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CHAPTER I 

INTRODUCTION 

Overview  

This Master’s Thesis project had as its objectives: (1) to optimize algorithms for 

solvent-accessible surface area (SASA) approximation to develop an environment free 

energy knowledge-based potential; and, (2) to assess the knowledge-based environment 

free energy potentials for de novo protein structure prediction.  

Protein Structure 

The Importance of Protein Structure 

The central dogma of biology states that DNA is transcribed to RNA, which is 

then translated into a protein1.  While DNA is often described as the blueprint for life2, 

proteins are the molecular machinery actually built from this DNA blueprint.  Some 

important functions of proteins are maintenance of cellular structure, signaling, catalysis, 

immune defense, cellular defense, and molecular transportation. 

A foundational belief in molecular biology is that the structure of a protein 

determines its function.  Proteins are three-dimensional molecules that function by 

binding to molecules with a complementary interface.  Therefore, elucidating the 

structure of the protein also provides information about the function of the protein.  This 

knowledge is very important in drug and enzyme design. 
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Introduction to Protein Structure 

Proteins are polymers of amino acids joined together by peptide bonds.  Protein 

structure can be decomposed into four distinct aspects – primary through quaternary 

structure.  The sequence of the amino acids present in a protein is called the primary 

structure of the protein.  Local hydrogen bonding interactions between amino acids can 

cause the amino acid chain to form secondary structural elements.  The common forms of 

secondary structure are ∝-helices and β-strands (represented pictorially as a coil and 

arrow respectively).  The way in which these secondary structural elements come 

together in three-dimensional space defines the tertiary structure of the protein.  Multiple 

protein subunits can bind to one another to form the quaternary structure of the protein.  

The native conformation, often referred to simply as “the native”, is the conformation 

that the protein naturally assumes.  Aspects of protein structure are presented in Figure 1. 
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Computational Protein Structure Prediction 

Genome sequencing has provided a wealth of information about the amino acid 

sequence of proteins, or the primary structure.  While experimental methods provide 

structural information about proteins, these techniques are laborious and are not feasible 

for use on all proteins3.  In particular, membrane proteins, which comprise up to 35% of 

all proteins4 and 50% of all drug targets5, are difficult to analyze with experimental 

techniques.   

a) 

b) 

c) 

d) 

Figure 1: Aspects of protein structure. a) amino acids b) primary structure c) secondary 
structure d) tertiary structure 
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Therefore, there has been an increased demand for computational methods to 

predict the native conformation for such proteins and to assist in protein structure 

elucidation from sparse or low-resolution experimental data.  The goal of de novo 

computational protein structure prediction (PSP) is to determine the native tertiary 

structure of a protein given only its primary structure. 

Monte Carlo in Protein Structure Prediction 

Levinthal’s paradox states that even if you consider a simplified model of a small 

protein, the amount of time to conduct a brute force search of all possible conformations 

that the protein is able to assume is far greater than the time the universe has existed6.  

While there are a vast number of physical conformations available for a given protein 

sequence, it is believed that the native structure is the conformation with the lowest free 

energy7.  Therefore, the protein folding problem becomes a search for the global 

minimum on the free energy landscape of all possible conformations of the amino acid 

sequence.  An efficient procedure for searching conformational space and an energy 

function that approximates free energy are, hence, key components of de novo PSP 

techniques3.   

The sampling technique used for PSP in this work is a Monte Carlo (MC) 

algorithm with Metropolis criteria in a simulated annealing environment.  De novo PSP 

begins by predicting secondary structure8-16 and other properties of a given sequence such 

as β-hairpins17, disorder18,19, non-local contacts20, domain boundaries21,22, and domain 

interactions23,24.  Secondary structural prediction methods are used to assemble a pool of 

candidate secondary structural elements.  The task at hand is therefore to properly place 
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the secondary structural elements together in three-dimensional space to determine the 

tertiary structure.  The MC algorithm begins with a random three-dimensional placement 

of candidate secondary structural elements.  A new model is generated by randomly 

perturbing the secondary structural elements in the existing model.   

The energy of each model generated is determined by an energy evaluation 

function.  If this new model is lower in energy than the current model, the new model is 

accepted as the current model.  If this new model is higher in energy than the current 

model, the new, higher-energy model is accepted with a temperature-dependent 

probability given by the Boltzmann distribution.  This is called the Metropolis criteria 

and allows the MC search to avoid entrapment in local minima25.  The probability, P, that 

represents the likelihood with which a model is accepted as the current model is 

described by the following equation where E represents the energy of the model and T 

represents the pseudo-temperature. 

 

ܲ ൌ min ሺ1, ݁ି 
ா೙೐ೢష ಶ೎ೠೝೝ೐೙೟

் ሻ 

 

The higher the pseudo-temperature, the more likely is the acceptance of a higher-

energy model.  Throughout the folding process, the temperature is lowered, allowing a 

focus on low-energy models.  This is the simulated annealing principle.  After an 

established number of new models are rejected, the folding process concludes.  Such 

stochastic optimization methods are commonly used in protein folding26 but can require 

over a million energy calculations27.  Therefore, a computationally efficient energy 

evaluation function is needed. 
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A PSP program that uses the MC algorithm has been implemented in the Meiler 

Lab and is able to fold proteins to native-like conformations.  However, the energy 

evaluation function can be improved by an accurate environment energy potential.  

Knowledge-Based Potentials 

Whereas molecular mechanics force fields seek to describe the energy directly 

associated with known physical interactions, knowledge-based potentials (KBPs) are 

derived from statistics generated from known three-dimensional protein structures.  

Hence, they approximate the overall free energy more generally, and frequently 

encompass multiple classical energy terms associated with a physical interaction.  KBPs 

relate the likelihood of a conformation occurring, to the energy associated with that 

conformation.  KBPs have been successful tools in predicting protein structure28-32, 

predicting protein-protein interactions33,34, predicting protein-ligand interactions35-39, and 

in protein design40,41.  Further details on the generation of a KBP are given in Chapter V.   
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Model Complexity 

In order to effectively and efficiently search the conformational space of an amino 

acid sequence, a reduced representation of amino acid side chains is used. The algorithms 

presented in this work take as input protein models with a reduced side chain 

representation where all side chain atoms with the exception of the Cβ atom are removed.  

(For glycine, a pseudo- Cβ  atom is used.)  These aspects of the model are simplified in 

order to decrease the computational complexity of the task in order to make it more 

efficient. 

 
  

Figure 2: Reduced amino acid side chain representation. 
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Environment Free-Energy 

The extent to which an amino acid interacts with its environment is naturally 

proportional to the degree to which the amino acid is exposed to solvent.  The solvent-

accessible surface area (SASA) is a geometric measure of this exposure.   

 

 

 

 

 

 

 

 

 

 

The environment free energy is approximately proportional to the SASA of the 

amino acid.  In fact, several energy evaluation functions assume a strictly linear 

relationship between SASA and the environment free energy42,43, neglecting the non-

linear complexities of this relationship, due to the computational complexity of a precise 

SASA calculation.  This work seeks to efficiently capture these non-linear complexities. 

Energetic terms, such as hydrogen bonding, electrostatics, and van der Waals 

forces, contribute to the interaction between atoms within a protein44 and also govern 

Figure 3: Protein colored by solvent-accessibility where red represents burial and blue
represents exposure. 
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interactions between protein and solvent.  However, an explicit calculation of these 

interactions is computationally complex and is therefore often omitted27.  Nevertheless, to 

correctly evaluate the free energy of a protein in solution, an accurate description of its 

interaction with the solvent is imperative45,46.  Otherwise, observed effects like surface 

area minimization, burial of hydrophobic side chains, and strength of hydrogen bonds 

cannot be described. 

An effective free energy evaluation function is an essential part of de novo 

structure prediction methods.  An important piece of such a function is the inclusion of an 

energetic evaluation of the environment free energy.  This work provides an environment 

free energy evaluation function based on the SASA of amino acids in the protein model. 
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CHAPTER II 

RELATED WORK 

Wodak and Janin define the accessible surface area as “the area on the surface 

over which a water molecule can be placed while making van der Waals contact with this 

atom and not penetrating any other protein atom”47.  Lee and Richards presented the first 

algorithm for calculating the solvent-accessible surface area of a molecular surface48.  

Their method involved the extension of the van der Waals radius for each atom by 1.4 Å 

(the radius of a water molecule) and the calculation of the surface area of these expanded-

radius atoms.  The Shrake and Rupley algorithm49 involves the testing of points on an 

atom’s van der Waals surface for overlaps with points on the van der Waals surface of 

neighboring atoms.  Many additional methods followed including spherical probing 

methods50,51 and geometric fitting approaches52.   

While these methods provide a very accurate SASA measure, they are also 

computationally intensive.  Many approximations have been developed, such as statistical 

approximations based on atom distances47, lattice approximations53,54, and spline 

approximations55.  Other methods attempt to create a pairwise-decomposable method of 

SASA approximation56.  One of the more efficient algorithms is the Maximal Speed 

Molecular Surfaces (MSMS) algorithm which fits spherical and toroidal patches onto the 

surfaces of atoms based on which points on the atom are accessible to a spherical probe 

that approximates a solvent molecule57.  The SASA calculated by the MSMS algorithm is 

used as a reference standard. 
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In addition to an efficient method, the method should also calculate the SASA for 

each residue, rather than for the protein as a whole.  This is necessary in order to take 

advantage of the knowledge-based technique.  The method should also be able to 

accurately calculate the SASA on the reduced side chain representation described in 

Figure 3.  While many of the methods described in the previous paragraph provide an 

accurate SASA calculation, these methods are not able to calculate a per-residue SASA in 

a manner efficient enough for use in MC folding programs.   

Similar work has been done by the Baker Lab and is implemented in a folding 

program called Rosetta32,58.  However, the measure they use for the calculation of SASA 

is limited and fails to accurately describe exposure in some cases (shown below).  Novel 

elements of the work described in this thesis include a comprehensive, optimized 

geometric measure of SASA and the evaluation of different approximation methods. 
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CHAPTER III 

 

ALGORITHM DEVELOPMENT 

 

Reference Standard 

The Visual Molecular Dynamics (VMD)59 molecular visualization package 

implements the MSMS algorithm.  The SASA as calculated by the VMD implementation 

of MSMS is used as a reference standard and serves as a basis of comparison for the 

SASA approximation algorithms developed.  The probe radius used is 1.4 Å, the radius 

of a water molecule and an accepted value for solvent probe size48.  All hydrogens were 

removed from the structural information for consistency as hydrogen coordinates are not 

always available.   

The SASA is converted from an area measured in Å to a relative exposure that 

can range from 0.0 (completely buried) to 1.0 (complexity exposed).  This relative 

exposure will be referred to as the solvent-accessible exposure (SAE).  In creation of the 

reference standard, SASA is converted to SAE by dividing the SASA calculated for an 

amino acid in a protein model by the SASA for that amino acid alone in space (i.e. all 

atoms in the protein that are not constituent atoms of the given amino acid are removed 

and the SASA is calculated).  The conversion from SASA to SAE facilitates comparison 

between amino acids of various sizes and allows a more general prediction of SASA in 

the absence of side chain coordinates. 
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Introduction to Algorithms 

Neighbor Count 

The central idea behind the Neighbor Count algorithm is that the number of 

neighboring amino acids is inversely proportional to exposure.  A previous method 

defines neighboring amino acids as those whose Cβ atom is within a distance of 10 Å of 

the Cβ of the amino acid of interest58.   The definition of a “neighbor” is expanded in this 

work by assigning a weight between 0.0 and 1.0 to all other amino acids in the protein 

based on their proximity to the amino acid of interest.  A lower boundary and an upper 

boundary are chosen such that all amino acids at a distance less than or equal to the lower 

boundary are assigned a neighbor weight of 1 (i.e. they are a complete neighbor), amino 

acids at a distance greater than the upper boundary are assigned a neighbor weight of 0 

(i.e. they are not neighbors at all), and amino acids at a distance between the lower and 

upper bounds are assigned a weight between 0.0 and 1.0 (i.e. they are partial neighbors).  

This allows amino acids that are spatially close to the amino acid of interest to have a 

greater input in determining the neighbor count.   

 
Figure 4: Neighbor weight functions. a) basic function b) expanded function 
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ݐ݄ܹ݃݅݁ݎ݋ܾ݄݃݅݁ܰ

ൌ  

ە
ۖ
۔

ۖ
ۓ
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The Neighbor Count for each amino acid is then found by summing the neighbor 

weights of all other amino acids in the protein. 

 

ሺܽܽiሻݐ݊ݑ݋ܥݎ݋ܾ݄݃݅݁ܰ ൌ

∑ ,ሺܽܽiݐݏሺ݀݅ݐ݄ܹ݃݅݁ݎ݋ܾ݄݃݅݁ܰ ܽܽjሻ, ,݀݊ݑ݋ܾ ݎ݁ݓ݋݈ ሻ ௝ஷ௜݀݊ݑ݋ܾ ݎ݁݌݌ݑ  

 

 

 

 

 

d

c

b

e

f 

a 

Figure 5: The neighbor count algorithm.  The inner and outer gray rings represent the
lower and upper bounds respectively.  All other spheres represent the Cβ atoms of amino
acids.  The black circle represents the amino acid of interest.  Amino acids a and f are
assigned a neighbor weight of 0 because they are outside of the upper bound.  Amino
acids a and e are assigned a weight between 0 and 1 because they lie between the upper
and lower bounds.  Amino acids c and d are counted as one complete neighbor each
because they lie within the lower bound.
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A shortcoming of the Neighbor Count algorithm is that it does not take into 

account the spatial distribution of its neighbors.  For an example of this behavior, 

consider the scenarios shown in Figure 7 which represent different exposures yet return 

the same Neighbor Count. 

 

 

Neighbor Vector 

The Neighbor Vector algorithm is an extension of the Neighbor Count algorithm 

that takes into account the spatial orientation of neighboring amino acids when 

determining the exposure. 

 
ሺܽܽiሻݎ݋ݐܸܿ݁ݎ݋ܾ݄݃݅݁ܰ ൌ  

צ
∑  ሺ

௏௘௖௧௢௥i,j 
ሱۛ ۛۛ ሮۛ /  צ

௏௘௖௧௢௥i,j 
ሱۛ ۛۛ ሮۛצሻ כ  ,ሺ݅ݐݏሺ݀݅ݐ݄ܹ݃݅݁ݎ݋ܾ݄݃݅݁ܰ ݆ሻ, ,݀݊ݑ݋ܾ ݎ݁ݓ݋݈ ሻ௝ஷ௜݀݊ݑ݋ܾ ݎ݁݌݌ݑ

ሺܽܽ௜ሻݐ݊ݑ݋ܥݎ݋ܾ݄݃݅݁ܰ
   צ

 

The neighbor vector is a vector associated with each amino acid whose length can range 

from 0.0 to 1.0.  A neighbor vector of length ≅ 1 implies high exposure whereas a 

neighbor vector of length ≅ 0 implies low exposure (i.e. burial). 

a) b) 

Figure 6: Shortcoming of the neighbor count algorithm. The scenarios depicted in a) and b) 
return the same Neighbor Count but represent different exposures. 
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However, there are still scenarios between which the Neighbor Vector algorithm 

cannot distinguish.      

                                                                                                                                     

 

 

 
  

a) b) 

a) b) 

Figure 7: The Neighbor Vector algorithm is able to distinguish between the scenarios
presented previously between which the Neighbor Count algorithm could not
distinguish.  Arrows drawn to all neighbors are shown in black.  The summation of
these vectors is the Neighbor Vector and is shown in green.  a) The vectors drawn to all
neighbors essentially cancel out when summed and yield a Neighbor Vector of
magnitude ≅ 0.  b) The vectors drawn to all neighbors yield a Neighbor Vector with a
large magnitude when summed. 

Figure 8: Shortcoming of the neighbor vector algorithm. The scenarios depicted in a) and 
b) return the same Neighbor Vector (≅0) but represent different exposures. 
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Artificial Neural Network 

In order to distinguish between the scenarios for which the Neighbor Vector 

algorithm returns an ambiguous Neighbor Vector, an artificial neural network (ANN) is 

used to predict SAE.  An additional term is introduced as an input to the Artificial Neural 

Network (ANN): the dot product of the (C∝ – Cβ) vector with the Neighbor Vector (ܸܰ • 

(C∝ – Cβ)).  Recall that the side chain atoms (which have been removed in these reduced 

models) extend from the Cβ atom.  Therefore, this dot product provides additional 

information about the position of the side chain with respect to the neighboring amino 

acids.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The (C∝ - Cβ) vector gives additional information about the orientation of side
chain atoms with respect to neighboring amino acids.  The long, flat arrow represents a
β-sheet, the red balls represent the Cβ  atoms of neighboring amino acids, the black balls
the Cβ atoms of the amino acids of the β-sheet, the gray balls the C∝ atoms of the amino
acids of the β-sheet, the green arrows the Neighbor Vectors, and the black arrows the (C∝

- Cβ) vectors. 
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The output of the Neighbor Count algorithm, the output of the Neighbor Vector 

algorithm, and the result of ܸܰ • (C∝ – Cβ) are provided as inputs to the ANN.  Note that 

the NV used in the dot product calculation is not normalized by NeighborCounti as 

shown in the Neighbor Count formula because the ANN is already receiving information 

about the Neighbor Count. 
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Overlapping Spheres 

The Overlapping Spheres algorithm is a variant of the Shrake and Rupley 

algorithm49 for calculating molecular surfaces with the exception that spheres surround 

only the Cβ of each amino acid rather than each atom.  In this algorithm, a sphere is 

placed around each Cβ and points are placed on the surface of the sphere surrounding the 

amino acid of interest.  The points on this sphere that do not overlap with the spheres 

surrounding any neighboring amino acids are used as a measure of exposure.   

 

 

 

 

 

 

 

 

 

 

 

Parameter Optimization 

In order to determine the optimal parameters for each algorithm, all parameters in 

a reasonable range were systematically test.  The parameter set that produced exposures 

Figure 10: The Overlapping Spheres algorithm.  The black ball represents the Cβ atom
of the amino acid of interest and the red balls represent the Cβ atoms of neighboring
amino acids.  Each Cβ  is surrounded by a sphere (shown in two dimensions as a ring
here).  The small, filled spheres represent points that overlap with the spheres
surrounding neighboring amino acids.  The small, unfilled spheres represent points
that do not overlap with the spheres surrounding neighboring amino acids and are used
as an approximation for exposure.  The Overlapping Spheres algorithm would
determine that the amino acid of interest is 37.5% (3/8) exposed. 
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correlated most with exposures produced by the MSMS reference standard was selected 

as optimal.   

 

Table 1: Optimal parameters for SAE algorithms. 

Algorithm Optimal Parameters 

Neighbor Count lower bound: 4.0 Å, upper bound: 11.4 Å 

Neighbor Vector lower bound: 3.3 Å, upper bound: 11.1 Å 

Artificial Neural Network nine inputs are provided to the ANN: 

- NC(2.0, 9.4), NV(1.3, 9.1), & NV(1.3,9.1) • (C∝ – Cβ) 

- NC(4.0, 11.4), NV(3.3, 11.1), & NV(3.3, 11.1) • (C∝ – Cβ) 

- NC(6.0, 13.4), NV(5.3, 13.1), & NV(5.3, 13.1)•(C∝ – Cβ) 

Overlapping Spheres sphere radius: 4.75 Å 
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CHAPTER IV 

ALGORITHM EVALUATION 

Comparison to Reference Standard 

In order to determine algorithm accuracy, the SAEs produced by each algorithm 

are compared to the SAEs produced by the MSMS referenced standard. 

 

Table 2: Correlation of each SAE algorithm with the MSMS reference standard. 

Algorithm Correlation with MSMS Reference Standard 

Neighbor Count -0.846 

Neighbor Vector 0.889 

Artificial Neural Network 0.904 

Overlapping Spheres 0.900 

 

Note that the correlation for the Neighbor Count algorithm is negative due to the 

fact that the number of neighbors is inversely proportional to SAE.  As expected, as the 

complexity of the algorithm increases, the quality of SAEs produced also increases. 
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Runtime Analysis 

 

Table 3: Runtime of SAE Algorithms. 

Algorithm Runtime on 58 Proteins (seconds) 

MSMS 12,195 

Neighbor Count 63 

Neighbor Vector 63 

Artificial Neural Network 342 

Overlapping Spheres 551 

 

As expected, as the complexity of the algorithm increases, the run time also increases. 
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CHAPTER V 

GENERATION OF KNOWLEDGE-BASED POTENTIALS 

Establishment of Representative Protein Database 

Experimentally-determined protein structure information is stored in the Protein 

Data Bank (PDB)60,61.  Proteins used for the generation of the KBP are selected from the 

Dunbrack database62,63, a subset of the PDB that is selected to represent high quality, 

non-repetitive structures.   

 

Table 4: Protein database used to generate KBPs. 

protein group # proteins # amino acids # ∝-helices # β-strands

membrane proteins 58 47,635 1,545 1,454 

soluble proteins 1,795 884,529 32,075 32,641 

Generating Potentials for Soluble Proteins 

A histogram for each amino acid was generated for each of the algorithms by 

running the algorithms over the protein structures in the representative protein database 

described in Table 4.  The following equation describes how histograms are generated for 

each amino acid type. 

 

iሾ݆ሿܽܽ_݉ܽݎ݃݋ݐݏ݄݅ ൌ
ൣ1 ൅ ∑  ,ሺܽܽ௜݁ݎݑݏ݋݌ݔ݁ ݈ܽݑݍ݁ ௝݁ሻ௡

௔௔i ൧
∑ iሾ݇ሿ௠ܽܽ_݉ܽݎ݃݋ݐݏ݄݅
௘k

כ  ݉ 
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,ሺܽܽ௜݁ݎݑݏ݋݌ݔ݁ ݈ܽݑݍ݁ ௝݁ሻ ൌ   ൜
1, ݁ሺܽܽiሻ ൌ ݁j
0, ݁ሺܽܽiሻ ് ݁j

  

where aai is amino acid type i, n is the number of amino acids of type i in the database, ej 

is the range of exposure values j associated with that bin, and m is the number of 

exposure values (we allowed 20 exposure values).  Prior to multiplication by the number 

of exposure values, the values in each bin are probabilities (0 ≤ probability ≤ 1).  

Multiplying by the number of exposure values converts these probabilities to propensities 

(0 ≤ propensity ≤ number of exposure values).  Propensities are then converted to 

energies according to the following equation:  

ሺ݁j|ܽܽiሻݕ݃ݎ݁݊݁ ൌ  െ ݈݊ሺ݄݅݉ܽݎ݃݋ݐݏሾ݅ሿሾ݆ሿሻ 

 
Table 5: Relationship between probabilities, propensities, and energies.  Each exposure 
value is assumed to be equally likely, therefore Prandom = 1 / (number of possible exposure 
values). 

Probability Propensity  Energy  

Probability > Prandom Propensity > 1  Energy < 0 (“low energy”) 

Probability = Prandom Propensity = 1  Energy = 0 (“neutral energy”) 

Probability < Prandom 0 < Propensity < 1  Energy > 0 (“high energy”) 

 

Essentially exposure values that are seen rarely in native proteins are associated 

with a high energy whereas exposure values that are seen often in native proteins are 

associated with a lower energy.  A spline is used to smooth the histogram bins into a 

differentiable potential.  The addition of a pseudocount of 1 to each bin is necessary 

because –ln(0) = ∞ and while exposure values not seen in native proteins should be 

“penalized” with high energy scores, they should not be explicitly forbidden.  
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a) Counts 
 
 
 
 
 
 
 
b) Counts + Pseudo-counts  
 
 
 
 
 
 
 
c) Conditional Probabilities 
 
 
 
 
 
 
 
d) Conditional Propensities  
 
 
 
 
 
 
 
e) Energies 
 neighbor  

count = 1 
neighbor  
count = 2 

ala 1.6 -0.49 
tyr 0.0 0.0 
lys -0.63 20.8 
  

 neighbor  
count = 1 

neighbor  
count = 2 

total 

ala 0 8 8 
tyr 4 4 8 
lys 74 4 78 
total 78 16 94 

neighbor  
count = 1 

neighbor  
count = 2 

total 

1 9 10 
tyr 5 5 10 
lys 75 5 80 
total 81 19 100 

 neighbor  
count = 1 

neighbor  
count = 2 

total 

ala 0.1 0.9 1.0 
tyr 0.5 0.5 1.0 
lys 0.9375 0.0625 1.0 
total 1.5375 1.4625 3.0 

 neighbor  
count = 1 

neighbor  
count = 2 

total 

ala 0.2 1.8 2.0 
tyr 1.0 1.0 2.0 
lys 1.875 0.125 2.0 
total 3.075 2.925 6.0 

add a 
pseudo-count 

of 1 to 
each bin 

divide by the 
number of 

amino acids 
of that type 

multiply by 
the number of 

possible 
exposure 

values 

take the –ln 
of each bin 

Figure 11: Simplified example of KBP generation.  Assume that there are only 
two possible exposure values and only three amino acids. 
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Generating Potentials for Membrane Proteins 

A similar procedure is used to generate KBPs for membrane proteins.  However, 

additional considerations are taken into account for membrane proteins.  Specifically, 

membrane proteins come into contact with three distinct regions: the hydrophobic interior 

of the membrane core, the highly charged transition region containing fatty acid head 

groups, and the polar solution on either side of the membrane.  A potential is generated 

for each of these distinct regions as the energies associated with a given exposure value 

differ in these three environments. 
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CHAPTER VI 

EVALUATION OF KNOWLEDGE-BASED POTENTIALS 

Visualization of Knowledge-Based Potentials 

A visual inspection of the KBPs allows us to verify that the potentials agree with 

expectations.  For example, it is expected that hydrophobic amino acids in solution prefer 

burial.  This is in fact what is seen.  Consider the preference of hydrophobic amino acids, 

such as valine (V), methionine (M), and phenylalanine (F) for a large number of 

neighbors (Figure 12), a small neighbor vector magnitude (Figure 13), and small SAEs 

(Figures 14 and 15).  Additionally, it is expected that hydrophilic amino acids prefer a 

high degree of exposure in solution.  This is also the case.  Consider the preference of the 

hydrophilic amino acids lysine (K), asparagine (N), and glutamine (Q) for low neighbor 

counts (Figure 12), a large neighbor vector magnitude (Figure 13), and large SAEs 

(Figures 14 and 15).  The KBPs for soluble proteins generated by each algorithm are 

shown in Figures 12 – 15. 
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Figure 12: KBP for soluble proteins produced by the Neighbor Count algorithm.  
Each row shows the potential for an amino acid (labeled on left and right).  Each 
column represents the neighbor count (labeled on top and bottom).  Red represents 
high energy while blue represents low energy. 

 

Figure 13: KBP for soluble proteins produced by the Neighbor Vector algorithm.  
Each row shows the potential for an amino acid (labeled on left and right).  Each 
column represents the magnitude of the neighbor vector (labeled on top and 
bottom).  Red represents high energy while blue represents low energy. 
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Figure 14: KBP for soluble proteins produced by the ANN algorithm.  Each row 
shows the potential for an amino acid (labeled on left and right).  Each column 
represents the SAE predicted by the ANN (labeled on top and bottom).  Red 
represents high energy while blue represents low energy. 

Figure 15: KBP for soluble proteins produced by the OLS algorithm.  Each row 
shows the potential for an amino acid (labeled on left and right).  Each column 
represents the SAE as given by the OLS algorithm (labeled on top and bottom).  
Red represents high energy while blue represents low energy. 
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Benchmark Proteins 

In order to determine the effectiveness of the knowledge-based potentials, their 

ability to distinguish between native-like and nonnative-like protein models is evaluated.  

In other words, are they able to tell that the good models are in fact good, and that the bad 

models are in fact bad?  Nineteen benchmark proteins were selected for analysis.  Many 

protein models (i.e. random placements of the secondary structural elements) were 

selected for each benchmark protein.  

Whereas root mean square distance (rmsd) is a metric commonly used to quantify 

the degree of similarity between two structures, a normalized form of rmsd called 

rmsd100 that is independent of the number of amino acids in the protein64 is used in this 

analysis.  Rmsd100 is considered a more robust means of structural comparison. 

   

100݀ݏ݉ݎ ൌ 
ඨ∑ ݀݅

2
݅  
݊

1൅ lnට ݊
100

 

The higher the rmsd100, the greater is the deviation from the native structure.  

The term native-like is used to describe protein models having an rmsd100 less than 5 Å 

whereas protein models having an rmsd100 greater than or equal to 5 Å are described as 

nonnative-like.   

Protein models were selected such that the percentage of proteins with an 

rmsd100 below 5 Å constitute 10% of the decoy set.  This is similar to the distribution of 

native-like and nonnative-like models that are generated during a MC folding program.   

Classification, Architecture, Topology, and Homologous superfamily (CATH) is 

a hierarchical classification of protein domain structures65. In order to examine the 
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performance on a variety of protein domains, proteins from multiple CATH 

classifications were selected (shown in Table 6).  Additionally, models of various sizes 

were selected to ensure a robust benchmark set (also shown in Table 6). 
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Table 6: Benchmark proteins. 
PDB ID CATH 

classification 
# amino acids # models with 

rmsd100 < 5 Å 
# models  

1ail mainly alpha 70 11 110 

1e6i mainly alpha 136 7 70 

1enh mainly alpha 54 48 480 

1r69 mainly alpha 69 11 110 

1a19 alpha beta 180 57 570 

1iib alpha beta 212 68 680 

1acf alpha beta 125 103 1030 

1bm8 alpha beta 99 72 720 

1cc8 alpha beta 73 71 710 

1ctf alpha beta 74 90 900 

1hz6 alpha beta 216 45 450 

1opd alpha beta 85 95 950 

1tig alpha beta 94 17 170 

1b3a mainly beta 134 64 640 

1bq9 mainly beta 54 12 120 

1c9o mainly beta 132 49 490 

1fna mainly beta 91 67 670 

1shf mainly beta 118 13 130 

1scj alpha beta 346 11 110 
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Enrichment Analysis 

In order to determine how well the KBPs distinguish between native-like and 

nonnative-like protein models, the metric enrichment is defined as follows: 

 

ݐ݄݊݁݉ܿ݅ݎ݊݁ ൌ  
ቆ# ݉100݀ݏ݉ݎ ݄ݐ݅ݓ ݁ݎ݋ܿݏ ݕ݃ݎ݁݊݁ ݂݋ %10 ݐݏ݁ݓ݋݈ ݊݅ ݏ݈݁݀݋ ൏ 5 Å

100݀ݏ݉ݎ ݄ݐ݅ݓ ݏ݈݁݀݋݉ # ൏ 5 Å
ቇ

100݀ݏ݉ݎ ݄ݐ݅ݓ ݏ݈݁݀݋݉ ݂݋ ݁݃ܽݐ݊݁ܿݎ݁݌ ൏ 5 Å
 

 

Enrichment is a measure of how well the KBP identifies native-like models as 

good models by assigning them a favorable energy score.  The maximum enrichment 

possible is 10.0 and would occur if all of the models in the lowest 10% of energy scores 

have an rmsd100 less than 5 Å (i.e. it identified all of the native-like models as 

energetically favorable (low energy)) and all models in the highest 90% of energy scores 

have an rmsd100 greater than 5 Å (i.e. it identified all of the nonnative-like models as 

energetically unfavorable (high energy)).  A random enrichment of 1.0 is expected.  

Therefore, an enrichment greater than 1.0 is better than random. 
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Table 7: Average enrichment over benchmark proteins.   
algorithm weighted average enrichment ± weighted standard deviation 

MSMS 3.49 ± 2.99 

Neighbor Count 2.69 ± 2.69 

Neighbor Vector 3.07 ± 2.63 

ANN 3.44 ± 3.00 

OLS 3.30 ± 2.87 

 

 

 

Figure 16: Enrichment over benchmark proteins. 
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Evaluating the Energy of Benchmark Proteins 

A more detailed analysis of KBPs is presented for selected representative 

benchmark proteins.   

 

 

 

 

 

 
 

 
  

‐35
‐30
‐25
‐20
‐15
‐10
‐5

0 5 10 15

en
er

gy
 sc

or
e

rmsd100 (Å)

Neighbor Count, Enrichment = 1.25

‐15

‐10

‐5

0

0 5 10 15

en
er

gy
 sc

or
e

rmsd100 (Å)

Neighbor Vector, enrichment = 2.92

‐10

‐5

0

5

10

15

0 5 10 15

en
er

gy
 sc

or
e

rmsd100 (Å)

ANN, enrichment = 4.17

‐30

‐25

‐20

‐15

‐10

‐5

0 5 10 15

en
er

gy
 sc

or
e

rmsd100 (Å)

OLS, enrichment = 6.25

‐30
‐25
‐20
‐15
‐10
‐5

0 5 10 15

en
er

gy
 sc

or
e

rmsd100 (Å)

MSMS, enrichment = 5.42 lowest 10% by score

highest 90% by score

Figure 17: Energy scores for 1enh decoys. 

a) 

b) c) 

d) e) 



 36 
 

‐75

‐65

‐55

‐45

‐35

‐25

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

OLS, enrichment = 4.29

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 

  

‐70

‐60

‐50

‐40

‐30

‐20

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

MSMS, enrichment = 7.14
lowest 10% by score

highest 90% by score

‐80

‐70

‐60

‐50

‐40

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

Neighbor Count, Enrichment = 5.71

‐50

‐40

‐30

‐20

‐10

0

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

Neighbor Vector, enrichment = 5.71

‐35

‐25

‐15

‐5

5

15

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

ANN, enrichment = 5.71

Figure 18: Energy scores for 1e6i decoys. 

a) 

b) c) 

d) e) 



 37 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
  

‐45

‐35

‐25

‐15

‐5

5

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

MSMS, enrichment = 0.00 lowest 10% by score

highest 90% by score

‐50
‐45
‐40
‐35
‐30
‐25
‐20
‐15

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

Neighbor Count, Enrichment = 0.00

‐30
‐25
‐20
‐15
‐10
‐5
0
5

10

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

Neighbor Vector, enrichment = 0.00

‐20

‐10

0

10

20

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

ANN, enrichment = 0.00

‐45

‐35

‐25

‐15

‐5

0 5 10 15 20

en
er

gy
 sc

or
e

rmsd100 (Å)

OLS, enrichment = 0.00

Figure 19: Energy scores for 1scj decoys. 

a) 

b) c) 

d) e) 



 38 
 

CHAPTER VII 

 

DISCUSSION 

 

Neighbor Count is the simplest measure of SAE and, as expected, achieves the 

lowest average enrichment.  Also as expected, as the algorithms increase in complexity, 

they are able to achieve a higher enrichment.  In other words, they are more effectively 

able to distinguish between native-like and nonnative-like protein models.  The ANN is 

particularly effective at this task and achieves enrichments on reduced-complexity 

models that are nearly as high as the enrichments achieved by the high-resolution MSMS 

algorithm on full-atom models.    

As is seen in Figure 16 and indicated by the large standard deviations shown in 

Table 7, the degree to which the algorithms are able to recognize native-like protein 

varies widely.  Consider the high enrichments produced for the protein 1e6i.  In this case, 

the algorithms are fairly effectively able to distinguish between native-like and 

nonnative-like protein models.  (See Figure 18.)  However, there are proteins that are 

“hard,” for example 1scj.  All algorithms produced an enrichment of 0.0.  (See Figure 

19.) 

In all cases, the maximum possible enrichment of 10.0 was not achieved by any 

algorithm, including the reference standard MSMS.  This indicates that the environment 

free energy contains a limited amount of information and additional energy terms should 

be considered in order to achieve maximum enrichment.  This is in fact the case and 

multiple additional energy evaluation functions are implemented in the Meiler Lab and 
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are used in evaluating the energy of models generated throughout the course of a MC 

folding run. 
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CHAPTER IIX 

 

CONCLUSION 

Summary 

Four SAE approximation algorithms of varying complexities are presented.  The 

least complex algorithms are the most efficient in terms of runtime; however, they are the 

most limited in terms of their ability to distinguish between native-like and nonnative-like 

protein models.   

The ANN is able to distinguish between native-like and nonnative-like protein 

models of reduced complexity very quickly yet nearly as well as the high-resolution 

reference standard MSMS. 

Study Limitations 

Further study is needed to determine how effective the algorithms and KBPs are 

for membrane proteins. 

Future Work 

Experiments have indicated that the backbone atoms are not as essential in 

determining SAE as are the side chains of other amino acids.  These backbone atoms can 

produce noise and obstruct the signal in determining exposure.  One way to increase the 

signal-to-noise ratio is to extend the Cβ atom further into space away from the backbone.  

Experiments are currently being conducted to determine if this enhancement increases the 
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ability of the SAE algorithms to distinguish between native-like and nonnative-like 

proteins. 
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