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Chapter 1

Introduction

In many contexts, the choice of socially relevant outcomes is affected by the interaction

of individuals in a way that matters to these individuals collectively. Examples include jury

trials where each party can veto potential jurors that the other party likes, or auctions where

one bidder’s chance to win the auction depends on the bids of other bidders. The precise set

of rules that relates individual interactions with the selection of a social outcome is called

a mechanism.

When participating in a mechanism, individuals may behave strategically in order to

influence the selected outcome in a way that best satisfies their preferences. For example, a

party to a trial may withhold a veto on a potential juror if she thinks that the other party will

veto that same juror in order to use that veto on another potential juror. In some auctions,

bidders may also benefit from shading their bid if they believes that other bidders will

follow suit.

If a mechanism is strategically complex and the stakes are high, considerable resources

may be devoted to determining appropriate strategies. Resources spent on strategizing can

be viewed as transaction costs inherent to the mechanism and should ideally be minimized.

Strategic complexity also raises issues of fairness. In a number of cases, strategic complex-

ity has been shown to favor strategically sophisticated individuals or individuals who can

invest ample resources into strategic counseling, at the expense of more naive or less re-

sourceful individuals (Basteck and Mantovani, 2016a; Pathak and Sönmez, 2008; Basteck

and Mantovani, 2016b; Dur et al., 2017). For these reasons and others, strategic simplicity

has long been viewed as a desirable property of mechanisms.

The best way to make a mechanism strategically simple is to eliminate strategic issues

altogether. This can be done by ensuring that each individual has a strategy available that
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is a best response to the strategies of other individuals regardless of the strategies others

choose. Such “universal best responses” are called dominant strategies. If the mechanism

has individuals reporting preferences over the outcomes, dominant strategies are typically

required to consist in reporting their true preferences. In this context, a mechanism that

does not have truthful dominant strategies is called manipulable.

Since Gibbard (1973), it has been shown in a variety of problems that the goal of pro-

viding individuals with dominant strategies is irreconcilable with other objectives, such as

efficiency. Negative results of this sort are called impossibility results. Impossibility results

are essential in helping us identify the limits of what mechanisms can achieve.

In Chapter 2 of this dissertation, I provide new impossibility results for the problem

of selecting a committee of a fixed number of members out of a set of candidates. Guar-

anteeing that no individual has veto power over potential outcomes has traditionally been

viewed as a positive feature of a mechanism (Maskin, 1999). In practice, however, it is

common and often desirable to endow individuals with veto power, especially in commit-

tee selection (see Chapter 2). I show that even limited veto power makes many committee

selection mechanisms of interest manipulable. This applies in particular (i) to mechanisms

the range of which contains a degenerate lottery in which a committee is chosen for sure

and (ii) to mechanisms that are constructed from extensive game forms with a finite number

of strategies. These impossibilities hold on a large set of domains including the domain of

additive preferences and even when probabilistic mechanisms are allowed.

Dominant strategies are an important reference point in assessing the strategic sim-

plicity of a mechanism. But the partition between dominant strategy mechanisms and

mechanisms that do not have dominant strategies is coarse. Although dominant strategy

mechanisms represent a first-best, one should not necessarily conclude that a mechanism

that fails to have dominant strategies is strategically complex. Neither should one neces-

sarily conclude that two mechanisms that both fail to have dominant strategies are equally

complex.
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In Chapters 3 and 4, I contribute to a recent literature that has sought to go “beyond”

dominant strategies impossibilities by (i) identifying second-best strategic simplicity prop-

erties, and (ii) providing criteria to compare the strategic simplicity of mechanisms that fail

to have dominant strategies.

In Chapter 3, I introduce the dominance threshold, a new measure of strategic com-

plexity based on “level-k” thinking. I use this measure to compare mechanisms used in

practice to select juries in jury trials. In applying this measure, I overturn some commonly

held beliefs about which jury selection mechanisms are strategically simple. In particular,

I show that sequential mechanisms tend to be strategically simpler than mechanisms that

involve simultaneous moves: By generating imperfect information games, simultaneous

mechanisms increase the amount of guesswork needed to determine optimal strategies.

In Chapter 4, I show that, in the context of one-to-one two-sided matching, the deferred

acceptance mechanism cannot be improved upon in terms of manipulability in the sense

of Pathak and Sönmez (2013) or Arribillaga and Massó (2015) without compromising sta-

bility. I also identify conflicts between manipulability and fairness. Stable mechanisms

that minimize the set of individuals who match with their least preferred achievable mate

are shown to be maximally manipulable among the stable mechanisms. These mechanisms

are also more manipulable than the deferred acceptance mechanism. I identify a similar

conflict between fairness and manipulability in the case of the median stable mechanisms.
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Chapter 2

Impossibilities for strategy-proof committee selection mechanisms with vetoes

2.1 Introduction

Guaranteeing that no individual has veto power over potential outcomes has tradition-

ally been viewed as a positive feature of a mechanism (Maskin, 1999). In practice, however,

it is common and often desirable to endow individuals with veto power. Vetoes can be re-

quired to protect individual rights, as forcefully argued by Sen (1970). Vetoes can also

be used to avoid selecting outcomes that would be overly detrimental to some individuals.

This latter use of vetoes is often found in procedures that select committees. Examples in-

clude jury selection (see Flanagan (2015) for a recent review) and other judicial procedures

such as the selection of arbitrators (de Clippel et al., 2014) and Special Masters (see, e.g.,

Valdivia v. Schwarzenegger1). The right to veto one candidate to the papal throne was also

exercised by France, Austria and Spain in various shapes and forms from the late 16th until

the beginning of the 20th Century (O’Malley, 2015, p.41).

In many procedures, the individuals’ actions are, in fact, limited to vetoes. For ex-

ample, in sequential jury selection procedures, the defendant and the plaintiff take turns

vetoing potential jurors until they have exhausted all of their vetoes.2 Mueller (1978) and

Moulin (1981) have shown that similar procedures in which individuals take turns veto-

ing outcomes can be used to implement desirable social choice functions using backward

induction.3

One issue with veto procedures is that, despite having interesting equilibria, they are

often manipulable. Examples of manipulable veto procedures include the procedures stud-

1Stipulation and Amended Order Re Special Master Order of Reference, Valdivia v. Schwarzenegger, No.

CIV-S-94-0671 (E.D. Cal. filed Aug. 19, 2005)
2For the difference between sequential and simultaneous jury selection procedures, see Van der Linden

(2017).
3Among other properties, the social choice functions in Mueller (1978) and Moulin (1981) are Pareto

efficient and never select an individual’s worst alternative.
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ied in Mueller (1978), Moulin (1981), de Clippel et al. (2014), and Van der Linden (2017).

Moreover, evidence from experimental and field data shows that individuals do attempt to

manipulate procedures involving vetoes and sometimes fail to reach an equilibrium (Yuval,

2002; de Clippel et al., 2014). Because vetoes can be of normative importance, and because

they are so pervasive in practice, it is of interest to ask whether reasonable veto procedures

exist that leave no room for manipulation.

In this paper, I answer this question negatively for the standard problem in which a

group of voters select a committee of k members out of a candidates. I show that endowing

as few as two voters with the power to veto a single candidate makes many mechanisms of

interest manipulable. This is true for a variety of domains, including the domain of additive

preferences and any of its supersets (e.g., the domain of separable preferences), which are

the domains of preferences most commonly studied in selection problems (Barberà et al.,

1991, 2005). This is also the case when probabilistic mechanisms are allowed.

On these domains, I show that strategy-proof mechanisms with vetoers must have

ranges that (i) do not contain degenerate lotteries in which a committee is chosen for sure

and (ii) have as a limit point a lottery in which the probability of selecting a particular candi-

date is zero. Condition (i) implies that every deterministic mechanism with vetoers violates

strategy-proofness. Condition (i) also restricts the efficiency of strategy-proof mechanisms

with vetoers. For example, a strategy-proof mechanism with vetoers cannot always se-

lect committees that voters unanimously prefer. Condition (ii) implies that the range of

strategy-proof mechanisms with vetoers must be in some sense “dense” around some lot-

teries. In particular, it implies that a wide class of selection mechanisms constructed from

extensive game forms with a finite number of strategies violate strategy-proofness.

Related Literature

For deterministic mechanisms with an unrestricted domain, the Gibbard-Satterthwaite

Theorem implies that every strategy-proof mechanism with more than three committees in

its range is dictatorial. At least two approaches have been used to overcome this negative
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result.

The first approach weakens the unrestricted domain assumption. In the context of com-

mittee selection, this typically involves assuming that voters’ preferences satisfy some sep-

arability condition. Unfortunately, Barberà et al. (2005) show that, even when preferences

are separable, only a restricted set of non-dictatorial selection mechanisms are strategy-

proof.4

The second approach allows for probabilistic selection mechanisms that select lotter-

ies over committees rather than sure committees. In many problems, however, strategy-

proofness cannot be combined with other desirable properties even using a probabilistic

mechanism. In voting models with a finite set of outcomes, strategy-proofness is, for ex-

ample, incompatible with unanimity except for (possibly random) dictatorial mechanisms

(Hylland, 1980; Schummer, 1999; Benoı̂t, 2002; Dutta et al., 2006; Nandeibam, 2012;

Chatterji et al., 2012).

In this paper, I combine both approaches by considering probabilistic mechanisms on a

variety of domains that include the domain of separable preferences. I show that strategy-

proofness is, in general, incompatible with giving voters a minimal veto power over can-

didates. This finding contrasts with Ju (2003), who studies domain restrictions for which

strategy-proof mechanisms exist that do not give voters veto power over candidates. My

results provide new evidence of the difficulty of combining strategy-proofness with other

desirable requirements, and of the limited freedom one gains by imposing domain restric-

tions and allowing for probabilistic mechanisms.

The paper is organized as follows. Section 2.2 presents the model and introduces pre-

liminary results that are later used in the proofs. Section 2.3 introduces preliminary results

that are later used in the proofs. Section 2.4 shows that strategy-proof mechanisms with

4The characterization in Barberà et al. (2005) is more permissive for additive preferences. But even

on this smaller domain, the class of strategy-proof selection mechanisms remains a small subclass of the

mechanisms known as voting by committees (the “committees” in voting by committees are committees of

voters and should not be confused with the selected committee of k members). See also Barberà et al. (1991)

for the problem of selecting a committee without size constraints.
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vetoers have ranges that do not contain degenerate lotteries. Section 2.5 shows that the

ranges of strategy-proof mechanisms with vetoers have as a limit point a lottery in which

the probability of selecting a particular candidate is zero. Sections 2.4 and 2.5 also provide

illustrative applications of these results. I conclude with some open questions. Omitted

proofs may be found in the Appendix.

2.2 The model

The set of voters is N := {1, . . . ,n} with n ≥ 2. The set of candidates is A := {1, . . . ,a}

with a ≥ 2. For any integer k ∈ {1, . . . ,a}, the set of possible committees Ak is the set of

subsets of A with k elements. Let ∆Ak be the set of lotteries on Ak. Slightly abusing the

notation, let C ∈ Ak denote any degenerate lottery which yields committee C for sure.

For any lottery L ∈ ∆Ak and any committee C ∈ Ak, C’s selection probability L(C)

is the probability that C is the chosen committee given L. A lottery L is degenerate if

L(C) = 1 for some C ∈ Ak. Similarly, for any lottery L ∈ ∆Ak and any candidate t ∈ A, t’s

selection probability L(t) is the probability that t is part of the chosen committee given L.

Formally, L(t) := ∑{S∈Ak|t∈S}L(S).

A preference on ∆Ak is denoted R, with asymmetric counterpart P. A typical do-

main of preferences on ∆Ak is denoted by D . For every domain D in this paper, pref-

erences in D are orderings that satisfy the expected utility axioms. A (preference) pro-

file is an n-tuple RN := (R1, . . . ,Rn) ∈ Dn. For any profile RN and any i ∈ N, R−i :=

(R1, . . . ,Ri−1,Ri+1, . . . ,Rn) is the (n− 1)-tuple that lists the preferences of every player

but i.

The domain of additive preferences Radd has received considerable attention in com-

mittee selection (Barberà et al., 1991, 2005). The domain Radd consists of all the pref-

erences R on ∆Ak that can be represented by a utility function u : A → R on the set of
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candidates in the following additive way: for all L,L′ ∈ ∆Ak,

L R L′ ⇔ ∑
C∈Ak

L(C)∑
t∈C

u(t)≥ ∑
C∈Ak

L′(C)∑
t∈C

u(t). (2.1)

The larger domain of separable preferences Rsep is also often considered (Barberà et al.,

1991, 2005; Arribillaga and Massó, 2017). The domain Rsep contains all the preferences

R on ∆Ak for which, for any C,C′ ∈ Ak, any a ∈ C ∩C′ and any b ∈ A\(C∪C′), U(C∪

{b}\{a}) ≥ U(C) if and only if U(C′∪{b}\{a}) ≥ U(C′), where U is a von Neumann–

Morgenstern utility function on Ak representing R.

A (selection) mechanism is a function M : Dn → ∆Ak that associates a lottery in ∆Ak

with every profile in Dn. For any RN ∈ Dn, M(RN) is the lottery selected by M when RN is

reported. The range of M is the set of L ∈ ∆Ak which can be selected using M; that is,

range(M) := {L ∈ ∆Ak | M(RN) = L for some RN ∈ Dn}. (2.2)

The next definition introduces a relatively weak concept of a vetoer. A voter i ∈ N

is a vetoer if for each t ∈ A, voter i can report a preference Rt
i ∈ D which guarantees

that candidate t is not part of the chosen committee whatever R−i the other voters report.

Formally, given a mechanism M, any voter i ∈ N is a vetoer if for each t ∈ A, there exists

Rt
i ∈ D with

M(Rt
i,R−i)(t) = 0 for all R−i ∈ Dn−1. (2.3)

Although a vetoer can veto any candidate, a vetoer is only guaranteed the ability to veto

one candidate at a time. For example, for i to be a vetoer, there does not need to be any pair

of candidates (t, t ′) with t 6= t ′ such that for some R̄i ∈D , M(R̄i,R−i)(t) = M(R̄i,R−i)(t
′) =

0 for all R−i ∈ Dn−1.

A selection mechanism M is an r-vetoers mechanism if there are at least r distinct
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vetoers in M.

A selection mechanism M is strategy-proof if for all i∈N, reporting i’s true preference

is a dominant strategy; that is, for all Ri ∈ D

M(Ri,R−i) Ri M(R′
i,R−i) for all R′

i ∈ D and all R−i ∈ Dn−1.

For any subset B ⊆ ∆A k and any R ∈ D , the top set top(R,B) is the set of best lotteries in

B according to R. Formally, for all B ⊆ ∆Ak and all R ∈ D ,

top(R,B) := {L ∈ B | L R L′ for all L′ ∈ B}.

A voter j ∈ N is a dictator for mechanism M if the lottery that M chooses is always in

j’s top set; that is,

M(RN) ∈ top
(
R j,∆Ak

)
for all RN ∈ Dn.

Finally, for any i ∈ N and any preference Ri ∈ D , the option set O−i(Ri) is the set of

lotteries that M chooses for some report of the preferences of voters in N\{i} given that

voters i report Ri (Barberà and Peleg, 1990). Formally, for all Ri ∈ D ,

O−i(Ri) :=
{

L ∈ ∆Ak | M(Ri,R−i) = L for some R−i ∈ Dn−1
}
.

Note that i is a dictator if and only if O−i(Ri)⊆ top
(
Ri,∆Ak

)
for all Ri ∈ D .

2.3 Preliminary results

This section introduces two propositions that I use repeatedly in the proofs. These

propositions follow from results in Le Breton and Weymark (1999).

The first says that given a profile RN , if M is strategy-proof and if some i ∈ N has a
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unique top lottery L in the range of M, then L must be contained in the option set O−i(Ri).

Proposition 2.1. Suppose that M : Dn → ∆Ak is a strategy-proof mechanism. For all i ∈ N

and all Ri ∈ D , if top
(
Ri,range(M)

)
= {L}, then L ∈ O−i(Ri).

Proof. This proposition is a direct corollary of Le Breton and Weymark (1999, Proposition

3).

The second proposition says that if M is strategy-proof and if all voters in N\{i} agree

on the set of top lotteries B in the option set O−i(Ri), then the chosen lottery must be

included in B.

Proposition 2.2. Suppose that M : Dn → ∆Ak is a strategy-proof mechanism. For all RN ∈

Dn and all i ∈ N, if there exists a nonempty set B ⊆ O−i(Ri) such that top(Ri,O−i(Ri)) = B

for all i ∈ N\{i}, then M(RN) ∈ B.

Proof. This proposition is a direct corollary of Le Breton and Weymark (1999, Proposition

4).

2.4 No sure committee in the range of strategy-proof 2-vetoers mechanisms

In this section, I show that no strategy-proof 2-vetoers mechanism can have in its range

a degenerate lottery. This impossibility precludes the existence of deterministic strategy-

proof 2-vetoers mechanisms and severely limits the efficiency of strategy-proof 2-vetoers

mechanisms.

2.4.1 Main result

The main result in this section is the following.

Theorem 2.1. If M : Dn → ∆Ak is a 2-vetoers mechanism with a sure committee C ∈ Ak

in its range and D ⊇ Radd , then M is not strategy-proof.
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The theorem applies, for instance, when D = Rsep. In order to identify the features of

Radd that are responsible for the impossibility in Theorem 2.1, I establish a more general

theorem. Theorem 2.2 is based on technical domain conditions that are satisfied by Radd ,

and that are sufficient for the impossibility to hold. These technical conditions can also be

used to identify domains that are not supersets of Radd on which the impossibility holds.

A minimin domain contains sequences of preferences for which the impact of the

“worst” candidate on the value of a committee is more and more negative. In such a se-

quence, voters become increasingly concerned with minimizing the selection probability of

their “worst” candidate.5 In addition, for technical reasons that are made clear in the proof

of Lemma 2.3 (see the Appendix), preferences in the sequences must have the same most

preferred committee, with the “worst” candidate not a member of this committee.

Domain Property 2.1 (Minimin domain). A domain of preferences R on the lotteries in

∆Ak is minimin if for any candidate t ∈ A, for any committee C ∈ Ak with t /∈C, and for

any ε > 0, there exists Rε ∈ R such that

(i) L Pε L′ for all L,L′ ∈ ∆Ak for which L(t)< L′(t)− ε , and

(ii) C Pε C′ for all C′ ∈ Ak\{C}.

Maximax is in a sense the inverse of minimin. A domain is maximax if it contains

sequences of preferences for which the impact of the “best” candidate on the value of

a committee is more and more positive. In such a sequence, voters become increasingly

concerned with maximizing the selection probability of their “best” candidate.6 In addition,

for technical reasons that are made clear in the proof of Lemma 2.3 (see the Appendix),

preferences in the sequences must have the same most preferred committee among the

committees that do not contain the “best” candidate.

5Hence, the name “minimin”, for “minimizing the selection probability of the candidate whose contribu-

tion to the committee is minimal”.
6Hence, the name “maximax”, for “maximizing the selection probability of the candidate whose contri-

bution to the committee is maximal”.
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Domain Property 2.2 (Maximax domain). A domain of preferences R on the lotteries in

∆Ak is maximax if for any candidate t ∈ A, for any committee C ∈ Ak with t /∈C, and for

any ε > 0, there exists Rε ∈ R such that

(i) L Pε L′ for all L,L′ ∈ ∆Ak such that L(t)> L′(t)+ ε , and

(ii) C Pε C′ for all C′ ∈ Ak\{C} with t /∈C′.

Remark 2.1. By definition, a domain is minimin or maximax if it contains certain prefer-

ences. Hence, if a domain R∗ is minimin or maximax, so is any superset of R∗.

Lemma 2.1. Any domain D ⊇ Radd is both minimin and maximax.

By Lemma 2.1, the following theorem generalizes Theorem 2.1.

Theorem 2.2. If M : Dn → ∆Ak is a 2-vetoers mechanism with a sure committee C ∈ Ak

in its range and D ⊇ R for some minimin and maximax domain R, then M is not strategy-

proof.

The proof of Theorem 2.2 is established using Lemmas 2.2 and 2.3. Lemma 2.2 shows

that, on a minimin domain, if a vetoer j ∈N has a sufficiently strong concern for minimizing

the selection probability of some t ∈ A, then any lottery L in the option set generated by j

must have L(t) arbitrarily small. Otherwise, j would have an incentive to report preferences

that veto t, contradicting strategy-proofness.

Lemma 2.2. Suppose that M : Rn → ∆Ak is a strategy-proof mechanism and D ⊆ R for

some minimin domain R. If j ∈ N is a vetoer for M, then for any t ∈ A, any ε > 0, and any

preference Rε
j ∈ R satisfying (i) in the definition of a minimin domain,

L(t)≤ ε for all L ∈ O− j(R
ε
j).

Lemma 2.3 shows that on a domain that is both minimin and maximax, if a strategy-

proof mechanism ever selects a sure committee C ∈ Ak, then C must be chosen whenever

12



any vetoer j likes C best. Informally, suppose that j likes C best and there is a lottery L with

L(t)> 0 for some t /∈C in the option set generated by j. Because the domain is maximax,

there exist preferences for which the inclusion of t in a committee is essential. For any such

preference R∗, some lottery L with L(t)> 0 will be chosen when everyone but j reports R∗

(by Proposition 2.2). It is possible to choose such a preference, say R∗∗, so that C is the best

committee among the committees that do not contain t. But then, when everybody but j

reports R∗∗, j can report minimin preferences that force t to be chosen with arbitrarily small

probability while keeping C as j’s best committee. If j does so, C remains in the option

set (by Proposition 2.1) and whenever everyone but j reports R∗∗, a lottery that selects C

with arbitrarily large probability is chosen instead of L (by Proposition 2.2), contradicting

strategy-proofness.

Lemma 2.3. Suppose that M : Dn → ∆Ak is a strategy-proof mechanism with a sure com-

mittee C ∈Ak in its range and D ⊇R for some minimin and maximax domain R. If j ∈ N

is a vetoer for M, then for all R j ∈ D ,

C Pj C′ for all C′ ∈ Ak\{C} (2.4)

implies

L(C) = 1 for all L ∈ O− j(R j). (2.5)

It is now easy to prove Theorem 2.2.

Proof of Theorem 2.2. Let M be a strategy-proof 2-vetoers mechanism with C ∈ Ak in its

range. Let j ∈ N be any vetoer and R j ∈ D be any preference with top(R j,∆Ak) =C. By

Lemma 2.3, we have O− j(R j) = {C}. Consider any other vetoer h ∈ N. Clearly, h cannot

veto any candidate in C whenever j reports R j, contradicting the assumption that M is a

2-vetoers mechanism.
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The proof of Theorem 2.2 does not use the full strength of the 2-vetoers condition. The

proof only requires the existence of one vetoer j and of some h 6= j with the ability to veto

one of the candidates in C (where C can be any sure committee in the range of M).

2.4.2 Applications

The next result is a direct corollary of Theorem 2.2 for deterministic mechanisms. A

mechanism M has a sure range if for all RN ∈ Dn, M(RN) = C for some C ∈ Ak. A

mechanism M only considers the ranking of sure committees if for all RN ,R
′
N ∈ Dn that

induce the same rankings over sure committees, M(RN) = M(R′
N). A mechanism M is

deterministic if it satisfies the two last properties.

Corollary 2.1. If M : Dn → ∆Ak is a deterministic 2-vetoers mechanism and D ⊇ R for

some minimin and maximax domain R, then M is not strategy-proof.

Proof. A deterministic 2-vetoers mechanism is a 2-vetoers mechanism with a sure com-

mittee in its range. Thus, Theorem 2.1 applies.

Note that the sure range condition alone is sufficient to obtain the above impossibility.

That is, Corollary 2.1 also applies to sure range mechanisms that take cardinal information

about preferences on committees into account.

By Lemma 2.1, Corollary 2.1 applies, for example, when D ⊇Radd . In the case of D =

Radd , Corollary 2.1 might not come as a surprise given the characterization of deterministic

strategy-proof mechanisms on Radd in Barberà et al. (2005, Proposition 2).7 However,

Corollary 2.1 holds on the larger class of minimin and maximax domains, which includes

Radd and its supersets (by Lemma 2.1), but also includes domains that are not supersets

7Barberà et al. (2005, Proposition 2) show that the class of deterministic strategy-proof mechanisms on

Radd is a subset of the mechanisms known as voting by committees. If a voting by committees mechanism

is a 2-vetoers mechanism, then the two vetoers i and j are in all winning coalitions (see Barberà et al., 2005,

for a definition). But then when Ci := top(Ri,range(M)) 6= top(R j,range(M)) :=

C j, the chosen committee

is C∗ ⊆Ci ∩C j, which implies #C∗ < k, a contradiction.
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of Radd . The impossibility in Corollary 2.1 is therefore stronger than the one that can be

derived from Barberà et al. (2005, Proposition 2).

Theorem 2.1 also has negative implications for the efficiency of a strategy-proof 2-

vetoers mechanism. Consider the following weakening of Pareto efficiency. A mechanism

M satisfies minimal sure unanimity if there exists at least one committee C ∈ Ak for

which top(Ri,∆Ak) = C for all i ∈ N implies M(RN) = C. We then have the following

impossibility.

Corollary 2.2. If M : Dn → ∆Ak is a 2-vetoers mechanism that satisfies minimal sure

unanimity and D ⊇ R for some minimin and maximax domain R, then M is not strategy-

proof.

Proof. For any C ∈ Ak, there exist many RC
N ∈ D such that C is the unique best committee

for all i ∈ N. Thus, minimal sure unanimity implies M(RC
N) = C, and C is in the range of

M. But then by Theorem 2.1, M cannot be a strategy-proof 2-vetoers mechanism.

As mentioned in the Introduction, results showing that in probabilistic mechanisms,

strategy-proofness is incompatible with unanimity requirements except for dictatorial mech-

anisms date back to Hylland (1980). Corollary 2.2 is independent from those results. First,

unlike Corollary 2.2, those results do not rule out dictatorial mechanisms. Second they ei-

ther (i) hold on domains that are larger than or independent from the smallest minimin and

maximax domain or (ii) rely on unanimity conditions that are stronger than or independent

from minimal sure unanimity. Corollary 2.1 is not a generalization of any of those results

either because it relies on the 2-vetoers condition.

2.5 No probability thresholds in strategy-proof 2-vetoers mechanisms

In this section, I show that if M is a strategy-proof 2-vetoers mechanism, then one limit

point of the range of M must be a lottery that selects some candidate t with probability zero.

This implies that for some t, there exists a lottery L in the range of M with 0 < L(t)≤ ε for
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every ε > 0. Equivalently, if for all t ∈ A there exists a threshold εt > 0 such that t is never

chosen with a positive probability smaller than εt , then a 2-vetoers mechanism cannot be

strategy-proof.

This result may seem innocuous as there is a priori no reason to impose such thresh-

olds. It however implies that a large class of mechanisms constructed from extensive game

forms with a finite number of strategies violate strategy-proofness (Corollary 2.3). These

extensive game forms include many that are used in practice, notably in jury selection pro-

cedures.

2.5.1 Main result

The main result in this section is the following.

Theorem 2.3. If M : Dn → ∆Ak is a strategy-proof 2-vetoers mechanism and D ⊇ Radd ,

then there exists t ∈ A such that, for all ε > 0,

0 < Lε(t)≤ ε for some Lε in the range of M. (2.6)

Again, in order to identify the features of Radd that are responsible for the impossibility

in Theorem 2.3, I prove a more general theorem. Theorem 2.4 is based on a technical

domain condition that is satisfied by Radd and that is sufficient for the impossibility to

hold.

A domain is negative leximin if, as with minimin preferences, some voters are primar-

ily concerned with minimizing the selection probability of a “worst” candidate. But if the

selection probability of the “worst” candidate is fixed, then “negative leximin voters” be-

come primarily concerned with minimizing the selection probability of the “second worst”

candidate, and so on.

For Theorem 2.4 to hold, it is sufficient for the domain to include preferences that are

close to a lexicographic assessment of any lottery for up to (a−k) of the “worst” candidates
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(recall that a is the number of candidates and k the number of committee members that are

to be selected). For technical reasons, it is also important that these preferences satisfy the

defining properties of a maximax domain for some t ∈ A whenever the selection probability

of the candidates these preferences treat in a leximin fashion is unchanged. The importance

of the last requirement is made clear in the proof of Lemma 2.5 (see the Appendix).

For any set S, let #S denote the cardinality of S. For any strict ordering ≻ of a finite set

S with s := #S, let ≻1,≻2, . . . ,≻s denote respectively the best element in S according to ≻,

the second best element in S according to ≻, . . . , the worst element in S according to ≻.

Domain Property 2.3 (Negative leximin). A domain of preferences R on the lotteries in

∆Ak is negative leximin if for any subset of candidates X ⊂ A with x := #X ≤ (a− k), any

strict ordering ≻ of the candidates in X , any t ∈ A\X , and any ε > 0, there exists Rε ∈ R

such that for all L,L′ ∈ ∆Ak,




[
L(≻x)< L′(≻x)− ε

]
or

[
L(≻x) = L′(≻x),L(≻x−1)< L′(≻x−1)− ε

]
or

...

[
L(≻x) = L′(≻x), . . . ,L(≻1)< L′(≻1)− ε

]




⇒
[
L Pε L′

]
(2.7)

and



[
L(≻x) = L′(≻x), . . . ,L(≻1) = L′(≻1)

]
and

[
L(t)> L′(t)+ ε

]


⇒

[
L Pε L′

]
. (2.8)

Remark 2.2. As for minimin or maximax domains (Remark 2.1), a domain is negative

leximin if, by definition, it contains certain preferences. Hence, if a domain R∗ is negative

leximin, so is any superset of R∗.

Lemma 2.4. Any domain D ⊇ Radd is negative leximin.

By Lemma 2.4, the following theorem generalizes Theorem 2.3.
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Theorem 2.4. If M : Dn → ∆Ak is a strategy-proof 2-vetoers mechanism and D ⊇ R for

some negative leximin domain R, then there exists t ∈ A such that, for all ε > 0,

0 < Lε(t)≤ ε for some Lε in the range of M. (2.9)

The proof of Theorem 2.4 is established using Lemmas 2.5 and 2.6. For any candidate

t ∈ A, there is a probability threshold εt > 0 for t if L(t) > 0 implies L(t) > εt for all

L ∈ range(M). Lemma 2.5 shows that in the presence of probability thresholds, vetoers

can generate singleton option sets containing any sure committee by reporting appropriate

preferences. The proof of Lemma 2.5 proceeds by induction on A\C. Let j,h ∈ N be

two vetoers and C be j’s best committee. The proof shows that if there are probability

thresholds for all t ∈ A, then for larger and larger subsets of A\C, j can reveal particular

preferences which guarantee that no candidate in the subset is ever chosen with positive

probability. The lemma then follows by strategy-proofness.

For a single t ∈ A\C, this is true because j is a vetoer. Now consider any t, t ′ ∈ A\C

with t 6= t ′. Because the domain is negative leximin, there exists a preference R
t,t ′

h
such that

h cares primarily about minimizing the selection probability of t, and secondarily about

maximizing the selection probability of t ′. By an argument similar to the one used in

Lemma 2.2, when such a preference is sufficiently extreme (i.e., for ε sufficiently small in

the definition of a negative leximin domain), the selection probability of t must tend to zero

(otherwise h would want to veto t). But because of the threshold assumption, this implies

that t’s selection probability is actually zero for some sufficiently extreme preference. That

is, h effectively vetoes t when reporting this extreme preference.

When j has negative leximin preferences R
t,t ′

j that focus on minimizing the selection

probability of both t and t ′, the option set generated by j cannot contain lotteries in which

the selection probability of t ′ is positive. Otherwise, t ′ is selected with positive probability

when everyone but j reports R
t,t ′

h (Proposition 2.2) and j would prefer to veto t ′ because h
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already vetoes t by reporting R
t,t ′

h .

Thus both vetoers can in fact veto two different candidates. Extending the argument

by induction, if j has a preference that focuses on minimizing the selection probability of

t, t ′ and t ′′, then the three candidates must be vetoed. Otherwise, whenever h vetoes t and

t ′ while caring about maximizing the selection probability of t ′′ (which is possible by the

previous step) and everyone but h and j reports the same preferences as h, j would be better

off vetoing t ′′ than revealing her true preference.

Lemma 2.5. Suppose that M : Dn → ∆Ak is a strategy-proof 2-vetoers mechanism and

D ⊇ R for some negative leximin domain R. Let j ∈ N be a vetoer for M. If for all t ∈ A

there exists a probability threshold εt > 0, then for all C ∈Ak there exists R∗
j ∈D such that

O− j(R
∗
j) = {C}.

Using Lemma 2.5, we can prove the following result.

Lemma 2.6. Suppose that M : Dn → ∆Ak is a strategy-proof 2-vetoers mechanism and

D ⊇ R for some negative leximin domain R. If for all t ∈ A there exists a probability

threshold εt > 0, then every vetoer is a dictator.

Proof. Let j ∈ N be any vetoer and h ∈ N be any other vetoer. Consider any RN ∈ Dn.

Because R j satisfies the expected utility axioms, there exists a sure committee C ∈ Ak

such that C ∈ top(R j,∆Ak). By Lemma 2.5, there exists R∗
j such that M(R∗

j ,R− j) =C. If

M(RN) /∈ top(R j,∆Ak), we have M(R∗
j ,R− j) Pj M(RN), contradicting strategy-proofness.

Hence, we must have M(RN) ∈ top(R j,∆Ak) and thus j is a dictator.

We can now prove Theorem 2.4.

Proof of Theorem 2.4. Let

l := inf
{

p ∈ (0,1]
∣∣ p = L∗(t) for some L∗ ∈ range(M) and some t ∈ A

}
.8
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If l > 0, then all t ∈ A have a probability threshold, and by Lemma 2.6 every vetoer is

a dictator for M. But then, because there are at least two vetoers, there are at least two

dictators, which is impossible.9 Thus, we must have l = 0 and (2.9) holds.

The fact that there exists a lottery L∗ with L∗(t) = 0 that is a limit point of the range

follows from Theorem 2.4 by the Bolzano-Weierstrass Theorem, which shows that ev-

ery bounded sequence has a converging subsequence (see, e.g., Rudin, 1976, Theorem

3.6(b)).10

2.5.2 Applications

The rest of this section illustrates the usefulness of Theorem 2.4 by showing how it

rules out strategy-proofness for a wide class of mechanisms constructed from sequential

procedures. Constructing direct mechanisms from sequential procedures is common in

mechanism design. A simple example in the case of a selection mechanism on Radd is

presented below.

Example 2.1 (Repeatedly veto the worst). Choose two vetoers j,h ∈ N. For any profile of

preferences RN ∈Rn
add , select a committee by repeating the following two steps until there

are only k candidates left. Let u j and uh be any utility functions on the set of candidates

representing R j and Rh as in (2.1).

(i) Remove the worst candidate according to u j among the candidates in N that have not

yet been removed (break ties randomly).

8Because M always selects a well-defined lottery over committees, there exists t ∈ A and L ∈ ∆Ak such

that L is in the range of M and L(t)> 0, and this set is non-empty.
9Alternatively, if one of the vetoers is a dictator, then the other vetoers cannot always veto every alterna-

tive. For example, when a vetoer has a favorite sure committee, a second vetoer cannot veto any candidate

in the dictator’s favorite sure committee. Hence, the mechanism is not a 2-vetoers mechanism, which again

yields a contradiction.
10By Theorem 2.4, there exists a sequence of lotteries {Lr}∞

r=1 in the range such that for some t ∈ A we

have Lr(t)> 0 for all r > 0 and limr→∞ Lr(t) = 0. By the Bolzano-Weierstrass Theorem, this sequence has a

converging subsequence (the sequence is bounded because all lotteries belong to a 2a-dimensional simplex).

Clearly, the limit of that subsequence must be a lottery L∗ with L∗(t) = 0. Also, L∗ is, by definition, a limit

point of the range.
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(ii) Remove the worst candidate according to uk among the candidates in N that have not

yet been removed (break ties randomly).

To every RN ∈ Rn
add , the above algorithm associates a unique lottery in ∆Ak and therefore

defines a (direct) mechanism M : Rn
add → ∆Ak.

The algorithm in Example 2.1 can be viewed as an extensive game form in which the

strategies of the players have been fixed as a function of their preferences.

In general, let a (selection) procedure be an extensive game form Γ in which

(a) the set of players is I := N ∪{Nature} and

(b) every terminal node is a committee C ∈ Ak.

For any domain of profiles Dn and any procedure Γ, a generalized strategy profile g

associates every preference profile RN ∈ Dn with a strategy profile g(RN) in the space of

strategy profiles of Γ. A mechanism MΓ
g,ρ is constructed from procedure Γ if there exists a

generalized strategy profile g and an assignment of probabilities ρ for Nature’s moves such

that

MΓ
g,ρ(RN) = Γ

(
g(RN),ρ

)
for all RN ∈ Dn, (2.10)

where Γ
(
g(RN),ρ

)
is the lottery resulting from Γ when strategy profile g(RN) is played

and the probabilities associated with Nature’s moves are ρ .

For example, the mechanism described in Example 2.1 is constructed from the extensive

game form in which two vetoers take turns vetoing candidates, which is similar in spirit to

procedures used in Mueller (1978), Moulin (1981), and in jury selection. In Example 2.1,

the generalized strategy is what Moulin (1981) defines as the prudent strategy. At each

decision node, a vetoer j chooses the action that maximizes his or her utility assuming that

all further actions will be chosen in such a way as to minimize her utility.
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As in Example 2.1, procedures used to construct mechanisms are often finite, in the

sense that they have a finite number of nodes. For mechanisms constructed from such

procedures, the following is an implication of Theorem 2.4.

Corollary 2.3. If M : Dn → ∆Ak is a 2-vetoers mechanism constructed from a finite pro-

cedure and D ⊇ R for some negative leximin domain R, then M is not strategy-proof.

Proof. Because there is a finite number of nodes in Γ, there is a finite number of strategy

profiles in Γ. Because for all RN ∈ Dn, MΓ
g,ρ(RN) = Γ

(
sN ,ρ

)
for some strategy profile sN ,

there is also a finite number of lotteries in the range of M. Thus, there must exist probability

thresholds for all t ∈A. But then, Theorem 2.4 applies because M is a 2-vetoers mechanism.

Hence, M cannot be strategy-proof.

A special class of finite procedures extensively used in jury selection feature two voters

j,h ∈ N (the prosecutor and the defense) sequentially vetoing candidates (potential jurors)

among sets of candidates drawn at random from A (the pool).11 Corollary 2.3 shows that

any 2-vetoers mechanism constructed from such a procedure cannot be strategy-proof.

Finally, observe that, by Corollary 2.3, no procedure Γ in which two players can veto

a candidate can have dominant strategies on a negative leximin domain. By a revelation

principle argument, if such a procedure Γ has dominant strategies for some choice ρ of

Nature’s moves, then there exists a generalized strategy g∗ that makes MΓ
g∗,ρ a 2-vetoers

strategy-proof mechanism, contradicting Corollary 2.3.12

2.6 Concluding remarks

Many open questions remain. One concerns the necessity of the sure range condition

in Theorem 2.2 and of the threshold conditions in Theorem 2.4. Whether there exists any

strategy-proof 2-vetoers mechanism in the absence of these conditions is unknown.

11See Flanagan (2015) and Van der Linden (2017).
12See Van der Linden (2017, Proposition 2) for more details and Hylland (1980, Section 4) for similar

results.
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Another question is whether strategy-proof mechanisms exist for weaker veto condi-

tions. In a 2-vetoers mechanism, vetoers are allowed to veto a single candidate, but this

candidate can be any candidate. What happens when vetoers can only veto a subset of

candidates is an open question.

Finally, Theorems 2.2 and 2.4 rely extensively on domains containing preferences that

are arbitrarily close to lexicographic, maximax, and minimin preferences. How much

flexibility can be gained by further constraining the domain of preferences has not been

determined.13 The proofs of Theorems 2.2 and 2.4 suggest that any possibility result would

depend on a combination of restrictions on the richness of (i) the domain of preferences of

the vetoers and (ii) the range of the mechanism.

Appendix

Proof of Lemma 2.1. By Remark 2.1, it is sufficient to show that Radd is both minimin

and maximax.

Radd is minimin. For any t ∈ A and any C ∈ Ak with t /∈ C, consider any preference

Rr ∈Radd for r > 0 that can be represented by a utility function on candidates ur satisfying

(a) ur(t) =−r,

(b) for all t ′ ∈ A with t ′ 6= t, ur(t ′) = ct ′ for some constant ct ′ ∈ R, and

(c) for all a ∈C and all b ∈ A\C, ca > cb.

By (a) and (b), for any ε > 0, there exists r sufficiently large such that (i) is satisfied in the

definition of a minimin domain. Also, (ii) is satisfied by (c).

Radd is maximax. For any t ∈ A and C ∈ Ak with t /∈ C, consider any preference

Rr ∈Radd for r > 0 that can be represented by a utility function on candidates ur satisfying

(a) ur(t) = r,

13In this respect, see Dutta et al. (2006) who study the extension of an impossibility result of Hylland

(1980) to domains in which utility functions must take values in a discrete utility grid.
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(b) for all t ′ ∈ A with t ′ 6= t, ur(t ′) = ct ′ for some constant ct ′ ∈ R, and

(c) for all a ∈C and all b ∈ A\(C∪{t}), ca > cb.

By (a) and (b), for any ε > 0, there exists r sufficiently large such that (i) is satisfied in the

definition of a maximax domain. Also, (ii) is satisfied by (c). �

Proof of Lemma 2.2. Consider any such preference Rε
j ∈ D . Because j is a vetoer,

there exists Rt
j ∈ D such that

M(Rt
j,R− j)(t) = 0 for all R− j. (2.11)

If M(Rt
j,R

∗
− j)(t)< M(Rε

j ,R
∗
− j)(t)− ε for some R∗

− j, then by (i) in the definition of a min-

imin domain, M(Rt
j,R

∗
− j) Pε

j M(Rε
j ,R

∗
− j), contradicting strategy-proofness. Thus, for all

R− j we must have M(Rt
j,R− j)(t)≥ M(Rε

j ,R− j)(t)−ε . Hence, by (2.11), M(Rε
j ,R− j)(t)≤

ε for all R− j. �

Proof of Lemma 2.3. Consider any R j ∈ D such that (2.4) holds. Such an R j must

exist in D by (ii) in the definition of a minimin domain. In order to derive a contradiction,

assume that

L∗(C)< 1 for some L∗ ∈ O− j(R j). (2.12)

By the definition of a lottery, L∗(C) < 1 implies L∗(t) = ε + γ for some t ∈ A\C and

some ε > 0 and γ > 0. By assumption, for all δ > 0, there exists a preference Rδ ∈ D sat-

isfying (i) and (ii) in the definition of a maximax domain, with (a) t as the “best” candidate,

(b) C as the best committee not containing t, and (c) δ replacing ε in the definition. But

then Proposition 2.2 and L∗ ∈ O− j(R j) imply

M
(

R j,R
δ , . . . ,Rδ

)
(t)≥ ε for all δ < γ. (2.13)
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This inequality holds because the preference Rδ has a tolerance of 0 < δ < γ for a decrease

in the selection probability of t. Thus, M
(

R j,R
δ , . . . ,Rδ

)
(t) < ε implies that the lottery

selected by M is worse for the preferences Rδ than L∗ ∈ O− j(R j) because L∗(t) = ε + γ ,

contradicting Proposition 2.2.

By the definition of a lottery and because t /∈C, (2.13) implies

M
(

R j,R
δ , . . . ,Rδ

)
(C)< 1. (2.14)

Because R is a minimin domain, by Lemma 2.2, there exists a sequence of preferences

{Rr
j}

∞
r=1 in D such that C is the most preferred committee for all r > 0 (see (2.4)) and

lim
r→∞

M
(

Rr
j,R

δ , . . . ,Rδ
)
(t) = 0. (2.15)

Let Lr := M
(

Rr
j,R

δ , . . . ,Rδ
)

for all r > 0.

We now show that

lim
r→∞

Lr(C) = 1. (2.16)

By Proposition 2.1, because C is the most preferred committee for Rr
j and because C is in

the range, C ∈ O− j(R
r
j) for all r > 0. But then by Proposition 2.2, we must have

Lr Rδ C for all r > 0.14 (2.17)

Let Ĉ ∈Ak be (one of) the second most preferred committee(s) according to Rδ among the

committees that do not contain t; that is,

Ĉ Rδ C′ for all C′ ∈ Ak\{C} with t /∈C′. (2.18)

14The argument is similar to the one used to prove (2.13).
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Because Rδ satisfies (ii) in the definition of a maximax domain with C as the best committee

not containing t, we have

C Pδ Ĉ. (2.19)

We can now rewrite (2.17) in utility terms as follows:

Lr(C)Uδ (C)+ ∑
{S∈Ak|t∈S}

Lr(S)Uδ (S)+ ∑
{S∈Ak|t /∈S and S 6=C}

Lr(S)Uδ (S)≥Uδ (C).

By (2.18), this implies

Lr(C)Uδ(C)+ ∑
{S∈Ak|t∈S}

Lr(S)Uδ(S)

+

(
1−Lr(C)− ∑

{S∈Ak|t∈S}

Lr(S)

)
Uδ (Ĉ)≥Uδ (C).

Finally, because Uδ (C)−Uδ (Ĉ)> 0 by (2.19), we have

Lr(C)≥

Uδ (C)−
(
1−∑{S∈Ak|t∈S}Lr(S)

)
Uδ (Ĉ)(

Uδ (C)−Uδ(Ĉ)
) −

∑{S∈Ak|t∈S}Lr(S)Uδ(S)(
Uδ (C)−Uδ (Ĉ)

) .
(2.20)

By (2.15), Lr(t) tends to 0 as r → ∞, which implies that

lim
r→∞

∑
{S∈Ak|t∈S}

Lr(S) = 0. (2.21)

By (2.21), the first term on the right-hand side of (2.20) tends to 1 as r → ∞. Similarly, the

second term on the right-hand side of (2.20) tends to 0 as r → ∞. Overall, the right-hand

side of (2.20) tends to 1 as r → ∞ and therefore Lr(C) must also tend to 1 as r → ∞, which

proves (2.16).
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Together (2.4), (2.14) and (2.16) imply that there exists r sufficiently large such that

M
(

Rr
j,R

δ , . . . ,Rδ
)

Pj M
(

R j,R
δ , . . . ,Rδ

)
for all δ < γ (2.22)

contradicting strategy-proofness. �

Proof of Lemma 2.4. By Remark 2.2, it is again sufficient to show that Radd is negative

leximin. For any X , any ≻, and any t ∈ A\X , consider any preference Rr ∈ Radd for r > 0

that can be represented by a utility function on candidates satisfying

(a) ur(t) = r,

(b) ur(b) = 0 for all b ∈ A\(X ∪{t}), and

(c) ur(≻h) =−(r(h+1)), for all h ∈ {1, . . . ,x}.

For any ε > 0, there exists r sufficiently large such that Rr satisfies both (2.7) and (2.8).

It is easy to see that Rr satisfies (2.8) for all r > 0. Let us illustrate the argument for the

first part of (2.7). To prove the first part of (2.7), we need to show that

[L(≻x)< L′(≻x)− ε]⇒ L Pr L′. (2.23)

For any ε > 0 and any L,L′ ∈ ∆Ak with

L(≻x)< L′(≻x)− ε, (2.24)

we need to find some rε > 0 which guarantees that

∑
S∈Ak

L(S)∑
t∈S

urε (t)> ∑
S∈Ak

L′(S)∑
t∈S

urε (t). (2.25)
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Note that (2.25) is equivalent to

∑
t∈{1,...,a}

L(t)urε (t)> ∑
t∈{1,...,a}

L′(t)urε(t),

which implies that

(
L(≻x)−L′(≻x)

)
urε (≻x)> ∑

t∈A\{≻x}

L′(t)urε(t)− ∑
t∈A\{≻x}

L(t)urε(t). (2.26)

First, consider the left-hand side of (2.26). By the construction of Rr and (2.24),

(
L(≻x)−L′(≻x)

)
urε (≻x)< (−ε)

(
− (rε

(x+1))
)
= εrε

(x+1). (2.27)

Second, consider the first term on the right-hand side of (2.26). Observe that for all L ∈

∆Ak, the sum of the candidates’ selection probabilities is ∑t∈{1,...,a}L(t) = k. Thus, by the

construction of Rr,

∑
t∈A\{≻x}

L′(t)urε(t)≤ rε ∑
t∈A\{≻x}

L′(t)≤ rεk.

Finally, consider the second term on the right-hand side of (2.26). We have

(
− ∑

t∈A\{≻x}

L(t)urε (t)

)
≤−

(
rε

(x)
)
(
− ∑

t∈A\{≻x}

L(t)

)
≤ rε

(x)k.

From the two last displayed inequalities we obtain

∑
t∈A\{≻x}

L′(t)urε(t)− ∑
t∈A\{≻x}

L(t)urε (t)≤ k
(
rε + rε

(x)
)
. (2.28)

Together, (2.27) and (2.28) imply that (2.26) holds provided

εrε
(x+1) > k

(
r+ rε

(x)
)
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or, equivalently,

rx
ε

1+ r
(x−1)
ε

>
k

ε
. (2.29)

Because the left-hand side of (2.29) tends to ∞ as rε → ∞, there must exist a rε sufficiently

large such that this inequality holds.

It is relatively straightforward to adapt the above argument to the (x−1) other parts of

(2.7). For example, for

[
L(≻x) = L′(≻x), L(≻x−1)> L′(≻x−1)− ε

]
⇒ L Pr L

the argument can be repeated with the second line of (2.26) simplified to

(
L(≻x−1)−L′(≻x−1)

)
urε (≻x−1)

> ∑
t∈A\{≻x,≻x−1}

L′(t)urε(t)− ∑
t∈A\{≻x,≻x−1}

L(t)urε (t)

because the terms L′(≻x)u
rε (≻x) and L(≻x)u

rε (≻x) cancel out.

After repeating this argument for each of the x components of (2.7), one obtains a set of

thresholds {rx
ε ,r

x−1
ε , . . . ,r1

ε} for each of the components of (2.7) to hold. Recall that (2.8) is

satisfied whenever r > 0. Because x is finite, r̄ε :=max{0.1,rx
ε ,r

x−1
ε , . . . ,r1

ε} is well defined.

Then, because the left-hand side of (2.29) and its counter-parts for the other components of

(2.7) are increasing in rε , Rr̄ε satisfies (2.7) and (2.8), the desired result. �

Proof of Lemma 2.5. We need to show that there exists R∗
j ∈ D such that for all

t ∈ A\C

L(t) = 0 for all L ∈ O− j(R
∗
j). (2.30)

Let X = A\C and ≻ be any strict ordering of X . Because R is a negative leximin domain,
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for all ε > 0 there exists Rε
j ∈D that ranks lotteries by a lexicographic order of the selection

probability of candidates in X as defined in (2.7).15 We will prove that there exists ε > 0

such that Rε
j satisfies (2.30). The argument is by induction on the elements of X . We

provide the two first steps in detail.

Step 1: There exists ε > 0 such that L(≻x) = 0 for all L ∈ O− j(R
ε
j).

By the threshold assumption, it is sufficient to show that for any ε > 0,

L(≻x)≤ ε for all L ∈ O− j(R
ε
j). (2.31)

The claim in Step 1 then follows by choosing ε with 0< ε < τ≻x
, where τ≻x

is the threshold

for ≻x.

The proof of (2.31) is similar to the proof of Lemma 2.2. Recall that because j is a

vetoer, there exists R
≻x

j such that L(≻x) = 0 for all L ∈ O− j(R
≻x

j ). By strategy-proofness, j

can never benefit from declaring R
≻x

j instead of her true preference Rε
j . In particular, for any

L ∈ O− j(R
ε
j), voter j must weakly prefer L to the worst possible lottery for which L(≻x) =

0, say L. By the definition of a negative leximin preference in (2.7), if L(≻x) < L(≻x)− ε

then L(≻x) Pε
j L(≻x)−ε . Because L(≻x) Rε

j L(≻x)−ε , we thus have L(≻x)≥ L(≻x)−ε .

But because L(≻x) = 0, this implies that ε ≥ L(≻x), the desired result.

Step 2: There an exists ε > 0 such that L(≻x) = L(≻x−1) = 0 for all L ∈ O− j(R
ε
j).

By Step 1, it is sufficient to show that there exists an ε with 0 < ε < τ≻x
such that

L(≻x−1) = 0 for all L ∈ O− j(R
ε
j). (2.32)

Applying the threshold assumption again, (2.32) holds provided that for all ε with 0 < ε <

15Note that #C = k and, hence, #X ≤ (a−k) in accordance with the definition of a negative leximin domain.

Here the choice of t ∈C in (2.8) is irrelevant.
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τ≻x
,

L(≻x−1)≤ ε for all L ∈ O− j(R
ε
j). (2.33)

In order to derive a contradiction, assume that there exists an ε with 0 < ε < τ≻x
and

some γ > 0 such that

Lε(≻x−1) = ε + γ for some Lε ∈ O− j(R
ε
j). (2.34)

Let h be any vetoer with h 6= j. Because R is a negative leximin domain, for all δ > 0 there

exists Rδ
h ∈ D satisfying (2.7) for X = {≻x}, and satisfying (2.8) for t = (x−1) (where δ

replaces ε in both (2.7) and (2.8)). Because h is a vetoer, the argument in Step 1 applies to

h, and for any δ with 0 < δ < τ≻x
,

M(Rδ
h ,R−h)(≻x) = 0 for all R−h. (2.35)

Together, (2.34) and 0 < ε < τ≻x
imply

Lε(≻x−1) = ε + γ and Lε(≻x) = 0. (2.36)

But then, because Lε ∈ O− j(R
ε
j), by Proposition 2.2,

M
(

Rε
j ,R

δ
h , . . . ,R

δ
h

)
Rδ

h Lε . (2.37)

Because γ > 0, there exists δ with 0 < δ < min{γ,τ≻x
}. Observe that by the construc-

tion of negative leximin preferences in (2.7) and by the threshold assumption, for any such

δ ,

Lε Pδ
h L for any L with L(≻x)> 0 or with L(≻x) = 0 and L(≻x−1)≤ ε. (2.38)
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Hence, (2.37) and (2.38) imply that

M
(

Rε
j ,R

δ
h , . . . ,R

δ
h

)
(≻x) = 0 and M

(
Rε

j ,R
δ
h , . . . ,R

δ
h

)
(≻x−1)> ε. (2.39)

Because j is a vetoer, by (2.35), there exists R
≻x−1

j such that

M
(

R
≻x−1

j ,Rδ
h , . . . ,R

δ
h

)
(≻x−1) = M

(
R
≻x−1

j ,Rδ
h , . . . ,R

δ
h

)
(≻x) = 0. (2.40)

But then by the construction of a negative leximin preference,

M
(

R
≻x−1

j ,Rδ
h , . . . ,R

δ
h

)
Pε

j M
(

Rε
j ,R

δ
h , . . . ,R

δ
h

)
, (2.41)

contradicting strategy-proofness. The remaining steps follow the same inductive pattern.

�
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Chapter 3

Bounded rationality and the choice of jury selection procedures

3.1 Introduction

It is customary to let the parties involved in a jury trial dismiss some of the potential

jurors without justification. Procedures for dismissal are known as peremptory challenge

procedures. Such procedures are used in many countries, including the United States.1 A

variety of procedures are used in practice. These procedures differ notably in their strategic

complexity. More complex procedures give an unfair advantage to parties that are strate-

gically skilled or can devote ample resources to hiring jury consultants. It is therefore

important to identify the procedures that are strategically simple in order to level the play-

ing field among parties. In this paper, I introduce the concept of a dominance threshold,

a new measure of strategic complexity based on level-k thinking, and I use this measure

to compare the complexity of some challenge procedures commonly used in practice (see

Crawford et al., 2013, for a survey of the level-k literature).

Fairness is an important issue in jury selection. One feature of a procedure that impacts

fairness is its strategic complexity. If a procedure is complex, parties with better strategic

skills are likely to secure more favorable juries. This is particularly relevant in jury se-

lection where the parties invest significant resources for developing an effective strategy.

For example, jury selection consultancy has become a well-established industry.2 Using

1 In Swain v. Alabama, the Supreme Court affirmed that “the [peremptory] challenge is one of the most

important of the rights secured to the accused.” (LaFave et al., 2009). Following Batson v. Kentucky, a party

can disqualify a peremptory challenge by her opponent if she can prove that the challenge was based on a set

of characteristics including race or gender. However, Batson v. Kentucky is notoriously hard to implement

and judges rarely rule in favor of Batson challenges (Marder, 2012; Daly, 2016).
2 The widespread use of jury consultants is evidenced by the existence of the American Society of Trial

Consultants, and its publication “The Jury Expert: The Art and Science of Litigation Advocacy”. Jury

consultants explicitly describe how part of their job is concerned with the strategic use of challenges. Jury

consultant Roy Futterman for example writes: “Caditz argues that [...] jury selectors pay [...] little to no

attention to the strategic use of strikes [i.e., peremptory challenges]. [...] it is a bit of a reach to say that

strategy is barely utilized. In my experience, [...] [jury selection] comes closer to a long battle of stealth,
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strategically simple procedures limits the impact on the selected jury of differences in the

parties’ ability to strategize or in their financial means to hire jury consultants.

Comparing the strategic complexity of jury selection procedures presents two chal-

lenges. First, jury selection procedures are indirect mechanisms because the parties’ ac-

tions consist of dismissing jurors rather than revealing their preferences.3 Second, in some

procedures commonly used in practice, the parties submit their challenges simultaneously,

which induces games of imperfect information. These two difficulties make it impossible

to apply measures of strategic complexity previously developed in the literature.4

I overcome these difficulties by introducing the concept of a dominance threshold.

Given some assumption about the strategies her opponent could play — henceforth, a

model of her opponent — a party has a dominant strategy if one of her strategies is a best

response to any strategy of her opponent that is consistent with her model. The objective is

to identify models for which the parties have dominant strategies. This is accomplished by

iteratively eliminating strategies that are never best responses. The dominance threshold

is the number of rounds of elimination needed to reach models in which both parties have

a dominant strategy. The dominance threshold measures the complexity of the model of

their opponent that the parties need in order to have a dominant strategy. For example, a

dominance threshold of 1 corresponds to the parties having a dominant strategy given any

model of their opponent. When the dominance threshold is 2, the parties only need to know

that their opponent is a best responder in order to have a dominant strategy.5

counter-punches, misdirection, and hand-to-hand combat than a lofty academic experience.” (Excerpt from

Roy Futterman’s answer to David Caditz’s August 20, 2014 post on http://www.thejuryexpert.com/).
3A procedure based on direct preference revelation would go against the idea of allowing the parties to

challenge jurors without justification.
4For example, the measures in Pathak and Sönmez (2013) and Arribillaga and Massó (2015) are defined

for direct games only and cannot be applied to existing jury selection procedures. In indirect games, de

Clippel et al. (2014) recommend focusing on procedures that can be solved in two rounds of backward

induction. More generally, this suggests using the number of rounds of backward induction needed to solve a

procedure as a measure of its complexity. By its nature, such a measure is only applicable to games of perfect

information and therefore excludes simultaneous moves (when games are modeled in extensive form, any

simultaneous move implies that the game is of imperfect information). It also has the disadvantage of being

sensitive to the addition of inconsequential actions. Neither of these limitations is shared by the dominance

threshold, the new measure I propose.
5The related concept of a “rationality threshold” was introduced by Ho et al. (1998). For a given assump-
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Many judges appear to share the concern for selecting strategically simple procedures.

They have developed procedures that attempt to limit the parties’ ability to strategize. In a

report on judges’ practices regarding peremptory challenges, Shapard and Johnson (1994,

p. 6) write:

“Some judges require that peremptories be exercised [following procedure X]

[...]. This approach [...] makes it more difficult to pursue a strategy prohibited

by Batson (or any other strategy). [...] A more extreme approach to the same

end is [procedure Y] [...]. This approach imposes maximum limits on counsel’s

ability to employ peremptories in a strategic manner.”6

Using the dominance threshold as a measure of strategic complexity provides new in-

sights and overturns some commonly held beliefs about jury selection procedures. Shapard

and Johnson (1994, p. 6) write:

“Other judges, for the same purposes [(limiting the parties’ ability to strate-

gize)], allow all peremptories to be exercised after all challenges for cause, but

with the parties making their choices ‘blind’ to the choices made by oppos-

ing parties (in contrast to alternating “strikes” from a list of names of panel

members).”7

I show that, contrary to these judges’ beliefs, procedures in which challenges are sequential

tend to be strategically simpler than procedures in which challenges are simultaneous: By

generating imperfect information games, simultaneous procedures increase the amount of

guesswork needed to determine optimal strategies.

I also study the design of “maximally simple” jury selection procedures. I show that

it is impossible to construct a “reasonable” procedure that allows the parties to challenge

tion about the strategies of unsophisticated players, the rationality threshold measures the number of rounds

of iterated best responses needed to reach an equilibrium. In contrast, the dominance threshold relies on

iterated elimination of never best responses and does not require a specific assumption about the nature of

unsophisticated plays. See Section 3.4 for a formal definition.
6See footnote 1 regarding Batson v. Kentucky.
7Unlike peremptory challenges, challenges for cause must be based on biases recognized by law, such as

being a direct relative of one of the parties.
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jurors and always have a dominant strategy. Hence, the smallest achievable dominance

threshold is 2. Such a minimal dominance threshold is attained by a procedure that I call

sequential one-shot in which the parties sequentially submit a single list of jurors that they

want to challenge.

Although the focus of this paper is the study of jury selection procedures, the dominance

threshold applies more generally as a general measure of strategic complexity. Unlike

previous measures in the literature, the dominance threshold can be used to compare the

strategic complexity of any pair of games, including indirect games and games of imperfect

information. The dominance threshold is the first such measure of strategic complexity

proposed in the literature.

Related Literature.— This paper differs from the previous game theoretic literature on

jury selection procedures in at least two ways (see Flanagan (2015) for a recent review).

First, the literature has focused on subgame perfect equilibrium as a solution concept.8

Subgame perfection requires a high level of strategic sophistication, especially in complex

procedures. By relying on the concept of a dominance threshold, this paper accounts for

the possibility of boundedly rational parties. I show how the dominance threshold, which

measures the “amount” of common knowledge and rationality needed to have a dominant

strategy, can be used to measure the strategic complexity of a procedure.

Second, here, jury selection is studied from the point of view of mechanism design.9

Most of the literature focuses on the characterization and properties of equilibria of dif-

ferent procedures.10 When the performance of procedures is compared, it is typically in

terms of their effects on the composition of the jury. These comparisons have yielded few

policy recommendations.11 In contrast, this paper adopts a traditional mechanism design

approach and compares procedures with respect to the standard objective of limiting the

8Two exceptions are Bermant (1982) and Caditz (2015).
9In this respect, the closest paper is de Clippel et al. (2014), which takes a mechanism design perspective

but studies the selection of a single arbitrator.
10See Roth et al. (1977), Brams and Davis (1978), DeGroot and Kadane (1980), Kadane et al. (1999),

Alpern and Gal (2009), and Alpern et al. (2010).
11See, however, Bermant (1982) and Flanagan (2015, Section 4.2).
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parties’ ability to strategize. This later approach enables a clear comparison of some of the

procedures used in practice.

The paper is organized as follows. Section 3.2 introduces the model as well as several

examples of jury selection procedures and a general class thereof. In Section 3.3, I show

that most “reasonable” jury selection procedures do not have dominant strategies. Section

3.4 formally introduces the concept of a dominance threshold. The dominance threshold is

then applied to comparing the strategic complexity of jury selection procedures in Sections

3.5 and 3.6. Proofs may be found in the Appendix.

3.2 Model and procedures

I focus on struck procedures. In addition to peremptory challenges which require no

justification, the parties can raise challenges for cause which must be based on some bias

recognized by law, such as being a direct relative of one of the parties. As explained by

Bermant and Shapard (1981, p. 92), the defining feature of a struck procedure “is that the

judge rules on all challenges for cause before the parties claim any peremptories. Enough

potential jurors are examined to allow for the size of the jury plus the number of peremptory

challenges allotted to both sides. In a federal felony trial, for example, the jury size is

twelve; the prosecution has six peremptories, and the defense has ten. Under the struck

jury method, therefore, 28 potential jurors are cleared through challenges for cause before

the exercise of peremptories.”12

Struck procedures are commonly used in federal courts. In a 1977 survey of judges’

practices regarding the exercise of peremptory challenges, 55% of federal district judges

reported using a struck procedure (Bermant and Shapard, 1981). Today, the use of a struck

procedure is, for example, recommended by law as the preferred method for criminal cases

12 This contrasts with strike and replace procedures in which challenges for cause and peremptory chal-

lenges are intertwined. In a strike and replace procedure, prospective jurors who are challenged (either for

cause or peremptorily) are replaced by new jurors from the pool and “to one degree or another, counsel

exercise their challenges without knowing the characteristics of the next potential juror to be interviewed”

(Bermant and Shapard, 1981, p. 93).
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other than first-degree murder in Minnesota.13

3.2.1 The model

The set of prospective jurors left after all challenges for cause have been raised is N =

{1, . . . ,n}. The defendant is d and the plaintiff is p. The defendant and the plaintiff are

allowed cd and cp peremptory challenges, respectively. Out of N, a jury J of b jurors must

be selected. The jurors in J are the impaneled jurors. As explained above, when struck

procedures are considered, n = b+ cd + cp in order to allow the parties to challenge up to

cd and cp jurors.

Let J be the set of juries containing b jurors and ∆J the set of lotteries on J . In

some cases, it is possible that after all challenges have been raised, more than b jurors

remain unchallenged. In this case, I will assume that the b impaneled jurors are chosen at

random among the unchallenged jurors. As a consequence, the parties have expected utility

preferences Rd and Rp on ∆J , respectively, with corresponding Bernoulli utility functions

ud and up on J (instead of preferences on J ). A pair of preferences (Rp,Rd) is called a

(preference) profile and a quintuple (Rd,Rp,cd,cp,b) a (jury selection) problem.

Example 3.1. If π(J) is the probability that jury J convicts the defendant, then party i’s

preference is represented by a utility function of the form ui = vi(π(J)), where vp is in-

creasing and vd decreasing.

Throughout, I assume that preferences on juries are separable, i.e., if replacing juror

h by juror j in jury J is an improvement according to ui, then the same is true when h is

replaced by j in any other jury J′. Formally, for any i ∈ {d, p} and any J,J′ ∈J , h ∈ J∩J′

and j ∈ N\(J∪ J′), ui(J ∪{ j}\{h})≥ ui(J) if and only if ui(J
′∪{ j}\{h})≥ ui(J

′).

Most of the results in this paper also hold when separability is not assumed. Separability

eases the exposition because it implies that the preferences Rd and Rp induce well-defined

13Minnesota Court Rules, Criminal Procedure, Rule 26.02, Subd.4.(3)b).
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preferences for individual jurors. It is also assumed that the preferences for jurors induced

by Rd and Rp are strict. Slightly abusing the notation, Ri serves to denote i’s preference for

individual jurors as well as i’s preference for juries.

An extreme kind of profile is a juror inverse profile. A profile is juror inverse if Rd and

Rp induce inverse preferences on jurors (i.e., for all j,h ∈ N, j Rp h if and only if h Rd j).

Unlike separability, which is assumed throughout the paper, juror inverse profiles are only

considered as a special case.

3.2.2 Procedures

As attested to by Bermant and Shapard (1981), a wide variety of struck procedures are

used by judges. One common type of struck procedure are procedures that I call one-shot.

In a one-shot procedure, each party i ∈ {d, p} submits a single list of up to ci jurors in

N that i wants to challenge. Depending on the procedure, the parties submit their lists

simultaneously (one-shotM) or sequentially (one-shotQ). The impaneled jurors are the

jurors in N who have not been challenged. If more than b jurors are left unchallenged, the

b impaneled jurors are drawn at random from among the unchallenged jurors.14

Another common type of struck procedure are the procedures that I call alternating.

Alternating procedures proceed through a succession of rounds in which the parties can

challenge as many jurors in N as they have challenges left. Again, an alternating proce-

dure can be either simultaneous (alternatingM) or sequential (alternatingQ) depending

on whether challenges are submitted simultaneously or sequentially in each round. In

alternatingM, if both parties challenge the same juror in a given round, both parties are

charged with the challenge and can challenge one less juror.

Alternating procedures stop when neither of the parties has challenges left, or when

14The use of one-shotM is documented by Bermant (1982, Step. 5, Comments by Judges Feikens and

Voorhees). Bermant (1982, Step. 5, Comments by Judge Enright) shows that a procedure in which the parties

alternate challenges twice has been used in practice, with each party allowed to challenge up to ci
2

jurors in

each round.
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both parties abstain from challenging a juror in a single round. The impaneled jurors are

the jurors left unchallenged in N, or a random draw of b of these jurors if more than b jurors

are left unchallenged.15

One-shot and alternating procedures are members of the class of N -struck procedures

in which parties take turns challenging jurors from N for a number of rounds.16 Formally,

every N-struck procedure consists of a maximum of f ≥ 1 rounds, where f differs between

procedures. Each round r ∈ {1, . . . , f} is characterized by a maximum number of chal-

lenges xr
i ≥ 1 for each party, with ∑

f
r=1 xr

i ≥ ci. The number of challenges party i has left in

round r is lr
i , with l1

i = ci. In each round r:

(a) The parties can challenge up to min{xr
i , l

r
i } jurors among the jurors in N who have

not yet been challenged. Challenges are sequential if the procedure is sequential, and

simultaneous if the procedure is simultaneous.

(b) For each party i ∈ {d, p}, the number of challenges left is decreased by the number of

jurors that the party challenged in (a) (i.e., lr+1
i equals lr

i minus the number of jurors

that the party challenged in (a)).

The procedure terminates when no party has challenges left, when round f is reached,

or when both parties abstain from challenging any juror in a single round. The jurors left

unchallenged when the procedure terminates are the impaneled jurors. If more than b jurors

are left unchallenged when the procedure terminates, the b impaneled jurors are drawn at

random from the unchallenged jurors.17

15AlternatingQ is recommended by law as the preferred method for criminal cases other than first-degree

murder in Minnesota (Minnesota Court Rules, Criminal Procedure, Rule 26.02, Subd.4.(3)b)). Simultaneous

challenges are used in alternating procedures for civil cases in Tennessee (Tennessee Court Rules, Rules of

Civil Procedure, Rule 47.03), although the mandated procedure in these cases is of the strike and replace type

(footnote 12).
16 The name “N-struck procedure” emphasizes the fact that, in each round, the parties can challenge any

juror in N that has not been challenged yet. This is not the case in every struck procedure (Bermant, 1982,

Step. 5, Comments by Judge Atkins).
17The distribution is arbitrary as long as any remaining juror has a strictly positive probability of being

selected.
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One-shot procedures are N-struck procedures with f = 1 and x1
i = ci for both parties i ∈

{d, p}. Alternating procedures are N-struck procedures with xr
i = ci for both i ∈ {d, p} and

all r ∈ {1, . . . , f}, and f = 2maxi∈{d,p} ci. Besides one-shot and alternating procedures, the

class of N-struck procedures includes, for example, the two-round procedure documented

by Bermant (1982, Step. 5, Comments by Judge Enright) and described above.

From a game theoretic point of view, a (jury selection) procedure is an extensive game

form Γ : Sd ×Sp → ∆J that associates any pair of strategies (sd,sp) in some strategy

space Sd ×Sp with a lottery on juries in J . In this paper, I restrict attention to pure

strategies in any extensive game form Γ, although all the results also hold when mixed

strategies are allowed.

3.3 Impossibility results

Given preference Ri, a best response for party i to some strategy s−i of her opponent is

a strategy ti(s−i) such that

Γ
(
ti(s−i),s−i

)
Ri Γ

(
s′i,s−i

)
for all s′i ∈ Si. (3.1)

When −i plays s−i and i plays ti(s−i), party i best responds to −i. A strategy si ∈ Si is

dominant for i given some model S−i ⊆ S−i of her opponent if si is a best response to

every strategy s−i ∈ S−i. A dominant strategy is a strategy s∗i ∈ Si that is a best response

for i to any strategy s−i ∈ S−i. In other words, a dominant strategy is a strategy that is

dominant for i given any model of her opponent.

Given some domain of preferences, a dominant strategy procedure is a procedure in

which both parties have a dominant strategy for every profile in the domain. Dominant

strategy procedures are strategically simple because each party can determine an optimal

strategy independently of any guess about the strategy of her opponent. Dominant strategy

procedures guarantee a form of equality among equals: Two parties having the same pref-
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erences but different abilities to form expectations about their opponent’s strategy should

be able to secure similar outcomes.

It is useful to relate dominant strategies with level-k thinking (see the survey in Craw-

ford et al., 2013). In the level-k terminology, an L0
i party is a non-strategic party who could

potentially play any strategy. An L1
i party assumes that her opponent is L0

−i, makes a guess

about the L0
−i strategy s0

−i that her opponent will employ, and best responds to s0
−i.

18 Simi-

larly, an Lk
i party assumes that her opponent is Lk−1

−i , makes a guess about the Lk−1
−i strategy

sk−1
−i that her opponent will employ, and best responds to sk−1

−i .

Observe that, because an L0
−i strategy can be any of −i’s strategies, i has a dominant

strategy if and only if i has an L1
i strategy that is a best response to every L0

−i strategy of

her opponent. In the language of level-k thinking, a dominant strategy procedure limits

the impact of differences in strategic skills because i can determine an optimal strategy

independently of her belief about her opponent’s level of rationality k−i, or her guess about

which L
k−i

−i strategy her opponent will employ.

Unfortunately, most reasonable procedures that permit challenges do not have a dom-

inant strategy. Consider one-shotM. In one-shotM, i’s only best response to any s−i is to

challenge her ci worst jurors among the jurors that −i does not challenge in s−i. As illus-

trated in Example 3.2, such a best response is highly dependent on the challenges chosen

by −i. Hence, one-shotM is not a dominant strategy procedure.

Example 3.2. Suppose that each juror has four challenges (cd = cp = 4) and one juror has

to be selected (b = 1). A set of nine prospective jurors N = {1, . . . ,9} will therefore remain

after all challenges for cause have been raised. Let d’s preference on these nine jurors be

1 Rd 2 Rd . . . Rd 9. If p challenges the circled jurors in (3.2), then d’s best response is to

18Recall that I only consider pure strategies. Hence, the set of i’s level-0 strategies is the set of i’s pure

strategy. Again, all the results in this paper hold when mixed strategies are allowed. In particular, the results

hold when a party i’s level-1 strategies include i’s best responses to probabilistic beliefs about the (pure)

level-0 strategy that −i will employ, as in Ho et al. (1998).
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challenge the squared jurors in (3.2).

Rd : 1 2 3 4 5 6 7 8 9 (3.2)

On the other hand, if p challenges the circled jurors in (3.3), d’s best response is to chal-

lenge the squared jurors in (3.3).

Rd : 1 2 3 4 5 6 7 8 9 (3.3)

Clearly, the challenge of the squared jurors in (3.3) is not a best response for d to p chal-

lenging the circled jurors in (3.2), which shows that one-shotM is not a dominant strategy

procedure on any domain a profile of which contains Rd .

As shown in Proposition 3.1, the preceding example generalizes to the whole class of

N-struck procedures and to any problem. Intuitively, in any N-struck procedure, if −i does

not challenge any jurors, then i’s best response is to challenge her ci worst jurors. On

the other hand, if −i challenges one of the ci worst jurors of i, say w, then i is better off

not challenging w and challenging her other ci worst jurors. Recall that a (jury selection)

problem is a quintuple (Rd,Rp,cd,cp,b).

Proposition 3.1. For any problem, (i) the first party does not have a dominant strategy in

one-shotQ and (ii) neither party has a dominant strategy in any N-struck procedure different

from one-shotQ.

Note that one-shotM is an N-struck procedure different from one-shotQ. Hence, Propo-

sition 3.1 shows that, for every problem, neither party has a dominant strategy in one-shotM.

One-shotQ is the exception among N-struck procedures: It is the only N-struck procedure

in which one of the parties — the second party to challenge — has a dominant strategy,

although the other party does not for the reason explained before the proposition (see the

proof of the proposition for more detail).

43



Of course, N-struck procedures are only a small subset of all possible jury selection

procedures. Other procedures used in practice include the strike and replace procedures

(see footnote 12), as well as other struck procedures in which the parties can only challenge

from subsets of N in each round (Bermant, 1982, Step. 5, Comments by Judge Atkins). It is

therefore natural to ask whether there exists dominant strategy procedures for jury selection

outside of the N-struck class. The next proposition shows that if such procedures exist, then

they must either deprive a party of her right to challenge at least one juror in N or be so

intricate that they are unlikely to be used in practice.

A procedure satisfies finiteness if the set of its decision nodes is finite for both parties

and for Nature. A procedure satisfies minimal challenge if for every prospective juror

j ∈ N, both parties i ∈ {d, p} have a strategy s
j
i ∈ Si such that j is never part of the chosen

jury when i plays s
j
i .19 Every N-struck procedure satisfies both finiteness and minimal

challenge (strategy s
j
i can, for example, involve challenging juror j — and only juror j —

in the first round).

Proposition 3.2. On the domain of separable preferences, no dominant strategy procedure

satisfies both finiteness and minimal challenge.

In the Appendix, I show that Proposition 3.2 is, in fact, true for smaller domains of

profiles, including the domain of additive profiles.

3.4 A measure of strategic complexity

Propositions 3.1 and 3.2 show that most procedures are not strategically simple in the

sense that both parties cannot always follow the simple recommendation of playing a domi-

nant strategy. This does not mean, however, that judges should give up on the idea of using

procedures that are as simple as possible. This section and the next show that, although

procedures generally fail to feature dominant strategies, not all procedures are equal in

terms of strategic complexity.

19That is, the probability that j is chosen given that i plays s
j
i is zero for all s−i.
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3.4.1 Motivating example

Brams and Davis (1978, p. 969) have argued that, when the parties have juror inverse

preferences, one-shot procedures raise “no strategic questions of timing: given that each

side can determine those veniremen [i.e., potential jurors] it believes least favorably dis-

posed to its cause, it should challenge these up to the limit of its peremptory challenges.”

This may come as a surprise given Example 3.2 and Proposition 3.1. Certainly, one-shotM

is not a dominant strategy procedure. How can we then make sense of Brams and Davis’

claim? The next example suggests one possible answer.

Example 3.3. Consider one-shotM with cd = cp = 2 and b = 5. Let d have preference

1 Rd . . . Rd 9. Also, suppose that the parties have juror inverse preferences.

If d believes that p is best responding to one of her strategies, d knows that p will

challenge two of the circled jurors in (3.4).

Rd : 1 2 3 4 5 6 7 8 9

Rp : 9 8 7 6 5 4 3 2 1

(3.4)

Indeed, a best response by p always involves challenging her two worst jurors among the

seven jurors that she believes d will not challenge. Therefore, regardless of the jurors p

believes that d will challenge, a best response by p can never include p challenging a juror

in {5, . . . ,9}.

Thus, a best response by d to the minimal belief that p is a best responder always

consists in challenging her two worst jurors (squared in (3.4)). By symmetry, the same is

true for p.

In Example 3.3, one-shotM “raises no strategic question” because a party only needs

to know that her opponent is a best responder in order to have a dominant strategy. For

each party i, challenging her ci worst jurors is a best response to any strategy of party

−i that is itself a best response to one of i’s strategies. In this sense, each party i has a
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dominant strategy given a minimal model of the strategic behavior of her opponent: the

model S−i = L1
−i.

In the rest of this section, I generalize this logic to obtain a measure of strategic com-

plexity. This measure is then applied in the next two sections to compare struck procedures

for different assumptions for the problem (Rd,Rp,cd ,cp,b).

3.4.2 The dominance threshold

As argued above, first-best procedures are procedures in which each party has a domi-

nant strategy whatever model she has of her opponent. It is then natural to call a procedure

second-best if each party has a dominant strategy given a minimal model of her opponent.

As suggested in Example 3.3, a meaningful concept of a minimal model is for a party to

assume that her opponent will play a best response to some of her strategies.

In the language of level-k thinking, a procedure is second-best if each party i has an

L2
i strategy that is a best response to every L1

−i strategy of her opponent. Such second-best

procedures limit the impact of differences in strategic skills because i’s optimal strategy

depends minimally on her model of −i: i only needs to assume that −i is L1
−i to have a

dominant strategy.

The difference between first-best and second-best procedures is illustrated in Figure

3.1(a) and (b). In the figure, an arrow from strategy si to strategy s−i means that si is a best

response to s−i. In the first-best procedure represented in (a), party i has a strategy — s6
i

in the figure — that is a best response to every strategy of her opponent (i.e., to every L0
−i

strategy). In the second-best procedure represented in (b), party i has a strategy — s4
i in

the figure — that is a best response to every strategy of her opponent that is itself a best

response (i.e., to every L1
−i strategy). However, s4

i does not need to be a best response to

every L0
−i strategy. For example, in the figure, s4

i is not a best response to s1
−i.

A second-best procedure guarantees a form of second-best equality among equal par-

ties. Consider two defendants with the same preference who both believe that p is L1
p and
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Figure 3.1: Representation of first-, second-, and third-best procedures.

best responds to one of her strategies. The two defendants might differ in other strategic

aspects, such as their ability to guess which of their strategies p best responds to. In a

second-best procedure, these differences have no impact: the two defendants play equiva-

lent strategies and secure the same outcome.

Similarly, third-best procedures feature dominant strategies given a model that is min-

imally stronger than in second-best procedures. A natural candidate for such a minimally

stronger model is for i to assume that −i is L2
−i (see Figure 3.1(c)). This logic extends to

higher level reasoning.

In procedures with multiple rounds, it is important to ensure that best responses be

enforced throughout the game tree. Therefore, the measure of strategic complexity defined

below relies on the iterated elimination of strategies that are never best responses in any

subgame of an extensive game. That is, in each round of elimination, any strategy that fails

to be a best response when restricted to any subgame of the game is discarded.

Definition 3.1 (Iterated elimination of never best responses). For any procedure Γ and any

profile (Rd,Rp), the process of iterated elimination of never best responses is defined as

follows:

Step 0. For each i ∈ {d, p}, the set of L0

i
(level-0) strategies is Si.
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Step 1. For each i ∈ {d, p}, eliminate from L0
i the strategies si for which there exists a

subgame γ of Γ such that the restriction si|γ of si to γ is not a best response to any s−i|γ in

γ .

The remaining set of strategies is denoted by L1
i . Any si ∈ L1

i is called a L1

i
(level-1)

strategy for i.

...

Step k. For each i ∈ {d, p}, eliminate from Lk−1
i the strategies si for which there exists a

subgame γ of Γ such that the restriction si|γ of si to γ is not a best response to s−i|γ for

any s−i ∈ Lk−1
−i .

The remaining set of strategies is denoted Lk
i . Any si ∈ Lk

i is called a Lk
i

(level-k) strategy

for i.

Observe that the sets of level-k strategies are nested (L0
i ⊇ L1

i ⊇ . . . ). Observe also that,

for every procedure Γ that satisfies finiteness, the set of level-k strategies is non-empty for

every k.20

The argument at the beginning of this section suggests using the following concept of

a dominance threshold as a measure of strategic complexity.

Definition 3.2 (Dominance threshold). For any procedure Γ and any profile (Rd,Rp), the

dominance threshold is the smallest integer r∗ such that, for each i ∈ {d, p}, there exists an

Lr∗

i strategy s∗i that is a best response to every Lr∗−1
−i strategy.

If there exists no such integer, then the dominance threshold of Γ is ∞, i.e., the procedure

cannot be solved by iterated elimination of never best responses. Note that if the domi-

nance threshold r∗ is finite, then there exists a strategy profile (si,s−i) ∈ Lr∗

i ×Lr∗

−i that is a

subgame perfect equilibrium.

20When Γ satisfies finiteness, for any i ∈ {d, p} and any strategy s−i, the set {Γ(si,s−i) | si ∈ Si} is finite

because Si is finite. Hence, there must exist a strategy ti(s−i) such that Γ
(
ti(s−i),s−i

)
Ri Γ

(
s′i,s−i

)
for all

s′i ∈ Si and L1
i is non-empty. The non-emptiness of Lk

i then follows by induction.
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Throughout this paper, the parties’ knowledge of each others’ preferences and levels

of rationality is left unspecified. The idea behind the dominance threshold is precisely

to measure the “amount” of common knowledge needed for the parties to have dominant

strategies. For example, when the dominance threshold of a game is 1, the parties have a

dominant strategy regardless of their knowledge of their opponent’s preference and level of

rationality (the parties only need to know the structure of the game). When the dominance

threshold is 2, the parties only need to know their opponent’s preference and the fact that

their opponent is a best responder in order to have a dominant strategy.

3.5 One-shot procedures

In this section, I show that one-shotQ is strategically simpler than one-shotM in the

following sense.

Proposition 3.3. (i) For every problem, the dominance threshold of one-shotM is no smaller

than the dominance threshold of one-shotQ. (ii) For some problems, the dominance thresh-

old of one-shotM is larger than the dominance threshold of one-shotQ.

In the rest of this section, I prove and illustrate Proposition 3.3.

3.5.1 One-shotQ is always maximally simple

The next example illustrates how to compute the dominance threshold of one-shotQ for

a particular problem.

Example 3.4. This example is illustrated in Figure 3.2. In the figure, LT for T ⊆ N repre-

sents a lottery in which one juror is drawn at random from T . The labels on the branches

of the tree indicate the juror who is challenged in the corresponding action.

Suppose that cd = cp = b = 1 and d is the first party to challenge. Suppose also that the

parties have aligned preferences 1 Rd 2 Rd 3 and 1 Rp 2 Rp 3.

49



b
d

/0

1

2

3
b

b

b

b

/0

1

2

3

/0

2

3 b

b

b

b

b

b

b

{2}

{3}

L{2,3}

L{1,2}

L{1,3}

L{2,3}

L{1,2,3}

L1
p and L2

p

p

p

p

p

L2
d

/0

1

3 b

b

b

{1}

{3}

L{1,3}

/0

1

2 b

b

b

{1}

{2}

L{1,2}

Figure 3.2: Computing the dominance threshold in Example 3.4.

Because preferences for jurors are strict, p has a unique dominant strategy s∗p which

consists in (a) challenging juror 3 if d did not challenge 3 and (b) challenging juror 2 if

d did challenge juror 3 (dotted blue branches in the figure). Strategy s∗p is, therefore, the

unique L1
p strategy. It directly follows from uniqueness that s∗p is a best response to all L1

d

strategies.

Because there is a unique L1
p strategy s∗p, any L2

d strategy that best responds to s∗p (either

of the red dashed branches in the figure) is a best response to all L1
p strategies. Hence,

the dominance threshold of one-shotQ is at most 2 for this problem. But by Proposition

3.1, because one-shotM is an N-struck procedure, the dominance threshold of one-shotQ

is at least 2 for every problem. Thus, the dominance threshold of one-shotQ is 2 for this

problem.

It is not hard to see how the argument in Example 3.4 generalizes to any problem. In

general, the party −i who challenges second in one-shotQ has a unique dominant strategy

s∗−i. Then, any best response by i to s∗−i is a best response to every L1
−i strategy.

Proposition 3.4. For any problem, the dominance threshold of one-shotQ is 2.

50



Proposition 3.4 does not depend on the separability assumption. Instead, the proof relies

on the fact that preferences for the outcomes of the procedure are strict. The proposition

also extends to situations in which complete information (which is implicit in the definition

of a dominance threshold of 2) is relaxed. Consider Example 3.4. In order to have a

dominant strategy, d only needs to know that p will challenge juror 3 if she challenges

juror 2. Hence, d only needs to know which juror is p’s worst juror in order to have a

dominant strategy (as opposed to knowing all of p’s preference for jurors).

By Proposition 3.1, because one-shotM is an N-struck procedure, the dominance thresh-

old of one-shotM is at least 2 for every problem. Together with Proposition 3.4, this implies

that the dominance threshold of one-shotM is never smaller than the dominance threshold

of one-shotQ, which proves Proposition 3.3(i).

3.5.2 One-shotM is often complex: one-common profiles

I now show that one-shotM is more complex than one-shotQ when the profile is not juror

inverse and preferences for jurors satisfy some “commonality at the bottom”.

3.5.2.1 Motivating example

Example 3.5. This example is illustrated in Figure 3.3. Suppose that b = cd = cp = 1. Also

suppose that the parties’ preferences are 1 Rd 2 Rd 3 and 2 Rp 1 Rp 3.

Both challenging juror 3 and challenging juror 1 are L0
p strategies.21 Challenging juror

2 is d’s best response to p challenging juror 3, and challenging juror 3 is d’s best response

to p challenging juror 1. Hence, both challenging juror 2 and challenging juror 3 are L1
d

strategies. But no strategy of p is a best response to both of these L1
d strategies. Therefore,

the dominance threshold of one-shotM is at least 3 for this problem.

In Example 3.5, both parties agree that juror 3 is the worst juror. Therefore, any best

21Challenging juror 2 and challenging no juror are also L0
p strategies. However, it is sufficient to consider

the other two L0
p strategies.
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responding party would challenge juror 3 if her opponent did not. But each party also

prefers a situation in which her opponent challenges 3, and she challenges her second worst

juror. That is, each party would like to make a credible threat not to challenge juror 3 and

free ride on her opponent’s challenge of juror 3. But because the procedure is simultaneous,

such a credible threat is impossible. As explained in detail in Example 3.5, the impossibility

for the parties to commit to leaving juror 3 unchallenged makes the dominance threshold

of one-shotM larger than 2 for this problem. Together with Proposition 3.4, Example 3.5

therefore proves Proposition 3.3(ii).

In fact, the dominance threshold in Example 3.5 is ∞, which shows just how complex

one-shotM can become when the profile is not juror inverse.

Example 3.5 (Continued). Party p’s best responses to these two L1
d strategies are to chal-

lenge juror 3 (p’s best response to d challenging juror 2) and to challenge juror 1 (p’s

best response to d challenging juror 3), see Figure 3.3. Thus, both challenging juror 3 and

challenging juror 1 are L2
p strategies. But these two L2

p strategies are the two L0
p strategies

considered at the beginning of the example. The argument therefore extends by induction,

which shows that the dominance threshold of one-shotM is ∞ for this problem.

As this example illustrates, for some profiles that are not juror inverse, the parties’

common knowledge of each others’ rationality and preferences is not sufficient to provide

the parties with dominant strategies and make the game strategically simple. Even for “high

levels of common knowledge”, the game induced by one-shotM remains akin to a game of

chicken in which each party prefers to swerve (i.e., challenge some of her worst jurors) if

her opponent stays straight (i.e., does not challenge some of her worst jurors), but prefers

to stay straight if her opponent swerves.

3.5.2.2 One-common profiles

Profiles for which the dominance threshold of one-shotM is ∞ are not rare. Given cd

and cp, a profile is one-common if a juror w that is among the cd worst jurors of d is also
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Figure 3.3: Iterated best responses based on two of the L0
p strategies in the problem of

Example 3.5.

among the cp worst jurors of p. Intuitively, the dominance threshold of one-shotM is ∞ for

one-common profiles because the free rider problem described in Example 3.5 extends to

one-common profiles. When the profile is one-common, each party would like to make a

credible threat not to challenge juror w and free ride on her opponent’s challenge of juror

w. But if her opponent does not challenge w, each party prefers to challenge w herself than

to leave w unchallenged.

Proposition 3.5. If the profile is one-common, then the dominance threshold of one-shotM

is ∞.

Although Proposition 3.5 relies more directly than Proposition 3.4 on the separability

assumption,22 the intuition behind Proposition 3.5 applies even when separability is re-

laxed. Regardless of the assumptions on preferences, if for some juror w, both parties have

best responses that include challenging w, then the dominance threshold is larger than 2 in

one-shotM. The proposition also extends to situations of incomplete information in which

the parties only know that they have a common juror w at the bottom of their ranking of

jurors (but do not know each other’s complete preferences for jurors).

One-common profiles arise in a number of natural jury selection situations. For exam-

ple, both parties may dislike a juror who they view as too unpredictable. Both parties may

also dislike “devil advocates” or “irresolute” jurors who are likely to induce a hung jury

and to force a retrial of the case. Finally, d may dislike juror j’s position on some charges,

while p dislike juror j’s position on different charges.

22One-common profiles are not well-defined without the separability assumption.
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In the Appendix, I show that one-common profiles were frequent in the selection of an

arbitrator between unions and employers by the New Jersey Public Employment Relations

Commission from 1985 to 1996 (Bloom and Cavanagh, 1986; de Clippel et al., 2014). I

also show that one-common profiles represent a significant proportion of the set of profiles.

This is true even when attention is limited to profiles that are close to being juror inverse

(in a sense that is made precise in the Appendix).

In the Appendix, the proportion of one-common profiles is shown to be an increasing

function of the number of challenges and a decreasing function of the number of jurors b.

Based on the objective of reducing strategic complexity, Proposition 3.5 and the results in

the Appendix therefore provide a game-theoretic justification for decreasing the number of

peremptory challenges, a measure that has some support among those who defend a reform

of the peremptory challenge (Henley, 1996). Procedures in which the number of challenges

is high relative to b exist in practice. In the United States, the number of challenges tends to

increase with the gravity of the charges. For example, in federal cases for which the death

penalty is sought by the prosecution, b = 12 and cd = cp = 20. In this case, the dominance

threshold is ∞ for more than 97% of the profiles (and more than 15% of the profiles that

are close to being juror inverse).

Overall, the results in this section contrast with the judges’ beliefs that “blind” (i.e., si-

multaneous) procedures leave less room for the parties to strategize than sequential ones.23

Contrary to the judges’ beliefs, the dominance thresholds suggest that one-shotQ is strate-

gically simpler than one-shotM: By making past actions observable, one-shotQ allows the

parties to make credible threats about the jurors they challenge, which reduces the amount

of guesswork involved in determining an appropriate strategy. The next section shows that

similar results hold for other N-struck procedures.

23See the last quotation from Shapard and Johnson (1994) in the Introduction.
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3.6 Alternating and other N-struck procedures

In general, it is unclear how alternatingM and alternatingQ compare. However, extend-

ing the logic of Proposition 3.5, it is possible to obtain a partial comparison for a significant

subset of profiles. For this subset of profiles, the dominance threshold of any simultaneous

N-struck procedure (including alternatingM) is infinite, whereas the dominance threshold

of any sequential N-struck procedure (including alternatingQ) is finite.

If preferences for the outcomes of a sequential N-struck procedure are strict (includ-

ing preferences on lotteries), then the procedure always has a finite dominance threshold.

This follows from the fact that, with no indifferences on outcomes, sequential N-struck

procedures induce games of perfect information that can be uniquely solved by backward

induction.24 Then, the number of rounds of backward induction required to solve the game

is an upper bound for the dominance threshold.

Proposition 3.6. For any sequential N-struck procedures, if preferences for the outcomes

of the procedure are strict, then the dominance threshold is finite and smaller than the depth

of the game tree.25

Again, Proposition 3.6 does not depend on the separability assumption, but instead on

the assumption that preferences for the outcomes of the procedure are strict.

Recall that one-shotM has an infinite dominance threshold when the profile is one-

common because each party would like to free ride on her opponent’s challenge of one

of the jurors they both dislike (see Example 3.6). This idea generalizes to the class of

simultaneous N-struck procedures as a whole. Below, I identify for each simultaneous N-

struck procedure Γ a set of Γ-one-common profiles. In Proposition 3.7, I show that any

Γ-one-common profile induces an infinite dominance threshold in Γ.

Informally, given a simultaneous N-struck procedure Γ, a profile is Γ-one-common if in

24More precisely, multiple strategy profiles can survive backward induction, but each of these profiles must

yield the same outcome.
25The depth of a game tree is the length of the longest path from the initial node to a terminal node.
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one of the final subgames of Γ, the set of jurors that remain unchallenged gives rise to the

free rider problem described above. Formally, given Γ, a profile is Γ-one-common if there

exists a subgame γ of Γ such that (a) both parties can still challenge jurors in γ (i.e., l
γ
i ≥ 1

for both i ∈ {d, p}), (b) the first round of γ is the final round of γ in which both parties

can challenge jurors,26 and (c) among the unchallenged jurors, one of the l
γ
d worst jurors

according to Rd is also one of the l
γ
p worst jurors according to Rp.

Example 3.6. Consider alternatingM and any problem in which cd = cp = 2, b = 1, and the

preferences for jurors are

Rd : 1 2 3 4 5

Rp : 2 4 5 1 3

(3.5)

The profile is not one-common because {4,5}∩{1,3}= /0.

However, consider the subgame γ∗ that follows from d challenging juror 4 and p chal-

lenging juror 5 in the first round. Subgame γ∗ satisfies (a) and (b) in the definition of an

alternatingM-one-common profile. Also, both players have the same worst juror among

{1,2,3}, the set of unchallenged jurors at the beginning of γ∗. Hence, condition (c) in the

definition of an alternatingM-one-common profile is also satisfied and so profile (3.5) is

alternatingM-one-common.

To see why the dominance threshold is infinite in subgame γ∗, observe that in γ∗, each

party wants to free-ride on her opponent’s challenge of juror 3. This induces an infinite

dominance threshold for the same reasons that the dominance threshold is infinite in Ex-

ample 3.5.

Consider one-shotM-one-common profiles. The only subgame of one-shotM is one-

shotM itself. Hence, in the case of one-shotM, (a), (b), and (c) boil down to requiring that

among N, one of the cd worst jurors according to Rd is also one of the cp worst jurors

26This could arise because the first round of γ is the terminal round of Γ or because both parties only have

one challenge left in γ .

56



according to Rp, which is the definition of a one-common profile. Because the sets of

one-shotM-one-common and one-common profiles are identical, the next proposition gen-

eralizes Proposition 3.5.

Proposition 3.7. For any simultaneous N-struck procedure Γ, if the profile is Γ-one-common,

then the dominance threshold of Γ is ∞.

Example 3.6 (Continued). To see why the dominance threshold is infinite in subgame γ∗,

observe that in γ∗, each party wants to free-ride on her opponent’s challenge of juror 3. This

induces an infinite dominance threshold for the same reasons that the dominance threshold

is infinite in Example 3.5.

Propositions 3.6 and 3.7 jointly imply that, whenever the profile is alternatingM-one-

common (and preferences on outcomes are strict), the dominance threshold of alternatingQ

is smaller than the dominance threshold of alternatingM. That is, Proposition 3.3 partially

extends to alternating procedures. In the Appendix, I show that the alternatingM-one-

common profiles are a strict superset of the one-common profiles. Hence, the arguments

on the prevalence of one-common profiles in Section 3.5.2 extend to alternatingM-one-

common profiles.

3.7 Conclusion

This paper shows how jury selection procedures can be compared in terms of their

strategic complexity by computing their dominance thresholds, i.e., the number of rounds

of elimination of strategies that are never responses required for the parties to have a dom-

inant strategy. The results in this paper notably show that procedures in which challenges

are made sequentially tend to be strategically simpler than procedures in which challenges

are simultaneous.

The dominance threshold offers a new method to compare the strategic complexity of

mechanisms. Unlike previous methods in the literature (Pathak and Sönmez, 2013; de
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Figure 3.4: Arbitrary hierarchical model for a given preference profile (Rd,Rp).

Clippel et al., 2014; Arribillaga and Massó, 2015), it allows for comparisons even when the

mechanisms at stake are indirect or induce games of imperfect information.

More generally, the dominance threshold shows how hierarchical models can be used

to compare the strategic complexity of mechanisms. As illustrated in Figure 3.4, for any

profile (Rd,Rp), a hierarchical model specifies a pair ({S0
d, . . . ,S

m
d },{S0

p, . . . ,S
m
p }) of col-

lections of nested strategy sets, i.e., Si ⊆ S0
i ⊆ ·· ·⊆ Sm

i (m could be infinite). As k increases,

the sets Sk
i represent increasingly restrictive models of the strategies that i could potentially

play.

This paper studies the level-k hierarchical model ({L0
d , . . . ,L

m
d },{L0

p, . . . ,L
m
p }) defined

in Section 3.4. Given a profile (Rd,Rp), I define the dominance threshold as the smallest

hierarchical level r∗ for which each party i has a strategy s∗i ∈ Si that is a best response

to every strategy in Lr∗−1
−i . I then use the dominance threshold as a measure of strategy

complexity.

Clearly, this logic is not specific to the level-k hierarchical model. A natural alterna-

tive would be to use the “undominated” hierarchical model UD defined by the process

of iterated elimination of dominated strategies. One could then define an alternative UD-
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dominance threshold,27 and perform an analysis similar to those of this paper.28

In general, there is no logical relation between the UD-dominance threshold and the

level-k-dominance threshold of a game. However, some of the results in this paper also

apply when the UD-dominance threshold is used instead.

First, it is not hard to see that the UD-dominance threshold of one-shotQ is 2. Second,

it can be shown that for every problem, the UD-dominance threshold of one-shotM is at

least as large as the level-k-dominance threshold of one-shotM.29 Hence, the results in Sec-

tion 3.5.2 also apply using the UD-dominance threshold. Specifically, the UD-dominance

threshold of one-shotM is larger than 2 for a significant set of problems. Whether the results

of Section 3.6 also extend to the UD-dominance threshold case is left as an open question.

Appendix

Proofs

Proof of Proposition 3.1. Consider any problem. (i). Let i ∈ {d, p} be the party who

challenges jurors first and let w be i’s worst juror. Let sw
−i be the strategy in which −i

challenges only w provided i did not already challenge w, and −i challenges no other juror

otherwise. Also, let s0
−i be the strategy in which −i does not challenge any jurors. Because

i’s preference for jurors is strict, i’s unique best response ti(s
w
−i) consists in challenging her

ci worst jurors among N\{w}. In contrast, party i’s unique best response ti(s
0
−i) consists in

27That is, the smallest hierarchical level r∗UD for which each party i has a strategy s∗i ∈ Si that is a best

response to every strategy of her opponent that survives r∗UD − 1 rounds of iterated elimination of dominated

strategies.
28Another option is to use a hierarchical model in which the level of sophistication of the parties is fixed,

say to level-1, but the parties’ information about each others’ preferences is refined in each iteration of the

model. The corresponding I-dominance threshold could, for example, be the smallest r∗I such that each party

i has a strategy s∗i ∈ Si that is a best response to every L1
−i strategy for any preference R̃−i that has the same

r∗I worst jurors as R−i.

Observe that r∗I = 1 in one-shotQ for the problem described in Example 3.4.
29By the assumption that preferences for jurors are strict, best responses are unique in one-shotM. Thus,

every best response is also an undominated strategy, and the set of strategies that survive k rounds of iter-

ated elimination of never best responses is a subset of the set of strategies that survive k rounds of iterated

undominated strategies.
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i challenging her ci worst jurors among N, which includes challenging juror w. Thus, no

strategy of i is a best response to both sw
−i and s0

−i, so i does not have a dominant strategy.

(ii). For one-shotM, the proof is a straightforward adaptation of the argument in (i).30

Now consider any N-struck procedure Γ that is not a one-shot procedure. By definition

of the N-struck class, the one-shot procedures are essentially the only N-struck procedure

with a single round, i.e., any other N-struck procedures with f = 1 must have x1
i > ci for

both i ∈ {d, p} and is therefore strategically equivalent to a one-shot procedure.

Thus, let Γ have at least two rounds. Let i ∈ {d, p} be either of the parties (not neces-

sarily the first one to challenge if the procedure is sequential). Consider the strategy s̃w
−i in

which (A) −i challenges no juror in the first round and (B) in each of the following rounds,

(a) −i challenges as many as possible of i’s worst jurors among the jurors that remain

unchallenged provided i challenged at least one juror in the first round and (b) −i never

challenges any juror otherwise. Also consider the strategy s̃0
−i in which −i never challenges

any juror.

In any best response ti(s̃
w
−i), (A′) i challenges a juror in the first round of Γ, (B′) i never

challenges any of her c−i worst jurors, and (C′) i challenges her ci other worst jurors over

the course of the procedure. In contrast, in any best response ti(s̃
0
−i), (A′′) i challenges her ci

worst jurors among N over the course of the procedure (and only those jurors by definition

of an N-struck procedure), which includes challenging some of her c−i worst jurors.

In particular, the set of jurors that i challenges in the first round of Γ is different under

ti(s̃
w
−i) and under ti(s̃

0
−i).

31 Indeed, by (A′) i challenges at least one juror j in the first round

of Γ and by (B′) this juror cannot be one of her c−i jurors. Thus, by (A′′), j can never be

challenged as part of ti(s̃
0
−i). Thus, no strategy of i is a best response to both s̃w

−i and s̃0
−i, so

i does not have a dominant strategy.

Proof of Proposition 3.2. Let D be the set of separable preferences on ∆J . In order to

30By the symmetry of one-shotM, the argument for party i in (i) applies to both parties in one-shotM.
31If i is the second juror to challenge, the set of jurors that i challenges in the first round of Γ following −i

challenging no juror in the first round is different under ti(s̃
w
−i) and under ti(s̃

0
−i).
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derive a contradiction, assume that there exists a challenge procedure Γ satisfying finiteness

and minimal challenge such that, for every profile (Rd,Rp) ∈ D ×D , both parties have a

dominant strategy.

Let s∗i (Ri) be one of i’s dominant strategies when i’s preference are Ri. Consider the

direct mechanism MΓ : D ×D → ∆J constructed from Γ by setting

M(Rd,Rp) := Γ(s∗d(Rd),s
∗
p(Rp)) for all (Rd,Rp) ∈ D ×D , (3.6)

where Γ(s∗d(Rd),s
∗(Rp)) is the lottery that obtains when (s∗d(Rd),s

∗(Rp)) is played in Γ.

Because s∗i (Ri) is a dominant strategy given Ri, for all i ∈ {d, p} and all Ri ∈ D ,

Γ(s∗i (Ri),s
∗
−i(R−i)) Ri Γ(s∗i (R

′
i),s

∗
−i(R−i)) for all R′

i ∈ D and R−i ∈ D .

But then, by construction of M, for all i ∈ {d, p} and all Ri ∈ D ,

M(Ri,R−i) Ri M(R′
i,R−i) for all R′

i ∈ D and R−i ∈ D .

That is, M is strategy-proof on the domain of separable profiles.

Notice that the domain of additive profiles Dadd ×Dadd is a subset of the domain of

separable profiles.32 By Van der Linden (2015, Example 3), any domain of profiles that

contains the domain of additive profiles is a negative leximin domain (see Van der Linden,

2015, Domain Property 3 for a definition of negative leximin domains). But then, M contra-

dicts Van der Linden (2015, Corollary 3) which states that, on a negative leximin domain,

no mechanism constructed from a procedure satisfying finiteness and minimal challenge as

in (3.6) is strategy-proof, the desired result.

The above proof shows that Proposition 3.2 is, in fact, true on any negative leximin

domain of profiles, which includes the domain of additive profiles.

32Preference Ri is additive if there exists a function ui : N → R such that, for all L,L′ ∈ J , L Ri L′ ⇔

∑J∈J L(J)∑t∈J ui(t)≥ ∑J∈J L′(J)∑t∈J ui(t).

61



L0
i

strategies

L1
−i

strategies

L2
i

strategies

L3
−i

strategies

Set of

jurors

challenged

ti(N)

∋ w

t−i(ti(N))

6∋ w

ti(t−i(ti(N)))

∋ w
. . .

ti(N\{w})

6∋ w

t−i(ti(N\{w}))

∋ w

ti(t−i(ti(N\{w})))

6∋ w
. . .

Figure 3.5: Iterated best responses based on two of the L0
p strategies.

Proof of Proposition 3.4. Consider any problem. Let i be the first party to challenge.

For −i, the unique best response s∗−i to any strategy by i is to challenge her c−i worst jurors

among the jurors that i did not challenge (uniqueness follows from preferences for jurors

being strict). This strategy is, therefore, the unique L1
−i. It directly follows from uniqueness

that s∗−i is a best response to all L0
i strategies.

Because there is a unique L1
−i strategy s∗−i, any L2

i strategy that best responds to s∗−i is a

best response to all L1
−i strategies. Hence, the dominance threshold of one-shotQ is at most

2 for this problem. But by Proposition 3.1, because one-shotM is an N-struck procedure,

the dominance threshold of one-shotQ is at least 2 for every problem. Thus, the dominance

threshold of one-shotQ is 2 for this problem.

Proof of Proposition 3.5. The proof generalizes Example 3.5 and is illustrated in

Figure 3.5. Consider any problem in which the profile is one-common. Let w ∈ N be a

juror that is among the cd worst jurors of d and among the cp worst jurors of p. For any set

Ñ ⊆ N containing at least ci jurors, let ti(Ñ) be the set of the ci worst jurors in Ñ according

to Ri.

Induction basis. For each i ∈ {d, p}, both challenging jurors ti(N) and challenging

jurors ti(N\{w}) are L0
i strategies of one-shotM. Observe that w∈ ti(N) and w /∈ ti(N\{w}).

Induction step. For any k ∈ N, suppose that for both i ∈ {d, p}, the set of Lk
i strategies

of one-shotM contains a strategy sk
i in which w is challenged and a strategy s̃k

i in which w is

not challenged. Then, for each i ∈ {d, p}, we have w /∈ ti(s
k
−i) and w ∈ ti(s̃

k
−i). Hence, for

each i ∈ {d, p}, the set of Lk+1
i strategies of one-shotM contains a strategy s̃k+1

i := ti(s̃
k
−i) in
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which w is challenged and a strategy sk+1
i := ti(s

k
−i) in which w is not challenged.

By the induction step, strategies sk
i and s̃k

i are well-defined for both i ∈ {d, p} and for

all k ∈ N. But observe that, for every k ∈ N, w ∈ ti(s
k
−i) and w /∈ ti(s̃

k
−i) which implies that

ti(s
k
−i) 6= ti(s̃

k
−i). Because ti(s

k
−i) and ti(s̃

k
−i) are unique best responses, no strategy of i is

a best response to every Lk
−i strategy of one-shotM. Hence, the dominance threshold is at

least k+1. Because this is true for all k ∈ N, this concludes the proof.

Proof of Proposition 3.6. Let Γ be any sequential N-struck procedure. Let ē be the

depth of the game tree associated with Γ. It is convenient to describe subgames of Γ in

terms of the height of their initial node, where the height of a node is the length of the

longest path from that node to a terminal node. A subgame of Γ the root node of which has

height h is denoted γh.

Induction basis. Consider any subgame γ1 of Γ. Because preferences on outcomes are

strict, (a) the outcome of γ1 is the same under any level-1 profile, and (b) the dominance

threshold of γ1 is 1.

Induction step. For any h ∈ {1, . . . , ē}, suppose that for any subgame γh−1 of Γ with

height h−1, (a′) the outcome of γh−1 is the same under any level-(h−1) profile and (b′)

the dominance threshold of γh−1 is no larger than h−1.

Consider any subgame γh of Γ with height h. Let i be the party who moves at the root

node of γh. By nestedness, any level-h profile is a level-(h− 1) profile. Hence, by (a′),

for any subgame γh−1 directly following γh, the outcome of γh−1 is the same under any

level-h profile. Thus, if the outcomes of γh differ under two level-h profiles, it must be

that i’s action at the root node of γh lead to two subgames γ̂h−1 and γ̃h−1 with different

level-(h−1) outcomes. But then, because preferences on outcomes are strict, i’s action at

the root node of γh cannot be part of a level-h strategy. Therefore, (a′′) the outcome of γh

must be the same under any level-h profile.

It follows from (a′′) that for each i ∈ {d, p}, any best response to an Lh−1
−i strategy is a

best response to all Lh−1
−i strategies. Hence, (b′′) the dominance threshold of γh is no larger
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than h.

By induction, (b′′) is true for all h ∈ {1, . . . , ē}. Hence, (b′′) is true for γ ē = Γ, the

desired result.

Proof of Proposition 3.7. For any simultaneous N-struck procedure Γ, consider the

subgame γ described in the definition of a Γ-one-common profile. Let w ∈ N be (one of)

the unchallenged juror(s) in γ that is among the l
γ
d worst jurors according to Rd and among

the l
γ
p worst jurors according to Rp. The proof is then a straightforward adaptation of the

proof of Proposition 3.5 with ci replaced by l
γ
i and the challenges described in the proof of

Proposition 3.5 occurring in the first round of γ .

Prevalence of one-common profiles

Proportion of one-common profiles

As shown in Figure 3.6(a), when cd = cp = c, the proportion of one-common profiles

relative to the set of all profiles is high.33 (Proportions of profiles refer to proportions

of profiles of preferences for jurors.) Even among profiles that are close to being juror

inverse, the proportion of one-common profiles can be significant when c is high relative to

b. Figure 3.6(b) shows the proportion of one-common profiles among almost juror inverse

profiles. A profile is almost juror inverse if it can be constructed from a juror inverse

profiles by changing the ranking of a single juror in the preference of one of the parties.34

This definition is illustrated in Example 3.7.

Example 3.7. Suppose that cd = cp = 4 and b = 1. The following profile is almost juror

inverse because it is constructed from a juror inverse profile by changing the ranking of a

33Alternatively, the proportions are lower bounds for c = min{cd,cp}.
34Formally, profile (R∗

d ,R
∗
p) is almost juror inverse if there exists a juror inverse profile (Rd ,Rp), a party

i ∈ {d, p} and a juror j∗ ∈ N such that (a) for all j,k ∈ N, j R∗
−i k if and only if j R−i k, (b) for all j,k ∈ N

with j,k 6= j∗, j R∗
i k if and only if j Ri k, and (c) for some j ∈ N with j 6= j∗, j R∗

i j∗ and j∗ Ri j or j∗ R∗
i j

and j Ri j∗.
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single juror — namely juror 7 — in the preference of p.

Rd : 1 2 3 4 5 6 7 8 9

Rp : 9 8 6 5 4 3 2 7 1

(3.7)

The above profile is also one-common because 7 is among the four worst jurors of both d

and p, and cd = cp = 4.

Computing the proportions in Figure 3.6. Because the one-common property is pre-

served under relabeling of the jurors, let us, without loss of generality, suppose that

(b+2c) R−i (b+2c−1) R−i . . . R−i c R−i . . . R−i 2 R−i 1.

Also, for any Ri, let the c worst jurors according to Ri be w
Ri

1 ,wRi

2 , . . . ,wRi
c , with w

Ri

1 Ri . . . Ri w
Ri
c .

Figure 3.6(a). The proportion of one-common profiles is equal to the proportion of

preferences Ri that induce a one-common profile given the above arbitrary choice of R−i.

Clearly, this proportion can be treated as a probability, where the set of outcomes is the set

of preferences Ri, and the probability of drawing any particular Ri is 1
(b+2c)! .

We are interested in the probability that one of the c worst jurors of i is among the c

worst jurors of −i, i.e.,

P
(
wRi

c ∈ {1, . . . ,c}∪ · · ·∪w
Ri

1 ∈ {1, . . . ,c}
)
,

This probability is equal to

P

(
wRi

c ∈ {1, . . . ,c}
)
+

P

(
w

Ri

c−1 ∈ {1, . . . ,c}∩
(
wRi

c /∈ {1, . . . ,c}
))

+

...

P

(
w

Ri

1 ∈ {1, . . . ,c}∩
(
wRi

c /∈ {1, . . . ,c}∩ · · ·∩w
Ri

2 /∈ {1, . . . ,c}
))

.

(3.8)
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Figure 3.6: Proportion of one-common profiles relative to the set of (a) all profiles and (b)

almost juror inverse profiles.
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The sum in (3.8) can be computed recursively (the recursion has been implemented in R).

For each r ∈ {1, . . . ,c}, let σ r be the sum of the r terms in the first r lines of (3.8) (i.e.,

the sum of the terms involving w
Ri
c ∈ {1, . . . ,c} to w

Ri

c−(r−1)
∈ {1, . . . ,c}). In step r = 1, the

recursion is initiated by computing σ 1. To do so, observe that

σ 1 := P
(
wRi

c ∈ {1, . . . ,c}
)
= P

(
wRi

c = 1∪· · ·∪wRi
c = c

)
.

Because w
Ri
c = 1, . . . ,wRi

c = c are mutually exclusive, we have

P
(
wRi

c ∈ {1, . . . ,c}
)
=

c

∑
i=1

P
(
wRi

c = i) =
c

b+2c
.

Now, for any r ∈ {2, . . . ,c}, observe that, by Bayes’ rule,

P

(
w

Ri

c−(r−1)
∈ {1, . . . ,c}∩

(
wRi

c /∈ {1, . . . ,c}∩ · · ·∩w
Ri

c−(r−2)
/∈ {1, . . . ,c}

))

= P
(
w

Ri

c−(r−1) ∈ {1, . . . ,c}
∣∣ wRi

c /∈ {1, . . . ,c}∩ · · ·∩w
Ri

c−(r−2) /∈ {1, . . . ,c}
)

×P
(
wRi

c /∈ {1, . . . ,c}∩ · · ·∩w
Ri

c−(r−2)
/∈ {1, . . . ,c}

)
.

(3.9)

For all r ∈ {2, . . . ,c}, the first term on the right-hand side of (3.9) is equal to

c

b+2c− (c− r)
. (3.10)

The second term on the right-hand side of (3.9) is equal to

1−P
(
wRi

c ∈ {1, . . . ,c}∪ · · ·∪w
Ri

c−(r−2)
∈ {1, . . . ,c}

)
= 1−σ r−1. (3.11)

Hence, for all r ∈ {2, . . . ,c},

σ r = σ r−1 +
c

b+2c− (c− r)
(1−σ r−1),
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and σ c := P
(
w

Ri
c ∈ {1, . . . ,c}∪· · ·∪w

Ri

1 ∈ {1, . . . ,c}
)

can indeed be computed recursively.

Figure 3.6(b). Let us again (without loss of generality) suppose that R−i as described

above. Computing the proportion in Figure 3.6b) is equivalent to computing the probability

that (Ri,R−i) is one-common when Ri is drawn uniformly at random among the preferences

that make (Ri,R−i) almost juror inverse. That is, Ri is drawn uniformly at random among

the preferences that differ from R∗
i given by 1 R∗

i . . . R∗
i b+2c by the ranking of a single

juror, say w̄Ri . For (Ri,R−i) to be one-common, w̄Ri must be one of the c worst jurors in

R−i and in Ri. The relevant probability is therefore

P
(
w̄Ri ∈ {1, . . . ,c}∩ w̄Ri ∈ {w

Ri

1 , . . . ,wRi
c }
)
.

By Bayes’ rule, this is equal to

P
(
w̄Ri ∈ {w

Ri

1 , . . . ,wRi
c }
∣∣w̄Ri ∈ {1, . . . ,c}

)
P
(
w̄Ri ∈ {1, . . . ,c}

)
.

Because Ri is drawn at random among the preferences that differ from R∗
i by the ranking of

a single juror, P(w̄Ri ∈ {1, . . . ,c}) = c
b+2c

. Also,

P(w̄Ri ∈ {w
Ri

1 , . . . ,wRi
c }
∣∣w̄Ri ∈ {1, . . . ,c}) =

c

b+2c−1
,

where b+ 2c− 1 is the number of (equally likely) positions in which w̄Ri can potentially

be ranked,35 and c is the number of these positions for which w̄Ri ∈ {w
Ri

1 , . . . ,wRi
c } given

w̄Ri ∈ {1, . . . ,c}.36 Hence,

P
(
w̄Ri ∈ {1, . . . ,c}∩ w̄Ri ∈ {w

Ri

1 , . . . ,wRi
c }
)
=

c2

(b+2c)(b+2c−1)
.

35By definition of an almost juror inverse profile, Ri 6= R∗
i . Because w̄Ri is the only juror the ranking of

which is different in Ri and in R∗
i , juror w̄Ri must be ranked differently in Ri and R∗

i . Juror w̄Ri can therefore

be ranked in b+ 2c− 1 ways in R∗
i .

36Indeed, observe that given w̄Ri ∈ {1, . . . ,c} and because (R∗
i ,R−i) is juror inverse, w̄Ri /∈ {w

R∗
i

1 , . . . ,w
R∗

i
c }.
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One-common profiles in the field

To obtain further evidence of the prevalence of one-common profiles, I consider real-

world arbitration cases from the New Jersey Public Employment Relations Commission

(Bloom and Cavanagh, 1986; de Clippel et al., 2014). From 1985 to 1996, the Commission

used a veto-rank mechanism to select an arbitrator in cases involving a union and an em-

ployer. In the veto-rank mechanism used by the Commission, the union and the employer

are presented with seven potential arbitrators. The union and the employer simultaneously

challenge three potential arbitrators and rank order the remaining arbitrators. The chosen

arbitrator is the unchallenged arbitrator with the lowest combined rank. Except for the way

in which an arbitrator is selected when challenges overlap, this procedure is equivalent to

one-shotM with b = 1 and cd = cp = 3.37

Out of 750 cases, de Clippel et al. (2014) report that the frequency of overlaps in the

challenges was as indicated in Table 3.1.

Number of common challenges Proportion

0 13%

1 50%

2 34%

3 3%

Table 3.1: Overlap in challenges in the 750 arbitration cases (de Clippel et al., 2014).

Let a party be truthful if she challenges her three worst arbitrators (regardless of her

reported ranking over the remaining arbitrators). If both parties were truthful in each of the

750 cases, then the data in Table 3.1 would imply that the underlying profile of preferences

for arbitrators was one-common in 87% of the 750 cases. However, because truthfulness is

not a dominant strategy in the veto-rank mechanism, this need not be an accurate estimate

of the proportion of one-common profiles in these 750 cases.

To obtain a more realistic estimate, I consider the laboratory experiment on the veto-

37de Clippel et al. (2014) report that after 1996, the Commission started selecting the arbitrator at random

from the list of unchallenged arbitrators, and so the Commission effectively used one-shotM after 1996.
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rank mechanism described in de Clippel et al. (2014). In the experiment, participants play

the veto-rank mechanisms with five arbitrators (i.e., b = 1 and cd = cp = 2). The partici-

pants are randomly assigned to four different profiles of preferences, denoted Pf1, Pf2, Pf3,

and Pf4 (see de Clippel et al., 2014). For each profile, de Clippel et al. (2014) observe 350

instances of the game being played.

Based on the experimental data from de Clippel et al. (2014), I compute for each profile

the proportion of plays in which both parties were truthful. I also compute this proportion

across the four profiles. These proportions are reported in Table 3.2.

Profile

Proportion of plays in which

both parties challenged their

two worst arbitrators

Pf1 65%

Pf2 45%

Pf3 38%

Pf4 24%

Across the four profiles 43%

Table 3.2: Proportion of experimental plays of the veto-rank mechanism in de Clippel et al.

(2014) in which both players challenged their two worst arbitrators.

I propose to use the values in Table 3.2 as estimates of the proportion of the 750 New

Jersey cases in which both parties were truthful. Whichever estimate x from Table 3.2 is

used, x− 13% is a lower bound on the proportion of one-common profiles. This lower

bound is obtained by assuming that both parties were truthful in all 13% of cases in which

the challenges did not overlap.

The obtained lower bounds are illustrated in Figure 3.7 for different values of the truth-

fulness estimate. Even under the most conservative truthfulness estimate (i.e., 24%), the

lower bound on the proportion of one-common profiles is 11%. Using the average truth-

fulness across the four profiles as an estimate, the lower bound on the proportion of one-

common profiles is 30%.
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Figure 3.7: Lower bounds on the percentage of one-common profiles in the 750 arbitration

cases (blue line) as a function of the percentage of cases in which both parties were truthful.

Estimates for the later percentage using experimental data from de Clippel et al. (2014) are

shown by the dashed vertical lines (see Table 3.2).

3.8 Prevalence of alternatingM-one-common profiles

The procedure used to reach subgame γ∗ in Example 3.6 can be generalized. In alternatingM,

for any set of jurors T of b+2 jurors, there exists a subgame γ satisfying (a) and (b) such

that T is the set of unchallenged jurors and each party has one challenge left.38 Hence, a

profile is alternatingM-one-common if there exists a set T containing b+2 jurors such that

Rp and Rd have the same worst juror among the jurors in T .

This sufficient condition can be used to prove the following result.

Proposition 3.8. Every one-common profile is alternatingM-one-common.

Proof. Consider an arbitrary one-common profile (Rd,Rp). Let N1
i be the set of jurors in

38Such a subgame is reached, for example, after d alone challenges jurors in N\T for cd − 1 rounds,

followed by p alone challenging remaining jurors among N\T for cp − 1 rounds.
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N that are ranked in positions 1 to (b+ c−i) according to Ri and N2
i the remaining set of

jurors ranked in positions (b+ c−i +1) to n according to Ri. By assumption, there exits a

juror w ∈ N2
d ∩N2

p. Observe that #N1
i = b+ c−i and #N2

i = ci, where for any set T , #T is

the cardinality of T .

Because w ∈ N2
d ∩N2

p, we have w /∈ N1
d ∩N1

p. Hence, if #(N1
d ∩N1

p)≥ b+1, then #(N1
d ∩

N1
p)∪{w} ≥ b+ 2 and w is the worst juror for both Rd and Rp among (N1

d ∩N1
p)∪{w},

making (Rd,Rp) an alternatingM profile by the sufficient condition identified in the text.

Hence, in order to derive a contradiction, suppose that #(N1
d ∩N1

p) ≤ b. That is, for

some i ∈ {d, p}, at most b of the jurors in N1
i also belong to N1

−i. Because N1
−i and N2

−i

partition N, all of the jurors in N1
i that do not belong to N1

−i must belong to N2
−i. Hence,

because there are b+ c−i jurors in N1
i at most b of which belong to N1

−i, at least c−i of the

jurors in N1
i must belong to N2

−i. Recall that w ∈ N2
i by assumption. Thus, because N1

i and

N2
i partition N, w /∈ N1

i , and w cannot be one of the c−i jurors in N1
i that belong to N2

−i. But

this implies that there are at least c−i +1 jurors in N2
−i, a contradiction. �

Hence, the proportion of alternatingM-one-common profiles is no smaller than the pro-

portion of one-common profiles, and the proportions in Figure 3.6 are therefore lower

bounds for the proportions of alternatingM-one-common profiles as well. In fact, Propo-

sition 3.8 and Example 3.6 jointly imply that the proportion of alternatingM-one-common

profiles is strictly larger than that of one-common profiles. For the same reason, the lower

bounds on the proportions of one-common profiles in the arbitration data in Figure 3.7 are

also lower bounds on the proportion of alternatingM-one-common profiles in the same data.
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Chapter 4

Deferred acceptance is minimally manipulable

4.1 Introduction

The deferred-acceptance algorithm was originally developed by Gale and Shapley (1962)

to prove by construction the existence of stable matchings in a one-to-one matching prob-

lem. A matching is stable if it is individually rational and no two individuals prefer each

other to the individuals they are matched with. Following Gale and Shapley’s breakthrough,

the deferred-acceptance mechanism (DA) that selects the stable matching constructed by

the deferred-acceptance algorithm for any report of preferences has been the primary sta-

ble mechanism used in theory and practice.

However, because multiple stable mechanisms exist, it is unclear whether DA should

be used. DA has limitations. In particular, it does not give all individuals the incentives

to report their preferences truthfully. Although this is true of any stable mechanism (Roth,

1982), the question remains: in one-to-one matching, does any stable mechanism have bet-

ter incentive properties than DA? In other words, is any stable mechanism less manipulable

than DA? In this paper, I answer negatively. I show that DA is minimally manipulable in

the sense of partial orders developed by Pathak and Sönmez (2013) (PS) and Arribillaga

and Massó (2015) (AM). These partial orders compare for every profile (PS) or preference

(AM) the set of individuals who can benefit from misreporting their preference.1

Unlike DA’s incentive properties, DA’s efficiency is rarely questioned. DA is often

deemed “sufficiently efficient” because it is Pareto efficient. That is, as illustrated in Figure

4.1, DA is among the maximal elements of a meaningful efficiency partial order, the Pareto

partial order. In that sense, DA lies on the efficiency frontier of the set of mechanisms

because DA cannot be unambiguously improved upon in terms of efficiency.

1Pathak and Sönmez (2013) introduce several manipulability partial orders. I use the partial order defined
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DA

A1
. . . Az

/0

A2

Set of mechanisms

Pareto efficient
mechanisms

Pareto efficient
mechanisms

Figure 4.1: Representation of the Pareto partial order. An arrow from mechanism A to

mechanism B indicates that A Pareto dominates B. Because DA is Pareto efficient, the set

of mechanisms that Pareto dominate DA is the empty set /0. Mechanisms A1, . . . ,Az are not

Pareto efficient.

I show that, in a similar sense, DA lies on the manipulability frontier of the set of stable

mechanisms: No stable mechanism is less manipulable than DA, i.e., DA is minimally

manipulable among the stable mechanisms. This result is important because it indicates that

DA cannot be unambiguously improved upon in terms of the two most common desiderata

for matching mechanisms: stability and non-manipulability. There is no point searching

for mechanisms that dominate DA in both respects. Somewhat surprisingly, a mechanism

that was developed to prove the existence of stable matchings turns out to satisfy Sen’s

demanding requirement of lying on the “desirability” frontier of the set of mechanisms,

“just before [impossibility results apply and] all possibilities are eliminated” (Sen, 1999, p.

354)

With manipulability partial orders, there is always a risk that some mechanisms lie triv-

ially on the order’s frontier because they cannot be compared with any other mechanism.2 I

show that this is not the case of DA and the PS- or AM-partial orders. DA is less manipula-

ble than other stable mechanisms. Although stable mechanisms that are more manipulable

than DA are rare with PS, they are abundant with AM. I also show that the desirability fron-

tier is “small”. In contrast to DA, most stable mechanisms are dominated by another stable

mechanism and therefore leave room for manipulability improvements at no stability cost.

in Pathak and Sönmez (2013, Section III).
2See, for example, Chen et al. (2016) who show that no two stable mechanisms can be compared in the

sense of a third comparison partial order also proposed by Pathak and Sönmez (2013).
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Set of stable mechanisms
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PS-manipulable

mechanisms

Pareto efficient
mechanisms

C1 . . . Cx

(a)

DA

/0

Set of stable mechanisms

Minimally

AM-manipulable

mechanisms

Pareto
mechanisms

D1 . . . Dy

(b)

Figure 4.2: Representation of some of the results: An arrow from mechanism A to mecha-

nism B indicates that A is less (AM- or PS-) manipulable than B. A box surrounding a list

of mechanisms represent the relative size of that list.

The results described so far are illustrated in Figure 4.2.

In proving the results illustrated in Figure 4.2, I show that with a stable mechanism,

individuals cannot benefit from misreporting their preference if and only if they match

with their most preferred achievable mate.3 An implication of this observation is that,

when some individuals cannot benefit from manipulations, some other individuals must

match with their least preferred achievable mates (Gale and Shapley, 1962), which points

toward a tension between fairness and manipulability.

To achieve minimal manipulability, DA always matches one side of the market with

their most preferred achievable mate, and the other side with their least preferred achievable

mate. This is sometimes viewed as a defect of DA in terms of fairness. In response, fairer

stable mechanisms have been designed that select “intermediate” stable matchings in which

fewer individuals match with their least preferred achievable mate.

I show that such improvements in fairness come at the cost of an increase in manipu-

lability. A fairness criterion that I call miniworst requires that the set of individuals who

match with their least preferred achievable mate be minimal (with respect to inclusion). As

I show, if a stable mechanism A is miniworst, then A is also maximally manipulable, i.e.,

3An achievable mate is a mate that the individual matches with under some stable matching.
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no other stable mechanism is more manipulable than A (in the case of the PS-partial order,

the miniworst criterion characterizes maximal manipulability). All miniworst mechanisms

are also dominated by DA in the sense of AM (although this is not true in the sense of PS).

A similar trade-off between manipulability and fairness is identified in the case of the me-

dian stable mechanisms introduced by Teo and Sethuraman (1998). These results reinforce

my finding that DA lies on the desirability frontier because they show that DA cannot be

improved upon in terms of fairness without compromising with stability or manipulability.

Related literature. This paper contributes to the literature comparing the manipulability

of mechanisms that, like the stable matching mechanisms, fail to have a truthful dominant

strategy.4 It also contributes to the literature on fair stable matchings by identifying a trade-

off between manipulability and fairness.5 Of the results in this paper, only the minimal

manipulability of DA in the sense of PS can be obtained as a direct corollary of an existing

result (in Pathak and Sönmez, 2013). In particular, the comparisons in the sense of AM and

the manipulability analysis of fair stable mechanisms are novel.

In contrast to the previous literature, this paper relies on two different partial orders.

Comparing mechanisms according to different partial orders is important. The partial or-

ders developed by PS and AM each capture interesting aspects of the relative manipulability

of mechanisms. However, as I show in Section 4.2, each partial order has limitations. Using

both partial orders mitigates some of these limitations. Furthermore, considering both of

these partial orders, it is possible to investigate the robustness of the comparisons obtained

with each of them.

Chen et al. (2016) show that no two stable mechanisms can be compared in the sense

of a third partial order that was also proposed in Pathak and Sönmez (2013). In contrast, I

show that many stable mechanisms can be compared in the sense of both AM and another

4Beside the two papers already cited, see, for example, Aleskerov and Kurbanov (1999), Maus et al.

(2007), Andersson et al. (2014), Fujinaka and Wakayama (2012), Gerber and Barberà (2016), and Decerf and

Van der Linden (2016).
5For previous papers on fair stable matchings, see Knuth (1997), Irving et al. (1987), Teo and Sethuraman

(1998), and Klaus and Klijn (2006).
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one of Pathak and Sönmez’s partial orders.

The paper is organized as follows. Section 4.2 gives a general definition of the PS and

AM partial orders. Beginning with Section 4.3, the focus is on one-to-one matching. Sec-

tion 4.3 defines the one-to-one matching environment. Section 4.4 introduces preliminary

results. Section 4.5 compares the manipulability of DA with the manipulability of all stable

mechanisms. Section 4.6 compares more closely the manipulability of DA with the ma-

nipulability of two classes of fair stable mechanisms: the miniworst and the median stable

mechanisms. I conclude with some remarks and open questions. Omitted proofs may be

found in the Appendix.

4.2 Two partial orders for manipulability comparisons

The set of individuals is N with n := #N (for any set S, #S is the cardinality of S). The

set of outcomes is T . An individual i ∈ N has a preference Ri on the set of outcomes T . For

any s, t ∈ T , s Ri t indicates a weak preference for s over t and s Pi t a strict preference (i.e.,

s Ri t but not t Ri s). For any i ∈ N, the domain of i’s preferences is Di.

A preference profile R := (R1, . . . ,Rn) is a list of the preferences of all the individuals

in N. The domain of preference profiles is D := ×i∈NDi. The list of preferences in R for

everyone but i is R−i ∈ D−i := × j∈N\{i}D j. A pair (T,D) is called an environment. A

mechanism A is a function that associates every preference profile R ∈D with an outcome

A(R) ∈ T .

For each profile, the PS-partial order compares with respect to inclusion the set of in-

dividuals who can manipulate their report. Formally, an individual i∈N can manipulate

A given profile R∈ D if for some R′
i ∈ Di,

A(R′
i,R−i) Pi A(Ri,R−i). (4.1)

That is, i fails to have a truthful best response in A when i’s preference is Ri and other
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individuals report R−i. Mechanism A is no more PS-manipulable than mechanism B if

for all R ∈ D ,

{i ∈ N | i can manipulate A given R}

⊆ {i ∈ N | i can manipulate B given R}.

(4.2)

That is, if i fails to have a truthful best response in A when i’s preference is Ri and other

individuals report R−i, the same is true in B. Mechanism A is less PS-manipulable than

mechanism B if A is no more PS-manipulable than B but the converse is not true, i.e., (4.2)

holds and in addition, for some R∗ ∈ D ,

{i ∈ N | i can manipulate A given R∗}

⊂ {i ∈ N | i can manipulate B given R∗}.

(4.3)

Alternatively, for each preference, the AM-partial order compares with respect to

inclusion the set of individuals who can manipulate their report for at least one report of the

other individuals’ preferences. For any R∗ ∈ ∪i∈NDi, let NR∗ be the set of individuals i ∈ N

for whom R∗ ∈ Di. Formally, an individual i ∈NR∗ can manipulate A given preference

R∗ ∈ Di if for some R′
i ∈ Di and some R−i ∈ D−i,

A(R′
i,R−i) P∗ A(R∗,R−i). (4.4)

That is, i does not have a truthful dominant strategy in A given preference R∗. Mechanism

A is no more AM-manipulable than mechanism B if for all R∗ ∈ ∪i∈NDi,

{i ∈ NR∗ | i can manipulate A given R∗}

⊆ {i ∈ NR∗ | i can manipulate B given R∗}.
6

(4.5)

That is, if i fails to have a truthful dominant strategy in A given R∗, the same is true
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in B. Mechanism A is less AM-manipulable than mechanism B if A is no more AM-

manipulable than B but the converse is not true, i.e., (4.5) holds and in addition, for some

R∗∗ ∈ ∪i∈NDi,

{i ∈ NR∗∗ | i can manipulate A given R∗∗}

⊂ {i ∈ NR∗∗ | i can manipulate B given R∗∗}.

(4.6)

Mechanism A is less (no more) manipulable than mechanism B if A is both less (no

more) PS-manipulable and less (no more) AM-manipulable than B. The “more (PS-, AM-)

manipulable than” partial orders are defined symmetrically.

Of particular importance for this paper are the concepts of minimal and maximal ma-

nipulability. For any class of mechanisms A , mechanism A ∈A is minimally (PS-, AM-)

manipulable in A if there exists no B ∈ A such that B is less (PS-, AM-) manipulable

than A. Conversely, mechanism A ∈ A is maximally (PS-, AM-) manipulable in A if

there exists no B ∈ A such that B is more (PS-, AM-) manipulable than A.

As AM explain, the PS-partial order is a sub-relation of the AM-partial order: If A is no

more PS-manipulable than B, then A is also no more AM-manipulable than B. The converse

is not true. In particular, A can be less AM-manipulable than B although A fails to be less

PS-manipulable than B, and vice versa.7 As a consequence, the concepts of minimal PS-

and minimal AM-manipulability are logically independent (by symmetry, the same is true

of maximal PS- and maximal AM-manipulability).

Both partial orders have advantages and disadvantages over one another. Example 4.1

illustrates situations in which the AM-partial order yields counter-intuitive comparisons,

6In the context of a two-sided matching environment in which the individual domains do not intersect, the

above sets are either singletons or empty.
7See Proposition 4.8 for examples of mechanisms that are more AM-manipulable than DA but fail to be

more PS-manipulable than DA. For the converse scenario, consider a mechanism B that every individual

can manipulate given any profile, and a mechanism A that every individual can manipulate given any profile

except R∗, for which no individual can manipulate. Mechanism A is less PS-manipulable than mechanism

B. However, if #Di ≥ 2 for all i ∈ N, then for any Ri ∈ Di, i can manipulate both A and B given any profile

(Ri,R−i) with R−i 6= R∗
−i. Hence, i can manipulate both A and B given any preference Ri and A is therefore

not less AM-manipulable than B (A is only no more AM-manipulable than B).
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whereas the PS-partial order refrains from comparing the two mechanisms at stake. Ex-

ample 4.2 illustrates situations in which the PS-partial order is unduly incomplete, whereas

the AM-partial order is not. In general, the PS-partial order is more conservative but less

complete, whereas the AM-partial order is more complete but more often yields counter-

intuitive comparisons. Each partial order therefore mitigates some of the other partial or-

der’s limitations and using both is a useful robustness check.

Example 4.1. Suppose that no i ∈ NR∗ can manipulate A given some preference R∗ but that

given any preference R∗∗ 6= R∗, every i ∈ NR∗∗ can manipulate A. Also, for any R∗∗ 6= R∗,

every i∈NR∗∗ can manipulate A given any profile of the form (R∗∗,R−i), for any R−i ∈D−i.

Finally, given any preference R◦, every i ∈ NR◦ can manipulate B, but i can only manipulate

B given a single profile (R◦,R
R◦
−i).

By construction, A is less AM-manipulable than B. This seems counter-intuitive be-

cause A improves upon B in terms of manipulability for a single preference R∗ and does

much worse for the vast majority of profiles. In this sense, the conclusion that A is less

AM-manipulable than B can be viewed as a “false positive”. In this case, the PS-partial

order is more consistent with the intuition because it refrains from concluding that A is less

PS-manipulable than B.

Example 4.2. For some j ∈ N, suppose that the set D− j can be partitioned into two sets

D1
− j and D2

− j of equal size (#D1
− j = #D2

− j). Further, j can manipulate A given any profile

R with R− j ∈ D1
− j, but cannot manipulate A given any profile R with R− j ∈ D2

− j. Also, no

i ∈ N\{ j} can manipulate A given any preference Ri ∈ Di.

Conversely, j can manipulate B given any profile R with R− j ∈ D2
− j, but cannot ma-

nipulate B given any profile R with R− j ∈ D1
− j. Finally, every i ∈ N\{ j} can manipulate B

given any preference Ri ∈ Di.

Because the sets of profiles for which j can manipulate A and B are different, A and

B cannot be compared using the PS-partial order. This incompleteness is troublesome

because in terms of manipulability, A does much better than B for everyone but j, and A
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performs similarly to B for j. In this case, the AM-partial order is more complete than the

PS-partial order in a way that is consistent with intuition because it concludes that A is less

AM-manipulable than B.

4.3 The one-to-one environment

In the one-to-one two-sided environment (henceforth, the one-to-one environment), the

set N is partitioned into a set of women W and a set of men M. Throughout, #W,#M ≥ 3.

A woman w ∈W has a preference Rw on the set of men and herself (M ∪{w}) and a man

m ∈ M has a preference Rm on the set of women and himself (W ∪{m}). For any i ∈ N,

the set of individuals for which i has a preference are i’s mates. Henceforth, let Di be

the domain of all strict preferences over i’s mates (i.e., preferences Ri for which t1 Pi t2 or

t2 Pi t1 for any pair (t1, t2) of i’s mates with t1 6= t2).

A matching is a function µ : N → N that matches every individual i ∈ N with one of

his or her mates, and such that matchings are reciprocal. Formally, (i) µ(w) ∈ M∪{w} for

all w ∈W and µ(m) ∈W ∪{m} for all m ∈ M, and (ii) µ(µ(i)) = i for all i ∈ N.

A (one-to-one) mechanism A associates every profile R ∈ D with a matching A(R). To

simplify the notation, let Ai(R) and µi be i’s mate in matchings A(R) and µ .

Given matching µ and profile R, a blocking pair consists of a man and a woman who

prefer matching together to being matched according to µ . Formally a blocking pair in

µ is any (w,m) ∈ W ×M for which m Pw µw and w Pm µm. For any i ∈ N, if i Pi j for

some j ∈ N, then mate j is unacceptable to i. A matching is individually rational if no

individual matches with an unacceptable mate. A matching is stable if it does not contain

any blocking pairs and it is individually rational. A mechanism is stable if it selects a

stable matching for every profile.

Henceforth, the focus is on stable mechanisms. Therefore to keep the terminology

simple, I often suppress the reference to the class of stable mechanisms. For example,

when a mechanism A is said to be minimally manipulable, it should be understood that A
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is minimally manipulable in the class of stable mechanisms.

As is well-known, the deferred acceptance mechanism (DA) comes in two variants:

women-proposing (DAW ) and men-proposing (DAM). For any i ∈ N, the variant of DA

in which i’s side proposes is denoted DAi. When a property applies irrespective of the

proposing side, a deferred acceptance mechanism is simply referred to as DA. In this

context, an individual i ∈ N is a proposer if i is on the side that proposes in DA (e.g., W in

DAW ) and an acceptor if i is on the side that does not propose (e.g, M in DAW ). Typical

proposers and acceptors are denoted by p ∈ N and a ∈ N, respectively.

For any i ∈ N, any individual j ∈ N is an achievable mate given R if j matches with i

in some stable matching when the profile is R. For all i ∈ N and all R ∈ D , f R
i is i’s most

preferred achievable mate given R. Similarly, lR
i is i’s least preferred achievable mate given

R. Observe that, because preferences are strict, f R
i and lR

i are unique.

4.4 Preliminary results

DA always selects a stable matching in which proposers match with their most preferred

achievable mate, while acceptors match with their least preferred achievable mate.

Lemma 4.1 (Gale and Shapley, 1962). For any R ∈D , (i) DA(R) is stable with respect to R

and (ii) for every proposer p∈N, DAp(R)= f R
p and for every acceptor a∈N, DAa(R)= lR

a .

The next lemma plays an essential role in most of the results in this paper. Lemma 4.2

shows that, in a stable mechanism, i can benefit from misreporting her or his preference Ri

when the other individuals report R−i if and only if i does not match with f R
i .8

8The proof of Lemma 4.2 is inspired by the fact that every report of a preference is dominated by the

report of a truncation (see the Appendix for a formal definition), which was first proven by Roth and Vande

Vate (1991, Theorem 2). The proof of Lemma 4.2 follows the same proof strategy as the proof of Roth and

Vande Vate’s theorem. This proof strategy is also used in the proof of Pathak and Sönmez (2013, Lemma 1).

A similar result appears in Coles and Shorrer (2014).
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Lemma 4.2. For any stable mechanism A, any i ∈ N, and any R ∈ D ,

Ai(Ri,R−i) Ri Ai(R
′
i,R−i) for all R′

i ∈ Di (4.7)

if and only if

Ai(Ri,R−i) = f R
i . (4.8)

The next section uses Lemmas 4.1 and 4.2 to compare the manipulability properties of

DA with those of other stable mechanisms.

4.5 Maximal and minimal manipulability among stable mechanisms

The following characterization of the PS- and AM-partial orders is obtained using

Lemma 4.2.

Proposition 4.1. (i) Stable mechanism A is no more PS-manipulable than stable mecha-

nism B if and only if, for all R ∈ D ,

{i ∈ N | Bi(R) = f R
i } ⊆ {i ∈ N | Ai(R) = f R

i }. (4.9)

(ii) Stable mechanism A is no more AM-manipulable than stable mechanism B if and

only if, for all R∗ ∈ ∪i∈NDi,

{i ∈ NR∗ | Bi(R∗,R−i) = f
(R∗,R−i)
i for all R−i ∈ D−i}

⊆ {i ∈ NR∗ | Ai(R∗,R−i) = f
(R∗,R−i)
i for all R−i ∈ D−i}.

(4.10)

Proposition 4.1 is used to establish the following characterization of minimal and max-

imal PS-manipulability.9

9Recall that minimal and maximal manipulability properties are implicitly defined with respect to the

class of stable mechanisms.
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Proposition 4.2. A mechanism A is minimally (resp. maximally) PS-manipulable if and

only if there does not exist a profile R ∈ D and a stable matching µ such that

{i ∈ N | Ai(R) = f R
i } ⊂ {i ∈ N | µi = f R

i } (4.11)

(resp. {i ∈ N | Ai(R) = f R
i } ⊃ {i ∈ N | µi = f R

i }). (4.12)

I now show that DA is minimally manipulable.10 In the case of minimal PS-manipulability,

this follows straightforwardly from Proposition 4.2 and Lemma 4.1. Enlarging (with re-

spect to inclusion) the set of acceptors who match with their most preferred achievable

mate implies that the set of proposers who match with their most preferred achievable

mates shrinks. Thus, condition (4.11) can never be satisfied when A = DA.

An informative characterization of minimal and maximal AM-manipulability is harder

to obtain. Unlike comparisons in terms of PS that can be performed on a “profile by profile”

basis, comparisons in terms of AM cannot be performed “preference by preference”. En-

larging the set of individuals who cannot manipulate given some preference R∗ may have

an impact on the set of individuals who cannot manipulate given some other preference

R∗∗, and no equivalents to (4.11) and (4.12) exist for the AM-partial order. However, the

minimal AM-manipulability of DA can be proven directly using Lemmas 4.1 and 4.2.

Proposition 4.3. (i) DA is minimally manipulable. (ii) There exists stable mechanisms that

are more manipulable than DA.

Proof of (ii). Consider the following profile from Klaus and Klijn (2006):

Rw1
: m3 m2 m1

Rw2
: m2 m1 m3

Rw3
: m1 m3 m2

Rm1
: w1 w2 w3

Rm2
: w3 w1 w2 .

Rm3
: w2 w3 w1

(4.13)

10Recall that manipulability properties that do not refer to either PS of AM hold for both partial orders.

84



When being self-matched is omitted as in (4.13), being self-matched is implicitly the least

preferred outcome. Given R, the stable matchings are

w1 w2 w3

µ1 : m1 m3 m2

µ2 : m2 m1 m3

µ3 : m3 m2 m1

.

For example, in µ1, w1 matches with m1, w2 matches with m3, and w3 matches with m2.

The mechanism DAR constructed from DA by changing the stable matching selected for R

to µ2 (and changing nothing else) is more manipulable than DA because, when the profile

is R, DAR matches no individual with her or his most preferred achievable mate.

To see that multiple mechanisms are more manipulable than DA, repeat the above argu-

ment for a variant of (4.13) in which m1 appears on the downward diagonal of the womens’

profile and w1 appears on the upward diagonal of the mens’ profile.11
�

Proposition 4.3 shows that DA cannot be improved upon in terms of manipulability

without compromising on stability.12 Minimal manipulability is a relatively uncommon

property in the class of stable mechanisms because few stable mechanisms satisfy the con-

ditions for minimal manipulability imposed by Proposition 4.1. For example, consider the

PS-partial order. It takes a single profile R and a single stable matching µ for which (4.11)

holds for a stable mechanism to violate minimal PS-manipulability. As a consequence,

most stable mechanisms leave room for improvement in terms of PS-manipulability at no

stability cost.13

11 It is easy to see how the above argument applies to profiles similar to (4.13) when #M =
#W > 3 (see (4.27) in the Appendix). If #M 6= #W , simply let all individuals other than

{w1, . . . ,wmax{#M,#W},m1, . . . ,mmax{#M,#W}} rank being self-matched first.
12For the case of minimal PS-manipulability, Proposition 4.3.(i) can be viewed as a consequence of Pathak

and Sönmez (2013, Theorem 2).
13Nevertheless, minimally AM-manipulable mechanisms different from DA and minimally PS-

manipulable mechanisms different from DA can be shown to exist. Whether any of these mechanisms is

of interest is left as an open question.
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To illustrate this formally, I focus on the case #W = #M and on the domain D̄ of all

profiles in which individuals rank being self-matched last. For each profile R ∈ D̄ a stable

mechanism selects a stable matching. There are therefore as many stable mechanisms as

there are ways to select a stable matching for each profile in D̄ . The proportion of (stable)

mechanisms satisfying X is the number of stable mechanisms satisfying X divided by the

total number of stable mechanism.

Proposition 4.4. Suppose that #W = #M = h and the domain of profiles is D̄ . (i) The

proportion of minimally PS-manipulable mechanisms is at most
(

2
h

)h!
. (ii) The proportion

of minimally AM-manipulable mechanisms is at most
(

h
(h−1)! +

1
h((h−1)!)2

)
.

A complete proof of Proposition 4.4 appears in the Appendix. In order to gain some

insight into this result, I provide a sketch of the proof.

(i) For any h, any individual i∈N, and any preference Ri ∈Di, it is possible to construct

R
Ri

−i such that the profile (Ri,R
Ri

−i) mimics the “Latin Square” pattern of profile (4.13). Any

of these Latin Square profiles admits h stable matchings. For any Latin Square profile,

out of the h stable matchings, minimally PS-manipulable mechanisms must select either

the men optimal or the women optimal matching. The upper bound
(

2
h

)h!
is obtained

by considering the proportion of stable mechanisms that select one of these two stable

matching in every Latin Square profile.

(ii) If a mechanism A is minimally AM-manipulable, then DA cannot be less AM-

manipulable than A. By Lemmas 4.1 and 4.2, this implies that there exists an acceptor

a ∈ N, a proposer p ∈ N, and a pair of preferences (Ra,Rp) ∈ D̄a × D̄p such that A always

matches a and p with their most preferred achievable mate when they report Ra or Rp,

respectively.14 In particular, a and p must match with their most preferred achievable mate

given the Latin Square profiles (Ra,R
Ra
−a) and (Rp,R

Rp

−p). Because this only needs to be

true for a single acceptor-proposer pair and for a single pair of profiles, this fact alone is

14To be precise, only such mechanisms and DA can possibly be minimally AM-manipulable. The addition

of DA is reflected by the second term in the bound of Propositions 4.4.(ii) and 4.5.(i).
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Upper bounds on

the proportion of

Lower bound on

the proportion of

h

minimally

AM-manipulable

mechanisms

minimally

PS-manipulable

mechanisms

mechanisms more

PS-manipulable

than DA

mechanisms more

AM-manipulable

than DA

4 .674 .000 .001 .326

5 .209 .000 .000 .891

6 .050 .000 .000 .950

7 .001 .000 .000 .999

Table 4.1: Numerical values for the upper and lower-bounds of Propositions 4.4 and 4.5.

not sufficient to prove that the proportion of mechanisms that are more AM-manipulable

than DA is large. For every i ∈ N and every Ri ∈ Di, it is however possible to construct

sufficiently many variants of the Latin Square profiles (Ri,R
Ri

−i) to show that this proportion

is in fact bounded below by 1−
(

h
(h−1)!

+ 1
h((h−1)!)2

)
. As a consequence, the proportion of

minimally AM-manipulable mechanisms is at most
(

h
(h−1)! +

1
h((h−1)!)2

)
.

As illustrated in Table 4.1, the bounds in Proposition 4.4 converge rapidly to zero as h

increases.

Although Proposition 4.3.(ii) shows that DA is not trivially minimally manipulable, the

partial orders could still be coarse and rank DA above only a few other stable mechanisms.15

This is only true for the PS-partial order. Most mechanisms are more AM-manipulable than

DA. However, by the definition of the PS-partial order, DA fails to be less PS-manipulable

than any stable mechanism that, for at least one profile R∗, selects a stable matching where

some acceptor a matches with f R∗

a , and such mechanisms abound.

This illustrates the importance of using multiple partial orders when comparing mech-

anisms. Because the PS-partial order is oversensitive to “outlier” profiles, it concludes that

few stable mechanisms have worse manipulability properties than DA. Considering both

the PS- and the AM-partial order paints a more complete picture.

Proposition 4.5. Suppose that #W = #M and the domain of profiles is D̄ . (i) DA is less

15A mechanism would be trivially minimally manipulable if it cannot be compared with any other stable

mechanism (see footnote 2).
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AM-manipulable than at least 1−
(

h
(h−1)! +

1
h((h−1)!)2

)
of the stable mechanisms. (ii) DA

is less PS-manipulable than at most
(
1− 1

h

)h!
of the stable mechanisms.16

The proof of Proposition 4.5.(i) is similar to that of Proposition 4.4. To gain some

insight into Proposition 4.5.(ii), observe that DA fails to be less PS-manipulable than any

stable mechanism A that, for at least one profile R∗, selects a stable matching for which

some acceptor a matches with f R
a . Such mechanisms abound. For example, a third of the

stable mechanisms select matching µ1 for the Latin Square profile (4.13). Hence, only

(1− 1
3
) of the stable mechanisms select a matching for profile (4.13) that allows them to

be more PS-manipulable than DAW . Considering variants of (4.13) yields the bound in the

proposition.

Again, the bounds in Proposition converge rapidly as h increases (see Table 4.1).

The results so far clarify the manipulability properties of DA when compared with the

class of all stable mechanisms (Propositions 4.3 to 4.5 are illustrated in Figure 4.2). The

class of stable mechanisms contains a number of mechanisms that are “contrived” in the

sense that they associate profiles with stable matchings in a very unsystematic way. Rather

than comparing DA with the whole class of stable mechanisms, it may be useful to compare

DA with salient subsets of this class. An important aspect of stable mechanisms is the

fairness with which they match individuals with their mates. The next section compares

the manipulability of DA with that of stable mechanisms designed to improve upon DA in

terms of fairness.

4.6 A conflict between fairness and manipulability

When only ordinal information on preferences is available, it is hard to define a com-

prehensive concept of fairness. Some natural reference points can, however, be used to

devise minimal fairness requirements. One such reference point is the situation in which

16It can be shown that limh→∞

(
1− 1

h

)h!
= 0.
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an individual receives her or his least preferred outcome out of the set of admissible out-

comes.

4.6.1 A conflict between miniworst and manipulability

In the spirit of the minimum regret criterion (Knuth, 1997), a minimal fairness require-

ment is that the set of individuals who receive their least preferred admissible outcome

be minimal (with respect to inclusion). Formally, suppose that the function C : D → T

identifies the set of admissible outcomes C(R) for any profile R ∈ D . Mechanism A is

miniworst on C if A only select admissible outcomes and there exists no R ∈ D and no

outcome t ∈C(R) such that

{
i ∈ N | for all t ′ ∈C(R), t ′i Ri ti

}

⊂
{

i ∈ N | for all t ′ ∈C(R), t ′i Ri Ai(R)
}
.17

(4.14)

In matching problems, a natural set of acceptable outcomes is the set of stable match-

ings. Henceforth, I focus on mechanisms that are miniworst on the set of stable matchings

and the reference to this set is suppressed.

It is often argued that DA is unfair because proposers match with their most preferred

achievable mate, whereas acceptors match with their least preferred achievable mate. The

miniworst criterion captures this fairness concern. Indeed, observe that a stable mechanism

A is miniworst if and only if there exists no R ∈ D and no stable matching µ such that

{
i ∈ N | µi = lR

i

}
⊂
{

i ∈ N | Ai(R) = lR
i

}
. (4.15)

Considering Latin Square profiles similar to (4.13), it is easy to see that DA is not

17Although the minimum regret and the miniworst criteria are similar in spirit, they differ in many ways.

For example, the miniworst criterion does not ascribe a cardinal meaning to the rank of a mate. The two

criteria are not logically related; neither criterion implies the other.
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miniworst. For these profiles, a stable matching in which no individual matches with her

or his least preferred achievable mate could be selected instead of the extreme matching

selected by DA. More generally, minimally manipulable mechanisms cannot be miniworst.

Let D3 be the domain of all profiles in D in which individuals have at least three acceptable

mates. When no reference to a subdomain of D is made, the results hold for the domain D .

Proposition 4.6. (i) No miniworst mechanism is minimally PS-manipulable. (ii) When the

domain is D3, no miniworst mechanism is minimally AM-manipulable.

Miniworst mechanisms not only fail to be minimally manipulable, they are also max-

imally manipulable. In fact, in the case of the PS-partial order, the miniworst criterion

characterizes maximal manipulability.

Proposition 4.7. (i) Mechanism A is miniworst if and only if A is maximally PS-manipulable.

(ii) When the domain is D3, any miniworst mechanism A is maximally AM-manipulable.

(iii) When #W,#M ≥ 8 and the domain is D3, there exist maximally AM-manipulable mech-

anisms that are not miniworst.

As observed earlier, for Latin Square profiles, miniworst mechanisms select matchings

in which no individual matches with her or his least preferred achievable mates. It then fol-

lows from Lemma 4.1 that no individual matches with her or his most preferred achievable

mate either. Because any preference can be included in at least one Latin Square profile,

this implies that DA is less AM-manipulable than any miniworst mechanism.18 That is, in

terms of the miniworst criterion, any fairness improvement upon DA comes at the cost of

an increase in AM-manipulability (provided that the improvement does not compromise on

stability).

A similar result does not hold for PS-manipulability. The reason is the same as in

Proposition 4.5: for DA not to be less PS-manipulable than some mechanism A, it is suffi-

cient that A matches an acceptor with her or his most preferred achievable mate for a single

18This does not follow directly from Proposition 4.7. In general, it is possible for a mechanism to be

minimally manipulable but fail to be less manipulable than a maximally manipulable mechanism. See the

example in the proof of Proposition 4.8 for the case of PS-manipulability.
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profile (which is the case of some miniworst mechanisms, see the proof of Proposition

4.8.(ii)).

Proposition 4.8. When the domain is D3, (i) DA is less AM-manipulable than any mini-

worst mechanism, but (ii) some miniworst mechanisms are not more PS-manipulable than

DA.

Proof of (ii). Consider the following profile:

Rw1
: m1 m2 m3

Rw2
: m2 m3 m1

Rw3
: m3 m1 m2

Rm1
: w3 w1 w2

Rm2
: w1 w2 w3

Rm3
: w2 w3 w1

. (4.16)

Given R, there are two stable matchings:

w1 w2 w3

µ1 : m1 m2 m3

µ2 : m2 m3 m1

,

where µ1 is the women optimal stable matching and µ2 the men optimal stable matching.

Both stable matchings can be selected by a miniworst mechanism. DAW (DAM) is not

less PS-manipulable than the miniworst mechanism that selects the men (women) optimal

matching given the above profile.19
�

For the domain D3, the results in this section are illustrated in Figure 4.3. In the figure,

the miniworst mechanisms are denoted T 1, . . . ,T y.

19 For #M = #W = h > 3, consider any profile with Rw1
: m1 m2 . . . , Rw2

: m2 m3 . . . , . . . , Rwh
: mh m1 . . .

and Rm1
: wh w1 . . . , Rm2

: w1 w2 . . . , . . . , Rmh
: mh−1 mh . . . . If #M 6= #W , simply let all individuals other than

{w1, . . . ,wmax{#M,#W},m1, . . . ,mmax{#M,#W}} rank being self-matched first.
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Set of stable mechanisms

Minimally

PS-manipulable

mechanisms

DA

T 1 . . .T x

Maximally

PS-manipulable

mechanisms

T x+1
. . .
T y

{6= T i}
= /0

(a)

Set of stable mechanisms

Minimally

AM-manipulable

mechanisms

DA

T 1 . . .T y

Maximally

AM-manipulable

mechanisms

{6= T i}
6= /0

(b)

Figure 4.3: Representation of the results in Section 4.6.1.

4.6.2 A conflict between median stable mechanisms and manipulability

The miniworst criterion excludes the selection of some stable matchings. It does not

provide a systematic procedure to select a specific fair stable matching for every R. One

clever approach to do so was proposed by Teo and Sethuraman (1998). For any profile R,

let k be the number of stable matchings given R. For every individual i ∈ N, the k stable

matchings can be (weakly) ordered according to Ri. Surprisingly, Teo and Sethuraman

(1998) show that for any l ∈ {1, . . . ,k},

(i) matching every woman with the man she would match with under the stable matching

she ranks l-th, and

(ii) matching every man with the woman he would match with under the stable matching

he ranks (k− l+1)-th

results in a well-defined stable matching.

For each R, Teo and Sethuraman (1998) suggest selecting the stable matching obtained

from the above procedure with l equal to one of the medians of {1, . . . ,k}. This defines the

median stable (MS) mechanisms.
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Like mechanisms that satisfy the miniworst criterion, MS mechanisms select a fair sta-

ble matching at the cost of an increase in manipulability. It is easy to find profiles for

which MS mechanisms select a stable matching in which not a single individual matches

with her or his most preferred achievable mate (examples include Latin Square profiles),

which yields the following proposition.

Proposition 4.9. (i) No MS mechanism is minimally PS-manipulable. (ii) When the domain

is D3, no MS mechanism is minimally AM-manipulable.

Because of the behavior of MS mechanisms on Latin Square profiles, MS mechanisms

are also maximally AM-manipulable on D3. The same is not true for PS-manipuability.

As much as MS mechanisms strive to select compromise matchings, these compromise

matchings do not always make the set of individuals who match with their least preferred

achievable mate minimal. That is, these mechanisms do not satisfy the miniworst criterion.

Proposition 4.10. (i) When the domain is D3, MS mechanisms are maximally AM-manipulable.

(ii) For #W,#M ≥ 8, MS mechanisms are not maximally PS-manipulable (even on D3).

For Latin Square profiles, MS mechanisms select stable matchings in which no individ-

ual matches with her or his most preferred achievable mate. Because any preference can

be included in at least one Latin Square profile, DA is therefore less AM-manipulable than

any MS mechanism. Again, this is not the case for PS-manipulability for the same reason

as in Propositions 4.5 and 4.8. A further reason in the case of MS mechanisms is that MS

mechanisms sometimes select stable matchings in which both a woman and a man match

with their most preferred achievable mates, even though both individuals have multiple

achievable mates (see (4.17)).

Proposition 4.11. (i) When the domain is D3, DA is less AM-manipulable than any MS

mechanism. (ii) No MS mechanism is more PS-manipulable than DA.

Proof of (ii). The proof of Proposition 4.8.(ii) applies to Proposition 4.11.(ii). Proposition

4.11.(ii) can also be established by considering the following kind of profile:
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Rw1
: m2 m1 m3 m4

Rw2
: m4 m2 m1 m3

Rw3
: m3 m1 m2 m4

Rw4
: m2 m3 m1 m4

Rm1
: w4 w3 w2 w1

Rm2
: w3 w2 w1 w4

Rm3
: w2 w1 w4 w3

Rm4
: w1 w4 w3 w2

. (4.17)

Given R, the stable matchings are

w1 w2 w3 w4

µ1 : m2 m4 m1 m3

µ2 : m3 m4 m2 m1

µ3 : m4 m3 m2 m1

.

Any MS mechanism selects matching µ2 when the profile is R. Note that µ2
w2

= m4 =

f R
w2

and µ2
m1

= w4 = f R
m1

. Thus, for any MS mechanism, the set of individuals who cannot

manipulate given profile R contains {w2,m1} (Lemma 4.2). This set is contained in neither

W nor M, which are the sets of individuals who cannot manipulate given R in the two

variants of DA. Hence, neither variant is less PS-manipulable than MS mechanisms. �

The results in this section are illustrated in Figure 4.4. The proofs of Propositions

4.8.(ii) and 4.11.(ii) rely on profiles in which at least one individual has exactly two achiev-

able mates. One may conjecture that such profiles are rare and become arbitrarily unlikely

as the number of individuals grows. If this is the case, DA could be less PS-manipulable

than some miniworst or MS mechanisms in the large, i.e., for a proportion of profiles that

tends to one as the number of individuals tends to infinity. Pittel et al. (2008) however con-

jecture that when the domain is D̄ , the probability that at least one individual has exactly

two achievable matches tends to one, rather than zero. If this conjecture is correct, then

DA would fail to be less PS-manipulable than any miniworst or MS mechanism even in the
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Figure 4.4: Representation of the results in Section 4.6.2. The set MS is the set of MS

mechanisms.

large (when the domain is D̄).

4.7 Concluding remarks

I show that, in one-to-one matching, the deferred acceptance mechanism (DA) is mini-

mally manipulable among the stable mechanisms in the senses of both Pathak and Sönmez

(2013) (PS) and Arribillaga and Massó (2015) (AM). DA cannot be unambiguously im-

proved upon in terms of manipulability without compromising with stability. In particular,

I show that attempts to construct stable mechanisms that are more fair than DA (such as the

median stable mechanisms (Teo and Sethuraman, 1998)) come at the cost of an increase in

manipulability.

As I also show, providing individuals with incentives to report their preferences truth-

fully requires individuals to match with their most preferred achievable mate. This implies

that some other individuals match with their least preferred achievable mate (Gale and

Shapley, 1962). Fair stable mechanisms underperform in terms of manipulability precisely

because they match few individuals with their least preferred achievable mate, and hence

few individuals with their most preferred achievable mate.

In contrast, DA matches larger sets of individuals (the proposers) with their most pre-
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ferred achievable mate, and larger sets of individuals (the acceptors) with their least pre-

ferred achievable mates. This feature of DA is useful when one side of the market is viewed

as weaker than the other side (e.g., because they can spend less resources determining an

appropriate strategy). Then, the weaker side can be made the proposing side in DA. This

favors individuals on the weaker side because it provides them with simple incentives while

matching them with their most preferred stable outcome.

However, because DA matches acceptors with their least preferred achievable mates, DA

also provides acceptors with a larger scope for manipulation than a fair stable mechanism

would. This points toward a tension between maximizing the set of individuals who have

unambiguous incentives to report truthfully, and minimizing the scope for manipulations

for individuals who do not. In this respect, fair stable mechanisms may have interesting

properties: Instead of providing some individuals with unambiguous incentives to report

truthfully and others with a large scope for manipulation, fair stable mechanisms tend to

provide every individual with an “average” scope for manipulation.

Observe that fair stable mechanisms do not uniformly reduce the scope for manipula-

tion. When compared to DA, fair stable mechanisms reduce the scope for manipulation for

acceptors in DA, but increase it for proposers.20 Also, the impact on incentives of changes

in the scope for manipulation is unclear. This impact likely depends on the players’ beliefs

and attitudes toward risk, and how this impact plays out remains an open question.

Appendix

Proof of Lemma 4.2. In order to prove Lemma 4.2, I introduce two additional lemmas.

Lemma 4.3. For any i ∈ N, any R ∈ D , and any R′
i ∈ Di, f R

i Ri f
(R′

i,R−i)
i .

Proof. Because proposers have a truthful dominant strategy in DA (Dubins and Freedman,

20As a consequence, fair stable mechanisms cannot be compared with DA in terms of the “intensity of

manipulation” partial order developed in Pathak and Sönmez (2013, Section IV). This last result can be

viewed as an application of Chen et al. (2016, Corollary 1).
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1981), DAi
i(Ri,R−i) Ri DAi

i(R
′
i,R−i) for all R′

i ∈ Di. By Lemma 4.1, this is equivalent to

f R
i Ri f

(R′
i,R−i)

i for all R′
i ∈ Di. �

Individual i is single in µ if µi = i and i is married if µi 6= i.

Lemma 4.4 (Roth and Sotomayor, 1992). For a given R ∈ D , the set of single individuals

is the same in every stable matching.

For any i ∈ N, any Ri ∈ Di, and any acceptable mate x, let Ri|x be the truncation of Ri

after x, i.e., Ri|x is the preference constructed from Ri by moving i up in the ranking to the

point where i is ranked right after x, but not changing any other rankings.21

Sufficiency. By Lemma 4.3,

f R
i Ri f

(R′
i,R−i)

i Ri Ai(R
′
i,R−i) for all R′

i ∈ Di, (4.18)

where the second part of (4.18) follows from A being stable and the definition of a most

preferred achievable mate. Thus, (4.7) follows directly from (4.8).

Necessity. If f R
i = i, then Ai(R) = f R

i because stable matching are individually ratio-

nal. Thus, suppose that f R
i Pi i (this is the only other case to consider because i Pi f R

i is

inconsistent with individual rationality). In order to derive a contradiction, suppose that

Ai(R) 6= f R
i . Because A is stable, this implies f R

i Pi Ai(R). There are two cases.

Case 1: Ai(Ri| f R
i
,R−i) Ri f R

i . Then we have Ai(Ri| f R
i
,R−i) Ri f R

i Pi Ai(R), contradicting

(4.7).

Case 2: f R
i Pi Ai(Ri| f R

i
,R−i). Because A is individually rational and by the construction

of Ri| f R
i

, it follows that Ai(Ri| f R
i
,R−i) = i. Also, DAi

i(R) = f R
i by Lemma 4.1, which implies

DAi
i(R) Pi Ai(Ri| f R

i
,R−i) by the case assumption, and hence, DAi

i(R) 6= i. By the construc-

tion of Ri| f R
i

, because DAi(R) is stable when the profile is R, DAi(R) is also stable when the

profile is (Ri| f R
i
,R−i). Indeed, because DAi(R) is stable when the profile is R, i is not part of

21Formally, (i) x Pi i, (ii) for all y,z 6= i, y Pi|x z if and only if y Pi z, and (iii) for all z /∈ {i,x}, z Pi|x i if and

only if z Pi x and i Pi|x z if and only if x Pi z. .
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a blocking pair with any mate that i ranks above DAi
i(R) according to Ri. But then because

Ri| f R
i

and Ri have the same ranking of mates up to DAi
i(R), i is not part of a blocking pair in

DAi(R) according to Ri| f R
i

either. Thus, when the profile is (Ri| f R
i
,R−i), there exists a stable

matching in which i is married (DAi(R)) and another in which i is single (A(Ri| f R
i
,R−i)),

contradicting Lemma 4.4. �

Proof of Proposition 4.1. In the definition of the PS-partial order, (4.2) is equivalent to

{i ∈ N | A is not PS-manipulable for i given R}

⊇ {i ∈ N | B is not PS-manipulable for i given R}.

Similarly, in the definition of the AM-partial order, (4.5) is equivalent to

{i ∈ NR∗ | A is not manipulable for i given R∗}

⊇ {i ∈ NR∗ | B is not manipulable for i given R∗}.

The proposition then follows directly from Lemma 4.2. �

Proof of Proposition 4.2. I provide a proof for minimal PS-manipulability. The proof

for maximal PS-manipulability is analogous.

Necessity. In order to derive a contradiction, suppose that some stable mechanism B is

less manipulable than A. By Proposition 4.1, this implies that for some R∗ ∈ D ,

{i ∈ N | Ai(R
∗) = f R∗

i } ⊂ {i ∈ N | Bi(R
∗) = f R∗

i }.

But because B is stable, Bi(R
∗) is stable with respect to R∗. Thus, Bi(R

∗) and R∗ satisfy

(4.11), a contradiction.

Sufficiency. In order to derive a contradiction, assume that µ∗ is a stable matching

satisfying (4.11) for some profile R∗. Consider mechanism B constructed from A by setting
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B(R)=A(R) for all R∈D with R 6=R∗ and B(R∗)= µ∗. Clearly, for all R∈D with R 6= R∗,

{i ∈ N | Ai(R) = f R
i }= {i ∈ N | Bi(R) = f R

i }. (4.19)

Also, by (4.11) and because Bi(R
∗) = µ∗

i ,

{i ∈ N | Ai(R
∗) = f R∗

i } ⊂ {i ∈ N | Bi(R
∗) = f R∗

i }. (4.20)

By Proposition 4.1, (4.19) and (4.20) imply that B is no more PS-manipulable than A, but

that the converse is not true. Hence, by definition, B is less PS-manipulable than A and so

A is not minimally PS-manipulable, a contradiction. �

Proof of Proposition 4.3.(i). I provide a proof for DAW and minimal manipulability

only. The proofs for DAM and maximal manipulability are analogous.

PS-partial order. By Proposition 4.2, the PS part of (i) holds provided that there does

not exist a profile R∗ and a stable matching µ∗ such that

{
i ∈ N | DAW

i (R∗) = f R∗

i

}
⊂
{

i ∈ N | µ∗
i = f R∗

i

}
. (4.21)

In order to derive a contradiction, suppose that there exists a stable matching µ∗ and a

preference profile R∗ satisfying (4.21). By Lemma 4.1,

W ⊆
{

i ∈ N | DAW
i (R∗) = f R∗

i

}
. (4.22)

Together, (4.21) and (4.22) imply W ⊂
{

i ∈ N | µ∗
i = f R∗

i

}
. But (4.21) implies µ∗ 6=

DAW (R∗), which in turn implies that there exists a woman w∗ ∈ W for whom µ∗
w∗ 6=

DAW
w∗(R∗) = f R∗

w∗ . Hence W 6⊂ {i ∈ N | µ∗
i = f R∗

i }, a contradiction.

AM-partial order. In order to derive a contradiction, suppose that some stable mecha-
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nism A is less AM-manipulable than DAW . By Lemmas 4.1 and 4.2, for all R∗ ∈ ∪i∈W Di,

{w ∈ NR∗ | w can manipulate DAW given R∗}= /0. (4.23)

Thus, because A is less AM-manipulable than DAW , for all R∗ ∈ ∪i∈W Di,

{w ∈ NR∗ | w can manipulate A given R∗}= /0. (4.24)

But by Lemma 4.2, (4.23) and (4.24) imply that for all R ∈ D and for all w ∈W ,

Aw(R) = DAW
w (R) = f R

w . (4.25)

Hence, A = DAW by the definition of a matching, contradicting the assumption that A is

less manipulable than DAW . �

Proof of Proposition 4.4. Consider any i ∈ N and any Ri ∈ D̄i. Let i = w1 without loss

of generality. Without loss of generality again, let the individuals in M be labeled in such a

way that

Rw1
: mh m(h−1) . . . m2 m1

(4.26)

A Latin Square profile (Ri,R
Ri

−i) generalizing profile (4.13) can then be constructed in the
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following way:

Rw1
: mh mh−1 . . . m2 m1

R
Ri
w2

: mh−1 mh

m2 . .
.

...
... m2 m1 mh

...

. .
.

mh

R
Ri
wh−1

: m2 m3

R
Ri
wh

: m1 mh . . . m3 m2

(4.27)

The preferences of the men in (Ri,R
Ri

−i) are constructed symmetrically to (4.27) with woman

w1 appearing on the downward diagonal as in (4.13).

(i). For each Ri ∈ Di, profile (Ri,R
Ri

−i) has h stable matchings, only two of which (the

women and men optimal matchings) can be selected by a PS-minimally manipulable mech-

anism. Consider the construction of a stable mechanism A. Because there are h! preferences

in D̄i, there are h! profiles (Ri,R
Ri

−i), one for each Ri ∈ D̄i. Among the hh! possible choices

of stable matchings for these h! profiles, only the 2h! that select the women or the men op-

timal matchings for each (Ri,R
Ri

−i) make it possible for A to be PS-minimally manipulable.

Hence, the proportion of minimally manipulable mechanisms among the class of stable

mechanisms is at most
(

2
h

)h!
.

(ii). By Lemmas 4.1 and 4.2, for any stable mechanism A, if there exists no R∗ ∈∪i∈ND̄i

and no acceptor a ∈ NR∗ such that Aa(R∗,R−a) = f
(R∗,R−a)
a for all R−a ∈ D̄−a, then either

A = DA or A is more AM-manipulable than DA. We are interested in the proportion of

these mechanisms relative to the set of stable mechanisms.

Let P(X) denote the proportion of stable mechanisms A for which X is true. For every

i ∈ N, the preferences in D̄i are labeled following some arbitrary order R1
i , . . . ,R

h!
i . The
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proportion we want to compute is equal to

1−P
(
∪{i∈N|i is an acceptor}∪k∈{1,...,h!}

[Ai(R
k
i ,R−i) = f

(Rk
i ,R−i)

i for all R−i ∈ D̄−i]
)
.

(4.28)

The expression in (4.28) is at least

1− ∑
{i∈N|i is an acceptor}

∑
k∈{1,...,h!}

P
(
Ai(R

k
i ,R−i) = f

(Rk
i ,R−i)

i for all R−i ∈ D̄−i

)
. (4.29)

We can obtain a bound on (4.29) by bounding the term inside the double summation. For

any profile R ∈ D̄ , let σ R(X) denote the proportion of stable matchings µ for which X is

true. Observe that

P
(
Ai(R

k
i ,R−i) = f

(Rk
i ,R−i)

i for all R−i ∈ D̄−i

)

= ∏
R−i∈D̄−i

σ (Rk
i ,R−i)

(
µi = f

(Rk
i ,R−i)

i

)
.

For example, for the Latin Square profile (Rk
i ,R

Rk
i

−i), we have σ (Rk
i ,R

Rk
i

−i )(µi = f
(Rk

i ,R
Rk

i
−i )

i ) = 1
h
,

which implies that

P
(
Ai(R

k
i ,R−i) = f

(Rk
i ,R−i)

i for all R−i ∈ D̄−i

)
≤

1

h
. (4.30)

A tighter bound for (4.29) can be obtained by tightening the bound in (4.30). This can

be done by considering profiles different from the Latin Square profile (4.27). Specifically,

I consider variations of (4.27) for which (a) the number of stable matchings and (b) the

proportion of stable matchings that match i with her or his most preferred achievable mate

are easy to compute.

In what follows, I use the relabeling introduced at the beginning of the proof of Proposi-

tion 4.4, with Rk
i = Rw1

. The first variation of the Latin Square profile that is considered has
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(h−1) stable matchings and is denoted by (Rw1
,R

Rw1
−w1

(h−1,1)). In (Rw1
,R

Rw1
−w1

(h−1,1)),

the preferences of the women and of man mh are as follows:

Rw1
: mh mh−1 mh−2 . . . m2 m1

R
Rw1
w2

(h−1,1) : mh mh−2 mh−1

m2 . .
.

...
... m2 m1 mh−1

...
...

. .
.

mh−1

R
Rw1
wh−2

(h−1,1) : mh m2 m3

R
Rw1
wh−1

(h−1,1) : mh m1 mh−1 . . . m3 m2

R
Rw1
wh

(h−1,1) : mh

R
Rw1
mh

(h−1,1) : wh

(4.31)

In (4.31), every woman ranks mh first. Among the first h− 1 women, the sub-profile ex-

cluding mh has a Latin Square structure of dimension h− 1 similar to (4.27). For wh and

mh, only the most preferred mate is specified.

In (Rw1
,R

Rw1
−w1

(h−1,1)), the preferences of men other than mh are constructed symmet-

rically to the preferences of the women other than wh in (4.31) with wh ranked last and

woman w1 appearing on the downward diagonal as in (4.13).

Observe that mh and wh match together in every stable matching given (Rw1
,R

Rw1
−w1

(h−

1,1)), and mh and wh are therefore not achievable for any other man or woman. By

analogy with (4.27), there are (h− 1) stable matching among the remaining individuals

{m1, . . . ,mh−1,w1, . . . ,wh−1} due to the Latin Square structure of the profile once mh and

wh are removed. There are therefore (h−1) stable matchings given (Rw1
,R

Rw1
−w1

(h−1,1)),

only one of which matches w1 with her most preferred achievable mate.
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A natural variant of (4.31), denoted (Rw1
,R

Rw1
−w1

(h−1,2)), also has (h−1) stable match-

ings. In (Rw1
,R

Rw1
−w1

(h−1,2)), the preferences of the women and of man m1 are as follows:

Rw1
: mh mh−1 . . . m3 m2 m1

R
Rw1
w2

(h−1,2) : mh−1 mh m1

m3 . .
.

...
... m3 m2 mh

...
...

. .
.

mh

R
Rw1
wh−2

(h−1,2) : m3 m4 m1

R
Rw1
wh−1

(h−1,2) : m2 mh . . . m4 m3 m1

R
Rw1
wh

(h−1,2) : m1

R
Rw1
m1

(h−1,2) : wh

(4.32)

In (4.32), the first h−1 women rank m1 last. Among the first h−1 women, the sub-profile

excluding m1 has a Latin Square structure of dimension h−1 similar to (4.27). For wh and

m1, only the most preferred mate is specified.

In (Rw1
,R

Rw1
−w1

(h−1,2)), the preferences of men other than m1 are constructed symmet-

rically to the preferences of the women other than wh in (4.31) with wh ranked last and

woman w1 appearing on the downward diagonal as in (4.13).

Similarly to (Rw1
,R

Rw1
−w1

(h−1,1)), there are (h−1) stable matchings given (Rw1
,R

Rw1
−w1

(h−

1,2)) only one of which matches w1 with her most preferred achievable mate.

It is easy to see how, for all k ∈ {2, . . . ,h−1}, the above constructions extend to pro-

files (Rw1
,R

Rw1
−w1

(k,1)) and (Rw1
,R

Rw1
−w1

(k,2)) that each admit k stable matchings only one of

which matches w1 with her most preferred achievable mate. In (Rw1
,R

Rw1
−w1

(h− 2,1)) for

example, the first h−2 women rank mh and mh−1 first and, among the first h−2 women,
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the sub-profile excluding mh and mh−1 has a Latin Square structure of dimension h− 2.

Also, wh ranks mh first and wh−1 ranks mh−1 first.

Together with the original Latin Square profile, we have therefore identified 1+2(h−1)

profiles with a partial Latin square structure and in which i’s preference is Rk
i . In other

words, we have identified a set of sub-profiles {R1
−i, . . . ,R

1+2(h−1)
−i } such that the set of

profiles (Rk
i ,R

t
−i) for t ∈ {1, . . . ,1+ 2(h− 1)} consists of (a) the full Latin Square profile

and (b) the 2(h−1) partial Latin Square profiles described above.

There are h((h− 1)!)2 ways to select stable matchings for these 1+ 2(h− 1) profiles.

For example, a stable mechanism could select the first of the h stable matchings in the full

Latin Square profile, the first of the (h−1) stable matchings in (Rw1
,R

Rw1
−w1

(h−1,1)), the

first of the (h−2) stable matchings in (Rw1
,R

Rw1
−w1

(h−2,1)), and so on. A stable mechanism

could also select the second of the h stable matchings in the full Latin Square profile,

the first of the (h− 1) stable matchings in (Rw1
,R

Rw1
−w1

(h− 1,1)), the first of the (h− 2)

stable matchings in (Rw1
,R

Rw1
−w1

(h−2,1)), and so on. Of the h((h−1)!)2 possible selections

for these 1+ 2(h− 1) profiles, only one always matches i with her or his most preferred

achievable mate. Hence,

1

h((h−1)!)2
= ∏

R−i∈{R1
−i,...,R

1+2(h−1)
−i }

σ (Rk
i ,R−i)

(
µi = f

(Rk
i ,R−i)

i

)

≥ ∏
R−i∈D̄−i

σ (Rk
i ,R−i)

(
µi = f

(Rk
i ,R−i)

i

)
.

(4.33)

Using (4.33) in (4.29) shows that (4.28) is at least

1− ∑
{i∈N|i is acceptor}

∑
k∈{1,...,h!}

1

h((h−1)!)2
. (4.34)

Because the fraction in (4.34) is independent of the indices used in the summations, (4.34)

is equal to 1−
h(h!)

h((h−1)!)2 = 1− h
(h−1)! .
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Finally, we must account for the fact that DA itself might be one of the at most 1− h
(h−1)!

mechanisms A for which there exists no R∗ ∈ ∪i∈ND̄i and no acceptor a ∈ NR∗ such that

Aa(R∗,R−a) = f
(R∗,R−a)
a for all R−a ∈ D̄−a. Because DA is not less AM-manipulable than

DA itself, we must not include it when computing the upper bound.

Clearly, DA itself represents a very small proportion of the stable mechanisms. For

example, only 1
h((h−1)!)2 of the mechanisms select a combination of stable matchings for

the full Latin Square profile and the 2(h− 1) variants described above that is compatible

with the mechanism being DA. Hence, overall, the proportion of stable mechanisms that

are more AM-manipulable than DA is at least 1−
(

h
(h−1)!

+ 1
h((h−1)!)2

)
. As a consequence,

the proportion of minimally AM-manipulable mechanisms is at most
(

h
(h−1)! +

1
h((h−1)!)2

)
.

�

Proof of Proposition 4.5. (i). As shown in the proof of Proposition 4.4.(ii), the propor-

tion of stable mechanisms that are more AM-manipulable than DA is at least 1−
(

h
(h−1)! +

1
h((h−1)!)2

)
. Conversely, DA is less manipulable than at least 1−

(
h

(h−1)!
+ 1

h((h−1)!)2

)
.

(ii). If DA is less PS-manipulable than stable mechanism A, then A can never select

the optimal stable matching of the accepting side whenever any acceptor has more than

one achievable mate. This implies that for any acceptor a and any of the h! preferences

Ra ∈ D̄a, we have Aa(Ra,R
Ra
−a) 6= f

(Ra,R
Ra
−a)

a , where the construction of R
Ra
−a is described in

(4.27). Each (Ra,R
Ra
−a) has h stable matchings only one of which matches a with f

(Ra,R
Ra
−a)

a .

Hence, for each (Ra,R
Ra
−a), there are h−1 ways to select a stable matching A(Ra,R

Ra
−a) with

Aa(Ra,R
Ra
−a) 6= f

(Ra,R
Ra
−a)

a . This implies that, of all the hh! possible ways in which a stable

mechanism A can select a stable matching for the h! profiles (Ra,R
Ra
−a), only (h−1)h! make

it possible for DA to be less PS-manipulable than A. Therefore, at most
(

h−1
h

)h!
of the

stable mechanisms A are more manipulable than DA.

Proof of Proposition 4.6. (i). Consider any Latin Square profile RLS as defined in

(4.27) (if #W 6= #M, see the argument in footnote 11). For any miniworst mechanism

A, Ai(R
LS) 6= f RLS

i for all i ∈ N. The mechanism B constructed from A by changing the
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stable matching selected for RLS to the men optimal or women optimal stable matching

(and selecting the same matching as A otherwise) is less PS-manipulable than A. Hence A

is not minimally PS-manipulable.

(ii). See the proof of Proposition 4.8. �

Proof of Proposition 4.7. (i). Sufficiency. By Proposition 4.2, it is sufficient to show

that for any miniworst mechanism, any profile R, and any stable matching µ , (4.12) does

not hold. Because A is miniworst, (4.15) is false. That is, either

{i ∈ N | Ai(R) = lR
i }= {i ∈ N | µi = lR

i }, (4.35)

or there exists i∗ ∈ N such that

µi∗ = lR
i∗ and Ai∗(R) 6= lR

i∗. (4.36)

By Lemma 4.1, individuals match with their least preferred achievable mates if and only if

they are their mates’ most preferred achievable mate. Thus, if (4.35) holds,

{i ∈ N | Ai(R) = f R
i }= {i ∈ N | µi = f R

i }. (4.37)

On the other hand, if (4.36) holds, we have

AlR
i∗
(R) 6= f R

lR
i∗
= i∗ and µlR

i∗
= f R

lR
i∗
= i∗. (4.38)

If (4.37) holds, then the set of individuals who match with their most preferred achiev-

able mate is the same in A(R) and µ . On the other hand, if (4.38) holds, then there is an

individual lR
i∗ who matches with f R

lR
i∗

in µ , but not in A(R). In both cases, the set of individ-

uals who match with their most preferred achievable mates in A(R) is not a superset of the
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set of individuals who match with their most preferred achievable mates in µ . That is,

{i ∈ N | Ai(R) = f R
i } 6⊃ {i ∈ N | µi = f R

i }. (4.39)

and (4.12) does not hold.

Necessity. In order to derive a contradiction, assume that A is maximally PS-manipulable

but A is not miniworst, i.e., there exists a profile R∗ and a matching µ∗ such that (4.15)

holds. By Lemma 4.1, (4.15) implies

{i ∈ N | Ai(R
∗) = f R∗

i } ⊃ {i ∈ N | µ∗
i = f R∗

i }. (4.40)

Now, construct mechanism B from A by setting B(R) = A(R) for all R ∈ D with R 6= R∗,

and B(R∗) = µ∗. By Lemma 4.2, because B(R) = A(R) for all R 6= R∗, we have that for all

R 6= R∗,

{i ∈ N | i can manipulate A given R}

= {i ∈ N | i can manipulate B given R}.

(4.41)

Also, by (4.40) and Lemma 4.2,

{i ∈ N | i can manipulate A given R∗}

⊂ {i ∈ N | i can manipulate B given R∗}.

(4.42)

Together, (4.41) and (4.42) imply that A is less PS-manipulable than B and therefore A is

not maximally PS-manipulable, a contradiction.

(ii). For any i ∈ N and any Ri ∈ D3
i , it is possible to construct a Latin Square profile

similar to (4.27) among the mates that are acceptable according to Ri. Slightly abusing the

notation, this profile is also denoted (Ri,R
Ri

−i). For example, if three mates are acceptable

according to Ri, let N6 ⊆ N consist of (a) i, (b) i’s three acceptable mates, and (c) two more
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individuals on i’s side of the market. Profile (Ri,R
Ri

−i) then has the same structure as (4.27)

among the individuals in N6. (For any i ∈N6, any individual on the other side of the market

that does not belong to N6 is unacceptable).

If mechanism A is miniworst, then for any i∈N and any Ri ∈D3
i , Ai(Ri,R

Ri

−i) 6= f
(Ri,R

Ri
−i)

i .

Hence, for any R∗ ∈ ∪i∈ND3
i ,

{i ∈ NR∗ | i can manipulate A given R∗}= N

and A is clearly maximally AM-manipulable.

(iii). For any i ∈ N and any Ri ∈ D3
i , it is possible to construct a Latin Square profile

similar to (4.27) among the mates that are acceptable according to Ri. Slightly abusing the

notation and terminology, this profile is also denoted (Ri,R
Ri

−i) and called a Latin Square

profile. Consider any mechanism A such that

(a) for any Latin Square profile, A selects a stable matching that matches no individual

with her or his most preferred achievable mate (i.e., for any i ∈ N and any Ri ∈ D3
i ,

Ai(Ri,R
Ri

−i) 6= f
(Ri,R

Ri
−i)

i ), but

(b) for any profile that is not a Latin Square, A selects the same matching as DA (i.e., for

any R∗ ∈ D3\{(Ri,R
Ri

−i) ∈ D3 | Ri ∈ D3
i for some i ∈ N}, A(R∗) = DA(R∗)).

By (a) and Lemma 4.2, for any R∗ ∈ ∪i∈ND3
i ,

{i ∈ NR∗ | i can manipulate A given R∗}= N,

and A clearly is maximally AM-manipulable. However, for many non Latin Square profiles

R∗, there exists a stable matching µ such that (4.14) holds. This is the case, for example,

for the profile presented in the proof of Proposition 4.10. For this profile, DA selects either

µ9 or µ1 (depending on the variant of DA that is used). Hence, by construction, A also

selects either µ9 or µ1 although µ4 satisfies (4.14). Thus, A is maximally AM-manipulable
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but not miniworst. �

Proof of Proposition 4.8. As shown in the proof of Proposition 4.7.(ii), if a mechanism

A is miniworst, then for any R∗ ∈ ∪i∈ND3
i ,

{i ∈ NR∗ | i can manipulate A given R∗}= N.

Hence, DA is less AM-manipulable than A. �

Proof of Proposition 4.9. (i). The proof is for #W = #M. For the case #W 6= #M, see the

argument in footnote 11. Consider any Latin Square profile RLS as defined in (4.27). Given

RLS, MS mechanisms select a stable matching in which no individual matches with her or

his most preferred achievable mate. The mechanism A constructed from MS mechanisms

by changing the stable matching selected for RLS to the men optimal or women optimal

stable matching (and selecting the same matching as MS mechanisms otherwise) is less

PS-manipulable than MS mechanisms. Hence, MS mechanisms are not minimally PS-

manipulable.

(ii). For any i ∈ N and any Ri ∈ D3
i , it is possible to construct a Latin Square profile

similar to (4.27) among the mates that are acceptable according to Ri. Slightly abusing the

notation and terminology, this profile is also denoted (Ri,R
Ri

−i) and called a Latin Square

profile. In (Ri,R
Ri

−i), MS mechanisms select a stable mechanism in which i does not match

with her or his most preferred achievable mate. That is, for any i ∈ N any Ri ∈ D3
i , and

any MS mechanism MSM, MSMi(Ri,R
Ri

−i) 6= f
(Ri,R

Ri
−i)

i . Thus, by Lemma 4.2, for any R∗ ∈

∪i∈ND3
i ,

{i ∈ NR∗ | i can manipulate MSM given R∗}= N, (4.43)

and MS mechanisms are clearly not minimally AM-manipulable. �

Proof of Proposition 4.10. (i). By (4.43) in the proof of Proposition 4.9.(ii) and Lemma
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4.1, for any R∗ ∈ ∪i∈ND3
i and any MS mechanism MSM,

{i ∈ NR∗ | i can manipulate MSM given R∗}= N

⊃ {i ∈ NR∗ | i can manipulate DA given R∗}.

(ii). By Proposition 4.7, it is sufficient to show that MS mechanisms are not miniworst

on the set of stable matchings. Let N8 := {w1, . . . ,w8,m1, . . . ,m8} and consider any profile

R including the following sub-profile for individuals in N8:

Rw1
: m3 m8 m7 m6 m5 m4 m2 m1

Rw2
: m2 m8 m7 m6 m5 m4 m1 m3

Rw3
: m1 m8 m7 m6 m5 m4 m3 m2

Rw4
: m8 m7 m6 m5 m4 w4

Rw5
: m7 m6 m5 m4 m8 w5

Rw6
: m6 m5 m4 m8 m7 w6

Rw7
: m5 m4 m8 m7 m6 w7

Rw8
: m4 m8 m7 m6 m5 w8
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Rm1
: w1 w2 w3 m1

Rm2
: w3 w1 w2 m2

Rm3
: w2 w3 w1 m3

Rm4
: w4 w5 w1 w2 w3 w6 w7 w8

Rm5
: w8 w4 w1 w2 w3 w5 w6 w7

Rm6
: w7 w8 w1 w2 w3 w4 w5 w6

Rm7
: w6 w7 w1 w2 w3 w8 w4 w5

Rm8
: w5 w6 w1 w2 w3 w7 w8 w4

Observe that because no two women have the same most preferred man, matching every

woman with her favorite man yields a stable matching. Thus, because the set of individuals

who are married is the same in every stable matching (Lemma 4.4), every individual in N8 is

married in every stable matching. Therefore, because no man in {m1,m2,m3} is acceptable

to any woman in {w4,w5,w6,w7,w8}, but every man in {m1,m2,m3} is acceptable to every

woman in {w1,w2,w3}, all men in {m1,m2,m3} must match with women in {w1,w2,w3}

in any stable matching (by definition, stable matchings are individually rational). As a con-

sequence, all men in {m4,m5,m6,m7,m8} also match with women in {w4,w5,w6,w7,w8}

in every stable matching.

Among {m1,m2,m3}∪{w1,w2,w3}, the stable sub-matchings are

w1 w2 w3

µ1
123 : m1 m3 m2

µ2
123 : m2 m1 m3

µ3
123 : m3 m2 m1
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Among {m4,m5,m6,m7,m8}∪{w4,w5,w6,w7,w8}, the stable sub-matchings are

w4 w5 w6 w7 w8

µ1
45678 : m4 m8 m7 m6 m5

µ2
45678 : m5 m4 m8 m7 m6

µ3
45678 : m6 m5 m4 m8 m7

µ4
45678 : m7 m6 m5 m4 m8

µ5
45678 : m8 m7 m6 m5 m4

Observe that in any stable matching that includes µ1
123 or µ2

123, the sub-matching among

{m4,m5,m6,m7,m8}∪{w4,w5,w6,w7,w8} must be either µ1
45678 or µ2

45678. Indeed, in any

other combination that includes µ1
123 or µ2

123 (e.g., (µ1
123,µ

4
45678)), every man in {m4,m5,m6,m7,m8}

forms a blocking pair with every woman in {w1,w2,w3}. On the other hand, in stable

matchings that includes µ3
123, the sub-matching among {m4,m5,m6,m7,m8}∪{w4,w5,w6,w7,w8}

can be any of the stable sub-matchings (µ1
45678, . . . ,µ

5
45678). Overall, the stable matchings

among individuals in N8 are

µ1 := (µ1
123,µ

1
45678)

µ2 := (µ1
123,µ

2
45678)

µ3 := (µ2
123,µ

1
45678)

µ4 := (µ2
123,µ

2
45678)

µ5 := (µ3
123,µ

1
45678)

µ6 := (µ3
123,µ

2
45678)

µ7 := (µ3
123,µ

3
45678)

µ8 := (µ3
123,µ

4
45678)

µ9 := (µ3
123,µ

5
45678)

For every woman w ∈ {w1,w2,w3}, the stable matchings are ranked in the same way

with

µ9 Rw µ8 Rw µ7 Rw µ6 Rw µ5 Rw µ4 Rw µ3 Rw µ2 Rw µ1.
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Hence, given profile R, MS mechanisms match every woman in {w1,w2,w3} with her

match in µ5.

For every woman w ∈ {w4,w5,w6,w7,w8}, the stable matchings are also ranked in the

same way with

µ9 Rw µ8 Rw µ7 Rw µ6 Rw µ4 Rw µ2 Rw µ5 Rw µ3 Rw µ1.

Hence, given profile R, MS mechanisms match every woman in {w4,w5,w6,w7,w8} with

her match under µ4.

Thus, given profile R, MS mechanisms match individuals in N8 according to matching

µ6. In µ6, the set of i ∈ N8 who match with lR
i is {m1,m2,m3}. But note that in µ4 the set

of i ∈ N8 who match with lR
i is empty. Hence, MS mechanisms are not miniworst on the

set of stable matchings. �

Proof of Proposition 4.11.(i). See (4.43) in the proof of Proposition 4.9.(ii). �
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