qPCR 

analysis showed that both the loss-of and gain-of Grem2 function resulted in an 

increased induction of pro-Collagen Ia1 (Collagen I) at days 7 and 3 post-MI 

respectively (Figure 36E). 

Immunofluorescence using antibodies for Collagen I and CD31 was 

conducted in Grem2-/-, TGGrem2, and WT controls 7 days post-MI to determine if 

the changes at the RNA level can be appreciated at the histological level.  

Collagen I intensity and density is overall comparable between the groups 

(Figure 36F).  The lack of any obvious difference in collagen intensity at day 7 

post-MI could be an artifact from the timing of the analysis, since the scar is only 

beginning to mature at this time.  In order to obtain greater insight into any 

possible changes in scar formation caused by Grem2, tissue sections from 

Grem2-/-, TGGrem2, and WT mice were analyzed using Masson’s Trichrome 

staining at 21 days post-MI, when the scar is thought to be mature.  The overall 

size of the scar was relatively comparable among all mouse groups, despite an 

obvious increase in cardiac hypertrophy in Grem2-/- hearts (Figure 36G).  Taking 

a closer look at the morphology of the scar, it did appear that the scar in Grem2-/- 

mice is more loosely compact compared to WT counterparts and could be a 
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result of the overactive inflammatory response (Figure 36H).  Therefore, current 

data suggest that Grem2 does not regulate scar size post-MI.   
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Grem2 affects cardiac remodeling  

 Following the proliferative phase of repair is cardiac remodeling.  The 

extent of remodeling is primarily determined by the extent of the inflammatory 

and/or proliferative phases of recovery.  Furthermore, there is a set of genes that 

are considered to be indicative of cardiac remodeling.  In order to determine if 

Grem2 affects the cardiac remodeling gene program, we assessed the induction 

of gene such as Mmp9, Nppa, Nppb, and β-MHC in Grem2-/-, TGGrem2, and their 

WT counterparts at 0, 7, and 21 days post-MI (de Lemos et al., 2001; Omland et 

al., 1996).  The genes demonstrated the same trend in both Grem2 loss of- and 

gain of- function models.  However, the direction of the trend was not consistent, 

meaning that the induction of certain genes was increased whereas others were 

decreased (Figure 37).  Therefore, it is clear that Grem2 plays a role in cardiac 

remodeling; the nature of its role however requires further investigation. 
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Discussion 

 In conclusion, Grem2 promotes the proliferation of endothelial cells as well 

as the induction of pro-angiogenic gene programs.  However, Grem2 expression 

does not appear to be required for the proliferative phase of recovery since the 

loss- of-function model did not exhibit dramatic phenotypic changes, nor were 

there changes to the actual number of endothelial cells present in cardiac tissue 

at day 5 post-MI.  This is likely due to the fact that canonical BMP signaling is not 

responsible for regulating the presence of endothelial cells as demonstrated by 

the data obtained through the injection of DMH1. Therefore, Grem2 could be 

activating alternative pathways during the proliferative phase of repair, such as 

the JNK pathway, as we have previously demonstrated to occur during cardiac 

development (Tanwar et al., 2014).   

Subsequently, the fibrotic phase of repair exhibited a similar trend, where 

Grem2 promoted the expression of genes such as Fsp-1, however the number of 

actual fibroblasts were not changed by levels of Grem2 or through chemical 

inhibition of canonical BMP signaling. The scar size is also comparable between 

all experimental groups, and although changes in Grem2 expression led to 

changes in the cardiac remodeling gene program, it is unclear whether Grem2 

plays a positive or negative role during this phase of repair. 

Despite the dramatic changes seen during inflammation as a result of 

changes in Grem2 expression, the changes observed during the proliferative or 

remodeling phases do not correlate with the level of Grem2.  Taken together, 

these data suggest that the phenotype seen in cardiac function post-MI (shown in 
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Chapters III and IV) is specifically due to the effect of Grem2 on the inflammatory 

phase of repair.  This result is somewhat surprising, since the current belief in the 

field is that the extent of injury that occurs during the early phases of cardiac 

recovery, directly affects all the subsequent stages.  

It is important to note that there are several limitations present in the 

current analysis.  Conducting flow cytometry for endothelial cells and fibroblasts 

at day 5, may not be instructive, since that time point corresponds to the initiation 

of the proliferative phase of recovery.  Flow cytometry analysis at a later time 

point following myocardial infarction could be more informative for determining if 

Grem2 regulates cell populations present during later stages of cardiac repair.    

Due to the constitutive nature of the Grem2 gain of- and loss of- function 

animals, it is difficult to discern direct effects of Grem2 expression on the 

proliferative and remodeling phases of cardiac repair. Therefore, future 

experimentation including Grem2 treatment specifically during these phases in 

lieu of treatment during the inflammatory phase would be beneficial in discerning 

the specific role of Grem2.  The same is true for determining the role of canonical 

BMP signaling through injection of DMH1.   

In order to gain further mechanistic insight, in vitro models could ascertain 

the function of Grem2 during the proliferative and fibrotic stages of cardiac 

recovery.  Fibroblast and endothelial cells treated with Grem2 would provide 

information regarding the molecular pathways and specific phenotypes Grem2 

alters in these cell populations.  Namely, Grem2 treatment could be used to 

determine if it promotes proliferation, processes such as EndMT, and if it 
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promotes or inhibits the production of collagen in fibroblasts.  Such studies would 

also be instrumental in determining the target cell of Grem2 during the phases of 

cardiac repair following the inflammatory phase as well as determine if Grem2 

affects molecular pathways other than those regulated by BMP signaling, as 

addressed in the next chapter.   
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CHAPTER VIII 

 

HIGH THROUGHPUT SEQUENCING ANALYSIS IN THE CONTEXT OF THE 
LOSS OF GREM2 

 

 

Introduction 

 Grem2, also known as protein related to Dan and Cerberus is a member 

of the DAN family of BMP signaling antagonists.  Initially discovered just over a 

fifteen years ago (Pearce et al., 1999) most published work to date describes its 

mechanism of action to be through its role as a BMP antagonist (Ideno et al., 

2009; Kriebitz et al., 2009; Sudo et al., 2004).  However, Grem2 is a relatively 

unstudied protein and dimerizes in a head to tail dimer confirmation, making its 

structure unique among other BMP antagonists (Nolan et al., 2013).  Due to this 

unique tertiary structure, it remains possible that Grem2 has pleiotropic effects on 

previously undetermined pathways.  Therefore, an unbiased methodology is 

required to broaden the scope of investigation in order to determine if there are 

any novel associations, interactions, or pathways affected by the loss of Grem2 

function. 

RNA-seq analysis is a shotgun approach for measuring levels of genes 

expression, assessing the entire transcriptome of cells or tissues (Wang et al., 

2009).  To conduct a thorough and extensive analysis of any possible Grem2 

pathway interaction, we used this method of high-throughput sequencing on 

whole hearts isolated from Grem2-/- mice and WT counterparts both without injury 
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as well as day 7 post-MI, so that data can be collected pertaining to both the 

inflammatory and fibrotic response that occurs during cardiac repair.  

 

Materials and methods 

Generation of genetically engineered Grem2 mice 

See CHAPTERS III and IV.  

 

Experimental MI  

See CHAPTER II. 

 

RNA isolation from whole murine hearts 

Whole hearts were dissected at the indicated time points after MI, 

perfused to remove blood cells and RNA was obtained using TriZol Reagent 

according to the manufacturer’s instruction (Life Technologies).  

 

High throughput sequencing  

Sequencing was performed at Paired-End 75 base pair on the Illumina 

HiSeq 3000, where 45 million PF reads per sample. The initial gene association 

alignment data was done on CLC workbench using gene ontology.  An N=2 were 

used for the following: WT day 0, Grem2-/- day 0, WT day 7, and Grem2-/- day 

7.  WebGestalt Go enrichment analysis based on Entrez gene protein coding 

references was then conducted based on genes annotated using gene ontology 

gene symbols that had a 2-fold up-regulation post-MI and a p-value <0.05.  
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Pathways and genes that were induced in WT mice post-MI, Grem2-/- mice post-

MI, and those that were uniquely induced in Grem2-/- mice were analyzed.   

 

Results 

Using the Kallisto database, we found a short list of 12 genes that showed 

>2-fold differences between Grem2-/- mice and their WT counterparts at baseline.  

The majority of the genes (included in Table 4) encode ribosomal or 

mitochondrial proteins.  The lack of significant molecular differences between WT 

and Grem2-/- mice suggest no gross cardiac abnormalities exist at baseline.  

Initial pathway analysis results for genes induced post-MI are provided, where 

processes that are significantly induced are shown in red and first represent 

those pathways that are induced in WT mice post-MI (Figure 38A).  Although the 

analysis separates genes into different categories based on biological processes, 

molecular function, and cellular components, the genes that are significantly 

induced 2-fold largely overlap.  Within the immune system category, several 

TLRs and chemokine receptors are present, such as Tlr6, 7,8,9, Ccr1, 2,3, and 

Cxcr1, 2,3.  Chemokine ligands such as Ccl2, 3, Cx3cl1 as well as cytokines Tnf, 

Il-6, and Il-1β were also induced.  Endothelial cell adhesion molecules Icam1 and 

E-selectin also came up in this analysis, and other genes such as Tgfβ1, Timp1, 

myeloperoxidase, and thrombospondin not surprisingly exhibited significant 

changes in WT mice post-MI. The positive regulation of biological and cell 

processes categories included angiopoietin-like 4, Mmp9, Bmp2, Wnt4, Snai1 

and 2, Twist1, Vimentin, Col1a1 and angiotensin converting enzyme, thereby 
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representing genes involved in EndMT and fibrosis.  The heparin, carbohydrate 

derivative, and glycosaminoglycan categories were unique in WT mice post-MI, 

and contained several thrombospondin isoforms, Sfrp1, and latency binding 

protein 2, overall demonstrating Tgfβ and Wnt pathway regulation.  Taken 

together, the data from WT mice post-MI confirms what has been known about 

molecular pathways induced during cardiac repair.  

 Pathways significantly changed in Grem2-/- mice post-MI are shown in 

Figure 38B.  There are several categories that overlap with those present during 

normal cardiac repair, such as the immune system process and response.  

Within these several TLRs, chemokine receptors, chemokine ligands, and 

cytokines that were also present in WT mice such as Tlr6, 8,9, Ccr1, 2,3, Cxcr2, 

Cx3cl1 and Il-6 were also present in Grem2-/- mice post-MI.  Of note, as seen by 

our qPCR analysis, E-selectin and Tgfβ1 were also shown to be upregulated in 

this analysis.  Overlap within the positive regulation of biological processes 

category was seen through the presence of Snail1, Twist1, thrombospondin, 

Vimentin, and Col1a1.  The cation binding, catalytic activity, hydrolase activity, 

actin binding, and cell surface categories were uniquely altered in the case of the 

loss of Grem2 function.  The genes within these categories include activated 

leukocyte cell adhesion molecule (Alcam), XIAP associated factor 1 (Xaf1), 

immunoresponsive gene 1 (Irg1), alpha-fetoprotein (Afp), secretory leukocyte 

peptidase inhibitor (Slpi), lymphocyte specific 1 (Lsp1), and CD8a.  These data 

demonstrate that, genes that are induced in Grem2-/- mice post-MI include genes 

involved in cell adhesion, proteins specific to leukocytes and lymphocytes, and 
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interestingly, a factor associated with XIAP, a known non-canonical downstream 

target of BMP signaling (Yamaguchi et al., 1999).  The results confirm our current 

phenotypic data, where Grem2 appears to regulate the inflammatory response 

post-MI.   

Finally, the genes that are uniquely induced in Grem2-/- mice post-MI were 

isolated for their own analysis, the results of which are shown in Figure 38C. The 

genes that were uniquely present during the loss of Grem2 within the immune 

system process include thymocyte antigen-1 (Thy1), Vcam1, lymphocyte cell 

tyrosine kinase (Lck), and cell adhesion molecule-1 (Cadm1).  Of note, other 

genes that were specifically altered in Grem2-/- mice include cytotoxic T 

lymphocyte-associated protein 2α (Ctla2α), Cd4, Il-2 inducible T cell kinase (Itk), 

lymphotoxin B (Ltb), cannabinoid receptor 2 macrophage (Cnr2), chymase 1 

mast cell (Cma1), Ly6E, and T-cell interacting activating receptor myeloid cells 

(Tarm1), all of which fall under the unique pathway categories leukocyte 

activation, lymphocyte activation, and T cell activation.  Therefore, the changes 

to the inflammatory response post-MI from the loss of Grem2 could possibly be 

through the regulation of genes present within inflammatory cell populations 

themselves.  However, endothelial cell genes such as endothelial cell surface 

expressed chemotaxis and apoptosis regulator (Ecscr) and adhesion genes such 

as Alcam, Cadm1, and Vcam1 are also uniquely induced, corroborating with out 

previous data, where the regulation of the inflammatory response occurs at the 

level of inflammatory cell attachment and adhesion.   
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Discussion 

 High-throughout sequencing analysis such as RNA-seq provides the 

capability of determining pathway associations of Grem2 in an unbiased manner.  

To date, we have aligned our results to a mouse genome database and 

generated pathway analysis charts to see overall, the pathways that are 

significantly affected by the loss of Grem2.  Our current data confirm our previous 

work with more targeted approaches using qPCR, where the loss of Grem2 

resulted in profound changes to genes involved in inflammation and cell 

adhesion.   Furthermore, this analysis provided new gene targets, such as those 

that are involved in leukocyte and lymphocyte biology.  The next step in this 

analysis, will be to analyze the reads per kilo base per million mapped reads or 

RPKM values for genes present in both WT mice post-MI and Grem2-/- mice 

post-MI to determine if expression levels differ in the two models as well as 

conduct an analysis of genes that are uniquely present in WT mice post-MI as 

was done for the Grem2-/- mice.  This will provide important information regarding 

pathways that directly correlate with the level of Grem2 expression.  Future 

experiments confirming the results seen here, such as conducting qPCR for 

genes of interest will also be required.  

The advantage of conducting RNA-seq analysis is that it provides a 

breadth of information that could never be obtained at the targeted level.  In 

contrast, the information that can be obtained from such an analysis is limited by 

the alignment database utilized.  Current work focuses on using different 

alignment programs such as Tophat2 and the previously mentioned Kallisto in 
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order to confirm that the results being observed are not artifacts from the 

alignment.  Furthermore, there is a large amount of data that was not discussed 

in this chapter that requires further analysis.  The data presented here has been 

focused on pathways that are related to inflammatory response, however it would 

be interesting to investigate changes in other molecular pathways.   

Despite the fact that an unbiased approach such as high-throughput 

sequencing has confirmed the work described in previous chapters, it remains to 

be seen how the unique structure of Grem2 could confer to unique pathway 

associations. The results from this analysis could therefore be used to initiate a 

new hypothesis and series of experiments to move the research into new 

directions.  It is important to note that due to the plethora of data provided, there 

is still a lot to be done in order to gain further insight into the implications of the 

analysis.  Consequently, this analysis will serve as a starting point for future 

work.   
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CHAPTER IX 

 

SUMMARY AND CONCLUSION 
 

 
Summary 

In conclusion, our data support the following model of cardiac tissue 

repair: induction of pro-inflammatory cytokines such as Tnfα after MI initiates a 

transient inflammatory response, which is sustained by subsequent induction of 

Bmp2 by Tnfα.  Bmp2 increases the magnitude of inflammation through induction 

of pro-inflammatory cell adhesion membrane proteins in endothelial cells.  Grem2 

is then induced as part of a negative feedback loop to inhibit Bmp2’s pro-

inflammatory activity and act as a barrier of inflammation at the infarct border 

zone (Figure 39A, B).  To determine if Grem2 also plays a role during the later 

phases of recovery such as the proliferative and pro-fibrotic phases or to see if it 

has a direct role on cardiac remodeling, we conducted gene induction, 

histological, and flow cytometric analysis.  Our current data demonstrate that 

Grem2 may have complex roles in these processes. In order to gain further 

insight into the role of Grem2 in the recovery process after MI, we conducted 

RNA-seq analysis on our loss of function model 7 days post-MI.  Current high-

throughput sequencing data suggest that the loss of Grem2 leads to a specific 

up-regulation of certain immune processes as well as provides novel pathway 

associations that can be used to initiate future investigations.   
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Implications 

Here we provide evidence for a new mechanism that regulates the 

magnitude and extent of the inflammatory response after myocardial infarction.  

Specifically, we show that the BMP antagonist Grem2 is robustly and transiently 

induced after myocardial infarction during the late inflammatory phase and early 

proliferative phase of granulation tissue formation.  Genetic loss and gain of 

function approaches revealed that Grem2 a) controls the magnitude of the 
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inflammatory cell infiltration and, b) acts as a molecular barrier to limit infiltration 

of inflammatory cells in the relatively healthy cardiac tissue adjacent to the infarct 

border zone.  Consistent with this model, our data indicate that Grem2 

administration during the inflammatory phase of cardiac tissue repair decreases 

the number of inflammatory cells recruited to the infarct site after MI.  Our results 

further demonstrate that the anti-inflammatory effects of Grem2 depend, at least 

in part, on suppression of canonical BMP signaling through inhibition of 

Smad1/5/8 phosphorylation within ventricular tissue at the infarct border zone.  In 

agreement with this notion, administration of DMH1, a chemical inhibitor of 

canonical BMP signaling, rescued the inflammatory phenotype in Grem2-/- mice.   

The long history of either negative effects or no effects from using anti-

inflammatory treatments is due to targeting direct inflammatory mediators, 

however the success of the cyclosporine trial demonstrates that there is promise 

in utilizing inflammation as a therapeutic target (Piot et al., 2008a).  However, the 

benefits of cyclosporine use after MI could not be replicated in a larger clinical 

trial (Cung et al., 2015).  Here, we show that targeting a mediator of inflammation 

may prove to be more successful than targeting direct players in the 

inflammatory process.   

 

Limitations and Future directions 

Mouse models 
 
 The major limitations with this work involve the mouse models themselves 

and the model of myocardial infarction.  The mouse models described here 
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included the loss-of function or gene knock out mouse model which is 

constitutive and global and the gain- of function TG model, which is tissue 

specific but also constitutive.  This makes discerning specific roles of Grem2 

during the dynamic process of cardiac tissue repair, difficult.  Although we were 

able to test the effects of Grem2 directly by injecting mice with purified protein 

during the inflammatory phase of repair demonstrating that it plays a role during 

this process, the ability to determine how changes that occur during the 

inflammatory phase affects the later stages of recovery, including cardiac 

remodeling, requires further investigation. Future experiments utilizing our loss-

of-function mouse model, gain-of-function mouse model, or injection models for 

long-term studies (>21 days post-MI) in order to observe any long-term affects 

due to changes in Grem2 expression are therefore required.  Bone marrow 

transplantation studies would also be informative in determining the possible 

global effects of Grem2 loss-of-function on cells involved in the inflammatory 

phase of repair.  

Despite the fact the repair process following a myocardial infarction 

consists of distinct phases, these are actually intertwined, where a larger 

inflammatory response usually leads to a larger fibrotic response, thereby 

causing extensive cardiac remodeling.  Therefore, whether or not Grem2 has 

direct affects on these later stages of recovery or if the changes that occur are 

simply a result of the role of Grem2 on limiting the inflammatory phase is yet to 

be confirmed.  Future experiments utilizing inducible cell-specific knock-out 

models, would be useful in both confirming the cellular source of Grem2 in the 
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context of cardiac repair as well as well as tease apart roles of Grem2 during 

early versus late phases of cardiac repair.   

 The model of myocardial infarction in the studies described here was a 

permanent ligation model, where the LAD coronary artery is permanently ligated 

or closed.  Since the mice that undergo the procedure are young and without the 

co-morbidities usually associated with a myocardial infarction in human patients, 

they are able to survive the surgery.  Therefore the model is more akin to those 

that suffer a massive heart attack resulting from a major artery being blocked and 

that do not survive.  However another model exists that is more similar to the 

clinic, and that is the ischemia/reperfusion (I/R) model.  In this model the LAD 

coronary artery is also ligated, but after several minutes re-opened, allowing 

blood to flow through.  Utilization of such a model would also provide information 

regarding infarct size in our experimental groups. We did not use this model in 

our studies due to the fact that the re-oxygenation of cells leads to a more 

complex inflammatory response, the infarct size in a permanent ligation model is 

more reproducible, and because mice tolerate permanent ligation better than I/R.   

 In lieu of these limitations, future experiments could include injecting mice 

with Grem2 at a later stage of the recovery process, i.e. days 5-7 post-MI, to 

determine if there are changes to cell populations, gene expression analysis, or 

functional recovery.  Based on the data described in CHAPTER VII however it is 

unlikely that Grem2 will have a dramatic effect.  Future experiments could also 

include the use of 60 minute I/R instead of permanent ligation as a model of MI in 

order determine if the inflammatory phenotype is due to changes to infarct size 
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as well as determine if the changes to inflammation seen post-MI are also 

present during the recovery process of this type of injury.    

 Due to the fact that the work described here illustrates a positive role for 

Grem2 in cardiac tissue repair, and previous work in the lab demonstrates a 

positive role for Wnt10b in cardiac repair (Paik et al., 2015), it would be beneficial 

to test the repair process when both BMP and Wnt pathways are favorably 

modulated.  It is possible that the overexpression of Grem2 to limit the 

inflammatory response, when combined with Wnt10b overexpression to induce 

arteriogenesis and limits fibrosis as was previously described, will further 

optimize recovery.   

Although therapeutic potential was illustrated through the administration of 

proteins following a myocardial infarction as described in previous chapters, this 

was done through IP.   Despite the fact that our data indicated that these proteins 

do in fact reach the heart, it is still unclear if we are reaching maximal efficiency.  

To address this issue, more optimal delivery methods and evaluation of protein 

bioavailability will need to be tested. 

 

Molecular Mechanisms 

Our data thus far have demonstrated that BMP2 increases the pro-

inflammatory activity of TNFα through activation of canonical BMP signaling.  

However, previous reports have demonstrated that BMP2 is able to activate non-

canonical BMP signaling and NFκB signaling (Csiszar et al., 2005, 2006; Helbing 

et al., 2011).  Therefore, there is a need for future experiments aimed at testing if 
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BMP activates NFκB in the context of cardiac repair.  These could include 

injecting Grem2-/- mice with an NFκB inhibitor in order to see what phenotypes 

are rescued, conducting histological analysis in order to measure levels of 

nuclear NFκB in each of the different mouse models, and western blot analysis 

with tissue isolated post-MI to measure levels of P-Smad1/5/8 and NFκB 

signaling components.  The molecular mechanism could also be investigated 

using endothelial cell in vitro models, and include conducting BRE-luc and NFκB-

luc analysis and western blot analyses after treatment with exogenous TNFα, 

BMP2, and the two together.   

Due to the unique structure of Grem2 as well as the limited number of 

studies conducted on the molecular action of Grem2, it remains possible that 

Grem2 could have a unique binding capacity with BMP ligands, which could also 

lead to a unique mode of BMP antagonism.  The Hatzopoulos laboratory has 

previously shown that Grem2 promotes the activation of non-canonical BMP 

signaling components such as JNK in cardiomyocytes derived from mouse 

embryonic stem cells (Tanwar et al., 2014).  Whether Grem2 activates non-

canonical BMP signaling during cardiac tissue repair is yet to be determined.  

Future experiments could explore if JNK activation occurs after experimental MI 

and if changes to Grem2 expression lead to changes in this activation.  Through 

collaborative efforts, we have access to several mutant proteins that contain a 

point mutation within the binding domain of Grem2.  Therefore, future analysis 

could be conducted in order to assess the ability of these proteins to not only 
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inhibit canonical versus non-canonical BMP signaling in our system, but if binding 

of Grem2 to the BMP2 ligand is required for its anti-inflammatory activity.   

Our current analysis also does not reveal if Grem2 activity is dependent 

upon certain BMP receptors or ligands.  Future research could be aimed at 

determining the molecular basis for the biochemical and biological activities of 

Grem2. 

 The constitutive nature of the Grem2 loss of function mouse model is a 

weakness in the context of cardiac repair.  However the fact that Grem2-/- is 

global and the mice are viable is in fact beneficial for the use of investigations 

into a wide range of disease states.  

  

Conclusions 

Cardiovascular diseases remain to be the number one cause of death in 

both men and women around the world despite the many advances that have 

been made in the field.  An acute cardiac injury such as a heart attack or 

myocardial infarction contributes to the onset of heart failure, a disease with a 

survival rate lower than any cancer (Braunwald, 2015; McMurray, 2010).  Current 

therapies such as angiotensin converting enzyme (ACE) inhibitors and Beta-

blockers are aimed at regaining blood flow as well as decreasing workload on the 

damaged heart.  However, it is important to note that most of these treatments 

also have some sort of anti-inflammatory effect, underscoring the importance of 

regulating the inflammatory phase of recovery (McMurray, 2010).  One of the 

major hindrances in the field is that not much is known about the molecules that 
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help generate a barrier and limit the magnitude of the inflammatory response.  

We have data to suggest that we have in fact identified one such molecule.  

Utilizing unique mouse models, we have been able to determine a novel role of a 

relatively unstudied protein in the context of cardiac repair. Therefore Grem2 has 

demonstrated to be a molecule with great therapeutic potential.   
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TABLES 

 
Table 1. Primer Sequences used in qPCR analyses and Grem2-/- mouse genotyping 
Mouse primers qPCR: 
Ang-1 

 

Anp(Nppa) 

 

Axin2 

 

Bmp2 

 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

CCACCATGCTTGAGATAGGAACC 

CTGTGAGTAGGCTCGGTTCCC 

TTTCAAGAACCTCGTAGACCACCTG 

AAGCTGTTGCAGCCTAGTCCACTCT 

CCAGAAGATCACAAAGAGCCAAAGA 

CTCAGTCGATCCTCTCCACTTTGC 

GCTGTCTTCTAGTGTTGCTGCTT 

GGGACAGAACTTAAATTGAAGAAGA 

Bmp4 5’ 

3’ 

ATGATTCCTGGTAACCGAATGCTG 

CTTCGTGATGGAAACTCCTC 

Bmp6 5’ 

3’ 

AACGCCCTGTCCAATGACG 

ACTCTTGCGGTTCAAGGAGTG 

Bmp7 5’ 

3’ 

ACGGACAGGGCTTCTCCTAC 

ATGGTGGTATCGAGGGTGGAA 

Bmp10 

 

Bmpr2 

 

Bnp (Nppb) 

 

β-mhc 

 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

AAATTCGCCACAGACCGGAC 

GGTGAGGGATAGACACATTGAAG 

CTCAGAATCAAGAACGGCTGTG 

CAACTGGACGCTGATCCAAGG 

ATGCATCTCCTGAAGGTGCTG 

GTGCTGCCTTGAGACCGAA 

CCAACTATGCTGGAGCTGGATG 

CTTCTTGAACTCCATTCTGGAGAG 

Chordin 

 

Pro-Collagen Ia1 

 

5’ 

3’ 

5’ 

3’ 

CTAGGAAATGGCTCCCTTATCTATC 

TGTAAGTGACAATGTGTATCCAAGG 

GCTAACGTGGTTCGTGACCGTG 

GGTCAGCTGGATAGCGACATC 

Dand5 5’ 

3’ 

CTGTCCTTTGTTCAGGTGATCTC 

CCGAGGGGAGGCTAATTGG 

Dan 5’ 

3’ 

CTAGGACAATGCTTCAGTTACAGC 

CTTCAGATCTCCATGACAACCAG 

E-selectin 

 

Fsp-1 

 

5’ 

3’ 

5’ 

3’ 

GAGCACAGCTTGGTACTACAATGC 

GGTGGCACTTGCAGGTGTAAC 

TCAGGCAAAGAGGGTGACAAG 

AGGCAGCTCCCTGGTCAGT 

Gapdh 

 

Grem1 

5’ 

3’ 

5’ 

3’ 

CTCACTCAAGATTGTCAGCAATG 

GAGGGAGATGCTCAGTGTTGG 

GGAA/TTCTGCAAGCCCAAGAAGTTCACCAC 

CGGGA/TCCTCTGTCCCGTTTGCCATCAC 

Grem2(1) 5’ 

3’ 

CCTGTCATTCACAGAGAGGA 

CATTCGAGCTCTACGATGAC 

Icam1 

 

5’ 

3’ 

GGAGACGCAGAGGACCTTAACAG 

CATCTCCTGTTTGACAGACTTCACC  
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Id2 

 

Il-8 

5’ 

3’ 

5’ 

3’ 

CGACCCGATGAGTCTGCTCTACAAC 

GTGTTCTCCTGGTGAAATGGCTGATAAC 

CACCTCAAGAACATCCAGAGCT  

CAAGCAGAACTGAACTACCATCG 

Il-10 5’ 

3’ 

GACCAGCTGGACAACATACTGC 

CCAGCAGACTCAATACACACTGC 

Il-1β 

 

Mcp-1 (Ccl-2) 

 

Mmp9 

 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

TTTGACCTGGGCTGTCCTGATG 

CATATGGGTCCGACAGCACGAG 

ACCTGCTGCTACTCATTCACC 

CACTGTCACACTGGTCACTCC 

CCCGCTGTATAGCTACCTCGAGGGC 

AGCGTTGCAGGCAGGGCTGG 

Noggin 

 

5’ 

3’ 

GCCAGCACTATCTACACATCC 

GCGTCTCGTTCAGATCCTTCTC 

αSma 

 

5’ 

3’ 

CCACGAAACCACCTATAACAGCATC 

GTCGTATTCCTGTTTGCTGATCCAC 

Sost 5’ 

3’ 

AGCCTTCAGGAATGATGCCAC 

CTTTGGCGTCATAGGGATGGT 

Tgfβ1 5’ 

3’ 

AGATTAAAATCAAGTGTGGAGCAAC 

GTCCTTCCTAAAGTCAATGTACAGC 

Tnfα 

 

Twsg1 

 

5’ 

3’ 

5’ 

3’ 

CTACTGAACTTCGGGGTGATCGGTCC 

CCTTCATCTTCCTCCTTATCTCTCATGCC 

TCTAGCCTCCCTGACGTTCC 

CACATACCGACACAGTCGC 

Vcam1 

 

Ve-cadherin 

 

Vimentin 

 

Wnt4 

 

Wnt10b 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

 

AGAGAAACCATTTATTGTTGACATCTCCC 

CAAGTGGCCCACTCATTTTAATTACTGG 

CACTATCACAGTGATTACCTTGCTG 

GTCATAATCGATGTCAGAGTCGG 

GGTACAAGTCCAAGTTTGCTGACCT 

CATTGAGCAGATCTTGGTATTCACG 

CTCCTGCGAGGTAAAGACGTG 

AGTATCTTTTGGGGTAGGTGGTG 

AGAAGTTCTCTCGGGATTTCTTG 

CAAAGTAAACCAGCTCTCCAG 

Human primers: 
BMP2 
 

 

5’ 

3’ 

 

ACCCGCTGTCTTCTAGCGT 

TTTCAGGCCGAACATGCTGAG 

E-SELECTIN 5’ 

3’ 

GCTGGACTCTCCCTCCTGACATTAGC 

CATAAAGGCATCTGGCATAGTAGGCAAG 

GAPDH 5’ 

3’ 

AAGGTGAAGGTCGGAGTCAAC 

GGGGTCATTGATGGCAACAATA 

GREM2 5’ 

3’ 

ATCCCCTCGCCTTACAAGGA 

TCTTGCACCAGTCACTCTTGA 

ID2 5’ 

3’ 

GCATCCCCCAGAACAAGAAGGTGAG 

CGCTTATTCAGCCACACAGTGCTTTG 
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Genotyping Primers: 
Primer 1 

Primer 2 

Primer 3 

Primer 4 

Primer 5 

Primer 6 

5’ 

3’ 

3’ 

5’ 

5’ 

3’ 

CTGTGCAGCAGAGAAAGCTG 

TGGCAATGTACCTCATCTCA 

CTGTCCATCTGCACGAGACT 

TCTGGTACCCACGAGGACAAGC 

GTCTGAGTAGGTGTCATTCTA 

CACAGATCACTCGATGCTCT 

 
1. Suzuki D et al. (2012). BMP2 differentially regulates the expression of Gremlin1 and 
Gremlin2, the negative regulators of BMP function, during osteoblast differentiation. 
Calcif. Tissue. Int. 91, 88–96. 
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Table 4. RNA-seq analysis comparing WT and Grem2-/- mice at baseline.	
  	
  	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition Symbol fold-Grem2KO_vs_WT

histone	cluster	1,	H4m	[Source:MGI	Symbol;Acc:MGI:2448441] Hist1h4m -8.404752002

ribosomal	protein	S3A2	[Source:MGI	Symbol;Acc:MGI:3642853] Rps3a2 -8.268432785

ribosomal	protein	S3A3	[Source:MGI	Symbol;Acc:MGI:3643406] Rps3a3 -3.430341307

glycerophosphodiester	phosphodiesterase	domain	containing	3	[Source:MGI	Symbol;Acc:MGI:1915866] Gdpd3 -2.932662122

immunoglobulin	kappa	joining	4	[Source:MGI	Symbol;Acc:MGI:1316692] Igkj4 -2.411175729

histone	cluster	1,	H4i	[Source:MGI	Symbol;Acc:MGI:2448432] Hist1h4i 2.010354801

myomesin	1	[Source:MGI	Symbol;Acc:MGI:1341430] Myom1 2.086813383

solute	carrier	family	27	(fatty	acid	transporter),	member	2	[Source:MGI	Symbol;Acc:MGI:1347099] Slc27a2 2.152859496

ribosomal	protein	L21,	pseudogene	15	[Source:MGI	Symbol;Acc:MGI:3705426] Rpl21-ps15 2.827529748

tropomyosin	3,	related	sequence	7	[Source:MGI	Symbol;Acc:MGI:99705] Tpm3-rs7 2.942246171

chemokine	(C-X-C	motif)	ligand	14	[Source:MGI	Symbol;Acc:MGI:1888514] Cxcl14 3.990014607

PAXIP1	associated	glutamate	rich	protein	1B	[Source:MGI	Symbol;Acc:MGI:5141883] Pagr1b 5.912658163



	
  
	
  

134	
  

APPENDIX 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
  
	
  

135	
  

REFERENCES 

 

Ades, E.W., Candal, F.J., Swerlick, R.A., George, V.G., Summers, S., Bosse, 
D.C., and Lawley, T.J. (1992). HMEC-1: establishment of an immortalized human 
microvascular endothelial cell line. J. Invest. Dermatol. 99, 683–690. 

Aisagbonhi, O., Rai, M., Ryzhov, S., Atria, N., Feoktistov, I., and Hatzopoulos, 
A.K. (2011). Experimental myocardial infarction triggers canonical Wnt signaling 
and endothelial-to-mesenchymal transition. Dis. Model. Mech. 4, 469–483. 

Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat. Rev. Immunol. 
4, 499–511. 

Anzai, T., Yoshikawa, T., Shiraki, H., Asakura, Y., Akaishi, M., Mitamura, H., and 
Ogawa, S. (1997). C-reactive protein as a predictor of infarct expansion and 
cardiac rupture after a first Q-wave acute myocardial infarction. Circulation 96, 
778–784. 

Ao, A., Hao, J., Hopkins, C.R., and Hong, C.C. (2012). DMH1, a novel BMP 
small molecule inhibitor, increases cardiomyocyte progenitors and promotes 
cardiac differentiation in mouse embryonic stem cells. PloS One 7, e41627. 

Armstrong, P.W., Granger, C.B., Adams, P.X., Hamm, C., Holmes, D., O’Neill, 
W.W., Todaro, T.G., Vahanian, A., and Van de Werf, F. (2007). Pexelizumab for 
acute ST-elevation myocardial infarction in patients undergoing primary 
percutaneous coronary intervention: a randomized controlled trial. JAMA 297, 
43–51. 

Avsian-Kretchmer, O., and Hsueh, A.J.W. (2004). Comparative genomic analysis 
of the eight-membered ring cystine knot-containing bone morphogenetic protein 
antagonists. Mol. Endocrinol. 18, 1–12. 

Baran, K.W., Nguyen, M., McKendall, G.R., Lambrew, C.T., Dykstra, G., Palmeri, 
S.T., Gibbons, R.J., Borzak, S., Sobel, B.E., Gourlay, S.G., et al. (2001). Double-
blind, randomized trial of an anti-CD18 antibody in conjunction with recombinant 
tissue plasminogen activator for acute myocardial infarction: limitation of 
myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT 
AMI) study. Circulation 104, 2778–2783. 

Beck, H., Semisch, M., Culmsee, C., Plesnila, N., and Hatzopoulos, A.K. (2008). 
Egr-1 regulates expression of the glial scar component phosphacan in astrocytes 
after experimental stroke. Am. J. Pathol. 173, 77–92. 

Boudoulas, K.D., and Hatzopoulos, A.K. (2009). Cardiac repair and regeneration: 
the Rubik’s cube of cell therapy for heart disease. Dis. Model. Mech. 2, 344–358. 



	
  
	
  

136	
  

Bragdon, B., Moseychuk, O., Saldanha, S., King, D., Julian, J., and Nohe, A. 
(2011). Bone morphogenetic proteins: a critical review. Cell Signal. 23, 609–620. 

Braunwald, E. (2015). The war against heart failure: the Lancet lecture. Lancet 
385, 812–824. 

Cahill, E., Costello, C.M., Rowan, S.C., Harkin, S., Howell, K., Leonard, M.O., 
Southwood, M., Cummins, E.P., Fitzpatrick, S.F., Taylor, C.T., et al. (2012). 
Gremlin plays a key role in the pathogenesis of pulmonary hypertension. 
Circulation 125, 920–930. 

Cao, Y., Wang, C., Zhang, X., Xing, G., Lu, K., Gu, Y., He, F., and Zhang, L. 
(2014). Selective small molecule compounds increase BMP-2 responsiveness by 
inhibiting Smurf1-mediated Smad1/5 degradation. Sci. Rep. 4, 4965. 

Chang, S.-A., Lee, E.J., Kang, H.-J., Zhang, S.-Y., Kim, J.-H., Li, L., Youn, S.-W., 
Lee, C.-S., Kim, K.-H., Won, J.-Y., et al. (2008). Impact of myocardial infarct 
proteins and oscillating pressure on the differentiation of mesenchymal stem 
cells: effect of acute myocardial infarction on stem cell differentiation. Stem Cells 
26, 1901–1912. 

Chen, B., Blair, D.G., Plisov, S., Vasiliev, G., Perantoni, A.O., Chen, Q., 
Athanasiou, M., Wu, J.Y., Oppenheim, J.J., and Yang, D. (2004). Cutting edge: 
bone morphogenetic protein antagonists Drm/Gremlin and Dan interact with Slits 
and act as negative regulators of monocyte chemotaxis. J. Immunol. 173, 5914–
5917. 

Chocron, S., Verhoeven, M.C., Rentzsch, F., Hammerschmidt, M., and Bakkers, 
J. (2007). Zebrafish Bmp4 regulates left-right asymmetry at two distinct 
developmental time points. Dev. Biol. 305, 577–588. 

Choi, M., Stottmann, R.W., Yang, Y.-P., Meyers, E.N., and Klingensmith, J. 
(2007). The bone morphogenetic protein antagonist noggin regulates mammalian 
cardiac morphogenesis. Circ. Res. 100, 220–228. 

Christia, P., and Frangogiannis, N.G. (2013). Targeting inflammatory pathways in 
myocardial infarction. Eur. JCI 43, 986–995. 

Csiszar, A., Smith, K.E., Koller, A., Kaley, G., Edwards, J.G., and Ungvari, Z. 
(2005). Regulation of bone morphogenetic protein-2 expression in endothelial 
cells: role of nuclear factor-kappaB activation by tumor necrosis factor-alpha, 
H2O2, and high intravascular pressure. Circulation 111, 2364–2372. 

Csiszar, A., Ahmad, M., Smith, K.E., Labinskyy, N., Gao, Q., Kaley, G., Edwards, 
J.G., Wolin, M.S., and Ungvari, Z. (2006). Bone morphogenetic protein-2 induces 
proinflammatory endothelial phenotype. Am. J. Pathol. 168, 629–638. 



	
  
	
  

137	
  

de Lemos, J.A., Morrow, D.A., Blazing, M.A., Jarolim, P., Wiviott, S.D., Sabatine, 
M.S., Califf, R.M., and Braunwald, E. (2007). Serial measurement of monocyte 
chemoattractant protein-1 after acute coronary syndromes: results from the A to 
Z trial. J. Am. Coll. Cardiol. 50, 2117–2124. 

Derwall, M., Malhotra, R., Lai, C.S., Beppu, Y., Aikawa, E., Seehra, J.S., Zapol, 
W.M., Bloch, K.D., and Yu, P.B. (2012). Inhibition of bone morphogenetic protein 
signaling reduces vascular calcification and atherosclerosis. Arterioscler. 
Thromb. Vasc. Biol. 32, 613–622. 

Dudley, A.T., Lyons, K.M., and Robertson, E.J. (1995). A requirement for bone 
morphogenetic protein-7 during development of the mammalian kidney and eye. 
Genes Dev. 9, 2795–2807. 

Dudley AT, Robertson EJ. (1997). Overlapping expression domains of bone 
morphogenetic protein family members potentially account for limited tissue 
defects in BMP7 deficient embryos. Dev Dyn. 208, 349–362. 

Entman, M.L., Youker, K., Shoji, T., Kukielka, G., Shappell, S.B., Taylor, A.A., 
and Smith, C.W. (1992). Neutrophil induced oxidative injury of cardiac myocytes. 
A compartmented system requiring CD11b/CD18-ICAM-1 adherence. JCI 90, 
1335–1345. 

Euler-Taimor, G., and Heger, J. (2006). The complex pattern of SMAD signaling 
in the cardiovascular system. Cardiovasc. Res. 69, 15–25. 

Faxon, D.P., Gibbons, R.J., Chronos, N.A.F., Gurbel, P.A., Sheehan, F., and 
HALT-MI Investigators (2002). The effect of blockade of the CD11/CD18 integrin 
receptor on infarct size in patients with acute myocardial infarction treated with 
direct angioplasty: the results of the HALT-MI study. J. Am. Coll. Cardiol. 40, 
1199–1204. 

Feng, J.Q., Xing, L., Zhang, J.-H., Zhao, M., Horn, D., Chan, J., Boyce, B.F., 
Harris, S.E., Mundy, G.R., and Chen, D. (2003). NF-kappaB specifically activates 
BMP-2 gene expression in growth plate chondrocytes in vivo and in a 
chondrocyte cell line in vitro. J. Biol. Chem. 278, 29130–29135. 

Frangogiannis, N.G. (2008). The immune system and cardiac repair. Pharmacol. 
Res. 58, 88–111. 

Frangogiannis, N.G. (2012). Regulation of the inflammatory response in cardiac 
repair. Circ. Res. 110, 159–173. 

Frangogiannis, N.G. (2014). The inflammatory response in myocardial injury, 
repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265. 

Fukui, N., Ikeda, Y., Ohnuki, T., Hikita, A., Tanaka, S., Yamane, S., Suzuki, R., 
Sandell, L.J., and Ochi, T. (2006). Pro-inflammatory cytokine tumor necrosis 



	
  
	
  

138	
  

factor-alpha induces bone morphogenetic protein-2 in chondrocytes via mRNA 
stabilization and transcriptional up-regulation. J. Biol. Chem. 281, 27229–27241. 

Furtado, M.B., Solloway, M.J., Jones, V.J., Costa, M.W., Biben, C., Wolstein, O., 
Preis, J.I., Sparrow, D.B., Saga, Y., Dunwoodie, S.L., et al. (2008). BMP/SMAD1 
signaling sets a threshold for the left/right pathway in lateral plate mesoderm and 
limits availability of SMAD4. Genes Dev. 22, 3037–3049. 

Gao, H., Chakraborty, G., Lee-Lim, A.P., Mo, Q., Decker, M., Vonica, A., Shen, 
R., Brogi, E., Brivanlou, A.H., and Giancotti, F.G. (2012). The BMP inhibitor Coco 
reactivates breast cancer cells at lung metastatic sites. Cell 150, 764–779. 

Gonzalez-Quesada, C., and Frangogiannis, N.G. (2009). Monocyte 
chemoattractant protein-1/CCL2 as a biomarker in acute coronary syndromes. 
Curr. Atheroscler. Rep. 11, 131–138. 

Granger, C.B., Mahaffey, K.W., Weaver, W.D., Theroux, P., Hochman, J.S., 
Filloon, T.G., Rollins, S., Todaro, T.G., Nicolau, J.C., Ruzyllo, W., et al. (2003). 
Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary 
percutaneous coronary intervention in acute myocardial infarction: the 
COMplement inhibition in Myocardial infarction treated with Angioplasty 
(COMMA) trial. Circulation 108, 1184–1190. 

Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A.N., 
Kwiatkowski, W., Affolter, M., Vale, W.W., Izpisua Belmonte, J.C., and Choe, S. 
(2002). Structural basis of BMP signalling inhibition by the cystine knot protein 
Noggin. Nature 420, 636–642. 

Gullestad, L., Orn, S., Dickstein, K., Eek, C., Edvardsen, T., Aakhus, S., 
Askevold, E.T., Michelsen, A., Bendz, B., Skårdal, R., et al. (2013). Intravenous 
immunoglobulin does not reduce left ventricular remodeling in patients with 
myocardial dysfunction during hospitalization after acute myocardial infarction. 
Int. J. Cardiol. 168, 212–218. 

Hammerschmidt, M., Serbedzija, G.N., and McMahon, A.P. (1996). Genetic 
analysis of dorsoventral pattern formation in the zebrafish: requirement of a 
BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452–
2461. 

Hao, J., Lee, R., Chang, A., Fan, J., Labib, C., Parsa, C., Orlando, R., Andresen, 
B., and Huang, Y. (2014). DMH1, a small molecule inhibitor of BMP type i 
receptors, suppresses growth and invasion of lung cancer. PloS One 9, e90748. 

Hayashi, K., Yamaguchi, T., Yano, S., Kanazawa, I., Yamauchi, M., Yamamoto, 
M., and Sugimoto, T. (2009). BMP/Wnt antagonists are upregulated by 
dexamethasone in osteoblasts and reversed by alendronate and PTH: potential 
therapeutic targets for glucocorticoid-induced osteoporosis. Biochem. Biophys. 
Res. Commun. 379, 261–266. 



	
  
	
  

139	
  

Helbing, T., Rothweiler, R., Ketterer, E., Goetz, L., Heinke, J., Grundmann, S., 
Duerschmied, D., Patterson, C., Bode, C., and Moser, M. (2011). BMP activity 
controlled by BMPER regulates the proinflammatory phenotype of endothelium. 
Blood 118, 5040–5049. 

Hinck, A.P. (2012). Structural studies of the TGF-βs and their receptors - insights 
into evolution of the TGF-β superfamily. FEBS 586, 1860–1870. 

Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, 
F.S., and Manolio, T.A. (2009). Potential etiologic and functional implications of 
genome-wide association loci for human diseases and traits. Proc. Natl. Acad. 
Sci. 106, 9362–9367. 

Hulsmans, M., Sam, F., and Nahrendorf, M. (2016). Monocyte and macrophage 
contributions to cardiac remodeling. J. Mol. Cell. Cardiol. 93, 149–155. 

Ideno, H., Takanabe, R., Shimada, A., Imaizumi, K., Araki, R., Abe, M., and 
Nifuji, A. (2009). Protein related to DAN and cerberus (PRDC) inhibits 
osteoblastic differentiation and its suppression promotes osteogenesis in vitro. 
Exp. Cell Res. 315, 474–484. 

Im, J., Kim, H., Kim, S., and Jho, E.-H. (2007). Wnt/beta-catenin signaling 
regulates expression of PRDC, an antagonist of the BMP-4 signaling pathway. 
Biochem. Biophys. Res. Commun. 354, 296–301. 

Itoh, G., Tamura, J., Suzuki, M., Suzuki, Y., Ikeda, H., Koike, M., Nomura, M., 
Jie, T., and Ito, K. (1995). DNA fragmentation of human infarcted myocardial 
cells demonstrated by the nick end labeling method and DNA agarose gel 
electrophoresis. Am. J. Pathol. 146, 1325–1331. 

Jain, R., Li, D., Gupta, M., Manderfield, L.J., Ifkovits, J.L., Wang, Q., Liu, F., Liu, 
Y., Poleshko, A., Padmanabhan, A., et al. (2015). HEART DEVELOPMENT. 
Integration of Bmp and Wnt signaling by Hopx specifies commitment of 
cardiomyoblasts. Science 348, aaa6071. 

Jones, C.M., Lyons, K.M., and Hogan, B.L. (1991). Involvement of Bone 
Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and 
neurogenesis in the mouse. Development 111, 531–542. 

Kain, V., Prabhu, S.D., and Halade, G.V. (2014). Inflammation revisited: 
inflammation versus resolution of inflammation following myocardial infarction. 
Basic Res. Cardiol. 109, 444. 

Kattamuri, C., Luedeke, D.M., Nolan, K., Rankin, S.A., Greis, K.D., Zorn, A.M., 
and Thompson, T.B. (2012a). Members of the DAN family are BMP antagonists 
that form highly stable noncovalent dimers. J. Mol. Biol. 424, 313–327. 



	
  
	
  

140	
  

Kattamuri, C., Luedeke, D.M., and Thompson, T.B. (2012b). Expression and 
purification of recombinant protein related to DAN and cerberus (PRDC). Protein 
Expr. Purif. 82, 389–395. 

Kattman, S.J., Witty, A.D., Gagliardi, M., Dubois, N.C., Niapour, M., Hotta, A., 
Ellis, J., and Keller, G. (2011). Stage-specific optimization of activin/nodal and 
BMP signaling promotes cardiac differentiation of mouse and human pluripotent 
stem cell lines. Cell Stem Cell 8, 228–240. 

Khosla, S., Westendorf, J.J., and Oursler, M.J. (2008). Building bone to reverse 
osteoporosis and repair fractures. JCI 118, 421–428. 

Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, 
Jenkins NA. (1992). The mouse short ear skeletal morphogenesis locus is 
associated with defects in a bone morphogenetic member of the TGF beta 
superfamily. Cell 71, 399–410. 

Kim, R.Y., Robertson, E.J., and Solloway, M.J. (2001). Bmp6 and Bmp7 are 
required for cushion formation and septation in the developing mouse heart. Dev. 
Biol. 235, 449–466. 

Koga, M., Engberding, N., Dikalova, A.E., Chang, K.H., Seidel-Rogol, B., Long, 
J.S., Lassègue, B., Jo, H., and Griendling, K.K. (2013). The bone morphogenic 
protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db 
mice. Am. J. Physiol. Heart Circ. Physiol. 305, H747-755. 

Koli, K., Myllärniemi, M., Vuorinen, K., Salmenkivi, K., Ryynänen, M.J., Kinnula, 
V.L., and Keski-Oja, J. (2006). Bone morphogenetic protein-4 inhibitor gremlin is 
overexpressed in idiopathic pulmonary fibrosis. Am. J. Pathol. 169, 61–71. 

Konstantinidis, K., Whelan, R.S., and Kitsis, R.N. (2012). Mechanisms of cell 
death in heart disease. Arterioscler. Thromb. Vasc. Biol. 32, 1552–1562. 

Kriebitz, N.N., Kiecker, C., McCormick, L., Lumsden, A., Graham, A., and Bell, E. 
(2009). PRDC regulates placode neurogenesis in chick by modulating BMP 
signalling. Dev. Biol. 336, 280–292. 

Krishnamurthy, P., Rajasingh, J., Lambers, E., Qin, G., Losordo, D.W., and 
Kishore, R. (2009). IL-10 inhibits inflammation and attenuates left ventricular 
remodeling after myocardial infarction via activation of STAT3 and suppression of 
HuR. Circ. Res. 104, e9-18. 

Kruithof, B.P.T., van Wijk, B., Somi, S., Kruithof-de Julio, M., Pérez Pomares, 
J.M., Weesie, F., Wessels, A., Moorman, A.F.M., and van den Hoff, M.J.B. 
(2006). BMP and FGF regulate the differentiation of multipotential pericardial 
mesoderm into the myocardial or epicardial lineage. Dev. Biol. 295, 507–522. 



	
  
	
  

141	
  

Kua, H.-Y., Liu, H., Leong, W.F., Li, L., Jia, D., Ma, G., Hu, Y., Wang, X., Chau, 
J.F.L., Chen, Y.-G., et al. (2012). c-Abl promotes osteoblast expansion by 
differentially regulating canonical and non-canonical BMP pathways and 
p16INK4a expression. Nat. Cell Biol. 14, 727–737. 

Lappin, D.W.P., McMahon, R., Murphy, M., and Brady, H.R. (2002). Gremlin: an 
example of the re-emergence of developmental programmes in diabetic 
nephropathy. Nephrol. Dial. Transplant. 17 Suppl 9, 65–67. 

Lefer, D.J., Shandelya, S.M., Serrano, C.V., Becker, L.C., Kuppusamy, P., and 
Zweier, J.L. (1993). Cardioprotective actions of a monoclonal antibody against 
CD-18 in myocardial ischemia-reperfusion injury. Circulation 88, 1779–1787. 

de Lemos, J.A., Morrow, D.A., Bentley, J.H., Omland, T., Sabatine, M.S., 
McCabe, C.H., Hall, C., Cannon, C.P., and Braunwald, E. (2001). The prognostic 
value of B-type natriuretic peptide in patients with acute coronary syndromes. 
NEJM 345, 1014–1021. 

Lenhart, K.F., Lin, S.-Y., Titus, T.A., Postlethwait, J.H., and Burdine, R.D. (2011). 
Two additional midline barriers function with midline lefty1 expression to maintain 
asymmetric Nodal signaling during left-right axis specification in zebrafish. 
Development 138, 4405–4410. 

Li, Y., Wang, Z., Wang, S., Zhao, J., Zhang, J., and Huang, Y. (2012). Gremlin-
mediated decrease in bone morphogenetic protein signaling promotes 
aristolochic acid-induced epithelial-to-mesenchymal transition (EMT) in HK-2 
cells. Toxicology 297, 68–75. 

Liu, W., Selever, J., Wang, D., Lu, M.-F., Moses, K.A., Schwartz, R.J., and 
Martin, J.F. (2004). Bmp4 signaling is required for outflow-tract septation and 
branchial-arch artery remodeling. Proc. Natl. Acad. Sci. 101, 4489–4494. 

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression 
data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. 
Methods 25, 402–408. 

Lowery, J.W., and de Caestecker, M.P. (2010). BMP signaling in vascular 
development and disease. Cytokine Growth Factor Rev. 21, 287–298. 

Lu, M.M., Yang, H., Zhang, L., Shu, W., Blair, D.G., and Morrisey, E.E. (2001). 
The bone morphogenic protein antagonist gremlin regulates proximal-distal 
patterning of the lung. Dev. Dyn. 222, 667–680. 

Luo, G., Hofmann, C., Bronckers, A.L., Sohocki, M., Bradley, A., and Karsenty, 
G. (1995). BMP-7 is an inducer of nephrogenesis, and is also required for eye 
development and skeletal patterning. Genes Dev. 9, 2808–2820. 



	
  
	
  

142	
  

da Luz, P.L., Forrester, J.S., Wyatt, H.L., Diamond, G.A., Chag, M., and Swan, 
H.J. (1976). Myocardial reperfusion in acute experimental ischemia. Beneficial 
effects of prior treatment with steroids. Circulation 53, 847–852. 

Ma, L., Lu, M.-F., Schwartz, R.J., and Martin, J.F. (2005). Bmp2 is essential for 
cardiac cushion epithelial-mesenchymal transition and myocardial patterning. 
Development 132, 5601–5611. 

Ma, Y., Yabluchanskiy, A., and Lindsey, M.L. (2013). Neutrophil roles in left 
ventricular remodeling following myocardial infarction. Fibrogenesis Tissue 
Repair 6, 11. 

Mann, D.L., McMurray, J.J.V., Packer, M., Swedberg, K., Borer, J.S., Colucci, 
W.S., Djian, J., Drexler, H., Feldman, A., Kober, L., et al. (2004). Targeted 
anticytokine therapy in patients with chronic heart failure: results of the 
Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 109, 
1594–1602. 

Marques, S.R., and Yelon, D. (2009). Differential requirement for BMP signaling 
in atrial and ventricular lineages establishes cardiac chamber proportionality. 
Dev. Biol. 328, 472–482. 

Matsumoto-Ida, M., Takimoto, Y., Aoyama, T., Akao, M., Takeda, T., and Kita, T. 
(2006). Activation of TGF-beta1-TAK1-p38 MAPK pathway in spared 
cardiomyocytes is involved in left ventricular remodeling after myocardial 
infarction in rats. Am. J. Physiol. Heart Circ. Physiol. 290, H709-715. 

Mayeur, C., Lohmeyer, L.K., Leyton, P., Kao, S.M., Pappas, A.E., Kolodziej, S.A., 
Spagnolli, E., Yu, B., Galdos, R.L., Yu, P.B., et al. (2014). The type I BMP 
receptor Alk3 is required for the induction of hepatic hepcidin gene expression by 
interleukin-6. Blood 123, 2261–2268. 

McCulley, D.J., Kang, J.-O., Martin, J.F., and Black, B.L. (2008). BMP4 is 
required in the anterior heart field and its derivatives for endocardial cushion 
remodeling, outflow tract septation, and semilunar valve development. Dev. Dyn. 
237, 3200–3209. 

McMurray, J.J.V. (2010). Clinical practice. Systolic heart failure. NEJM 362, 228–
238. 

Minabe-Saegusa, C., Saegusa, H., Tsukahara, M., and Noguchi, S. (1998). 
Sequence and expression of a novel mouse gene PRDC (protein related to DAN 
and cerberus) identified by a gene trap approach. Dev. Growth Differ. 40, 343–
353. 

Miyazono, K., Maeda, S., and Imamura, T. (2005). BMP receptor signaling: 
transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine 
Growth Factor Rev. 16, 251–263. 



	
  
	
  

143	
  

Miyazono, K., Kamiya, Y., and Morikawa, M. (2010). Bone morphogenetic protein 
receptors and signal transduction. J. Biochem. 147, 35–51. 

Morrell, N.W., Bloch, D.B., Ten Dijke, P., Goumans, M.-J.T.H., Hata, A., Smith, 
J., Yu, P.B., and Bloch, K.D. (2015). Targeting BMP signalling in cardiovascular 
disease and anaemia. Nat. Rev. Cardiol. 13, 106-120.   

Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, 
M., de Ferranti, S., Després, J.-P., Fullerton, H.J., Howard, V.J., et al. (2015). 
Heart disease and stroke statistics--2015 update: a report from the American 
Heart Association. Circulation 131, e29-322. 

Mueller, K.A.L., Tavlaki, E., Schneider, M., Jorbenadze, R., Geisler, T., Kandolf, 
R., Gawaz, M., Mueller, I.I., and Zuern, C.S. (2013). Gremlin-1 identifies fibrosis 
and predicts adverse outcome in patients with heart failure undergoing 
endomyocardial biopsy. J. Card. Fail. 19, 678–684. 

Müller, I.I., Knapik, E.W., and Hatzopoulos, A.K. (2006). Expression of the 
protein related to Dan and Cerberus gene--prdc--During eye, pharyngeal arch, 
somite, and swim bladder development in zebrafish. Dev. Dyn. 235, 2881–2888. 

Müller, I.I., Melville, D.B., Tanwar, V., Rybski, W.M., Mukherjee, A., Shoemaker, 
M.B., Wang, W.-D., Schoenhard, J.A., Roden, D.M., Darbar, D., et al. (2013). 
Functional modeling in zebrafish demonstrates that the atrial-fibrillation-
associated gene GREM2 regulates cardiac laterality, cardiomyocyte 
differentiation and atrial rhythm. Dis. Model. Mech. 6, 332–341. 

Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J-
L, Libby P, Weissleder R, Pittet MJ. (2007). The healing myocardium sequentially 
mobilizes two monocyte subsets with divergent and complementary functions. J 
Exp Med. 204, 3037–3047. 

Nolan, K., and Thompson, T.B. (2014). The DAN family: modulators of TGF-β 
signaling and beyond. Protein Sci. 23, 999–1012. 

Nolan, K., Kattamuri, C., Luedeke, D.M., Deng, X., Jagpal, A., Zhang, F., 
Linhardt, R.J., Kenny, A.P., Zorn, A.M., and Thompson, T.B. (2013). Structure of 
Protein Related to Dan and Cerberus: Insights into the Mechanism of Bone 
Morphogenetic Protein Antagonism. Structure 21, 1417–1429. 

Omland, T., Aakvaag, A., Bonarjee, V.V., Caidahl, K., Lie, R.T., Nilsen, D.W., 
Sundsfjord, J.A., and Dickstein, K. (1996). Plasma brain natriuretic peptide as an 
indicator of left ventricular systolic function and long-term survival after acute 
myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-
terminal proatrial natriuretic peptide. Circulation 93, 1963–1969. 

Ørn, S., Manhenke, C., Ueland, T., Damås, J.K., Mollnes, T.E., Edvardsen, T., 
Aukrust, P., and Dickstein, K. (2009). C-reactive protein, infarct size, 



	
  
	
  

144	
  

microvascular obstruction, and left-ventricular remodelling following acute 
myocardial infarction. Eur. Heart J. 30, 1180–1186. 

Ortega-Gómez, A., Perretti, M., and Soehnlein, O. (2013). Resolution of 
inflammation: an integrated view. EMBO Mol. Med. 5, 661–674. 

Ovsyannikova, I.G., Kennedy, R.B., O’Byrne, M., Jacobson, R.M., Pankratz, 
V.S., and Poland, G.A. (2012). Genome-wide association study of antibody 
response to smallpox vaccine. Vaccine 30, 4182–4189. 

Owens, P., Pickup, M.W., Novitskiy, S.V., Giltnane, J.M., Gorska, A.E., Hopkins, 
C.R., Hong, C.C., and Moses, H.L. (2015). Inhibition of BMP signaling 
suppresses metastasis in mammary cancer. Oncogene 34, 2437–2449. 

Pachori, A.S., Custer, L., Hansen, D., Clapp, S., Kemppa, E., and Klingensmith, 
J. (2010). Bone morphogenetic protein 4 mediates myocardial ischemic injury 
through JNK-dependent signaling pathway. J. Mol. Cell. Cardiol. 48, 1255–1265. 

Paik, D.T., Rai, M., Ryzhov, S., Sanders, L.N., Aisagbonhi, O., Funke, M.J., 
Feoktistov, I., and Hatzopoulos, A.K. (2015). Wnt10b Gain-of-Function Improves 
Cardiac Repair by Arteriole Formation and Attenuation of Fibrosis. Circ. Res. 
117, 804–816. 

de Pater, E., Ciampricotti, M., Priller, F., Veerkamp, J., Strate, I., Smith, K., 
Lagendijk, A.K., Schilling, T.F., Herzog, W., Abdelilah-Seyfried, S., et al. (2012). 
Bmp signaling exerts opposite effects on cardiac differentiation. Circ. Res. 110, 
578–587. 

Pearce, J.J., Penny, G., and Rossant, J. (1999). A mouse cerberus/Dan-related 
gene family. Dev. Biol. 209, 98–110. 

Pi, X., Lockyer, P., Dyer, L.A., Schisler, J.C., Russell, B., Carey, S., Sweet, D.T., 
Chen, Z., Tzima, E., Willis, M.S., et al. (2012). Bmper inhibits endothelial 
expression of inflammatory adhesion molecules and protects against 
atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2214–2222. 

Piot, C., Croisille, P., Staat, P., Thibault, H., Rioufol, G., Mewton, N., Elbelghiti, 
R., Cung, T.T., Bonnefoy, E., Angoulvant, D., et al. (2008). Effect of cyclosporine 
on reperfusion injury in acute myocardial infarction. NEJM 359, 473–481. 

Ramel, M.-C., and Hill, C.S. (2012). Spatial regulation of BMP activity. FEBS 
586, 1929–1941. 

Reimer, K.A., and Jennings, R.B. (1979). The “wavefront phenomenon” of 
myocardial ischemic cell death. II. Transmural progression of necrosis within the 
framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. 
Investig. J. Tech. Methods Pathol. 40, 633–644. 



	
  
	
  

145	
  

Roberts, R., DeMello, V., and Sobel, B.E. (1976). Deleterious effects of 
methylprednisolone in patients with myocardial infarction. Circulation 53, I204-
206. 

Rodrigues-Diez, R., Lavoz, C., Carvajal, G., Rayego-Mateos, S., Rodrigues Diez, 
R.R., Ortiz, A., Egido, J., Mezzano, S., and Ruiz-Ortega, M. (2012). Gremlin is a 
downstream profibrotic mediator of transforming growth factor-beta in cultured 
renal cells. Nephron Exp. Nephrol. 122, 62–74. 

Saeed, O., Otsuka, F., Polavarapu, R., Karmali, V., Weiss, D., Davis, T., Rostad, 
B., Pachura, K., Adams, L., Elliott, J., et al. (2012). Pharmacological suppression 
of hepcidin increases macrophage cholesterol efflux and reduces foam cell 
formation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 299–307. 

Sanvitale, C.E., Kerr, G., Chaikuad, A., Ramel, M.-C., Mohedas, A.H., Reichert, 
S., Wang, Y., Triffitt, J.T., Cuny, G.D., Yu, P.B., et al. (2013). A new class of 
small molecule inhibitor of BMP signaling. PloS One 8, e62721. 

Saxena, A., Russo, I., and Frangogiannis, N.G. (2016). Inflammation as a 
therapeutic target in myocardial infarction: learning from past failures to meet 
future challenges. Transl. Res. J. Lab. Clin. Med. 167, 152-166.  

Schlange, T., Arnold, H.-H., and Brand, T. (2002). BMP2 is a positive regulator of 
Nodal signaling during left-right axis formation in the chicken embryo. 
Development 129, 3421–3429. 

Shinde, A.V., and Frangogiannis, N.G. (2014). Fibroblasts in myocardial 
infarction: a role in inflammation and repair. J. Mol. Cell. Cardiol. 70, 74–82. 

Sieber, C., Kopf, J., Hiepen, C., and Knaus, P. (2009). Recent advances in BMP 
receptor signaling. Cytokine Growth Factor Rev. 20, 343–355. 

Simões Sato, A.Y., Bub, G.L., and Campos, A.H. (2014). BMP-2 and -4 produced 
by vascular smooth muscle cells from atherosclerotic lesions induce monocyte 
chemotaxis through direct BMPRII activation. Atherosclerosis 235, 45–55. 

Simpson, P.J., Todd, R.F., Fantone, J.C., Mickelson, J.K., Griffin, J.D., and 
Lucchesi, B.R. (1988). Reduction of experimental canine myocardial reperfusion 
injury by a monoclonal antibody (anti-Mo1, anti-CD11b) that inhibits leukocyte 
adhesion. JCI 81, 624–629. 

Sneddon, J.B., Zhen, H.H., Montgomery, K., van de Rijn, M., Tward, A.D., West, 
R., Gladstone, H., Chang, H.Y., Morganroth, G.S., Oro, A.E., et al. (2006). Bone 
morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-
associated stromal cells and can promote tumor cell proliferation. Proc. Natl. 
Acad. Sci. 103, 14842–14847. 



	
  
	
  

146	
  

Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ. (1998). 
Mice lacking Bmp6 function. Dev Genet. 22, 321–339. 

Solloway, M.J., and Robertson, E.J. (1999). Early embryonic lethality in 
Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A 
subgroup. Development 126, 1753–1768. 

Sorescu, G.P., Sykes, M., Weiss, D., Platt, M.O., Saha, A., Hwang, J., Boyd, N., 
Boo, Y.C., Vega, J.D., Taylor, W.R., et al. (2003). Bone morphogenic protein 4 
produced in endothelial cells by oscillatory shear stress stimulates an 
inflammatory response. J. Biol. Chem. 278, 31128–31135. 

Steinbicker, A.U., Sachidanandan, C., Vonner, A.J., Yusuf, R.Z., Deng, D.Y., Lai, 
C.S., Rauwerdink, K.M., Winn, J.C., Saez, B., Cook, C.M., et al. (2011). Inhibition 
of bone morphogenetic protein signaling attenuates anemia associated with 
inflammation. Blood 117, 4915–4923. 

Subramaniam, A., Jones, W.K., Gulick, J., Wert, S., Neumann, J., and Robbins, 
J. (1991). Tissue-specific regulation of the alpha-myosin heavy chain gene 
promoter in transgenic mice. J. Biol. Chem. 266, 24613–24620. 

Sucosky, P., Balachandran, K., Elhammali, A., Jo, H., and Yoganathan, A.P. 
(2009). Altered shear stress stimulates upregulation of endothelial VCAM-1 and 
ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. 
Vasc. Biol. 29, 254–260. 

Sudo, S., Avsian-Kretchmer, O., Wang, L.S., and Hsueh, A.J.W. (2004). Protein 
related to DAN and cerberus is a bone morphogenetic protein antagonist that 
participates in ovarian paracrine regulation. J. Biol. Chem. 279, 23134–23141. 

Sun, B., Huo, R., Sheng, Y., Li, Y., Xie, X., Chen, C., Liu, H.-B., Li, N., Li, C.-B., 
Guo, W.-T., et al. (2013). Bone morphogenetic protein-4 mediates cardiac 
hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac 
hypertrophy. Hypertension 61, 352–360. 

Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi 
P, Figueiredo J-L, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel 
TR, Libby P, Weissleder R, Pittet MJ. (2009). Identification of splenic reservoir 
monocytes and their deployment to inflammatory sites. Science 325, 612–616. 

Chia S, Nagurney JT, Brown DFM, Raffel OC, Bamberg F, Senatore F, Wackers 
FJT, Jang I-K. (2009). Association of leukocyte and neutrophil counts with infarct 
size, left ventricular function and outcomes after percutaneous coronary 
intervention for ST-elevation myocardial infarction. Am J Cardiol. 103, 333–337. 

Tang, Y., Xie, H., Chen, J., Geng, L., Chen, H., Li, X., Hou, Y., Lu, L., Shi, S., 
Zeng, X., et al. (2013). Activated NF-κB in bone marrow mesenchymal stem cells 



	
  
	
  

147	
  

from systemic lupus erythematosus patients inhibits osteogenic differentiation 
through downregulating Smad signaling. Stem Cells Dev. 22, 668–678. 

Tanwar, V., Bylund, J.B., Hu, J., Yan, J., Walthall, J.M., Mukherjee, A., Heaton, 
W.H., Wang, W.-D., Potet, F., Rai, M., et al. (2014). Gremlin 2 promotes 
differentiation of embryonic stem cells to atrial fate by activation of the JNK 
signaling pathway. Stem Cells 32, 1774–1788. 

Tardif, J.-C., Tanguay, J.-F., Wright, S.S., Duchatelle, V., Petroni, T., Grégoire, 
J.C., Ibrahim, R., Heinonen, T.M., Robb, S., Bertrand, O.F., et al. (2013). Effects 
of the P-selectin antagonist inclacumab on myocardial damage after 
percutaneous coronary intervention for non-ST-segment elevation myocardial 
infarction: results of the SELECT-ACS trial. J. Am. Coll. Cardiol. 61, 2048–2055. 

Timmers, L., Pasterkamp, G., de Hoog, V.C., Arslan, F., Appelman, Y., and de 
Kleijn, D.P.V. (2012). The innate immune response in reperfused myocardium. 
Cardiovasc. Res. 94, 276–283. 

Umulis, D., O’Connor, M.B., and Blair, S.S. (2009). The extracellular regulation of 
bone morphogenetic protein signaling. Development 136, 3715–3728. 

Virag, J.I., and Murry, C.E. (2003). Myofibroblast and endothelial cell proliferation 
during murine myocardial infarct repair. Am. J. Pathol. 163, 2433–2440. 

Walsh, D.W., Godson, C., Brazil, D.P., and Martin, F. (2010). Extracellular BMP-
antagonist regulation in development and disease: tied up in knots. Trends Cell 
Biol. 20, 244–256. 

Wang, Y.-X., Qian, L.-X., Liu, D., Yao, L.-L., Jiang, Q., Yu, Z., Gui, Y.-H., Zhong, 
T.P., and Song, H.-Y. (2007). Bone morphogenetic protein-2 acts upstream of 
myocyte-specific enhancer factor 2a to control embryonic cardiac contractility. 
Cardiovasc. Res. 74, 290–303. 

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for 
transcriptomics. Nat. Rev. Genet. 10, 57–63. 

Weaver, M., Yingling, J.M., Dunn, N.R., Bellusci, S., and Hogan, B.L. (1999). 
Bmp signaling regulates proximal-distal differentiation of endoderm in mouse 
lung development. Development 126, 4005–4015. 

Weinberger, T., and Schulz, C. (2015). Myocardial infarction: a critical role of 
macrophages in cardiac remodeling. Front. Physiol. 6, 107. 

Weirather, J., Hofmann, U.D.W., Beyersdorf, N., Ramos, G.C., Vogel, B., Frey, 
A., Ertl, G., Kerkau, T., and Frantz, S. (2014). Foxp3+ CD4+ T cells improve 
healing after myocardial infarction by modulating monocyte/macrophage 
differentiation. Circ. Res. 115, 55–67. 



	
  
	
  

148	
  

van Wijk, B., Moorman, A.F.M., and van den Hoff, M.J.B. (2007). Role of bone 
morphogenetic proteins in cardiac differentiation. Cardiovasc. Res. 74, 244–255. 

Winnier, G., Blessing, M., Labosky, P.A., and Hogan, B.L. (1995). Bone 
morphogenetic protein-4 is required for mesoderm formation and patterning in 
the mouse. Genes Dev. 9, 2105–2116. 

Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., 
Hewick, R.M., and Wang, E.A. (1988). Novel regulators of bone formation: 
molecular clones and activities. Science 242, 1528–1534. 

Wu, Q., Tang, S.-G., and Yuan, Z.-M. (2015). Gremlin 2 inhibits adipocyte 
differentiation through activation of Wnt/β-catenin signaling. Mol. Med. Rep. 12, 
5891–5896. 

Wu, X., Sagave, J., Rutkovskiy, A., Haugen, F., Baysa, A., Nygård, S., Czibik, G., 
Dahl, C.P., Gullestad, L., Vaage, J., et al. (2014). Expression of bone 
morphogenetic protein 4 and its receptors in the remodeling heart. Life Sci. 97, 
145–154. 

Yadin, D., Knaus, P., and Mueller, T.D. (2016). Structural insights into BMP 
receptors: Specificity, activation and inhibition. Cytokine Growth Factor Rev. 27, 
13-34. 

Yamaguchi, K., Nagai, S., Ninomiya-Tsuji, J., Nishita, M., Tamai, K., Irie, K., 
Ueno, N., Nishida, E., Shibuya, H., and Matsumoto, K. (1999). XIAP, a cellular 
member of the inhibitor of apoptosis protein family, links the receptors to TAB1-
TAK1 in the BMP signaling pathway. EMBO 18, 179–187. 

Yan, K., Wu, Q., Yan, D.H., Lee, C.H., Rahim, N., Tritschler, I., DeVecchio, J., 
Kalady, M.F., Hjelmeland, A.B., and Rich, J.N. (2014). Glioma cancer stem cells 
secrete Gremlin1 to promote their maintenance within the tumor hierarchy. 
Genes Dev. 28, 1085–1100. 

Yan, X., Anzai, A., Katsumata, Y., Matsuhashi, T., Ito, K., Endo, J., Yamamoto, 
T., Takeshima, A., Shinmura, K., Shen, W., et al. (2013). Temporal dynamics of 
cardiac immune cell accumulation following acute myocardial infarction. J. Mol. 
Cell. Cardiol. 62, 24–35. 

Yanagita, M. (2005). BMP antagonists: their roles in development and 
involvement in pathophysiology. Cytokine Growth Factor Rev. 16, 309–317. 

Yu, P.B., Hong, C.C., Sachidanandan, C., Babitt, J.L., Deng, D.Y., Hoyng, S.A., 
Lin, H.Y., Bloch, K.D., and Peterson, R.T. (2008). Dorsomorphin inhibits BMP 
signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–
41. 



	
  
	
  

149	
  

Zeisberg, E.M., Tarnavski, O., Zeisberg, M., Dorfman, A.L., McMullen, J.R., 
Gustafsson, E., Chandraker, A., Yuan, X., Pu, W.T., Roberts, A.B., et al. (2007). 
Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 
13, 952–961. 

Zhang, H., and Bradley, A. (1996). Mice deficient for BMP2 are nonviable and 
have defects in amnion/chorion and cardiac development. Development 122, 
2977–2986. 

Zhang, J.-L., Qiu, L.-Y., Kotzsch, A., Weidauer, S., Patterson, L., 
Hammerschmidt, M., Sebald, W., and Mueller, T.D. (2008). Crystal structure 
analysis reveals how the Chordin family member crossveinless 2 blocks BMP-2 
receptor binding. Dev. Cell 14, 739–750. 

Zhang, S., Dehn, S., DeBerge, M., Rhee, K.-J., Hudson, B., and Thorp, E.B. 
(2014). Phagocyte-myocyte interactions and consequences during hypoxic 
wound healing. Cell. Immunol. 291, 65–73. 

Zhao, N., Zhang, A.-S., and Enns, C.A. (2013). Iron regulation by hepcidin. JCI 
123, 2337–2343. 

Zuniga, E., Rippen, M., Alexander, C., Schilling, T.F., and Crump, J.G. (2011). 
Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in 
dorsoventral patterning of the facial skeleton. Development 138, 5147–5156. 

 


