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Chapter 1

INTRODUCTION

1.1 Motivation

In Wireless Sensor Networks (WSN), a large amount of sensors are distributed to gather

information about a field to be monitored, such as pollution, temperature or pressure. The

goal is to exploit the evolutionary structure and the placement of sensors to reconstruct an

unknown field. In practice, increasing the spatial sampling density is usually much more

expensive than increasing the temporal sampling density, and it is not always possible to

place sampling devices at all desired locations. These issues motivate us to propose a spa-

tiotemporal sampling framework to do sampling and reconstruction in evolution processes.

The idea is exploiting spatiotemporal correlation and using a reduced number of sensors

with each being activated more frequently. In other words, we seek to compensate the in-

sufficient spatial sampling rate by oversampling in time and achieve spatiotemporal trade

off. Lu, Vetterli, and their collaborators study the spatiotemporal trade off in heat diffu-

sion processes (e.g. [35]). Later, Aldroubi and his collaborators develop a mathematical

framework of dynamical sampling to study the spatiotemporal trade off in case of regu-

lar subsampling in the discrete spatially invariant evolution systems([5, 6]). In practice,

there are many other types of evolution systems and it is often the case that the sensors

are scattered irregularly, such as dropped from an airplane. So it is important to extend the

dynamical sampling to more general evolution systems and consider the irregular subsam-

pling and possibly random subsampling.

1.2 General Problem Formulation

We mainly consider the dynamical sampling problem in the separable Hilbert space.

The general dynamical sampling problem can be stated as follows: Let f be a function

1



in a separable Hilbert space H , e.g., Cd or `2(N), and assume that f evolves through

an evolution operator A : H →H so that the function at time n has evolved to become

f (n) = An f . We identify H with `2(I) where I = {1, . . . ,d} in the finite dimensional case,

and I = N(or Z) in the infinite dimensional case. We denote by {ei}i∈I the standard basis

of `2(I).

The time-space sample at time t ∈N and location p∈ I, is the value At f (p). In this way

we associate to each pair (p, t) ∈ I×N a sample value.

At time t = n, we sample f at the locations Ωn ⊆ I resulting in the measurements

{ f (n)(i) : i ∈Ωn}. Here f (n)(i) =< An f ,ei > .

In general, the measurements { f (0)(i) : i ∈ Ω0} that we have from our original signal

f = f (0) will contain in general insufficient information to recover f . In other words, f

is undersampled. So we will need some extra information from the iterations of f by the

operator A: { f (n)(i) = An f (i) : i ∈ Ωn}. Again, for each n, the measurements { f (n)(i) :

i ∈ Ωn} that we have by sampling our signals An f at Ωn are insufficient to recover An f in

general.

Several questions arise. Will the combined measurements { f (n)(i) : i ∈Ωn} contain in

general all the information needed to recover f (and hence An f )? How many iterations L

will we need (i.e., n = 1, . . . ,L) to recover the original signal? What are the right “spatial”

sampling sets Ωn we need to choose in order to recover f ? In what way all these questions

depend on the operator A? The general dynamical sampling problem can then be described

as:

Problem 1.2.1 (Spatiotemporal Trade off). Under what conditions on the operator A, and

a set S ⊆ I×N, can every f in the Hilbert space H be recovered in a stable way from the

samples in S.

The name of the above Problem 1.2.1 comes from the fact that in many cases it is

possible to provide the same information about the initial state from a reduced number of

devices activated more frequently. Another important problem arises when the evolution
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operators are themselves unknown (or partially known).

Problem 1.2.2 (System Identification in Dynamical Sampling). Assume A is unknown or

parially known, under what conditions on the operator A, and a set S ⊆ I×N, can the key

parameters of A and even every f in the Hilbert space H be recovered in a stable way from

the samples in S.

1.3 Connection to other fileds

The dynamical sampling problem has similarities to other areas of mathematics. For

example, in wavelet theory [10, 17, 18, 27, 36, 39, 43], a high-pass convolution operator H

and a low-pass convolution operator L are applied to the function f . The goal is to design

operators H and L so that reconstruction of f from samples of H f and L f is feasible. In

dynamical sampling there is only one operator A, and it is applied iteratively to the function

f . Furthermore, the operator A may be high-pass, low-pass, or neither and is given in the

problem formulation, not designed.

In inverse problems (see [38] and the references therein), a single operator B, that often

represents a physical process, is to be inverted. The goal is to recover a function f from the

observation B f . If B is not bounded below, the problem is considered an ill-posed inverse

problem. Dynamical sampling is different because An f is not necessarily known for any n;

instead f is to be recovered from partial knowledge of An f for many values of n. In fact,

the dynamical sampling problem can be phrased as an inverse problem when the operator B

is the operation of applying the operators A,A2, . . . ,AL and then subsampling each of these

signals accordingly on some sets Ωn for times t = n.

The methods that we develop for studying the spatiotemporal trade off Problem 1.2.1

are related to methods in spectral theory, operator algebras, and frame theory [3, 12, 14,

16, 20, 23, 24, 25, 44]. For example, the proof of Theorem 2.4.15, below, uses the newly

proved Kadison-Singer/Feichtinger conjecture [37]. Another example is the existence of

cyclic vectors that form frames, which is related to Carleson’s Theorem for interpolating
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sequences in the Hardy space H2(D) (c.f., Theorem 2.4.16). Various versions of Problem

1.2.2 of Dynamical sampling exhibit features similar to many fundamental problems in

other area such as super resolution, blind deblurring. But even in the most basic case, they

necessitate new theoretical and algorithmic techniques.

1.4 Overview and Organization

In chapter 2, we consider the spatiotemporal trade off problem in both finite dimen-

sional and infinite dimensional separable Hilbert spaces. We completely solve Problem

1.2.1 in the finite dimensional spaces, and for a large class of self adjoint operators in

infinite dimensional spaces. We give a characterization specifying what the right spatial

sampling sets Ω we need to choose are, how many iterations li we need for each i ∈ Ω,

and in what way they depend on the operator A to recover the original signal f . The work

in this section is joint work with Akram Aldroubi, Carlos Cabrelli and Ursula Molter, and

appears in [4].

In chapter 3, we consider the system identification problem of dynamical sampling

in the infinite dimensional spatially invariant evolution processes. We consider a regular

spatiotemporal subsampling scheme and show that if the amount of temporal samples is

equal to the double of amount of samples for the case when the convolution operator A

is known, one can almost surely solve Problem 1.2.2 for this specal case. We propose

several algorthms for the case when both the convolution kernel of A and initial signal are

compactly supported. The work in this section is independent work and can be found in

[45].

In chapter 4, we look back on the spatiotemporal trade off problem in the spatially

invariant systems and extend one variable results in case of regular subsampling in [5, 6] to

the multivariable setting. This work is motivated by the fact that in industrial applications,

the observed time variant signals are described by at least two variables. The work in this

section is joint work with Roza Aceska and Armenak Petrosyan, and appears in [2].
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Chapter 2

SPATIOTEMPORAL TRADE OFF PROBLEM IN HILBERT SPACE

2.1 Problem Formulation

In this section, we formulate a special case of spatiotemporal trade off Problem 1.2.1

and the goal of this chapter is to understand completely this problem that we can formulate

as:

Let A be the evolution operator acting in `2(I), Ω ⊆ I a fixed set of locations, and

{li : i ∈Ω} where li is a positive integer or +∞.

Problem 2.1.1. Find conditions on A,Ω and {li : i ∈Ω} such that any vector f ∈ `2(I) can

be recovered from the samples Y = { f (i),A f (i), . . . ,Ali f (i) : i ∈Ω} in a stable way.

Note that, in Problem 2.1.1, we allow li to be finite or infinite. Note also that, Problem

2.1.1 is not the most general problem since the way it is stated implies that Ω = Ω0 and

Ωn = {i ∈ Ω0 : li ≥ n}. Thus, an underlying assumption is that Ωn+1 ⊆ Ωn for all n ≥ 0.

For each i ∈ Ω, let Si be the operator from H = `2(I) to Hi = `2({0, . . . , li}), defined by

Si f = (A j f (i)) j=0,...,li and define S to be the operator S = S0⊕S1⊕ . . .

Then f can be recovered from Y = { f (i),A f (i), . . . ,Ali f (i) : i ∈ Ω} in a stable way if

and only if there exist constants c1,c2 > 0 such that

c1‖ f‖2
2 ≤ ‖S f‖2

2 = ∑
i∈Ω

‖Si f‖2
2 ≤ c2‖ f‖2

2. (2.1)

Using the standard basis {ei} for `2(I), we obtain from (2.1) that

c1‖ f‖2
2 ≤ ∑

i∈Ω

li

∑
j=0
|〈 f ,A∗ jei〉|2 ≤ c2‖ f‖2

2.

Thus we get
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Lemma 2.1.2. Every f ∈ `2(I) can be recovered from the measurements set

Y = { f (i),A f (i), . . . ,Ali f (i) : i ∈Ω}

in a stable way if and only if the set of vectors {A∗ jei : i ∈ Ω, j = 0, . . . , li} is a frame for

`2(I).

2.2 Contribution and Organization

In section 2.3 we present the results for the finite dimensional case. Specifically, Sub-

section 2.3.1 concerns the special case of diagonalizable operators acting on vectors in Cd .

This case is treated first in order to give some intuition about the general theory. For exam-

ple, Theorem 2.3.2 explains the reconstruction properties for the examples below: Consider

the following two matrices acting on C5.

P =



9/2 1/2 −7 5 −3

15/2 3/2 −11 5 −7

5 0 −7 5 −5

4 0 −4 3 −4

1/2 1/2 −1 0 1


Q =



3/2 −1/2 2 0 1

1/2 5/2 0 0 −1

0 0 3 0 0

1 0 −1 3 −1

−1/2 −1/2 1 0 3


.

For the matrix P, Theorem 2.3.2 shows that any f ∈ C5 can be recovered from the data

sampled at the single “spacial” point i = 2, i.e., from

Y = { f (2),P f (2),P2 f (2),P3 f (2),P4 f (2)}.

However, if i = 3, i.e., Y = { f (3),P f (3),P2 f (3),P3 f (3),P4 f (3)} the information is not

sufficient to determine f . In fact if we do not sample at i = 1, or i = 2, the only way to re-

cover any f ∈C5 is to sample at all the remaining “spacial” points i = 3,4,5. For example,
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Y = { f (i),P f (i) : i = 3,4,5} is enough data to recover f , but Y = { f (i),P f (i), ...,PL f (i) :

i = 3,4}, is not enough information no matter how large L is.

For the matrix Q, Theorem 2.3.2 implies that it is not possible to reconstruct f ∈ C5

if the number of sampling points is less than 3. However, we can reconstruct any f ∈ C5

from the data

Y ={ f (1),Q f (1),Q2 f (1),Q3 f (1),Q4 f (1),

f (2),Q f (2),Q2 f (2),Q3 f (2),Q4 f (2),

f (4),Q f (4)}.

Yet, it is not possible to recover f from the set Y = {Ql f (i) : i = 1,2,3, l = 0, . . . ,L} for

any L. Theorem 2.3.2 gives all the sets Ω such that any f ∈ C5 can be recovered from

Y = {Al f (i) : i ∈Ω, l = 0, ...li}.

In subsection 2.3.2 Problem 2.1.1 is solved for the general case in Cd , and Corollary

2.3.7 elucidates the example below: Consider

R =



0 −1 4 −1 2

2 1 −2 1 −2

−1/2 −1/2 3 0 1

1/2 −1/2 0 2 0

−1/2 −1/2 2 −1 2


.

Then, Corollary 2.3.7 shows that Ω must contain at least two “spacial” sampling points

for the recovery of functions from their time-space samples to be feasible. For example, if

Ω = {1,3}, then Y = {Rl f (i) : i ∈ Ω, l = 0, . . . ,L} is enough recover f ∈ C5. However, if

Ω is changed to Ω = {1,2}, then Y = {Rl f (i) : i∈Ω, l = 0, . . . ,L} does not provide enough

information.

The dynamical sampling problem in infinite dimensional separable Hilbert spaces is
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studied in Section 2.4. For this case, we restrict ourselves to certain classes of self adjoint

operators in `2(N). In light of Lemma 2.1.2, in Subsection 2.4.1, we characterize the sets

Ω ⊆ N such that FΩ = {A jei : i ∈ Ω, j = 0, . . . , li} is complete in `2(N) (Theorem 2.4.3).

However, we also show that if Ω is a finite set, then {A jei : i ∈ Ω, j = 0, . . . , li} is never a

basis (see Theorem 2.4.8). It turns out that the obstruction to being a basis is redundancy.

This fact is proved using the beautiful Müntz-Szász Theorem 2.4.5 below.

Although FΩ = {A jei : i ∈Ω, j = 0, . . . , li} cannot be a basis, it should be possible that

FΩ is a frame for sets Ω ⊆ N with finite cardinality. It turns out however, that except for

special cases, if Ω is a finite set, then FΩ is not a frame for `2(N).

If Ω consists of a single vector, we are able to characterize completely when FΩ is a

frame for `2(N) (Theorem 2.4.16), by relating our problem to a theorem by Carleson on

interpolating sequences in the Hardy spaces H2(D).

2.3 Finite Dimensional Case

In this section we will address the finite dimensional case. That is, our evolution opera-

tor is a matrix A acting on the space Cd and I = {1, . . . ,d}. Thus, given A, our goal is to find

necessary and sufficient conditions on the set of indices Ω⊆ I and the numbers {li}i∈Ω such

that every vector f ∈ Cd can be recovered from the samples {A j f (i) : i ∈Ω, j = 0, . . . , li}

or equivalently (using Lemma 2.1.2), the set of vectors

{A∗ jei : i ∈Ω, j = 0, . . . , li} is a frame of Cd. (2.2)

(Note that this implies that we need at least d space-time samples to be able to recover the

vector f ).

The problem can be further reduced as follows: Let B be any invertible matrix with

complex coefficients, and let Q be the matrix Q = BA∗B−1, so that A∗ = B−1QB. Let bi

denote the ith column of B. Since a frame is transformed to a frame by invertible linear
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operators, condition (2.2) is equivalent to {Q jbi : i ∈Ω, j = 0, . . . , li} being a frame of Cd .

This allows us to replace the general matrix A∗ by a possibly simpler matrix and we

have:

Lemma 2.3.1. Every f ∈Cd can be recovered from the measurement set Y = {A j f (i) : i ∈

Ω, j = 0, . . . , li} if and only if the set of vectors {Q jbi : i ∈ Ω, j = 0, . . . , li} is a frame for

Cd .

We begin with the simpler case when A∗ is a diagonalizable matrix.

2.3.1 Diagonalizable Transformations

Let A ∈ Cd×d be a matrix that can be written as A∗ = B−1DB where D is a diagonal

matrix of the form

D =



λ1I1 0 · · · 0

0 λ2I2 · · · 0
...

... . . . ...

0 0 · · · λnIn


. (2.3)

In (2.3), Ik is an hk×hk identity matrix, and B ∈ Cd×d is an invertible matrix. Thus A∗ is a

diagonalizable matrix with distinct eigenvalues {λ1, . . . ,λn}.

Using Lemma 2.3.1 and Q = D, Problem 2.1.1 becomes the problem of finding nec-

essary and sufficient conditions on vectors bi and numbers li, and the set Ω ⊆ {1, . . . ,m}

such that the set of vectors {D jbi : i ∈ Ω, j = 0, . . . , li} is a frame for Cd . Recall that

the Q-annihilator qQ
b of a vector b is the monic polynomial of smallest degree, such that

qQ
b (Q)b≡ 0. Let Pj denote the orthogonal projection in Cd onto the eigenspace of D asso-

ciated to the eigenvalue λ j. Then we have:

Theorem 2.3.2. Let Ω ⊆ {1, . . . ,d} and {bi : i ∈ Ω} vectors in Cd . Let D be a diagonal

matrix and ri the degree of the D-annihilator of bi. Set li = ri−1. Then {D jbi : i ∈Ω, j =

9



0, . . . , li} is a frame of Cd if and only if {Pj(bi) : i∈Ω} form a frame of Pj(Cd), j = 1, . . . ,n.

As a corollary, using Lemma 2.3.1 we get

Theorem 2.3.3. Let A∗ = B−1DB, and let {bi : i ∈ Ω} be the column vectors of B whose

indices belong to Ω. Let ri be the degree of the D-annihilator of bi and let li = ri−1. Then

{A∗ jei : i ∈Ω, j = 0, . . . , li} is a frame of Cd if and only if {Pj(bi) : i ∈Ω} form a frame of

Pj(Cd), j = 1, . . . ,n.

Equivalently, any vector f ∈ Cd can be recovered from the samples

Y = { f (i),A f (i), . . . ,Ali f (i) : i ∈Ω}

if and only if {Pj(bi) : i ∈Ω} form a frame of Pj(Cd), j = 1, . . . ,n.

Example 2.2 in [6] can be derived from Theorem 2.3.3 when all the eigenvalues have

multiplicity 1, and when there is a single sampling point at location i.

Note that, in the previous Theorem, the number of time-samples li depends on the

sampling point i. If instead the number of time-samples L is the same for all i ∈ Ω, (note

that L ≥ max{li : i ∈ Ω} is an obvious choice, but depending on the vectors bi it may be

possible to choose L ≤ min{li : i ∈Ω}), then we have the following Theorems (see Figure

??)

Theorem 2.3.4. Let D be a diagonal matrix, Ω ⊆ {1, . . . ,d} and {bi : i ∈ Ω} be a set

of vectors in Cd such that {Pj(bi) : i ∈ Ω} form a frame of Pj(Cd), j = 1, . . . ,n. Let L

be any fixed integer, then E =
⋃

{i∈Ω:bi 6=0}
{bi,Dbi, . . . ,DLbi} is a frame of Cd if and only if

{DL+1bi, : i ∈Ω} ⊆ span(E).

Proof. Note that if {DL+1bi : i ∈ Ω} ⊆ span(E) then D(span(E)) ⊆ span(E). Therefore

by Theorem 2.3.3, E is a frame of Cd.

As a corollary, for our original problem 2.1.1 we obtain
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Theorem 2.3.5. Let A∗ = B−1DB, L be any fixed integer, and let {bi : i ∈ Ω} be a set

of vectors in Cd such that {Pj(bi) : i ∈ Ω} form a frame of Pj(Cd), j = 1, . . . ,n. Then

{A∗ jei : i∈Ω, j = 0, . . . ,L} is a frame of Cd if and only if {DL+1bi : i∈Ω} ⊆ span
(
{D jbi :

i ∈Ω , j = 0, . . . ,L}
)
.

Equivalently any f ∈ Cd can be recovered from the samples

Y = { f (i),A f (i),A2 f (i), . . . ,AL f (i) : i ∈Ω},

if and only if {DL+1bi : i ∈Ω} ⊆ span
(
{D jbi : i ∈Ω , j = 0, . . . ,L}

)
.

Proof. For the proof we just apply Lemma 2.3.1 and Theorem 2.3.4.

Figure 2.1: Illustration of a time-space sampling pattern. Crosses correspond to time-space
sampling points. Left panel: Ω = Ω0 = {1,4,5}. l1 = 1, l4 = 4, l5 = 3. Right panel:
Ω = Ω0 = {1,4}. L = 4.

A special case of Theorem 2.3.5 is [6, Theorem 3.2]. There, since the operator A is a

convolution operator in `2(Zd) ≈ Cd , the matrix B is the Fourier matrix whose columns

consist of the discrete, complex exponentials. The set Ω consists of the union of a uniform

grid mZd and an extra sampling set Ω0. In [6, Theorem 3.2] L can be chosen to be any

number larger than m.

Theorems 2.3.3 and 2.3.5 will be consequences of our general results but we state them

here to help the comprehension of the general results below.
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2.3.2 General Linear Transformations

For a general matrix we will need to use the reduction to its Jordan form. To state our

results in this case, we need to introduce some notations and describe the general Jordan

form of a matrix with complex entries. (For these and other results about matrix or linear

transformation decompositions see for example [29].)

A matrix J is in Jordan form if

J =



J1 0 · · · 0

0 J2 · · · 0
...

... . . . ...

0 0 · · · Jn


. (2.4)

In (2.4), for s = 1, . . . ,n, Js = λsIs +Ns where Is is an hs× hs identity matrix, and Ns is a

hs×hs nilpotent block-matrix of the form:

Ns =



Ns1 0 · · · 0

0 Ns2 · · · 0
...

... . . . ...

0 0 · · · Nsγs


(2.5)

where each Nsi is a ts
i × ts

i cyclic nilpotent matrix,

Nsi ∈ Cts
i×ts

i , Nsi =



0 0 0 · · · 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0
...

... . . . ...
...

...

0 0 0 · · · 1 0


, (2.6)

with ts
1 ≥ ts

2 ≥ . . . , and ts
1 + ts

2 + · · ·+ ts
γs
= hs. Also h1 + · · ·+ hn = d. The matrix J has d

12



rows and distinct eigenvalues λ j, j = 1, . . . ,n.

Let ks
j denote the index corresponding to the first row of the block Ns j from the matrix J,

and let eks
j
be the corresponding element of the standard basis of Cd . (That is a cyclic vector

associated to that block). We also define Ws := span{eks
j
: j = 1, . . . ,γs}, for s= 1, . . . ,n, and

Ps will again denote the orthogonal projection onto Ws. Finally, recall that the J annihilator

qJ
b of a vector b is the monic polynomial of smallest degree, such that qJ

b(J)b ≡ 0. Using

the notations and definitions above we can state the following theorem:

Theorem 2.3.6. Let J be a matrix in Jordan form, as in (2.4). Let Ω ⊆ {1, . . . ,d} and

{bi : i ∈Ω} be a subset of vectors of Cd , ri be the degree of the J-annihilator of the vector

bi and let li = ri−1.

Then the following propositions are equivalent.

i) The set of vectors {J jbi : i ∈Ω, j = 0, . . . , li} is a frame for Cd .

ii) For every s = 1, . . . ,n, {Ps(bi), i ∈Ω} form a frame of Ws.

Now, for a general matrix A, using Lemma 2.3.1 we can state:

Corollary 2.3.7. Let A be a matrix, such that A∗ = B−1JB, where J ∈ Cd×d is the Jordan

matrix for A∗. Let {bi : i ∈ Ω} be a subset of the column vectors of B, ri be the degree of

the J-annihilator of the vector bi, and let li = ri−1.

Then, every f ∈ Cd can be recovered from the measurement set Y = {(A j f )(i) : i ∈Ω, j =

0, . . . , li} of Cd if and only if {Ps(bi), i ∈Ω} form a frame of Ws.

In other words, we will be able to recover f from the measurements Y , if and only if the

Jordan-vectors of A∗ (i.e. the columns of the matrix B that reduces A∗ to its Jordan form)

corresponding to Ω satisfy that their projections on the spaces Ws form a frame.

Remark 2.3.8. We want to emphasize at this point, that given a matrix in Jordan form

there is an obvious choice of vectors in order that their iterations give a frame of the space,

(namely, the cyclic vectors eks
j
corresponding to each block). However, we are dealing here
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with a much more difficult problem. The vectors bi are given beforehand, and we need to

find conditions in order to decide if their iterations form a frame.

The following theorem is just a statement about replacing the optimal iteration of each

vector bi by any fixed number of iterations. The idea is, that we iterate a fixed number of

times L but we do not need to know the degree ri of the J-annihilator for each bi. Clearly, if

L≥max{ri−1 : i ∈Ω} then we can always recover any f from Y . But the number of time

iterations L may be smaller than any ri− 1, i ∈ Ω. In fact, for practical purposes it might

be better to iterate, than to try to figure out which is the degree of the annihilator for bi.

Theorem 2.3.9. Let J ∈ Cd×d be a matrix in Jordan form (see (2.4)). Let Ω ⊆ {1, . . . ,d},

and let {bi : i ∈ Ω} be a set of vectors in Cd , such that for each s = 1, . . . ,n the pro-

jections {Ps(bi) : i ∈ Ω} onto Ws form a frame of Ws. Let L be any fixed integer, then

E =
⋃

{i∈Ω:bi 6=0}
{bi,Jbi, . . . ,JLbi} is a frame of Cd if and only if {JL+1bi : i ∈Ω} ⊆ span(E).

As a corollary we immediately get the solution to Problem 2.1.1 in finite dimensions.

Corollary 2.3.10. Let Ω⊆ I, A∗= B−1JB, and L be any fixed integer. Assume that {Ps(bi) :

i ∈ Ω} form a frame of Ws and set E = {Jsbi : i ∈ Ω,s = 0, . . . ,L,}. Then any f ∈ Cd can

be recovered from the samples Y = { f (i),A f (i),A2 f (i), . . . ,AL f (i) : i ∈ Ω}, if and only if

{JL+1bi : i ∈Ω} ⊆ span(E}).

2.3.3 Proofs

In order to introduce some needed notations, we first recall the standard decomposition

of a linear transformation acting on a finite dimensional vector space that produces a basis

for the Jordan form.

Let V be a finite dimensional vector space of dimension d over C and let T : V −→ V

be a linear transformation. The characteristic polynomial of T factorizes as χT (x) = (x−

λ1)
h1 . . .(x− λn)

hn where hi ≥ 1 and λ1, . . . ,λn are distinct elements of C. The minimal
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polynomial of T will be then mT (x) = (x− λ1)
r1 . . .(x− λn)

rn with 1 ≤ ri ≤ hi for i =

1, . . . ,n. By the primary decomposition theorem, the subspaces Vs = Ker(T −λsI)rs, s =

1, . . . ,n are invariant under T (i.e. T (Vs)⊆Vs) and we have also that V =V1⊕·· ·⊕Vn.

Let Ts be the restriction of T to Vs. Then, the minimal polynomial of Ts is (x−λs)
rs ,

and Ts = Ns +λsIs, where Ns is nilpotent of order rs and Is is the identity operator on Vs.

Now for each s we apply the cyclic decomposition to Ns and the space Vs to obtain:

Vs =Vs1⊕·· ·⊕Vsγs

where each Vs j is invariant under Ns, and the restriction operator Ns j of Ns to Vs j is a cyclic

nilpotent operator on Vs j.

Finally, let us fix for each j a cyclic vector ws j ∈ Vs j and define the subspace Ws =

span{ws1 . . .wsγs}, W = W1⊕ ·· · ⊕Wn and let PWs be the projection onto Ws, with IW =

PW1 + · · ·+PWn.

With this notation we can state the main theorem of this section:

Theorem 2.3.11. Let {bi : i ∈ Ω} be a set of vectors in V . If the set {PWsbi : i ∈ Ω} is

complete in Ws for each s = 1, . . . ,n, then the set {bi,T bi, . . . ,T libi : i ∈Ω} is a frame of V ,

where ri is the degree of the T -annihilator of bi and li = ri−1.

To prove Theorem 2.3.11, we will first concentrate on the case where the transformation

T has minimal polynomial consisting of a unique factor, i.e. mT (x) = (x− λ )r, so that

T = λ Id +N, and Nr = 0 but Nr−1 6= 0.

2.3.4 Case T = λ Id +N

Remark 2.3.12. It is not difficult to see that, in this case, given some L ∈ N, {T jbi : i ∈

Ω, j = 0, . . . ,L} is a frame for V if and only if {N jbi : i ∈Ω, j = 0, . . . ,L} is a frame for V .

In addition, since Nrbi = 0 we need only to iterate to r−1. In fact, we only need to iterate

each bi to li = ri−1 where ri is the degree of the N annihilator of bi.
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Definition 2.3.13. A matrix A ∈ Cd×d is perfect if aii 6= 0, i = 1, . . . ,d and det(Ai) 6= 0, i =

1, . . . ,d where As ∈ Cs×s is the submatrix of A, As = {ai, j}i, j=1,...,s.

We need the following lemma that is straightforward to prove.

Lemma 2.3.14. Let A ∈ Cd×d be an invertible matrix. Then there exists a perfect matrix

B ∈ Cd×d that consists of row (or column) permutations of A.

Proof. The proof is by induction on d, which is the number of rows (or columns) of the

matrix. The case of d = 1 is obvious, so let A be an invertible d×d matrix with entries ai, j

and assume that the lemma is true for dimension d−1. Let us expand the determinant of A

using the last column, i.e.:

det(A) =
d

∑
i=1

(−1)i+d ai,d det(A(i,d)),

where A(i, j) denotes the (d−1)× (d−1) submatrix of A that is obtained by removing the

row i and the column j from A.

Since det(A) is different from zero, there exists i∈{1, . . . ,d} such that ai,d and det(A(i,d))

are both different from zero. Let B be the matrix obtained from A by interchanging row i

with row d. So the (d−1)× (d−1) submatrix Bd−1 of B obtained by removing row d and

column d from B, is invertible and the element of B, bd,d = ai,d is not zero.

We now apply the inductive hypothesis to the matrix Bd−1. So there exits some permu-

tation of the rows of Bd−1 such that the matrix is perfect. If we apply the same permutation

to the firs d− 1 rows of B, we obtain a matrix B̃ such that B̃d−1 is perfect and its (d,d)th

entry is non zero. Therefore B̃ is perfect and has been obtained from A by permutation of

the rows.

If N is nilpotent of order r, then there exist γ ∈ N and invariant subspaces Vi ⊆ V ,
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i = 1, . . . ,γ such that

V =V1⊕·· ·⊕Vγ , dim(Vj) = t j, t j ≥ t j+1, j = 1, . . . ,γ−1,

and N = N1 + · · ·+Nγ , where N j = PjNPj is a cyclic nilpotent operator in Vj, j = 1, . . . ,γ .

Here Pj is the projection onto Vj. Note that t1 + · · ·+ tγ = d.

For each j = 1, . . . ,γ , let w j ∈Vj be a cyclic vector for N j. Note that the set {w1, . . . ,wγ}

is a linearly independent set.

Let W = span{w1, . . . ,wγ}. Then, we can write V =W ⊕NW ⊕·· ·⊕Nr−1W . Further-

more, the projections PN jW satisfy P2
N jW = PN jW , and I = ∑

r−1
j=0 PN jW .

Finally, note that

NsPW = PNsW Ns. (2.7)

With the notation above, we have the following theorem:

Theorem 2.3.15. Let N be a nilpotent operator on V . Let B ⊆ V be a finite set of vectors

such that {PW (b) : b ∈ B} is complete in W. Then

⋃
b∈B

{
b,Nb, . . . ,Nlbb

}
is a frame for V,

where lb = rb−1 and rb is the degree of the N-annihilator of b.

Proof. In order to prove Theorem 2.3.15, we will show that there exist vectors {b1, . . . ,bγ}

in B, where γ = dim(W ), such that

γ⋃
i=1

{
bi,Nbi, . . . ,Nti−1bi

}
is a basis of V.

Recall that ti are the dimensions of Vi defined above. Since {PW (b) : b ∈ B} is complete in

W and dim(W ) = γ it is clear that we can choose {b1, . . . ,bγ} ⊆ B such that {PW (bi) : i =

1, . . . ,γ} is a basis of W . Since {w1, . . . ,wγ} is also a basis of W , there exist unique scalars
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{θi, j : i, j = 1, . . . ,γ} such that,

PW (bi) =
γ

∑
j=1

θi jw j. (2.8)

with the matrix Θ = {θi, j}i, j=1,...,γ invertible. Thus, using Lemma 2.3.14 we can relabel

the indices of {bi} in such a way that Θ is perfect. Therefore, without loss of generality,

we can assume that {b1, . . . ,bγ} are already in the right order, so that Θ is perfect.

We will now prove that the d vectors
{

bi,Nbi, . . . ,Nti−1bi
}

i=1,...,γ are linearly indepen-

dent. For this, assume that there exist scalars αs
j such that

0 =
γ

∑
j=1

α
0
j b j +

p1

∑
j=1

α
1
j Nb j + · · ·+

pr−1

∑
j=1

α
r−1
j Nr−1b j, (2.9)

where ps =max{ j : t j > s}= dimNsW,s= 1, . . . ,r−1 (note that ps≥ 1, since Nr−1b1 6= 0).

Note that since V =W ⊕NW ⊕·· ·⊕Nr−1W , for any vector x ∈V , PW (Nx) = 0. There-

fore, if we apply PW on both sides of (2.9), we obtain

γ

∑
j=1

α
0
j PW b j = 0.

Since {PW bi : i = 1, . . . ,γ} are linearly independent, we have α0
j = 0, j = 1, . . . ,γ . Hence,

if we now apply PNW to (2.9), we have as before that

p1

∑
j=1

α
1
j PNW Nb j = 0.

Using the conmutation property of the projection, (2.7), we have

p1

∑
j=1

α
1
j NPW b j = 0.
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In matrix notation, this is

[α1
1 . . .α

1
p1
]Θp1


Nw1

...

Nwp1

= 0.

Note that by definition of p1, Nw1, . . . ,Nwp1 span NW , and since the dimension of NW is

exactly p1, Nw1, . . . ,Nwp1 are linearly independent vectors. Therefore [α1
1 . . .α

1
p1
]Θp1 =

0. Since Θ is perfect, [α1
1 . . .α

1
p1
] = [0 . . .0]. Iterating the above argument, the Theorem

follows.

Proof of Theorem 2.3.11 .

We will prove the case when the minimal polynomial has only two factors. The general

case follows by induction.

That is, let T : V → V be a linear transformation with characteristic polynomial of

the form χT (x) = (x−λ1)
h1(x−λ2)

h2 . Thus, V = V1⊕V2 where V1,V2 are the subspaces

associated to each factor, and T = T1⊕T2. In addition, W =W1⊕W2 where W1,W2 are the

subspaces of the cyclic vectors from the cyclic decomposition of N1 with respect of V1 and

of N2 with respect to V2.

Let {bi : i ∈Ω} be vectors in V that satisfy the hypothesis of the Theorem. For each bi

we write bi = ci +di with ci ∈V1 and di ∈V2, i ∈Ω. Let ri,mi and ni be the degrees of the

annihilators qT
bi

, qT1
ci and qT2

di
, respectively. By hypothesis {PW1ci : i∈Ω} and {PW2di : i∈Ω}

are complete in W1 and W2, respectively. Hence, applying Theorem 2.3.15 to N1 and N2 we

conclude that
⋃

i∈Ω{T
j

1 ci, j = 0,1, . . .mi− 1} is complete in V1, and that
⋃

i∈Ω{T
j

2 di, j =

0,1, . . .ni−1} is complete in V2.

We will now need a Lemma: (Recall that qT
b is the T -annihilator of the vector b)

Lemma 2.3.16. Let T be as above, and V = V1⊕V2. Given b ∈ V , b = c+ d then qT
b =

qT1
c qT2

d where qT1
c and qT2

d are coprime. Further let u ∈V2, u = qT1
c (T2)d. Then qT2

u coincides
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with qT2
d .

Proof. The fact that qT
b = qT1

c qT2
d with coprime qT1

c and qT2
d is a consequence of the decom-

position of T .

Now, by definition of qT2
u we have that

0 = qT2
u (T2)(u) = qT2

u (T2)(qT1
c (T2)d) = (qT2

u qT1
c )(T2)d.

Thus, qT2
d has to divide qT2

u ·qT1
c , but since qT2

d is coprime with qT1
c , we conclude that

qT2
d divides qT2

u . (2.10)

On the other hand

0 = qT2
d (T2)(d) = qT1

c (T2)(q
T2
d (T2)d) = (qT1

c qT2
d )(T2)d

= (qT2
d qT1

c )(T2)d = qT2
d (T2)(qT1

c (T2)d) = qT2
d (T2)(u),

and therefore

qT2
u divides qT2

d . (2.11)

From (2.10) and (2.11) we obtain qT2
d = qT2

u .

Now, we continue with the proof of the Theorem. Recall ri,mi and ni be the degrees of

qT
bi

, qT1
ci and qT2

di
, respectively, and let li = ri−1. Also note that by Lemma 2.3.16 ri =mi+ni.

In order to prove that the set {bi,T bi, . . . ,T libi : i ∈ Ω} is complete in V, we will replace

this set with a new one in such a way that the dimension of the span does not change.

For each i∈Ω, let ui = qT1
ci (T2)di. Now, for a fixed i we leave the vectors bi,T bi, . . . ,T mi−1bi

unchanged, but for s = 0, . . . ,ni−1 we replace the vectors T mi+sbi by the vectors T mi+sbi+

βs(T )bi where βs is the polynomial βs(x) = xsqT1
ci (x)− xmi+s.
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Note that span{bi,T bi, . . . ,T mi+sbi} remains unchanged, since βs(T )bi is a linear com-

bination of the vectors {T sbi, . . . ,T mi+s−1bi}.

Now we observe that:

T mi+sbi +βs(T )bi =
[
T mi+s

1 ci +βs(T1)ci
]
+
[
T mi+s

2 di +βs(T2)di
]
.

The first term of the sum on the right hand side of the equation above is in V1 and the second

in V2. By definition of βs we have:

T mi+s
1 ci +βs(T1)ci = T mi+s

1 ci +T s
1 qT1

ci
(T1)ci−T mi+s

1 ci = T s
1 qT1

ci
(T1)ci = 0,

and

T mi+s
2 di +βs(T2)di = T s

2 qT1
ci
(T2)(di) = T s

2 ui.

Thus, for each i ∈Ω, the vectors {bi, . . . ,T libi} have been replaced by the vectors

{bi, . . . ,T mi−1bi,ui, . . . ,T ni−1ui}

and both sets have the same span.

To finish the proof we only need to show that the new system is complete in V .

Using Lemma 2.3.16, we have that for each i ∈Ω,

dim(span{ui, . . . ,T
ni−1

2 ui}) = dim(span{di, . . . ,T
ni−1

2 di}) = ni,

and since each T s
2 ui ∈ span{di, . . . ,T

ni−1
2 di} we conclude that

span{ui, . . . ,T
ni−1

2 ui : i ∈Ω}= span{di, . . . ,T
ni−1

2 di : i ∈Ω}. (2.12)
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Now assume that x∈V with x= x1+x2, xi ∈Vi. Since by hypothesis span{ci, . . . ,T
mi−1

1 ci :

i ∈Ω} is complete in V1, we can write

x1 = ∑
i∈Ω

mi−1

∑
j=0

α
i
jT

j
1 ci, (2.13)

for same scalars α i
j, and therefore,

∑
i∈Ω

mi−1

∑
j=0

α
i
jT

jbi = x1 + ∑
i∈Ω

mi−1

∑
j=0

α
i
jT

j
2 di = x1 + x̃2, (2.14)

since ∑i∈Ω ∑
mi−1
j=0 α i

jT
j

2 di = x̃2 is in V2 by the invariance of V2 by T . Since by hypothesis

{T j
2 di : i∈Ω, j = 1, . . . ,ni−1} is complete in V2, by equation (2.12), {T j

2 ui : i∈Ω, j =

1, . . . ,ni−1} is also complete in V2, and therefore there exist scalars β i
j,

x2− x̃2 = ∑
i∈Ω

ni−1

∑
j=0

β
i
jT

j
2 ui,

and so

x = ∑
i∈Ω

mi−1

∑
j=0

α
i
jT

jbi + ∑
i∈Ω

ni−1

∑
j=0

β
i
jT

j
2 ui,

which completes the proof of Theorem 2.3.11 for the case of two coprime factors in the

minimal polynomial of J. The general case of more factors follows by induction adapting

the previous argument.

Theorem 2.3.6 and Theorem 2.3.9 and its corollaries are easy consequences of Theorem

2.3.11.

Proof of Theorem 2.3.9. Note that if {JL+1bi : i ∈ Ω} ⊆ span(E), then {JL+2bi : i ∈ Ω} ⊆

span(E) as well. Continuing in this way, it follows that for each i∈Ω, span(E) contains all

the powers J jbi for any j. Therefore, using Theorem 2.3.6, it follows that span(E) contains

a frame of Cd , so that, span(E) =Cd and E is a frame of Cd. The converse is obvious.
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The proof of Theorem 2.3.5 uses a similar argument.

Although Theorem 2.3.2 is a direct consequence of Theorem 2.3.6, we will give a

simpler proof for this case.

Proof of Theorem 2.3.2.

Let {Pj(bi) : i∈Ω} form a frame of Pj(Cd), for each j = 1, . . . ,n. Since we are working

with finite dimensional spaces, to show that {D jbi : i ∈ Ω, j = 0, . . . , li} is a frame of Cd ,

all we need to show is that it is complete in Cd . Let x be any vector in Cd , then x =
n
∑
j=1

Pjx.

Assume that 〈Dlbi,x〉 = 0 for all i ∈ Ω and l = 0, . . . , li. Since li = ri− 1, where ri is the

degree of the D-annihilator of bi, we have that 〈Dlbi,x〉 = 0 for all i ∈ Ω and l = 0, . . . ,d.

In particular, since n≤ d, 〈Dlbi,x〉= 0 for all i ∈Ω and l = 0, . . . ,n. Then

〈Dlbi,x〉=
n

∑
j=1
〈Dlbi,Pjx〉=

n

∑
j=1

λ
l
j〈Pjbi,Pjx〉= 0, (2.15)

for all i ∈Ω and l = 0, . . . ,n. Let zi be the vector
(
〈Pjbi,Pjx〉

)
∈Cn. Then for each i, (2.15)

can be written in matrix form as V zi = 0 where V is the n×n Vandermonde matrix

V =



1 1 · · · 1

λ1 λ2 · · · λn

...
... . . . ...

λ
n−1
1 λ

n−1
2 · · · λ n−1

n


, (2.16)

which is invertible since, by assumption, the λ js are distinct. Thus, zi = 0. Hence, for each

j, we have that 〈Pjbi,Pjx〉= 0 for all i ∈Ω. Since {Pj(bi) : i ∈Ω} form a frame of Pj(Cd),

Pjx = 0. Hence, Pjx = 0 for j = 1, . . . ,n and therefore x = 0.

Remark 2.3.17. Given a general linear transformation T : V −→ V , the cyclic decompo-

sition theorem gives the rational form for the matrix of T in some special basis. A natural

question is then if we can obtain a similar result to Theorem 2.3.11 for this decomposition.
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(Rational form instead of Jordan form). The answer is no. That is, if a set of vectors bi with

i ∈ Ω where Ω is a finite subset of {1, . . . ,d} when projected onto the subspace generated

by the cyclic vectors, is complete in this subspace, this does not necessarily imply that its

iterations T jbi are complete in V . The following example illustrates this fact for a single

cyclic operator.

• Let T be the linear transformation in R3 given as multiplication by the following

matrix M.

M =


0 0 1

1 0 1

0 1 2


The matrix M is in rational form with just one cyclic block. The vector e1 = (1,0,0)

is cyclic for M. However it is easy to see that there exists a vector b =


x1

x2

x3

 in

R3 such that PW (b) = x1 6= 0, (here W is span{e1}), but {b,Mb,M2b} are linearly

dependent, and hence do not span R3. So our proof for the Jordan form uses the fact

that the cyclic components in the Jordan decomposition are nilpotent!

2.4 Infinite Dimensional Case

In this section we consider the dynamical sampling problem in a separable Hilbert

space H , that without any loss of generality can be considered to be `2(N). The evolution

operators that we will consider belong to the following class A of bounded self adjoint

operators:

A = {A ∈B(`2(N)) : A = A∗,and there exists a basis of `2(N) of eigenvectors of A}.
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The notation B(H ) stands for the bounded linear operators on the Hilbert space H . So,

if A∈A there exists an unitary operator B such that A = B∗DB with D = ∑ j λ jPj with pure

spectrum σp(A) = {λ j : j ∈ N} ⊆ R, with sup j|λ j|<+∞ and orthogonal projections {Pj}

such that ∑ j Pj = I and PjPk = 0 for j 6= k. Note that the class A includes all the bounded

self-adjoint compact operators.

Recall that a set {vk} in a Hilbert space H is

• complete, if 〈 f ,vk〉= 0 ∀k =⇒ f = 0,

• minimal if ∀ j,v j 6∈ span{vk}k 6= j,

• a frame if there exist constants C1,C2 > 0 such that for all f ∈ H , A‖ f‖2
H ≤

∑k |〈 f ,vk〉|2 ≤ B‖ f‖2
H , and

• a Riesz basis, if it is a basis which is also a frame.

Remark 2.4.1. Note that by the definition of A , we have that for any f ∈ `2(N) and

l = 0,1, . . .

< f ,Ale j >=< f ,B∗DlBe j >=< B f ,Dlb j > and ‖Al‖= ‖Dl‖.

It follows that FΩ =
{

Alei : i ∈Ω, l = 0, . . . , li
}

is complete, (minimal, frame) if and only

if
{

Dlbi : i ∈Ω, l = 0, . . . , li
}

is complete (minimal, frame).

2.4.1 Completeness

In this section, we characterize the sampling sets Ω⊆N such that a function f ∈ `2(N)

can be recovered from the data

Y = { f (i),A f (i),A2 f (i), . . . ,Ali f (i) : i ∈Ω}

where A ∈A , and 0≤ li ≤ ∞.
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Definition 2.4.2. Given A ∈A , for each set Ω we consider the set of vectors OΩ := {b j =

Be j : j ∈Ω}, where e j is the jth canonical vector of `2(N). For each bi ∈OΩ we define ri to

be the degree of the D-annihilator of bi if such an annihilator exists, or we set ri = ∞. Since

B is unitary, this number ri is also the degree of the A-annihilator of ei. for the remainder of

this paper we let li = ri−1. Also, for convenience of notation, let Ω∞ := {i ∈Ω : li = ∞}.

Theorem 2.4.3. Let A ∈A and Ω⊆ N. Then the set FΩ =
{

Alei : i ∈Ω, l = 0, . . . , li
}

is

complete in `2(N) if and only if for each j, the set
{

Pj(bi) : i ∈Ω
}

is complete on the range

E j of Pj.

Remarks 2.4.4.

i) Note that Theorem 2.4.3 implies that |Ω| ≥ sup j dim(E j). Thus, if some eigen-space has

infinite dimension or if sup j dim(E j) = +∞, then it is necessary to have infinitely many

“spacial” sampling points in order to recover f . In particular if Ω is finite, a necessary

condition on A in order for FΩ to be complete is that for all j, dim(E j) < M < +∞ for

some positive constant M.

ii) Theorem 2.4.3 can be extended to a larger class of operators. For example, for the

class of operators Ã in B(`2(N)) in which A ∈ Ã if A = B−1DB where with D = ∑ j λ jPj

with pure spectrum σp(A) = {λ j : j ∈ N} ⊆ C and orthogonal projections {Pj} such that

∑ j Pj = I and PjPk = 0 for j 6= k.

Proof of Theorem 2.4.3.

By Remark 2.4.1, to prove the theorem we only need to show that
{

Dlbi : i ∈ Ω, l =

0, . . . , li
}

is complete if and only if for each j, the set
{

Pj(bi) : i ∈ Ω
}

is complete in the

range E j of Pj.

Assume that
{

Dlbi : i ∈ Ω, l = 0, . . . , li
}

is complete. For a fixed j, let g ∈ E j and

assume that < g,Pjbi >= 0 for all i ∈Ω. Then for any l = 0,1, . . . , li, we have

λ
l
j < g,Pjbi >=< g,λ l

jPjbi >=< g,PjDlbi >=< g,Dlbi >= 0.
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Since
{

Dlbi : i∈Ω, l = 0, . . . , li
}

is complete in `2(N), g= 0. It follows that
{

Pj(bi) : i∈Ω
}

is complete on the range E j of Pj.

Now assume that
{

Pj(bi) : i∈Ω
}

is complete in the range E j of Pj. Let S = span
{

Dlbi :

i ∈ Ω, l = 0, . . . , li
}

. Clearly DS ⊆ S. Thus S is invariant for D. Since D is self-adjoint,

S⊥ is also invariant for D. It follows that the orthogonal projection PS⊥ commutes with

D. Thus PS⊥ = ∑ j PjPS⊥Pj. Multiplying this last expression by Pk from the right, we get

that PS⊥Pk = PkPS⊥Pk. Multiplying to the left, we get that PkPS⊥ = PkPS⊥Pk. Hence, PS⊥

commutes with Pk for all k. Therefore, for each i ∈Ω, 0 = PjPS⊥(bi) = PS⊥Pj(bi).

So PS⊥ is zero in E j for all j (since {Pj(bi) : i ∈ Ω} is complete in E j). Hence PS⊥ is

zero everywhere which implies that S⊥ is the zero subspace. That is S = `2(N), and FΩ is

complete which finishes the proof of the theorem.

2.4.2 Minimality and bases for the dynamical sampling in infinite dimensional Hilbert

spaces

In this section we will show, that if Ω⊆N is finite, and the set FΩ =
{

Alei : i ∈Ω, l =

0, . . . , li
}

is complete, then it can never be minimal, and hence the set FΩ is never a basis.

In some sense, the set FΩ contains many ”redundant vectors” which prevents it from being

a basis. However, since FΩ is complete, this redundancy may help FΩ to be a frame. We

will discuss this issue in the next section. For this section, we need the celebrated Müntz-

Szász Theorem characterizing the sequences of monomials that are complete in C[0,1] or

C[a,b] [26]:

Theorem 2.4.5 (Müntz-Szász Theorem). Let 0≤ n1 ≤ n2 ≤ . . . be an increasing sequence

of nonnegative integers that goes to +∞. Then

1. {xnk} is complete in C[0,1] if and only if n1 = 0 and
∞

∑
k=2

1/nk = ∞.
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2. If 0 < a < b < ∞, then {xnk} is complete in C[a,b] if and only if
∞

∑
k=2

1/nk = ∞.

We are now ready to state the main results of this section.

Theorem 2.4.6. Let A ∈A and let Ω be a non-empty subset of N. If there exists bi ∈ OΩ

such that ri = ∞, then the set FΩ is not minimal.

As an immediate corollary we get

Theorem 2.4.7. Let A ∈ A and let Ω be a finite subset of N. If FΩ =
{

Alei : i ∈ Ω, l =

0, . . . , li
}

is complete in `2(N), then FΩ is not minimal in `2(N).

Proof. Since FΩ ∈ `2(N), there exists some bi with ri =∞ and then Theorem 2.4.6 applies.

Another immediate corollary is

Theorem 2.4.8. Let A ∈ A and let Ω be a finite subset of N. Then the set FΩ =
{

Alei :

i ∈Ω, l = 0, . . . , li
}

is not a basis for `2(N).

Proof. A basis is a complete set, so the result is a consequence of Theorem 2.4.7.

Remarks 2.4.9.

1. Theorem 2.4.8 remains true for the class of operators A ∈ Ã described in Remark

2.4.4.

2. Theorems 2.4.7 and 2.4.8 do not hold in the case of Ω being an infinite set. A trivial

example is when A = I is the identity matrix and Ω = N. A less trivial example is

when B∈ `2(Z) is the symmetric bi-infinite matrix with entries Bii = 1, Bi(i+1) = 1/4

and Bi(i+k) = 0 for k ≥ 2. Let Ω = 3Z and Dkk = 2 if k = 3Z, Dkk = 1 if k = 3Z+1,

and Dkk = −1 if k = 3Z+ 2. Then FΩ =
{

Alei : i ∈ Ω, l = 0, . . . ,2
}

is a basis for

`2(Z). In fact FΩ is a Riesz basis of `2(Z). Examples in which the Ω is nonuniform

can be found in [? ].
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Proof of Theorem 2.4.6.

Again, using Remark 2.4.1, we will show that {Dlb : l = 0,1, . . .} is not minimal. We

first assume that D =∑ j λ jPj is non-negative, i.e., λ j ≥ 0 for all j ∈N. Since A∈ B(`2(N)),

we also have that 0≤ λ j ≤ ‖D‖< ∞. Let b ∈ OΩ be such that its D-annihilator has degree

r = ∞ and let nk be any increasing sequence of nonnegative integers such that
∞

∑
k=2

1/nk = ∞.

Fix f ∈ span{Dlb : l = 0,1, . . .}. Then for any ε > 0, there exists a polynomial p such

that ‖ f − p(D)b‖2 ≤ ε/2. Since the polynomial p is a continuous function on C[0,‖D‖],

(by the Müntz-Szász Theorem) there exists a polynomial g ∈ span{1,xnk : k ∈N} such that

sup
{
|p(x)−g(x)| : x ∈ [0,‖D‖]

}
≤ ε

2‖b‖2
.

Now we note that

‖p(D)b−g(D)b‖2
`2(N) = ∑

j
|p(λ j)−g(λ j)|2|b j|2 ≤ (ε/2)2.

Hence

‖ f −g(D)b‖2 ≤ ‖ f − p(D)b‖2 +‖p(D)b−g(D)b‖2 ≤ ε

Therefore span{b,Dnkb : k∈N}= span{Dlb : l = 0,1, . . .} and we conclude that {Dlb :

l = 0,1, . . .} is not minimal.

If the assumption about the non-negativity of D = ∑ j λ jPj is removed, then by the

previous argument {D2lb : l = 0,1, . . .} is not minimal hence {Dlb : l = 0,1, . . .} is not

minimal either, and the proof is complete.

The following corollary of Theorem 2.4.6 will be needed later.

Corollary 2.4.10. Let b be such that its D-annihilator has degree r = ∞. If there exists

an increasing sequence {nk : k ∈ N} of positive integers such that ∑
∞
k=2

1
nk

=+∞, then the

collection {Dnkb : k ∈ N} is not minimal.
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Proof. Pick a subsequence {nk j} of {nk} such that ∑
∞
j=2

1
nk j

= +∞ and apply the same

argument as in the proof of the theorem.

2.4.3 Frames in infinite dimensional Hilbert spaces

In the previous sections, we have seen that although the set FΩ =
{

Alei : i ∈ Ω, l =

0, . . . , li
}

can be complete for appropriate sets Ω, it cannot form a basis for `2(N) if Ω is a

finite set, in general. The main reason is that FΩ cannot be minimal, which is necessary to

be a basis. On the other hand, the non-minimality is a statement about redundancy. Thus,

although FΩ cannot be a basis, it is possible that FΩ is a frame for sets Ω⊆ N with finite

cardinality. Being a frame is in fact desirable since in this case we can reconstruct any

f ∈ `2(N) in stable way from the data Y = { f (i),A f (i),A2 f (i), . . . ,Ali f (i) : i ∈Ω}.

In this section we will show that, except for some special case of the eigenvalues of A,

if Ω is a finite set, i.e., |Ω|< ∞, then FΩ can never be a frame for `2(N). Thus essentially,

either the eigenvalues of A are nice, as we will make precise below, in which case we can

choose Ω to consist of just one element whose iterations may be a frame, or, the only hope

for FΩ to be a frame for `2(N) is that Ω is infinite in which case it needs to be well-spread

over N.

Theorem 2.4.11. Let A ∈ A and let Ω ⊆ N be a finite subset of N. If FΩ =
{

Alei : i ∈

Ω, l = 0, . . . , li
}

is a frame, with constants C1 and C2, then

inf{‖Alei‖2 : i ∈Ω, l = 0, . . . , li}= 0.

Proof.

If FΩ is a frame, then it is complete. Therefore, since Ω is finite, there exists i0 ∈ Ω
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with li0 =+∞. We have:

+∞

∑
l=0
‖Alei0‖

4 =
+∞

∑
l=0
|< Alei0 ,A

lei0 > |
2 =

+∞

∑
l=0
|< ei0,A

2lei0 > |
2 ≤C2.

As a consequence ‖Alei0‖ goes to zero with l.

Therefore, when |Ω|< ∞, the only possibility for FΩ to be a frame, is that

inf{‖Alei‖2 : i ∈Ω, l = 0, . . . , li}= 0

and

sup{‖Alei‖2 : i ∈Ω, l = 0, . . . , li} ≤C < ∞.

We have the following theorem to establish for which finite sets Ω, FΩ is not a frame for

`2(N).

Theorem 2.4.12. Let A ∈A and let Ω be a finite subset of N. For FΩ =
{

Alei : i ∈Ω, l =

0, . . . , li
}

to be a frame, it is necessary that 1 or −1 are cluster points of σ(A).

Since a compact self-adjoint operator on a Hilbert space either has finitely many eigen-

values or the eigenvalues form a sequence that goes to zero, we have the following corol-

lary:

Corollary 2.4.13. Let A be a compact self-adjoint operator, and Ω⊆N be a finite set. Then

FΩ =
{

Alei : i ∈Ω, l = 0, . . . , li
}

is not a frame.

Remark 2.4.14. Theorems 2.4.11 and 2.4.12 can be generalized to the class A defined in

(ii) of Remark 2.4.4.

Proof of Theorem 2.4.12.

If FΩ is a frame then it is complete in `2(N), then the set Ω∞ := {i ∈ Ω : li = ∞} is

nonempty.
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Using again the completeness of FΩ we see that the set

J = { j ∈ N : Pjbi = 0, ∀i ∈Ω∞},

must be finite. ( For this note that if J is infinite then
⊕

j∈J E j is infinite dimensional and

can not be generated by de finite set of vectors
{

Dlbi : i ∈Ω\Ω+∞, l = 0, . . . , li
}
.

If there exists j ∈ N and i ∈ Ω∞ such that |λ j| ≥ 1 and Pjbi 6= 0 then for x = Pjbi we

have

∑
l
|〈x,Dlbi〉|2 = ∑

l
|λ j|2l‖Pjbi‖4

2 = ∞.

Thus, FΩ is not a frame.

Otherwise, let r := sup
j∈N
{|λ j| : Pjbi 6= 0 for some i ∈Ω∞}.

Since −1 or 1 are not cluster points of σ(A), r < 1. But

‖Dbi‖2 ≤ sup
j∈N
{|λ j| : Pjbi 6= 0}‖bi‖2 ∀i ∈Ω∞,

and therefore we have that ‖Dlbi‖2 ≤ rl‖bi‖2. Now given ε > 0, there exists N such that

∑
i∈Ω∞

∑
l>N
‖Dlbi‖2

2 ≤ ε.

Choose f ∈ `2(N) such that ‖ f‖2 = 1, < f ,Dlbi >= 0 for all i ∈ Ω−Ω∞ and l = 0, . . . , li

and such that < f ,Dlbi >= 0 for all i ∈Ω∞ and l = 0, . . . ,N. Then

∑
i∈Ω

li

∑
l=0
|< f ,Dlbi > |2 ≤ ε = ε‖ f‖2.

Since ε is arbitrary, the last inequality implies that FΩ is not a frame since it cannot have

a positive lower frame bound.

Although Theorem 2.4.12 states that FΩ is not a frame for `2(N), it could be that after

normalization of the vectors in FΩ, the new set ZΩ is a frame for `2(N). It turns out that
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the obstruction is intrinsic. In fact, this case is even worse, since ZΩ is not a frame even if

1 or −1 is (are) a cluster point(s) of σ(A).

Theorem 2.4.15. Let A ∈ A and let Ω ⊆ N be a finite set. Then the unit norm sequence{ Alei
‖Alei‖2

: i ∈Ω, l = 0, . . . , li
}

is not a frame.

Proof. Note that by Remark 2.4.1,
{ Alei
‖Alei‖2

: i ∈ Ω, l = 0, . . . , li
}

is a frame if and only if

ZΩ =
{ Dlbi
‖Dlbi‖2

: i ∈Ω, l = 0, . . . , li
}

is a frame.

Assume that ZΩ is a frame. Since it is norm-bounded (actually unit norm), the Kadison-

Singer/Feichtinger conjectures proved recently [37] applies, and ZΩ is the finite union of

Riesz sequences
N⋃

j=1
R j.

Because ZΩ is complete, there exist some b such that its D-annihilator has degree r =∞,

j ∈ {1, . . . ,N} and an increasing sequence of positive integers {nk} with ∑k≥2
1
nk

= +∞

such that

S =

{
Dnkb
‖Dnkb‖2

: k ∈ N
}
⊆ R j.

The set S is a Riesz sequence, because it is a subset of a Riesz sequence. On the other

hand, S is not minimal by Corollary 2.4.10, which is a contradiction since a Riesz sequence

is always a minimal set.

We will now concentrate on the case when there is a cluster point of σ(A) at 1 or −1,

and we start with the case where Ω consists of a single sampling point, i.e., OΩ = {b}. Let

us denote by rb, the degree of the D-annihilator of b and lb = rb−1 if rb is finite or lb =+∞

otherwise.

Since A ∈ A , A = B∗DB, by Remark 2.4.1 FΩ is a frame of `2(N) if and only if

there exists a vector b = Be j for some j ∈ N that corresponds to the sampling point, and

{Dlb : l = 0,1, . . .} is a frame for `2(N).

For this case, Theorem 2.4.3 implies that if FΩ is a frame of `2(N), then the projection

operators Pj used in the description of the operator A ∈ A must be of rank 1. Moreover,
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the vector b corresponding to the sampling point must have infinite support, otherwise lb

will be finite and FΩ cannot be complete in `2(N). Moreover, for this case in order for FΩ

to be a frame, it is necessary that |λk| < 1 for all k, otherwise, if there exists λ j0 ≥ 1 then

for x = Pj0b (note that by Theorem 2.4.3 Pj0b 6= 0) we would have

∑
n
|〈x,Dnb〉|2 = ∑

n
|λ j0 |

2n‖Pj0b‖4
2 = ∞,

which is a contradiction.

In addition, if FΩ is a frame, then the sequence {λk} cannot have a cluster point a with

|a| < 1. To see this, suppose there is a subsequence λks → a for some a with |a| < 1, and

let W be the ortogonal sum of the eigenspaces associated to the eigenvalues λks . Then W

is invariant for D. Set D1 = D|W , and b̃ = PW b where PW is the orthogonal projection on

W . Then, by Theorem 2.4.12, {D j
1b̃ : j = 0,1, . . .} can not be a frame for W . It follows that

FΩ cannot be a frame for `2(N), since the ortogonal projection of a frame onto a closed

subspace is a frame of the subspace.

Thus the only possibility for FΩ to be a frame of `2(N) is that |λk| → 1. These remarks

allow us to characterize when FΩ is a frame for the situation when |Ω|= 1.

Theorem 2.4.16. Let D = ∑ j λ jPj be such that Pj have rank 1 for all j ∈ N, and let b :=

{b(k)}k∈N ∈ `2(N). Then {Dlb : l = 0,1, . . .} is a frame if and only if

i) |λk|< 1 for all k.

ii) |λk| → 1.

iii) {λk} satisfies Carleson’s condition

inf
n ∏

k 6=n

|λn−λk|
|1− λ̄nλk|

≥ δ . (2.17)

for some δ > 0.
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iv) b(k) = mk
√

1−|λk|2 for some sequence {mk} satisfying 0 <C1 ≤ |mk| ≤C2 < ∞.

This theorem implies the following Corollary:

Corollary 2.4.17. Let A = B∗DB ∈A , and D = ∑ j λ jPj be such that Pj have rank 1 for all

j ∈ N. Then, there exists i0 ∈ N such that FΩ = {Alei0 : l = 0, . . .} is a frame for `2(N), if

and only if {λ j} satisfy the conditions of Theorem 2.4.16 and there exists i0 ∈ N, such that

b = Bei0 satisfies the condition iv of Theorem 2.4.16 .

Theorem 2.4.16 follows from the discussion above and the following two Lemmas

Lemma 2.4.18. Let D be as in Theorem 2.4.16 and assume that |λk| < 1 for all k. Let

b0(k) =
√

1−|λk|2, and assume that b0 ∈ `2(N). Let b ∈ `2(N).

Then, {Dlb : l ∈ N} is a frame for `2(N) if and only if {Dlb0 : l ∈ N} is a frame and

there exist C1 and C2 such that b(k)/b0(k) = mk satisfies 0 <C1 ≤ |mk| ≤C2 < ∞.

Note that by assumption ∑
∞
k=1(1−|λk|2)<+∞ since b0 ∈ `2(N). In particular |λk|→ 1.

Lemma 2.4.19. Let D=∑ j λ jPj be such that |λk|< 1, λk−→ 1 and let b0(k) =
√

1−|λk|2.

Then the following are equivalent:

i)

{b0,Db0,D2b0, . . .} is a frame for `2(N)

ii)

inf
n ∏

k 6=n

|λn−λk|
|1− λ̄nλk|

≥ δ .

for some δ > 0.

In Lemma 2.4.19, the assumption λk−→ 1 can be replaced by λk−→−1 and the lemma

remains true. Its proof, below, is due to J. Antezana [8] and is a consequence of a theorem

by Carleson [28] about interpolating sequences in the Hardy space H2(D) of the unit disk

in C.
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Proof of Lemma 2.4.18.

Let us first prove the sufficiency. Assume that {Dlb0 : l ∈ N} is a frame for `2(N) with

positive frame bounds A, B, and let b ∈ `2(N) such that b(k) = mkb0(k) with 0 < C1 ≤

|mk| ≤C2 < ∞. Let x ∈ `2(N) be an arbitrary vector and define yk = mkxk. Then y ∈ `2(N)

and C1‖x‖2 ≤ ‖y‖ ≤C2‖x‖2. Hence

C2
1A‖x‖2

2 ≤∑
l
|〈y,Dlb0〉|2 = ∑

l
〈x,Dlb〉|2 ≤C2

2B‖x‖2
2,

and therefore {Dlb : l ∈ N} is a frame for `2(N).

Conversely, let b∈ `2(N) and assume that {Dlb : l ∈N} is a frame for `2(N) with frame

bounds A′ and B′. Then for any vector ek of the standard orthonormal basis of `2(N), we

have

A′ ≤
∞

∑
l=0
|< ek,Dlb > |2 = |b(k)|2

1−|λk|2
≤ B′.

Thus
√

A′b0(k) ≤ |b(k)| ≤
√

B′b0(k) for all k. Thus, the sequence {mk} ⊆ C defined by

b(k) = mkb0(k) satisfies
√

A′ ≤ |mk| ≤
√

B′.

Let x ∈ `2(N) be an arbitrary vector and define now yk =
1

mk
xk. Then y ∈ `2(N) and

A′

B′
‖x‖2

2 ≤∑
l
|〈x,Dlb0〉|2 = ∑

l
|〈y,Dlb〉|2 ≤ B′

A′
‖x‖2

2.

and so {Dlb0 : l ∈ N} is a frame for `2(N).

The proof of Lemma 2.4.19 relies on a Theorem by Carleson on interpolating sequences

in the Hardy space H2(D) on the open unit disk D in the complex plane. If H(D) is the

vector space of holomorphic functions on D, H2(D) is defined as

H2(D) =
{

f ∈ H(D) : f (z) =
∞

∑
n=0

anzn for some sequence {an} ∈ `2(N)
}
.

Endowed with the inner product between f = ∑
∞
n=0 anzn and g = ∑

∞
n=0 a′nzn defined by
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〈 f ,g〉= ∑ana′n, H2(D) becomes a Hilbert space isometrically isomorphic to `2(N) via the

isomorphism Φ( f ) = {an}.

Definition 2.4.20. A sequence {λk} in D is an interpolating sequence for H2(D) if for any

sequence {ck} such that ∑k |ck|2(1−|λk|2) < +∞, there exists a function f ∈ H2(D) such

that f (λk) = ck.

Proof of Lemma 2.4.19 .

Let Tk, denote the vector in `2(N) defined by Tk = (1,λk,λ
2
k , . . .), and x∈ `2(N). Then

∞

∑
l=0
|< x,Dlb0 > |2 =

∞

∑
l=0

∣∣ ∞

∑
k=1

xkλ
l
k
√

1−λ
2
k
∣∣2 = ∞

∑
s=1

∞

∑
t=1

< Ts,Tt >

‖Ts‖2‖Tt‖2
xsxt .

Thus, for {Dlb0 : l = 0,1, . . .} to be a frame of `2(N), it is necessary and sufficient that the

Gramian GΛ = {GΛ(s, t)}=
{ <Ts,Tt>
‖Ts‖2‖Tt‖2

}
be a bounded invertible operator on `2(N) (Note

that GΛ is then the frame operator for {Dlb0 : l = 0,1, . . .}).

Equivalently, {Dlb0 : l = 0,1, . . .} is a frame of `2(N) if and only if the sequence {T̃ j =

T j
‖T j‖2

} is a Riesz basic sequence in `2(N), i.e., there exist constants 0 <C1 ≤C2 < ∞ such

that

C1‖c‖2
2 ≤ ‖∑

j
c jT̃ j‖2

2 ≤C2‖c‖2
2 for all c ∈ `2(N).

By the isometric map Φ from `2(N) to H2(D) defined above, {Dlb0 : l = 0,1, . . .} is a frame

of `2(N) is a frame if and only if the sequence {k̃λ j = Φ(T̃ j) is a Riesz basic sequence in

H2(D).

Let kλ j = Φ(T j). It is not difficult to check that for any f ∈ H2(D), 〈 f ,kλ j〉 = f (λ j)

and that {λ j} is an interpolating sequence in H2(D) if and only if GΛ =
(
〈k̃λ j , k̃λ j〉

)
is a

bounded invertible operator on `2(N). By Carleson’ s Theorem [28], this happens if and

only if (2.17) is satisfied.

Frames of the form {Dlbi : i ∈ Ω, l = 0 . . . , li} for the case when |Ω| ≥ 1 or when the

projections Pj have finite rank but possibly greater than or equal to 1 can be easily found by

37



using Theorem 2.4.16. For example, if |Ω| = 2, Pj(`
2(N)) has dimension 1 for j ∈ N, b1,

{λk} satisfies the conditions of Theorem 2.4.16 and b2 is such that b2(k) = mk
√

1−|λk|2

for some sequence {mk} satisfying |mk| ≤C < ∞. To construct frames for the case when

the projections Pj have finite rank but possibly greater than or equal to 1, we note that there

exist orthogonal subspaces W1, . . . ,WN of `2(N) such that operator Di on each Wi either has

finite dimensional range, or satisfies the condition of Theorem 2.4.16.

2.5 Concluding Remarks

In this chapter we have studied the sets of spatial sampling locations Ω that allow us to

reconstruct a function f from the samples of { f (i),A f (i), . . . ,Ali f (i) : i ∈ Ω}. The finite

dimensional case is completely resolved and we find necessary and sufficient conditions on

Ω, li, and A for the stable recovery of f .

For the case where H ≈ `2(N), we restricted ourselves to the subclass A of self-

adjoint diagonalizable operators. Without stability requirements, the sets Ω for which a

reconstruction of f is possible are completely characterized. For the case where Ω is an

infinite set, there are examples for which the stable reconstruction of f is possible as in

[6], and it is not difficult to construct other examples of infinite sets Ω for which stable

reconstruction is possible as well. However, the problem of finding necessary and sufficient

conditions for stable reconstruction is still open.
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Chapter 3

SYSTEM IDENTIFICATION IN DYNAMICAL SAMPLING

3.1 Problem Formulation

In this section, we formulate a special instance of system identification problem in the

infinite dimensional setting. Let x ∈ `2(Z) be an unknown initial spatial signal and the

evolution operator A be given by an unknown convolution filter a ∈ `1(Z) such that Ax =

a∗x. At time t = n∈N, the signal x evolves to be xn = Anx = an ∗x, where an = a∗a · · ·∗a.

We call this evolutionary system spatially invariant. Given the spatiotemporal samples with

both x and A unknown, we would like to recover as much information about them as we

can under the given various priors. Here we first study the case of uniform subsampling.

Without loss of generality, let a positive odd integer m (m > 1) be the uniform subsampling

factor. At time level t = l, we uniformly undersample the evolving state Alx and get the

spatiotemporal data

yl = (al ∗ x)(mZ), (3.1)

which is a sequence in `2(Z). It is obvious that at any single time level t = l, we can

not determine the state Alx from the measurement yl. The problem we consider can be

summarized as:

Problem 3.1.1. Under what conditions on a,m,N and x, can a and x be recovered from the

spatiotemporal samples {yl : l = 0, · · · ,N−1}, or equivalently, from the set of measurement

sequences {x(mZ),(a∗ x)(mZ), · · · ,(aN−1 ∗ x)(mZ)}?
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3.1.1 Previous work

In [7], Aldroubi and Krishtal consider the recovery of an unknown d×d matrix B and

an unknown initial state x ∈ `2(Zd) from coarse spatial samples of its successive states

{Bkx,k = 0,1, · · ·}. Given an initial sampling set Ω ⊆ Zd = {1,2, · · · ,d}, they employ

techniques related to Krylov subspace methods to show how large li should be to recover all

the eigenvalues of B that can possibly be recovered from spatiotemporal samples {Bkx(i) :

i ∈Ω,k = 0,1, · · · , li−1}. Our setup is very similar to the special case of regular invariant

dynamical sampling problem in [7]. In this special case, they employ a generalization of

the well known Prony method that uses these regular undersampled spatiotemporal data

first for the recovery of the filter a. Then by using techniques developed in [6], they show

how to recover the initial state from these spatiotemporal samples. In this paper, we will

address the infinite dimensional analog of this special case and provide more algorithms.

In [40], Peter and Plonka use a generalized Prony method to reconstruct the sparse sums

of the eigenfunctions of some known linear operators. Our generalization of Prony method

shares some similar spirits with it, but deals with a fundamentally different problem. In

Sparse Fourier Transformation, see [22, 33, 34], the idea is to uniformly undersample the

fixed signal with different factors so that one can group subsets of Fourier space together

into a small number of bins to isolate frequencies, then take an Aliasing-Based Search by

Chinese Remainder Theorem so that one can recover the coefficients and the frequencies.

In our case, intuitively, one can think of recovering of the shape of an evolving wave by

observing the amplitude of its aliasing version at fixed coarse locations over a long period

of time as opposed to acquiring all of the amplitudes at once, then by the given priors, one

can achieve the perfect reconstructions. Other similar work include the the Slepian-Wolf

distributed source coding problem [42] and the distributed sampling problem in [30]. Our

problem, however, is very different from the above in the nature of the processes we study.

Distributed sampling problem typically deals with two signals correlated by a transmission

channel. We, on the other hand, can observe an evolution process at several instances and
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over longer periods of time.

3.1.2 Notations and terminologies

In the following contents of chapter 3, we use standard notations. By N, we denote the

set of all positive integers. The linear space of all column vectors with M complex com-

ponents is denoted by CM. The linear space of all complex M×N matrices is denoted by

CM×N . For a matrix AM,N = (ai j)∈CM×N , its transpose is denoted by AT
M,N , its conjugate-

transpose by A∗M,N , and its Moore-Penrose pseudoinverse by A+
M,N . A square matrix AM,M

is abbreviated to AM. Its infinity norm is defined by

||AM||∞ = max
1≤i≤M

(
M

∑
j=1
|ai j|).

For a vector z = (zi) ∈ CM, the M×M diagonal matrix built from z is denoted by diag(z).

We define the infinity norm ||z||∞ = max
i=1,··· ,M

|zi|. It is easy to see that

||AM||∞ = max
z∈CM ,||z||∞=1

||AMz||∞.

Further we use the known submatrix notation coincides with MATLAB. For example,

AM,M+1(1 : M,2 : M+1) is the submatrix of AM,M+1 obtained by extracting rows 1 through

M and columns 2 through M+1, and AM,M+1(1 : M,M+1) means the last column vector

of AM,M+1.

Definition 3.1.2. The minimal annihilating polynomial of a square matrix AM is pAM [z], if

it is the monic polynomial of smallest degree among all the monic polynomials p such that

p(AM) = 0. We will denote the degree of pAM [z] by deg(pAM).

Let the monic polynomial p[z] =
M−1
∑

k=0
pkzk+zM, the companion matrix of p[z] is defined
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by

Cp[z] =



0 0 · · · 0 −p0

1 0 · · · 0 −p1

0 1 · · · 0 −p2

...
... . . . ...

...

0 0 · · · 1 −pM−1


.

Definition 3.1.3. Let w1,w2, · · · ,wn be n distinct complex numbers, denote w= [w1, · · · ,wn]
T ,

the n×N Vandermonde matrix generated by w is defined by

Vn,N(w) =



1 w1 · · · wN−1
1

1 w2 · · · wN−1
2

...
... . . . ...

1 wn · · · wN−1
n


. (3.2)

Definition 3.1.4. For a sequence c = (cn)n∈Z ∈ `1(Z) or `2(Z), we define its Fourier trans-

formation to be the function on the Torus T= [0,1)

ĉ(ξ ) = ∑
n∈Z

cne−2πinξ ,ξ ∈ T.

3.2 Contribution and Organization

The remainder of the this chapter is organized as follows: In section 3.3, we discuss

the noise free case. From a theoretical aspect, we show that we can reconstruct a “typi-

cal low pass filter” a and the initial signal x from the dynamical spatiotemporal samples

{yl}N−1
l=0 almost surely, provided N ≥ 2m. For the case when both a and x are of finite

impulse response and an upper bound of their support is known, we propose a Generalized

Prony Method algorithm to recover the Fourier spectrum of a. In section 3.4, we provide

a perturbation analysis of this algorithm. The estimation results are formulated in the rigid

`∞ norm and give us an idea of how the performance depends on the system parameters
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a,x and m. In section 3.5, we do several numerical experiments to verify some estimation

results. In section 3.6, we propose several other algorithms such as Generalized Matrix

Pencil method, Generalized ESPRIT Method and Cadzow Denoising methods to improve

the effectiveness and robustness of recovery. The comparison between algorithms is illus-

trated by a numerical example in section 3.7. Finally, we summarize the work in section

3.8.

3.3 Noise-free Recovery

We consider the recovery of a frequently encountered case in applications when the

filter a ∈ `1(Z) is a “typical low pass filter” so that â(ξ ) is real, symmetric and strictly

decreasing on [0, 1
2 ]. An example of such a typical low pass filter is shown in Figure 1. The

symmetry reflects the fact that there is often no preferential direction for physical kernels

and monotonicity is a reflection of energy dissipation. Without loss of generality, we also
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Figure 3.1: A Typical Low Pass Filter

assume a is a normalized filter, i.e., |â(ξ )| ≤ 1, â(0) = 1. In this section, we assume the

spatiotemporal data yl = (al ∗ x)(mZ) is exact. Define the downsampling operator Sm :

`2(Z)→ `2(Z) by

(Smx)(k) = x(mk),k ∈ Z,
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then yl = Sm(al ∗ x). Due to the Poisson Summation formula and the convolution theorem,

we have the Lemma below for the downsampling operator.

Lemma 3.3.1. The Fourier transform of each measurement sequence yl = Sm(al ∗ x) at

ξ ∈ T is

ŷl(ξ ) =
1
m

m−1

∑
i=0

âl(
ξ + i

m
)x̂(

ξ + i
m

). (3.3)

Let N be an integer satisfying N ≥ 2m, we define the (N−m)×1 column vector

ht(ξ ) = [ŷt(ξ ), ŷt+1(ξ ), · · · , ŷN−m+t−1(ξ )]
T , (3.4)

and build the Hankel matrices

Hξ

N−m,m(0) =
[
h0(ξ ),h1(ξ ), · · · ,hm−1(ξ )

]
, (3.5)

Hξ

N−m,m(1) =
[
h1(ξ ),h1(ξ ), · · · ,hm(ξ )

]
.

For ξ ∈ T, we introduce the notations x(ξ ) = [x̂( ξ

m), · · · , x̂(
ξ+m−1

m )]T and w(ξ ) =

[â( ξ

m), · · · , â(
ξ+m−1

m )]T .

Proposition 3.3.2. Let N be an integer satisfying N ≥ 2m.

1. Then the rectangular Hankel matrices can be factorized in the following form:

mHξ

N−m,m(s) = VT
m,N−m(w(ξ ))diag(x(ξ ))diag(w(ξ ))sVm(w(ξ )), (3.6)

where s = 0,1. The Vandermonde matrix Vm,N−m(w(ξ )) and Vm(w(ξ )) are given in

the way as indicated in Definition 3.2.

2. Assume the entries of x(ξ ) are all nonzero. The rank of the Hankel matrix Hξ

N−m,m(0)
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can be summarized as follows:

Rank Hξ

N−m,m(0) =


m if ξ 6= 0 or 1

2 ,

m+1
2 otherwise.

3. Assume the entries of x(ξ ) are all nonzero. For ξ 6= 0, 1
2 , the vector defined by

q(ξ ) = [q0(ξ ), · · · ,qm−1(ξ )]
T

is the unique solution of the linear system

Hξ

N−m,m(0)q(ξ ) =−hm(ξ ) (3.7)

if and only if the polynomial

qξ [z] =
m−1

∑
k=0

qk(ξ )zk + zm (3.8)

with coefficients given by q(ξ ) is the minimal annihilating polynomial of the diagonal

matrix diag(w(ξ )). In other words, the polynomial qξ [z] has all â(ξ+i
m ) ∈ R (i =

0, · · · ,m−1) as roots. Moreover, if p[z] is a monic polynomial of degree m, then

Hξ

N−m,m(0)C
p[z] = Hξ

N−m,m(1) (3.9)

if and only if p[z] is the minimal annihilating polynomial of diag(w(ξ )).

Proof. (1) By Lemma 3.3.1, for t = 0, · · · ,m−1, we have the identity:

mht(ξ ) = VT
m,N−m(w(ξ ))diag(x(ξ ))Vm(w(ξ ))(:, t +1).
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Hence the first identity follows by the definition of Hξ

N−m,m(0). Notice that for t ≥ 1,

mht(ξ ) = VT
m,N−m(w(ξ ))diag(x(ξ ))diag(w(ξ ))Vm(w(ξ ))(:, t),

the second identity follows similarly.

(2) By the symmetric and monotonicity condition of â on T, we have

Rank Vm(w(ξ )) =


m if ξ 6= 0 or 1

2 ,

m+1
2 otherwise.

(3.10)

Since N ≥ 2m, Rank Vm(w(ξ )) = Rank VT
m,N−m(w(ξ )). By our assumptions, diag(x(ξ ))

is invertible. The rank of Hankel matrix Hξ

N−m,m(0) can be computed by its factorization

results in (1).

(3) If ξ 6= 0 or 1
2 , then the diagonal matrix diag(w(ξ )) has m distinct eigenvalues consist

of {â(ξ+i
m ) : i = 0, · · · ,m− 1}. The minimal annihilating polynomial of diag(w(ξ )) is of

degree m. Suppose qξ [z] =
m−1
∑

k=0
qk(ξ )zk + zm is the minimal annihilating polynomial of

diag(w(ξ )), qξ [diag(w(ξ ))] = 0. In other words,

m−1

∑
k=0

qk(ξ )diag(w(ξ ))k =−diag(w(ξ ))m.

Then

Hξ

N−m,m(0)q(ξ ) =
m−1

∑
k=0

qk(ξ )hk(ξ )

= VT
m,N−m(w(ξ ))(

m−1

∑
k=0

qk(ξ )diag(w(ξ ))k)x(ξ )

=−VT
m,N−m(w(ξ ))diag(w(ξ ))mx(ξ )

=−hm(ξ ).

(3.11)
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Conversely, if q(ξ ) is the solution of linear system (3.7), let the monic polynomial

given by q(ξ ) be qξ [z], then by the computation process of (3.11), we have

VT
m,N−m(w(ξ ))qξ [diag(w(ξ ))]x(ξ ) = 0.

Since VT
m,N−m(w(ξ )) is full column rank, qξ [diag(w(ξ ))]x(ξ ) = 0. Since qξ [diag(w(ξ ))]

is diagonal and x(ξ ) has no zero entries, we know qξ [z] is a monic annihilating polynomial

of diag(w(ξ )). The minimality is followed by counting its degree. If p[z] is a monic

annihilating polynomial of diag(w(ξ )), by computations, it is easy to show the identity

(3.9) is an equivalent formulation with the identity (3.7).

Corollary 3.3.3. In the case of ξ = 0 or 1
2 , if diag(x(ξ )) is invertible, then the coefficient

vector of the minimal annihilating polynomial of diag(w(ξ )) c(ξ ) ∈ Rm+1
2 is the unique

solution of the following linear system:

Hξ

N−m,m+1
2
(0)c(ξ ) =−h m+1

2
(ξ ), (3.12)

where Hξ

N−m,m+1
2
(0) =

[
h0(ξ ), · · · ,h m−1

2
(ξ )
]
.

Let µ denote the Lebesgue measure on T, and X be a subclass of `2(Z) defined by

X = {x ∈ `2(Z) : µ({ξ ∈ T : x̂(ξ ) = 0}) = 0}.

Clearly, X is a dense class of `2(Z) under the norm topology. In noise free scenario,we

show that we can recover a and x provided that our initial state x ∈ X .

Theorem 3.3.4. Let x∈ X be the initial state and the evolution operator A be a convolution

operator given by a ∈ `1(Z) so that â(ξ ) is real, symmetric, and strictly decreasing on

[0, 1
2 ]. Then a and x can be recovered from the set of measurement sequences {yl = (al ∗

x)(mZ) : l = 0, · · · ,N−1} defined in (3.1) when N ≥ 2m.
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Proof. Since Fourier transformation is an isometric isomorphism from `2(Z) to L2(T), we

can look at this recovery problem on the Fourier domain equivalently. We are going to

show that the regular subsampled data {yl}N−1
l=0 contains enough information to recover the

Fourier spectrum of a on T up to a measure zero set. By our assumptions of x, there exists

a measurable subset E0 of T with µ(E0) = 1, so that diag(x(ξ )) is an invertible matrix for

ξ ∈ E0. Let E = E0−{0, 1
2}, if ξ ∈ E, by (3) of Proposition 3.3.2, we can recover the

minimal annihilating polynomial of diag(w(ξ )). Now to recover the diagonal entries of

diag(w(ξ )), it amounts to finding the roots of this minimal annihilating polynomial and

ordering them according to the monotonicity and symmetric condition on â. In summary,

for each ξ ∈ E, we can uniquely determine {â(ξ+i
m ) : i = 0, · · · ,m−1}. Note µ(E) = 1, and

hence we can recover the Fourier spectrum of a up to a measure zero set. The conclusion

is followed by applying the inverse Fourier transformation on â(ξ ). Once a is recovered,

we can recover x from the spatiotemporal samples {yl}m−1
l=0 using techniques developed in

[6].

Theorem 3.3.4 addresses the infinite dimensional analog of Theorem 4.1 in [7]. If we

don’t know anything about a in advance, with minor modifications of the above proof, one

can show the recovery of the range of â on a measurable subset of T, where the measure of

this subset is 1.

Definition 3.3.5. Let a = (a(n))n∈Z, the support set of a is defined by Supp(a) = {k ∈ Z :

a(k) 6= 0}. If Supp(a) is a finite set, a is said to be of finite impulse response.

In particular, if x is of finite impulse response, then x ∈ X . Now if both x and a are

of finite impulse response, and we know an upper bound r ∈ N such that Supp(a) and

Supp(x) are contained in {−r,−r+1, · · · ,r}, then we can compute the value of the Fourier

transformation of {yl}N−1
l=0 at any ξ ∈ T. From the proof of Theorem 3.3.4, we can give

an algorithm similar to the classical Prony method to recover {â(ξ+i
m ) : i = 0, · · · ,m− 1}

almost surely, given ξ chosen uniformly from T. It is summarized in Algorithm 3.3.1.
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Algorithm 3.3.1 Generalized Prony Method

Require: N ≥ 2m, r ∈ N, {yl}N−1
l=0 , ξ (6= 0, 1

2) ∈ T.
1: Compute the Fourier transformation of the measurement sequences {yl}N−1

l=0 and build

the Hankel matrix Hξ

N−m,m(0) and the vector hm(ξ ).
2: Compute the solution of the overdetermined linear system (3.7):

Hξ

N−m,m(0)q(ξ ) =−hm(ξ ).

Form the polynomial qξ [z] =
m−1
∑

k=0
qk(ξ )zk + zm and find its roots, this can be done by

solving the standard eigenvalue problem of its companion matrix.
3: Order the roots by the monotonicity and symmetric condition of â to get {â(ξ+i

m ) : i =
0, · · · ,m−1}.

Ensure: {â(ξ+i
m ) : i = 0, · · · ,m−1}.

Corollary 3.3.6. In addition to the assumptions of Theorem 3.3.4, if both a and x are of

finite impulse response with support contained in {−r,−r+1, · · · ,r} for some r ∈N, then it

is enough to determine a and x after we recover {â(ηi) : i = 1, · · · ,r} at r distinct locations

by Algorithm 3.3.1.

Proof. Under these assumptions, we know

â(ξ ) = a(0)+
r

∑
k=1

a(k)cos(2πkξ ). (3.13)

Suppose {â(ηi) : i = 1, · · · ,r,ηi 6= η j if i 6= j} are recovered, we set up the following linear

equation



1 cos(2πη1) · · · cos(2rπη1)

1 cos(2πη2) · · · cos(2rπη2)

...
... · · · ...

1 cos(2πηr) · · · cos(2rπηr)





a(0)

a(1)
...

a(r)


=



â(η1)

â(η2)

...

â(ηr)


. (3.14)

Note that {1,cos(2πη), · · · ,cos(2rπη)} is a Chebyshev system on [0,1](see [46]), and
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hence (3.14) has a unique solution. Then we can recover x by solving the linear system

VT
m,N−m(w(ξ ))x(ξ ) = h0(ξ )

for finitely many ξ s, which finishes the proof.

3.4 Perturbation Analysis

In previous sections, we have shown that if we are able to compute the spectral data

{ŷl(ξ )}N−1
l=0 at ξ , then we can recover the Fourier spectrum {â(ξ+i

m ) : i = 0, · · · ,m−1} by

Algorithm 3.3.1. However, we assume the spectral data are noise free. A critical issue still

remains. We need to analyze the accuracy of the solution achieved by Algorithm 3.3.1 in

the presence of noise. Mathematically speaking, assume the measurements are given by

{ỹl}N−1
l=0 compared to (3.1) so that ||ŷl(ξ )− ̂̃yl(ξ )||∞ ≤ εl for all ξ ∈T. Given an estimation

for ε = maxl|εl|, how large can the error be in the worst case for the output parameters of

Algorithm 3.3.1 in terms of ε , and the system parameters a,x and m. Most importantly,

we need to understand analytically what kind of effects that the subsampling factor m will

impose on the performance of the Algorithm 3.3.1.

In this section, for simplicity, we choose N = 2m to meet the minimal requirement.

In this case, the Hankel matrix Hξ

N−m,m(0) is a square matrix and the vectors ht(ξ ) are

of length m. We denote them by two new notations: Hm(ξ ) and bt(ξ ). Our perturbation

analysis will consist of two steps. Suppose our measurements are perturbed from {yl}2m−1
l=0

to {ỹl}2m−1
l=0 . For any ξ , we firstly measure the perturbation of q(ξ ) in terms of `∞ norm.

Secondly we measure the perturbation of the roots. It is well known that the roots of a poly-

nomial are continuously dependent on the small change of its coefficients, see Proposition

3.4.2. Hence, for a small perturbation, although the roots of the perturbed polynomial q̃ξ [z]

may not be real, we can order them according to their modulus and have a one to one cor-

respondence with the roots of qξ [z]. Before presenting our main results in this section, let
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us introduce some useful notations and terminologies.

Definition 3.4.1. Let ξ ∈ T−{0, 1
2}, consider the set {â(ξ+i

m ) : i = 0, · · · ,m−1} that con-

sists of m distinct nodes.

1. For 0≤ k≤m−1, the separation between â(ξ+k
m ) with other m−1 nodes is measured

by

δk(ξ ) =
1

∏
j 6=k

0≤ j≤m−1

|â(ξ+ j
m )− â(ξ+k

m )|
.

2. For 0 ≤ k ≤ m, the k-th elementary symmetric function generated by the m nodes is

denoted by

σk(ξ ) =


1 if k=0,

∑
0≤ j1<···< jk≤m−1

â(ξ+ j1
m )â(ξ+ j2

m ) · · · â(ξ+ jk
m ) otherwise.

(3.15)

For 0 ≤ k, i ≤ m− 1, the k-th elementary symmetric function generated by m− 1

nodes with â(ξ+i
m ) missing is denoted by σ

(i)
k (ξ ).

The following Proposition measures the perturbation of the polynomial roots in terms

of the perturbation of its coefficients and is the key to our perturbation analysis.

Proposition 3.4.2 (see Proposition V.1 in [9]). Let zk be a root of multiplicity Mk ∈ N+

of the r-th order polynomial p[z]. For all ε > 0, let pε [z] = p[z]+ ε∆p[z], where ∆p[z] is a

polynomial of order lower than r. Suppose that ∆p[zk] 6= 0. Then there exists a positive ε0

such that for all ε < ε0 there are exactly Mk roots of pε [z], denoted {zk,m(ε)}m∈{0,··· ,Mk−1},

which admit the first-order fractional expansion

zk,m(ε) = zk + ε
1

Mk ∆zke2πi m
Mk +O(ε

2
Mk ), (3.16)

where ∆zk is an arbitrary Mk-th root of the complex number
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(∆zk)
Mk =− ∆p[zk]

1
Mk! p(Mk)[zk]

. (3.17)

Proposition 3.4.3. Let the perturbed measurements {ỹl}2m−1
l=0 be given with an error satis-

fying || ̂̃yl(ξ )− ŷl(ξ )||∞ ≤ ε,∀l. Let H̃m(ξ ) and b̃m(ξ ) be given by { ̂̃yl(ξ )}2m−1
l=0 in the same

way as in (3.5) and (3.3.1). Assume Hm(ξ ) is invertible and ε is sufficient small so that

H̃m(ξ ) is also invertible. Denote by q̃(ξ ) the solution of the linear system H̃m(ξ )q̃(ξ ) =

−b̃m(ξ ). Let q̃ξ [z] be the Prony polynomial formed by q̃(ξ ) and { ˜̂a(ξ+i
m ) : i = 0, · · · ,m−1}

be its roots, then we have the following estimates as ε → 0,

||q(ξ )− q̃(ξ )||∞ ≤ ||H−1
m (ξ )||∞(1+mβ1(ξ ))ε +O(ε2), (3.18)

where β1(ξ ) = max
k=1,··· ,m

|σk(ξ )|. As a result, we achieve the following first order estimation

| ˜̂a(ξ + i
m

)− â(
ξ + i

m
)| ≤Ci(ξ )(1+mβ1(ξ ))||H−1

m (ξ )||∞ε +O(ε2), (3.19)

where Ci(ξ ) = δi(ξ ) · (
m−1
∑

k=0
|âk(ξ+i

m )|).

Proof. Note that linear system (3.7) is perturbed to be

H̃m(ξ )q̃qq(ξ ) =−b̃m(ξ ). (3.20)

By our assumptions, we have

||∆Hm(ξ )||∞ = ||H̃m(ξ )−Hm(ξ )||∞ ≤ mε, (3.21)

||∆bm(ξ )||∞ = ||b̃m(ξ )−bm(ξ )||∞ ≤ ε. (3.22)
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Define ∆q(ξ ) = q̃(ξ )−q(ξ ), by simple computation,

∆q(ξ ) = H−1
m (ξ )(I +H−1

m (ξ )∆Hm(ξ ))
−1(−∆bm(ξ )−∆Hm(ξ )q(ξ )). (3.23)

Hence if ε → 0, we obtain

∆q(ξ ) = H−1
m (ξ )(−∆bm(ξ )−∆Hm(ξ )q(ξ ))+O(ε2). (3.24)

Now we can easily get an estimation of `∞ norm of ∆q(ξ )

||∆q(ξ )||∞ ≤ ||H−1
m (ξ )||∞(1+m||q(ξ )||∞)ε +O(ε2). (3.25)

Since {â(ξ+i
m ) : i = 0, · · · ,m− 1} are the roots of qξ [z], using Vieta’s Formulas(see [47]),

we know

||q(ξ )||∞ = max
1≤k≤m

|σk(ξ )|.

Let (∆q(ξ ))[z] be the polynomial of degree less than or equal to m−1 defined by the vector

∆q(ξ ). Using Proposition 3.4.2, and denote by (qξ )
′
[z] the derivative function of qξ [z], for

0≤ i≤ m−1, we conclude

| ˜̂a(ξ + i
m

)− â(
ξ + i

m
)|= |

∆q(ξ )[â(ξ+i
m )]

(qξ )
′
[â(ξ+i

m )]
+O(ε2)|

≤
||∆q(ξ )||∞(

m−1
∑

k=0
|âk(ξ+i

m )|)

∏
j 6=i

0≤ j≤m−1

|â(ξ+ j
m )− â(ξ+i

m )|
+O(ε2)

≤Ci(ξ )||H−1
m (ξ )||∞(1+m max

1≤k≤m
|σk(ξ )|)ε +O(ε2),

(3.26)

where Ci(ξ ) = δi(ξ )(
m−1
∑

k=0
|âk(ξ+i

m )|).
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Therefore it is important to understand the relation between the behavior of ||H−1
m (ξ )||∞

and our system parameters, i.e, a, m and x. Next, we are going to estimate ||H−1
m (ξ )||∞ and

reveal their connection with the spectral properties of a,x and the subsampling factor m.

Proposition 3.4.4. Assume Hm(ξ ) is invertible, we have the lower bound estimation

||H−1
m (ξ )||∞ ≥ m · max

i=0,··· ,m−1

β2(i,ξ )δi(ξ )

|x̂(ξ+i
m )|

, (3.27)

where β2(i,ξ ) = max
k=0,··· ,m−1

|σ (i)
k (ξ )|, and the upper bound estimation

||H−1
m (ξ )||∞ ≤ m · max

i=0,··· ,m−1

(δi(ξ ) ∏
j 6=i

0≤ j≤m−1

(1+ |â(ξ+ j
m )|))2

|x̂(ξ+i
m )|

. (3.28)

Proof. Firstly, we prove the lower bound for ||H−1
m (ξ )||∞. Denote the Vandermonde matrix

Vm(w(ξ )) by the abbreviated Vm(ξ ). Suppose V−1
m (ξ ) = (vki)1≤k,i≤m is the inverse of

Vm(ξ ), by the inverse formula for a standard Vandermonde matrix,

vki = (−1)m−k
σ
(i−1)
m−k (ξ )δi−1(ξ ).

Let {ei}m
i=1 be the standard basis for Cm and wi(ξ ) = VT

m(ξ )ei for i = 1, · · · ,m. Since

|â(ξ )| ≤ 1, we conclude that ||wi||∞ = 1.

||H−1
m (ξ )||∞ ≥ max

i=1,··· ,m
||H−1

m (ξ )wi(ξ )||∞

≥ m · max
i=1,··· ,m

||V−1
m (ξ )ei||∞
|x̂(ξ+i

m )|

= m · max
i=0,··· ,m−1

β2(i,ξ )δi(ξ )

|x̂(ξ+i
m )|

.

(3.29)

On the other hand, using the factorization (3.6) and the upper bound norm estimation for
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the inverse of a Vandermonde matrix in [21], we show that

||H−1
m (ξ )||∞ ≤ m||V−1

m (ξ )||∞||((V−1
m )T (ξ ))||∞||diag−1(x(ξ ))||∞

≤ m max
i=0,··· ,m−1

(δi(ξ ) ∏
j 6=i

0≤ j≤m−1

(1+ |â(ξ+ j
m )|))2

|x̂(ξ+i
m )|

.

(3.30)

As an application of Proposition 3.4.4, the following theorem sheds some light on the

dependence of ||H−1
m (ξ )||∞ on m.

Theorem 3.4.5. If |x̂(ξ )| ≤ M for every ξ ∈ T, then ||H−1
m (ξ )||∞ ≥ O(2m). Therefore,

||H−1
m (ξ )||∞→ ∞ as m→ ∞.

Proof. We show this by proving m · max
i=0,··· ,m−1

δi(ξ )≥O(2m). Note β2(i,x)≥ |σ
(i)
0 (ξ )|= 1.

By (3.29),

||H−1
m (ξ )||∞ ≥ m ·

max
i=0,··· ,m−1

δi(ξ )

M
= O(2m), (3.31)

the conclusion follows. Let c(ξ ) = max
i=0,··· ,m−1

δi(ξ ). Note that

1
c(ξ )m ≤

m−1

∏
i=0

1
δi(ξ )

= ∏
0≤i< j≤m−1

|â(ξ + i
m

)− â(
ξ + j

m
)|2

= |det(Vm(ξ )|2.

(3.32)

Since every entry of w(ξ ) is contained in [−1,1], the Chebyshev points on [−1,1] maxi-

mize the determinant of Vandermonde matrix, see [? ]. Therefore, by the formula for the

determinant of a Vandermonde matrix on the Chebyshev points in [19], we get

|det(Vm(ξ ))|2 ≤
mm

2(m−1)2 .
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By (3.32),

c(ξ )≥ 2
(m−1)2

m

m

which implies that m · c(ξ )≥ O(2m). Hence by (3.31)

||H−1
m (ξ )||∞ ≥ O(2m)→ ∞,m→ ∞.

Remark 3.4.6. By our proof, we also see that ||H−1
m (ξ )||∞ grows at least geometrically

when m increases.

Summarizing, our results in this section suggest that

1. For 0≤ k ≤ m−1, the accuracy of recovering the node â(ξ+k
m ) not only depends on

its separation with other nodes δk(ξ )(see Definition 3.4.1), but also depends on the

global minimal separation δ (ξ ) = max
k=0,··· ,m−1

δk(ξ ) among the nodes. Fix m,x, our

estimations (3.26) and (3.30) suggest that error |∆k(ξ )| = | ˆ̃a(ξ+k
m )− â(ξ+k

m )| in the

worst possible case could be proportional to δk(ξ )δ
2(ξ ). Our numerical experiment

suggests this is sharp, see Figure 2 (c) and (d).

2. The accuracy of recovering all nodes is inversely proportional to the lowest magni-

tude of {x̂(ξ+i
m ) : i = 0, · · · ,m−1}.

3. Increasing m may result in amplifying the error caused by the noise significantly.

Since by the proof of Theorem 3.4.5, ||H−1
m ||∞ grows at least geometrically when m

increases. Thus, when m increases, the infinity norm of H−1
m (ξ ) gets bigger and our

solutions become more likely less robust to noise, see Figure 2 (a) and (b).
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3.5 Numerical Experiment

In this section, we provide some simple numerical simulations to verify some theoreti-

cal accuracy estimations in section 3.4.

3.5.1 Experiment Setup

Suppose our filter a is around the center of radius 3. For example, Let

a = (· · ·0,0.05,0.4,0.1,0.4,0.05,0, · · ·)

such that â(ξ ) = 0.1+0.8cos(2πξ )+0.1cos(4πξ ), x = (· · · ,0,0.242,0.383,0.242,0, · · ·)

such that x̂(ξ ) = 0.383+0.484cos(2πξ ). We choose m = 3.

1. In this experiment, we choose 9 points [ξ1, · · · ,ξ9] = 0.49 : 0.001 : 0.498 and calcu-

late ŷl(ξi) and the perturbed ̂̃yl(ξi) = ŷl(ξi)+ εl for l = 0, · · · ,5, where yl is defined

as in (3.1) and εl ∼ 10−10.

2. Use Algorithm 3.3.1 to calculate the roots of qξ [z] and the perturbed roots of q̃ξ [z]

respectively, then compute |∆k(ξi)|= | ˜̂a(ξi+k
m )− â(ξi+k

m )| for k = 0,1,2.

3. Choose ξ = 0.3 and m = 2 : 1 : 7, we compute ||H−1
m (0.3)||∞ for different m.

3.5.2 Experiment Results

In this subsection, we plot several figures to reflect the experiment results. The x-axis

of the Figure 2 (a)−(e) are set to be 1:9, which represent ξ1, · · · ,ξ9.

1. The dependence of max
k
|∆k(ξ )| on the infinity norm of H−1

m (ξ ). Since the points

ξ1, · · · ,ξ9 are more and more closer to 1
2 , we expect the infinity norm of H−1

m (ξ ) to

get sufficiently larger and larger. Note that m and x are fixed, the quantity H−1
m (ξ )

is the only significantly large item in the error estimations. We plot the value of
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||H−1
m (ξi)||∞ and max

k
|∆k(ξi)| for i = 1, · · · ,9 in Figure 2 (a) and (b). They exhibit

almost the same behaviour and grows proportionally. This indicates that the bigger

||H−1
m (ξi)||∞ is, the bigger max

k
|∆k(ξi)| is.

2. Sharpness of estimation (3.19) and (3.28). Our estimation (3.19) and (3.28) suggest

that error |∆k(ξ )| in the worst possible case could be proportional to δk(ξ )δ
2(ξ ).

We plot the value of |∆2(ξi)| and δ2(ξ )δ
2(ξ ) for i = 1, · · · ,9 in Figure 2 (c) and

(d). It is indicated that ∆2(ξi) grows approximately proportionally to the growth

of δ2(ξi)δ
2(ξi), which suggests the sharpness of estimation(3.19) and (3.28). It is

worthy to mention that the curve of max
k
|∆k(ξi)| coincides with the curve of |∆2(ξi)|,

and the curve of max
k

δk(ξi)δ
2(ξi) coincides with the curve of δ2(ξi)δ

2(ξi). Since in

this experiment, m and x are fixed, this also suggests that the quantity δk(ξi)δ
2(ξi)

essentially decides the accuracy. The bigger the quantity is, the less accuracy the

Algorithm is.

3. The infinity norm of H−1
m (ξ ). Recall in this experiment, we choose m= 2,3, · · · ,6,7

and ξ = 0.3. We plot the value of ||H−1
m (0.3)||∞ for different m. The results are

presented in Figure 2 (f). The y−axis is set to be logarithmic. It is shown that

||H−1
m (ξ )||∞ grows geometrically.

3.6 Other Numerical Mehtods

In the following subsections, we will investigate the data structure of the Hankel matrix

built from the spatiotemporal samples and present two algorithms based on the classical

matrix pencil method and ESPRIT estimation method to our case. These two classical

methods are well known for their better numerical stability than the original Prony method.
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Figure 3.2: Experiment Results
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3.6.1 Generalized Matrix Pencil Method

Let L and N be two integers satisfying L ≥ m and N ≥ L+m. Similarly, we define the

(N−L)×1 column vector

ht(ξ ) = [ŷt(ξ ), ŷt+1(ξ ), · · · , ŷN−L+t−1(ξ )]
T ,

and form the rectangular Hankel matrices

Hξ

N−L,L+1 =
[
h0(ξ ),h1(ξ ), · · · ,hL(ξ )

]
, (3.33)

Hξ

N−L,L(s) = Hξ

N−L,L+1(1 : N−L,s+1 : L+ s),s = 0,1.

Similar to the case L = m, for s = 0,1,

Hξ

N−L,L(s) =Vm,N−L(w(ξ ))T diag(x(ξ ))diag(w(ξ ))sVm,L(w(ξ )). (3.34)

Recall that the superscripts “∗” and “+” will denote the conjugate transpose and the

pseudoinverse. The following Lemma provides a foundation with the Generalized Matrix

Pencil method.

Lemma 3.6.1. Let N,L be two postive integers s.t. m ≤ L ≤ N−m. Assume ξ 6= 0, 1
2 and

diag(x(ξ )) is invertible. The solutions to the generalized singular eigenvalue problem :

(zHξ

N−L,L(0)−Hξ

N−L,L(1))p(ξ ) = 0 (3.35)

subject to p(ξ ) ∈ R(H∗ξN−L,L(0)), which denotes the column space of H∗ξN−L,L(0) are

zi = â(
ξ + i−1

m
)

p(ξ ) = pi(ξ ) = i-th column of V+
m,L(w(ξ ))
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for i = 1, · · · ,m.

Proof. The proof can be done by the factorization (3.34) and a similar manner with the

proof of Theorem 2 in [31].

Proposition 3.6.2. Let N,L be two postive integers s.t. m ≤ L ≤ N−m. Assume ξ 6= 0, 1
2

and diag(x(ξ )) is invertible. The L× L matrix H+ξ

N−L,L(0)H
ξ

N−L,L(1) has {â(ξ+i
m ), i =

0, · · · ,m−1} and L−m zeros as eigenvalues.

Proof. Left multiplying (3.35) by H+ξ

N−L,L(0), we have

H+ξ

N−L,L(0)H
ξ

N−L,L(1)pi(ξ ) = ziH+ξ

N−L,L(0)H
ξ

N−L,L(0)pi(ξ ), (3.36)

By property of pseudoinverse, H+ξ

N−L,L(0)H
ξ

N−L,L(0) is the orthogonal projection onto the

R(H∗ξN−L,L(0)). Since pi(ξ ) ∈ R(H∗ξN−L,L(0)), it is easy to see that the set {â(ξ+i
m ) : i =

0, · · · ,m−1} are m eigenvalues of H+ξ

N−L,L(0)H
ξ

N−L,L(1). Since H+ξ

N−L,L(0)H
ξ

N−L,L(1) is

of rank m≤ L, H+ξ

N−L,L(0)H
ξ

N−L,L(1) has L−m zero eigenvalues.

It is immediate to see that one advantage of the matrix pencil method is the fact that

there is no need to compute the coefficients of the minimal annihilating polynomial of

diag(w(ξ )). In this way, we just need to solve a standard eigenvalue problem of a square

matrix H+ξ

N−L,L(0)H
ξ

N−L,L(1). In order to compute H+ξ

N−L,L(0)H
ξ

N−L,L(1), inspired by

idea of Algorithm 5 for SVD based Matrix Pencil Method in [32], we can employ the

Singular Value Decomposition(SVD) of the Hankel matrices.

Lemma 3.6.3. In addition to the conditions of Proposition 3.6.2, given the SVD of the

Hankel matrix,

Hξ

N−L,L+1 = Uξ

N−LΣ
ξ

N−L,L+1Wξ

L+1,

then

H+ξ

N−L,L(0)H
ξ

N−L,L(1) = Wξ
+

L+1(1 : m,1 : L)Wξ

L+1(1 : m,2 : L+1).
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Proof. This can be shown by direct computations and noticing that Hξ

N−L,L+1 has only m

nonzero singular values.

We summarize the Generalized Matrix Pencil Method in Algorithm 3.6.1. Note that

the amount of computation required by Algorithm 3.6.1 depends on the free parameter L.

Numerical experiments show that the choice of L greatly affects the noise sensitivity of the

eigenvalues. In terms of the noise sensitivity and computation cost, the good choice for L

is between one third of N and two thirds of N [32]. In our numerical example, we choose

L to be around one third of N.

Algorithm 3.6.1 Generalized Matrix Pencil Method (Based on SVD)

Require: m≤ L≤ N−m, r ∈ N, {yl}N−1
l=0 , ξ (6= 0, 1

2) ∈ T.
1: Compute the Fourier transformation of the measurement sequences {yl}N−1

l=0 and build

the Hankel matrix Hξ

N−L,L+1 and compute its SVD

Hξ

N−L,L+1 = Uξ

N−LΣ
ξ

N−L,L+1Wξ

L+1.

2: Compute the eigenvalues of W ξ
+
L+1(1 : m,1 : L)W ξ

L+1(1 : m,2 : L+1).
3: Delete L−m smallest values in modulus (zeros in noise free case) from the eigenvalues.

Order the rest eigenvalues by the monotonicity and symmetric condition of â to get
{â(ξ+i

m ) : i = 0, · · · ,m−1}.
Ensure: {â(ξ+i

m ) : i = 0, · · · ,m−1}.

3.6.2 Generalized ESPRIT Method

Original ESPRIT Method relies on a particular property of Vandermonde matrices

known as the rotational invariance [41]. By the factorization results (3.34), we have seen

that the Hankel data matrix Hξ

N−L,L+1 containing successive spatiotemporal data of the

evolving states is rank deficient and that its range space, known as the signal subspace,

is spanned by Vandermonde matrix generated by {â(ξ+i
m ), i = 0, · · · ,m− 1}. Hence we

can generalize the idea and present the generalized ESPRIT algorithm based on SVD for

estimating the {â(ξ+i
m ) : i = 0, · · · ,m−1} in our case. We summarize it in Algorithm 3.6.2
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Algorithm 3.6.2 Generalized ESPRIT Algorithm

Require: m≤ L≤ N−m, r ∈ N, {yl}N−1
l=0 , ξ (6= 0, 1

2) ∈ T.
1: Compute the Fourier transformation of the measurement sequences {yl}N−1

l=0 and form

the Hankel matrix Hξ

N−L,L+1.

2: Compute the SVD of Hξ

N−L,L+1 = Uξ

N−LΣ
ξ

N−L,L+1Wξ

L+1.

3: Compute the m×m spectral matrix Φ(ξ ) by solving the linear system

Uξ

N−L(1 : N−L−1,1 : m)Φ(ξ ) = Uξ

N−L(2 : N−L,1 : m)

and estimate the eigenvalues of Φ(ξ ).
4: Order the eigenvalues by the monotonicity and symmetric condition of â to get
{â(ξ+i

m ) : i = 0, · · · ,m−1}.
5:

Ensure: {â(ξ+i
m ) : i = 0, · · · ,m−1}.

3.6.3 Data Preprocessing Using Cadzow Denoising Method

It has been shown in the previous sections the Hankel matrix Hξ

N−L,L+1(m≤ L≤N−m)

has two key properties in the noise free case under appropriate hypothesis:

1. It has rank m.

2. It is Toeplitz.

In the noisy case, these two properties are not initially satisfied simultaneously. Hξ

N−L,L+1

is very sensitive to noise, numerical experiments show that even very small noise (∼ 10−10)

will change its rank dramatically. To further improve robustness, we use an iterative method

devised by Cadzow [11] to preprocess the noisy data and guarantee to build a Hankel matrix

with above two key properties. In our context, it can be summarized in Algorithm 3.6.3.

The procedure of Algorithm 3.6.3 is guaranteed to converge to a matrix which exhibits

the desired two key properties [11]. The iterations stop whenever the ratio of the (m+1)-th

singular value to the m-th one, falls below a predetermined threshold. Since Algorithm

3.3.1 does not perform well when noise is big, we can combine the Algorithm 3.3.1 and

Algorithm 3.6.3 to recover the Fourier spectrum of a and improve the performance. In our

numerical example, we choose L = m.
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Algorithm 3.6.3 Cadzow Iterative Denoising Method

Require: m≤ L≤ N−m, { ˆ̃yl(ξ )}N−1
l=0 , ξ (6= 0, 1

2) ∈ T.
1: Build the Hankel matrix Hξ

N−L,L+1 from { ˆ̃yl(ξ )}N−1
l=0 and preform the SVD. Let

λ1, · · · ,λK be its singular values, K = min{N−L,L+1}.
2: Set ε to be a small positive number.
3: while λm+1

λm
≥ ε do

4: Enforce the rank m of Hξ

N−L,L+1 by setting the K−m smallest singular values to
zero.

5: Enforce the Toeplitz structure on Hξ

N−L,L+1 by averaging the entries along the di-
agonals.

6: end while
7: Extract the denoised Fourier data { ˆ̃yl(ξ )}N−1

l=0 from the first column and the last row of

Hξ

N−L,L+1

Ensure: Denoised Fourier data { ˆ̃yl(ξ )}N−1
l=0 and Hankel matrix Hξ

N−L,L+1.

3.7 Numerical Examples

In this section, we present a numerical example to illustrate the effectiveness and ro-

bustness of the proposed Algorithms.

Example 3.7.1. Let the filter

a = (· · · ,0,0.25,0.5,0.25,0, · · ·)

so that â(ξ ) = 0.5+0.5cos(2πξ ). â is approximately Gaussian on [−1
2 ,

1
2 ]. Let the initial

signal x be a conjugate symmetric vector given by x(0) = 0.75,x(1) = x̄(−1) = 0.8976+

0.4305i, and x(2) = x̄(−2) = 0.9856−0.1682i so that

x̂(ξ ) = 0.75+2Re((0.9856−0.1682i)e−4πiξ +(0.8976−0.4305i)e−2πiξ ).

The subsampling factor m is set to be 5. Given the Fourier data of the spatiotemporal sam-

ples {ŷl}N−1
l=0 , we add independent uniform distributed noise εl ∼U(−ε,ε) to the Fourier

data ŷl for l = 0, · · · ,N−1. Recall that |∆k(ξ )|= | ˜̂a(ξ+k
m )− â(ξ+k

m )|, we define the relative
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error

ek(ξ ) =
|∆k(ξ )|

max
k
|â(ξ+k

m )|

for k = 0,1,m−1. The best case error is set to be ebest(ξ ) = min
k

ek(ξ ) and the worst case

error is set to be eworst(ξ ) = max
k

ek(ξ ). Besides, we define the mean square error

MSE2(ξ ) =

m−1
∑

k=0
|∆k(ξ )|2

m−1
∑

k=0
|â(ξ+k

m )|2
.

Then we apply our Algorithm 3.3.1, Algorithms 3.3.1+Algorithm 3.6.3, Algorithm 3.6.1

and Algorithm 3.6.2 to the case when ε = 0.4. For several parameters N and L, the resulting

errors (average over 100 experiments) are presented in Table 3.1. As the bound ε in the

algorithms we use 10−10. It is shown in the table that increasing the temporal samples, i.e.

N, will help reduce the error. The new proposed algorithms have better performance than

Algorithm 3.3.1, if given more spatiotemporal data.

3.8 Concluding Remarks

In this chapter, we have investigated the conditions under which we can recover a typi-

cal low pass convolution filter a ∈ `1(Z) and a vector x ∈ `2(Z) from the combined regular

subsampled version of the vector x, · · · ,AN−1x defined in (3.1), where Ax = a∗x. We show

that if one doubles the amount of temporal samples needed in [6] to recover the signal

propagated by a known filter, one can almost surely solve the problem even if the filter is

unknown. We first propose an algorithm based on the classical Prony method to recover the

finite impulse response filter and signal, if an upper bound for their support is known. In

particular, we have done a first order perturbation analysis and the estimates are formulated

in very simple geometric terms involving Fourier spectral function of a,x and m, shedding

some light on the structure of the problem. We get a lower bound estimation for infinity
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Table 3.1: Numerical Results

Algorithm m N L ebest eworst MSE
1

5 10 5 0.4e-07 0.19e-05 0.14e-05
5 15 5 0.27e-08 0.24e-06 0.17e-06
5 20 5 0.85e-09 0.18e-06 0.13e-06
5 25 5 0.46e-09 0.17e-06 0.12e-06

1+4 5 10 5 0.38e-07 0.18e-05 0.13e-05
5 15 5 0.13e-08 0.13e-06 0.09e-06
5 20 5 0.15e-09 0.58e-07 0.41e-07
5 25 5 0.49e-10 0.42e-07 0.29e-07

2 5 15 5 0.17e-08 0.16e-06 012e-06
5 20 6 0.25e-09 0.74e-07 0.53e-07
5 25 8 0.69e-10 0.47e-07 0.33e-07

3 5 15 5 0.17e-08 0.16e-06 0.11e-06
5 20 6 0.21e-09 0.66e-07 0.46e-07
5 25 8 0.62e-10 0.45e-07 0.32e-07

norm of H−1
m (ξ ) in terms of m. Then we propose several other algorithms, which can make

use of more temporal samples and increase the robustness to noise. The potential appli-

cations includes the One-Chip Sensing: sensors inside chips for accurate measurements of

voltages, currents, and temperature (e.g., avoid overheating any area of the chip), sources

localization of an evolving state and time-space trade off(e.g., sound field acquisition using

microphones)etc.
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Chapter 4

MULTIDIMENSIONAL SPATIOTEMPORAL TRADE OFF PROBLEM IN DISCRETE

INVARIANT EVOLUTION SYSTEMS

4.1 Problem Formulation

In this section, we formulate the spatiotemporal trade off problem in the multidimen-

sional invariant evolution system. Let f be an initial state definied on the multidimensional

lattice D = Zd1 ×Zd2 and Z×Z. At time instance t = n ∈ N, the initial state f is altered

by convolution with a filter a ∈ `1(D) n times to be An( f ) = a ∗ a ∗ ... ∗ a ∗ f = an ∗ f . At

each time instance t = n, the altered state An( f ) is under-sampled at a uniform subsampling

rate m1 and m2 in each direction. Namely we take spatiotemporal samples on a uniform

sublattice X of D. Let SX be the subsampling operator defined by SX( f ) = f (X). We ask

the following question:

Problem 4.1.1. Under what conditions on a, X and N that can we recover any initial state

f ∈ `2(D) from the spatiotemporal samples

{ f (X), a∗ f (X), · · · , (aN−1 ∗ f )(X)}, for X ⊆ D? (4.1)

The above problem is solved when conditions on the sampling sets and time instances

N are found, such that recovery of the signal is possible, preferably in a stable way.

4.2 Previous Work

In [5, 6] the authors have studied the spatiotemporal trade off problem for the discrete

spatially invariant evolution system, in which the initial state f is defined on the domain

D = Zd and Z. At each time instance t = n, the altered state An( f ) is under-sampled at
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a uniform subsampling rate m. The invertibility and stability questions have been fully

answered under the specific constraints of the convolution operator A. The multidimen-

sional spatiotemporal trade off problem we consider in this chapter also has similarities

with problems considered by some other authors. For example, in [1], the authors work

in a multivariable shift-invariant space(MSIS) setting, and study linear systems {L j : j =

1, · · · ,s} such that one can recover any f in MSIS by uniformly downsampling the func-

tions {(L j f ) : j = 1, · · · ,s}, i.e. taking the generalized samples {(L j f )(Mα)}α∈Zd , j=1,··· ,s.

In dynamical sampling, there is only one convolution operator A, and it is applied itera-

tively to the function f . This iterative structure is important for our analysis of the kernel

of the arising matrix, and using that special structure we are able to add extra samples

outside of the initial uniform sampling grid and get full recovery of the signal.

4.3 Contribution and Organization

Our goal is to extend the one variable results in [5, 6] to the multidimensional setting.

In section 4.4, we consider the finite dimensional case D = Zd1 ×Zd2 . We derive the

conditions on the convolution kernel a such that 1 to 1 spatiotemporal trade off rate can

be achieved. However, for the cases when the convolution operator has symmetries in the

Fourier domain, uniform sampling X is not enough to achieve the stable recovery for all

initial signal. We successfully overcome this singularity problem by adding some extra

spatial samples of f . As we will see later, the two variable problem is more complicated in

structure and we find it more subtle to overcome the singularity problems. In section 4.5, we

study the infinite dimensional case. Studying the stated Problem 4.1.1 in higher variable

setting would require similar techniques to the ones we use in this chapter to expand the

domain from one to two dimensions.
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4.4 Case I: D = Zd1×Zd2

For a positive integer d, Zd denotes the finite group of integers modulo d. In the finite

discrete setting, we work on the domain D = Zd1 ×Zd2 , d1,d2 ∈ N+. Let the operator A

act on the signal of interest f ∈ `2(D) as a convolution with some a ∈ `1(D) given by

A f (k, l) = a∗ f (k, l) = ∑
(s,p)∈D

a(s, p) f (k− s, l− p), for all (k, l) ∈ D. (4.2)

Note that A is a bounded linear operator that maps `2(D) to itself. The initial signal f is

evolving in time under the repeated effect of A such that at time instance t = n, the evolved

signal is fn = An f = a∗a∗ · · · ∗a∗ f (and f = f0 = A0 f ).

We assume that d1 and d2 are odd numbers, such that di = Jimi for integers mi ≥ 1,

Ji ≥ 1, i = 1,2. We set the sampling sensors on a uniform coarse grid X = m1Zd1×m2Zd2

to sample the initial state f and its temporally evolved states A f , A2 f , . . . ,AN−1 f . Note

that, given such a coarse sampling grid, each individual measurement is insufficient for

recovery of the sampled state.

Let SX = Sm1,m2 denote the assigned subsampling operator related to the sampling grid.

Specifically,

(SX f )(k, l) =


f (k, l) if (k, l) ∈ X

0 otherwise
(4.3)

For some N ≥ 2, our objective is to reconstruct f from the combined coarse samples set

{y j = SX(A j f )}, j = 0,1, ...,N−1. (4.4)

We denote by F the 2−dimensional discrete Fourier transform (2d DFT) and use the nota-

tion x̂=F (x). After applying F to (4.4), due to the two-dimensional Poisson’s summation
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formula, we obtain

ŷn(i, j) =
1

m1m2

m1−1

∑
k=0

m2−1

∑
l=0

ân (i+ kJ1, j+ lJ2) f̂ (i+ kJ1, j+ lJ2) (4.5)

for (i, j) ∈I = {0, · · · ,J1−1}×{0, · · · ,J2−1} and n = 0,1, . . . ,N−1.

Let ȳ(i, j) = (ŷ0(i, j) ŷ1(i, j) ... ŷN−1(i, j))T , (i, j) ∈I and

f̄(i, j) =



f̂ (i, j)

f̂ (i+ J1, j)
...

f̂ (i+(m1−1)J1, j)

f̂ (i, j+ J2)

...

f̂ (i+(m1−1)J1, j+ J2)

...

...

f̂ (i, j+(m2−1)J2)

...

f̂ (i+(m1−1)J1, j+(m2−1)J2)



.

We use the block-matrices

Al,m1m2(i, j) =

 1 1 ... 1
â(i, j+lJ2) â(i+J1, j+lJ2) ... â(i+(m1−1)J1, j+lJ2)

... .
...

...
...

âN−1(i, j+lJ2) âN−1(i+J1, j+lJ2) ... âN−1(i+(m1−1)J1, j+lJ2)

 ,

where l = 0,1, ...,m2−1, to define the N×m1m2 matrix

Am1,m2(i, j) = [A0,m1m2(i, j) A1,m1m2(i, j)...Am2−1,m1m2(i, j)] (4.6)

for all (i, j) ∈ I . Equations (4.5) have the form of vector inner products, so we restate
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them in matrix product form

ȳ(i, j) =
1

m1m2
Am1,m2(i, j)f̄(i, j). (4.7)

By equation (4.7), we need N ≥ m1m2 to be able to recover the signal f . Note that for

N = m1m2, matrix (4.6) is square, we denote this special square matrix by Am1,m2(i, j) and

obtain the following reconstruction result:

Proposition 4.4.1. For N = m1m2, we can recovery any f from spatiotemporal samples

defined in (4.4) in a stable way if and only if

detAm1,m2(i, j) 6= 0 for all (i, j) ∈I . (4.8)

Note that in the finite dimensional case, unique reconstruction is equivalent to stable

reconstruction. When (4.8) holds true, the signal is recovered from the system of equations

f̄(i, j) = m1m2A−1
m1,m2

(i, j)ȳ(i, j), (i, j) ∈I .

As expected, Proposition 4.4.1 reduces to the respective result in [5] when d = d1 and

d2 = 1, or d = d2 and d1 = 1.

4.4.1 Extra samples for stable spatiotemporal sampling

Proposition 4.4.1 gives a complete characterization of stable recovery from the dynam-

ical samples (4.4). In practice, however, we may not have the ideal filter a such that (4.8)

holds true. For instance, consider a kernel a with a so-called quadrantal symmetry, i.e. let

â(s, p) = â(d1− s, p) = â(s,d2− p) = â(d1− s,d2− p)
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for all (s, p) ∈ D. Since (4.6) is a Vandermonde matrix, it is singular if and only if some

of its columns coincide. In this case, it is easy to see that Am1,m2(0,0) is singular, which

prevents us from the stable reconstruction. In particular, for this special case, no matter

how many times we take temporal samples on the uniform grid, we don’t gain any new

information. This fact is due to the special structure of Vandermonde matrix. Hence some

spatiotemporal samples of the evolving signal must be taken on extra spatial locations to

overcome the lack of stability. The problem is, in what way we can take extra spatiotem-

poral samples? Can we give a complete characterization to these successful candidates?

Motivated by approach in [5], here we also propose a way of taking extra spatial sam-

ples of f at initial time level to overcome the lack of reconstruction uniqueness, whenever

singularities for matrix (4.6) occur. Note that once the uniqueness is achieved, then stabil-

ity of reconstruction is also achieved, by the finite dimensional nature of this problem. Let

us assume

A =



Am1,m2(0,0) 0 . . . 0

0 Am1,m2(1,0) . . . 0
...

... . . . ...

0 0 . . . Am1,m2(J1−1,J2−1)


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and

f̄ =



f̄(0,0)

f̄(1,0)
...

f̄(J1−1,0)

f̄(1,1)
...

f̄(J1−1,1)
...
...

f̄(0,J2−1)
...

f̄(J1−1,J2−1)



, ȳ =



ȳ(0,0)

ȳ(1,0)
...

ȳ(J1−1,0)

ȳ(1,1)
...

ȳ(J1−1,1)
...
...

ȳ(0,J2−1)
...

ȳ(J1−1,J2−1)



.

Then

A f̄ = ȳ (4.9)

and

ker(A ) =
⊕

(i, j)∈I
ker[Am1,m2(i, j)]. (4.10)

The kernels of each Am1,m2(i, j) can be viewed as generated by linearly independent vectors

v̂ j ∈ `2(D) such that each v̂ j has exactly two nonzero coordinates, one of which is equal to

1 and the other is−1. Let’s assume that the nullity of matrix Am1,m2(i, j) equals wi, j at each

(i, j)∈I . Then there are n = ∑i, j wi, j of such linearly independent vectors v̂ j ∈ `2(D). Let

{v j : j = 1, · · · ,n} be their image under the 2D inverse DFT. Note that {v j : j = 1, · · · ,n} ⊆

`2(D) is also linearly independent.

Let Ω⊆D\X be the additional sampling set, that is to say, we take extra spatial samples

of the initial state f at the locations specified by Ω. By SΩ we denote the related sampling

operator and RΩ is a |Ω|×n matrix with rows corresponding to [v1(k, l), · · · ,vn(k, l)]{(k,l)∈Ω}.
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With these notations, the following result holds true:

Theorem 4.4.2. The reconstruction of f ∈ `2(D) from its spatiotemporal samples

{SΩ f ,SX f ,SX A f , · · · ,SX Am1m2−1 f} (4.11)

is possible in a stable manner if and only if rank(RΩ) = n.

In particular, if SSP holds true, then we must have |Ω| ≥ n.

Proof. Let W = span{v j : j = 1, · · · ,n}. It suffices to show that

ker(SΩ)∩W = {0} if and only if rank(RΩ) = n.

Suppose w is in ker(SΩ)∩W . There must exist coefficients c1,c2, ..,cn so that w=∑
n
j=1 c jv j

and SΩw = 0. The last statement is equivalent to

[v1(k, l),v2(k, l), · · · ,vn(k, l)] [c1 c2 ... cn]
T = 0

for each (k, l)∈Ω. Equivalently, we have RΩc = 0. Hence, c = 0 if and only if rank(RΩ) =

n.

Since the d1d2×n matrix R = [v1(k, l), · · · ,vn(k.l)]{(k,l)∈D} has column rank n, for any

kernel a, there exists a minimal choice of Ω, namely |Ω|= n such that the square matrix RΩ

is invertible. It is hard to give a formula to specify the extra sampling set for every kernel

a ∈ `2(D). On the other hand, compared to the 1−variable case [5], it is more challenging

to specify the rank of RΩ analytically, since the entries of RΩ will involve the product of

sinusoids mixed with exponentials in general.

In [5], the authors studied a typical low pass filter with symmetric properties and gave

a choice of a minimal extra sampling set Ω, since symmetry reflects the fact that there

is often no preferential direction for physical kernels and monotonicity is a reflection of
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energy dissipation. Similarly, we consider a kernel a with a so-called strict quadrantal

symmetry: for a fixed (k, l) ∈ D, â(s, p) = â(k, l) if and only if

(s, p) ∈ {(k, l),(d1− k, l),(k,d2− l),(d1− k,d2− l)}. (4.12)

Since Am(i, j) is a Vandermonde matrix, it has singularity if and only if some of its columns

coincide. We can compute the singularity of each Am(i, j), as we make use of its special

structure.

Lemma 4.4.3. If the filter a satisfies the symmetry assumptions (4.12), then

dim(ker(A )) =
d1(m2−1)

2
+

d2(m1−1)
2

− (m1−1)(m2−1)
4

.

Clearly, we need an extra sampling set Ω⊆D with size dim(ker(A )). Based on Theo-

rem 4.4.2, we provide a minimal Ω:

Theorem 4.4.4. Assume that the kernel a satisfies the strict quadrantal symmetry assump-

tions (4.12) and let

Ω = {(k, l) : k = 1 · · ·m1−1
2

, l ∈ Zd2}∪{(k, l) : k ∈ Zd1, l = 1, · · · , m2−1
2
}.

Then, any f ∈ `2(D) is recovered in a stable way from the expanded set of samples

{SΩ f ,SX f ,SX A f , · · · ,SX Am1m2−1 f}. (4.13)

Remark 4.4.5. Note that in this case

|Ω|= d1(m2−1)
2

+
d2(m1−1)

2
− (m1−1)(m2−1)

4
,

so by Theorem 4.4.2 and Lemma 4.4.3 we can not do better in terms of its cardinality.
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Proof. Set

n =
d1(m2−1)

2
+

d2(m1−1)
2

− (m1−1)(m2−1)
4

.

Recall that the kernels of singular blocks Am1,m2(i, j) are generated by vectors {v̂k : k =

1, · · ·n}, such that each v̂k has exactly two non-zero components, 1 and −1 (corresponding

to each pair of identical columns). Then the formula of 2D inverse DFT gives

v j(k, l) =
d1−1

∑
s=0

d2−1

∑
p=0

v̂ j(s, p)e
2πisk

d1 e
2πipl

d2 , (k, l) ∈ Zd1×Zd2. (4.14)

We define a row vector F1(k) =
[

1,e
2πik
d1 , · · · ,e

2πi(d1−1)k
d1

]
for all k ∈ Zd1 . For each l =

0,1, · · · ,d2− 1, we define a row vector F̄2(l) of length d2− m2−1
2 , which is derived from

vector

[1,e
2πil
d2 , · · · ,e

2πi(d2−1)l
d2 ]

after deleting the entries that correspond to {sJ2 + 1 : 1 ≤ s ≤ m2−1
2 }, i.e. we omit the

entries e
2πsJ2

d2 for 1 ≤ s ≤ m2−1
2 . We reorder the vectors v j so that [v1(k, l), · · · ,vn(k, l)]

equals

2i
[

sin( 2π1l
m2

)F1(k), ··· , sin( 2π(m2−1)l
2m2

)F1(k), sin( 2π1k
m1

)F̄2(l) ··· , sin( 2π(m1−1)k
2m1

)F̄2(l)
]

for every (k, l) ∈Ω. By Theorem 4.4.2, the proof is complete if we show that these n = |Ω|

row vectors of size n are linearly independent.

We define a row vector R(k, l) corresponding to (k, l) ∈Ω given by

2i
[

sin( 2π1l
m2

)F1(k), ··· , sin( 2π(m2−1)l
2m2

)F1(k), sin( 2π1k
m1

)F̄2(l) ··· , sin( 2π(m1−1)k
2m1

)F̄2(l)
]
.
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Suppose that for some coefficients {c(k, l) : (k, l) ∈Ω} , it holds

∑
(k,l)∈Ω

c(k, l)R(k, l) = 0.

We need to show that all c(k, l) = 0. Note that, for a fixed k, the vector R(k, l) is compart-

mentalized into two components with lengths m2−1
2 and m1−1

2 . By construction, {F1(k) | k∈

Zd1} are linearly independent row vectors. Then, the coefficients related to F1(k) for the

first component should be zeros. Related to the first component of length m2−1
2 , for every

fixed k ∈ Zd1 such that (k, l) ∈Ω for some l, the following m2 equations hold true

∑
(k,l)∈Ω

c(k, l)sin
(

2πsl
m2

)
= 0 for s = 0,1, ...,m2−1. (4.15)

Case I if k ≥ m1+1
2 or k = 0, then (k, l) ∈ Ω if and only if l = 1, · · · m2−1

2 . We restate the

system of equations (4.15) in the matrix form:



sin( 2π

m2
) sin( 4π

m2
) . . . sin(π(m2−1)

m2
)

sin( 4π

m2
) sin( 8π

m2
) . . . sin(2π(m2−1)

m2
)

...
... . . . ...

sin(π(m2−1)
m2

) sin(2π(m2−1)
m2

) . . . sin(π(m2−1)(m2−1)
2m2

)





c(k,1)

c(k,2)
...

c(k, m2−1
2 )


= 0.

The matrix on the left-hand side is invertible, since

{sin(2πx),sin(4πx), ...,sin((m2−1)πx)}

is a Chebyshev system on [0,1](see[? ]); Hence we have c(k, l)= 0 for l = 1, · · · m2−1
2 .

Case II if 1 ≤ k ≤ m1−1
2 , then (k, l) ∈ Ω if and only if l = 0, · · · ,d2− 1. Then (4.15) is
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equivalent to the system of equations

d2−1

∑
l=0

c(k, l)sin
(

2πsl
m2

)
= 0 for s = 1,2, ...,(m2−1)/2. (4.16)

Related to the second component of length m1−1
2 , and combined with the fact that

c(k, l) = 0 if k is in case I, for all s = 1,2, ..., m1−1
2 we have

d2−1

∑
l=0

m1−1
2

∑
k=1

c(k, l)sin
(

2πsk
m1

)
F̄2(l)

= 0. (4.17)

Let F̄2 = [F̄2(0)T , · · · ,F̄2(d2− 1)T ], where F̄2(l)T denotes the transpose of each

row vector F̄2(l); F̄2 is a (d2− m2−1
2 )× d2 matrix. Using matrix notation, the first

equation in (4.17) can be restated as a product, namely

F̄2 ·



m1−1
2

∑
k=1

sin
(

2πk
m1

)
c(k,0)

m1−1
2

∑
k=1

sin
(

2πk
m1

)
c(k,1)

...
m1−1

2

∑
k=1

sin
(

2πk
m1

)
c(k,d2−1)


= 0

As an easy consequence of equation (4.16), for each 1≤ j ≤ m2−1
2 , it holds

m1−1
2

∑
k=1

sin
(

2πk
m1

)d2−1

∑
l=0

(
sin(

2πl j
m2

)c(k, l)
)
= 0, (4.18)

which is equivalent to

m1−1
2

∑
k=1

d2−1

∑
l=0

sin
(

2πl j
m2

)
sin
(

2πk
m1

)
c(k, l) = 0,
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i.e.
d2−1

∑
l=0

sin
(

2πl j
m2

) m1−1
2

∑
k=1

sin
(

2πk
m1

)
c(k, l) = 0. (4.19)

We define a m2−1
2 ×d2 matrix E as follows:

E =



sin(2π·0
m2

) sin(2π·1
m2

) . . . sin(2π(d2−1)
m2

)

sin(4π·0
m2

) sin(4π∗·1
m2

) . . . sin(4π(d2−1)
m2

)

...
... . . .

...

sin(π(m2−1)·0
m2

) sin(2π(m2−1)
m2

) . . . sin(π(m2−1)(d2−1)
m2

)


.

Due to (4.19), we have

E ·



m1−1
2

∑
k=1

sin(
2πk
m1

)c(k,0)

m1−1
2

∑
k=1

sin(
2πk
m1

)c(k,1)

...
m1−1

2

∑
k=1

sin(
2πk
m1

)c(k,d2−1)


= 0. (4.20)

Let F2 =

 E

F̄2

. Then

F2 ·



m1−1
2

∑
k=1

sin(
2πk
m1

)c(k,0)

m1−1
2

∑
k=1

sin(
2πk
m1

)c(k,1)

...
m1−1

2

∑
k=1

sin(
2πk
m1

)c(k,d2−1)


= 0.

Note that the d2× d2 matrix F2 is invertible, since it is the image of a series of
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elementary matrices acting on the d2×d2 DFT matrix (one row minus another row).

Hence we have 

m1−1
2

∑
k=1

sin(
2πk
m1

)c(k,0)

m1−1
2

∑
k=1

sin(
2πk
m1

)c(k,1)

...
m1−1

2

∑
k=1

sin(
π(m1−1)k

m1
)c(k,d2−1)


= 0. (4.21)

After analyzing the rest of the equations in (4.17), we obtain:

m1−1
2

∑
k=1

sin(
2π jk
m1

)c(k,s) = 0 for j = 2, · · · , m1−1
2

, s = 0,1, ...,d2−1.

In a similar manner, for each l = 0, · · · ,d2−1 we obtain the matrix equation



sin( 2π

m1
) sin( 4π

m2
) . . . sin(π(m1−1)

m1
)

sin( 4π

m1
) sin( 8π

m2
) . . . sin(2π(m1−1)

m1
)

...
... . . . ...

sin(π(m1−1)
m1

) sin(2π(m1−1)
m1

) . . . sin(π(m1−1)(m1−1)
2m1

)





c(1, l)

c(2, l)
...

c(m1−1
2 , l)


= 0.

As the matrix on the left hand side is invertible, we must have c(k, l)= 0 for k= 1, · · · , m1−1
2 .

We have demonstrated that c(k, l) = 0 for all (k, l) ∈ Ω. Therefore the n row vectors

{R(k, l)}(k,l)∈Ω are linearly independent i.e. stability of the signal recovery is achieved.

4.5 Case II: Z×Z

In this section, we aim to generalize our results to signals of infinite length. Somewhat

surprisingly, there is not much difference between the techniques used in these two settings

and we feel that we can gloss over a few details in the second part without overburdening

the reader.
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Let D = Z×Z. We study a signal of interest f ∈ `2(D) that evolves over time under

the influence of an evolution operator A. The operator A is described by a convolution with

a ∈ `1(D), namely

A f (p,q) = a∗ f (p,q) = ∑
k∈Z

∑
l∈Z

a(k, l) f (p− k,q− l) at all (p,q) ∈ D.

Clearly, A is a bounded linear operator, mapping `2(D) to itself. Given integers m1,m2 ≥

1, we assume m1 and m2 are odd number. We introduce a coarse sampling grid X =

m1Z×m2Z. We make use of a uniform sampling operator SX , defined by (SX f )(k, l) =

f (m1k,m2l) for (k, l) ∈ D. The goal is to reconstruct f from the set of coarse samples



y0 = SX f

y1 = SX A f

. . .

yN−1 = SX AN−1 f .

(4.22)

Similar to the work done in section 4.4, we study this problem on the Fourier domain. Due

to Poisson’s summation formula, we have the Lemma below.

Lemma 4.5.1. The Fourier transform of each yl in (4.22) at (ξ ,ω) ∈ T×T is

ŷl(ξ ,ω) =
1

m1m2

m2−1

∑
j=0

m1−1

∑
i=0

âl
(

ξ + i
m1

,
ω + j

m2

)
f̂
(

ξ + i
m1

,
ω + j

m2

)
. (4.23)

Expression (4.23) allows for a matrix representation of the dynamical sampling problem

in the case of uniform subsampling. For j = 0,1, · · · ,m2−1, we define N×m1 matrices

A j,m1,m2(ξ ,ω) =

(
âk
(

ξ + l
m1

,
ω + j

m2

) )
k,l
,

where k = 0,1, · · · ,N−1, l = 0,1, · · · ,m1−1 and denote by Am1,m2(ξ ,ω) the block matrix

81



[A0,m1,m2(ξ ,ω) A1,m1,m2(ξ ,ω) ...Am2−1,m1,m2(ξ ,ω)]. (4.24)

Let ȳ(ξ ,ω) = (ŷ0(ξ ,ω) ŷ1(ξ ,ω) ...ŷN−1(ξ ,ω) )T and

f̄(ξ ,ω) =



f̂ ( ξ

m1
, ω

m2
)

f̂ (ξ+1
m1

, ω

m2
)

...

f̂ (ξ+m1−1
m1

, ω

m2
)

f̂ ( ξ

m1
, ω+1

m2
)

...

f̂ (ξ+m1−1
m1

, ω+1
m2

)

...

...

f̂ ( ξ

m1
, ω+m2−1

m2
)

...

f̂ (ξ+m1−1
m1

, ω+m2−1
m2

)



. (4.25)

Due to (4.23), it holds

ȳ(ξ ,ω) =
1

m1m2
Am1,m2(ξ ,ω)f̄(ξ ,ω). (4.26)

Proposition 4.5.2. We can recover any f from spatiotemporal samples defined in (4.22) if

and only if Am1,m2(ξ ,ω) as defined in (4.24) has full column rank m1m2 at a.e. (ξ ,ω) ∈

T×T, where T= [0,1) under addition modulo 1. SSP is satisfied if and only if Am1,m2(ξ ,ω)

is full rank for all (ξ ,ω) ∈ T×T.

By Proposition 4.5.2, we conclude that N ≥ m1m2. In particular, if N = m1m2, then

Am1,m2(ξ ,ω) is a square matrix, we denote by Am1,m2(ξ ,ω) this square matrix.

Corollary 4.5.3. When N = m1m2, the invertibility sampling property is equivalent to the
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condition:

detAm1,m2(ξ ,ω) 6= 0 for a.e. (ξ ,ω) ∈ T×T.

Since Am1,m2(ξ ,ω) has continuous entries, the stable sampling property is equivalent to

detAm1,m2(ξ ,ω) 6= 0 for all (ξ ,ω) ∈ T×T.

From here on we assume N = m1m2. By its structure, Am1,m2(ξ ,ω) is a Vandermonde

matrix, thus it is singular at (ξ ,ω) ∈ T×T if and only if some of its columns coincide. In

case Am1,m2(ξ ,ω) is singular, no matter how many times we resample the evolved states

An f , n > N − 1, on the grid Ωo = m1Z×m2Z, the additional data is not going to add

anything new in terms of recovery and stability. In such a case we need to consider adding

extra sampling locations to overcome the singularities of Am1,m2(ξ ,ω).

4.5.1 Additional sampling locations

If Am1,m2(ξ ,ω) is singular at some (ξ ,ω), then by Corollary 4.5.3 the recovery of

f ∈ `2(Z2) is not stable. To remove the singularities and achieve stable recovery, some

extra sampling locations need to be added. The additional sampling locations depend on

the positions of the singularities of Am1,m2(ξ ,ω) that we want remove. We propose a quasi-

uniform way of constructing the extra sampling locations and give a characterization spec-

ifying when the singularity will be removed. Then, we use this method to remove the

singularity of a strict quadrantally symmetric convolution operator.

Let the additional sampling set be given by

Ω = {X +(c1,c2) | (c1,c2) ∈W ⊆ Zm1×Zm2}. (4.27)

Let Tc1,c2 denote the translation operator on `2(Z2), so that Tc1,c2 f (k, l) = f (k+ c1, l + c2)

for all (k, l) ∈ Z2. We employ a shifted sampling operator SX Tc1,c2 to take extra samples at
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the initial time instance; this means that our subsampling grid is shifted from X = m1Z×

m2Z to (c1,c2)+X and the extra samples are given as

hc1,c2
m1,m2

= Sm1,m2Tc1,c2 f , (c1,c2) ∈Ω. (4.28)

Set

uc1,c2(s, p) = e2πi c1s
m1 e2πi c2 p

m2 ,

for (s, p) ∈ Zm1×Zm2 .

By taking the Fourier transform of the samples on the additional sampling set Ω, we obtain

ĥc1,c2
m1,m2

(ξ ,ω) =
e2πi

(
c1ξ

m1
+

c2ω

m2

)
m1m2

m1−1

∑
s=0

m2−1

∑
p=0

uc1,c2(s, p) f̂
(

ξ + s
m1

,
ω + p

m2

)
. (4.29)

where

uc1,c2(s, p) = e2πi c1s
m1 e2πi c2 p

m2 .

For each (c1,c2) ∈W , we define a row vector

uc1,c2 = {uc1,c2(s, p)}(s,p)∈X

with terms arranged in the same order as the terms in vector f̄(ξ ,ω) in (4.25). We organize

the vectors uc1,c2 in a matrix Ū = (uc1,c2)(c1,c2)∈W and extend the data vector ȳ(ξ ,ω) in

(4.26) into a big vector Y(ξ ,ω) by adding

{e2πi−c1ξ

m1 e2πi−c2ω

m2 (Sm1,m2Tc1,c2 f ) (̂ξ ,ω)}(c1,c2)∈W .
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Then (4.23) and (4.29) can be combined into the following matrix equation

Y(ξ ,ω) =
1

m1m2

 Ū

Am1,m2(ξ ,ω)

 f̄(ξ ,ω). (4.30)

Proposition 4.5.4. If a left inverse for

 Ū

Am1,m2(ξ ,ω)


exists for every (ξ ,ω) ∈ T2, then the vector f can be uniquely and stably recovered from

the combined samples (4.22) and (4.27) via (4.30).

If the following property holds true:

ker(Ū)∩ker(Am1,m2(ξ ,ω)) = 0 (4.31)

for every (ξ ,ω) in T2, we say that W removes the singularities of Am(ξ ,ω); In such a case,

the assumption in Proposition 4.5.4 is satisfied.

Corollary 4.5.5. If W removes the singularities of Am(ξ ,ω) then

|W | ≥ dim(ker(Am1,m2(ξ ,ω)))

for every (ξ ,ω).

4.5.2 Strict quadrantal symmetric convolution operator

We consider a filter a, such that â has the strict quadrantal symmetry property, i.e.

â(ξ1,ω1)= â(ξ2,ω2) for (ξ1,ω1), (ξ2,ω2)∈T×T=T2 if and only if one of the following
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conditions is satisfied:

1. ξ1 = ξ2, ω1 +ω2 = 1

2. ξ1 +ξ2 = 1, ω1 = ω2

3. ξ1 +ξ2 = 1, ω1 +ω2 = 1.

The following result is a direct consequence of the symmetries assumptions listed in con-

ditions 1−3.

Proposition 4.5.6. If â(ξ ,ω) has the strict quadrantal symmetry property, then we have

detAm1,m2(ξ ,ω) = 0 when ξ = 0 or ω = 0. Moreover, the kernel of each Am1,m2(ξ ,ω) is a

subspace of the kernel of one of the following four matrices:

Am1,m2 (0,0) , Am1,m2

(
1
2
,0
)
, Am1,m2

(
0,

1
2

)
,Am1,m2

(
1
2
,
1
2

)
.

From Proposition 4.5.6, for a strict quadrantally symmetric kernel we need to consider

only the points (ξ ,ω) ∈
{
(0,0) ,

(
0, 1

2

)
,
(1

2 ,0
)
,
(1

2 ,
1
2

)}
and construct the set W , such that

it removes the singularities of the above four matrices.

Proposition 4.5.7. If â has the strict quadrantal symmetry property, then

dim(Am1,m2(ξ ,ω)) =
(m1−1)m2

2
+

m2−1
2

m1 +1
2

for every (ξ ,ω) ∈
{
(0,0) ,

(
0, 1

2

)
,
(1

2 ,0
)
,
(1

2 ,
1
2

)}
.

Proof. We discuss here in depth only the case ξ =ω = 1
2 . The proof in the other three cases

are analogous to what we present here. Because Am1,m2(
1
2 ,

1
2) is a Vandermonde matrix, the

rank is equal to the number of its different columns. It is easy to show that

â

(
1
2 + s
m1

,
1
2 + p
m2

)
= â

(
1
2 + k
m1

,
1
2 + l
m2

)
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is satisfied if and only if one of the following holds true:

1. s = k, p+ l = m2−1

2. p = l, s+ k = m1−1

3. s+ k = m1−1, p+ l = m2−1

using which we can easily compute that

dim(Am1,m2(
1
2
,
1
2
)) =

(m1−1)m2

2
+

m2−1
2

m1 +1
2

= n.

Let

W =W1∪W2 (4.32)

where

W1 = {1, · · ·
m1−1

2
}×{0, · · · ,m2−1},

W2 = {0, · · · ,m1−1}×{1, · · · , m2−1
2
}}.

Remark 4.5.8. When W is defined as in (4.32), we have

|W |= (m1−1)m2

2
+

m2−1
2

m1 +1
2

;

By Corollary 4.5.5, W has the minimal possible size.

Theorem 4.5.9. Let a ∈ `1(D) be the filter such that the evolution operator is given by

Ax = a ∗ x. Suppose â satisfies the strict quadrantal symmetric property defined at the

beginning of subsection 4.5.2. Let Ω be as in (4.27) with W specified in (4.32). Then, any

f ∈ `2(D) can be recovered in a stable way from the expanded set of samples

{SΩ f ,SX f , · · · ,SX Am1m2−1 f}. (4.33)
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Proof. It suffices to show that for every (ξ ,ω) ∈ T×T, it holds

ker(Ū)∩ ker(Am1,m2(ξ ,ω)) = 0. (4.34)

By Proposition 4.5.6, we only need to study the kernels of these four matrices

Am1,m2(0,0), Am1,m2(
1
2
,0), Am1,m2(0,

1
2
), Am1,m2(

1
2
,
1
2
). (4.35)

We discuss here in depth for the case ξ = ω = 1
2 . Z := ker(Am1,m2(

1
2 ,

1
2)) is a subspace in

Cm1m2 . By Proposition 4.5.7, the dimension of Z is n. Taking advantage of the fact that

Am1,m2(
1
2 ,

1
2) is a Vandermonde matrix, we can choose a basis {v j : j = 1, · · · ,n} for Z,

such that each v j has only two nonzero entries 1 and −1. Let v ∈ ker(Ū)∩Z, there exists

c = (c(i))i=1,··· ,n such that v =
n
∑

i=1
c(i)vi. Define a n×n matrix R with the row corresponds

to a fixed (c1,c2) ∈W is

[(e
2πi(m1−1)c1

m1 − e
2πi0c1

m1 )F2(c2), · · · ,(e
2πi(m1+1)c1

2m1 − e
2πi(m1−3)c1

2m1 )F2(c2),

(e
2πi(m2−1)c2

m2 − e
2πi0c2

m2 )F̄1(c1), · · · ,(e
2πi(m2+1)c2

2m2 − e
2πi(m2−3)c2

2m2 )F̄1(c1)].

Then

Ūv = 0,which is equivalent to Rc = 0.

By the use the same strategy as in the proof of Theorem 4.4.4, it can be demonstrated that

these n row vectors of R are linearly independent. With slight adaptations of the strategy

used so far,we can come to the same conclusion for the other three matrices in (4.35). As a

consequence of Proposition 4.5.4, stability is achieved.
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4.6 Concluding Remarks

In this chapter, we have studied the spatiotemporal trade off in the two variable dis-

crete spatially invariant evolution system driven by a single convolution filter in both finite

and infinite case. We have characterized the spectral properties of the filters to recover the

initial state from the uniform undersampled future states and a way to add extra spatial

sampling locations to stably recover the signal when the filters violate our characterization.

Compared to the one variable case, the singularity problems caused by the structure of the

filters are more complicated and tougher to solve. We give explicit constructions of the ex-

tra spatial sampling locations to resolve the singularity issue caused by the strict quadrantal

symmetric filters. Our results can be adapted to the general multivariable case. Different

kinds of symmetry assumptions can be imposed on the filters. The problem of finding the

right additional spatiotemporal sampling locations for other types of filters remains open

and requires further study.
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