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CHAPTER I

INTRODUCTION

This dissertation consists of two topics: compressed sensing and the Kaczmarz algorithm.

Compressed sensing addresses the problem of recovering an unknown signalz0 ∈Rd from a

small number of linear measurements based on an underlying structure of sparsity or compress-

ibility. There are generally two approaches for solving this problem. This dissertation will focus

on theℓq minimization approach. The classical result is thatℓq minimization can stably recover

an almost sparse signal from its noisy measurements when themeasurement matrix satisfies a

so called restricted isometry property. Other conditions on measurement matrices are explored

for stable recovery. We show that the null space property is anecessary and sufficient condition

on the measurement matrix for stable recovery.

When the signal is sparse in an overcomplete dictionary, we have the compressed sensing

problem in a dictionary. Some basic conditions are given forthis problem to be meaningful. It

is known that under an appropriate restricted isometry property for a dictionary, reconstruction

methods based onℓq minimization can provide an effective signal recovery tooleven when the

dictionary is coherent. We propose that a modified null spaceproperty for the dictionary is

also sufficient to stably recover the signal. Perturbationson the measurement matrices and the

dictionary are also considered.

The second part of this dissertation is concerned with the almost sure convergence rate of

the Kaczmarz algorithm. The Kaczmarz algorithm is an iterative method for reconstructing a

signalx∈Rd from an overcomplete collection of linear measurementsyn = 〈x,ϕn〉, n≥ 1. This

algorithm is widely used in image processing and computer tomography. We prove quantitative

bounds on the rate of almost sure exponential convergence inthe Kaczmarz algorithm for suit-
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able classes of random measurement vectors{ϕn}∞
n=1 ⊂ R

d. Refined convergence results are

given for the special case when eachϕn has i.i.d. Gaussian entries and, more generally, when

eachϕn/‖ϕn‖ is uniformly distributed onSd−1.
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CHAPTER II

PRELIMINARIES AND NOTATIONS

II.1 Frames and dictionaries

A sequence{ei , i ∈ I} in a (separable) Hilbert spaceH is called aframe(for example, see [1])

if there exist positive constantsα,β > 0 such that for allf ∈ H

α‖ f‖ ≤
√

∑
i∈I

|〈 f ,ei〉|2 ≤ β‖ f‖. (II.1)

If α = β , then{ei , i ∈ I} is called atight frame; If α = β = 1, then{ei , i ∈ I} is called aParseval

frame.

This dissertation will focus on frames in finite dimensions,more specifically, whenH =

Rd. In this case, the frame will consist ofn(n≥ d) vectors spanningRd. We will use a matrix

D = [e1,e2, . . . ,en] to indicate this frame. We also callD adictionaryof sizen.

If D is a Parseval frame, thenDD∗ = I , then identity matrix.

II.2 Sequences and sum of independent random variables

Definition II.2.1 (almost sure convergence). The sequenceξ1,ξ2, . . . of random variables con-

verges with probability one (almost surely) to the random variableξ if

P{ω : ξn → ξ}= 1

3



A necessary and sufficient condition thatξn → ξ almost surely is that

lim
n→∞

P

{
⋃

k≥n

{|ξk−ξ | ≥ ε}
}(

= lim
n→∞

P

{
sup
k≥n

|ξk−ξ | ≥ ε

})
= 0.

This condition will be used in the proof of Theorem V.6.2.

The following three theorems are classical theorems about the sum of independent random

variables, which will be used in the analysis of the convergence rate of the Kaczmarz algorithm.

Different versions of these theorems are available, and theones we collect here can be found

in [2].

Let ξ1,ξ2, . . . be independent random variables, andSn = ξ1+ · · ·+ξn.

Theorem II.2.2 (Strong law of large numbers). Letξ1,ξ2, . . . be independent random variables

with finite fourth moments and let

E|ξn−Eξn|4 ≤C,n≥ 1,

for some constant C. Then as n→ ∞,

Sn−ESn

n
→ 0 almost surely.

Theorem II.2.3 (Central Limit Theorem). Let ξ1,ξ2, . . . be a sequence of i.i.d. random vari-

ables with finite second moments, then as n→ ∞,

P

{
Sn−ESn√

VSn
≤ x

}
→ Φ(x), x∈ R,

where

Φ(x) =
1√
2π

∫ x

−∞
e−u2/2du. (II.2)
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Theorem II.2.4 (Law of the Iterated Logarithm). Let ξ1,ξ2, . . . be a sequence of i.i.d. random

variables withEξi = 0 andEξ 2
i = σ2 > 0. Then

P

{
lim

Sn

ψ(n)
= 1

}
= 1,

where

ψ(n) =
√

2σ2nloglogn.

II.3 Notations

Throughout this dissertation,‖ · ‖ indicates a generic norm.

For u∈ Rd, ‖u‖q = (|u1|q+ |u2|q+ · · ·+ |ud|q)1/q. Whenq≥ 1, this is theℓq norm. When

0< q< 1, this is a quasinorm. The inequality

‖u‖p ≤ ‖u‖q ≤ N1/q−1/p‖u‖p, 0< q≤ p≤ ∞. (II.3)

is useful in the proof in Section IV.4.3.

Let T ⊂ {1,2, . . . ,d} be an index set, thenTc is the complement ofT, and|T| is the cardi-

nality of T. For a vectoru∈ Rd, denote byuT the vector which is equal tou onT and vanishes

onTc; For a matrixM of d columns, denote byMT the matrix whose columns are equal to those

of M onT and vanish onTc.

Given a matrixM, M∗ is the transpose ofM, and‖M‖op is the spectral norm ofM.

The notation “log” indicates the logarithmic function withbase e.
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CHAPTER III

COMPRESSED SENSING IN A BASIS

Compressed sensing originated recently from questioning the current methodology in sig-

nal compression by Donoho [3]. The conventional scheme is toacquire the entire signal and

then compress it. For instance, the way that the transform coder JPEG2000 works is that it

acquires the full signal, computes the complete set of transform coefficients, encodes the largest

coefficients and discards all the others. This process of massive data acquisition followed by

compression is extremely wasteful [4]. The question is can we combine acquisition and com-

pression. Recent work in Compressed Sensing has answered this question affirmatively and

there is still a growing interest in this rapidly developingfield.

Not only will it be economical to acquire and compress the signal simultaneously, but some-

times we simply have no other choices. For instance, in Magnetic Resonance Imaging, it is not

conceivable to collect the same number of measurements as the unknown pixels. Also, in wide-

band radio frequency analysis, limitations in Analog-to-Digital converter technology prevents

the acquisition of a full signal based on the Nyquist-Shannon paradigm [5].

Compressed Sensing offers a way to acquire just about what isneeded, by sampling and

compressing simultaneously and by providing efficient reconstruction algorithms. It has nu-

merous applications including error correction, imaging,radar, and secure communication.

Compressed sensing can be applied to build a single-pixel digital camera, because it combines

sampling and compression into a single non-adaptive linearmeasurement process [6].

The problem is formulated in Section III.1. In Section III.2, we will motivate the problem

more and introduce two major algorithmic approaches in the current literature, along with the

main stability theorems. Three different conditions on measurement matrices for stable recovery

6



are also being introduced and analyzed further in Section III.3. Our results are in Section III.4,

and depend upon further investigation of the null space property. Indeed, we establish that the

null space property is is a necessary and sufficient condition for stable recovery of signals via

ℓq minimization, see Theorem III.4.1. We generalizeℓq minimization toF-minimization in

Section III.4.2. More stability results are presented in Section III.4.3 when the measurement

matrix is perturbed, providing a generalization of SectionIII.4.1.

7



III.1 Problem formulation and notations

Compressed sensing addresses the problem of recovering an unknown signalz0 ∈ Rd from a

small number of linear measurements based on an underlying structure of sparsity or compress-

ibility. In this chapter, we will assume signals are sparse in an orthonormal basis. Furthermore,

without loss of generality, we assume signals are sparse in the canonical basis ofRd.

Definition III.1.1 (Sparsity in a basis). We say a vectorz in Rd is s-sparse if the number of its

nonzero coordinates‖z‖0 ≤ s. We will also calls the sparsity level ofz. The symbolΣs will

denote all thes-sparse vectors inRd.

The sparsity levels is taken to be far smaller than the dimensiond for it to be meaningful,

that is,zbeing sparse means most of its coordinates are zero.

Sparsity is a very reasonable assumption. In fact, JPEG2000already relies on the fact that

images have an “almost sparse” representation in a fixed basis.

Let z0 be ans-sparse or almost sparse signal inR
d, which we want to recover from a small

number of linear measurementsy= Az0 ∈ Rm. Therefore,A is a matrix of sizem×d, wherem

is much smaller thand. The compressed sensing problem can be stated asKnowing A a priori,

how can we find a reconstruction map∆ from Rm to Rd, such that∆(Az0) = z0, wherez0 is

s-sparse.

III.1.1 Stability of a reconstruction map

In practice, signals are often not entirely sparse, rather,are “almost sparse” or compressible.

Basically, this class of signals is very close to sparse signals and can be treated like sparse

signals. The following notion ofσs(z) indicates how sparse a signal is.

Definition III.1.2. The error between a signalz and its bests term approximation associated

8



with a norm‖ · ‖ onR
d is defined as

σs(z) := min{‖z−w‖, w∈ Σs}.

We will useσs(x)2 to denote the error underℓ2-norm andσs(x)q to denote the error underℓq

quasinorm.

Moreover, the measurement vectory is often perturbed due to measurement error asy =

Az0+ewith noise level‖e‖2 ≤ ε.

We would like∆ to perform in a way such that the reconstruction error‖∆(Az0)− z0‖2 is

controlled byσs(z) and the measurement noise levelε.

Definition III.1.3 (Stability with respect to measurement noise). Givenz0 ∈ Σs, for a measure-

ment vectory such that‖y−Az0‖2 ≤ ε, the reconstruction map∆ is stable with respect to the

measurement error if

‖∆(y)−z0‖ ≤C1ε,

whereC1 is a constant.

Definition III.1.4 (Stability with respect to compressible signals). Given z0 ∈ R
d, the recon-

struction map∆ is stable with respect to compressible signals if

‖∆(Az0)−z0‖ ≤C2σs(z0),

whereC2 is a constant.

We are seeking reconstruction maps∆, as well as suitable measurement matricesA, such

that∆ is stable with respect to the measurement noise and compressible signals, i.e.

‖∆(y)−z0‖ ≤C1ε +C2σs(z0). (III.1)

9



Notice when there is no noise and the signalz0 is exactlys-sparse, we get exact reconstruction.

We will also consider stability with respect to measurementmatrices in Section III.4.3.

III.1.2 Notations

Throughout this chapter,z0 ∈ Rd will be the signal that we are trying to recover from the linear

measurementsy∈Rm. We also cally the measurement vector. The signalz0 is sparse or almost

sparse, ands will be the sparsity level. WithA∈ M (m,d) being the measurement matrix (also

called the sensing matrix), the measurement vectory can be expressed asy = Ax+e, where

‖e‖2 ≤ ε. Whenε = 0, there are no perturbations of the measurements. We also assume thatq

is a number such that 0< q≤ 1.

10



III.2 Major Algorithmic approaches

III.2.1 A naive approach

Let us first consider whenz0 is exactly sparse and there is no perturbation on the measurement

vectory. It is obvious that we have to choose the measurement matrixA judiciously so it will

extract enough information aboutz0. One may already notice that, at the least,A has to be

injective onΣs, since the recovery process only sees the measurementy. It is easy to prove that

the injectivity ofA onΣs is equivalent to

Σ2s∩kerA= {0} (NSP0)

We call this property NSP0 for a reason. See the comment after Theorem III.2.7. IfA is indeed

injective onΣs, then the onlys-sparse vector that satisfies the equationAz= y is the original

signalz0. So we can consider to solve the followingℓ0 minimization problem:

min‖z‖0 s.t.Az= y. (P0)

This ℓ0 minimization has a unique solutionx0 providedA is injective onΣs. But this is not the

end of the story because this minimization problem is considered to be NP hard in general and

not numerically feasible (see section 9.2.2 in [7]). Indeed, to solve this problem we need to fix

a supportT, and then see if there is a solution forAz= y wherez is supported onT. Since there

are
(d

s

)
many choices forT, this is computationally expensive.

11



III.2.2 ℓq minimization, 0< q≤ 1

Main ideas of Basis Pursuit

Supposez0 is s-sparse. S ince the problem (P0) is not numerically feasible, one may wish to

find a different approach. At first glance, one may consider solving:

min‖z‖2 s.t.Az= y. (III.2)

This is very efficient because we only need to solve a least squares problem, but it generally

doesn’t give us the sparse signal, as illustrated in Figure III.1(a). The solution of problem

(III.2) is the first point at which thel2 ball meets the hyperplaneAx= y during its expansion.

Almost surely, this point is not going to lie in any low-dimensional coordinate subspace. As this

suggests, we need a “ball” that is more “pointy” towards the axes. Thus thel1 ball is considered

for this purpose. As we can see in Figure III.1(b), the geometry of the l1 ball lends itself to

detecting the sparsity.

Therefore, Candes, Tao, and Romberg proposed a Basis Pursuit (BP) method which relaxes

ℓ0 minimization toℓ1 minimization [8, 9]:

min‖z‖1 s.t.Az= y. (P1)

Candes and Tao published a series of papers onℓ1 minimization [8–10] and proved that random

matrices can recover sparse signals with very high probability. This ℓ1 minimization is a convex

problem, so we are able to solve it using linear programming with reasonable efficiency [11].

Moreover, it has nice stability features which we will mention in the next section. Overall, the

ℓ1 minimization works well because of its good balance betweenstability and efficiency.

12



Az = y

z0

z
∗

(a)

Az = y

z
∗
= z0

(b)

Figure III.1: The geometry ofℓ2 andℓ1 minimizations.

Main theorems of Basis Pursuit

Candes and Tao proved that ifA satisfies a certain quantitative property, then solving (P1) is

equivalent to solving (P0) [10]. They showed that under a condition stronger than NSP0, the

minimizer of problem (P1) is the original sparse signal and that, the recovery is stable.

Definition III.2.1 (Restricted Isometry Property (RIP) [9]). A matrix A has RIP if there exists

0< δ < 1 such that

(1−δ )‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1+δ )‖z‖2
2 (III.3)

holds for anyz∈ Σk. The smallestδ that satisfies (III.3) is called theRestricted Isometry

Constant(RIC) of A, denoted asδk(A) or sometimesδk when it is not ambiguous.

RIP essentially requires that every set of columns with cardinality less than or equal tok

approximately behaves like an orthonormal system. The smaller δk is, the betterA behaves.

For example,δ1 = 0 if and only if every column ofA has unit norm. The ideal situation is

13



whenδk = 0, which is almost impossible for bigk sinceA has far fewer rows than columns.

Discussions about RIP related to random matrices will be further made in Theorem III.2.5.

RemarkIII.2.2. Note that RIP withδ2s < 1 implies NSP0. On the other hand, if NSP0 holds,

then by compactness ofΣ2s∩B with B being the unit ball, we have

α2s‖z‖2
2 ≤ ‖Az‖2

2 ≤ β2s‖z‖2
2, for all z∈ Σ2s (III.4)

holds forz∈ Σ2s, whereα2s,β2s > 0. This essentially meanscA has RIP withδ2s for some

scalec. Indeed, choosec such thatc2 =
2

α2s+β2s
and thencA will have RIP withδ2s(cA) =

β2s−α2s

β2s+α2s
. We can rescale our measurement matrix becausecAz0 = cy is equivalent toAz0 = y.

As discussed earlier, we wish the reconstruction map, in this case, theℓ1 minimization,

to be stable. Candes, Romberg and Tao showed in [9] that a version of Basis Pursuit indeed

approximately recovers signals contaminated with noise. Obviously (P1) no longer recovers the

signal if there is noise, so it is modified slightly to allow for small perturbations. We consider

this new minimization problem:

min‖z‖1 s.t.‖Az−y‖2 ≤ ε. (P1,ε )

Theorem III.2.3. [Stability of BP [9]] Suppose that x0 is an arbitrary vector inRd, and A

satisfies RIP with

δ3s(A)+3δ4s(A)< 2.

Then for any perturbation e= Az0−y with‖e‖2 ≤ ε, any solutioñz to(P1,ε ) satisfies

‖z̃−z0‖2 ≤C1 · ε +C2
σs(z0)1√

s
(III.5)

For reasonable values ofδ4s, the constants in (III.5) are well behaved; e.g. C1 ≈ 12.04 and
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C2 ≈ 8.77 for δ4s = 1/5.

Candes sharpened Theorem III.2.3 in a later paper [12]. The new result only requires re-

strictions onδ2s instead ofδ4s.

Theorem III.2.4. [12] Suppose that z0 is an arbitrary vector inRd and the noise e= Ax0−y

satisfies‖e‖2 ≤ ε. If A satisfies RIP with

δ2s <
√

2−1≈ 0.4142, (III.6)

then any solutioñz to (P1,ε ) obeys

‖z̃−z0‖2 ≤C1 · ε +C2
σs(z0)1√

s
(III.7)

It is later shown that we can further loosen the inequality (III.6) and get better results.

We only needδ2s < 2/(3+
√

2) ≈ 0.4531 by Foucart and Lai (see Theorem III.2.9),δ2s <

3/(4+
√

6≈0.4652 by Foucart [13], andδ2s<2/(2+
√

5)≈0.4731 by Cai, Wang and Xu [14].

Very recently, the bound has been even improved [15]. It is natural to conjecture that we only

needδ2s < 1/2.

Pros and cons of Basis Pursuit

The beauty of Basis Pursuit is thatℓ1 norm is a convex function, so we can use linear program-

ming (LP) to solve (P1). The problem (P1) can be recast as the following linear program:

min
ti ,xi

d

∑
i=1

ti

with constraints

−ti ≤ zi ≤ ti, Az= y
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The set of linear constraints forms a convex polyhedron. If an optima exists, it will be

attained at a vertex of the polyhedron.

There are many ways to solve this LP. The simplex method and the interior point method are

the two major ones [16]. The best bound currently attained onthe runtime of an interior point

method isO(m2d1.5).

So farℓ1 minimization appears to be a very good approach, yet we cannot claim that the

compressed sensing problem has been solved. There are two major drawbacks. One is its

lack of efficiency. The other lies in the difficulty of deterministic construction of measurement

matrices that satisfy RIP with small RIC when the dimension of the signal is too large.

Therefore mathematicians have been exploring probabilistic solutions. Using tools from

random matrix theory, matrices constructed in certain random way can have RIP with high

probability.

Theorem III.2.5 (BP using random matrices [5]). Let0< δ < 1 and A be an m×d matrix that

is drawn according to a probability distribution satisfying the concentration inequality

P(|‖Az‖2
2−‖z‖2

2| ≥ δ‖z‖2
2)≤ exp(−c(δ )m), (III.8)

where c(δ ) is a constant depending only onδ . Then there exist constants c0(δ ),c1(δ ) > 0

depending onδ and the probability distribution such that A has RIP withδk with probability

higher than1−2exp(−c0(δ )m), provided that

m≥ c1(δ ) ·k · log(ed/k). (III.9)

For example, a Gaussian random matrix satisfies the concentration inequality (III.8).

Theorem III.2.5 directly implies that a randomly distributed matrix allows theℓ1 minimiza-

tion to stably recover sparse signals with high probability.
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Main ideas of ℓq minimization

The following minimization problem,ℓq minimization, where 0< q≤ 1, is a generalization of

Basis Pursuit,

min‖z‖q
q s.t.Az= y. (Pq)

It comes very naturally because the shape of theℓq ball is even more “pointy”, looking very

much like a star, which is in favor of finding sparse solutions. Another intuition forℓq min-

imization is its attempt to approximate the sparsity‖z‖0. Observe that the sparsity‖z‖0 of a

given vector can be approximated by theq-th power of itsℓq quasinorm :

‖z‖q
q =

d

∑
i=1

|zi|q
q→0−→

d

∑
i=1

1{zj 6=0} = ‖z‖0.

It is worth pointing out that‖ · ‖q
q induces a metric onRd even if it is not a norm itself.

The ℓq minimization can be more powerful in the sense that it allowsmore matrices to be

used for reconstructing sparse signals because of its geometry, but so far there is not a good

algorithm to solveℓq minimization. However, studying this topic from a theoretical perspective

still offers benefit.

Similar to Basis Pursuit, when there is noise or the signal isalmost sparse, we use the

following minimization:

min‖z‖q
q s.t.‖Az−y‖ ≤ ε (Pq,ε )

Main theorems of ℓq minimization

In section III.2.2 we introduced RIP and stated thatℓ1 minimization gives us stability ifA

satisfies RIP with small RIC. Now we are going to introduce another property ofA that allows

exact reconstruction viaℓq minimization. Sinceℓq minimization is a generalization, all the

theorems aboutℓq minimization here apply to Basis Pursuit as well.
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Definition III.2.6 (Null Space Property forℓq minimization [5]). A matrix A has Null Space

Property relative toℓq with orders if

‖vT‖q
q < ‖vTc‖q

q, for ∀ v∈ kerA\{0},∀ index setT such that|T| ≤ s (NSPq)

In fact, a simple argument using the compactness of the intersection of kerA and the unit

ball shows that NSPq of orders is equivalent to the following [5]:

There existsc satisfying 0< c< 1 such that

‖vT‖q
q ≤ c‖vTc‖q

q, for ∀ v∈ kerA,∀ index setT such that|T| ≤ s (NSP′
q)

The smallestc that satisfies the last inequality is called theNull Space Constant (NSC).

The second version of the Null Space Property is what we will use later.

Theorem III.2.7. [Exact recovery viaℓq minimization [5]] NSPq is a necessary and sufficient

condition for exact reconstruction of all s-sparse vectorsvia (Pq).

This theorem characterizes the exact recovery of sparse signals from noiseless measure-

ments viaℓq minimization. Recalling thatΣ2s∩kerA = {0} is a necessary and sufficient con-

dition for unique recovery via (P0), so it is very natural for us to call it NSP0 in order to be

consistent with Theorem III.2.7.

In fact, NSPq implies something stronger than exact reconstruction of sparse signals via

(Pq). It implies thatℓq minimization is stable with respect to compressible signals.

Theorem III.2.8 (Stability of ℓq minimization with respect to compressible signals [5]). If A

satisfies NSPq, then for any vector z0 ∈ Rd,

‖z̃−z0‖q ≤Cσs(x0)q,
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wherez̃ is any minimizer from (Pq). The constant C depends on s,q andkerA.

In section III.2.2, we learned that RIP gives stability of Basis Pursuit with respect to both

measurement noise and compressible signals. It turns out this can be generalized toℓq mini-

mization. Consider the version of RIP in (III.4), and letγk = β 2
k /α2

k , then we have:

Theorem III.2.9 (Stability of ℓq minimization [17] via RIP). If A satisfies (III.4) such that

γ2t −1< 4(
√

2−1)(
t
s
)1/q−1/2, for some integer t≥ s,

then any solutioñz of (Pq,ε ) satisfies

‖z̃−z0‖2 ≤C
σs(x)q

t1/q−1/2
+Dε.

In the case whenq= 1, if we convert the RIP in (III.4) to the standard RIP, then Theorem

III.2.9 implies thatδ2s < 0.4531 is sufficient to give BP stability, hence this is an improvement

compared to Theorem III.2.4.

Recently, Sun [18] has made a connection between NSPq and NSP0. It says that NSP0 can

imply NSPq for some 0< q< 1.

Theorem III.2.10. [18] If A is an m×d matrix with m≤ d and2s≤ m, then A satisfies NSP0

is equivalent to A has NSPq with order s for some0< q< 1.

We discussed that NSP0 is a necessary condition for recovery in section III.2.1. Theorem

III.2.10 combined with Theorem III.2.8 indicates this necessary condition is in fact sufficient to

stably reconstruct a sparse signal viaℓq minimization for someq with respect to compressible

signals. This is quite interesting.

Moreover, the following theorem says something even stronger.
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Theorem III.2.11. [18] Let m,d and s be integers with2s≤ m≤ d, A be an m× d matrix

satisfying RIP withδ2s(A) ∈ (0,1). Let z0 be any vector inRd and e= Az0−y be the error in

measurement such that‖e‖2 ≤ ε. Then if q∈ (0,1) satisfies1 a(q,δ ∗)< δ ∗, we get any solution

z̃ of (Pq,ε ) obeys

‖z̃−z0‖2 ≤C0s1/2−1/qσs(z0)q+C1ε. (III.10)

C0,C1 are positive constants independent onε,z0 and s.

Notice that the assumption in Theorem III.2.11 is equivalent to NSP0 due to Remark III.2.2

if we allow to rescale the matrixA. This means that injectivity ofA on Σs, which is a nec-

essary condition to recover alls-sparse vectors, is in fact sufficient for stable recovery ofℓq

minimization for someq. This is quite surprising.

These two theorems above help us understand the relationship between NSP0 and NSPq,

and henceℓ0 andℓq minimization as well. The stability result here is especially interesting. The

fact that the weakest condition can provide stability ofℓq minimization implies that somehow

ℓq minimization is self-stable. This motivates further work on the stability ofℓq minimization,

which leads to the majority of this dissertation. Before we continue with the stability results,

we need to introduce more algorithms and another property ofmeasurement matrices.

III.2.3 Orthogonal Matching Pursuit and other greedy approaches

Main idea and description

Another approach to Compressed Sensing is Orthogonal Matching Pursuit (OMP), which is a

very different approach from BP. OMP calculates the supportof z0 first. Once the support is

fixed, it then computes the coordinates on the support by computing the pseudo-inverse of the

measurement matrix restricted on the support.

1For the definitions ofδ ∗ anda(q,δ ), refer to Theorem III.3.3.
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The first two approaches state that solving some specific problems (P1, Pq) can recover a

sparse signal, but it is not straightforward to see how one can actually implement these ap-

proaches. For (P1), we convert it to a Linear Programming problem, and for (Pq), we still do not

have a good algorithm. Unlike these two methods, OMP gives a direct and detailed procedure

to reconstruct the signal.

Algorithm of OMP [19]:

Input:

• An m×d measurement matrixA;

• An m dimensional measurement vectory (coming fromy= Az0);

• The sparsity levels of the original signal.

Output:

• An estimatẽz∈ R
d for the original signal;

• A setTs containings elements from{1,2, · · · ,d} (support);

• An m dimensional residualrs.

Procedure:

1) Initialize the residualr0 = y, the index setT0 = /0, and the iteration counteri = 1.

2) Find the index of the coordinate which has the largest absolute value of the vectorA∗r i−1.

Denote it asti. If the maximum occurs for multiple indices, break the tie deterministically.

3) Augment the index setTi = Ti−1∪{ti} and update the residual:

zi = argminw‖y−ATi w‖2; r i = y−ATi zi.

The algorithm has onlys iterations and̃z is defined aszs.
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Main theorems and implementation

The advantage of OMP is its low computational cost. OMP is especially efficient when the

signal is highly sparse. But when the signal is not very sparse, OMP may be a poor choice

because the cost of orthogonalization increases quadratically with the number of iterations.

Now we want to ask the two major questions for every algorithmin compressed sensing.

What kind of matrices allows OMP to recover anys-sparse signals? Is OMP stable?

To answer the first question, we need to introduce a new property for matrices.

Definition III.2.12 (Coherence). Suppose the columns ofA are{a1, · · · ,ad} and normalized,

then the coherence ofA, denoted byµ(A), is:

µ(A) = max
i 6= j

|〈ai,a j〉|

Theorem III.2.13. [Exact recovery via OMP [5]]Let z0 ∈ Σs and A satisfy

µ(A)<
1

2s−1
. (III.11)

Then OMP exactly reconstructs z0 from the noiseless measurement y= Az0.

In addition to this deterministic result, Tropp and Gilbertclaim OMP can recover sparse

signals with high probability ifA is an admissible measurement matrix. For example, indepen-

dently selecting each entry ofA from the Gaussian distribution with mean 0 and variance 1/m

makes an admissible measurement matrix. For the precise definition of admissible measurement

matrices, see [19].

Theorem III.2.14. [OMP with admissible measurements [19]]Fix δ ∈ (0,0.36), and choose

m≥ Kslog(d/δ ) where K is an absolute constant. Suppose that z0 is an arbitrary s-sparse
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signal inRd, and draw a random m×d admissible measurement matrix A independently from

the signal. Then OMP can reconstruct the signal with probability exceeding1−δ .

It is quite interesting to compare this result to Theorem III.2.5. Although both are using

random matrices, they are fundamentally different. Theorem III.2.5 demonstrates that the mea-

surement matrix can have RIP for smallδ with high probability. Once the random measurement

matrix does satisfy RIP, it will recoverALL signals stably. Theorem III.2.14 shows that OMP

works with high probability for each fixed signal, i.e, for the same matrix, most of the sparse

signals can be recovered, some not. The latter is not uniformwith respect to signals.

The stability of OMP, unfortunately, is not quite yet established, because the strategies used

to prove Theorem III.2.13 and III.2.14 depend heavily on thefact that the input signals are

exactly sparse.

In light of the fact that BP and OMP present disjoint advantages and challenges, Needell

and Vershynin developed new greedy algorithms which combine BP and OMP [20, 21]. These

two methods are called Regularized Orthogonal Matching Pursuit and Compressive Sampling

Matching Pursuit. They bridge the gap between BP and OMP, andprovide good speed, stability

and uniform guarantees. But they ask for slightly stronger requirements.
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III.3 RIP, NSP and Coherence

We introduced RIP, NSP, and coherence respectively throughthe introduction of the algorithmic

approaches for compressed sensing in the last section. Thissection will summarize and further

discuss the connections between them.

III.3.1 RIP with δ2s < 1 implies NSP1

This statement seems obvious, because it is a result of Theorem III.2.4 and Theorem III.2.7. RIP

with δ2s<
√

2−1 implies the exact recovery of sparse signals viaℓ1 minimization by Theorem

III.2.4 (let ε = 0), and this exact recovery is equivalent to NSP1 by Theorem III.2.7.

However, we would like to provide a more direct and quantitative proof, which is inspired

by [12]. It turns out that the null space constant of a matrix is controlled by its restricted isometry

constant. This gives us one way to find matrices that have small NSC, eg. random matrices.

Moreover, the proposition below only needsδ2s <
2

3+
√

2
, which is the same constant given by

[17].

Proposition III.3.1. Suppose A satisfies RIP withδ2s <
2

3+
√

2
≈ 0.453, then A has NSPq

of order s with its null space constant c≤ (1+
√

2)δ2s

2(1−δ2s)
for any q∈ (0,1]. For instance, if

δ2s <
1

2+
√

2
≈ 0.3, then c< 1/2.

Proof: SupposeA has RIP withδ2s, we only need to show thatA has NSP1. Because it has been

shown in [22, 23] that NSP1 implies NSPq for 0< q< 1 with the same NSC.

Let v ∈ kerA\{0} andS be the index set of its largest components in absolute value.We

begin by dividingSc into subsets of sizes. S1 is the firsts largest components inSc, S2 is the
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nexts, and so on so forth.

‖AvS+S1‖2 = 〈AvS+S1,AvS+S1〉=−〈AvS+S1, ∑
j≥2

AvSj 〉= |〈AvS+S1, ∑
j≥2

AvSj 〉|

≤ |〈AvS, ∑
j≥2

AvSj 〉|+ |〈AvS1, ∑
j≥2

AvSj 〉|

≤ ∑
j≥2

δ2s‖vS‖2‖vSj‖2+ ∑
j≥2

δ2s‖vS1‖2‖vSj‖2

= δ2s(‖vS‖2+‖vS1‖2) ∑
j≥2

‖vSj‖2

The second inequality is due to Lemma 2.1 in [12].

It then follows that

‖vS‖2
2+‖vS1‖2

2 = ‖vS+S1‖2
2 ≤

1
1−δ2s

‖AvS+S1‖2
2 ≤

δ2s

1−δ2s
(‖vS‖2+‖vS1‖2) ∑

j≥2
‖vSj‖2 (III.12)

Setting
δ2s

1−δ2s
∑
j≥2

‖vSj‖2 = ξ , then (III.12) becomes

(‖vS‖2−ξ/2)2+(‖vS1‖2−ξ/2)2 ≤ ξ 2/2,

which implies

‖vS‖2−ξ/2≤ ξ/
√

2⇒‖vS‖2 ≤
(

1
2
+

1√
2

)
δ2s

1−δ2s
∑
j≥2

‖vSj‖2. (III.13)

Note

‖vSj+1‖2 ≤ s1/2‖vSj+1‖∞ ≤ s−1/2‖vSj‖1,

and thus

∑
j≥2

‖vSj‖2 ≤ s−1/2 ∑
j≥1

‖vSj‖1 ≤ s−1/2‖vSc‖1. (III.14)
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It follows from (III.13) and (III.14) that

‖vS‖1 ≤
√

s‖vS‖2 ≤
(1+

√
2)δ2s

2(1−δ2s)
‖vSc‖1.

(1+
√

2)δ2s

2(1−δ2s)
needs to be less than 1 in order to achieve NSP1, which requiresδ2s<

2

3+
√

2
.

III.3.2 NSP0 is equivalent to RIP with δ2s < 1

The equivalence between NSP0 and RIP withδ2s(A)< 1 is proved in Remark III.2.2 if we allow

rescaling of the matrix.

III.3.3 Incoherence implies NSP1

To compute the RIC of a matrix is not an easy task. One way to computeδk(A) is to study the

extremal eigenvalues ofA∗
TAT for every index setT whose cardinality is less thank, which is

not computationally feasible. It is just as hard to test if a matrix has NSP, though there is some

numerical test of NSP available [24]. Coherence, on the other hand, is very easy to compute.

A desirable feasure for a measurement matrix to have is smallcoherence (which we call,inco-

herence), as suggested by Theorem III.2.13. Therefore, one idea is to see if incoherence is a

sufficient condition for RIP or NSP.

Intuitively, the smaller the coherence is, the more spread out the columns ofA are, as vec-

tors inRd. This lets the measurement vectory extract as much information as possible from

sampling.

Theorem III.3.2. [5] Suppose that the m×d matrix A has a coherence satisfying

µ(A)<
1

2s−1
, (III.15)

26



then the matrix A satisfies NSP1 of order s.

Combining with Theorem III.2.13, we conclude that (III.15)is a sufficient condition for

exact recovery of sparse signals from noiseless measurements via both Basis Pursuit and OMP.

It is natural to ask whether small coherence implies RIP withδ2s being small enough. If

the answer is yes, we would be able to determine if a measurement matrixA can provide stable

recovery viaℓ1 minimization by computing the coherence ofA. However, no satisfactory answer

has yet been given.

III.3.4 NSP0 is equivalent to NSPq for some0< q< 1

Let’s go back to Theorem III.2.10 and give a complete versionof it.

For 0< q≤ 1 andδ ∈ (0,1), define

a(q,δ ) = inf
0<r0<1

max

{
1+ r0δ

(1+ rq
0δ q)1/q

, sup√
2(1−r0)δ/2≤y≤1

2y

(1+2−q/2y2+q)1/q
, (III.16)

sup√
2(1−r0)δ/2≤y≤1

3y

(1+y)1/q
,sup

1≤y

2y

(1+y)1/q

}

Theorem III.3.3. Let q be a positive number in(0,1], m,d and s be integers with2s≤ m≤ d,

A be an m×d matrix withδ2s(A) ∈ (0,1), and set

δ ∗ :=

(
1−δ2s(A)
1+δ2s(A)

)1/2

Then A has null space property of order s with respect toℓq, with a constant a(q,δ ∗)/δ ∗, i.e.,

‖vT‖q ≤ a(q,δ ∗)/δ ∗‖vTc‖q, for all x ∈ kerA (III.17)

If a(q,δ ∗)/δ ∗ < 1, then (III.17) implies the regular NSPq of orders. This inequality admits

27



a certain range ofq.

III.3.5 NSP1 implies NSPq for any 0< q< 1

Since the geometry of theℓq ball makes it easier to detect sparse signals than theℓ1 ball, it is

reasonable for us to believe that NSPq is a weaker condition than NSP1. This turns out to be

true.

Proposition III.3.4. [5] Define the set of reconstruction exponents

Qs(A) := {q∈ (0,1] : x0 is the unique minimization of (Pq) for every x0 ∈ Σs},

or by Theorem III.2.7,Qs(A) = {q ∈ (0,1] : A has NSPq}, then the setQs(A) is a - possibly

empty - open interval(0,q∗s(A)) if q∗
s(A)< 1; or (0,1] if q∗

s(A) = 1.

From the proof of this proposition, which we omit, we will seeNSPq implies NSPp if

q ≥ p ≥ 1, hence NSP1 implies NSPq for any 0< q< 1. Moreover, the set of reconstruction

exponents is an open set in (0,1]. So ifA satisfies NSPq, thenA actually satisfies NSPp for p

slightly bigger thanq, which is interesting.

III.3.6 Summary

Finally, we summarize the relationships among the conditions we have discussed with a flow

chart in Figure III.2.
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RIP: δ2s <
√

2−1 RIP:δ2s < 1 NSP0

µ(A) < 1/(2s−1) NSP1 NSPq,∀ 0< q< 1

NSPq, for some 0< q< 1

Figure III.2: The relationships among RIP, NSP and coherence.

III.4 Contributions

III.4.1 A necessary and sufficient condition for stability of ℓq minimization

We will state another stability result in this section. Unlike other stability results in the previ-

ous sections, this does not require the RIP condition. Moreover, we propose a necessary and

sufficient condition for stability ofℓq minimization.

Recall the second version of the null space property: There exists 0< c< 1 such that

‖vT‖q
q ≤ c‖vTc‖q

q, for ∀ v∈ kerA,∀ index setT such that|T| ≤ s (NSP′
q)

Theorem III.4.1 (Stability of ℓq minimization via NSP). A has NSPq of order s is a necessary

and sufficient condition for stability ofℓq minimization using A as the measurement matrix, i.e.

given any vector z0 in Rd and the measurement vector y such that‖Az0−y‖2 ≤ ε, we have

‖z̃−z0‖q ≤C1σs(z0)q+C2d1/q−1/2ε

wherez̃ is any minimizer of (Pq,ε ). For the value of constants, please see(III.24).

This theorem also appeared as a corollary in [25]. The significance of Theorem III.4.1 is

that, using NSPq as a bridge, we get
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Theorem III.4.2. If ℓq minimization can exactly reconstruct any s-sparse signal from its noise-

less measurements via (Pq), then it can stably recover any compressible signal from its per-

turbed measurement via (Pq,ε ).

Obviously, exact recovery of sparse vectors from its noiseless measurement is necessary to

achieve stability. The above theorem is saying that it is in fact sufficient, which is quite sur-

prising. So theℓq minimization method gets stablility for free, that is, ifℓq minimization can

recover sparse signals from its noiseless measurements, then it will be stable. Thus, fixing the

measurement matrix, eitherℓq minimization fails for some noiseless sparse signals, or itper-

forms well when measurements are corrupted and signals are not exactly sparse. Therefore we

don’t need to worry about theℓq minimization method in terms of stability, since if it can re-

cover sparse signals, then it can also approximately recover compressible signals with perturbed

observations.

Before proving Theorem III.4.1, we need to prove a lemma, which is essential in the proof.

Lemma III.4.3. Suppose A is an m×d matrix where m≤ d, then any vector h∈ Rd can be

decomposed as h= a+η with a∈ kerA, η ⊥ kerA, and‖η‖2 ≤ 1
sA
‖Ah‖2, where sA is the

smallest positive singular value of A.

Proof. Using the singular value decomposition,A=UΣV∗, whereU is anm×munitary matrix

whose columns areu1, · · · ,um, Σ is anm×d diagonal matrix whose nonzero diagonal entries

ares1, · · · ,sr in descending order, andV is ad×d unitary matrix whose columns arev1, · · · ,vd.

Then for any vectorx∈ Rd.

Ax=
r

∑
i=1

si〈vi ,x〉ui. (III.18)

Since{vi}d
i=1 is an orthogonal basis forRd, h= ∑n

j=1〈v j ,h〉v j .
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Also, one can prove that

a :=
d

∑
j=r+1

〈v j ,h〉v j ∈ kerA andη :=
r

∑
j=1

〈v j ,h〉v j ⊥ kerA

Indeed, by (III.18),A(∑d
j=r+1〈v j ,h〉v j) = ∑r

i=1si〈vi ,∑d
j=r+1〈v j ,h〉v j〉ui = 0. Also, {vi}d

i=r+1

forms a basis for kerA, so〈∑r
j=1〈v j ,h〉v j ,vi〉 = 0 for everyi = r +1, · · · ,d ⇒ ∑r

j=1〈v j ,h〉v j ⊥

kerA.

So

‖Ah‖2
2 =

r

∑
i=1

s2
i 〈vi ,h〉2 ≥ s2

r

r

∑
i=1

〈vi ,h〉2 = s2
r ‖η‖2

2 := s2
A‖η‖2

2

Proof of Theorem III.4.1: Let h= z̃−z0, so

‖Ah‖2 = ‖Az̃−Az0‖2 ≤ ‖Az̃−y‖2+‖y−Az0‖2 ≤ 2ε. (III.19)

Sincez̃ is a minimizer,

‖z0,T‖q
q+‖z0,Tc‖q

q = ‖z0‖q
q ≥ ‖z̃‖q

q = ‖h+z0‖q
q = ‖hT +z0,T‖q

q+‖hTc +z0,Tc‖q
q

≥ ‖z0,T‖q
q−‖hT‖q

q+‖hTc‖q
q−‖z0,Tc‖q

q.

This is true for any supportT. If we chooseT such thatσs(z0)q = ‖z0,Tc‖q, then we have

‖hTc‖q
q ≤ ‖hT‖q

q+2σs(z0)
q
q. (III.20)

Using Lemma III.4.3, we decomposeh ash= a+η wherea∈ kerA and

‖η‖2 ≤
1

νA
‖Ah‖2. (III.21)
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It follows that

‖hT‖q
q = ‖aT +ηT‖q

q ≤ ‖aT‖q
q+‖ηT‖q

q ≤ c‖aTc‖q
q+‖ηT‖q

q

≤ c‖hTc‖q
q+c‖ηTc‖q

q+‖ηT‖q
q ≤ c‖hTc‖q

q+‖η‖q
q,

which gives

‖hT‖q
q ≤

2c
1−c

σs(z0)
q
q+

1
1−c

‖η‖q
q. (III.22)

Eventually, from (III.20) and (III.22), we get the estimate

‖h‖q
q = ‖hT‖q

q+‖hTc‖q
q ≤ 2‖hT‖q

q+2σs(z0)
q
q

≤ 4c
1−c

σs(z0)
q
q+

2c
1−c

‖w‖q
q+

2
1−c

‖η‖q
q+2σs(z0)

q
q

≤ 2(1+c)
1−c

σs(z0)
q
q+

2
1−c

‖η‖q
q.

It follows that

‖h‖q ≤ 21/q−1/2(
2(1+c)

1−c
)1/qσs(z0)q+21/q−1/2(

2
1−c

)1/q‖η‖q. (III.23)

Using inequalities (III.19), (III.21), and‖η‖q ≤ d1/q−1/2‖η‖2, we get

‖h‖q ≤ 21/q−1/2(
2(1+c)

1−c
)1/qσs(z0)q+21/q−1/2(

2
1−c

)1/qd1/q−1/2

νA
2ε

=
1√
2
(
4(1+c)

1−c
)1/qσs(z0)q+(

4
1−c

)1/q 2√
2ν2

A

d1/q−1/2ε (III.24)

In view of Theorem III.3.2, we get the following corollary.

Corollary III.4.4 (Stability ofℓq minimization via incoherence). If A has small coherence such
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that

µ(A)<
1

2s−1
,

then given any vector z0 ∈Rd and the measurement vector y such that‖Az0−y‖2 ≤ ε, we have

‖z̃−z0‖q ≤C1σs(z0)q+C2d1/q−1/2ε,

wherez̃ is any minimizer of (Pq,ε ).

As mentioned earlier, it is very easy to compute the coherence of a matrix. Therefore, this

corollary is an easy way to test if a deterministic measurement matrixA can provide stability.

At the same time, Sun [26] proposed another condition, thesparse approximation property,

that can stably recovery compressible signals from its noisy measurements viaℓq minimization.

This property turns out to be basically equivalent to the null space property.

III.4.2 Recovery usingF-minimization and NSPF

Main idea

Inspired byℓq minimization, we want to use a general functionF to serve as a “norm”, and

recover sparse signals by minimizing thisF function. One motivation of this is to find a function

whose minimization problem can be solved by a feasible algorithm.

Definition III.4.5. Let F(x) : Rd → R+∪{0} satisfy the following properties:

(i) Subadditivity:F(x+y)≤ F(x)+F(y);

(ii) If supp(x)∩supp(y) = /0, thenF(x+y) = F(x)+F(y);

(supp(x) is the index set on whichx does not vanish.)

(iii) F(-x)=F(x).

thenF is called a recovery cost function.
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We wish to recover the original sparse signal by solving the following problem:

minF(z) s.t.Az= y (PF )

Similar to theℓq minimization, we will give the null space property forF-minimization,

and likewise, this NSP is equivalent to exact reconstruction of sparse signals from noiseless

measurements viaF-minimization.

Definition III.4.6. [Null space property for F-minimization]A matrix A has the null space

property relative toF with orders if

F(vT)< F(vTc), for ∀ v∈ kerA\{0},∀ |T| ≤ s (NSPF )

Theorem III.4.7. NSPF is a necessary and sufficient condition for exact reconstruction of any

s-sparse vector x via PF .

Proof. The proof is similar to theℓ1 version. SupposeA satisfies NSPF , let z 6= z0 andAz= Az0,

F(z0) = F(z0−zT +zT)≤ F(z0−zT)+F(zT) = F((z0−z)T)+F(zT)

< F((z0−z)Tc)+F(zT) = F(−zTc)+F(zT) = F(zTc)+F(zT) = F(z)

Hence the solution of (PF ) is unique and it isz0.

For the other direction, pick anyv ∈ ker(A)/{0}, |T| ≤ s. By assumption, the solution of

(PF ) with y= AvT is unique. NoticeA(−vTc) = AvT and−vTc 6= vT , soF(vT) < F(−vTc) =

F(vTc) since onlyvT minimizeF(z).

If F(x) = ‖x‖q
q, this is exactlyℓq minimization.

It is not easy to establish stability forF-minimization just using NSPF , because in order

to achieve robustness, it is essential to getF(vT) ≤ cF(vTc) for some 0< c < 1 from NSPF .
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However, this can not be achieved unlessF has the property such thatF(av) =CF(v) whereC

is a constant depending ona.

Properties of a recovery cost function

Gribonval has some discussions in [22] about the propertiesof recovery cost functions. In this

section, we will see a recovery cost function is actually a sum of subadditive functions defined

onR.

Let {ek}d
k=1 be the canonical basis ofRd, and we can writex= ∑d

k=1xkek. Then

F(x) = F(
d

∑
k=1

xkek) =
d

∑
k=1

F(xkek)

since all of thexkek have disjoint support.

Define fk(t) = F(tek), t ∈ R,k= 1, . . . ,n. ThenF(x) = ∑n
k=1 fk(xk).

Furthermore, from the properties ofF, we can get

fk(t)≥ 0, fk(−t) = fk(t), fk(0) = 0 and fk(t +s)≤ fk(t)+ fs(t). (III.25)

On the other hand, ifF(x) = ∑d
k=1 fk(xk) with fk(t) satisfying (III.25), thenF is a recovery

cost function. So we getF(x) is a recovery cost function if and only ifF(x) = ∑n
k=1 fk(xk) with

fk(t) satisfying (III.25).

If we put one more condition onF, that is,F(x) = F(y) if the coordinates ofy are just a

permutation of the coordinates ofx, then it is easy to getfi(t) = f j(t) := f (t),1≤ i, j ≤ n, so

that

F(x) =
n

∑
k=1

f (xk). for somef satisfying (III.25)

This condition is reasonable if we wish not to have a bias on certain coordinates.

In summary, we have the following theorem:
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Theorem III.4.8. [27] (i)F (x) is a recovery cost function if and only if F(x) = ∑n
k=1 fk(xk)

with fk(t) satisfying (III.25).

(ii) If F (x) = F(y) when y is a permutation of coordinates of x, then F(x) is a recovery cost

function if and only if F(x) = ∑n
k=1 f (xk) with f(t) satisfying (III.25).

III.4.3 Stability with respect to perturbed measurement matrix

We now consider a model that involves perturbation of both measurement matrixA and mea-

surement vectory. This has already been considered by works such as [28, 29]. The work [28]

considers the stability of Basis Pursuit when dealing with aperturbed sensing matrix of the form

A= B+E. It was shown that ifA satisfies a certain restricted isometry property, then letting ε

be a combined error to account for both measurement noiseeand matrix perturbationE allows

(P1,ε ) to stably recover approximately sparse signals:

Our model is slightly different. During the measurement process,A is slightly perturbed

so matrixB is actually used instead ofA. Thus the measurement should beu = Bz0. But in

practice, the true measurement vectory that we get also differs fromu because of an additive

noisee (i.e.,y= Bz0+e). Assuming we know that‖y−u‖2 ≤ ε, we will solve the minimization

problem (Pq,ε ) with matrix A becauseA is the matrix that we “think” generatesy, and we have

knowledge of.

The perturbationB−A of the measurement matrix can not be combined with the measure-

ment vector errorε since it is correlated with the signal of interest as we will have‖(B−A)z0‖2,

of which we have no control.

We will show thatℓq minimization is stable with respect to the perturbation on the measure-

ment matrix, but again, using the NSPq approach rather than RIP. Indeed, NSPq is a weaker

condition onA than RIP, so our result is stronger.

First we show that the set of all matrices that satisfy NSPq of orders is open in the operator
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norm topology (this result first appeared in [27]). This means that if A satisfies NSPq, then a

little perturbation onA is allowed becauseA+E will still have NSPq as long as‖E‖op is small

enough.

Theorem III.4.9 (Openness of NSPq). Let A be an m×d matrix that has NSPq of order s, then

there existsρ > 0 such that for every matrix B that has the same size as A and‖A−B‖op < ρ ,

B also has NSPq of order s. In fact,ρ <

(
1−c

2

)1/q

d1/2−1/qνA, where c is the NSC andνA is

the smallest nonzero singular value of A.

This result is interesting by itself. For example, suppose that we know thatA is a measure-

ment matrix that allows us to recover compressible signals stably, but because of the physical

constraints, we can only approximateA by a real physical measurement deviceB (e.g., the en-

tries of A are quantized), then we have confidence inB for the reconstruction as long as it is

sufficiently close toA.

Proof of Theorem III.4.9: Assume‖A−B‖op< ρ , ρ to be determined later.

Let b∈ kerB andT be any index set such that|T| ≤ s. By Lemma III.4.3,b= a+η where

a∈ kerA and‖Ab‖2 ≥ ν2
A‖η‖2. Thus

‖η‖2 ≤
1

νA
‖Ab‖2 =

1
νA

‖(A−B)b‖2 ≤
1

νA
ρ‖b‖2,

which implies

‖η‖q ≤ d1/q−1/2 1
νA

ρ‖b‖2 ≤ d1/q−1/2 1
νA

ρ‖b‖q. (III.26)

SinceA has NSPq, it follows that

‖aT‖q
q ≤ c‖aTc‖q

q wherec< 1. (III.27)
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Using the triangle inequality, (III.27) and (III.26), we get that

‖bT‖q
q ≤ ‖aT‖q

q+‖ηT‖q
q ≤ c‖aTc‖q

q+‖ηT‖q
q ≤ c‖bTc‖q

q+c‖ηTc‖q
q+‖ηT‖q

q

≤ c‖bTc‖q
q+‖η‖q

q ≤ c‖bTc‖q
q+

(
d1/q−1/2 1

νA
ρ‖b‖q

)q

= c‖bTc‖q
q+

(
d1/q−1/2 1

νA
ρ
)q

(‖bT‖q
q+‖bTc‖q

q),

from which we get

‖bT‖q
q ≤

c+ξ
1−ξ

‖bTc‖q
q, whereξ =

(
d1/q−1/2 1

νA
ρ
)q

.

In order forB to have NSPq, we need
c+ξ
1−ξ

< 1, which leads to

ρ <

(
1−c

2

)1/q

d1/2−1/qνA.

The following theorem shows thatℓq minimization is stable with respect to perturbations

on measurement matrices ifA satisfies NSPq. Moreover, it also includes the error generated by

measurement vectors or compressible signals, so it is a generalization of Theorem III.4.1.

Theorem III.4.10 (Stability of ℓq minimization with respect to perturbation on measurement

matrices). Let z0 be any vector inRd and A,B be two m×d matrices with A satisfying NSPq of

order s and A being full rank. Let the measurement vector y obey ‖y−Bz0‖2 ≤ ε. If z̃ is any

minimizer of the minimization problem:

min‖z‖q
q s.t.‖Az−y‖2 ≤ ε, (Pq,ε )
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then

‖z̃−z0‖q ≤C1σs(z0)q+C2d1/q−1/2ε +C3d1/q−1/2‖(A−B)‖op‖z0‖2.

See (III.34, when A= B) for the evaluation of the constants.

This shows that NSPq, as a necessary condition, is sufficient for stability ofℓq minimization

with respect to perturbations on measurement matrices. Again, using NSPq as a bridge, we

can see thatℓq minimization also gets this kind of stability for free, thatis, if ℓq minimization

can recover anys-sparse signal from its noiseless measurements, then it canrecover any signal

stably with respect to the measurement error, compressiblesignals, and perturbations on the

measurement matrices.

Proof of Theorem III.4.10: The proof is very similar to the proof of Theorem III.4.1. The

key is to find a vector that’s feasible in (Pq,ε ) and close toz0 sincez0 is no longer feasible, and

Lemma III.4.3 will be used again to generate the term‖(A−B)z0‖2. Let h= z̃−z0, so

‖Ah‖2 = ‖Az̃−Az0‖2 ≤ ‖Az̃−y‖2+‖y−Bz0‖2+‖Bz0−Az0‖2 ≤ 2ε +‖(A−B)z0‖2. (III.28)

SinceA has full rank, there existsw such thatAw= (B−A)z0. Then‖A(z0+w)− y‖2 =

‖Bz0−y‖2 ≤ ε, which meansz0+w is feasible in problem (Pq,ε ). So

‖z0,T +wT‖q
q+‖z0,Tc +wTc‖q

q = ‖z0+w‖q
q ≥ ‖z̃‖q

q = ‖h+z0‖q
q = ‖hT +z0,T‖q

q+‖hTc +z0,Tc‖q
q

≥ ‖z0,T +wT‖q
q−‖hT −wT‖q

q+‖hTc‖q
q−‖z0,Tc‖q

q,

which gives

‖hTc‖q
q ≤ ‖hT −wT‖q

q+‖z0,Tc‖q
q+‖z0,Tc +wTc‖q

q ≤ ‖hT‖q
q+2‖z0,Tc‖q

q+‖w‖q
q.
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This is true for any supportT. If we chooseT such thatσs(z0)q = ‖z0,Tc‖q, then we have

‖hTc‖q
q ≤ ‖hT‖q

q+2σs(z0)
q
q+‖w‖q

q. (III.29)

Let h= a+η be the decomposition forh as in proof of Theorem III.4.1. It follows from the

proof of Theorem III.4.1 and (III.29) that

‖hT‖q
q ≤ c‖hTc‖q

q+‖η‖q
q ≤ c‖hT‖q

q+2cσs(z0)
q
q+c‖w‖q

q+‖η‖q
q,

which gives

‖hT‖q
q ≤

2c
1−c

σs(z0)
q
q+

c
1−c

‖w‖q
q+

1
1−c

‖η‖q
q. (III.30)

Eventually, from (III.29) and (III.30), we get the estimate

‖h‖q
q = ‖hT‖q

q+‖hTc‖q
q ≤ 2‖hT‖q

q+2σs(z0)
q
q+‖w‖q

q

≤ 4c
1−c

σs(z0)
q
q+

2c
1−c

‖w‖q
q+

2
1−c

‖η‖q
q+2σs(z0)

q
q+‖w‖q

q

≤ 2(1+c)
1−c

σs(z0)
q
q+

2
1−c

‖η‖q
q+

1+c
1−c

‖w‖q
q.

It follows that

‖h‖q ≤ 31/q−1/2(
2(1+c)

1−c
)1/qσs(z0)q+31/q−1/2(

2
1−c

)1/q‖η‖q+31/q−1/2(
1+c
1−c

)1/q‖w‖q.

(III.31)

‖η‖q is estimated using (III.28) and

‖η‖2 ≤
1

νA
‖Ah‖2. (III.32)

40



Hence, it only remains to estimate‖w‖q. Notice there are many choices forw, and by Lemma

III.4.3 again, we can choosew such that

‖w‖2 ≤
1

νA
‖Aw‖2 =

1
νA

‖(B−A)z0‖2. (III.33)

Substituting the inequalities (III.28), (III.32) and (III.33) into (III.31) and using‖η‖q≤d1/q−1/2‖η‖2,

we get

‖h‖q ≤ 31/q−1/2(
2(1+c)

1−c
)1/qσs(z0)q+31/q−1/2(

2
1−c

)1/qd1/q−1/2

νA
(2ε +‖(B−A)z0‖2)

+31/q−1/2(
1+c
1−c

)1/qd1/q−1/2

νA
‖(B−A)z0‖2

=
1√
3
(
6(1+c)

1−c
)1/qσs(z0)q+(

6d
1−c

)1/q 2√
3dν2

A

ε

+31/q−1/2
[
(

2
1−c

)1/q+(
1+c
1−c

)1/q
]

d1/q−1/2

νA
‖(A−B)z0‖2

≤ 1√
3
(
6(1+c)

1−c
)1/qσs(z0)q+(

6d
1−c

)1/q 2√
3dν2

A

ε +(
6d

1−c
)1/q 2√

3dν2
A

‖(A−B)z0‖2

≤ 1√
3
(
6(1+c)

1−c
)1/qσs(z0)q+(

6
1−c

)1/q 2√
3ν2

A

d1/q−1/2ε +(
6

1−c
)1/q 2√

3ν2
A

d1/q−1/2‖(A−B)‖op‖z0‖2

(III.34)
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CHAPTER IV

MORE CONTRIBUTIONS: COMPRESSED SENSING IN A DICTIONARY

A recent direction of interest in compressed sensing concerns problems where signals are

sparse in an overcomplete dictionaryD instead of a basis, see [22, 25, 30–32]. This is motivated

by the widespread use of overcomplete dictionaries in signal processing and data analysis.

Allowing the signal to be sparse with respect to a redundant dictionary adds a lot of flexibil-

ity and extends the range of signals significantly. Moreover, there may not be any sparsifying

basis, for example, many EEG signals are represented as time-frequency atoms in a redundant

dictionary of Gabor wavelets.

We will formulate the problem in Section IV.1. In Section IV.2, we would like to get some

basic ideas of this problem for any reconstruction map, and list a few basic conditions for the

measurement matrixA and the dictionaryD. Subsequent sections focus on when the recon-

struction map isℓq minimization. Section IV.3 introduces some results of the behavior of the

restricted isometry property or the coherence ofAD under the condition thatD is incoherent.

Section IV.4 discusses the situation when we allow dictionaries to be coherent, which is a more

desirable feature. Some discussions about the null space property associated with dictionaries

are given in Section IV.4.1. We present a stability result whenA satisfies a modified null space

property, see Theorem IV.4.8. This is motivated by the work in [30]. Like in the basis case,

Section IV.4.3 concerns stability with respect to perturbations on the measurement matrices, as

well as dictionaries. We provide an extension of this to the case of sparsity with respect to a

redundant dictionary, see Theorem IV.4.10 whenA satisfies D-RIP, and Theorem IV.4.9 when

A satisfies a null space property only.
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IV.1 Problem formulation

Definition IV.1.1. We say a vectorz is s-sparse in a dictionaryD if

z∈ DΣs := {w∈ R
d : w= Dx for somex∈ Σs},

x is called a representation ofz in D if z= Dx.

Suppose we havez0 = Dx0, ans-sparse signal inD, and we want to recover this signal from

a small set of linear measurementsy= Az0 ∈ R
m. ThereforeA is a matrix of sizem×d, where

m is much smaller thand. The compressed sensing problem in dictionaries can be stated as

Knowing A and D a priori, how can we find a reconstruction map∆ from Rm to Rd, such

that ∆(ADx0) = z0, wherex0 is s-sparse.

In this problem, we are not only dealing with the measurementmatrixA, we are also explor-

ing how the dictionaryD affects the reconstruction of a signal that can be sparsely represented.

One way is to just letAD be the new measurement matrix and apply all the compressed sensing

results for the basis case toAD, however, one loses the information of the interplay between A

andD by doing that. So the idea is toexplore what conditions we should put onD in order to

find a good measurement matrixA. Here by “good”, we wantA to extract enough information

from z0 so that it can be recovered, and we want the number of measurements to be as small as

possible.

IV.1.1 Stability

As in the basis case, we need to consider measurement noise orsignals which are not exactly

sparse. We would like the reconstruction map to perform stably in the sense of (III.1). More

specifically, we will focus onℓq minimization. The goal of this chapter is to generalize the sta-

bility results under the null space property in Chapter III to compressed sensing in dictionaries
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since a basis is a particular kind of dictionary. As we progress in this chapter, we will also

consider perturbations on the measurement matrices, even dictionaries.

IV.1.2 Notations

Throughout this chapter,z0 ∈ Rd will be the signal that we are trying to recover from the linear

measurementsy∈Rm. We also cally the measurement vector. The signalz0 is sparse or almost

sparse in the dictionaryD, andD ∈ M (d,n) meaningD is a dictionary forRd of sizen. Let s

will be the sparsity level. In this chapter, when we say a signal is sparse, it is always sparse in a

dictionary, unless otherwise specified.

With A ∈ M (m,n) being the measurement matrix, the measurement vectory can be ex-

pressed asy= Az0+e, where‖e‖2 ≤ ε. Whenε = 0, there is no perturbation on the measure-

ments. The modely= Az0+e will be slightly modified in Section IV.4.3.

We also assumeq is a number such that 0< q≤ 1.
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IV.2 Basic conditions on the measurement matrixA and the dictionaryD

for any reconstruction map

IV.2.1 A necessary condition

For the case of a dictionary,A needs to be injective onDΣs for unambiguous recovery since our

signals are inDΣs and the reconstruction map only sees the measurementy.

Theorem IV.2.1. The following statements are equivalent:

(i) A is injective on DΣs.

(ii) A satisfies

DΣ2s∩kerA= {0}. (NSPD,0)

(iii) D (Σ2s∩ker(AD)) = {0}.

(iv) rankDT = rankADT , for any index set|T|= 2s.

Each of the four conditions above is necessary for any reconstruction map to successfully

reconstruct sparse signals.

Following the notation for the basis case, we sayA has NSPD,0 if DΣ2s∩ kerA= {0}, be-

cause it is equivalent to the injectivity ofA on DΣ2s.

Proof. (i)⇒(ii) Let z∈ DΣ2s∩kerA, soAz= 0 andz= Dx. Let x= x1+x2 be the sum of two

s-sparse vectors. SoADx1 = AD(−x2). By injectivity of A onDΣs, we getDx1 = D(−x2) ⇐⇒

z= 0.

(ii)⇒(iii) Let z∈ D(Σ2s∩ker(AD)), soz= Dx andADx= 0, x∈ Σ2s. That exactly means

z∈ DΣ2s∩kerA, hencez= 0 by assumption.

(iii)⇒(iv) We only need to show kerADT ⊂ kerDT . SupposeADTx′ = 0, if we let x∈ Rn

be the 2s-sparse vector who equals tox′ on T and vanishes onTc, thenADx= 0 ⇒ Dx ∈
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D(Σ2s∩ker(AD)) = {0}. So we getDx= 0 by assumption. That is,DTx′ = 0.

(iv)⇒(i) AssumeADx1 = ADx2 wherex1,x2 are boths-sparse. LetT be the support of

x1−x2 and assume|T|= 2s(if |T|< 2s, then just choose some index set who containsT and has

cardinality 2s). AD(x1−x2) = 0. Now if we letx′ be a 2s length vector who is just the truncate

of x1− x2 on T, then we haveADTx′ = 0. The assumption of (iv) tells us kerADT ⊂ kerDT ,

which meansDTx′ = 0. This is equivalent toD(x1− x2) = 0, so we getDx1 = Dx2, which

proves the injectivity.

We know injectivity ofA onDΣ2s is necessary. Once we have this property, we can find the

signalz0 by an exhaustive search, or equivalently, solving the following minimization problem:

min‖x‖0 s.t.ADx= y (PD,0)

If the signal has multiple sparse representations inD, we are no longer guaranteed to have

a unique solution of this problem. We may find several minimizersx1, · · · ,xk who all have

the same sparsity levelr, wherer ≤ s. NSPD,0 will guarantee all these minimizers are repre-

sentations ofz0, i.e. Dxi = z0, i = 1, · · · ,k. Since the signal itself, not the representation, is

what we care about, the above minimization problem actuallyuniquely determines the signal.

Summarizing the above we get the following theorem:

Theorem IV.2.2. A has NSPD,0 if and only if for every z0 ∈ DΣs, the minimizers of (PD,0) are

all representations of z0 in D, i.e.

if x∗ is a minimizer, then Dx∗ = z0 (IV.1)

For convenience, throughout this chapter, we will say a minimization problem has aunique

solution if (IV.1) is satisfied. Even if it actually has multiple solutions, it is unique in the sense
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that all solutions give the same signal underD.

IV.2.2 Conditions for the dictionary

If D is the identity matrix, this coincides with the canonical basis case. We know we can always

find A to satisfy NSP0 in this case. Now that there is a dictionary involved, the first question

to ask is with a redundant dictionary, can we still findA such thatA satisfies the necessary

condition NSPD,0.

We would first like to explore what kind of dictionaries will admit measurements matrices

that satisfy NSPD,0. Furthermore, how to find these admissible measurement matrices, and what

kind of conditions should we impose on them?

A signal always has more than one representations in a redundant dictionary, but a signal

that has sparse representations inD may only have exactly one sparse representation. A simple

argument will give us an equivalent condition to unique sparse representations:

Proposition IV.2.3. Every signal that has an s-sparse representation in D has only one sparse

representation if and only if D satisfies NSP0.

The question is “Do we want to require unique sparse representation onD?”

Let us start with a simple example:

ExampleIV.2.4. Let D = {e1,e2,e3,e4,e1}, where{ei}4
i=1 is the canonical basis inR4. We

want to recover all the 1-sparse signals in this dictionary.D doesn’t satisfy NSP0 for s= 1

because the first and the fifth columns are linearly dependent. Choose the measurement matrix

A= [e1+e4,e2+e4,e3]
∗. For anyz0 = Dx0 where‖x0‖0 = 1, solve the problem{w : ‖w‖0 =

1 andADw= ADx0}. There are two cases, ifz0 = tei, i = 2,3,4, then we getw is the vector

supported on theith coordinate with valuet, multiplying w by D we get exactlyz0; if z0 =

te1, then there are two minimizers:w= {t,0,0,0,0}T or {0,0,0,0, t}T, multiplied byD, both

solutions givez0.

47



This simple example shows that it is not important if we don’tget a unique sparse represen-

tation inD, as long as the algorithm gives us one of the representations, we still get our original

signal. This is the major difference between the dictionarycase and basis case.

On the other hand, requiring unique sparse representation on D can make our problem sim-

pler. One can imagine, ifD has property NSP0, which makesD injective on all thes-sparse

signals, then this is more or less reducing this new problem to the compressed sensing problem

in a basis withAD being the new measurement matrix, as the format of (PD,0) suggests.

We will show that ifD satisfies NSP0, there exists a matrixA such thatΣ2s∩ker(AD) = {0},

henceA satisfies NSPD,0 by using the equivalent condition (iii) in Theorem IV.2.1.

Theorem IV.2.5. Given a dictionary D, whose size is d×n, the following statements are equiv-

alent:

(i) Σ2s∩kerD = {0}, and there exists a linear mapping A: Rd → R2s and a reconstruction

map∆ : R2s → Rn such that∆(Az) = z, for each z that has an s-sparse representation in D.

(ii) There exists a matrix A with size2s×d, such thatΣ2s∩ ker(AD) = {0}. (In fact, the

proof shows that the probability of selecting such a matrix Ais 1.)

(iii) Σ2s∩kerD = {0}.

(iv) For any vector z that has an s-sparse representation in D, this sparse representation is

unique.

Indeed, the work in [33] suggests that requiringD to have NSP0 is a very reasonable as-

sumption because such kind of frames “fills up” the space of all frames.

Before proving Theorem IV.2.5, we need a few lemmas first.

Lemma IV.2.6. If a matrix M has size d×2s where d≥ 2s, then M is not full column rank

⇐⇒ for any matrix A whose size is2s×d, AM is not full rank.

Proof. (⇒) Say the columns ofM are α1,α2, ...,α2s, M is not full rank implies there exists
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c= {c1,c2, ...c2s} 6= 0 such thatc1α1+c2α2+ · · ·+c2sα2s= 0. ApplyingA to this equation we

getc1Aα1+c2Aα2+ · · ·+c2sAα2s= 0, which means the columns ofAM are linearly dependent,

henceAM is not full rank.

(⇐) By way of contradiction, supposeM is full rank, and without loss of generality, we can

assume the first 2s rows of M are linearly independent. ChooseA = [I2s| 0], whereI2s is the

identity matrix with size 2s. ThenAM equals the matrix obtained by extracting the first 2s rows

of M, which has full rank, but this contradicts to our original assumption.

Lemma IV.2.7. A matrix M has NSP0 if and only if every2s columns of M are linearly inde-

pendent.

This lemma is easy to prove and we are going to use it frequently.

Lemma IV.2.8. If Σ2s∩kerD = {0}, then for every d×2s submatrix of D, say D2s, det(AD2s)

as a polynomial of the entires of A (with size2s×d), is a nonzero polynomial.

Proof. By Lemma IV.2.7,Σ2s∩kerD = {0} impliesD2s has full rank, then by Lemma IV.2.6,

there existsA0 whose size is 2s×d, such thatA0D2s is full rank. This means det(A0D2s) 6= 0,

so det(AD2s) can not be constantly zero.

Proof of Theorem IV.2.5 (iii) ⇐⇒ (iv) is obvious, so we just need to show the equivalent of

(i), (ii), and (iii).

• (i)⇒(iii) is obvious.

• (iii)⇒(ii): define the setS = {A∈ M(2s,d) : Σ2s∩ ker(AD) = {0}}. We need to show
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S is not empty. LetS C be the complement ofS .

S
C = {A : There exist 2scolumns ofAD that are linearly dependent} (IV.2)

=
⋃

T={i1,i2,...,i2s}
{A : det(ADT) = 0} (IV.3)

= {A : ∏
T={i1,i2,...,i2s}

det(ADT) = 0} (IV.4)

The first equation holds because of Lemma IV.2.7. The second equation uses the fact that

(AD)T = A(DT).

Suppose by contradiction thatS C is the whole space, then for anyA, ∏T={i1,i2,...,i2s}det(ADT)

is a polynomial that’s constantly zero (the variables of this polynomial are the entries of

A). Since this is a product of polynomials, one of them must be azero polynomial. (This

is the property of integral domain.R is an integral domain makes the ring of polynomials

onR also an integral domain. [34]) This contradicts to Lemma IV.2.8.

• (ii)⇒(i): Let x ∈ Σ2s∩ kerD, so Dx = 0, henceADx= 0 as well, thereforex ∈ Σ2s∩

kerAD= {0}.

For the second part, let the reconstruction map be (PD,0), (ii) implies D(Σ2s∩kerAD) =

{0}. By Theorem IV.2.1 and Theorem IV.2.2, this map uniquely recovers the sparse

signals.
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IV.3 Incoherent dictionaries

Consider the following minimization problem when 0< q≤ 1:

min‖x‖q
q s.t.ADx= y. (PD,q)

Similar to the basis case, we want to explore under what condition solving (PD,0) is equiv-

alent to solving (PD,q), and we are seeking the uniqueness of this problem. Once again, by

uniqueness of (PD,q), we mean the minimizers of it are all representations ofz0 in D.

Moreover, when the measurement vectory is perturbed, we consider a slightly different

problem as usual:

min‖x‖q
q s.t.‖ADx−y‖2 ≤ ε. (PD,q,ε )

In order to solve this compressed sensing problem in dictionaries, one major way is to apply

all the reconstruction methods described in Chapter III to the matrixAD, as we can see from

(PD,q,ε). The work in [31] took this approach. They showed that if thedictionaryD has RIP,

thenAD also has RIP if we chooseA to be a random matrix.

Theorem IV.3.1. [31] Let D be a dictionary of size n inRd with RICδs(D). Let A be a random

matrix that satisfies the concentration inequality

P(|‖Av‖2
2−‖v‖2

2| ≥ ε‖v‖2
2)≤ 2exp(−cnε2/2), (IV.5)

and assume n≥Cδ−2(slog(n/s)+ log(2e(1+12/δ ))+ t) for someδ ∈ (0,1) and t> 0. Then

with probability at least1−exp(−t), the matrix AD has RIC

δs(AD)≤ δs(D)+δ (1+δs(D)). (IV.6)
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For the dictionaryD to satisfy RIP, essentially it cannot be too redundant, or cannot be too

coherent. In this section, we will explore how the coherenceof D controls the coherence ofAD.

Theorem IV.3.2. Suppose that the i0th and j0th columns of AD have the largest correlation,

i.e. µ(AD) equals the absolute value of inner product of its normalizedi0th and j0th columns,

then

µ(AD)≤ µ(D)+δ2IJ√
1−δ2I2

√
1−δ2J2

,

whereδ2 = δ2(A) is the RIC for A of order 2, and I,J are theℓ1 norm of the i0th and j0th

columns of D respectively.

Proof. We assume the columns ofD are normalized.µ(AD)=
1

‖ADei0‖2 · ‖ADej0‖2
|〈ADei0,ADej0〉|.

First we estimate the inner product ofADei0 andADej0:

|〈ADei0,ADej0〉|= |〈A(∑
k

dki0ηk),A(∑
k′

dk′ j0ηk′)〉| (Let Dei = ∑k dkiηk, i = i0, j0)

= |∑
k

∑
k′

dki0dk′ j0〈Aηk,Aηk′〉|

≤ | ∑
k=k′

|+ | ∑
k6=k′

|

≤ | ∑
k=k′

(dki0dk′ j0 +δ1|dki0dk′ j0|)|+ ∑
k6=k′

|dki0dk′ j0|δ2

≤ µ(D)+δ1 ∑
k=k′

|dki0dk′ j0|+δ2 ∑
k6=k′

|dki0dk′ j0|

≤ µ(D)+δ2∑
k

∑
k′
|dki0dk′ j0|

= µ(D)+δ2IJ,

where{ηk}d
k=1 is the canonical basis ofRd.
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Now we estimate the norm ofADei0, in a very similar fashion:

〈ADei0,ADei0〉= 〈A(∑
k

dki0ηk),A(∑
k′

dk′ i0ηk′)〉

= ∑
k

∑
k′

dki0dk′ i0〈Aηk,Aηk′〉

= ∑
k=k′

dkiodki0‖Aηk‖2+ ∑
k6=k′

dki0dk′i0〈Aηk,Aηk′〉

≥ ∑
k=k′

d2
ki0(1−δ1)− ∑

k6=k′
|dki0dk′ i0|δ2

= 1−δ1 ∑
k=k′

d2
ki0 −δ2 ∑

k6=k′
|dki0dk′i0| (∑k d2

ki0
= 1)

≥ 1−δ2∑
k

∑
k′
|dki0dk′i0| (δ1 ≤ δ2)

= 1−δ2I2

Recall that∑k d2
ki0

= 1 because each column in the dictionary is normalized.

Combining these two inequalities, we have the desired result.

Theorem IV.3.3. With the same notation in Theorem IV.3.2, ifµ(D) ≤ 1
2s−1

, then

δ2(A)≤
−b+

√
b2+4(4s2−2s)I2J2(1− (2s−1)2µ2)

2(4s2−4s)I2J2 ⇒ µ(AD) ≤ 1
2s−1

where b= 2µIJ(2s−1)2+ I2+J2,µ = µ(D).

Proof. From Theorem IV.3.2, if we can make

(2s−1)(µ(D)+δ2IJ)≤
√

1−δ2I2
√

1−δ2J2 (IV.7)

then we haveµ(D) ≤ 1
2s−1

. Square both sides of (IV.7) and move things around, we will get
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a quadratic inequality with respect toδ2:

(4s2−4s)I2J2δ 2
2 +(2µIJ(2s−1)2+ I2+J2)δ2+(2s−1)2µ2−1≤ 0. (IV.8)

The solution of (IV.8) isγ1 ≤ δ2 ≤ γ2 whereγ1,γ2 are the roots of the quadratic equation. The

only way to makeγ2 positive is to let(2s−1)2µ2−1< 0 which is exactlyµ <
1

2s−1
. Under

this condition, we get

γ2 =
−b+

√
b2+4(4s2−2s)I2J2(1− (2s−1)2µ2)

2(4s2−4s)I2J2

whereb= 2µIJ(2s−1)2+ I2+J2.

RemarkIV.3.4. Theorem IV.3.3 tells us that ifµ(D) <
1

2s−1
, then we can findA such that

µ(AD) <
1

2s−1
as well. This is quite interesting considering in Theorem IV.2.5, D having

NSP0 makes it possible to findA such thatAD has NSP0. It seems like all these nice properties

that we are requiring onA in the basis case are required by the dictionary matrix now.

Corollary IV.3.5. Suppose the columns of D have unitℓ2 norm (therefore I,J ≤
√

d), then

together with Theorem IV.3.2, we have another estimate ofµ(AD) which doesn’t involve I,J:

µ(AD)≤ µ(D)+δ2d√
1−δ2d

√
1−δ2d

.

Furthermore, we can get a result similar to Theorem IV.3.3 that doesn’t involve I,J:

If µ(D) ≤ 1
2s−1

, then

δ2(A)≤
−µ(2s−1)2−1+

√
(µ(2s−1)2+1)2+(4s2−4s)(1− (2s−1)2µ2)

d(4s2−4s)
,

54



impliesµ(AD)≤ 1
2s−1

, whereµ = µ(D).

The purpose to makeAD incoherent is obvious. If we regardAD as a measurement matrix in

the basis case, thenµ(AD) <
1

2s−1
allow both OMP and BP to exactly reconstruct the sparse

representationx0 (hencez0 too) from noiseless measurements. Moreover, by Corollary III.4.4,

the signal can be also stably recovered via BP when measurement noise is present.
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IV.4 Coherent dictionaries

One loses the information of the interplay betweenA andD if one just considerAD as a mea-

surement matrix, therefore making the compressed sensing problem in dictionaries less mean-

ingful. Moreover, as shown in the last section,AD being a nice measurement matrix requiresD

to be incoherent and not too redundant. We wish to be able to use very coherent or redundant

dictionaries.

IV.4.1 Null space property with dictionaries

Our goal is to develop a null space property with dictionaries in analogy to the null space

property for a basis, such that NSPD,0 is equivalent to the uniqueness of (PD,0), as already

shown in Theorem IV.2.2, NSPD,q is equivalent to the stable recovery of signals from noisy

measurements via (PD,q,ε ). However, things get more complicated in the dictionary case. So far

we cannot quite achieve the above goal.

The first issue is how to even define the null space property forthe dictionary case. We will

introduce three versions of this property throughout this section.

Definition IV.4.1 (A stronger NSP for dictionaries). We sayA has astronger NSPD,q if

‖vT‖q
q < ‖vTc‖q

q, for ∀ v∈ D−1(kerA\{0}), |T| ≤ s, (NSPD,q,S)

whereD−1 means the pre-image of a set under the mapD.

Theorem IV.4.2. A has NSPD,q,S implies that for every z0 ∈ DΣs, the minimizers of (PD,q) are

all representations of z0 in D, i.e.

if x∗ ∈ argmin{‖x‖q
q : ADx= y}, then Dx∗ = z0
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Proof. Assumez0 = Dx0 wherex0 is s-sparse. Letx∗ be a minimizer, suppose to the contrary

thatDx 6= Dx0. Let v= x0−x∗ ∈ D−1(kerA\{0}), then

‖x0‖q
q ≤ ‖x0,T −x∗T‖q

q+‖x∗T‖q
q = ‖vT‖q

q+‖x∗T‖q
q < ‖vTc‖q

q+‖x∗T‖q
q = ‖x∗Tc‖q

q+‖x∗T‖q
q = ‖x∗‖q

q.

Recall for the basis case, NSPq is an equivalent condition for exact recovery of sparse signals

from noiseless measurements via (Pq) (Theorem III.2.7). However, we have only one direction

here, which motivates us to find a weaker version of this null space property.

Definition IV.4.3 (A weaker NSP for dictionary). We sayA has aweaker NSPD,q if

∀|T| ≤ s,∀ v∈ D−1(kerA\{0}),∃ u s.t.Du= Dv and‖uT‖q
q < ‖uTc‖q

q (NSPD,q,W)

This version is obviously weaker because instead of requiring every vector inD−1(kerA\{0})

has certain tail behavior, we only require one representation to have that behavior. This is treat-

ing vectors inRn as in the quotient spaceRd/kerD, which is in favor ofD being coherent.

Theorem IV.4.4. A has NSPD,q,W is a necessary condition for exact recovery of signals sparse

in D from its noiseless measurements via(PD,q).

Proof. Take any supportT such that|T| ≤ s and anyv ∈ D−1(kerA\{0}), let us try to solve

(PD,q) with the original signal beingz0 = DvT . Say w is a minimizer, then by assumption

Dw= DvT and

‖w‖q
q < ‖−vTc‖q

q = ‖vTc‖q
q. (IV.9)

This is true because−vTc is feasible but can not be a minimizer sinceD(−vTc) 6= z0.
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Noticew+vTc ∼ v. Defineu= w+vTc, we will prove‖uT‖q
q < ‖uTc‖q

q.

‖uTc‖q
q = ‖wTc +vTc‖q

q ≥ ‖vTc‖q
q−‖wTc‖q

q = ‖vTc‖q
q− (‖w‖q

q−‖wT‖q
q)

= ‖wT‖q
q+‖vTc‖q

q−‖w‖q
q

> ‖wT‖q
q (by (IV.9))

= ‖uT‖q
q

However, we can’t prove that this weaker NSP condition is sufficient for exact recovery, let

alone for stable recovery.

IV.4.2 Stability of ℓq minimization by null space property

The work by Candes et al. [30] guarantees stable recovery of signals that are compressible in

highly overcomplete and coherent dictionaries. It is believed to be the first to have this kind of

result. They use a slightly different version ofℓq minimization:

min‖D∗z‖q
q subject to ‖Az−y‖2 ≤ ε. (P2D,q,ε )

D∗z0 is the frame coefficients ofz0 with respect to the canonical dual frame. In particular, if

D is a Parseval frame, i.e.DD∗ = I , thenz= DD∗z, which meansD∗z is a representation forz.

Comparing (P2D,q,ε ) with (PD,q,ε), (PD,q,ε ) is minimizing theℓq quasinorm of all represen-

tations ofz0, whereas (P2D,q,ε ) is only minimizing theℓq quasinorm of one particular kind of

frame coefficients. Moreover, (PD,q,ε ) is minimizing over the representations of the signal and

(P2D,q,ε ) is minimizing over the signals, so the first gives the representation of the signal but the

second gives the signal directly.

The classical restricted isometry property was also modified for the setting of sparsity in a
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dictionary in [30].

Definition IV.4.5 (Restricted Isometry Property for dictionaries). Let D be a givend×n matrix.

Them×d matrix A satisfies therestricted isometry property with respect to D(DRIP) of order

k if there exists a constantδ > 0 such that

∀ x∈ Σk, (1−δ )‖Dx‖2
2 ≤ ‖ADx‖2

2 ≤ (1+δ )‖Dx‖2
2. (IV.10)

The smallest value ofδ > 0 for which (IV.10) holds is denoted byδk.

Similar to the standard restricted isometry property, random matrices provide examples that

satisfy D-RIP, see [30].

Theorem IV.4.6. [30] Let D be an arbitrary Parseval frame and let A be a measurement matrix

satisfying D-RIP withδ2s < 0.08. Then the solutioñz to(P2D,q,ε ) satisfies

‖z̃−z0‖2 ≤C0ε +C1s−1/2σs(D
∗z0),

where the constants C0 and C1 may only depend onδ2s.

This is saying that the reconstructed signalz̃ is not far away from the original signal ifD∗z0

is almost sparse andε is small. The setting here is stronger because we want the dual frame

coefficientsD∗z0 to be compressible, instead of the existence of one particular almost sparse

representations. The same is true for our main theorems, Theorem IV.4.8, Theorem IV.4.9, and

Theorem IV.4.10, where the termσs(D∗z0)q is involved.

The assumption thatD∗z0 is approximately sparse is justified in applications since practi-

cal signal classes often have sparse frame coefficients, forexample, with respect to wavelets,

curvelets, edgelets, shearlets, [35–37].

Inspired by [30], we would also like to examine the stabilityof (P2D,q,ε), but again under
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the null space property. We now introduce the third version of the null space property with

dictionaries, which we show guarantees stable recovery.

Definition IV.4.7 (The null space property related toD∗). Let D be a givend×n dictionary

matrix. The matrixA satisfies theℓq null space property of order s relative to D(NSPD,q) if

∀ z∈ kerA\{0}, ∀ |T| ≤ s, ‖D∗
Tz‖q

q < ‖D∗
Tcz‖q

q. (NSPD,q)

HereD∗
T = (D∗)T . A simple compactness argument, e.g., see [5], shows that NSPD,q is equiva-

lent to the existence of a constantc, 0< c< 1, such that

∀ z∈ kerA, ∀ |T| ≤ s, ‖D∗
Tz‖q

q ≤ c‖D∗
Tcz‖q

q. (NSP′
D,q)

The smallest value of the constantc in (NSP′
D,q) is referred to as thenull space constant(NSC).

Theorem IV.4.8 (NSPD,q provides stability and robustness). Suppose that D is a d×n dictio-

nary with frame constantsβ ≥ α > 0 and A is an m×d matrix satisfying NSPD,q. Let z0 be a

vector inRd and the measurement vector y be such that‖y−Az0‖ ≤ ε, then any solutioñz to

(P2D,q,ε ) obeys

‖z̃−z0‖2 ≤C′σs(D
∗z0)q+C′′n1/q−1/2ε

for some constants C′ and C′′ (see(IV.12) when A= B and D= D̃).

This is a generalization of Theorem III.4.1. We omit the proof, because it is a special case of

Theorem IV.4.9. Some discussion about the constants here can be found after Theorem IV.4.10.

IV.4.3 Stability with respect to perturbed measurement matrix and dictionaries

The effect of a perturbed measurement matrixA satisfying the restricted RIP has previously

been considered in the classical case of sparsity with respect to a basis, see [28], as well as in
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Theorem III.4.1. We also investigate a second, not previously considered, type of stability to

address imprecision in the dictionaryD. Our performance analysis for theℓq recovery method

(P2D,q,ε ) will typically require thatD is chosen to satisfy a design condition such as NSPD,q.

However, in practice it may only be possible to use a perturbed version ofD for which there are

no a priori guarantees that the desired design condition holds. For example,D may be viewed

as a real reconstruction device which in practice will differ from its exact specifications. We

prove thatℓq minimization is stable with respect to imprecisions in the dictionaryD.

In this section we describe our main stability theorems forℓq recovery of signals that are

sparse in a dictionary. We initially assume the following set-up:

• D is ad×n dictionary matrix forRd (thusn≥ d),

• B is anm×d measurement matrix forRd,

• D∗z0 is approximatelys-sparse.

The assumption thatD∗z0 is approximately sparse is justified in the last section. At this

point, one is given the noisy measurementsy = Bz0+e∈ Rm with noise level‖e‖2 ≤ ε, and

one wishes to recoverz0 from y. We assume that one only has approximate knowledge ofB, for

example, due to a nonideal measurement device or because of computational limitations. We

also assume perturbations of the dictionaryD. For example, the intendedD in (P2D,q,ε) might

have been carefully designed to satisfy a hypothesis such asNSPD,q, but computational neces-

sities, or quantization errors, could result in the use of a perturbedD̃ as in theℓq minimization

in (IV.11) below. So, we further assume that:

• D̃ is ad×n dictionary (perturbation of the intended dictionaryD),

• A is anm×d full rank measurement matrix (our knowledge of the true matrix B).
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The full rank condition is justified when redundant measurements are excluded. For fixed 0<

q≤ 1, the followingℓq minimization problem reconstructs the approximationz̃ to z0 based on

the noisy measurementsy and the perturbations̃D andA of D andB, respectively

min‖D̃∗z‖q
q subject to ‖Az−y‖2 ≤ ε. (IV.11)

The matrixA will satisfy hypotheses such as NSPD,q or DRIP, but the perturbed matrix̃D used

in (IV.11) introduces uncertainty and distortion into these hypotheses.

For Theorem IV.4.9 (therefore Theorem IV.4.8 as well), we assume that the dictionaryD

satisfies the frame inequality

∀ z∈ R
d, α‖z‖2 ≤ ‖D∗z‖2 ≤ β‖z‖2,

with frame constantsβ ≥ α > 0.

For direct comparision with [30], Theorem IV.4.10 assumes that the dictionaryD satisfies

the Parseval framecondition DD∗ = I , but as noted in [30] there are extensions to general

frames.

The following two theorems and their proofs first appeared in[25].

Theorem IV.4.9. [25] Suppose that D is a d×n dictionary with frame constantsβ ≥ α > 0

and suppose that the m×d matrix A satisfies NSP′D,q with null space constant c. Moreover,

suppose that the d×n matrix D̃ satisfies‖D∗− D̃∗‖op ≤
5α

21/qn1/q−1/2

(
1−c
10

)1/q

and that B

is an m×d measurement matrix.

62



If z0 ∈ R
d and y∈ R

m satisfy‖y−Bz0‖2 ≤ ε then any solutioñz to (IV.11) satisfies

‖z̃−z0‖2 ≤
2β
5νA

C1n1/q−1/2ε +21/qC1σs(D
∗z0)q+21/qC1n1/q−1/2‖D∗− D̃∗‖op‖z0‖2

+
C1

νA
n1/q−1/2

(
β (1+21/q)+21/q‖D∗− D̃∗‖op

)
‖A−B‖op‖z0‖2. (IV.12)

HereνA is the smallest positive singular value of A. The constant C1 is quantified in(IV.20) and

(IV.25).

Theorem IV.4.10. [25] Suppose that D is a d×n Parseval frame matrix and that the d×n

matrix D̃ satisfies‖D∗− D̃∗‖op≤
1√
2K2

(n
s

)1/2−1/q
for some constant K2. Suppose that A and

B are m×d matrices and that A satisfies D-RIP withδ7s <
6−3(2/3)2/q−2

6− (2/3)2/q−2
.

If z0 ∈ Rd and y∈ Rm satisfy‖y−Bz0‖2 ≤ ε then any solutioñz to(IV.11) satisfies:

‖z̃−z0‖2 ≤C5ε +C6s1/2−1/qσs(D
∗z0)q+C7

(n
s

)1/q−1/2
‖D∗− D̃∗‖op‖z0‖2

+
(n

s

)1/q−1/2 1
νA

(
C8+C9‖D∗− D̃∗‖op

)
‖A−B‖op‖z0‖2. (IV.13)

Here νA is the smallest positive singular value of A. Quantitative bounds on the constants

C5,C6,C7,C8,C9 and K2 are contained in the proof, see(IV.41), (IV.42), (IV.43).

It is possible to formulate Theorems IV.4.9 and IV.4.10 using different choices of norms.

Except for the termσs(D∗z0)q, the bounds in (IV.12) and (IV.13) are stated using theℓ2 norm

and the associated operator norm and hence incur the discouraging constantsn1/q−1/2. Note that

if we useσs(D∗z0)2 instead of the standardσs(D∗z0)q, we would also incur the constantn1/q−1/2

in front of this term as well. Furthermore,n1/q−1/2 is multiplied by the factor 1/νA in the 4th

term on the right hand side of (IV.12) and (IV.13) which is essentially(m
d )

1/2. Indeed in the case

whereA is anm×d Gaussian random matrix with i.i.d.N (0,1/m) entries, it is known that this

choice ofA satisfies D-RIP with high probability, see [30], whenm& slog(d/s). Moreover, the
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smallest singular valueνA satisfiesνA &
( d

m

)1/2
with high probability greater than 1−2e−d/8,

e.g., see Corollary 35 in [38].

RemarkIV.4.11. We conclude this section with the following remarks:

(i) In the noise free caseε = 0, if A andD are exactly known (unperturbed), andD∗z0 is

exactlys-sparse, theñz exactly reconstructsz0, i.e., z̃= z0.

(ii) With no perturbations on the sensing matrix or the dictionary, andq = 1, we recover

Theorem IV.4.6 and gain the same result. Furthermore, ifD is the canonical basis, we

obtain the now classical result in Theorem III.2.4.

(iii) When D = I is the canonical basis and there are no perturbations ofD = I , we obtain a

result related to the one in [28].

(iv) If D= I , our proofs can be used to show Theorem III.4.9. However, if Asatisfies NSPD,q,

we do not know yet whetherA satisfiesD̃-NSPq even if‖D̃−D‖op is small.

(v) We have shown that the third null space property NSPD,q is a sufficient condition for

stability of a modifiedℓq minimization when there is perturbation on the measurements,

the measurement matrix, and the dictionary. It is natural toask whether this condition is

also necessary, like in the basis case. Unfortunately, the guess is that it is not necessary

but we have not able to construct a counter example yet. Moreover, we are not even able

to show whether this NSPD,q is a stronger or weaker condition than D-RIP. I believe more

work needs to be done in the direction of the weaker NSP for dictionary.

Proof of Theorem IV.4.9:

Set h = z̃− z0. There are two main inqualities. One obtained from the null space property.

The other from theℓq minimization which is essentially the reverse of the null space property.

64



Combining these two, we obtain an upper bound on‖D∗h‖2 in terms of the perturbations, and

thus an upper bound for‖h‖2 sinceD is a frame.

Step 1: Approximate NSPD,q for h. Note thath is expected to be almost in the null space

of A. Thus we will decomposeh ash= a+η wherea∈ kerA andη small since, by Lemma

III.4.3, ‖η‖2 ≤
1

νA
‖Ah‖2.

Sincea∈ kerA andA has NSPD,q, let T be any index set such that|T| ≤ s,

‖D∗
Th‖q

q ≤ ‖D∗
Ta‖q

q+‖D∗
Tη‖q

q ≤ c‖D∗
Tca‖q

q+‖D∗
Tη‖q

q ≤ c‖D∗
Tch‖q

q+‖D∗η‖q
q.

Thus, we get the approximate NSPD,q for h

‖D∗
Th‖q

q ≤ c‖D∗
Tch‖q

q+‖D∗η‖q
q. (IV.14)

Step 2: An approximate reversed inequality for h from ℓq minimization. SinceA is a

perturbation ofB, ‖y−Az0‖2 is not necessarily less thanε, i.e.,z0 is not necessarily feasible for

program (IV.11). However, we can find a vectorz0+w that is very close toz0 and is feasible.

Specifically, sinceA is full rank by assumption, there existsw such thatAw= (B−A)z0. Thus

‖A(z0+w)−y‖2 = ‖Bz0−y‖2 ≤ ε, andz0+w is feasible in Program (IV.11). Moreover,w is

small since, by Lemma III.4.3, we can pickw such that

‖w‖2 ≤
1

νA
‖Aw‖2 =

1
νA

‖(B−A)z0‖2. (IV.15)

Sincez̃minimizes (IV.11) we have

‖D̃∗z̃‖q
q ≤ ‖D̃∗(z0+w)‖q

q = ‖D̃∗
Tz0+ D̃∗

Tw‖q
q+‖D̃∗

Tcz0+ D̃∗
Tcw‖q

q.
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Moreover

‖D̃∗z̃‖q
q = ‖D̃∗(h+z0)‖q

q = ‖D̃∗
Th+ D̃∗

Tz0‖q
q+‖D̃∗

Tch+ D̃∗
Tcz0‖q

q

≥ ‖D̃∗
Tz0+ D̃∗

Tw‖q
q−‖D̃∗

Th− D̃∗
Tw‖q

q+‖D̃∗
Tch‖q

q−‖D̃∗
Tcz0‖q

q

Combining the above two inequalities we get

‖D̃∗
Tch‖q

q ≤ ‖D̃∗
Th‖q

q+2‖D̃∗
Tcz0‖q

q+‖D̃∗w‖q
q, (IV.16)

Using the triangle inequality and (IV.16) we obtain the desired inequality:

‖D∗
Tch‖q

q ≤ ‖D∗
Th‖q

q+‖D∗h− D̃∗h‖q
q+2‖D̃∗

Tcz0‖q
q+‖D̃∗w‖q

q. (IV.17)

Step 3: Estimation of ‖D∗h‖q. Our ultimate goal is to estimate‖h‖2. However, this can

be done by first estimating‖D∗h‖q and thereby‖D∗h‖2 and hence‖h‖2 sinceD is a frame, by

assumption. We do this, by combining the two inequalities inSteps 1 and 2, we get

‖D∗
Th‖q

q ≤
c

1−c
‖D∗h− D̃∗h‖q

q+
2c

1−c
‖D̃∗

Tcz0‖q
q+

c
1−c

‖D̃∗w‖q
q+

1
1−c

‖D∗η‖q
q. (IV.18)

By (IV.17) and (IV.18) we obtain

‖D∗h‖q
q = ‖D∗

Th‖q
q+‖D∗

Tch‖q
q

≤ 2‖D∗
Th‖q

q+‖D∗h− D̃∗h‖q
q+2‖D̃∗

Tcz0‖q
q+‖D̃∗w‖q

q

≤ 1+c
1−c

‖D∗h− D̃∗h‖q
q+

2+2c
1−c

‖D̃∗
Tcz0‖q

q+
2

1−c
‖D∗η‖q

q+
1+c
1−c

‖D̃∗w‖q
q. (IV.19)
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Step 4: Estimation of ‖h‖2. Rewriting the termD̃∗
Tcz0 in (IV.19) and using the fact thatD

is a frame and the inequality (II.3) we get

‖h‖2 ≤
1
α
‖D∗h‖2 ≤

1
α
‖D∗h‖q

≤Cn1/q−1/2‖D∗− D̃∗‖op‖h‖2+C‖D∗η‖q

+21/qC
[
‖D̃∗z0−D∗z0‖q+‖D∗

Tcz0‖q

]
+C‖D̃∗w‖q,

where

C=
1

5α

(
10

1−c

)1/q

. (IV.20)

This leads to the estimation of‖h‖2 in terms of the perturbations

(1−ρ)‖h‖2 ≤C‖D∗η‖q+21/qC
[
‖D̃∗z0−D∗z0‖q+‖D∗

Tcz0‖q

]
+C‖D̃∗w‖q (IV.21)

whereρ := 21/qCn1/q−1/2‖D∗− D̃∗‖op.

Step 5: Estimation of the perturbations. 1) Estimation of‖D∗η‖q. Using the fact that

‖η‖2 ≤
1

νA
‖Ah‖2, and

‖Ah‖2 = ‖Az̃−Az0‖2 ≤ ‖Az̃−y‖2+‖y−Bz0‖2+‖Bz0−Az0‖2 ≤ 2ε +‖(A−B)z0‖2,

we get

‖D∗η‖q ≤ n1/q−1/2‖D∗η‖2 ≤ n1/q−1/2β‖η‖2 ≤ n1/q−1/2 β
νA

(2ε +‖(A−B)z0‖2). (IV.22)

2) Estimation of‖D̃∗w‖q. Using the upper frame boundβ of D we get
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‖D̃∗w‖q
q ≤ ‖D̃∗w−D∗w‖q

q+‖D∗w‖q
q

≤ (n1/q−1/2‖D̃∗w−D∗w‖2)
q+(n1/q−1/2‖D∗w‖2)

q

≤ n1−q/2‖w‖q
2(‖D̃∗−D∗‖q

op+β q),

from which we get (using (IV.15))

‖D̃∗w‖q ≤
(2n)1/q−1/2

νA
(‖D̃∗−D∗‖op+β )‖(B−A)z0‖2 (IV.23)

Step 6: Final estimate of ‖h‖2 Substitute (IV.22) and (IV.23) into (IV.21) and lettingT be

the index set corresponding to thes largest magnitude entries ofD∗z0, we get

‖h‖2 ≤
2β
5νA

C1n1/q−1/2ε +21/qC1σs(D
∗z0)q+21/qC1n1/q−1/2‖D∗− D̃∗‖op‖z0‖2

+
C1

νA
n1/q−1/2

(
β (1+21/q)+21/q‖D̃∗−D∗‖op

)
‖A−B‖op‖z0‖2 (IV.24)

where

C1 =
C

1−21/qCn1/q−1/2‖D∗− D̃∗‖op
(IV.25)

is positive if‖D∗− D̃∗‖op < 2−1/qC−1n1/2−1/q.

Proof of Theorem IV.4.10

This proof is inspired by and follows closely the proof of Theorem 1.4 in [30]. Seth= z̃−z0.

Step 1: Consequence of the ℓq minimization. As in step 2 of the proof of Threom IV.4.9,

let T be any index set such that|T| ≤ s, we get
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‖D̃∗
Tch‖q

q ≤ ‖D̃∗
Th‖q

q+2‖D̃∗
Tcz0‖q

q+‖D̃∗w‖q
q, (IV.26)

where as beforeAw= (B−A)z0, z0+w is feasible and

‖w‖2 ≤
1

νA
‖Aw‖2 =

1
νA

‖(B−A)z0‖2. (IV.27)

As typically done in compressed sensing proofs using RIP, wedivide the coordinatesTc

into sets of sizeM (to be chosen later) in order of decreasing magnitude ofD̃∗
Tch. Call these

setsT1,T2, ...,Tr and for simplicity setT01 = T ∪T1. By construction:

‖D̃∗
Tj+1

h‖∞ ≤ ‖D̃∗
Tj

h‖1/M ≤ M1−1/q‖D̃∗
Tj

h‖q/M, j ≥ 1

which yields

‖D̃∗
Tj+1

h‖2
2 ≤ M1−2/q‖D̃∗

Tj
h‖2

q. (IV.28)

Using the triangle inequality, (II.3), (IV.26) and (IV.28), we have

∑
j≥2

‖D∗
Tj

h‖q
2 ≤ ∑

j≥2

(
‖D∗

Tj
h− D̃∗

Tj
h‖2+M1/2−1/q‖D̃∗

Tj−1
h‖q

)q

≤ ∑
j≥2

‖D∗
Tj

h− D̃∗
Tj

h‖q
2+ ∑

j≥1
Mq/2−1‖D̃∗

Tj
h‖q

q

≤ r1−q/2(∑
j≥2

‖D∗
Tj

h− D̃∗
Tj

h‖2
2)

q/2+ ∑
j≥1

Mq/2−1‖D̃∗
Tj

h‖q
q

= r1−q/2‖D∗
Tc

01
h− D̃∗

Tc
01

h‖q
2+Mq/2−1‖D̃∗

Tch‖q
q

≤ r1−q/2‖D∗
Tc

01
h− D̃∗

Tc
01

h‖q
2+Mq/2−1(‖D̃∗

Th‖q
q+2‖D̃∗

Tcz0‖q
q+‖D̃∗w‖q

q).

Taking theqth root of the previous inequality, writing̃D∗
Th= D̃∗

Th−D∗
Th+D∗

Th, and using
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the triangle inequality we get

∑
j≥2

‖D∗
Tj

h‖2 ≤
(
∑
j≥2

‖D∗
Tj

h‖q
2

)1/q
= ρ(‖D∗

Th‖2+η), (IV.29)

where

ρ = 41/q−1(s/M)1/q−1/2

and

η = (
n
s
)1/q−1/2‖D∗

Tc
01

h− D̃∗
Tc

01
h‖2+‖D̃∗

Th−D∗
Th‖2+s1/2−1/q(21/q‖D̃∗

Tcz0‖q+‖D̃∗w‖q).

(IV.30)

The termη can be made small by controlling‖D∗−D̃∗‖op, andw (through‖A−B‖op) since

the remaining term‖D̃∗
Tcz0‖q is small by assumption.

Step 2: The use of D-RIP. The inequality (IV.29) is exactly the same as the one in Lemma

2.2 of [30] except that the expressions forρ andη are different since these expressions now

contain terms that are due to perturbations ofD andB. Thus, using Lemmas 2.4, 2.5 and 2.6 of

[30], and the use of D-RIP combined with (IV.29) will give thefollowing two inequalities

√
1−δs+M‖DD∗

T01
h‖2 ≤ ρ

√
1+δM(‖h‖2+η)+2ε +‖(A−B)z0‖2, (IV.31)

√
1− c1

2
−ρ2−ρ2c2‖h‖2 ≤

1√
2c1

‖DD∗
T01

h‖2+ρη
√

1+
1
c2
, (IV.32)

where we have used‖Ah‖2 ≤ 2ε +‖(A−B)z0‖2, instead of‖Ah‖2 ≤ 2ε in Lemma 2.3 of [30].

Combining (IV.31) and (IV.32) to eliminate‖DD∗
T01

h‖ yields

‖h‖2 ≤ K1(2ε +‖(A−B)z0‖2)+K2η, (IV.33)
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where

K1 =

√
1−δs+M√

2c1(1−δs+M)(1− c1
2 −ρ2−ρ2c2)−ρ

√
1+δM

, (IV.34)

K2 =
ρ
√

1+δM +ρ
√

2c1(1−δs+M)(1+1/c2)√
2c1(1−δs+M)(1− c1

2 −ρ2−ρ2c2)−ρ
√

1+δM

, (IV.35)

and the particular choice of the free parametersc1,c2,M making the expressions forK1 andK2

valid and positive will be chosen at the end of the proof.

Step 3: ‖h‖2 is small if ‖D∗− D̃∗‖op is small. Inequality (IV.33) is not the desired estimate

of ‖h‖2 yet sinceh is still included in the termη. Therefore we need to estimateη. Obviously

(
n
s
)1/q−1/2 ≥ 1, so

η ≤
√

2(
n
s
)1/q−1/2‖D∗h− D̃∗h‖2+s1/2−1/q(21/q‖D̃∗

Tcz0‖q+‖D̃∗w‖q)

≤
√

2(
n
s
)1/q−1/2‖D∗− D̃∗‖op‖h‖2+s1/2−1/q(21/q‖D̃∗

Tcz0‖q+‖D̃∗w‖q) (IV.36)

Substituting (IV.36) into (IV.33) and combining‖h‖2 terms gives

(1− l)‖h‖2 ≤ K1(2ε +‖(A−B)z0‖2)+K2s1/2−1/q(21/q‖D̃∗
Tcz0‖q+‖D̃∗w‖q) (IV.37)

where

l =
√

2(
n
s
)1/q−1/2K2‖D∗− D̃∗‖op (IV.38)

Therefore (IV.37) gives an upperbound of‖h‖2 if ‖D∗− D̃∗‖op is small enough such that

l < 1.

Step 4: Estimation of perturbations. The estimation of‖D̃∗w‖q is the same as (IV.23) in
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step 5 of of the proof of Theorem IV.4.9, except hereβ = 1:

‖D̃∗w‖q ≤
(2n)1/q−1/2

νA
(‖D̃∗−D∗‖op+1)‖(B−A)z0‖2. (IV.39)

For‖D̃∗
Tcz0‖q we have

‖D̃∗
Tcz0‖q

q ≤ ‖D̃∗
Tcz0−D∗

Tcz0‖q
q+‖D∗

Tcz0‖q
q

≤ n1−q/2‖D̃∗−D∗‖q
op‖z0‖q

2+‖D∗
Tcz0‖q

q.

Taking theqth root we get

‖D̃∗
Tz0‖q ≤ (2n)1/q−1/2‖D̃∗−D∗‖op‖z0‖2+21/q−1‖D∗

Tcz0‖q. (IV.40)

Step 5: Final estimate of ‖h‖2. Substituting (IV.39) and (IV.40) into (IV.37) and lettingT

be the index set corresponding to thes largest magnitude entries ofD∗z0 yields

‖z̃−z0‖2 ≤
2K1

1− l
ε +

K2

1− l
(s/4)1/2−1/q‖D∗

Tcz0‖q

+

(
K1

1− l
+

K2

νA(1− l)

(
2n
s

)1/q−1/2

(1+‖D∗− D̃∗‖op)

)
‖B−A‖op‖z0‖2

+

√
2K2

1− l

(
4n
s

)1/q−1/2

‖D∗− D̃∗‖op‖z0‖2 (IV.41)

Step 6: The choice of the parameters for K1 and K2 in Step 2. It only remains to choose

the parametersc1,c2 andM so thatK1 andK2 are positive. The same as in [30], we choose

c1 = 1,M = 6sand takec2 arbitrarily small so that the denominator ofK1 andK2 is positive if

δ7s < a(q) :=
6−3(2/3)2/q−2

6− (2/3)2/q−2
.
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In this case,

K1 =

√
1−δ7s√

2(1−δ7s)(
1
2 − 3

8(
2
3)

2/q(1+c2))−
√

6
4 (2

3)
1/q
√

1+δ7s

, (IV.42)

K2 =

√
6

4 (2
3)

1/q[
√

1+δ7s+
√

2(1−δ7s)(1+1/c2) ]√
2(1−δ7s)(

1
2 − 3

8(
2
3)

2/q(1+c2))−
√

6
4 (2

3)
1/q
√

1+δ7s

. (IV.43)

(choosec2 so thatK1,K2 are positive)

a(1) = 0.6 which coincides the result in [30]. Noticea(q) tends to be 1 asq → 0. For

example,a(q) = 0.84 whenq= 1/2.
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CHAPTER V

THE KACZMARZ ALGORITHM WITH RANDOM MEASUREMENTS

The Kaczmarz algorithm is a classical iterative method for solving an overdetermined con-

sistent linear systemΦx = y. The algorithm is based on the mechanism of projection onto

convex sets and also falls into the class of row-action methods. Within the spectrum of linear

solvers, some key features of the Kaczmarz algorithm include its scalability and its simplicity;

a single inner product is the dominant computation in each step of the algorithm. This has made

the Kaczmarz algorithm a good candidate for high dimensional problems.

The Kaczmarz algorithm and its variants appear in a wide variety of settings. For example,

it has been applied to computer tomography and image processing in [39, 40], and has been

used for sparse signal recovery in compressed sensing in [41]. In signal processing, the closely

related Rangan-Goyal algorithm is used for consistent reconstruction of quantized data, see [42,

43].

The main aim of this chapter is to study the issue ofalmost sure convergencefor the Kacz-

marz algorithm with random measurement vectors{ϕn}∞
n=1. We prove that the Kaczmarz al-

gorithmalmost surelyconverges exponentially fast and we provide quantitative bounds on the

associated convergence rate.

The chapter is organized as follows: Section V.2 provides definitions and background prop-

erties of the random measurement vectors{ϕn}∞
n=1. Section V.3 gives basic formulas for the

error‖x−xn‖ in the Kaczmarz algorithm, and Section V.4 gives basic bounds on the moments

E‖x− xn‖2s with s> 0. The main results appear in Section V.5 and Section V.6. Thefirst

main result, Theorem V.5.3 in Section V.5, provides sharp almost sure rates of exponential con-

vergence for the Kaczmarz algorithm in the important case when the normalized measurement

74



vectorsϕn/‖ϕn‖ are independent and uniformly distributed onS
d−1 (for example, this applies

to random vectors with i.i.d. Gaussian entries). Our next main results, Theorem V.6.2 and

Theorem V.6.3 in Section V.6, provide quantitive bounds on the rate of almost sure exponential

convergence for general classes of random measurement vectors.
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V.1 Problem formulation

Given an overdetermined consistent linear systemΦx = y, wherex ∈ Rd is the signal we are

trying to recover, andy∈RN is the known linear measurement, the original Kaczmarz algorithm

is used to approximately recoverx from the linear measurements{yn}N
n=1.

We denote the rows ofΦ by ϕ∗
1 ,ϕ∗

2, . . . ,ϕ∗
N. The original work of Kaczmarz [44] starts

with an arbitrary initial estimatex0 ∈ Rd and produces approximate solutionsxn ∈ Rd by the

following iteration:

∀ n≥ 1, xn = xn−1+
yn−〈ϕi ,xn−1〉

‖ϕn‖2
2

ϕi , (V.1)

wherei = n mod N. This method sweeps through the rows ofΦ in a cyclic manner.

Geometrically, this is an iterative projection algorithm that updates the estimatexn−1 ∈ Rd

by orthogonally projecting it onto the affine hyperplane

Hi = {u∈ R
d : 〈u,ϕi〉= yi}.

The initial convergence analysis for this algorithm in [44]focuses on finite dimensional spaces,

but there are also subsequent extensions to infinite dimensional spaces, e.g., in [45–47].

It is well known that the algorithm produces monotonically improving approximations as

the iteration number i creases. Specifically, for anyx ∈ Rd and{ϕn}N
n=1 ⊂ Rd and any initial

estimatex0 ∈ R
d the Kaczmarz algorithm satisfies

‖x−xn+1‖2 ≤ ‖x−xn‖2. (V.2)

In fact, this basic fact will follow as a corollary to Proposition V.3.1.

Kaczmarz showed that iteratively cycling through the system produces estimatesxn that are
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guaranteed to converge tox:

lim
n→∞

‖x−xn‖2 = 0.

However, it can be difficult to quantify the associated ratesof convergence. Geometric consider-

ations imply that the specific rate at which the Kaczmarz algorithm converges depends strongly

on the order in which measurementsyn are entered into the algorithm, and in certain circum-

stances the convergence can be quite slow. Motivated by this, Strohmer and Vershynin [48,

49] investigated arandomizedversion of the Kaczmarz algorithm where the new information

(yn,ϕn) processed at each step of the algorithm (V.4) is randomly selected from among theN

measurements. They proved that this randomized approach achieves mean squared error with a

rate that is quantifiable in terms of a particular matrix condition numberκ(Φ).

Theorem V.1.1(Randomized Kaczmarz algorithm [49]). Let Φx= y be a linear equation sys-

tem, and x0 be an arbitrary initial approximation, for n= 1,2, . . . , compute xn as in(V.1), where

i(n) is chosen from the set{1,2, . . . ,N} at random, with probability proportional to‖ai(n)‖2
2.

Then xn converges to x in expectation, with the average error

E‖x−xn‖2
2 ≤ (1−κ(Φ)−2)n ‖x−x0‖2

2. (V.3)

The theoretical and numerical analysis of the randomized Kaczmarz algorithm in [49] shows

that this method converges exponentially fast and has features that are competitive with (and

sometimes superior to) standard approaches such as the conjugate gradient method.

In addition to the analysis of convergence rates, there is recent work that highlights other

favorable properties of the Kaczmarz algorithm. The work in[50] shows that the algorithm is

robust against noise in the measurementsyn. There is work in [51] on accelerating the conver-

gence of the Kaczmarz algorithm in high dimensions with helpof the Johnson-Lindenstrauss

Lemma. The discussion in [52–54] addresses choices of randomization for the algorithm.
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V.1.1 Settings

In our setting, instead of having a matrixΦ, we have certain distributions, from which each

vector of{ϕn}∞
n=1 is drawn. We wish to recover the signalx from the linear measurements

yn = 〈x,ϕn〉,n≥ 1.

The same formula from the Kaczmarz algorithm will be used:

∀ n≥ 1, xn = xn−1+
yn−〈ϕn,xn−1〉

‖ϕn‖2
2

ϕn, (V.4)

There is no need to cycle through{ϕn}′s since we have an infinite number of them and each of

them is chosen from certain distribution. The “infinite” here is a very loose concept, because

we can have repeated measurements. For example, the randomized Kaczmarz algorithm by

Strohmer and Vershynin is a special case of our settings. We will simply chooseϕn from a

discrete distribution, with certain probability to choosecertain row of the matrixΦ.

We would like to study the issue ofalmost sure convergencefor the Kaczmarz algorithm

with these random measurement vectors{ϕn}∞
n=1.
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V.2 Random measurements

This section will discuss conditions on the random measurement vectors{ϕn}∞
n=1 ⊂ Rd which

will be needed in our analysis of almost sure convergence in the Kaczmarz algorithm.

Suppose that the random measurement vectors{ϕn}∞
n=1 ⊂ Rd are used for the Kaczmarz

algorithm (V.4). We always assume that eachϕn is almost surely nonzero, Pr[‖ϕn‖= 0] = 0, to

ensure that the Kaczmarz iteration (V.4) is well defined. Since most of our error analysis only

involves the normalized random vectorsϕn/‖ϕn‖2, the assumption that eachϕn is almost surely

nonzero also guarantees that eachϕn/‖ϕn‖2 is well defined.

Our general analysis of the Kaczmarz algorithm will requirethat the normalized random

measurement vectors{ϕn/‖ϕn‖2}∞
n=1 be independent but not necessarily identically distributed.

Since it is common in practice to make assumptions directly on the measurement vectors

{ϕn}∞
n=1, it is useful to note that independence of the measurement vectors{ϕn}∞

n=1 is a strictly

stronger assumption than independence of the normalized measurement vectors{ϕn/‖ϕn‖2}∞
n=1.

Our analysis will allow the possibility of non-independent{ϕn}∞
n=1, but will always require that

{ϕn/‖ϕn‖2}∞
n=1 be independent.

Lemma V.2.1. If the random vectors{ϕn}∞
n=1 ⊂Rd are independent and almost surely nonzero,

then the normalized random vectors{ϕn/‖ϕn‖2}∞
n=1 are also independent.

As mentioned above, the converse of Lemma V.2.1 is not true.

ExampleV.2.2. Let θ1,θ2 be independent random variables that are uniform on[0,2π). Define

the random vectorsϕ1 = (cosθ1,sinθ1) andϕ2 as follows

ϕ2 =






(cosθ2,sinθ2), if 0 ≤ θ1 < π ,

2(cosθ2,sinθ2), if π ≤ θ1 < 2π .
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Thenϕ1/‖ϕ1‖2 andϕ2/‖ϕ2‖2 are independent, butϕ1,ϕ2 are not independent.

Our analysis of almost sure convergence will involve the following frame-type assumptions

on the normalized random measurement vectors{ϕn/‖ϕn‖2}∞
n=1.

Definition V.2.3 (Kaczmarz bound of orders). Let s> 0 be fixed. The unit-norm random vector

u∈ Rd has theKaczmarz bound0< α < 1 of order sif

∀x∈ S
d−1,

(
E
(
1−|〈x,u〉|2

)s
)1/s

≤ α. (V.5)

If (V.5) holds with equality then we shall say that the Kaczmarz bound istight.

Convergence rates in the Kaczmarz algorithm will depend on the specific value of the Kacz-

marz bound 0< α < 1. Qualitatively, ifu ∈ Rd is a given random vector ands> 0 is fixed,

note that (V.5) holds for some 0< α < 1 if and only if u is not concentrated on a subspace of

Rd with positive codimension.

In the special case whens= 1, Definition V.2.3 reduces to the notion of probabilistic frame

and deserves further mention.

Definition V.2.4. The random vectoru∈ Rd has theprobabilistic lower frame boundβ > 0 if

∀x∈ R
d, E|〈x,u〉|2 ≥ β‖x‖2

2. (V.6)

The random vectoru∈ Rd is atight probabilistic frameif (V.6) holds with equality

∀x∈ R
d, E|〈x,u〉|2 = β‖x‖2

2. (V.7)

If u∈ Sd−1 is a unit-norm tight probabilistic frame we shall simply saythatu is isotropic.

Thus, a Kaczmarz bound 0< α < 1 of orders= 1 corresponds to a probabilistic frame
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boundβ = 1−α. A condition similar to (V.6) was used for the analysis of theRangan-Goyal

algorithm in [42], cf. [43]. Random vectors satisfying the probabilistic tight frame condition

(V.7) are fully characterized in [55] and it is shown that ifu is isotropic then the constantβ in

(V.7) must satisfy

β = βd = 1/d.

Interested readers can find more properties of probabilistic frames in [55].

ExampleV.2.5. If u∈ Rd is uniformly distributed onSd−1 thenu is isotropic.

ExampleV.2.6. Let { fn}N
n=1 ⊂ Rd be a deterministic unit-norm tight frame forRd, i.e.,

∀x∈ R
d, ‖x‖2

2 =
d
N

N

∑
n=1

|〈x, fn〉|2.

If the discrete random vectoru∈ Rd is defined to be uniformly distributed on the set{ fn}N
n=1,

thenu satisfies (V.7). For example, if{ fn}d
n=1 ⊂ R

d is an orthonormal basis forRd andu∈ R
d

randomly selects an element of this basis, then the random vectoru satisfies (V.7).

ExampleV.2.7. Let F be a full rankN×d matrix and let{ fn}N
n=1 ⊂ Rd be the rows ofF . Let

u∈ Rd be the discrete random vector with the probability mass function

∀ 1≤ k≤ N, Pr[u= fk] = ‖ fk‖2
2/

N

∑
n=1

‖ fn‖2
2.

It was shown in [49] thatu has a probabilistic lower frame boundβ > 0 that satisfies

β ≥
(

1
κ(F)

)2

=
1

‖F‖2
Fr‖F−1‖2

2

. (V.8)

For our analysis of almost sure convergence, it will be useful to have a version of Definition

V.2.3 for the limiting cases= 0. The following standard lemma will be useful for this, for
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example, see page 71 of [56]. We also provide a proof in the Appendix.

Lemma V.2.8. Let η be a random variable such thatE|η|s < ∞ for some s> 0. Then

inf
s>0

(E|η|s)1/s = lim
s→0

(E|η|s)1/s = exp(E log|η|).

Corollary V.2.9. If u ∈ Sd is a random unit-vector then

∀x∈ S
d, lim

s→0
(E(1−|〈x,u〉|2)s)1/s = exp

(
E[log(1−|〈x,u〉|2)]

)
. (V.9)

In both Lemma V.2.8 and Corollary V.2.9, we interpret exp(−∞) = 0. Motivated by Corol-

lary V.2.9, the following definition will naturally arise inour analysis of almost sure conver-

gence in the Kaczmarz algorithm in Section V.6.2.

Definition V.2.10 (Logarithmic Kaczmarz bound). The random unit-vectoru∈ S
d−1 has alog-

arithmic Kaczmarz bound0< ρ < 1 if

∀x∈ S
d−1, exp

(
E[log(1−|〈x,u〉|2)]

)
≤ ρ . (V.10)

We say thatu∈ Sd−1 has atight logarithmic Kaczmarz boundρ if (V.10) holds with equality.

For perspective,E[log(1− |〈x,u〉|2)] in (V.10) can be expressed as a perturbation of the

familiar logarithmic potential [57] by

∀x∈ S
d−1, E[log(1−|〈x,u〉|2)] = 2E[log‖x−u‖2]+E[log(1−4−1‖x−u‖2

2)].

Note that forx,u∈ S
d−1, L(x,u) = log(1−|〈x,u〉|2) is singular at bothu= x andu=−x.

Let F be a full rankN×d matrix andu be the discrete random vector defined in Example

V.2.7. We can easily associate the Kaczmarz bound ofu with the condition number ofF, and
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consequently obtain the convergence rate in terms of this condition number (see Theorem V.4.1

and Theorem V.6.2). Therefore it is useful to relate the logarithmic Kaczmarz bound ofu to

the condition number ofF as well. One trivial fact by Lemma V.2.8 (lets= 1) and Example

V.2.7 is thatρ ≤ 1−κ(F)−2, but an improved bound is not known yet and further investigation

would be interesting.

Random vectors{ϕn}∞
n=1 ⊂ Rd with the following properties will play an important role in

Section V.5. For convenience we collect these properties inthe following definition:

Definition V.2.11. We shall say that the random vector{ϕn}∞
n=1 ⊂ Rd have thenormalized

independence and uniformity (NIU) propertyif each ϕn is almost surely nonzero and if the

normalized vectors{ϕn/‖ϕn‖2}∞
n=1 are independent and uniformly distributed onSd−1.

Lemma V.2.1 and Example V.2.2 provide insight into the assumption in Definition V.2.11

that {ϕn/‖ϕn‖2}∞
n=1 be independent. The following examples provide some insight into the

condition that eachϕn/‖ϕn‖2 is uniformly distributed onSd−1.

ExampleV.2.12. Let u∈ Rd be a uniform random vector onSd−1. We shall consider a random

vectorϕ ∈ R
d to be radial if it is of the form ϕ = ru wherer ∈ R is a random variable that

is independent ofu. If the random vectorϕ ∈ Rd is radial and almost surely nonzero, then

ϕ/‖ϕ‖2 is uniform onSd−1. For example, ifϕ ∈ Rd is a random Gaussian vector with i.i.d.

N(0,1) entries thenϕ/‖ϕ‖2 is uniformly distributed onSd−1.

However, ifϕ/‖ϕ‖2 is uniform onSd−1, ϕ does not need to be radial.

ExampleV.2.13. Let θ be uniformly distributed on[0,2π). Define the random vectorϕ ∈ R
2

by

ϕ =





(cosθ ,sinθ), if 0 ≤ θ < π ,

2(cosθ ,sinθ), if π ≤ θ < 2π .
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Thenϕ/‖ϕ‖2 is uniformly distributed onS1 but ϕ ∈ R
2 is not radial.
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V.3 Basic error formulas for the Kaczmarz algorithm

The following error formulas for the Kaczmarz algorithm will play an important role throughout

this chapter.

Proposition V.3.1. Suppose that x∈ Rd and that the measurement vectors{ϕn}∞
n=1 ⊂ Rd are

nonzero. Suppose that the measurements yn = 〈x,ϕn〉, with n≥ 1, are used as input to the

Kaczmarz algorithm with initial estimate x0 ∈ Rd.

The error zn = x−xn after the nth iteration of the Kaczmarz algorithm satisfies

‖zn‖2 = ‖zn−1‖2
2−
∣∣∣
〈

zn−1,
ϕn

‖ϕn‖2

〉∣∣∣
2

(V.11)

and

‖zn‖2
2 = ‖z0‖2

2

n

∏
k=1

(
1−
∣∣∣
〈 zk−1

‖zk−1‖
,

ϕk

‖ϕk‖
〉∣∣∣

2
)
. (V.12)

We adopt the convention that zk−1/‖zk−1‖2 = 0 is the zero vector when‖zk−1‖2 = 0.

Proof. The defining iteration (V.4) can be written in terms of the error zn = x−xn as

zn = zn−1−
〈

zn−1,
ϕn

‖ϕn‖
〉 ϕn

‖ϕn‖
.

Sinceϕn is orthogonal tozn−1, the equation (V.11) now follows

‖zn‖2
2 = ‖zn‖2

2−
∣∣∣
〈

zn−1,
ϕn

‖ϕn‖2

〉∣∣∣
2
= ‖zn−1‖2

2

(
1−
∣∣∣
〈 zn−1

‖zn−1‖2
,

ϕn

‖ϕn‖2

〉∣∣∣
2
)

(V.13)

A repeated application of (V.13) gives that for alln≥ l

‖zn‖2
2 = ‖zl‖2

2

n

∏
k=l+1

(
1−
∣∣∣
〈 zk−1

‖zk−1‖2
,

ϕk

‖ϕk‖2

〉∣∣∣
2
)
. (V.14)
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Whenl = 0 this yields the formula (V.12).

From Proposition V.3.1, we see that the monotonicity of the Kaczmarz algorithm in (V.2)

is an immediate corollary of (V.11). Consequently, ifzl = 0 for somel ≥ 1 thenzj = 0 for

all j ≥ l . So, if zl = 0, the convention thatzk/‖zk‖2 = 0 for k ≥ l simply sets each term in

the partial product in (V.14) to be one. While it is possible to have the desirable outcome of

finite convergence to zero error‖zl‖2 = 0, this will generally not be the case for continuous

random measurements. For example, if the normalized measurement vectors{ϕn/‖ϕn‖2}∞
n=1

are absolutely continuous with respect to the normalized surface measure onSd−1, then by

(V.12) each errorzk is almost surely nonzero.

Corollary V.3.2. Suppose the measurement vectors{ϕn}∞
n=1 ⊂Rd are random vectors such that

eachϕn is almost surely nonzero. Additionally suppose that{ϕn/‖ϕn‖}∞
n=1 are independent and

that eachϕn/‖ϕn‖2 is absolutely continuous with respect to the uniform measure onSd−1. If

the initial error z0 = x− x0 in the Kaczmarz algorithm is nonzero, then for each k≥ 1, there

holdsPr[‖x−xk‖2 = 0] = Pr[zk = 0] = 0.
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V.4 Moment bounds in the Kaczmarz algorithm

The following moment bound first appeared in [58], and its proof is motivated by the work in

[49] on mean squared error.

Theorem V.4.1. [58] Let {ϕn}∞
n=1 ⊂Rd be random vectors that are almost surely nonzero and

such that{ϕn/‖ϕn‖2}∞
n=1 are independent. Let s> 0 be fixed and assume that eachϕn/‖ϕn‖

has the common Kaczmarz boundα > 0 of order s, as in(V.5).

The error after the nth iteration of the Kaczmarz algorithm satisfies

E‖x−xn‖2s
2 ≤ αns‖x−x0‖2s

2 . (V.15)

If additionally the Kaczmarz boundα is tight then

E‖x−xn‖2s
2 = αns‖x−x0‖2s

2 . (V.16)

Proof. Let zn = x−xn. Note thatzn−1 = zn−1(z0,ϕ1/‖ϕ1‖2, · · · ,ϕn−1/‖ϕn−1‖2) is a function of

the deterministic initial errorz0 ∈ Rd and the independent random vectors{ϕk/‖ϕk‖2}n−1
k=1. In

particular, since{ϕk/‖ϕk‖2}∞
k=1 are independent, the random vectorszn−1/‖zn−1‖ andϕn/‖ϕn‖
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are independent. Thus

E‖zn‖2s
2 = E

(
‖zn−1‖2s

2

(
1−
∣∣∣
〈 zn−1

‖zn−1‖2
,

ϕn

‖ϕn‖2

〉∣∣∣
2
)s )

= E

(
E

[
‖zn−1‖2s

2

(
1−
∣∣∣
〈 zn−1

‖zn−1‖2
,

ϕn

‖ϕn‖2

〉∣∣∣
2
)s
∣∣∣∣∣ zn−1

])

= E

(
‖zn−1‖2s

2 E

[(
1−
∣∣∣
〈 zn−1

‖zn−1‖2
,

ϕn

‖ϕn‖2

〉∣∣∣
2
)s
∣∣∣∣∣ zn−1

])

≤ E
(
‖zn−1‖2s

2 αs)

= αs
E‖zn−1‖2s

2 . (V.17)

Here, in the second equation, the outer expectation is takenover{ϕk/‖ϕk‖2}n−1
k=1, and the inner

expectation is taken overϕn. Therefore we can pull out the term‖zn−1‖2s
2 in the inner expec-

tation, and hence the third equality holds. The inequality holds due to the common Kaczmarz

bound as assumed.

Iterating (V.17) yields (V.15). A similar computation shows that if eachϕn/‖ϕn‖2 has a

tight Kaczmarz boundα, then (V.16) holds.

Takings= 1 in Theorem V.4.1 gives the mean squared error bound for the Kaczmarz algo-

rithm as follows. Corollary V.4.2 is essentially the same asthe mean squared error bounds in

[49] but is expressed under a superficially more general model of randomization using proba-

bilistic frames instead of the finite random vectors as in Example V.2.7.

Corollary V.4.2. Let{ϕn}∞
n=1 ⊂Rd be random vectors that are almost surely nonzero and such

that {ϕn/‖ϕn‖2}∞
n=1 are independent. If eachϕn/‖ϕn‖2 has the common probabilistic lower

frame boundβ > 0 then the error after the nth iteration of the Kaczmarz algorithm satisfies

E‖x−xn‖2
2 ≤ (1−β )n‖x−x0‖2

2. (V.18)
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If additionally eachϕn/‖ϕn‖2 is isotropic(V.7) then

E‖x−xn‖2
2 = (1−d−1)n‖x−x0‖2

2. (V.19)

Similar to [49], Corollary V.4.2 yields the following examples. Versions of these examples

appear in [49] under a slightly different statement of randomization, so we include them here to

illustrate analogs for randomization using probabilisticframes, and for random measurements

satisfying Definition V.2.11.

ExampleV.4.3. If {ϕn}∞
n=1 ⊂Rd satisfy the properties of Definition V.2.11 then eachϕn/‖ϕn‖2

is isotropic with tight probabilistic frame boundβ = 1/d. Thus the mean squared error of the

Kaczmarz algorithm for measurements with the properties ofDefinition V.2.11 satisfies

E‖x−xn‖2
2 = (1−d−1)n‖x−x0‖2

2.

ExampleV.4.4 (Computational Complexity). Let {ϕn}∞
n=1 ⊂ Rd be random vectors satisfying

the properties of Definition V.2.11. Givenε > 0, letnε be the smallest number of iterations of

the Kaczmarz algorithm needed to ensure theε-precise mean squared error

E‖x−xnε‖2
2 ≤ ε2‖x−x0‖2

2.

By (V.16), we seek the smallest integernε such that(1−β )nε ≤ ε2. Sinceβ = βd = 1/d, in

high dimensions we have log(1−β )≈−β =−1/d and

nε =
⌈ 2logε

log(1−d−1)

⌉
≈ 2d | logε|. (V.20)

By (V.20), O(d) iterations suffice to ensureε-precise mean squared error. Moreover, since

each iteration of the Kaczmarz algorithm requiresO(d) elementary operations,ε-precision is
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achieved with an overall quadratic complexity ofO(d2) operations.

ExampleV.4.5. Theorem V.4.1 together with Example V.2.7 recovers the meansquared error

bound (V.3) from [49]. In particular, if the randomization from Example V.2.7 is used to solve a

givenN×d systemΦx= y then the Kaczmarz boundα of orders= 1 satisfiesα ≤ 1− [κ(Φ)]−2

so thatE‖x−xn‖2
2 ≤ αn‖x−x0‖2

2 ≤ (1− [κ(Φ)]−2)n‖x−x0‖2
2.
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V.5 Almost sure convergence for uniform random measurements onSd−1

As mentioned, (V.12) will play an important role in our analysis of almost sure convergence

in the Kaczmarz algorithm. It will be convenient to introduce the following notation for the

individual random variables in the random product (V.12):

ξk =

(
1−
∣∣∣
〈 zk−1

‖zk−1‖2
,

ϕk

‖ϕk‖2

〉∣∣∣
2
)
. (V.21)

Since the first step of the Kaczmarz algorithm requires an initial estimatex0 ∈Rd, each random

variableξk is implicitly parametrized by the initial errorz0 = x− x0 ∈ Rd. When needed, we

emphasize this dependence by writingξk = ξk(z0).

With the notation (V.21), the error in the Kaczmarz algorithm satisfies

‖x−xn‖2
2 = ‖x−x0‖2

2

(
n

∏
k=1

ξk

)
. (V.22)

V.5.1 Independence ofξk’s

In general, the random variables{ξk}∞
k=1 defined by (V.21) need not be independent, e.g., see

Example V.6.1. However, in the special case when the random measurements{ϕn}∞
n=1 satisfy

NIU (Definition V.2.11), it will follow that the random variables{ξn}∞
n=1 are independent and

identically distributed. This will have pleasant consequences for the subsequent error analysis.

Lemma V.5.1.Fix z0∈Rd. Let{ϕn}∞
n=1⊂Rd be random vectors that are almost surely nonzero

and such that the normalized random measurement vectors{ϕn/‖ϕn‖2}∞
n=1 are independent

and uniformly distributed onSd−1. Then the random variables{ξn}∞
n=1 defined by(V.21) are

91



independent and identically distributed versions of the random variable

ξ = 1−|〈e1,u〉|2, (V.23)

where e1 = (1,0, · · · ,0) ∈ Rd and u∈ Rd is a uniform random vector onSd−1. The random

variableξ does not depend on z0 but does depend on the dimension d.

Proof. Let un = ϕn/‖ϕn‖2. The hypotheses on{ϕn/‖ϕn‖2}∞
n=1 mean that{un}∞

n=1 are inde-

pendent random variables that are uniformly distributed onSd−1. Without loss of generality

we assume thatz0 6= 0. Moreover, as noted in the discussion following Proposition V.3.1, since

eachun is absolutely continuous, we have that Pr[zk = 0] = 0 for all k.

Note that the random vector

zn−1 = zn−1(z0,u1, · · · ,un−1)

is a function of the nonrandom initial errorz0 and the independent random vectors{uk}n−1
k=1.

Thus,zn−1 andun are independent random vectors. This independence along with the rotational

symmetry ofun now implies that ife1 = (1,0, · · · ,0) thenξn has the same distribution as the

random variable
(
1−|〈e1,un〉|2

)
. This shows that the random variables{ξn}∞

n=1 are identically

distributed.

It remains to show that the random variables{ξn}∞
n=1 are independent. Letµ denote the

normalized surface measure onSd−1. Let En denote the event thatξn < βn, and letχEn denote
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the associated indicator function. Note thatχEn(un, · · · ,u1) is a function ofun, · · · ,u1.

E[χEn | un−1, · · · ,u1] = Pr[ξn < βn | un−1, · · · ,u1]

= Pr[ξn(un, · · · ,u1)< βn | un−1, · · · ,u1]

= Pr

[
1−
∣∣∣
〈 zn−1(un−1, · · · ,u1)

‖zn−1(un−1, · · · ,u1)‖2
,un

〉∣∣∣
2
< βn

∣∣∣∣∣ un−1, · · · ,u1

]

= Pr[1−|〈e1,un〉|2 < βn]

= Pr[ξn < βn].

Indeed, the fourth equality holds becausezn−1/‖zn−1‖2 is independent ofun, by rotation invari-

ance ofµ, we can replacezn−1/‖zn−1‖2 by any vector with norm 1.

Thus

Pr[ξn < βn,ξn−1 < βn−1, · · · ,ξ1 < β1] = E

(
n

∏
k=1

χEk(uk, · · · ,u1)

)

=
∫

(Sd−1)n

(
n

∏
k=1

χEk(uk, · · · ,u1)

)
dµ(un)dµ(un−1) · · ·dµ(u1)

=
∫

(Sd−1)(n−1)
E[χEn | un−1, · · · ,u1]

(
n−1

∏
k=1

χEk(uk, · · · ,u1)

)
dµ(un−1) · · ·dµ(u1)

= Pr[ξn < β ]Pr[ξn−1 < βn−1, · · · ,ξ1 < β1].

Iterating this argument shows that

Pr[ξn < βn, · · · ,ξ1 < β1] =
n

∏
k=1

Pr[ξk < βk].

Thus,{ξk}n
k=1 is independent for alln≥ 1, as required.
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Lemma V.5.2. Let d≥ 2 be an integer, and letξ be the random variable given by(V.23). Then

E(logξ ) =
ωd−2

ωd−1

∫ π

0
sind−2 θ log(sin2 θ) dθ ,

and

E(logξ )2 =
ωd−2

ωd−1

∫ π

0
sind−2 θ (log(sin2θ))2dθ ,

whereωd = 2π
d+1

2

Γ( d+1
2 )

is the surface area ofSd.

Proof. Let e1 = (1,0, · · · ,0) ∈ Rd. By Lemma V.5.1

E(logξ ) =
1

ωd−1

∫

Sd−1
log
(
1−|〈e1,u〉|2

)
du

=
ωd−2

ωd−1

∫ 1

−1
(
√

1−s2)d−3 log(1−s2)ds

=
ωd−2

ωd−1

∫ π

0
sind−2 θ logsin2 θdθ .

Similarly,

E(logξ )2 =
1

ωd−1

∫

Sd−1
(log(1−|〈e1,u〉|2))2du=

ωd−2

ωd−1

∫ π

0
sind−2 θ(log(sin2θ))2dθ .

V.5.2 Almost sure exponential convergence rate

The independence of the random variables in{ξn}∞
n=1 in Lemma V.5.1 will allow us to apply

classical tools such as the Strong Law of Large Numbers, the Central Limit Theorem, and the

Law of the Iterated Logarithm to our analysis of almost sure convergence properties of the

Kaczmarz algorithm. The following theorem first appeared in[58].
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Theorem V.5.3. [58] Let {ϕn}∞
n=1 ⊂ R

d be random vectors that are almost surely nonzero

and such that the normalized random measurement vectors{ϕn/‖ϕn‖2}∞
n=1 are independent

and uniformly distributed onSd−1. Let R= exp(−E logξ ) andσ2 = E(logξ )2− (E logξ )2 as

computed in Lemma V.5.2. Then the error in the Kaczmarz algorithm satisfies

lim
n→∞

‖x−xn‖2/n
2 = R−1, almost surely, (V.24)

and

∀ t ∈ R, lim
n→∞

Pr
[
Rn‖x−xn‖2

2 ≥ ‖x−x0‖2
2et

√
nσ2
]
= 1− 1√

2π

∫ t

−∞
e−u2/2du, (V.25)

and

limsup
n→∞

(Rn‖x−xn‖2
2)

1√
2σ2nlog(logn) = e, almost surely, (V.26)

Proof. Let

Sn = log

(
n

∏
k=1

ξk

)
=

n

∑
k=1

log(ξk). (V.27)

By Lemma V.5.1 the{ξk}∞
k=1 are independent versions of the random variableξ given by (V.23).

By Lemma V.5.2,E(logξ ) = log(1/R) and Var(logξ ) = σ2 are both finite.

Applying the Strong Law of Large Numbers to (V.27) yields

lim
n→∞

1
n

n

∑
k=1

logξk = E(logξ ) = log(1/R), a.s. (V.28)

Taking the exponential of (V.28) gives

lim
n→∞

(
n

∏
k=1

ξn

)1
n

= exp(E(logξ )) = R−1, a.s. (V.29)

Equation (V.24) now follows from (V.22) and (V.29).
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Applying the Central Limit Theorem to (V.27) gives

∀ t ∈ R, lim
n→∞

Pr

(
∑n

k=1 logξk−nlog(1/R)√
nσ2

≤ t

)
=

1√
2π

∫ t

−∞
e−u2/2du. (V.30)

Exponentiating and reorganizing (V.30) gives

∀ t ∈ R, lim
n→∞

Pr

(
n

∏
k=1

Rξk ≥ et
√

nσ2

)
= 1− 1√

2π

∫ t

−∞
e−u2/2du. (V.31)

Equation (V.25) now follows from (V.22) and (V.31).

To prove (V.26), apply the Law of the Iterated Logarithm to log(Rξn). SinceE(log(Rξ )) =

E(logξ + logR) = 0 and Var(log(Rξ )) = E(logξ + logR)2 = E(logξ −E(logξ ))2 = σ2, there

holds

limsup
n→∞

∑n
k=1 log(Rξk)√

2σ2nlog(logn)
= 1, a.s.

which yields

limsup
n→∞

(
n

∏
k=1

Rξk

) 1√
2σ2nlog(logn)

= e, a.s.

This implies (V.26).

For a different perspective on Theorem V.5.3 we shall use following lemma. A proof is

provided in the Appendix.

Lemma V.5.4. Given A≥ 1 and a nonnegative sequence{an}∞
n=1 ⊂R, the following two state-

ments are equivalent:

(a) limn→∞(an)
1/n = 1/A.

(b) ∀ 0< r < A, limn→∞ rnan = 0 and ∀ A< r, limn→∞ rnan = ∞.

Thus, (V.24) in Theorem V.5.3 can be stated as follows.
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Corollary V.5.5. Let {ϕn}∞
n=1 ⊂ R

d be random vectors that are almost surely nonzero and

such that the normalized random measurement vectors{ϕn/‖ϕn‖2}∞
n=1 are independent and

uniformly distributed onSd−1. Let1< R be the constant defined in Theorem V.5.3.

If 0< r < R then

lim
n→∞

rn‖x−xn‖2
2 = 0, almost surely. (V.32)

If r > R then

lim
n→∞

rn‖x−xn‖2
2 = ∞, almost surely. (V.33)

The boundary caser = R in Corollary V.5.5 is addressed by (V.25) and (V.26). For example,

takingt = 0 in (V.25) of Theorem V.5.3 shows that one does not have almost sure convergence

of Rn‖x− xn‖2
2 to 0. Likewise, one does not have almost sure convergence ofRn‖x− xn‖2

2 to

infinity either.

ExampleV.5.6. To compare the almost sure convergence rates in Theorem V.5.3 with the mean

squared convergence rates in Corollary V.4.2, let{ϕn}∞
n=1 ⊂R2 be independent random vectors

that are uniformly distributed onS1. In dimensiond = 2, we have that eachϕn is isotropic with

β = β2 = 1/2. Moreover,ω1 = 2π andω0 = (2
√

π)/Γ(1/2) = 2, so that the constantR from

Theorem V.5.3 satisfies

R= exp

(
−1

π

∫ π

0
logsin2 θdθ

)
= 4. (V.34)

The computation of the integral in (V.34) follows from the fact that the Lobachevsky function

L(t) =−
∫ t

0
log|2sinθ |dθ =−t log2− 1

2

∫ t

0
logsin2 θdθ

is π-periodic, e.g., see the appendix in [59]. So,L(π) = L(0) = 0 and this implies (V.34).
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By (V.16), the mean squared error satisfies

∀n≥ 1, E‖x−xn‖2
2 = (1/2)n‖x−x0‖2.

By Corollary V.5.5, we have the following almost sure convergence:

∀ 0< r < 4, lim
n→∞

rn‖x−xn‖2
2 = 0, almost surely.

In particular, the mean squared error decreases at the rate(1/2)n, whereas the squared error

nearly decreases at the rate of(1/4)n in an almost sure sense.
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V.6 Almost sure convergence for general random measurements

The results of Section V.5 shows that if the measurement vectors{ϕn}∞
n=1 satisfy the conditions

of Definition V.2.11, then the random variables{ξn}∞
n=1 defined in (V.21) are independent and

identically distributed, and moreover do not depend on the initial errorz0. This, in turn, made it

possible to apply classical results on sums of i.i.d. randomvariables to the convergence analysis

in Theorem V.5.3.

For general measurement vectors{ϕn}∞
n=1 without the properties in Definition V.2.11, it is

possible for the random variables{ξn}∞
n=1 to be neither independent nor identically distributed

(see Example V.6.1 below), and it is not possible to directlyapply the classical convergence

results used for Theorem V.5.3. In this section we address almost sure convergence of the

Kaczmarz algorithm when a general collection of random measurements{ϕn}∞
n=1 is used.

ExampleV.6.1. Let ϕ ∈ R2 be a discrete random vector that satisfies

Pr[ϕ = (1,0)] = 2/3 and Pr[ϕ = (0,1)] = 1/3.

Let ϕ1, ϕ2 be independent versions ofϕ. We consider the random variablesξ1(z0),ξ2(z0) that

arise in the first two iterations of the Kaczmarz algorithm whenx = (
√

3/2,1/2), x0 = (0,0),

and the initial errorz0 = x−x0 satisfiesz0 = (
√

3/2,1/2).

A direct computation shows thatξ1 satisfies

Pr[ξ1 = 1/4] = 2/3 and Pr[ξ1 = 3/4] = 1/3.

Similarly, by considering a tree of probabilities,ξ2 can be shown to satisfy

Pr[ξ2 = 1] = 5/9, and Pr[ξ2 = 0] = 4/9.
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Moreover, it can be shown that Pr[ξ1 = 3/4,ξ2 = 1] = 1/9. Thusξ1,ξ2 are neither independent

nor identically distributed.

V.6.1 With Kaczmarz bound

Theorem V.6.2. [58] Let {ϕk}∞
k=1 ⊂ Rd be random vectors that are almost surely nonzero and

for which{ϕn/‖ϕn‖2}∞
n=1 are independent. Let s> 0 be fixed and suppose that eachϕn/‖ϕn‖2

has the common Kaczmarz bound0< α < 1 of order s. Then there exists a random variable X

satisfyingE|X|s< ∞ such that

lim
n→∞

(1/α)n‖x−xn‖2
2 = X, almost surely. (V.35)

Consequently,

∀ 0< r < 1/α, lim
n→∞

rn‖x−xn‖2
2 = 0, almost surely. (V.36)

Proof. Let Yn = (1/α)sn‖x−xn‖2s
2 = (1/α)sn‖zn‖2s

2 and letFn be the sigma algebra generated

by the random vectorsϕ1/‖ϕ1‖2, · · · ,ϕn/‖ϕn‖2. It can be shown thatYn is measureable with

respect toFn. The same computations as in the proof of Theorem V.4.1 show that

E[Yn | Fn−1] = E[(1/α)sn‖zn‖2s
2 | Fn−1]≤ (1/α)s(n−1)‖zn−1‖2s

2 (1/α)sαs =Yn−1.

Thus{(Yn,Fn)}∞
n=1 is a supermartingale. Moreover, by Theorem V.4.1, there holds

∀n≥ 1, E[Yn]≤ ‖z0‖2s
2 .

An application of Doob’s martingale convergence theorem (for example, see Theorem 1 on
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page 508 of [2]) to the submartingale{(−Yn,Fn)}∞
n=1 shows that the limit

lim
n→∞

Yn =Y, exists almost surely,

and the limit satisfiesE|Y|< ∞. Thus,

lim
n→∞

(1/α)sn‖x−xn‖2s
2 =Y, almost surely. (V.37)

LettingX =Y1/s, and taking the 1/spower of (V.37), we obtain (V.35)

lim
n→∞

(1/α)n‖x−xn‖2
2 = X, almost surely.

This implies (V.36) and completes the proof.

The martingale convergence theorem is a natural tool for theproof of Theorem V.6.2. For

comparison, Markov chain and martingale methods were previously applied to the error analysis

of closely related algorithms such as the Rangan-Goyal algorithm in [42] and the Gibbs sampler

in [60]. In the present setting, it is possible to give a direct alternative proof of the bound (V.36)

in Theorem V.6.2 without appealing to martingale convergence in the following manner.

Alternative Proof of Equation(V.36). Fix 0< r < 1/α and let

Pn = rn
n

∏
k=1

ξk.

Recall thatPn ≥ 0 and thatrn‖x−xn‖2
2 = Pn‖x−x0‖2

2. To prove (V.36), it suffices to show that

∀ε > 0, lim
N→∞

Pr

(
∞⋃

n=N

{Pn > ε}
)

= 0. (V.38)
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Let ε > 0 be fixed. A union bound together with Chebyshev’s inequality implies that

Pr

(
∞⋃

n=N

{Pn > ε}
)

≤
∞

∑
n=N

Pr(Pn > ε)≤
∞

∑
n=N

E(Ps
n)

εs . (V.39)

Theorem V.4.1 shows that

E(Ps
n)≤ (rα)sn. (V.40)

Combining (V.39) and (V.40), it follows that

Pr(∪∞
n=N{Pn > ε})≤ 1

εs

∞

∑
n=N

(rα)sn≤ (rα)sN

εs(1− rsαs)
.

Since 0< rα < 1, it follows that (V.38) holds. This completes the proof.

V.6.2 With logarithmic Kaczmarz bound

The next result improves the conclusion of Theorem V.6.2 by considering the limiting case

whens= 0. Unlike Theorem V.6.2, the following theorem assumes thatthe{ϕn/‖ϕn‖2}∞
n=1 are

identically distributed.

Theorem V.6.3. [58] Let {ϕn}∞
n=1 ⊂ R

d be random vectors that are almost surely nonzero.

Assume that the normalized vectors{ϕn/‖ϕn‖2}∞
n=1 are independent and identically distributed

versions of a random vector u∈ Sd−1 and assume that u has the logarithmic Kaczmarz bound

0< ρ < 1. Then the error in the Kaczmarz algorithm satisfies

∀ 0< r < 1/ρ , lim
n→∞

rn‖x−xn‖2
2 = 0, almost surely.

Proof. Fix 0< r < 1/ρ and takeα such thatρ < α < 1/r. By Corollary V.2.9,

∀x∈ S
d−1, inf

s>0
(E(1−|〈x,u〉|2)s)1/s ≤ ρ .
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So, for everyx∈ S
d−1 there existssx > 0 such that

(E(1−|〈x,u〉|2)sx)1/sx < α.

It follows from the Lebesgue Dominated Convergence Theoremthat

∀x∈ S
d−1, lim

‖y‖=1;y→x
(E(1−|〈y,u〉|2)sx)1/sx = (E(1−|〈x,u〉|2)sx)1/sx < α.

So, for everyx∈ Sd−1, there exists an open neighborhoodUx ⊂ Sd−1 of x such that

∀y∈Ux, (E(1−|〈y,u〉|2)sx)1/sx < α.

SinceSd−1 is compact andSd−1⊂∪x∈Sd−1Ux, there exists a finite subcover{Ux j}J
j=1 of {Ux}x∈Sd−1.

Letting s∗ = min{sx j}J
j=1 and using Lyapunov’s inequality (for example, see page 193 of [2]),

we obtain

∀x∈ S
d−1, (E(1−|〈x,u〉|2)s∗)1/s∗ < α.

Since the{ϕn/‖ϕn‖2}∞
n=1 are independent and identically distributed versions of the random

vectoru, eachϕn/‖ϕn‖2 has the common Kaczmarz boundα of orders∗ > 0. Sincer < 1/α

we conclude by Theorem V.6.2 that limn→∞ rn‖x−xn‖2
2 = 0 almost surely.

Theorem V.6.3 provides stronger error bounds than Theorem V.6.2 since by Lemma V.2.8

and Corollary V.2.9, a logarithmic Kaczmarz boundρ satisfiesρ ≤ α = αs for each Kaczmarz

boundα of orders> 0. In the special case when the{ϕn/‖ϕn‖2}∞
n=1 are independent uniform

random vectors onSd−1, Theorem V.6.3 recovers the sharp bound (V.32) of CorollaryV.5.5.

In particular, ifu = ϕ/‖ϕ‖2 is uniformly distributed onSd−1 then the logarithmic Kaczmarz
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boundρ is tight and satisfies

∀x∈ S
d−1, ρ = exp[E log(1−|〈x,u〉|2)] = exp(E(logξ )) = 1/R,

whereR andE(logξ ) are as in Lemma V.5.2 and Theorem V.5.3.
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APPENDIX

V.7

Lemma V.7.1. Let x≥ 0 be a bounded random variable, and letE(logx) be finite, then

inf
s>0

[E(xs)]1/s = lim
s→0

[E(xs)]1/s = exp(E(logx))

Proof. The first equation is proven by Lyapunov’s inequality (page 193 of [2]).

By L’Hospital’s rule, it suffices down to show that

d
ds

∫

Ω
xsdx=

∫

Ω

∂
∂s

xsdx. (V.41)

This is not obvious because∂∂sx
s = xs logx has a singularity atx= 0.

Define f (x,h) = xh,E = {x : 0< x< ε},g(ε,h) =
∫

Ω/E f (x,h)dx.

(1) Using mean value theorem,

∂
∂h

g(ε,h) =
∫

Ω/E
xh logxdx (V.42)

(2) limε→0
∫

E xh logxdx= 0.

This is true since we can write
∫

E xh logxdxas
∫

Ω χExh logxdxand then use Lebesgue Dom-

inated Convergence Theorem.

(3) The convergence in (3) is uniform inh, therefore together with (2) we also have

lim
ε→0

∫ h

0

∂
∂ t

g(ε, t)dt =
∫ h

0

∫

Ω
xt logxdt
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(4) Finally

g(ε,h)−g(ε,0) =
∫ h

0

∂
∂ t

g(ε, t)dt

⇒ lim
ε→0

g(ε,h)− lim
ε→0

g(ε,0) =
∫ h

0

∫

Ω
xt logxdt

⇒ d
dh

lim
ε→0

g(ε,h) = lim
ε→0

∂
∂h

g(ε,h)

⇒ d
dh

∫

Ω
xhdx=

∫

Ω
xh logxdx,

where Fundamental Theorem of Calculus is used.

V.8

Proof of Lemma V.5.4:

(⇒) Assume 0< r < A, then there existsc such that 1/A< c< 1/r, hence(an)
1/n < c when

n is sufficiently big. Thereforernan ≤ rncn → 0. A similar argument applies to the case when

r > A.

(⇐) Suppose to the contrary that there existsε0 > 0 and a subsequence{nk} such that

|a1/nk
nk −1/A|> ε0. Without loss of generality, we can assume there are infinitely many terms of

a1/nk
nk that are bigger than 1/A, so let us assume the subsequence{nk} satisfiesa1/nk

nk −1/A> ε0.

Pick r = 1/( 1
A + ε0

2 )< A, thenrnkank > rnk( 1
A + ε0)

nk → ∞, which is a contradiction to (b).
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