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CHAPTER |

INTRODUCTION

This dissertation consists of two topics: compressed sgrasid the Kaczmarz algorithm.

Compressed sensing addresses the problem of recoverimiaown signaky € R9 from a
small number of linear measurements based on an underlyungse of sparsity or compress-
ibility. There are generally two approaches for solving ioblem. This dissertation will focus
on the/9 minimization approach. The classical result is t#fatinimization can stably recover
an almost sparse signal from its noisy measurements whend¢hsurement matrix satisfies a
so called restricted isometry property. Other conditiomgrmeasurement matrices are explored
for stable recovery. We show that the null space propertynescassary and sufficient condition
on the measurement matrix for stable recovery.

When the signal is sparse in an overcomplete dictionary, ave the compressed sensing
problem in a dictionary. Some basic conditions are giveriticr problem to be meaningful. It
is known that under an appropriate restricted isometry gmtydor a dictionary, reconstruction
methods based off minimization can provide an effective signal recovery teeén when the
dictionary is coherent. We propose that a modified null sgaoperty for the dictionary is
also sufficient to stably recover the signal. Perturbatmmghe measurement matrices and the
dictionary are also considered.

The second part of this dissertation is concerned with throsi sure convergence rate of
the Kaczmarz algorithm. The Kaczmarz algorithm is an iteeatnethod for reconstructing a
signalx € RY from an overcomplete collection of linear measuremgnts (x, ¢n), n > 1. This
algorithm is widely used in image processing and computeography. We prove quantitative

bounds on the rate of almost sure exponential convergertbe ikaczmarz algorithm for suit-



able classes of random measurement vedigrg>_; C R9. Refined convergence results are
given for the special case when eafhhas i.i.d. Gaussian entries and, more generally, when

each@n/||¢n|| is uniformly distributed orgd 1.



CHAPTER I

PRELIMINARIES AND NOTATIONS

1.1 Frames and dictionaries

A sequencdeg,i € |} in a (separable) Hilbert space is called aframe(for example, see [1])

if there exist positive constants 8 > 0 such that for alf € 7

af[fll < /ZI(f,a>|2§BIIfII- (I1.1)

If a =, then{e,ic|}iscalled d@ightframe If o = 3 =1, then{q,i €1} is called aParseval
frame

This dissertation will focus on frames in finite dimensiommre specifically, when?” =
RY. In this case, the frame will consist ofn > d) vectors spannin®9. We will use a matrix
D = [e1,&,..., & to indicate this frame. We also cd@ll adictionaryof sizen.

If D is a Parseval frame, thédD* = |, then identity matrix.

1.2 Sequences and sum of independent random variables

Definition 11.2.1 (almost sure convergencelhe sequencéy, éo,... of random variables con-

verges with probability one (almost surely) to the randomalde & if

Plw:én— &1 =1



A necessary and sufficient condition ti§gt— & almost surely is that

"mP{LHwaﬁzﬂ}<="mP{wm&—ﬂze}>:0
n—o0 kz” n—o0 an

This condition will be used in the proof of Theorem V.6.2.

The following three theorems are classical theorems albeusam of independent random
variables, which will be used in the analysis of the convecgearate of the Kaczmarz algorithm.
Different versions of these theorems are available, anaties we collect here can be found
in[2].

Let &1,&>,... be independent random variables, &d= &1+ --- + &p.

Theorem 11.2.2 (Strong law of large numbersheté;, &2, ... be independent random variables

with finite fourth moments and let
El&—Eé&*<C,n>1,

for some constant C. Then as#fi,

— 0 almost surely.

S-E&S
n

Theorem 11.2.3 (Central Limit Theorem) Let é1,¢5,... be a sequence of i.i.d. random vari-

ables with finite second moments, then as m,

P{w gx} — ®(x), XeR,

VVG
where
1 X 2
_ —u</2
P(x) = —\/ﬁ/_we du. (1.2)



Theorem 11.2.4 (Law of the Iterated Logarithm)Let &, &>, ... be a sequence of i.i.d. random

variables withE& = 0 andE&? = g2 > 0. Then

P{Wizl}zl,

W(n)
where
Y(n) = +/202nloglogn.
1.3 Notations

Throughout this dissertatiofj,

indicates a generic norm.
Forue RY, [|ullq= (Jug|9+[up|9+---+ lugl")Y/9. Whengq > 1, this is the/9 norm. When

0 < g< 1, thisis a quasinorm. The inequality
lullp < [lulq < NY9YPlluflp, 0<q<p<o. (11.3)

is useful in the proof in Section IV.4.3.

LetT c {1,2,...,d} be an index set, theR® is the complement of , and|T| is the cardi-
nality of T. For a vectou € RY, denote byur the vector which is equal toon T and vanishes
onT¢; For a matrixM of d columns, denote bylt the matrix whose columns are equal to those
of M onT and vanish o ©.

Given a matrixM, M* is the transpose d¥, and||M||op is the spectral norm a¥l.

The notation “log” indicates the logarithmic function witlase e.



CHAPTER Il

COMPRESSED SENSING IN A BASIS

Compressed sensing originated recently from questiomiaegtirrent methodology in sig-
nal compression by Donoho [3]. The conventional scheme &ctire the entire signal and
then compress it. For instance, the way that the transfortlercdPEG2000 works is that it
acquires the full signal, computes the complete set of toamscoefficients, encodes the largest
coefficients and discards all the others. This process ofiv@slata acquisition followed by
compression is extremely wasteful [4]. The question is carcambine acquisition and com-
pression. Recent work in Compressed Sensing has answesegu#stion affirmatively and
there is still a growing interest in this rapidly developiiejd.

Not only will it be economical to acquire and compress thaaigimultaneously, but some-
times we simply have no other choices. For instance, in MiagResonance Imaging, it is not
conceivable to collect the same number of measuremente asikmown pixels. Also, in wide-
band radio frequency analysis, limitations in Analog-tmiEal converter technology prevents
the acquisition of a full signal based on the Nyquist-Sharparadigm [5].

Compressed Sensing offers a way to acquire just about whegeded, by sampling and
compressing simultaneously and by providing efficient nstauction algorithms. It has nu-
merous applications including error correction, imagirgglar, and secure communication.
Compressed sensing can be applied to build a single-piggéhticamera, because it combines
sampling and compression into a single non-adaptive limegsurement process [6].

The problem is formulated in Section 11l.1. In Section [[\2e will motivate the problem
more and introduce two major algorithmic approaches in tiveeat literature, along with the

main stability theorems. Three different conditions on sugament matrices for stable recovery



are also being introduced and analyzed further in Sectidgh IOur results are in Section 111.4,
and depend upon further investigation of the null spacegngplindeed, we establish that the
null space property is is a necessary and sufficient comditiostable recovery of signals via
¢9 minimization, see Theorem lIl.4.1. We generalifeminimization toF-minimization in
Section 111.4.2. More stability results are presented ictia 111.4.3 when the measurement

matrix is perturbed, providing a generalization of Sectibd.1.



.1 Problem formulation and notations

Compressed sensing addresses the problem of recoveringkanwn signalzy € RY from a
small number of linear measurements based on an underlyinge of sparsity or compress-
ibility. In this chapter, we will assume signals are sparsan orthonormal basis. Furthermore,

without loss of generality, we assume signals are spar$einanonical basis @Y.

Definition 111.1.1 (Sparsity in a basis)We say a vectoz in RY is s-sparse if the number of its
nonzero coordinatel§z]|o <s. We will also calls the sparsity level ofz. The symbolzg will

denote all thes-sparse vectors iRY.

The sparsity leves is taken to be far smaller than the dimensibfor it to be meaningful,
that is,z being sparse means most of its coordinates are zero.

Sparsity is a very reasonable assumption. In fact, JPEG2P6&dy relies on the fact that
images have an “almost sparse” representation in a fixed.basi

Let 7o be ans-sparse or almost sparse signaRifi, which we want to recover from a small
number of linear measurements- Azy € R™. ThereforeA is a matrix of sizam x d, wherem
is much smaller thad. The compressed sensing problem can be statéd@asing A a priori,
how can we find a reconstruction mapA from R™to RY, such thatA(Az) = 7, where zg is

s-sparse.

1.1.1 Stability of a reconstruction map

In practice, signals are often not entirely sparse, ratrer,"almost sparse” or compressible.
Basically, this class of signals is very close to sparseatggand can be treated like sparse

signals. The following notion ofis(z) indicates how sparse a signal is.

Definition 111.1.2. The error between a signaland its bess term approximation associated



with a norm|| - || onRY is defined as

0s(2) := min{||z—w||, w € Zg}.

We will use 0s(x) to denote the error undéf-norm andos(x)q to denote the error undéf

qguasinorm.

Moreover, the measurement vectois often perturbed due to measurement erroy as
A7y + e with noise level|e||, < e.
We would likeA to perform in a way such that the reconstruction eiid(Az) — z||» is

controlled byos(z) and the measurement noise legel

Definition 111.1.3 (Stability with respect to measurement noisé)venzy € g, for a measure-
ment vectoly such that|y — Az||» < &, the reconstruction maf is stable with respect to the

measurement error if

|A(Y) — 20]| < Cye,
whereC; is a constant.

Definition 111.1.4 (Stability with respect to compressible signal€ivenz ¢ RY, the recon-

struction map) is stable with respect to compressible signals if

1A(AZ0) — 20]| < C205(20),

whereC; is a constant.

We are seeking reconstruction mapsas well as suitable measurement matridesuch

thatA is stable with respect to the measurement noise and contgeesignals, i.e.

|A(Y) — Zo]| < C1E+Co05(20). (11.1)



Notice when there is no noise and the signdk exactlys-sparse, we get exact reconstruction.

We will also consider stability with respect to measurenmeatrices in Section 111.4.3.

.1.2 Notations

Throughout this chaptezy € RY will be the signal that we are trying to recover from the linea
measurementgse R™. We also cally the measurement vector. The sigagis sparse or almost
sparse, and will be the sparsity level. Wit € .# (m,d) being the measurement matrix (also
called the sensing matrix), the measurement vegitan be expressed g§s= Ax+ e, where
|lell2 < €. Whene = 0, there are no perturbations of the measurements. We alamaghat

is a number such that@ q < 1.

10



1.2 Major Algorithmic approaches

1.2.1 A naive approach

Let us first consider whem is exactly sparse and there is no perturbation on the measute
vectory. It is obvious that we have to choose the measurement majtigiciously so it will

extract enough information aboms. One may already notice that, at the leasthas to be
injective onZg, since the recovery process only sees the measurgmiiig easy to prove that

the injectivity of A on Zg is equivalent to
YosNkerA= {0} (NSh)

We call this property NSgfor a reason. See the comment after Theorem Ill.2. A ifindeed
injective onZg, then the onlys-sparse vector that satisfies the equa#an=y is the original

signalzy. So we can consider to solve the followiffyminimization problem:
min||zllo s.t.Az=Y. (Po)

This ¢° minimization has a unique solutiog providedA is injective onZs. But this is not the
end of the story because this minimization problem is carsid to be NP hard in general and
not numerically feasible (see section 9.2.2 in [7]). Inddedolve this problem we need to fix
a supporfl, and then see if there is a solution faz=y wherezis supported off . Since there

are (¢) many choices fol, this is computationally expensive.

11



11.2.2 ¢4 minimization, 0 < q<1
Main ideas of Basis Pursuit

Supposey is s-sparse. S ince the problemgjRs not numerically feasible, one may wish to

find a different approach. At first glance, one may considk/isg:

min||z||l, s.t.Az=Y. (11.2)

This is very efficient because we only need to solve a leasiregyroblem, but it generally
doesn't give us the sparse signal, as illustrated in Figlirg(@). The solution of problem
(111.2) is the first point at which thé& ball meets the hyperplardx =y during its expansion.
Almost surely, this point is not going to lie in any low-dinmganal coordinate subspace. As this
suggests, we need a “ball” that is more “pointy” towards tkesa Thus thé; ball is considered
for this purpose. As we can see in Figure lll.1(b), the geoynet the |, ball lends itself to
detecting the sparsity.

Therefore, Candes, Tao, and Romberg proposed a Basis R@Byimethod which relaxes

¢° minimization to¢* minimization [8, 9]:

min|z|y s.t.Az=y. (P1)

Candes and Tao published a series of papefd arinimization [8—10] and proved that random
matrices can recover sparse signals with very high proibabihis ¢* minimization is a convex
problem, so we are able to solve it using linear programmiit vreasonable efficiency [11].
Moreover, it has nice stability features which we will memtin the next section. Overall, the

¢1 minimization works well because of its good balance betvatahility and efficiency.

12
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Figure I11.1: The geometry of? and¢* minimizations.

Main theorems of Basis Pursuit

Candes and Tao proved thatAfsatisfies a certain quantitative property, then solving (®
equivalent to solving (§ [10]. They showed that under a condition stronger than g\ &k

minimizer of problem (I) is the original sparse signal and that, the recovery idestab

Definition 111.2.1 (Restricted Isometry Property (RIP) [9]A\ matrix A has RIP if there exists
0 < & < 1 such that
(1-9)[|z13 < [AZ3 < (1+9)]|z/3 (11.3)

holds for anyz € . The smallest that satisfies (111.3) is called thRestricted Isometry

Constant(RIC) of A, denoted agy(A) or sometimesy when it is not ambiguous.

RIP essentially requires that every set of columns with icalidy less than or equal tk
approximately behaves like an orthonormal system. Thelemal is, the betterA behaves.

For example, 5, = 0 if and only if every column ofA has unit norm. The ideal situation is

13



when é = 0, which is almost impossible for big sinceA has far fewer rows than columns.

Discussions about RIP related to random matrices will ben&rmmade in Theorem 111.2.5.

Remarklll.2.2. Note that RIP withdys < 1 implies NSB. On the other hand, if NgFholds,

then by compactness &psN B with B being the unit ball, we have
as||Z||3 < ||AZ|3 < Bos||Zl|3, for all ze Zos (111.4)

holds forz € 2,5, whereays, Bos > 0. This essentially meartA has RIP withd,s for some

scalec. Indeed, choose such tha? = ——
025+ Bos
Pos— O2s

Dot O We can rescale our measurement matrix beceAge— cyis equivalent tcAz = .
2s 2s

As discussed earlier, we wish the reconstruction map, & ¢hise, th&! minimization,

and thencA will have RIP with dps(CA) =

to be stable. Candes, Romberg and Tao showed in [9] that eoneyEBasis Pursuit indeed
approximately recovers signals contaminated with noisei&usly (R) no longer recovers the
signal if there is noise, so it is modified slightly to allow femall perturbations. We consider

this new minimization problem:

min|jzl|y s.t.||Az—y|2<e. (PLe)

Theorem I11.2.3. [Stability of BP [9]] Suppose thatgis an arbitrary vector inRY, and A

satisfies RIP with

Oas(A) +3s(A) < 2.

Then for any perturbation & Az —y with ||e]|> < &, any solutior¥ to (P ¢) satisfies

0s(20)1
\/é

1Z-2|[2<C1-6+C2 (111.5)

For reasonable values dlss, the constants in (ll1.5) are well behaved; e.g; € 12.04 and

14



Co ~ 8.77for dys = 1/5.

Candes sharpened Theorem 111.2.3 in a later paper [12]. Baerasult only requires re-

strictions ondys instead 0fdys.

Theorem I11.2.4. [12] Suppose thatgis an arbitrary vector inRY and the noise e- Axg—y

satisfieg|e||2 < €. If A satisfies RIP with

s < V2—1~0.4142 (111.6)

then any solutioiz to (P, ¢) obeys

0s(20)1

— <C1-e+C
1Z— 2|2 <C1-£+Co s

(111.7)

It is later shown that we can further loosen the inequality§) and get better results.
We only needds < 2/(3++v/2) ~ 0.4531 by Foucart and Lai (see Theorem 111.2.8)5 <
3/(4++/6~0.4652 by Foucart [13], ands < 2/(2+4+/5) ~ 0.4731 by Cai, Wang and Xu [14].
Very recently, the bound has been even improved [15]. It fanahto conjecture that we only

needdys < 1/2.

Pros and cons of Basis Pursuit

The beauty of Basis Pursuit is thdtnorm is a convex function, so we can use linear program-

ming (LP) to solve (P). The problem () can be recast as the following linear program:

d
min thi
X &

with constraints

<z <t, Az=y

15



The set of linear constraints forms a convex polyhedron. nlbptima exists, it will be
attained at a vertex of the polyhedron.

There are many ways to solve this LP. The simplex method amihtarior point method are
the two major ones [16]. The best bound currently attainetherruntime of an interior point
method isO(mPd*®).

So far¢! minimization appears to be a very good approach, yet we ¢ariaion that the
compressed sensing problem has been solved. There are two dre@avbacks. One is its
lack of efficiency. The other lies in the difficulty of detemmstic construction of measurement
matrices that satisfy RIP with small RIC when the dimensibtihe signal is too large.

Therefore mathematicians have been exploring probabikstiutions. Using tools from
random matrix theory, matrices constructed in certain camavay can have RIP with high

probability.

Theorem 111.2.5 (BP using random matrices [5]).et0 < d < 1 and A be an nx d matrix that

is drawn according to a probability distribution satisfgithe concentration inequality

P(/[|AZ|Z~ [12II3] > 3]1Zl13) < exp(—c(8)m), (111.8)

where ¢0) is a constant depending only an Then there exist constantg(6),c1(8) > 0
depending or® and the probability distribution such that A has RIP wdhwith probability
higher thanl — 2 exp—cp(&)m), provided that

m>cy(0) -k-log(ed/k). (111.9)

For example, a Gaussian random matrix satisfies the coatemtinequality (I11.8).
Theorem 111.2.5 directly implies that a randomly distribdtmatrix allows thé* minimiza-

tion to stably recover sparse signals with high probability

16



Main ideas of /9 minimization

The following minimization problen¥% minimization, where G< g < 1, is a generalization of
Basis Pursuit,

min|izlg s.t.Az=y. (Py)

It comes very naturally because the shape oféthball is even more “pointy”, looking very
much like a star, which is in favor of finding sparse solutioAsother intuition for/9 min-
imization is its attempt to approximate the spardjityjo. Observe that the sparsitg||o of a

given vector can be approximated by tipeh power of its¢9 quasinorm :

d =0 d
I213=3 12175 3 170 = 210
i= i=

It is worth pointing out thaf| - ||§ induces a metric oY even if it is not a norm itself.

The ¢9 minimization can be more powerful in the sense that it allovese matrices to be
used for reconstructing sparse signals because of its dggrbet so far there is not a good
algorithm to solve’d minimization. However, studying this topic from a theocatiperspective
still offers benefit.

Similar to Basis Pursuit, when there is noise or the signallisost sparse, we use the
following minimization:

min||z|g st [Az-y|<e (Pg.e)

Main theorems of 9 minimization

In section 111.2.2 we introduced RIP and stated tiatminimization gives us stability ifA
satisfies RIP with small RIC. Now we are going to introducethapproperty ofA that allows
exact reconstruction vié&? minimization. Since/9 minimization is a generalization, all the

theorems about? minimization here apply to Basis Pursuit as well.

17



Definition 111.2.6 (Null Space Property fof4 minimization [5]) A matrix A has Null Space

Property relative t@9 with ordersif
Ivrllg < llvre|lg, for V v € kerA\{0},V index sefl such tha{T| <'s (NSRy)

In fact, a simple argument using the compactness of theset&on of keA and the unit
ball shows that NSfof ordersis equivalent to the following [5]:

There existg satisfying 0< ¢ < 1 such that
Ivr]lg < cllvrellg, for V v e kerA,V index sefT such thatT| <'s (NSFRy)

The smallest that satisfies the last inequality is called tiell Space Constant (NSC)
The second version of the Null Space Property is what we \sédl later.

Theorem 111.2.7. [Exact recovery vig9 minimization [5]] NSR, is a necessary and sufficient

condition for exact reconstruction of all s-sparse vectaes(P).

This theorem characterizes the exact recovery of sparsalsiffom noiseless measure-
ments via/% minimization. Recalling thaXysnkerA = {0} is a necessary and sufficient con-
dition for unique recovery via (, so it is very natural for us to call it N§Rn order to be
consistent with Theorem 111.2.7.

In fact, NSR, implies something stronger than exact reconstruction afsspsignals via

(Pg). It implies that/4 minimization is stable with respect to compressible signal
Theorem 111.2.8 (Stability of /4 minimization with respect to compressible signals [3])A
satisfies NS, then for any vectorge RY,

12— 20l|q < Cos(%0)q;
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wherez is any minimizer from (§). The constant C depends omsandkerA.

In section I11.2.2, we learned that RIP gives stability ofs&aPursuit with respect to both
measurement noise and compressible signals. It turns isutdh be generalized %3 mini-

mization. Consider the version of RIP in (111.4), and jgt= B2/ aZ, then we have:

Theorem I11.2.9 (Stability of ¢4 minimization [17] via RIP) If A satisfies (l11.4) such that
Yo — 1< 4(v/2— 1)(38)1/‘11/2, for some integer & s,
then any solutioiz of (P, ¢) satisfies

0Os(X)q

HZ_ ZO||2 < Ctl/qfl/z

+ De.

In the case wheq = 1, if we convert the RIP in (Il.4) to the standard RIP, theredrem
[11.2.9 implies thatd,s < 0.4531 is sufficient to give BP stability, hence this is an inyanmment
compared to Theorem 111.2.4.

Recently, Sun [18] has made a connection betweenyN8B NSR. It says that NSican
imply NSR, for some 0< g < 1.

Theorem 111.2.10. [18]If Ais an mx d matrix with m< d and2s < m, then A satisfies NgP

is equivalent to A has NgRvith order s for som@ < g < 1.

We discussed that NgRs a necessary condition for recovery in section I11.2.1 editem
[11.2.10 combined with Theorem I11.2.8 indicates this ngesary condition is in fact sufficient to
stably reconstruct a sparse signal ¥§faminimization for somey with respect to compressible
signals. This is quite interesting.

Moreover, the following theorem says something even segong
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Theorem 111.2.11. [18] Let m,d and s be integers witBs < m < d, A be an nx d matrix
satisfying RIP withds(A) € (0,1). Let z be any vector ifrRY and e= Az —y be the error in
measurement such thig||» < €. Then if ge (0,1) satisfies" a(qg, 5*) < &*, we get any solution
Z of (Pg,) obeys

1Z— 20||2 < CosY? Y905(20)q + Ci. (11.10)

Co,C; are positive constants independentarg and s.

Notice that the assumption in Theorem 111.2.11 is equiveleMNSR) due to Remark I11.2.2
if we allow to rescale the matriA. This means that injectivity oA on Zs, which is a nec-
essary condition to recover aisparse vectors, is in fact sufficient for stable recoveryf
minimization for somey. This is quite surprising.

These two theorems above help us understand the relagiobshiveen NSfand NSR,
and hence® and/9 minimization as well. The stability result here is espdyiaiteresting. The
fact that the weakest condition can provide stabilitydfminimization implies that somehow
¢9 minimization is self-stable. This motivates further work the stability of¢ minimization,
which leads to the majority of this dissertation. Before watmue with the stability results,

we need to introduce more algorithms and another propentysafsurement matrices.

1.2.3 Orthogonal Matching Pursuit and other greedy approaches
Main idea and description

Another approach to Compressed Sensing is Orthogonal Matéursuit (OMP), which is a
very different approach from BP. OMP calculates the suppbg, first. Once the support is
fixed, it then computes the coordinates on the support by atingpthe pseudo-inverse of the

measurement matrix restricted on the support.

!For the definitions 0&* anda(q, &), refer to Theorem 111.3.3.
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The first two approaches state that solving some specifidgarab(R, Py) can recover a
sparse signal, but it is not straightforward to see how omeadually implement these ap-
proaches. For (), we convert it to a Linear Programming problem, and fg) (e still do not
have a good algorithm. Unlike these two methods, OMP givdaseatdand detailed procedure

to reconstruct the signal.

Algorithm of OMP [19]:
Input:
e An mx d measurement matrix;
e An mdimensional measurement vecyaicoming fromy = Azj);

e The sparsity levet of the original signal.

Output:
e An estimateZ € RY for the original signal;
e A setTs containings elements from{1,2,---,d} (support);

e An mdimensional residuak.

Procedure:

1) Initialize the residualp =y, the index sefp = 0, and the iteration countee= 1.

2) Find the index of the coordinate which has the largestlabswalue of the vectoh*r;_.
Denote it ag;. If the maximum occurs for multiple indices, break the ti¢edinistically.

3) Augment the index sé& = T;_; U {tj} and update the residual:

z = argmin, [ly — Atw|[2; ri=y—Agz.

The algorithm has onlgiterations and is defined ags.
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Main theorems and implementation

The advantage of OMP is its low computational cost. OMP ieesflly efficient when the
signal is highly sparse. But when the signal is not very spa@MP may be a poor choice
because the cost of orthogonalization increases quaaltgtizith the number of iterations.

Now we want to ask the two major questions for every algorithmompressed sensing.
What kind of matrices allows OMP to recover amgparse signals? Is OMP stable?

To answer the first question, we need to introduce a new pyofmrmatrices.

Definition 111.2.12 (Coherence) Suppose the columns éfare{ay,---,a4} and normalized,

then the coherence @f denoted byu(A), is:

H(A) = rp;}Xl(majH

Theorem 111.2.13. [Exact recovery via OMP [5]Let z € Zs and A satisfy

(I1.11)

Then OMP exactly reconstructg fzom the noiseless measurement Az

In addition to this deterministic result, Tropp and Gilbeldim OMP can recover sparse
signals with high probability ifA is an admissible measurement matrix. For example, indepen-
dently selecting each entry éffrom the Gaussian distribution with mean 0 and varianta 1
makes an admissible measurement matrix. For the precisgtaerfiof admissible measurement

matrices, see [19].

Theorem I11.2.14. [OMP with admissible measurements [18jk & € (0,0.36), and choose

m > Kslog(d/d) where K is an absolute constant. Suppose thaszan arbitrary s-sparse
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signal inRY, and draw a random mx d admissible measurement matrix A independently from

the signal. Then OMP can reconstruct the signal with probigbéxceedingl — .

It is quite interesting to compare this result to Theoren2I8. Although both are using
random matrices, they are fundamentally different. Thedi&2.5 demonstrates that the mea-
surement matrix can have RIP for smalvith high probability. Once the random measurement
matrix does satisfy RIP, it will recoveXLL signals stably. Theorem 111.2.14 shows that OMP
works with high probability for each fixed signal, i.e, foretsame matrix, most of the sparse
signals can be recovered, some not. The latter is not unigtinrespect to signals.

The stability of OMP, unfortunately, is not quite yet estsléd, because the strategies used
to prove Theorem 111.2.13 and 111.2.14 depend heavily on féet that the input signals are
exactly sparse.

In light of the fact that BP and OMP present disjoint advaatagnd challenges, Needell
and Vershynin developed new greedy algorithms which comBifn and OMP [20, 21]. These
two methods are called Regularized Orthogonal Matchingituand Compressive Sampling
Matching Pursuit. They bridge the gap between BP and OMPpendde good speed, stability

and uniform guarantees. But they ask for slightly strongguirements.
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1.3 RIP, NSP and Coherence

We introduced RIP, NSP, and coherence respectively thrthegimtroduction of the algorithmic
approaches for compressed sensing in the last sectionsé@tti®on will summarize and further

discuss the connections between them.

.3.1 RIP with &5 < 1implies NSP,

This statement seems obvious, because it is a result of &meldit2.4 and Theorem [11.2.7. RIP
with &s < v/2 — 1 implies the exact recovery of sparse signalsiviminimization by Theorem
l11.2.4 (let € = 0), and this exact recovery is equivalent to N® Theorem 111.2.7.

However, we would like to provide a more direct and quantigaproof, which is inspired
by [12]. It turns out that the null space constant of a matrizdntrolled by its restricted isometry
constant. This gives us one way to find matrices that havel $4%C, eg. random matrices.

_2_

Moreover, the proposition below only neeflg < which is the same constant given by

3+v2’
[17].
Proposition 111.3.1. Suppose A satisfies RIP withs < 3+2\/§ ~ 0.453 then A has NSP
of order s with its null space constanticg(%\/?zgs for any qe (0,1]. For instance, if
Ops < ! ~ 0.3, thenc< 1/2.

2+/2
Proof: Suppose\ has RIP withd,s, we only need to show th&thas NSR. Because it has been
shown in [22, 23] that NSPimplies NSR, for 0 < g < 1 with the same NSC.

Let v e kerA\{0} andS be the index set of its largest components in absolute valvee.

begin by dividingS® into subsets of size. S is the firsts largest components i, S is the
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nexts, and so on so forth.

IAVs 5 [1* = (AVs 5, Asy5) = —(Avsy s, ;Avs,) = [(AVs;s,, ZZAVst
iz iz
< [(Avs, ZZAVSj>| +[(Avg, ;AVS,N
12 >
< 2252sHVSH2HVs,»H2+ 2252sHVSl||2HVs,»Hz
iz >

= Oas([[Vsl2 + [V, [[2) %HVS,- 12
iz

The second inequality is due to Lemma 2.1 in [12].

It then follows that

1
2 2 2
Ivsl3+ v 3 = lvs: 1 < =

(Ivsll2+ [lvs [I2) ;HVS,- 2 (111.12)
>

Setting 1 fz

> ZZHVSJ. |2 = &, then (111.12) becomes
=

(Ivsll2— & /2)% + (llvs, 2~ §/2)* < §2/2,

which implies

ol ~&/22 &2 o< (G475 ) 75 5 gl (0142)
Sz

Note
2 —-1/2
||Vsj+1||2§Sl/ ||Vsj+1||°°§S / ||VS]'||17
and thus
ZZHVS l2<sY2S fvs lla < 572 ve . (I11.14)
j>1
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It follows from (111.13) and (111.14) that

(1+\/§>523
vall1 < v/Sllvgllr < —— 22 lvee]|1.
IVl < VIl < =5 vl
(1+\/§)525 . ) ) ) 2
~— —  “needstobelessthan 1in order to achieve N8Rich require,s < )
2(1— &) N quiresdzs 3+1/2

111.3.2 NSPy is equivalent to RIP with dps < 1

The equivalence between N&&nd RIP withd,s(A) < 1is proved in Remark 111.2.2 if we allow

rescaling of the matrix.

111.3.3 Incoherence implies NSR

To compute the RIC of a matrix is not an easy task. One way tqoted,(A) is to study the
extremal eigenvalues @At for every index seT whose cardinality is less thdqg which is
not computationally feasible. It is just as hard to test ifamx has NSP, though there is some
numerical test of NSP available [24]. Coherence, on therdibad, is very easy to compute.
A desirable feasure for a measurement matrix to have is soladrence (which we calinco-
herence), as suggested by Theorem I11.2.13. Therefore, one ideasg¢ if incoherence is a
sufficient condition for RIP or NSP.

Intuitively, the smaller the coherence is, the more spraddhe columns oA are, as vec-
tors inRY. This lets the measurement vectoextract as much information as possible from

sampling.

Theorem 111.3.2. [5] Suppose that the m d matrix A has a coherence satisfying

(I11.15)
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then the matrix A satisfies NgBf order s.

Combining with Theorem 111.2.13, we conclude that (111.18)a sufficient condition for
exact recovery of sparse signals from noiseless measutewiarboth Basis Pursuit and OMP.

It is natural to ask whether small coherence implies RIP wWthbeing small enough. If
the answer is yes, we would be able to determine if a measutemagrix A can provide stable
recovery viaZ* minimization by computing the coherencefofHowever, no satisfactory answer

has yet been given.

11.3.4 NSPy is equivalent to NSR, for some0 < q< 1

Let's go back to Theorem 111.2.10 and give a complete versioin

For0O<g<1andd < (0,1), define

. 1+rpd 2y
a(g,0) = _inf maxx —x—-, sup , (11.16)
O<ro<1 (L41g0NY9 51 1015 /0y<a (L+279/2y2+0)1/a

sup 3y1/ ,sup 2y1/
V2(1-rg)5/2<y<1 (1 + Y)Y 1<y (1+y) /4

Theorem 111.3.3. Let g be a positive number ii©, 1], m,d and s be integers witBs < m<d,

A be an mx d matrix withds(A) € (0,1), and set

o ()

Then A has null space property of order s with respectifavith a constant &, 6*)/d*, i.e.,
Ivrllg < a(g,8%)/0"||vre||q, for all x € kerA (11.17)

If a(g,5%)/d* < 1, then (111.17) implies the regular NgPf orders. This inequality admits
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a certain range df.

[1.3.5 NSP; implies NSRyforany 0 < g< 1

Since the geometry of thél ball makes it easier to detect sparse signals thar'tieall, it is
reasonable for us to believe that NSB a weaker condition than N§PThis turns out to be

true.

Proposition 111.3.4. [5] Define the set of reconstruction exponents

2s(A) :={q € (0,1] : xo is the unique minimization of (fpfor every % € Zs},
or by Theorem 111.2.7,25(A) = {q € (0,1] : A has NSR}, then the setZs(A) is a - possibly
empty - open interval0, g5 (A)) if q5(A) < 1; or (0,1] if g5(A) = 1.

From the proof of this proposition, which we omit, we will sBSR, implies NSR), if
g> p> 1, hence NSPimplies NSR, for any 0< q < 1. Moreover, the set of reconstruction
exponents is an open set in (0,1]. SAiatisfies NSE, thenA actually satisfies NSPfor p

slightly bigger tharg, which is interesting.

111.3.6 Summary

Finally, we summarize the relationships among the conabtiwe have discussed with a flow

chart in Figure II1.2.
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RIP: 65 < /2 — 1 ——=>|RIP:5s < 1 }e=—= (ﬂ

NSR,, forsome O< g < 1

H(A) <1/(2s— 1) =—={NSPL=>NSR,V0<g<1 J

Figure 111.2: The relationships among RIP, NSP and cohexenc

1.4 Contributions

1.4.1 A necessary and sufficient condition for stability o /9 minimization

We will state another stability result in this section. Weliother stability results in the previ-
ous sections, this does not require the RIP condition. M@eave propose a necessary and
sufficient condition for stability of9 minimization.

Recall the second version of the null space property: Thastss0< ¢ < 1 such that
Ivrlg < cl[vrelld, for V v € kerA,V index sefT such thaiT| <s (NSFy)

Theorem 111.4.1 (Stability of £ minimization via NSP) A has NSR of order s is a necessary
and sufficient condition for stability &f minimization using A as the measurement matrix, i.e.

given any vectorgin RY and the measurement vector y such that —y||» < &, we have
12— 20llq < C105(z0)q + Cod /42

wherezZ is any minimizer of (§). For the value of constants, please $8e24).

This theorem also appeared as a corollary in [25]. The saamie of Theorem 111.4.1 is

that, using NSRas a bridge, we get
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Theorem I11.4.2. If /9 minimization can exactly reconstruct any s-sparse sigaahfits noise-
less measurements viag)P then it can stably recover any compressible signal framir-

turbed measurement viap).

Obviously, exact recovery of sparse vectors from its nesemeasurement is necessary to
achieve stability. The above theorem is saying that it isaet Sufficient, which is quite sur-
prising. So the?d minimization method gets stablility for free, that is /f minimization can
recover sparse signals from its noiseless measuremeetsittwill be stable. Thus, fixing the
measurement matrix, eithét minimization fails for some noiseless sparse signals, peit
forms well when measurements are corrupted and signalsoaexactly sparse. Therefore we
don’t need to worry about thé& minimization method in terms of stability, since if it can re
cover sparse signals, then it can also approximately recawvepressible signals with perturbed
observations.

Before proving Theorem I11.4.1, we need to prove a lemmagchins essential in the proof.

Lemma I11.4.3. Suppose A is an md matrix where nx d, then any vector k RY can be
decomposed as & a+ n with ac€ kerA, n L kerA, and||n|2 < éHAth, where g is the

smallest positive singular value of A.

Proof. Using the singular value decompositidn= U 2V*, whereU is anmx munitary matrix
whose columns arey,--- ,Un, Z is anm x d diagonal matrix whose nonzero diagonal entries
ares,,- -+, in descending order, andis ad x d unitary matrix whose columns avg, - - - , vg.

Then for any vectok € RY.

Ax:.i\s(vi,xwi. (111.18)

Since{vi}{L, is an orthogonal basis f&?, h=5_, (vj,h)v;.
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Also, one can prove that

d r
a:= % (vj,h)vj ekerAandn =% (vj,h)v; L kerA
j=r+1 =1

Indeed, by (I1.18),A(3%, 1 (vj,h)vj) = S_1s(v, 35 1 (vj,h)vj)u = 0. Also, {w},
forms a basis for ke, so(3|_;(vj,h)vj,vi) =0 foreveryi=r+1,--- ,d= 3| _;(vj,h)vj L
kerA.

So

AN = 5 07> & 5 (w2 =l = Gl

Proof of Theorem 111.4.1: Leth=7— 7y, so
|AN2 = |AZ— A2 < |AZ=Y[[2+ [y — A2 < 2¢. (I1.19)
Sincezis a minimizer,
1zo7llg+ 1ZoTellg = ll20lld = [1Zld = I+ 2ollg = IIhr +Zo.7[Ig + lIhre + Zo,7e[|g

>[Iz lIg = Ihrlig+ Ihrellg — l|Zo.7<|lg:

This is true for any suppoitt. If we chooseT such thaios(z)q = ||2071¢|/q, then we have
Ihrellg < [Ihr]ld+20s(20)g. (111.20)
Using Lemma 11.4.3, we decompobesh = a+ n wherea € kerA and

1
N2 < —[|Ah]2. (11.21)
VA
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It follows that

Ibrlld = llar +nrllg < llarlig+ InTllg < cllarellg+ lInTllg

< cf[hrellg+cllnrellg+Invllg < cllbrellg+ lInllg,

which gives

b

A4S 7 (Zo)q+—||n||OI (11.22)

Eventually, from (111.20) and (111.22), we get the estimate

Ihilg = ||hT||q+||th||q<2||hT||q+205(20)q
4c

0s(20)q + —II wi[d+ ﬁlln||3+205(20)3

(1+c) q q
< 2 o3+ <l

It follows that

_1/2,2(1+cC
Jhq < 2ve 12 2O

= )1/0'05(20) 4+ 2%/a- 1/2( )1/Q||,7||q (11.23)

1-
Using inequalities (111.19), (111.21), angin ||q < d¥9-1/2||n||,, we get

1/9-1/2
2 )1/qd /d /2(g
1-c Va

2(1+c)
1-c

1 4(1+0)1 4 g 2 1/q-1/2
= —( )Y 904(20) g+ (-—) dl/a-1/2¢ (111.24)
1-c l1-c /
\/z 2\/3\

Ihllq < 2Y9-Y2( S22 Yagy(z5) + 2Y/9-1/2(

In view of Theorem 111.3.2, we get the following corollary.

Corollary 111.4.4 (Stability of /9 minimization via incoherence)f A has small coherence such
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that

then given any vectopz RY and the measurement vector y such that — y||» < €, we have
12— 20llq < C105(20)q +C2d ™4/,

wherez is any minimizer of ().

As mentioned earlier, it is very easy to compute the coherefi@ matrix. Therefore, this
corollary is an easy way to test if a deterministic measurgmmatrix A can provide stability.

At the same time, Sun [26] proposed another conditionspase approximation property
that can stably recovery compressible signals from itsymmisasurements viéd minimization.

This property turns out to be basically equivalent to the syphce property.

111.4.2 Recovery using F-minimization and NSPr
Main idea

Inspired by/9 minimization, we want to use a general functibrto serve as a “norm”, and
recover sparse signals by minimizing tRisunction. One motivation of this is to find a function

whose minimization problem can be solved by a feasible #@lyar

Definition 111.4.5. LetF(x) : RY — R* U {0} satisfy the following properties:
(i) Subadditivity:F (x+y) < F(x) +F(y);
(ii) If supp(x) Nsupgy) = 0, thenF (x+Yy) = F(X) + F(y);
(supgX) is the index set on whickdoes not vanish.)
(iii) F(-x)=F(x).

thenF is called a recovery cost function.
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We wish to recover the original sparse signal by solving thieing problem:

minF(z) s.t.Az=y (Pr)

Similar to the/9 minimization, we will give the null space property f6-minimization,
and likewise, this NSP is equivalent to exact reconstractibsparse signals from noiseless

measurements via-minimization.

Definition 111.4.6. [Null space property for F-minimizationp matrix A has the null space

property relative td- with orders if

F(vr) < F(vre), for Vve kerA\{0},V |T| <s (NSR:)

Theorem [11.4.7. NSR: is a necessary and sufficient condition for exact reconsisnf any

s-sparse vector x viafR?

Proof. The proof is similar to thé! version. Supposa satisfies NSP, letz+£ zy andAz= Az,

F(zo)=F(z0—2zr+zr) <F(zo—2zr) +F(zr) =F (20— 2)7) + F(zr)

< F((Zo—Z)*n:) -i-F(ZT) = F(—ZTC> +F(ZT) = F(ZTC) -l-F(ZT) = F(Z)

Hence the solution off) is unique and it isp.

For the other direction, pick anye ker(A)/{0},|T| < s. By assumption, the solution of
(Pe) with y = Avy is unique. NoticeA(—vre) = Avr and —vre # vy, SOF (V1) < F(—Vre) =
F (vre) since onlyvt minimizeF (z). O

If F(x) = ||x||d, this is exactly’¥ minimization.

It is not easy to establish stability fér-minimization just using NSP, because in order

to achieve robustness, it is essential to §étr) < cF(vre) for some 0< ¢ < 1 from NSR-.
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However, this can not be achieved unléskas the property such the{av) = CF(v) whereC

is a constant depending @n

Properties of a recovery cost function

Gribonval has some discussions in [22] about the propesfiescovery cost functions. In this
section, we will see a recovery cost function is actually i st subadditive functions defined
onR.

Let {e}{_, be the canonical basis &, and we can write = S, x&. Then

d d

F)=F(Y xa) =Y F(ua)
k=1 k=1

since all of thex.e have disjoint support.
Define fy(t) = F(tey),t e R,k=1,...,n. ThenF(x) = 3}_; f(X).

Furthermore, from the properties Bf we can get
fu(t) >0, f(—t) = f(t), fk(0) = 0 andfy(t + ) < fi(t) + fs(t). (111.25)

On the other hand, F (x) = Y&, f(x) with fi(t) satisfying (I11.25), therF is a recovery
cost function. So we gédt(x) is a recovery cost function if and onlyff(x) = S1_; fk(x) with
fk(t) satisfying (111.25).

If we put one more condition oR, that is,F(x) = F(y) if the coordinates of are just a
permutation of the coordinates xfthen it is easy to gefi(t) = fj(t) := f(t),1<i,j <n, so
that

F(x) = ki f(xx). for somef satisfying (I11.25)
=1

This condition is reasonable if we wish not to have a bias otaitecoordinates.

In summary, we have the following theorem:
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Theorem 111.4.8. [27] (i)F (x) is a recovery cost function if and only if(k) = S_; fk(x)
with fi(t) satisfying (111.25).
(i) If F (X) = F(y) when y is a permutation of coordinates of X, thefx)Hs a recovery cost

function if and only if Kx) = S1_; f(x) with f(t) satisfying (I11.25).

111.4.3 Stability with respect to perturbed measurement matrix

We now consider a model that involves perturbation of botlasneement matriA and mea-
surement vectoy. This has already been considered by works such as [28, B8]Jwbrk [28]
considers the stability of Basis Pursuit when dealing wipedurbed sensing matrix of the form
A =B+E. It was shown that iA satisfies a certain restricted isometry property, thembpt
be a combined error to account for both measurement ea@sd matrix perturbatiok allows
(P1,¢) to stably recover approximately sparse signals:

Our model is slightly different. During the measurementoess A is slightly perturbed
so matrixB is actually used instead @&. Thus the measurement should lbe- Bz. But in
practice, the true measurement vecgtdhat we get also differs frora because of an additive
noisee (i.e.,y = Bz +€). Assuming we know thaty —ul|2 < &, we will solve the minimization
problem (R ¢) with matrix A because is the matrix that we “think” generatgs and we have
knowledge of.

The perturbatiorB — A of the measurement matrix can not be combined with the measur

ment vector errog since it is correlated with the signal of interest as we walvé|| (B— A)zy

2

of which we have no control.

We will show that/9 minimization is stable with respect to the perturbationtemmeasure-
ment matrix, but again, using the NgRpproach rather than RIP. Indeed, NS®a weaker
condition onA than RIP, so our result is stronger.

First we show that the set of all matrices that satisfy N&Fordersis open in the operator
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norm topology (this result first appeared in [27]). This meetmat if A satisfies NSE, then a
little perturbation orA is allowed becausa+ E will still have NSR, as long ag|E||op is smalll

enough.

Theorem 111.4.9 (Openness of NSp. Let A be an nx d matrix that has NSgof order s, then
there existg > 0 such that for every matrix B that has the same size as A|andB||op < p,

1/q
B also has NSpof order s. In factp < (7(:) d¥/Z-Y/ay, where c is the NSC angh is

the smallest nonzero singular value of A.

This result is interesting by itself. For example, suppbse tve know thaf is a measure-
ment matrix that allows us to recover compressible sigrtalslys but because of the physical
constraints, we can only approximaieéy a real physical measurement devigée.g., the en-
tries of A are quantized), then we have confidenc@ifor the reconstruction as long as it is

sufficiently close toA.

Proof of Theorem I11.4.9: Assume||A—Bj||op < p, p to be determined later.
Letb € kerB andT be any index set such th@t| <s. By Lemmalll.4.3b=a+n where

ac kerAand||Ab||2 > v2||n||2. Thus
1 1 1
Inllz < o-llAbll2 = ~[I(A=B)bll2 < —pllbl[2,
A Va Va

which implies

1
Inllg < d¥o Y2 L pllb]lp < 4412 pjlo] (11.26)
VA VA
SinceA has NSR, it follows that
lar [Ig < cl|are||g wherec < 1. (1.27)
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Using the triangle inequality, (111.27) and (111.26), wetgéat

Ibr|lg < llarlg+ lInTllg < cllarellg+InTllg < cllbrellg+ clinTellg+ lInvllg

a1 q
< c|[bre[id+IInllg < cllore|lg+ (dl/q 1/2V—APHqu)

121\
—cllorelg+ (Ao 2 p ) (e + [orelg),
from which we get

c+¢ .1 \d
Ibrld < 1= ¢ llbrelly, whereg (d VAp) |

C .
In order forB to have NSR, we needl-i_—f <1, which leads to

_ e\ Y
p < (170) dl/2-1/ay,.

O
The following theorem shows thdf minimization is stable with respect to perturbations
on measurement matricesAfsatisfies NSR. Moreover, it also includes the error generated by

measurement vectors or compressible signals, so it is aajeraion of Theorem 111.4.1.

Theorem 111.4.10 (Stability of /9 minimization with respect to perturbation on measurement
matrices) Let z be any vector iR and A B be two mx d matrices with A satisfying NGPef
order s and A being full rank. Let the measurement vector y dpe- Bz, < &. If Z is any

minimizer of the minimization problem:

min||z|d st [Az-y[2<E, (Pe)
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then

12— 20]lq < C105(20)q + Cod™/ /%€ +Cad /4 /2| (A—B) |opl20] 2.

See (111.34, when A= B) for the evaluation of the constants.

This shows that NS as a necessary condition, is sufficient for stabilitydminimization
with respect to perturbations on measurement matrices.inAgaing NS as a bridge, we
can see that? minimization also gets this kind of stability for free, that if /4 minimization
can recover ang-sparse signal from its noiseless measurements, then recamer any signal
stably with respect to the measurement error, compressipfeals, and perturbations on the

measurement matrices.

Proof of Theorem 111.4.10: The proof is very similar to the proof of Theorem I111.4.1. &h
key is to find a vector that's feasible in{F) and close ta sincez, is no longer feasible, and

Lemma 111.4.3 will be used again to generate the t¢{i— B)z||. Leth=Z— 7, so
|Ahl[2 = |AZ—Az||2 < [|AZ—Yl|2+ ly— Bzol|2+ [|Bz — Az[2 < 2e + || (A—B)zo]|2. (111.28)

SinceA has full rank, there existw such thatAw= (B— A)zy. Then|A(zp+w) —Y|[2 =

1Bz —Y]||2 < €, which meansy + w is feasible in problem ). So
|1z0.7 +wrIq+ [[20,7e +Wrellg = [|Z0 +WIIg > [|Z]g = [N+ 2ol|d = I + Zo7 | + [[re + Zo,7eI4

> [|zo7 +wr [|§— lIhr —wr ||g + Ihrel|d — [|zo,7<]lg,

which gives

Irellg < [Ihr —wr [[g+ [1Z0ellg + [[Zore + Warellg < [Ihr [Ig+ 2l|zo.7elld + [IWilg.
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This is true for any suppoift. If we chooseT such thaios(zg)q = ||Z0 ¢

q» then we have
[hrel|d < [[hr 13+ 205(20) 3+ [|w]| . (111.29)

Leth=a+ n be the decomposition fdras in proof of Theorem 111.4.1. It follows from the

proof of Theorem 111.4.1 and (111.29) that

Ihrllg < cllbrellg+ lInlg < cllhrlg+2cos(z0)d+cllwlig + [N Ig,
which gives

2c
1-—

1
Ibrlg < (20)q+—|| lg+1—lnlg: (111.30)

Eventually, from (111.29) and (111.30), we get the estimate

Ihllg = [Ibr{Ig + [Ibrellg < 2[[hr [[g+205(z0)q + IWllg
4c

<= s(Zo)q+—|| I+ 2= g+ 205203 + W
2(1+c) l+c
< 29 a2l Tl
It follows that
_ 2(1+c l+c
Ihilg < 34412 2 Dy viag ) 1 g2 2 g g aver2 S e,
(11.31)
|1n||q is estimated using (111.28) and
1
Inll2< = An (1.32)
A
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Hence, it only remains to estimajev||q. Notice there are many choices for and by Lemma

l11.4.3 again, we can choosesuch that
1 1
Iwllz < —~llAwlz = —~[|(B—A)zoll2. (11.33)
A Va

Substituting the inequalities (111.28), (111.32) and (88) into (111.31) and usingn || < d¥/91/2||n ||,

we get
_1/0,2(1+cC B 2 di/a-1/2
Il < 304228 D a0y )+ g2 2 AT (26 + | (B A])
1+4c, q/qdYa1/2
1/a-1/2 1/a _
+3 (1=¢ VA I(B—A)z0l|2
1 6(1+c), 6d 1 2
= —=(——2)%05(20)q+ (—)"/° £
V3 1-c 1-c /3dy2
A
3l/a-1/2 2 gy (14C gi/e-i/2 A-B
n 2V (o S A Bl
1 6(1+c).y 6d 14 2 6d \1q 2
< —=( )H9045(20)q+ (—) 14 £+ (7—)"" I(A—B)zol|2
V3 1-c 1-c \/3dv2 1-c \/3dv2
1 6(1+¢).qy 6 1 2 1/g-1/2 6 19 2 1/g-1/2
< —=( )"905(20)q + (7—)*/* M Y2e 4 (—— )Y/ d™ 42 (A= B)llopll0ll2
V3 1l-c l1-c /312 l1-c 312
A A
(I11.34)
0]
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CHAPTER IV

MORE CONTRIBUTIONS: COMPRESSED SENSING IN A DICTIONARY

A recent direction of interest in compressed sensing coiscgroblems where signals are
sparse in an overcomplete diction@ynstead of a basis, see [22, 25, 30-32]. This is motivated
by the widespread use of overcomplete dictionaries in $igneessing and data analysis.

Allowing the signal to be sparse with respect to a redunditibtiary adds a lot of flexibil-
ity and extends the range of signals significantly. Moreptresre may not be any sparsifying
basis, for example, many EEG signals are represented adreougency atoms in a redundant
dictionary of Gabor wavelets.

We will formulate the problem in Section IV.1. In Section 2ywe would like to get some
basic ideas of this problem for any reconstruction map, &talfew basic conditions for the
measurement matriA and the dictionanpD. Subsequent sections focus on when the recon-
struction map ig9 minimization. Section V.3 introduces some results of tebdwvior of the
restricted isometry property or the coherenceddf under the condition thdD is incoherent.
Section V.4 discusses the situation when we allow dicti@sao be coherent, which is a more
desirable feature. Some discussions about the null spapeny associated with dictionaries
are given in Section IV.4.1. We present a stability resulemnA satisfies a modified null space
property, see Theorem 1V.4.8. This is motivated by the waork30]. Like in the basis case,
Section 1V.4.3 concerns stability with respect to perttidsgs on the measurement matrices, as
well as dictionaries. We provide an extension of this to thgecof sparsity with respect to a
redundant dictionary, see Theorem IV.4.10 whesatisfies D-RIP, and Theorem 1V.4.9 when

A satisfies a null space property only.
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V.1 Problem formulation

Definition IV.1.1. We say a vectozis s-sparse in a dictionar if
ze D3s:={we RY: w= Dxfor somex € 3¢},

x is called a representation bfn D if z= Dx.

Suppose we havg = Dxg, ans-sparse signal i, and we want to recover this signal from
a small set of linear measuremenmts Az € R™. ThereforeA is a matrix of sizem x d, where
m is much smaller thad. The compressed sensing problem in dictionaries can bedssat
Knowing A and D a priori, how can we find a reconstruction mapA from R™ to RY, such
that A(ADxy) = o, Where X is s-sparse.

In this problem, we are not only dealing with the measuremattix A, we are also explor-
ing how the dictionanp affects the reconstruction of a signal that can be sparsehlgsented.
One way is to just leAD be the new measurement matrix and apply all the compresasohge
results for the basis case AD, however, one loses the information of the interplay betwke
andD by doing that. So the idea is &xplore what conditions we should put orD in order to
find a good measurement matrixA. Here by “good”, we wanh to extract enough information
from z5 so that it can be recovered, and we want the number of measntsio be as small as

possible.

V1.1 Stability

As in the basis case, we need to consider measurement naggmnats which are not exactly
sparse. We would like the reconstruction map to performlgtatthe sense of (l1l.1). More
specifically, we will focus orf minimization. The goal of this chapter is to generalize tize s

bility results under the null space property in Chapterdlcbmpressed sensing in dictionaries
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since a basis is a particular kind of dictionary. As we pregra this chapter, we will also

consider perturbations on the measurement matrices, éstonaries.

IV.1.2 Notations

Throughout this chaptezg € RY will be the signal that we are trying to recover from the linea
measurementgse R™. We also cally the measurement vector. The sigagis sparse or almost
sparse in the dictionar, andD € .7 (d,n) meaningD is a dictionary forRY of sizen. Lets
will be the sparsity level. In this chapter, when we say aa&ignsparse, it is always sparse in a
dictionary, unless otherwise specified.

With A € .#(m,n) being the measurement matrix, the measurement vgatan be ex-
pressed ag = Az + e, where||g]|2 < €. Whene = 0, there is no perturbation on the measure-
ments. The modeat = Az + e will be slightly modified in Section IV.4.3.

We also assumeis a number such that@ q < 1.
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V.2 Basic conditions on the measurement ma&iand the dictionanp

for any reconstruction map

IvV.2.1 A necessary condition

For the case of a dictionarf needs to be injective ddZs for unambiguous recovery since our

signals are ilDZg and the reconstruction map only sees the measureynent

Theorem 1V.2.1. The following statements are equivalent:
(i) A is injective on [Xs.
(ii) A satisfies

D3asNkerA= {0}. (NSh,0)

(iii) D (ZosNker(AD)) = {0}.

(iv) rankDt = rankADr, for any index sefT| = 2s.

Each of the four conditions above is necessary for any reaaison map to successfully
reconstruct sparse signals.

Following the notation for the basis case, we galyas NSB o if DX>snkerA = {0}, be-

cause it is equivalent to the injectivity 8fon DZos.

Proof. (i)=(ii) Let z€ DXysNkerA, soAz= 0 andz= Dx. Letx = x; + X2 be the sum of two
s-sparse vectors. ShDx; = AD(—X2). By injectivity of A on DX, we getDx; = D(—X2) <—
z=0.

(if)=(iii) Let ze D(ZasNker(AD)), soz= Dx andADx = 0, X € 2. That exactly means

ze DZysNkerA, hencez = 0 by assumption.

(iii) =(iv) We only need to show ké&Dr C kerDt. SupposéADrx = 0, if we letx € R"

be the 2-sparse vector who equals ¥ on T and vanishes o ¢, thenADx = 0 = Dx €
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D(Zasnker(AD)) = {0}. So we geDx = 0 by assumption. That i®tx = 0.

(iv)=-(i) AssumeADx; = ADx, wherexy,x, are boths-sparse. Lefl be the support of
X1 — Xz and assumg | = 2s(if | T| < 2s, then just choose some index set who cont&@iasd has
cardinality Z). AD(x; —X2) = 0. Now if we letx’ be a Zlength vector who is just the truncate
of X — X% on T, then we haveADtX = 0. The assumption of (iv) tells us k&bt C kerDr,
which meanDtx = 0. This is equivalent td(x; — x2) = 0, so we geDx; = Dxp, which
proves the injectivity. O

We know injectivity ofA on DXy is necessary. Once we have this property, we can find the

signalzg by an exhaustive search, or equivalently, solving the ¥alg minimization problem:

min||x/|o s.t.ADx=y (Pp,0)

If the signal has multiple sparse representationd,imve are no longer guaranteed to have
a unique solution of this problem. We may find several minarsxy, - --,Xx who all have
the same sparsity leve] wherer <s. NSh, o will guarantee all these minimizers are repre-
sentations ofy, i.e. Dx; = z9,i = 1,--- ,k. Since the signal itself, not the representation, is
what we care about, the above minimization problem actualiguely determines the signal.

Summarizing the above we get the following theorem:

Theorem IV.2.2. A has NSB if and only if for every g € DZs, the minimizers of (F) are

all representations of@in D, i.e.

if x* is a minimizer, then Dx= zg (IV.1)

For convenience, throughout this chapter, we will say a mizéition problem has anique

solution if (IV.1) is satisfied. Even if it actually has muydte solutions, it is unique in the sense
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that all solutions give the same signal un@er

IV.2.2 Conditions for the dictionary

If D is the identity matrix, this coincides with the canonicasisacase. We know we can always
find A to satisfy NSR in this case. Now that there is a dictionary involved, the figestion
to ask is with a redundant dictionary, can we still fiAdsuch thatA satisfies the necessary
condition NSB o.

We would first like to explore what kind of dictionaries willmnit measurements matrices
that satisfy NSB o. Furthermore, how to find these admissible measurementoesitand what
kind of conditions should we impose on them?

A signal always has more than one representations in a radticdctionary, but a signal
that has sparse representation®imay only have exactly one sparse representation. A simple

argument will give us an equivalent condition to unique spaepresentations:

Proposition IV.2.3. Every signal that has an s-sparse representation in D hag oné sparse

representation if and only if D satisfies N$SP

The question is “Do we want to require unique sparse reptasen onD?”

Let us start with a simple example:

ExamplelV.2.4. Let D = {ey,e,€3,€4,€1}, where{a}i“:1 is the canonical basis iR*. We
want to recover all the 1-sparse signals in this dictionddydoesn't satisfy NSgPfor s=1
because the first and the fifth columns are linearly depen@hdose the measurement matrix
A= [e;+e,e+ ey 63" For anyzg = DXy where||Xp|lo = 1, solve the problenfw : ||w||p =

1 andADw = ADxp}. There are two cases, ) = tg,i = 2,3,4, then we getv is the vector
supported on théh coordinate with valué, multiplying w by D we get exactlyz; if zp =
tey, then there are two minimizerst = {t,0,0,0,0}T or {0,0,0,0,t}T, multiplied byD, both

solutions givez.
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This simple example shows that it is not important if we dget a unique sparse represen-
tation inD, as long as the algorithm gives us one of the representatianstill get our original
signal. This is the major difference between the dictiorese and basis case.

On the other hand, requiring unique sparse representati@hcan make our problem sim-
pler. One can imagine, D has property NS which make injective on all thes-sparse
signals, then this is more or less reducing this new probtethdé compressed sensing problem
in a basis withAD being the new measurement matrix, as the format gbhjRBuggests.

We will show that ifD satisfies NSE, there exists a matri& such that,sNker(AD) = {0},

henceA satisfies NSB o by using the equivalent condition (iii) in Theorem IV.2.1.

Theorem 1V.2.5. Given a dictionary D, whose size is<h, the following statements are equiv-

alent:

(i) ZosnkerD = {0}, and there exists a linear mapping: RY — R and a reconstruction
mapA : R% — R" such thatA(Az) = z, for each z that has an s-sparse representation in D.

(if) There exists a matrix A with sizZ2s x d, such tha®,snker(AD) = {0}. (In fact, the
proof shows that the probability of selecting such a matris A.)

(iii) ZpsnkerD = {0}.

(iv) For any vector z that has an s-sparse representation,ithi3 sparse representation is

unique.

Indeed, the work in [33] suggests that requiridgo have NSB is a very reasonable as-
sumption because such kind of frames “fills up” the spaceldfahes.

Before proving Theorem 1V.2.5, we need a few lemmas first.

Lemma IV.2.6. If a matrix M has size & 2s where d> 2s, then M is not full column rank

<= for any matrix A whose size 25 x d, AM is not full rank.

Proof. (=) Say the columns oM are a1, d>,..., 02, M is not full rank implies there exists
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c={c1,C,...Cos} # 0 such thaty a1 + coa2+ - - - + Copsas = 0. ApplyingAto this equation we
getciAas + A2 + - - - + CrsAdas = 0, which means the columns AM are linearly dependent,
henceAM is not full rank.

(<) By way of contradiction, suppod¢ is full rank, and without loss of generality, we can
assume the first2rows of M are linearly independent. Choo8e= [los| 0], wherelys is the
identity matrix with size 8 ThenAM equals the matrix obtained by extracting the first@vs

of M, which has full rank, but this contradicts to our originatasption. O

Lemma IV.2.7. A matrix M has NSRif and only if every2s columns of M are linearly inde-

pendent.
This lemma is easy to prove and we are going to use it frequentl

Lemma IV.2.8. If ZpsnkerD = {0}, then for every & 2s submatrix of D, say R, de ADy)

as a polynomial of the entires of A (with s2®x d), is a nonzero polynomial.

Proof. By Lemma IV.2.7,2,sNkerD = {0} impliesDys has full rank, then by Lemma IV.2.6,
there exist®y whose size is 2x d, such thatAgDys is full rank. This means défoD2s) # 0,

so defADys) can not be constantly zero. O

Proof of Theorem IV.2.5 (iii) < (iv) is obvious, so we just need to show the equivalent of
(1), (i), and (iii).
e (i)=(iii) is obvious.

o (iii) =(ii): define the set¥ = {A € M(2s,d) : ZpsNker(AD) = {0}}. We need to show
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. is not empty. Let#* be the complement of”.

ST = {A: There exist &columns ofAD that are linearly dependéent (IV.2)

= U {A:def{ADr) =0} (IV.3)

T={i1iz,....izs}
={A: [] detADr)=0} e
T={i1,iz,...,ins}
The first equation holds because of Lemma IV.2.7. The secqudt®n uses the fact that

(AD)T = A(Dr).

-----

is a polynomial that’s constantly zero (the variables o$ fholynomial are the entries of
A). Since this is a product of polynomials, one of them must bera polynomial. (This
is the property of integral domaiiR is an integral domain makes the ring of polynomials

onR also an integral domain. [34]) This contradicts to Lemmal8.

(i)=-(i): Let x € ZpsnkerD, soDx = 0, henceADx = 0 as well, thereforex € ZosN

kerAD = {0}.

For the second part, let the reconstruction map keo)F(ii) implies D(Z2sNkerAD) =
{0}. By Theorem IV.2.1 and Theorem 1V.2.2, this map uniquelyokers the sparse

signals.
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V.3 Incoherent dictionaries

Consider the following minimization problem when<0g < 1:
min|[x||§ s.t.ADx=y. (Pog)

Similar to the basis case, we want to explore under what tiondiolving (B o) is equiv-
alent to solving (B,q), and we are seeking the uniqueness of this problem. Onaa,dna
unigueness of (q), we mean the minimizers of it are all representationzah D.

Moreover, when the measurement vecggds perturbed, we consider a slightly different
problem as usual:

min||x||3  s.t. [ADx—y|]2 <e&. (Pp.g.e)

In order to solve this compressed sensing problem in diaties, one major way is to apply
all the reconstruction methods described in Chapter Ilh®rhatrixAD, as we can see from
(Pp,qe). The work in [31] took this approach. They showed that if thetionaryD has RIP,

thenAD also has RIP if we choog®to be a random matrix.

Theorem 1V.3.1. [31] Let D be a dictionary of size n iiR? with RIC (D). Let A be a random

matrix that satisfies the concentration inequality
P(|[[AVI3— [IVI3] > e[[v]3) < 2exp(—cne?/2) (IV.5)
2 2l = 2) = , -

and assume & Co~2(slog(n/s) +log(2e(1+12/5)) +t) for somed € (0,1) and t> 0. Then
with probability at leastl — exp(—t), the matrix AD has RIC

8(AD) < &(D) + 5(1+ &(D)). (IV.6)
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For the dictionanD to satisfy RIP, essentially it cannot be too redundant, anoabe too

coherent. In this section, we will explore how the coheresfde controls the coherence 8D.

Theorem 1V.3.2. Suppose that thgth and pth columns of AD have the largest correlation,
i.e. U(AD) equals the absolute value of inner product of its normaligddand pth columns,

then

H(D) + &1J
H(AD) < V1-312\/1— 53

where d, = &(A) is the RIC for A of order 2, and,D are the/! norm of the gth and pth

columns of D respectively.

1

Proof. We assume the columnsbDfare normalizedu(AD) = [ADe, [2- [ADe, |
0 2 jO 2

|[(ADa,, ADgj,)|.

First we estimate the inner productAbg, andADegj,:
|(ADe,,ADgj,)| = |(A(Z dkiorlk)7A(Z dijo M) | (LetDg = Sy Gkink,i =0, jo)
= | Z > GioGic jo (A Al )|
k/

<SS |

KK KK
<| Z (dkigi jo + O1|dkig i jo )| + Z |dio e jo| 32
G KZK

< u(D)+ Qk;(/ |dki0dk/j0| + @k;(/ |dki0dk/j0|
< (D) + & Z Z |dhio e o |

= H(D) + %13,

where{ng}{_, is the canonical basis &¢.
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Now we estimate the norm &Dgq, in a very similar fashion:

(ADg,,ADg,) = Z dii k), A g diisNk))
= Z gdkiodk’ic)(ArlkaArlk’)
= 2& Oio Oicip | ANIKI 2+ S g G (AT, A}
K KK
> Z d%lo(l_ 61) - |dki0dk/io|62
K KTk

=1-4 ER dklo 62 |dklodk’lo| (dek|0 =1)
>1— 52% ; |dkiodk’io| (01 < &)
=152

Recall thaty dfio = 1 because each column in the dictionary is normalized.

Combining these two inequalities, we have the desiredtesul O

Theorem IV.3.3. With the same notation in Theorem IV.3.24{D) < Fll then

—b+ /b2 +4(452 — 25)12J2(1 — (25— 1)2142) 1
< <
%(A) = 2(4 — 43)122 = HIAD) = 55—
where b= 2ulJ(2s—1)2+12 432, u = u(D).
Proof. From Theorem 1V.3.2, if we can make
(25— 1)(U(D) + &) < V1—&I12y/1— 52 (IV.7)

then we haveu(D) < 2—1_1 Square both sides of (IV.7) and move things around, we \&iil g
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a quadratic inequality with respect do:
(457 — 48)120252 + (2u1J (25— 1)2+12 4+ 3%) 8 + (25— 1)?u? — 1< 0. (IV.8)

The solution of (IV.8) isy1 < &, < y» wherey, y» are the roots of the quadratic equation. The

b L 1
only way to makep positive is to let(2s— 1)2u? — 1 < 0 which is exactlyu < s 1 Under

this condition, we get

_ —b+/b?+4(45% — 25)1232(1 — (25— 1)2i?)
B 2(4% — 4s)1232

whereb = 2u1J(2s—1)2+ 12+ J2, O
: 1

RemarklV.3.4. Theorem IV.3.3 tells us that jfi(D) < s T’ then we can findA such that

as well. This is quite interesting considering in Theoren2l¥, D having

H(AD) <
NSPR makes it possible to find such thatAD has NSR. It seems like all these nice properties

that we are requiring oA in the basis case are required by the dictionary matrix now.

Corollary 1V.3.5. Suppose the columns of D have uffitnorm (therefore JJ < v/d), then

together with Theorem I1V.3.2, we have another estimatg AD) which doesn't involve,l:

(D) + &d

H <AD)_\/1 Savi-od

Furthermore, we can get a result similar to Theorem V.38 ttoesn't involve |J:

1
< —
If u(D) < Tl then

—U(2s—1)2—1++/(1(25—1)2+1)2 + (4% — 4s)(1— (25— 1)22)
(452—45) ’

H(A) <
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impliesu(AD) < %_1 whereu = (D).

The purpose to mak&D incoherent is obvious. If we regaikD as a measurement matrix in

. 1
the basis case, thgn AD) < >

1 allow both OMP and BP to exactly reconstruct the sparse
representatiory (hencezy too) from noiseless measurements. Moreover, by Corollad.4,

the signal can be also stably recovered via BP when measnotemise is present.
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V.4 Coherent dictionaries

One loses the information of the interplay betweeandD if one just consideAD as a mea-
surement matrix, therefore making the compressed sensitdgmn in dictionaries less mean-
ingful. Moreover, as shown in the last secti®i) being a nice measurement matrix requides
to be incoherent and not too redundant. We wish to be ablegwery coherent or redundant

dictionaries.

IV.4.1 Null space property with dictionaries

Our goal is to develop a null space property with dictioraiie analogy to the null space
property for a basis, such that NSPis equivalent to the uniqueness ofp(f), as already
shown in Theorem IV.2.2, NSF, is equivalent to the stable recovery of signals from noisy
measurements via (R ¢). However, things get more complicated in the dictionaigecéso far
we cannot quite achieve the above goal.

The first issue is how to even define the null space propertthéodictionary case. We will

introduce three versions of this property throughout teigisn.

Definition IV.4.1 (A stronger NSP for dictionaries)Ve sayA has astronger NSB q if
Ivr]| < [[vrelld, for Vv e D1 (kerA\{0}),|T| <, (NSPb 4.9)

whereD~! means the pre-image of a set under the ap

Theorem IV.4.2. A has NSB q s implies that for everyge DZs, the minimizers of (Bq) are

all representations of@in D, i.e.

if x* € argmin{||x||g : ADx =y}, then DX = 7
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Proof. Assumezg = Dxg Wherexg is s-sparse. Lek* be a minimizer, suppose to the contrary

thatDx # Dxg. Letv = xo —x* € D~1(kerA\{0}), then
1%olld < [Ixo;r =Xt [Ig+ X7 llg = Ivr llg + [Ixr1ld < [Ivrellg + (1%t 1ld = [Ixrellg + 1% llg = [1X[|d-

O
Recall for the basis case, NoB an equivalent condition for exact recovery of sparseagn
from noiseless measurements vig)(Prheorem 111.2.7). However, we have only one direction

here, which motivates us to find a weaker version of this maks property.

Definition IV.4.3 (A weaker NSP for dictionary)We sayA has aweaker NSB q if
V|T| <5,V ve D *(kerA\{0}),3us.t. Du= Dvand||ur [ < [ure (NSPb qw)

This version is obviously weaker because instead of retgavery vector iD~1(kerA\ {0} )
has certain tail behavior, we only require one represaentati have that behavior. This is treat-

ing vectors inR" as in the quotient spad / kerD, which is in favor ofD being coherent.

Theorem IV.4.4. A has NSB qw is a necessary condition for exact recovery of signals spars

in D from its noiseless measurements (Rg q).

Proof. Take any suppofT such thaiT| < s and anyv € D~1(kerA\{0}), let us try to solve
(Pp,q) with the original signal beingg = Dvy. Sayw is a minimizer, then by assumption
Dw = Dvt and

Iwllg < | = vrellg = [Ivrellg- (IV.9)

This is true becausevy. is feasible but can not be a minimizer sif@é—vyc) # 2.
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Noticew + e ~ v. Defineu = w+ vre, we will prove ||ur|g < ||ure|d-

Jurellg = [IWre +vre[ld > [Ivre|ld — [Iwrellg = IIvre|lg — (IIwilg — [|wr|d)
= [|wr g+ Ilvrellg — [Iwlg
> [lwrllg (by (IV.9))

= [lurllg

O
However, we can’t prove that this weaker NSP condition ifigeht for exact recovery, let

alone for stable recovery.

IV.4.2 Stability of #9 minimization by null space property

The work by Candes et al. [30] guarantees stable recoverigoéls that are compressible in
highly overcomplete and coherent dictionaries. It is lvelteto be the first to have this kind of

result. They use a slightly different version&fminimization:

min||D*z||d subjectto [[Az—y|2<e. (P2o,q¢)

D*zy is the frame coefficients @ with respect to the canonical dual frame. In particular, if
D is a Parseval frame, i.@D* =1, thenz= DD*z, which mean®*zis a representation fa

Comparing (P8 q.¢) With (Pp.q.¢), (Pp.q.¢) is minimizing the/9 quasinorm of all represen-
tations ofzg, whereas (P2q,¢) is only minimizing the/9 quasinorm of one particular kind of
frame coefficients. Moreover, (R, ) is minimizing over the representations of the signal and
(P2b,q,¢) is minimizing over the signals, so the first gives the repnéation of the signal but the
second gives the signal directly.

The classical restricted isometry property was also matiffie the setting of sparsity in a
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dictionary in [30].

Definition 1V.4.5 (Restricted Isometry Property for dictionariekgt D be a giverd x n matrix.
Them x d matrix A satisfies theestricted isometry property with respect to(DRIP) of order

k if there exists a constadt > 0 such that

¥xeZx, (1-9)[IDx|3 < |ADX|3 < (1+8)|[Dx]2. (IV.10)

The smallest value @ > 0 for which (1V.10) holds is denoted bi.

Similar to the standard restricted isometry property, cananatrices provide examples that

satisfy D-RIP, see [30].

Theorem 1V.4.6. [30] Let D be an arbitrary Parseval frame and let A be a measueat matrix

satisfying D-RIP withd,s < 0.08. Then the solutiod to (P2 4 ¢) satisfies

1Z— 2o]|2 < Cog + C15~Y205(D*20),

where the constantsg@nd G may only depend odps.

This is saying that the reconstructed signe not far away from the original signal *z,
is almost sparse anglis small. The setting here is stronger because we want thdrdnae
coefficientsD*zy to be compressible, instead of the existence of one paati@inost sparse
representations. The same is true for our main theoremgyré&helV.4.8, Theorem 1V.4.9, and
Theorem IV.4.10, where the teray(D*7p)q is involved.

The assumption thdd*zy is approximately sparse is justified in applications sincecp-
cal signal classes often have sparse frame coefficientexample, with respect to wavelets,
curvelets, edgelets, shearlets, [35-37].

Inspired by [30], we would also like to examine the stabibfy(P2 q ), but again under
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the null space property. We now introduce the third versibthe null space property with

dictionaries, which we show guarantees stable recovery.

Definition IV.4.7 (The null space property related ). Let D be a givend x n dictionary

matrix. The matrixA satisfies thé9 null space property of order s relative to ISP q) if
VzekerA\{0}, V [T|<s,  [ID7Z|q < [Dtezg. (NSPb )

HereD; = (D*)t. A simple compactness argument, e.g., see [5], shows thias \B equiva-

lent to the existence of a constanD < ¢ < 1, such that
vzekerA ¥ |T|<s  [Diz|§ < c|Diez|{. (NSR )

The smallest value of the constarin (NSP,iq) is referred to as theull space constanfiNSC).

Theorem IV.4.8 (NSR, g provides stability and robustnessjuppose that D is a  n dictio-
nary with frame constant8 > a > 0 and A is an mx d matrix satisfying NSPq. Let z be a

vector inRY and the measurement vector y be such yat Az| < €, then any solutioi to

(P2p q.¢) Obeys
12— 2|2 < C'o5(D*20)q +C"n"/ 4 2¢

for some constants’@nd C’ (see(IV.12) when A= B and D= D).

This is a generalization of Theorem I11.4.1. We omit the grbecause it is a special case of

Theorem 1V.4.9. Some discussion about the constants heteectbund after Theorem 1V.4.10.

IV.4.3 Stability with respect to perturbed measurement matix and dictionaries

The effect of a perturbed measurement ma#igatisfying the restricted RIP has previously

been considered in the classical case of sparsity with cespa basis, see [28], as well as in
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Theorem 111.4.1. We also investigate a second, not preWotsnsidered, type of stability to
address imprecision in the dictionaby Our performance analysis for tti& recovery method
(P25 q,¢) Will typically require thatD is chosen to satisfy a design condition such as fNgP
However, in practice it may only be possible to use a pertixegsion ofD for which there are
no a priori guarantees that the desired design conditiotshdtor examplel) may be viewed
as a real reconstruction device which in practice will difiem its exact specifications. We
prove that’ minimization is stable with respect to imprecisions in thetidnaryD.

In this section we describe our main stability theorems/forecovery of signals that are

sparse in a dictionary. We initially assume the following se:
e Dis ad x ndictionary matrix forR? (thusn > d),
¢ Bis anmx d measurement matrix fdd,
e D*zyis approximatelys-sparse.

The assumption thdd*z, is approximately sparse is justified in the last section. g t
point, one is given the noisy measurements Bz + e € R™ with noise level||e||» < €, and
one wishes to recovey fromy. We assume that one only has approximate knowled@e foir
example, due to a nonideal measurement device or becausenpiutational limitations. We
also assume perturbations of the dictionBryFor example, the intendddlin (P2 ) might
have been carefully designed to satisfy a hypothesis sublS8s g, but computational neces-
sities, or quantization errors, could result in the use oérysbedD as in the/® minimization

in (IV.11) below. So, we further assume that:
e Dis ad x ndictionary (perturbation of the intended dictiona@y,

e Aisanmx d full rank measurement matrix (our knowledge of the true mai}.
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The full rank condition is justified when redundant measweets are excluded. For fixed<0
g < 1, the following/9 minimization problem reconstructs the approximatdn z, based on

the noisy measuremengsaind the perturbatior® andA of D andB, respectively
min||D*Z| subjectto [|Az—yl|, < &. (IV.11)

The matrixA will satisfy hypotheses such as NSFor DRIP, but the perturbed matriX used
in (IV.11) introduces uncertainty and distortion into tadg/potheses.
For Theorem IV.4.9 (therefore Theorem 1V.4.8 as well), weuase that the dictionarlp

satisfies the frame inequality
vzeRY, a|z2< (D22 < B2

with frame constant8 > a > 0.

For direct comparision with [30], Theorem I1V.4.10 assunied the dictionanD satisfies
the Parseval framecondition DD* = |, but as noted in [30] there are extensions to general
frames.

The following two theorems and their proofs first appearel@%j.

Theorem 1V.4.9. [25] Suppose that D is a ¢ n dictionary with frame constan{s > a > 0

and suppose that the snd matrix A satisfies NSA?q with null space constant c. Moreover,
5a (1—c

suppose that the & n matrix D satisfies|D* — D*||op <

1/q
21/qnl/q-1/2 10 ) and that B

is an mx d measurement matrix.
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If o € RY and ye R™ satisfy|ly — Bz||2 < € then any solutio to (IV.11) satisfies

~ 2 _ * — * ~ %
12— 20||2 < 5—\iC1n1/q Y2¢ 4 219C1 05(D*20) g + 2Y/9CinY 412 || D* — D ||opl| 202
C — * M~ *
2 (B(142Y9) 4 249ID" ~ Do) [A—Blloplmlz-  (V12)

Here v, is the smallest positive singular value of A. The constans Quantified in(1V.20) and

(IV.25).

Theorem 1V.4.10. [25] Suppose that D is a & n Parseval frame matrix and that thexdn
1 <D> 1/2-1/q
V2Ky \'s

B are mx d matrices and that A satisfies D-RIP wilh <

matrix D satisfies|D* — D*[|op < for some constantX Suppose that A and

6—3(2/3)%/4-2
6—(2/3)2/a2"
If zo € RY and ye R™ satisfy||y — Bz||2 < € then any solutioi to(IV.11) satisfies:

1/9-1/2

iy i * ] o
1720l < Co + o2 40D 20)q +-C1 () 7 D~ B ozl
n\ /a-1/2 1 R
+<§> V_A(C8+C9HD —D"{|op) [I1A—Bllopllz0]l- (IV.13)

Here vy is the smallest positive singular value of A. Quantitatiweihds on the constants

Cs,Cg,C7,Cs,Cq and K are contained in the proof, s€¢b/.41), (1V.42), (1V.43).

It is possible to formulate Theorems 1V.4.9 and 1V.4.10 gstlifferent choices of norms.
Except for the termos(D*zp)q, the bounds in (IV.12) and (IV.13) are stated using th@orm
and the associated operator norm and hence incur the diggingrconstants/4-1/2, Note that
if we useas(D*zy); instead of the standari(D*z)q, we would also incur the constami4-1/2
in front of this term as well. Furthermora!9-1/2 is multiplied by the factor 1v, in the 4th
term on the right hand side of (IV.12) and (IV.13) which isexstally (7)1/2. Indeed in the case
whereA is anmx d Gaussian random matrix with i.i.d4"(0,1/m) entries, it is known that this

choice ofA satisfies D-RIP with high probability, see [30], whery> slog(d/s). Moreover, the
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smallest singular valuey satisfiesva = (rﬂn)l/2 with high probability greater than-1 2e~9/8,

e.g., see Corollary 35 in [38].

RemarkiV.4.11. We conclude this section with the following remarks:

(i) In the noise free case = 0, if A andD are exactly known (unperturbed), abdz; is

exactlys-sparse, thed exactly reconstruct®, i.e.,Z= z.

(i) With no perturbations on the sensing matrix or the diotiry, andq = 1, we recover
Theorem 1V.4.6 and gain the same result. FurthermorB, ig the canonical basis, we

obtain the now classical result in Theorem 111.2.4.

(i) When D =1 is the canonical basis and there are no perturbatioms-efl, we obtain a

result related to the one in [28].

(iv) If D=1, our proofs can be used to show Theorem I11.4.9. However safisfies NSB g,

we do not know yet whethek satisfiesD-NSPy even if | D — D||op is small.

(v) We have shown that the third null space property Ngks a sufficient condition for
stability of a modified’9 minimization when there is perturbation on the measuresyent
the measurement matrix, and the dictionary. It is naturalstowhether this condition is
also necessatry, like in the basis case. Unfortunately, tleegyis that it is not necessary
but we have not able to construct a counter example yet. Mergwe are not even able
to show whether this NS, is a stronger or weaker condition than D-RIP. | believe more

work needs to be done in the direction of the weaker NSP fdiodiary.

Proof of Theorem 1V.4.9:

Seth =7Z—zy. There are two main inqualities. One obtained from the npgice property.

The other from the¢% minimization which is essentially the reverse of the nuliep property.
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Combining these two, we obtain an upper bound|brih||, in terms of the perturbations, and
thus an upper bound fgh||> sinceD is a frame.

Step 1: Approximate NSPp g for h. Note thath is expected to be almost in the null space
of A. Thus we will decomposk ash = a+ n wherea € kerA andn small since, by Lemma
111.4.3, ||n]]2 < V—lAHAth.

Sincea € kerA andA has NSB g, let T be any index set such th@t| <s,
ID7hl|g < D+ allg+ D7 g < cl|Dseallg+ D7 g < ¢l Dsehllg+ D g,
Thus, we get the approximate NSEfor h
|D3h|g < c|Di<h]|d+ |ID*n 4. (IV.14)

Step 2: An approximate reversed inequality for h from ¢9 minimization. SinceA is a
perturbation oB, ||y — Az|» is not necessarily less thani.e.,z is not necessarily feasible for
program (IV.11). However, we can find a vectigr-w that is very close t@p and is feasible.
Specifically, sincé is full rank by assumption, there existssuch thatAw = (B — A)zy. Thus
|A(Zo+Ww) —Y|l2 = ||B—VY]||2 < &, andzp+ w is feasible in Program (IV.11). Moreovew,is

small since, by Lemma 11.4.3, we can pieksuch that
1 1
w2 < Z=[lAw]2 = —[|(B —A)zo||2- (IV.15)
A Va
Sincez minimizes (IV.11) we have

I5*ZI§ < [ID*(20+W)[|§ = 1D} 20 + DT W+ || DFez0+ Dfew]|§-
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Moreover

ID*Z|§ = |ID*(h+20) || = DTh+ Do)+ [|Deh+ Dtozo g

> | Dy 20+ Diw||g — |[Dth— D7w||§ + | Dichl|g — [ Dtz
Combining the above two inequalities we get
IDFeh(l§ < ID7h[I§+ 2] D3ezollg + [D*W]g, (1V.16)
Using the triangle inequality and (IV.16) we obtain the degiinequality:
IDFehl|§ < |IDFhI|§+ ID*h— D*h(|g +2||DF ezl + [ D*Wg. (IV.17)

Step 3: Estimation of ||D*h||q. Our ultimate goal is to estimath||>. However, this can
be done by first estimatingD*h||q and thereby|D*h||> and hencefh||, sinceD is a frame, by

assumption. We do this, by combining the two inequalitieStieps 1 and 2, we get

IDThIg 1—||Dh Dh||q+—||DTCZO||q+—||D wlg+3—ID"nlg.  (IV.18)

By (IV.17) and (IV.18) we obtain

ID*hilg = IDThl[g+ [[D7chl|g
< 2||Drhi|§+(|D*h—D*hl[d+ 2| Dyezo]| g+ | D*wig

1+c 2+2¢c 2 1+

T—|ID*h—D"hig+ —IIDTcZquﬂL—HD*nIIOI IID*WHq~ (IV.19)
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Step 4: Estimation of ||h||2. Rewriting the termDz.zo in (IV.19) and using the fact tha

is a frame and the inequality (11.3) we get

1 1
h||» <=||D*h||, < =||D*h
Ihl2 < IID*h]2 < —[IDh]q
<Cn"/9Y/2||D* — D*||op||N[|2+C||D* 1|

+2Y9C |52 — D" 2|lg + | Dtezollq] +Cl|D* W,

where
1/q
c_ L (10"
50 \1-c

This leads to the estimation ¢h||> in terms of the perturbations
(1-p)[Ihll2 < CD*nq+24°C [||D*2— D" 2|}g + | D+2olla] +C/|D*Wg

wherep := 2Y/9Cnt/94-Y/2||D* — D*||op.

(IV.20)

(IV.21)

Step 5: Estimation of the perturbations. 1) Estimation of|D*n||q. Using the fact that

1
In|l2 < =||Ah||2, and
Va

|ANl2 = [|[AZ— Az|[2 < [[AZ=Yll2+ [ly — Bal[2 + [[Bzo — Azol|2 < 28 + [|(A— B) 2o |2,

we get

ID*nllq < 412D llp < 09428 | < ¥ 2P o 4 (A By). v22)
A

2) Estimation 01”|:~)*W||q. Using the upper frame bourgiof D we get
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ID*Wg < [ID*w—D*wlg+ [ D*w][g
< (V52 D*w - D*w|) + (/92| D*w| )

< n"92|w|3(|D* — D*(|gp+ B9,

from which we get (using (IV.15))

(2n)1/q‘1/2

D*w||q <
5wy <<=

(ID* — D*[lop+ B) [ (B— A)zg|2 (IV.23)

Step 6: Final estimate of ||h||> Substitute (1V.22) and (IV.23) into (IV.21) and lettifigbe

the index set corresponding to th&argest magnitude entries bBff zy, we get

2 — * — * M~ *
Ihlz < S—Z\Clnl/q Y/2g 4 21/9C1 05(D*20)q + 2/9CinY 412 D* — D opl| 202
C N
2 (B(142%) 4 2Y9D" ~D'lop) 1A~ Bllopl ]2 (1V.24)
where
C
C= — V.25
1 1— 21/an1/q—1/2||D* _ D*Hop ( )
is positive if | D* — D*||op < 2~ /4C " 1nY/2-1/1, O

Proof of Theorem 1V.4.10

This proof is inspired by and follows closely the proof of Bhem 1.4 in [30]. Seh =7Z— z,.
Step 1. Consequence of the /9 minimization. As in step 2 of the proof of Threom 1V.4.9,

let T be any index set such th@| < s, we get
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ID7<hllg < [IDThilg + 2] Dezolld + ID*wg, (IV.26)

where as befordw = (B —A)z, 7o+ w is feasible and
1 1
Iwllz < —~[|Aw2 = ——[[ (B~ A)zo]2. (IV.27)
A VA

As typically done in compressed sensing proofs using RIPdiwiele the coordinated°
into sets of sizeM (to be chosen later) in order of decreasing magnitudiph. Call these

setsTy, Ty, ..., Ty and for simplicity seflp; = T UTy. By construction:
153, ,hlle < [ID7,hfl1/M < M YD hg/M, | >1
which yields
D%, ,hll3 < M*2/9) B3 hZ (IV.28)

Using the triangle inequality, (11.3), (1V.26) and (IV.28ye have

* * N — -~ q
> Il < zz(nDT,.h—DTjhnzml/z Y955, ,hlq)
1> 1>

< 22||D-“?,-h—5%h||3+ S MY%71D5 hjd
j> i>1

<9 ZZHD-*r,-h— D7h3)Y?+ 5 MYZ 4D h|d
iz 21

_ ¢1-0/2|1 _ NF q q/2-11 R q
= 192D h— Bt hl 3+ M2 Dieh

< 92| Dyg h— B hl[9-+ MY2 (B h|3+ 21| Bsez0]1d + | B*W]).

Taking thegth root of the previous inequality, Writin@/#h = [~)3‘rh —D1h+D3h, and using
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the triangle inequality we get

3, IDshlz < <j;||Dfah||2>”q = p(|[D}h]2+n). (1V.29)
where
p= 41/q71(s/M)1/q71/2
and
N = (2)M9 /2 Digh— Bighll2 + |D+h— Dtz + 872 Y/9(2Y/ Btezollg + [B"Wo).

(IV.30)
The termn can be made small by controllini@* — D* |lop, @andw (through||A—Bl|op) since
the remaining tern{D.2|q is small by assumption.
Step 2: The use of D-RIP. The inequality (IV.29) is exactly the same as the one in Lemma
2.2 of [30] except that the expressions @iandn are different since these expressions now
contain terms that are due to perturbation®andB. Thus, using Lemmas 2.4, 2.5 and 2.6 of

[30], and the use of D-RIP combined with (1V.29) will give tf@lowing two inequalities

VI=&mIDD: 2 < oIt dw(llhlo+ )+ 26+ [(A— Bzl (IV31)
_E_ 2_p2 <i * i
V12— P2 Pl < |DDR e+ pn 142 (1v:32)

where we have usdfAh||» < 2¢ + ||(A—B)z||2, instead off| Ah||> < 2¢ in Lemma 2.3 of [30].
Combining (1V.31) and (IV.32) to eliminatgDD7_ h| yields

[hl[2 <Ki(2e + [ (A—B)z|2) + Kan, (IV.33)
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where

Ky = V1= im : (IV.34)
V/261(1= &m)(1- S — p? — p%cz) — pv/IFBu

Ko = PV1+ 8 +py/201(1 - Bspm)(1+1/c2)
21— &) (- —p?— pPcr) —pvIT B

and the particular choice of the free parameters,, M making the expressions fé; andKj

(IV.35)

valid and positive will be chosen at the end of the proof.
Step 3: ||h||2 issmall if |D* — D*||op issmall. Inequality (IV.33) is not the desired estimate
of ||h||2 yet sincehis still included in the termm. Therefore we need to estimage Obviously

(D)l/qfl/z >1,s0

S
N < V2(2)YHH2D"h— B+ 2924 Brezo]lg + | 5" wilo)
n — * ~ * — M * [ *
< V2( )YV V2D* ~ D oplIhll2+ 8Y2 Y42V Drezollq + ID*Wlg)  (1V.36)

Substituting (1V.36) into (1V.33) and combinin||2 terms gives
(L=1)[[hl|2 < K1(2& +[|(A—B)Zo||2) + KsY> 7929 Dsezo|l g+ [[D*Wllg)  (IV.37)

where

n ~
| = V2( )Y 2K D" = D" lop (1V-38)

Therefore (IV.37) gives an upperbound |if|| 2 if |D* — 5*||op is small enough such that
I <1.

Step 4: Estimation of perturbations. The estimation of||:~)*w||q is the same as (IV.23) in
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step 5 of of the proof of Theorem 1V.4.9, except h@re- 1:

|||:~)*W||q < M

(ID* — D*[|op+1)||(B— A)zo||2- (IV.39)

For || D%c20||q We have

IDTeZollg < [|DTeZ0 — DTo20]|d + [ DTe20llg

< nt"92|D* — D*(|3, )1 20l13 + || DFe2olg-
Taking thegth root we get
D20l < (20)Y97Y/2|[D* — D*[|op|| 20l|2+ 2"/ 9| Do) g (IV.40)

Step 5: Final estimate of ||h||2. Substituting (1V.39) and (1V.40) into (1V.37) and letting

be the index set corresponding to glargest magnitude entries bf zg yields

~ 2K1 K2 — *
2-0lle < 2k 4+ X2 (57422 1D
Kl K2 2n la-1/2 * M~ *
+<1_| ot () @D - Blop) ) 18- Aloslzl
I ] ) B (v.41)

Step 6: The choice of the parameters for K1 and K in Step 2. It only remains to choose
the parameters;,c, andM so thatK; andK, are positive. The same as in [30], we choose

c1 = 1,M = 6sand takec, arbitrarily small so that the denominatorkf andKj is positive if

6—3(2/3)%/4-2

Fe<ald)i= g 5z
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In this case,

Ky = 1-or , (IV.42)

V21-8)(3 - 35791+ o) — R (B)VeV 1+ &

(3)Y9[/1+ 675+ 1/2(1- b75) (1 + 1/cy) |
¢ <1 5@(% 2(2)29(1+c) — R (3)M/1+ 57

(chooser; so thatk1, K, are positive)

Ko = (IV.43)

a(1) = 0.6 which coincides the result in [30]. Noticgq) tends to be 1 ag — 0. For

examplea(q) = 0.84 whenq=1/2. O
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CHAPTER YV

THE KACZMARZ ALGORITHM WITH RANDOM MEASUREMENTS

The Kaczmarz algorithm is a classical iterative method édviag an overdetermined con-
sistent linear systemdx =y. The algorithm is based on the mechanism of projection onto
convex sets and also falls into the class of row-action nothdVithin the spectrum of linear
solvers, some key features of the Kaczmarz algorithm irecltgdscalability and its simplicity;
a single inner product is the dominant computation in eagh st the algorithm. This has made
the Kaczmarz algorithm a good candidate for high dimensiordlems.

The Kaczmarz algorithm and its variants appear in a wideetsaof settings. For example,
it has been applied to computer tomography and image priocess[39, 40], and has been
used for sparse signal recovery in compressed sensingJinipddignal processing, the closely
related Rangan-Goyal algorithm is used for consistentgtcoction of quantized data, see [42,
43].

The main aim of this chapter is to study the issualafost sure convergender the Kacz-
marz algorithm with random measurement vectaps},, ;. We prove that the Kaczmarz al-
gorithmalmost surelyconverges exponentially fast and we provide quantitatougnbls on the
associated convergence rate.

The chapter is organized as follows: Section V.2 providdmiiens and background prop-
erties of the random measurement vectgpg},, ;. Section V.3 gives basic formulas for the
error X — Xq|| in the Kaczmarz algorithm, and Section V.4 gives basic bswrdthe moments
E||X — %n||?® with s > 0. The main results appear in Section V.5 and Section V.6. fifse
main result, Theorem V.5.3 in Section V.5, provides shamuoak sure rates of exponential con-

vergence for the Kaczmarz algorithm in the important casennthe normalized measurement
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vectorsg,/||¢n|| are independent and uniformly distributed®h® (for example, this applies
to random vectors with i.i.d. Gaussian entries). Our nexinnnesults, Theorem V.6.2 and
Theorem V.6.3 in Section V.6, provide quantitive boundslenraite of almost sure exponential

convergence for general classes of random measurementsect
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V.1 Problem formulation

Given an overdetermined consistent linear systexn=y, wherex € RY is the signal we are
trying to recover, angt€ RN is the known linear measurement, the original Kaczmarzritgo
is used to approximately recovefrom the linear measuremer{tyn}r’\]‘zl.

We denote the rows ob by ¢7,¢5,...,¢5. The original work of Kaczmarz [44] starts
with an arbitrary initial estimatey € RY and produces approximate solutiogse RY by the
following iteration:

[¢nll5

wherei = nmod N. This method sweeps through the rowsdh a cyclic manner.

i, (V.1)

Geometrically, this is an iterative projection algorithinat updates the estimatg 1 € R

by orthogonally projecting it onto the affine hyperplane

Hi={ueR?: (u ¢i) =vi}.

The initial convergence analysis for this algorithm in [4d¢uses on finite dimensional spaces,
but there are also subsequent extensions to infinite dimealsspaces, e.g., in [45-47].

It is well known that the algorithm produces monotonicaltyproving approximations as
the iteration number i creases. Specifically, for anyRY and { ¢, r’\,‘zl c RY and any initial

estimates € RY the Kaczmarz algorithm satisfies

X =Xnt1fl2 < [X=Xnl[2- (V.2)

In fact, this basic fact will follow as a corollary to Proptisn V.3.1.

Kaczmarz showed that iteratively cycling through the syspeoduces estimatesg that are
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guaranteed to converge xo

lim |[Xx—Xn||2 =0.
n—o0

However, it can be difficult to quantify the associated rafesonvergence. Geometric consider-
ations imply that the specific rate at which the Kaczmarz g converges depends strongly
on the order in which measurementsare entered into the algorithm, and in certain circum-
stances the convergence can be quite slow. Motivated by $trishmer and Vershynin [48,
49] investigated aandomizedversion of the Kaczmarz algorithm where the new information
(Yn, ®n) processed at each step of the algorithm (V.4) is randombcssd from among thil
measurements. They proved that this randomized approhatvas mean squared error with a

rate that is quantifiable in terms of a particular matrix déod numberk (®).

Theorem V.1.1(Randomized Kaczmarz algorithm [49])et ®x =y be a linear equation sys-
tem, and g be an arbitrary initial approximation, for a= 1,2, ..., compute xas in(V.1), where
i(n) is chosen from the sdtl,2,...,N} at random, with probability proportional t(ﬁai(n)H%.

Then x converges to x in expectation, with the average error
ElX—%[l3 < (1—K(®)72)" ||Ix—Xo|[2. (V.3)

The theoretical and numerical analysis of the randomizexkKarz algorithm in [49] shows
that this method converges exponentially fast and hasresathat are competitive with (and
sometimes superior to) standard approaches such as thegatmgradient method.

In addition to the analysis of convergence rates, therecsntework that highlights other
favorable properties of the Kaczmarz algorithm. The worfs®] shows that the algorithm is
robust against noise in the measureme@ptsThere is work in [51] on accelerating the conver-
gence of the Kaczmarz algorithm in high dimensions with laflghe Johnson-Lindenstrauss

Lemma. The discussion in [52—-54] addresses choices of naizdtion for the algorithm.
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V.1.1 Settings

In our setting, instead of having a matidx we have certain distributions, from which each
vector of {¢n}_; is drawn. We wish to recover the signafrom the linear measurements

Yn= (X, ¢n),n>1.

The same formula from the Kaczmarz algorithm will be used:

(@, Xn—1)

Vn>1l Xp=X-1+ L > n, (V.4)
[¢nl]5

There is no need to cycle througlh,}'s since we have an infinite number of them and each of
them is chosen from certain distribution. The “infinite” Bas a very loose concept, because
we can have repeated measurements. For example, the ramedoaczmarz algorithm by
Strohmer and Vershynin is a special case of our settings. Wesimply choose¢,, from a
discrete distribution, with certain probability to choasstain row of the matrixp.

We would like to study the issue @lmost sure convergender the Kaczmarz algorithm

with these random measurement vectaps},,_;.
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V.2 Random measurements

This section will discuss conditions on the random measargvectors{ ¢,}>_; < RY which
will be needed in our analysis of almost sure convergendedriKaczmarz algorithm.

Suppose that the random measurement vedigx$, ; C RY are used for the Kaczmarz
algorithm (V.4). We always assume that egghs almost surely nonzero, P, = 0] =0, to
ensure that the Kaczmarz iteration (V.4) is well defined.c&imost of our error analysis only
involves the normalized random vectdsg/ || ¢n||2, the assumption that eaghj is almost surely
nonzero also guarantees that eggh||¢n || is well defined.

Our general analysis of the Kaczmarz algorithm will requivat the normalized random
measurement vecto{®n /|| ¢n||2}_; be independent but not necessarily identically distridute
Since it is common in practice to make assumptions direatiythee measurement vectors
{¢n}n_q, itis useful to note that independence of the measuremetaneg @}, is a strictly
stronger assumption than independence of the normalizadurement vectokspn/ || ¢nl|2} 1 -
Our analysis will allow the possibility of non-independgut }>_;, but will always require that

{¢n/||dnll2}=_, be independent.

Lemma V.2.1. If the random vector§$,}*_;  RY are independent and almost surely nonzero,
then the normalized random vectdié, /|| ¢n||2};r_, are also independent.
As mentioned above, the converse of Lemma V.2.1 is not true.

ExampleV.2.2. Let 6;, 6, be independent random variables that are uniforrnfOp2rT). Define

the random vectorg, = (cosb,sinf;) and¢, as follows

(cosBy,sinb,), if0 <6<,
¢ =

2(cosby,singy), if m< 01 < 21

79



Theng1/||¢1||2 andd2/||@2||2 are independent, byt ¢, are not independent.

Our analysis of almost sure convergence will involve théofeing frame-type assumptions

on the normalized random measurement vect@rs || nl|2} ;.

Definition V.2.3 (Kaczmarz bound of ordeg). Lets> 0 be fixed. The unit-norm random vector

u € RY has thekaczmarz boun@ < a < 1 of order sif

vx e §9-1, (E (1—|(x, u>\2)s) Y (V.5)

If (V.5) holds with equality then we shall say that the Kaczmiaound igtight.

Convergence rates in the Kaczmarz algorithm will dependherspecific value of the Kacz-
marz bound O< a < 1. Qualitatively, ifu € RY is a given random vector arst> 0 is fixed,
note that (V.5) holds for some@ a < 1 if and only ifu is not concentrated on a subspace of
RY with positive codimension.

In the special case whex= 1, Definition V.2.3 reduces to the notion of probabilistiarfre

and deserves further mention.

Definition V.2.4. The random vectan € RY has theprobabilistic lower frame boun@ > 0 if
vxeRY, E|(x,u)* > BX|3. (V.6)
The random vectan € RY is atight probabilistic framef (V.6) holds with equality
vxeRY, E|(x,u)* = BX|3. (V.7)

If ue S91is a unit-norm tight probabilistic frame we shall simply ghgtu is isotropic.

Thus, a Kaczmarz bound@ a < 1 of orders =1 corresponds to a probabilistic frame
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boundf = 1— a. A condition similar to (V.6) was used for the analysis of B@ngan-Goyal
algorithm in [42], cf. [43]. Random vectors satisfying thelpabilistic tight frame condition
(V.7) are fully characterized in [55] and it is shown thatifs isotropic then the constafitin

(V.7) must satisfy
B =Ba=1/d.

Interested readers can find more properties of probabifistmes in [55].
ExampleV.2.5. If ue RY is uniformly distributed or$9-1 thenu is isotropic.

ExampleV.2.6. Let { fn}r’\,‘:1 c RY be a deterministic unit-norm tight frame f&#¢, i.e.,

vxeRY, x5 =

o 2
S 1(x. )2

Zla

If the discrete random vectare RY is defined to be uniformly distributed on the e }N ,,
thenu satisfies (V.7). For example, {ff,}¢_; € RY is an orthonormal basis f@&¢ andu € RY

randomly selects an element of this basis, then the randotorwesatisfies (V.7).

ExampleV.2.7. Let F be a full rankN x d matrix and let{ f,}N_, c RY be the rows of . Let

u e RY be the discrete random vector with the probability masstfanc
2/ < 2
VI<K<N, Prlu=fi]=|fllz/ > llfall2.
n=1
It was shown in [49] thati has a probabilistic lower frame boud> 0 that satisfies

1 \? 1
Bz (m) NEPEER 8

For our analysis of almost sure convergence, it will be usefhave a version of Definition

V.2.3 for the limiting cases= 0. The following standard lemma will be useful for this, for

81



example, see page 71 of [56]. We also provide a proof in thesAgix.

Lemma V.2.8. Letn) be a random variable such th&n|® < c for some s> 0. Then

; s$\1/s _ $\1/s _
inf(E[n[?)~> = lim(E|n|>)"> = exp(Elog|n]).

Corollary V.2.9. If u € S9 is a random unit-vector then

vxe s, lim(E(L—[(x.u)[?)>)"° = exp(E[log(1 - (x.u)[?)]) . (V.9)

lim
s—0

In both Lemma V.2.8 and Corollary V.2.9, we interpret gxpr) = 0. Motivated by Corol-
lary V.2.9, the following definition will naturally arise iour analysis of almost sure conver-

gence in the Kaczmarz algorithm in Section V.6.2.

Definition V.2.10 (Logarithmic Kaczmarz bound)The random unit-vectar € S has dog-

arithmic Kaczmarz boun@ < p < 1 if
vx e S41 exp(Eflog(1— |(x,u)?)]) < p. (V.10)

We say thati € SU-1 has atight logarithmic Kaczmarz bound if (V.10) holds with equality.

For perspectiveE[log(1 — |(x,u)|?)] in (V.10) can be expressed as a perturbation of the

familiar logarithmic potential [57] by
wx e ST Ellog(1—|(x,u)[%)] = 2E[log |x— ul|2] + Eflog(1—4~*|[x— u[|3)].

Note that forx,u € S92, L(x,u) = log(1— |(x,u)|?) is singular at bothu = x andu = —x.
Let F be a full rankN x d matrix andu be the discrete random vector defined in Example

V.2.7. We can easily associate the Kaczmarz boundwith the condition number of, and
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consequently obtain the convergence rate in terms of tlmditon number (see Theorem V.4.1
and Theorem V.6.2). Therefore it is useful to relate the fitlganic Kaczmarz bound ofi to
the condition number of as well. One trivial fact by Lemma V.2.8 (Ist= 1) and Example
V.2.7 is thatp < 1— k(F)~2, but an improved bound is not known yet and further invesitiga

would be interesting.

Random vector§gn}y ; C RY with the following properties will play an important role in

Section V.5. For convenience we collect these propertiésariollowing definition:

Definition V.2.11. We shall say that the random vectfpn}>_; € RY have thenormalized
independence and uniformity (NIU) propeifyeach ¢, is almost surely nonzero and if the

normalized vector§dn/||én||2}%_, are independent and uniformly distributedSshr?.

Lemma V.2.1 and Example V.2.2 provide insight into the agsion in Definition V.2.11
that {¢n/||@n||2} -, e independent. The following examples provide some insigb the
condition that eack, /|| ¢n||2 is uniformly distributed orgd-1,

ExampleV.2.12 Letu e RY be a uniform random vector @f 1. We shall consider a random
vector¢ € RY to beradial if it is of the form ¢ = ru wherer € R is a random variable that
is independent ofi. If the random vectop € RY is radial and almost surely nonzero, then
¢/||¢|l2 is uniform onS9-1. For example, ifp € RY is a random Gaussian vector with i.i.d.
N(0,1) entries therp /|| ¢||» is uniformly distributed or9 1.

However, ifg /|| ¢ ||2 is uniform onS9—1, ¢ does not need to be radial.

ExampleV.2.13 Let 8 be uniformly distributed o0, 277). Define the random vectdr € R?
by
(cosf,sinf), f0<O<m,

2(cos8,sinB), if m< 6 <2m
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Theng /| @||- is uniformly distributed ors* but ¢ € R? is not radial.
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V.3 Basic error formulas for the Kaczmarz algorithm

The following error formulas for the Kaczmarz algorithm Mpllay an important role throughout

this chapter.

Proposition V.3.1. Suppose that ¢ RY and that the measurement vectd} , C RY are
nonzero. Suppose that the measuremepnts yx, ¢n), with n> 1, are used as input to the
Kaczmarz algorithm with initial estimate x RY.

The error z = x— X, after the nth iteration of the Kaczmarz algorithm satisfies

2
|Zal[* = l|z0-15— Kzn_l, Hgnn||2>‘ (V.11)
and
2 o2 |/ &1 P 2) )
Il = ol [ (1~ (i ) ) (v12)

We adopt the convention that 2/||z_1||> = Ois the zero vector wheljfg,_1||> = 0.

Proof. The defining iteration (V.4) can be written in terms of theoes, = x— x, as

®n \ ¢n
2= 21— (o 1’H¢n||>u¢n||

Since¢, is orthogonal t@, 1, the equation (V.11) now follows

ol = 2~ [ (2o ) = sl (2 (22 2 0) v

A repeated application of (V.13) gives that for alP |

- Z1 o k|2
=1 11, ([ ) ) (19

k=1+1
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Whenl = 0 this yields the formula (V.12). 0J

From Proposition V.3.1, we see that the monotonicity of tleeznarz algorithm in (V.2)
is an immediate corollary of (V.11). Consequentlyzif= 0 for somel > 1 thenz; = 0 for
all j > 1. So, ifz = 0, the convention that/||z/||> = O for k > | simply sets each term in
the partial product in (V.14) to be one. While it is possildehiave the desirable outcome of
finite convergence to zero errdig ||> = O, this will generally not be the case for continuous
random measurements. For example, if the normalized memsmt vectorg @n/||n||2}r-1
are absolutely continuous with respect to the normalizethse measure o891, then by

(V.12) each errog is almost surely nonzero.

Corollary V.3.2. Suppose the measurement vec{drs},,_, C RRY are random vectors such that
eachgy, is almost surely nonzero. Additionally suppose #&i/||¢n|| }_; are independent and
that eachgyn/||@n |2 is absolutely continuous with respect to the uniform measmS?—1. If
the initial error zy = x— Xg in the Kaczmarz algorithm is nonzero, then for each k, there

holdsPr{||x —x||2 = 0] = Prjzc= 0] = 0.
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V.4 Moment bounds in the Kaczmarz algorithm

The following moment bound first appeared in [58], and itsopie motivated by the work in

[49] on mean squared error.

Theorem V.4.1. [58] Let {¢n} 4 C RY be random vectors that are almost surely nonzero and
such that{¢n/||@n||2} >, are independent. Let's O be fixed and assume that eaghy/ || @n||
has the common Kaczmarz boumd- O of order s, as inV.5).

The error after the nth iteration of the Kaczmarz algorithatisfies
E[x—%n2* < a"x—xo| 3. (V.15)
If additionally the Kaczmarz boundl is tight then
E|[x—nl|3> = a"[|x— X0 (V.16)

Proof. Letz, = x—Xxn. Note thatz,_1 = z,-1(20, §1/||@1]|2,- - s ®n—1/||Pn-1]|2) is a function of
the deterministic initial errorg € RY and the independent random vect{)dﬁ;(/||¢k||2}ﬂ;i. In

particular, sinceg ¢/ || ¢«||2}_, are independent, the random vectnys, /|| z,—1|| and@n /|| ¢n||
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are independent. Thus

< Zn1 dn 2\®
E|zl5°= <||Zn 1l ( <||zn 12’ ||¢n||2>‘) )

Zn1 G \2)
:E( |Z0-1/5° ‘<||zn1||z’||¢nllz>) ) o )
Zn1 O \2)
:E<||Zn I8 E (1~ (s o)) Z“>
E (||zn-1/5°0®)
_ aSEnzn_ln%S. e

Here, in the second equation, the outer expectation is takeln[¢k/H¢kH2}k 1, and the inner
expectation is taken over,. Therefore we can pull out the terﬁrzn,lﬂz in the inner expec-
tation, and hence the third equality holds. The inequaldigé due to the common Kaczmarz
bound as assumed.

Iterating (V.17) yields (V.15). A similar computation shewhat if eachgn/||¢n||2> has a

tight Kaczmarz bound, then (V.16) holds. O

Takings= 1 in Theorem V.4.1 gives the mean squared error bound for Huziarz algo-
rithm as follows. Corollary V.4.2 is essentially the samelesmean squared error bounds in
[49] but is expressed under a superficially more general imfd@andomization using proba-

bilistic frames instead of the finite random vectors as inrgpie V.2.7.

Corollary V.4.2. Let{¢n}_; C RY be random vectors that are almost surely nonzero and such
that {¢n/| ¢nl2} -, are independent. If eachn/||¢n|/2> has the common probabilistic lower

frame boun@3 > 0 then the error after the nth iteration of the Kaczmarz algjom satisfies

E[[x—xnl2 < (1~ B)"[x—Xo| 3. (V.18)

88



If additionally each¢y, /|| ¢n||2 is isotropic(V.7) then
E[Xx—X[l3 = (1—d™H)"|[x—xol3. (V.19)

Similar to [49], Corollary V.4.2 yields the following exargs. Versions of these examples
appear in [49] under a slightly different statement of randmtion, so we include them here to
illustrate analogs for randomization using probabilistaanes, and for random measurements

satisfying Definition V.2.11.

ExampleV.4.3. If {¢n}y_4 C RY satisfy the properties of Definition V.2.11 then e || ¢n||2
is isotropic with tight probabilistic frame bour@il= 1/d. Thus the mean squared error of the

Kaczmarz algorithm for measurements with the propertid3afinition V.2.11 satisfies
EXx—%[l3 = (1—d™H)"|[x—xol3.

ExampleV.4.4 (Computational Complexity).et {¢n}r_; C RY be random vectors satisfying
the properties of Definition V.2.11. Given> 0, letn; be the smallest number of iterations of

the Kaczmarz algorithm needed to ensurediprecise mean squared error
2 o2 2
ElX—Xq[12 < £7[Ix—Xoll2.

By (V.16), we seek the smallest integar such that(1 — )" < £2. Sincef = B4 = 1/d, in
high dimensions we have 68— ) ~ —f3 = —1/d and

2loge

Ne = {WW ~ 2d|loge]|. (V.20)

By (V.20), £'(d) iterations suffice to ensure-precise mean squared error. Moreover, since

each iteration of the Kaczmarz algorithm requirégl) elementary operations;precision is
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achieved with an overall quadratic complexity@fd?) operations.

ExampleV.4.5. Theorem V.4.1 together with Example V.2.7 recovers the nseprared error
bound (V.3) from [49]. In particular, if the randomizatiami Example V.2.7 is used to solve a
givenN x d systemdx = y then the Kaczmarz bourwof orders = 1 satisfiesx < 1— [k (P)] 2

50 thatlZ|[x —Xn[|5 < a"|x— 0|3 < (1~ [K(®)]7?)"||x—Xol|3.
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V.5 Almost sure convergence for uniform random measuresnam$d—1

As mentioned, (V.12) will play an important role in our ansily of almost sure convergence
in the Kaczmarz algorithm. It will be convenient to intro@uthe following notation for the

individual random variables in the random product (V.12):

L
= (1‘ (o ||¢kk||2>‘2) | (v-21)

Since the first step of the Kaczmarz algorithm requires dralmistimatexg € RY, each random

variable&, is implicitly parametrized by the initial errap = x— xg € RY. When needed, we
emphasize this dependence by writfg= ék(2)-

With the notation (V.21), the error in the Kaczmarz algaritbatisfies
2 2 [
IX=Xall2=[Ix=Xoll2 { ] ¢ |- (V.22)
k=1

V5.1 Independence ofy’s

In general, the random variablgg }° ; defined by (V.21) need not be independent, e.g., see
Example V.6.1. However, in the special case when the randeasorement§¢, },_; satisfy
NIU (Definition V.2.11), it will follow that the random varldes{én};_, are independent and

identically distributed. This will have pleasant consewges for the subsequent error analysis.

Lemma V.5.1. Fix zo € RY. Let{¢n}n_4 C RY be random vectors that are almost surely nonzero
and such that the normalized random measurement ve¢tys||¢n||2}_; are independent

and uniformly distributed o89~1. Then the random variable&n}y_; defined by(V.21) are
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independent and identically distributed versions of thed@m variable

§=1—|(er,u)|% (V.23)

where @ = (1,0,---,0) € RY and ue RY is a uniform random vector o8%1. The random

variable ¢ does not depend on but does depend on the dimension d.

Proof. Let un = ¢n/||@nl|2. The hypotheses ofn/| ¢n||2}r_, mean that{u,};;_; are inde-
pendent random variables that are uniformly distribute®nt. Without loss of generality
we assume tha # 0. Moreover, as noted in the discussion following Proposit.3.1, since
eachuy, is absolutely continuous, we have thatAe 0] = 0 for all k.

Note that the random vector

Zn1=2Z-1(20,Uz, -+ ,Un-1)

is a function of the nonrandom initial errag and the independent random vecte@u&}ﬂ;i.
Thus,z,_1 andu, are independent random vectors. This independence aldhgheirotational
symmetry ofu, now implies that ife; = (1,0,---,0) thené, has the same distribution as the
random variablé1— |(e1, un)|?) . This shows that the random variablg }>_, are identically
distributed.

It remains to show that the random variablés},,_; are independent. Lgt denote the

normalized surface measure 8. Let E, denote the event thdh < S, and letxg, denote
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the associated indicator function. Note tlxaf(un, - - - ,uz) is a function ofup, - - - , us.

E[XEn | Un—1,--- ,U]_] = Pr[fn < .Bn | Un—1,--- 7u1]

— Pr[En(Un, e ,U]_> < .Bn | un717 U 7ul]

. Zn—1(Un—1,---,U1) 2
=Pr [1 ‘< ||2,un>

< Bn

|Zn—1(Un—1,--- ,u1)

Un—1,""* ,U]_]

= Pr{1— |(€1,Un)|* < By

=Pr&n < Bn).

Indeed, the fourth equality holds because; /||z,—1||2 is independent adi,, by rotation invari-
ance ofu, we can replace,_1/||z,—1||2 by any vector with norm 1.

Thus

Pr[fn < Bn,gn—l < Bn—l, U 761 < Bl] =E <|_| XEk(uk7 e ,Ul))
k=1

- (s4-1)n <k|jXEk<uk7‘“ 7ul)> d(un)dp(un—q)---dp(uy)

n-1
= (Sdfl)(ml)E[xEn [ Un-1,-, U] (ﬂ Xe (U, ,ul)> du(Un-1)---du(uy)
=1

= Pr&n < B]P&n—1 < Br1,--+ &1 < Bu].

Iterating this argument shows that

n

Prién < Bn,--+, &1 < Ba] =[] Prék < Bd.

k=1

Thus,{é}}_ is independent for ath > 1, as required. O
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Lemma V.5.2. Let d > 2 be an integer, and lef be the random variable given i§y.23). Then

E(logé) = % /0 "sirf~2 9 log(sir? 6) do,

and
2_ W2 [T . 42 : 2
E(logé)? = _1/0 sinf=2 0 (log(sir? 6))2d6,

d+1
wherewy = ?ET(,—;) is the surface area ¢39.

Proof. Lete; = (1,0,---,0) e RY. By Lemma V.5.1

Bllogg) = - [, 1og(1-[(evuf?) du

w
_a)d—Z 1 2 d—3
=< (V1-s2)93log(1-s%)ds
Wy-1./-1
T
:%/ sin®~2 9logsir? 6d.
Wy—-1 /0
Similarly,
1 Wi—2 (™ . 4 .
E(lo 2:—/ log(1— | (er, w[2))2d :_/ sin~2 0(log(sir? 6))2d0.
l0g&)2 = - [ (tog(1—[(es.u)P)du= 22 ["sirf 2g(1ogsir?6))

V.5.2 Almost sure exponential convergence rate

The independence of the random variablegdp},;_, in Lemma V.5.1 will allow us to apply
classical tools such as the Strong Law of Large Numbers, émgr@l Limit Theorem, and the
Law of the Iterated Logarithm to our analysis of almost susavergence properties of the

Kaczmarz algorithm. The following theorem first appearefbs].
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Theorem V.5.3. [58] Let {¢n}, 4 C RY be random vectors that are almost surely nonzero
and such that the normalized random measurement ve¢tiys| @nl/2},_; are independent
and uniformly distributed 0891, Let R= exp(—Elogé) ando? = E(logé&)? — (Elog&)? as

computed in Lemma V.5.2. Then the error in the Kaczmarz dlgorsatisfies
i v |12 _p-1
lim [Ix—xal"" =R, almost surely, (V.24)

and

1 t 2
VteR, lim Pr|RYx—xq|%> [Ix— ZeW”GZ] :1——/ e Y /2dy, V.25
lim [[X—Xn[[2 > [[X—Xol|2 Tl (V.25)

and
1
limsup (R[|x— x,|3) V2o%slean — @ almost surely, (V.26)
n—oo
Proof. Let
n n
Si=log| [1é | = > log(&)- (V.27)
k=1 =1

By Lemma V.5.1thgéx},’_; are independent versions of the random variglgésen by (V.23).
By Lemma V.5.2E(logé) = log(1/R) and Vaflogé) = ¢ are both finite.

Applying the Strong Law of Large Numbers to (V.27) yields

lim % i logék = E(logé€) = log(1/R), a.s. (V.28)
K1

n—-00

Taking the exponential of (V.28) gives

N— o0

lim (ﬁ §n> T expE(logé)) =R, as. (V.29)
k=1

Equation (V.24) now follows from (V.22) and (V.29).
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Applying the Central Limit Theorem to (V.27) gives

: S w_1l0gé&k —nlog(1/R) ) 1 /t 22
vVteR, limPr <t)|=-— e du. V.30
n—-co ( no’z \/27'[ — 00 ( )

Exponentiating and reorganizing (V.30) gives

n 1 t 2
YteR, lim Pr( [1RE > Vo :1——/ e P2y, V.31
n—oo (kljl Ek - ) \/E‘[ — o0 ( )

Equation (V.25) now follows from (V.22) and (V.31).
To prove (V.26), apply the Law of the Iterated Logarithm tg(lgé,). SinceE(log(R¢)) =
E(logé +logR) = 0 and Vatlog(RE)) = E(logé +logR)? = E(logé —E(logé&))? = 02, there

holds
>k-1109(R&)

limsu =1, as.
o0 p\/202nlog(log n)
which yields
1
. n Zaznlog(logn)
limsup |_| Ré& =e a.s.
n—eo  \ k=1
This implies (V.26). 0J

For a different perspective on Theorem V.5.3 we shall usevohg lemma. A proof is

provided in the Appendix.

Lemma V.5.4. Given A> 1 and a nonnegative sequena },,_, C R, the following two state-
ments are equivalent:
(@) limp_,e(an) /" = 1/A.

(b)VO<r <A, limp,0ran=0 and VA<, limy_erMa, = .

Thus, (V.24) in Theorem V.5.3 can be stated as follows.
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Corollary V.5.5. Let {¢n}, 4 C RY be random vectors that are almost surely nonzero and
such that the normalized random measurement vedipsg| ¢nl/2}_, are independent and
uniformly distributed or§9-1. Let1 < R be the constant defined in Theorem V.5.3.

If 0<r < Rthen

lim r"x— Xn||3=0, almost surely. (V.32)
If r > R then
lim rf|x— Xn||3 = 0, almost surely. (V.33)

The boundary case= Rin Corollary V.5.5 is addressed by (V.25) and (V.26). Forrapée,
takingt = 0 in (V.25) of Theorem V.5.3 shows that one does not have dlsoe convergence
of RY||x—xn||3 to 0. Likewise, one does not have almost sure convergenBg|iaf— xn||3 to
infinity either.

ExampleV.5.6. To compare the almost sure convergence rates in TheoreBwith the mean
squared convergence rates in Corollary V.4.2{{gt}> ; C R? be independent random vectors
that are uniformly distributed of. In dimensiord = 2, we have that ead, is isotropic with

B = B> =1/2. Moreover, = 2manday = (24/m) /T (1/2) = 2, so that the constafk from

Theorem V.5.3 satisfies

T
R:exp<—7—1T / logsir? ede) —4 (V.34)
0

The computation of the integral in (V.34) follows from thefaéhat the Lobachevsky function
t . 1t .
L(t) = —/ log|2sin6|d6 = —tlog 2— é/ logssir? 6d6
0 0

is r-periodic, e.g., see the appendix in [59]. &§051) = L(0) = 0 and this implies (V.34).
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By (V.16), the mean squared error satisfies
vn>1,  Elx—xa3 = (1/2)"x—xo|*
By Corollary V.5.5, we have the following almost sure comesrce:
vo<r<4, rI‘ianr”IIX—XnH% =0, almost surely

In particular, the mean squared error decreases at théI&2¢", whereas the squared error

nearly decreases at the rate(f4)" in an almost sure sense.
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V.6 Almost sure convergence for general random measurement

The results of Section V.5 shows that if the measuremenowep, };,_; satisfy the conditions
of Definition V.2.11, then the random variablg&,},_; defined in (V.21) are independent and
identically distributed, and moreover do not depend onrtit&al errorzy. This, in turn, made it
possible to apply classical results on sums of i.i.d. randarables to the convergence analysis
in Theorem V.5.3.

For general measurement vectgs, } > ; without the properties in Definition V.2.11, it is
possible for the random variabl¢§,}_, to be neither independent nor identically distributed
(see Example V.6.1 below), and it is not possible to direafiply the classical convergence
results used for Theorem V.5.3. In this section we addres®stl sure convergence of the

Kaczmarz algorithm when a general collection of random miessents{ ¢, },_; is used.

ExampleV.6.1. Let ¢ € R? be a discrete random vector that satisfies

Pi¢ = (1,00 =2/3 and Pf$=(0,1)] =1/3.

Let ¢1, ¢ be independent versions ¢f We consider the random variablég7p), &2(zp) that
arise in the first two iterations of the Kaczmarz algorithmewl = (1/3/2,1/2), xg = (0,0),
and the initial errozy = x — xg satisfieszy = (v/3/2,1/2).

A direct computation shows théi satisfies

P{é&1=1/4=2/3 and P} =3/4=1/3.

Similarly, by considering a tree of probabiliti€s, can be shown to satisfy

P&, =1=5/9, and P{&=0]=4/9.
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Moreover, it can be shown that[®f = 3/4, &, = 1] = 1/9. Thusé, &, are neither independent

nor identically distributed.

V.6.1 With Kaczmarz bound

Theorem V.6.2. [58] Let {¢y}, 4 C RRY be random vectors that are almost surely nonzero and
for which{¢n/||¢nl/2}5_, are independent. Lets 0 be fixed and suppose that eagy || §n||2
has the common Kaczmarz bouhet a < 1 of order s. Then there exists a random variable X

satisfyingE|X|® < o such that
lim (1/a)"|[x—xa||3 =X, almost surely. (V.35)

Consequently,

vo<r<1/a, lim r"[x—xn[|3=0, almost surely. (V.36)

Proof. LetY, = (1/a)S"|x— xa||3% = (1/a)®"|z,||3° and let %, be the sigma algebra generated
by the random vectorg: /|| ¢1|2,-- -, dn/||dnl/2- It can be shown that, is measureable with

respect to#,. The same computations as in the proof of Theorem V.4.1 shatv t
EYa | Fn-1] = E[(1/a)™2]|5° | Fn-a] < (1/0)"" D10 1|51/ 0)%a® = Yy 1.
Thus{(Yn,-#n) };r_; is a supermartingale. Moreover, by Theorem V.4.1, therdshol
vn>1 EM < |23

An application of Doob’s martingale convergence theoremn ékample, see Theorem 1 on
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page 508 of [2]) to the submartingdleé—Yn, #n) }_; sShows that the limit

limY, =Y, existsalmost surely,
n—oo

and the limit satisfieg|Y| < . Thus,

(1/a)%"|[x—xa[|3°=Y, almost surely (V.37)

lim
n—oo
Letting X = Y/S, and taking the As power of (V.37), we obtain (V.35)

lim (1/a)"|x—xa[5=X,  almost surely

This implies (V.36) and completes the proof. 0J

The martingale convergence theorem is a natural tool fopthef of Theorem V.6.2. For
comparison, Markov chain and martingale methods were pualy applied to the error analysis
of closely related algorithms such as the Rangan-Goyatiéthgo in [42] and the Gibbs sampler
in [60]. In the present setting, it is possible to give a diadternative proof of the bound (V.36)
in Theorem V.6.2 without appealing to martingale conveogen the following manner.

Alternative Proof of EquatioV.36). Fix 0<r < 1/a and let

Po=r" I_l &k
k=1

Recall thatP, > 0 and that"||x — xn||3 = Pa[[x— Xo||3. To prove (V.36), it suffices to show that

[ee]

Ve >0, lim Pr( U P> s}) =0. (V.38)
N=eo n=N
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Let € > 0 be fixed. A union bound together with Chebyshev’s inequatiplies that

E(RY)

Pr {Ph>e} ] < 3 Pr(P, > ¢) < 3 < (V.39)
(Gim=a)< 3 me< 5 5

Theorem V.4.1 shows that

E(PY) < (ra)®". (V.40)
Combining (V.39) and (V.40), it follows that

0 sN
Pr(Upen{Ph > €}) < gisn;(m)snﬁ %'

Since O< ra < 1, it follows that (V.38) holds. This completes the proof. 0J

V.6.2 With logarithmic Kaczmarz bound

The next result improves the conclusion of Theorem V.6.2 &ysering the limiting case
whens= 0. Unlike Theorem V.6.2, the following theorem assumesttia{ ¢n/||¢nl|2};_, are

identically distributed.

Theorem V.6.3. [58] Let {¢n} 4 C RY be random vectors that are almost surely nonzero.
Assume that the normalized vectdys,/ | ¢n||2};_, are independent and identically distributed
versions of a random vectoraS9-1 and assume that u has the logarithmic Kaczmarz bound

0 < p < 1. Then the error in the Kaczmarz algorithm satisfies
vVo<r<1/p, r!mor”||x—xn]\§ =0, almost surely.
Proof. Fix 0 <r < 1/p and takea such thap < a < 1/r. By Corollary V.2.9,
x84 Inf(E(1—[{x, w9 <p.
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So, for everyx € S9-1 there exists, > 0 such that
(E(L— (w3 < a.
It follows from the Lebesgue Dominated Convergence Thedhen

xeSTE L lim (B[00 = (B | w )T < a.

So, for everyx € S4-1, there exists an open neighborhdddc S9-1 of x such that
vyeUy, (E(1-[{y,u))*) "> <a.

SinceS?~tis compactang?~* C U, ca-1Uy, there exists a finite subcovfity; }7_; of {Ux},cge-1.
Lettings" = min{sy, }Ll and using Lyapunov’s inequality (for example, see page 193]p
we obtain

vxe S (E(1—|(x,u)[®)HYs <a.

Since the{¢n/| ¢nll2} -, are independent and identically distributed versions efrimdom
vectoru, eachdn/||¢n|2 has the common Kaczmarz bouadof orders® > 0. Sincer < 1/a

we conclude by Theorem V.6.2 that hm., r"||X — X,||3 = 0 almost surely. O

Theorem V.6.3 provides stronger error bounds than Theorén2 gince by Lemma V.2.8
and Corollary V.2.9, a logarithmic Kaczmarz boyndatisfiespo < o = as for each Kaczmarz
bounda of orders > 0. In the special case when thén/| ¢n||2}5_; are independent uniform
random vectors 0§91, Theorem V.6.3 recovers the sharp bound (V.32) of Corolagy5.

In particular, ifu= ¢/||¢||2 is uniformly distributed or§%~* then the logarithmic Kaczmarz
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boundp is tight and satisfies
wxe S, p = expElog(1—|(x,u)[?)] = exp(E(logé)) = 1/R,

whereRandE(logé) are as in Lemma V.5.2 and Theorem V.5.3.
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APPENDIX

V.7

Lemma V.7.1. Let x> 0 be a bounded random variable, and Eflogx) be finite, then

inf[£(x%)]YS = lim[E(x%)]Y/S = exp(E(logx))

=i
s>0 s—0

Proof. The first equation is proven by Lyapunov’s inequality (pag8 af [2]).

By L'Hospital’s rule, it suffices down to show that

d 0
d—S/stdx:/Qa—stdx (V.41)

This is not obvious becau%xS = x°logx has a singularity at = 0.
Define f(x,h) = x" E = {x: 0 < x < €},g(¢,h) = Jose f(x,h)dx

(1) Using mean value theorem,

4 _ h
~g(e.h) = /Q Xlogxx (V.42)

(2) limg_0 [¢ X"logxdx= 0.
This is true since we can writg xhlogxdxasfQ xex"logxdxand then use Lebesgue Dom-

inated Convergence Theorem.

(3) The convergence in (3) is uniform Im therefore together with (2) we also have

l "9 d ' x logxd
sILnO/o Eg(e,t) t:/O/Q ogxdt
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(4) Finally

h g
o(e.h) ~9(e.0) = [ ~ge.tyat
o Ot
h
= lim g(&,h) — lim g(e,O):/ /xtlogxdt
e—0 e—0 0 JO

d . .0
=g e ) = i Sole.)

d [ hy [ A
:%/QX dx_/Qx logxdx

where Fundamental Theorem of Calculus is used. O

V.8

Proof of Lemma V.5.4:

(=) Assume O< r < A, then there existssuch that YA < ¢ < 1/r, hence(an)¥" < cwhen
n is sufficiently big. Therefore"a, < r"c" — 0. A similar argument applies to the case when
r>A

(<) Suppose to the contrary that there exigis> 0 and a subsequendey} such that
|a,11,{”k —1/A| > &. Without loss of generality, we can assume there are infynit@ny terms of
a%lfn" that are bigger than/A, so let us assume the subsequefrge satisfiesa%lfn" —1/A> &.

Pickr =1/(z+%2) < A, thenrap, > r'(£ + &)™ — oo, which is a contradiction to (b). O
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