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CHAPTER I  

 

INTRODUCTION 

 

Overview 

The past decade has ushered in an era of personalized medicine with the growing ability to 

customize care and optimize patient response to therapy. In 2010, a New England Journal of 

Medicine Perspective shared a vision of “steering patients to the right drug at the right dose at 

the right time” (Hamburg & Collins 2010). Improved understanding of genetic and molecular 

characteristics of cancerous cells has opened the door to creating selective biological vehicles 

designed to bind specifically to malignant tissue. Often, these tissue-specific agents can be paired 

with radioactive elements to create powerful diagnostic and therapeutic tools. Cell-targeting 

carriers labeled with photon-emitting radionuclides enable disease diagnosis and localization 

with nuclear medicine imaging techniques. Likewise, tumor-targeting agents can concentrate 

cytotoxic radiation in diseased tissue through the emission of short-ranged charged particles. 

The use of radiopharmaceuticals as a systemic treatment modality has a unique 

distinguishing feature compared to other methods of personalized treatment, such as 

chemotherapy, that target diseased tissue through molecular mechanisms. The capability of 

imaging radionuclides permits quantification of patient pharmacokinetics for use in treatment 

planning to optimize the delivered dose. This high level of individualized dosage differs greatly 

from chemotherapy that is administered based on body weight and a maximum tolerated dose 

determined in clinical trial. Thus, cancer treatment using targeted radionuclides offers two levels 

of personalized medicine. The “right drug” is achieved by selecting the appropriate 
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radiopharmaceutical based on the specificity of cancer cell biology and receptor expression. The 

“right dose” is administered by individualized treatment planning through the use of a tracer 

amount for pre-assessment of uptake and retention. 

Despite the prospect for highly individualized therapy using targeted radionuclides, 

dosimetry is not routinely employed as a clinical tool to optimize patient treatment. Instead, most 

patients receive similar amounts of radioactivity based on the maximum activity to deliver 

sufficient dose to diseased tissue while avoiding toxicity in normal tissue determined in clinical 

trials. The conservative “fixed activity” approach to treatment results in only a small percentage 

of patients receiving optimal care and largely under-dosing the majority of those treated. This is 

in stark contrast compared to other radiation oncology therapies that routinely employ 

individualize treatment plans. For external beam therapy, the radiation energy is selected based 

on tumor depth for maximum dose deposition and the beam is contoured to specifically match 

the shape of the tumor. Furthermore, real-time patient imaging during treatment permits dynamic 

planning as tumor shape and position change.  

The lack of an established, widely adopted treatment planning method in targeted 

radionuclide therapy is due, in part, to the complexity of the procedure and also because early 

attempts failed to demonstrate a relationship between delivered dose and patient outcome. 

However, recent developments offer improved quantification of pharmacokinetics and new 

approaches to modeling radiobiological response. These advances offer promise for patient-

specific dosimetry and the ability to relate dose to important biological end points, namely tumor 

control and toxicity. Many efforts have been made towards making individualized treatment a 

clinical reality. These include the development of accurate techniques for activity quantification 

and applications capable of performing complex dose calculations by Monte Carlo (MC) 
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simulation and other voxel-level dose estimation methods. One facet of patient-specific 

dosimetry that requires attention is the ability to quickly and accurately define patient anatomy 

necessary for modeling tissue composition in MC simulations and calculating absorbed doses to 

organ and tumor volumes. The current methods include using a standard anthropomorphic 

phantom that may differ drastically from the actual patient morphology or the creation of a 

patient-specific model from imaging data through time-consuming manual and semi-automatic 

segmentation. A different approach to modeling patient anatomy that is both accurate and fast 

must be established in order for patient-specific dosimetry to be clinically efficient. 

Objectives 

The goal of the research described in this dissertation is to explore the use of deformable 

anthropomorphic phantoms as a way to produce patient-specific anatomical models for dose 

assessment in targeted radionuclide therapy. This research was motivated by the development of 

standard phantoms consisting of Non-Uniform Rational B-Splines (NURBS) surfaces (Segars 

et al. 2001, Segars et al. 2010). The phantom organs are easily transformed by manipulating the 

control points that define their shape to generate models with varying anatomy. This research 

project is of interest because the quick adaption of an existing body model to an individual 

patient, without having to perform time-consuming image-based manual segmentation of 

anatomical structures, allows patient-specific dosimetry to be completed in a time-frame more 

favorable with the clinical treatment schedule. It is our aim that the development of a real-time 

application to create patient models for organ and tumor identification in conjunction with 3D 

dose estimates through MC simulation will facilitate the effort to replace current “fixed activity” 

treatment protocols with personalized plans.  
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This work is divided into two separate parts. The first project focuses on the development 

and validation of a voxel-based Monte Carlo simulation application for dose calculation. Our 

objective is to construct a dosimetry code that is capable of modeling the decay scheme of any 

type of radionuclide in order to be widely-applicable to current and future therapies. The second 

part is to develop an application to create patient-specific 3D models from deformable NURBS 

phantoms. These models will serve as input to the dosimetry application to accurately define 

patient anatomy and designate tissue properties in the simulation. We will then test the 

effectiveness of this method by performing patient-specific dosimetry in clinical studies. The 

specific aims are defined as followed: 

1. To develop and validate a 3D dosimetry application using the Geant4 Monte Carlo 

toolkit. Geant4 provides an easy and comprehensive method of modeling any radionuclide 

through the use of the built-in radioactive decay module. The toolkit is also very flexible for 

defining the simulation geometry and scoring energy transferred to tissue at the voxel level. The 

dosimetry application produces 3D dose distributions that show tumor dose non-uniformities and 

permit radiobiological modeling.  

2. To develop a patient-specific deformable model application including a Graphical 

User Interface (GUI) to display the NURBS surfaces and patient Computed Tomography 

(CT) images for easy user manipulation. The deformable model application has the ability to 

perform many different manipulations of the NURBS surfaces that define the phantom body 

contour and internal organs. These methods include simple transformations such as translation, 

rotation, and scaling as well as more complex algorithms for vector field transforms and surface 

reshaping to fit a set of points. These algorithms provide the user with a robust toolkit for easily 

creating a patient-specific model using a standard phantom as a template. 
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3. To assess accuracy of patient models created by modification of a NURBS-based 

standard phantom by comparing them to manually segmented image data. The accuracy of 

the patient models is assessed using a variety of different metrics, including comparing total 

organ volumes, calculating a distance map between organs, and computing the percent volume 

overlap of a specific organ. The data used in this study represents patients of different sizes, 

genders, and ages, which provides a measure of the robustness and flexibility of the deformable 

models program.  

4. To demonstrate the utility of the dosimetry and deformable models techniques 

through application to clinical studies. The use of data from patient studies will establish the 

clinical viability of our dosimetry application and serve as an additional validation of our 3D 

dose assessment by comparing results to an established dosimetry method. 

Outline 

The work of this dissertation is organized into five major chapters. Chapter 2 begins with an 

introduction to clinical treatment applications using open source radioactivity. The chapter 

continues with a discussion of the methodology of determining dose from internal emitters and 

the role of anthropomorphic phantoms in internal dosimetry. The chapter concludes with a 

summary of research findings that serve as motivation for performing patient-specific dosimetry 

for these patients and advancements made in the field. 

Chapter 3 focuses on the creation and validation of the Voxel-based Internal Dosimetry 

Application (VIDA), a toolkit using MC simulation and a custom exponential fitting tool to 

perform patient-specific imaged-based dosimetry. The material in this chapter is an extension of 

an article, “VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using 

Geant4”, published in Cancer Biotherapy and Radiopharmaceuticals (Kost et al. 2015). 
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Chapter 4 summarizes the method for creating a patient-specific anatomical model based on 

a standard NURBS phantom. The introduction section includes background on NURBS surfaces 

and the advantages for using them as a primitive for realistic modeling of the human body. The 

chapter continues with a discussion the Phantom Morphus software application and its 

algorithms that deform the NURBS surfaces of a reference phantom to match patient anatomy 

from CT imaging. The chapter also contains a study using high-resolution CT imaging that 

investigated the accuracy of identifying volumes of interest from the individualized NURBS 

model compared to manual and semiautomatic segmentation methods and an analysis of the 

impact of using deformable models for 3D dose assessment with VIDA. 

Chapter 5 describes a clinical application of patient-specific dosimetry using the methods 

defined in Chapters 3 and 4. Individualized dosimetry was performed for two non-Hodgkin 

lymphoma (NHL) patients treated with a 
131

I-labeled monoclonal antibody using multiple hybrid 

Single Photon Emission Computed Tomography (SPECT)/CT scans. The chapter presents results 

of voxel-level doses using organ maps created from conventional segmentation methods and 

from a patient-specific NURBS model. The chapter also includes a comparison of the results 

with doses calculated with another 3D dosimetry code that serve as additional validation of 

VIDA. 

Finally, Chapter 6 summarizes the results of the previous chapters and discusses the clinical 

value of using patient-specific NURBS phantoms for dose assessment and treatment planning for 

radionuclide therapy. This chapter also outlines future advancements that can be made to expand 

the method for deforming NURBS phantoms into individualized models and the additional steps 

required to release the created dosimetry application to the broader nuclear medicine community. 
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CHAPTER II  

 

BACKGROUND 

 

Patient-specific dosimetry involves determining the amount, rate and distribution of internal 

doses from ionizing radiation based on individual anatomy and biokinetics. Internal dose 

assessment is not performed using direct measurements, but instead on theoretical calculations 

dependent on a number of principles, including fundamental physical processes of radioactivity 

and particle interactions, the biological response to radiation, pharmacokinetics of treatment 

agents, nuclear medicine imaging techniques for the detection and treatment disease, and 

computational simulation of dose deposition in models of the human body. 

This chapter is organized into five sections. The first section contains an overview of clinical 

aspects of radionuclide therapy. The following section provides a brief overview of the two main 

approaches to internal dosimetry, namely fixed-geometry and 3D imaged-based methods. The 

third section discusses the historical development of anthropomorphic phantoms. These 

phantoms define anatomical structures and their tissue compositions necessary for dose 

calculations. The remaining sections focus on the motivation for performing patient-specific dose 

calculations and a summary of research developments that make personalized dosimetry viable 

in the clinical setting. For readers unfamiliar with basic physical concepts relating to nuclear 

medicine and internal dosimetry such as radioactive decay, particle interactions and absorbed 

dose, a review is included in Appendix A. The methodology behind nuclear medicine imaging 

techniques, including SPECT and Positron Emission Tomography (PET), is summarized in 

Appendix B. A brief overview of MC methods is found in Appendix C. 
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Clinical Overview of Targeted Radionuclide Therapy 

Targeted radionuclide therapy
1
 (TRT) employs locally, regionally or generally administered 

unsealed radioactive sources to selectively deliver radiation to tumors or target organs. 

Successful treatment depends on the sufficient uptake and prolonged retention of the 

radiopharmaceutical in the target region while limiting the toxicity to normal tissue. This 

specificity is achieved by selecting appropriate radionuclides that emit short range electrons 

through beta decay. As a cancer treatment, TRT combines the advantage of target selectivity 

from external beam therapy and the benefit of whole body treatment similar to chemotherapy. 

The systemic nature of TRT makes it an attractive treatment choice by simultaneously targeting 

primary tumor sites and distant metastatic disease that may be undetectable by diagnostic 

imaging.  

Historically, TRT has exploited the human body’s natural tendency for concentrating 

specific elements in certain tissue, such as iodine uptake in the thyroid or phosphate and 

strontium accumulation in bone. Many efforts have focused on developing a so called “magic 

bullet” with a mechanism for specific binding to target tissue. Progress has been made in the 

form of radioimmunotherapy (RIT) by combining immunotherapeutic and radiation mechanisms 

to target cancer cells that express specific antigens. Peptide receptor radionuclide therapy 

(PRRT) aims to target tumor cells with bioengineered radiopeptides that bind to specific 

membrane receptors with high affinity. Selective internal radionuclide therapy (SIRT) employs 

radioactive microspheres that are selectively delivered to tumors in the liver via the hepatic 

                                                
1 The use of unsealed radioactive source in cancer treatment has historically been known by a variety of names 

including isotope treatment, targeted radionuclide therapy, radiopharmaceutical therapy, internal radionuclide 

therapy, and more recently, molecular radiotherapy. There may be some nuances in each of these names, e.g. 

molecular radiotherapy is used to describe treatment with radioactive agents that interact with molecular sites and 

receptors. However, the vast majority of literature in this field employs the term targeted radionuclide therapy. 

Hence, in this work, any treatment relating to unsealed radiopharmaceuticals will be referred to as such. 
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artery. Table II.1 summarizes common therapeutic radionuclides including their decay properties 

and treatment indications. Comprehensive reviews of TRT for cancer treatment can be found in 

the literature (e.g. Brans et al. 2007, Ersahin et al. 2011). 

Table II.1: Common radionuclides and treatment indications. Mean energies are reported for beta 

decay emissions. 

Radionuclide Half Life 
Key Emissions 

Treatments 
γ (keV) β- (MeV) 

131
I 8.02 d 365 0.192 Benign and malignant thyroid disorders  

B-cell non-Hodgkin lymphoma 

Neuroendocrine tumors 

90
Y 64.1 h — 0.934 B-cell non-Hodgkin lymphoma 

Neuroendocrine tumors 

Microspheres for liver metastases 

111
In 2.80 d 171 

245 

— Neuroendocrine tumors 

Imaging analogue for 
90

Y 

177
Lu 6.73 d 208 0.149 Neuroendocrine tumors 

89
Sr 50.5 d — 0.585 Bone metastases 

153
Sm

 
46.5 h 103 0.640 

0.710 

0.810 

Bone metastases 

166
Ho 26.8 h 80.6 0.651 

0.694 

Multiple myeloma 

Microspheres for liver-related disease 

188
Re 16.9 h 155 0.795 Microspheres for hepatocellular 

carcinoma, colorectal cancer and 

neuroendocrine tumors 

 

Radioiodine Therapy 

The first application of targeted radionuclide therapy began in the 1940’s with the use of 

radioiodine (
131

I) for the treatment of hyperthyroidism (Graves’ disease) and malignant thyroid 

conditions (Frantz et al. 1944, Hertz & Roberts 1946). Radioactive iodine is a natural choice for 

treatment due to its tendency to concentrate in thyroid tissue, with minimal or no adverse effects 



10 

 

on normal tissue including radiosensitive red marrow. Radioiodine decays with both beta and 

gamma emissions. The primary beta emission has an approximate maximum range in tissue of 2 

mm, concentrating large doses to the thyroid. The detectable photon provides a method for 

characterizing the activity uptake in diseased and normal tissue.  

Neuroendocrine tumors such as neuroblastoma and phaeochromocytoma can also be treated 

with radioiodine. Neuroblastoma is extremely radiosensitive and external beam therapy provides 

good control of local disease; however dose constraints of total body irradiation limit its success 

for systemic treatment. Targeted therapy with radioiodinated metaiodobenzylguanidine (
131

I-

mIBG) exploits the active uptake pathway for noradrenaline expressed in tumors of neural crest 

origin (Meller 1997). 
131

I-mIBG therapy is most effective in treating small metastases due to the 

limited penetration range of 
131

I beta particles, and is mostly utilized as a secondary treatment for 

patients with metastatic disease that exhibit poor response to chemotherapy. Other studies 

(Mukherjee et al. 2001, Prvulovich et al. 1998) have shown that 
131

I-mIBG also has potential to 

treat metastatic carcinoid tumors in patients with advanced disease. 

Bone-Seeking Therapies 

Bone-seeking radionuclides offer an alternative palliative treatment for painful bone 

metastases. Skeletal tissue is a common place for metastatic disease with the majority of cases 

linked to prostate or breast cancer (Ersahin et al. 2011). External beam radiotherapy has been 

successful in treating both localized tumor sites and widely disseminated disease using half or 

total body irradiation. However, this approach can be very toxic and TRT may be equally 

effective but better tolerated (Chatal & Hoefnagel 1999). The most frequently used radionuclides 

for metastatic bone disease are 
89

Sr
 
and 

153
Sm. 

89
Sr is a pure beta emitter and acts as calcium 

analogue with preferential uptake in the skeleton. Treatment with 
153

Sm is administered as a 
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molecule linked to a calcium salt (EDTMP) that has an affinity for skeletal tissue exhibiting 

increased bone turnover (Bauman et al. 2005). A novel bone-targeted therapy using the alpha 

emitter 
223

Ra has been approved to treat metastatic castration-resistant prostate cancer. 
223

Ra 

dichloride mimics calcium in the body and binds to areas of increased bone turnover as found in 

metastases. Energetic alpha particles have a very short range in tissue (< 100 μm), resulting in 

high linear energy transfer and cytotoxic DNA double-strand breaks (Bruland et al. 2006). The 

short range of alpha particles also offers the advantage of reduced dose to bone marrow 

compared to beta particles emitted by 
89

Sr
 
and 

153
Sm. 

Bone-seeking radiopharmaceuticals can also be used to treat multiple myeloma as a 

preparative regimen to high-dose chemotherapy and peripheral blood stem cell transplantation 

(Breitz et al. 2006). Tetraphosphonate molecules radiolabeled with 
166

Ho localize on bone 

surfaces. 
166

Ho is primarily a beta emitter with maximum energy of 1.85 MeV corresponding to a 

pathlength of 8.7 mm in soft tissue and 3.8 mm in bone, concentrating radiation in the skeleton 

while sparing normal tissue. The short physical half live of 
166

Ho (27 hours) permits delivery of 

high-dose chemotherapy and reinfusion of preserved peripheral blood stem cells within 6–10 

days, offering an advantage over high-dose therapy with longer lived radionuclides such as 
131

I 

or 
90

Y (Breitz et al. 2006). 

Radioimmunotherapy  

RIT for B-cell NHL is an attractive treatment option because lymphoma cells are inherently 

sensitive to radiation. Moreover, approximately 90 percent of patients with follicular lymphoma 

present with disseminated disease and cannot be cured with external-beam radiotherapy to 

localized sites (Kaminski et al. 2005). Several radiolabeled monoclonal antibodies have been 

developed that selectively bind to CD20 antigen on the surface of normal and malignant B cells 
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(see Figure II.1). The CD20 antigen is an ideal target for immunotherapy of B-cell NHL because 

it is expressed in most cases of NHL and on normal B lymphocytes but not on stem cells, plasma 

cells, or nonhematopoietic tissues (Witzig et al. 2002). When labeled with 
131

I (
131

I-tositumomab, 

drug name Bexxar) or 
90

Y (
90

Y ibritumomab tiuxetan, drug name Zevalin) and administered 

systemically, the antibody can deliver cytotoxic doses of radiation to all sites of disseminated 

disease. 
90

Y-labeled antibodies may provide better response when treating bulky, poorly 

vascularized tumors and tumors with heterogeneous antigen expression. 
90

Y delivers higher beta 

energy radiation than 
131

I (2.3 MeV vs. 0.6 MeV) and can penetrate soft tissue up to 5 mm 

compared to the 1 mm range of 
131

I. Furthermore, as a nearly pure beta-emitter, 
90

Y ibritumomab 

tiuxetan can be administered on an outpatient basis without the need for patient isolation due to 

radiation safety concerns (Witzig et al. 2002). 

 

Figure II.1: Radiolabeled anti-CD20 monoclonal antibody targets cancerous NHL B-cells. 
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Peptide Receptor Radionuclide Therapy  

PRRT has been investigated by several clinical trials as targeted treatment for 

neuroendocrine tumors. Therapy with radiopeptide exploits the overexpression of somatostatin 

receptors in a restricted number of tumor types. Somatostatin analogues were first labeled with 

111
In in the form of 

111
In-DTPA

0
-octreotide and used mainly for tumor imaging. Initial treatment 

studies were performed by administering high activities of this radiopeptide with encouraging 

results (Valkema et al. 2002). However, 
111

In is not an ideal radionuclide for PRRT because of 

its small particle range and therefore short tissue penetration (Kwekkeboom et al. 2003). Another 

radiolabeled somatostatin analogue 
90

Y-DOTA
0
-Tyr

3
-octreotide was developed specifically for 

radiotherapy. As a pure beta emitter, 
90

Y offers the advantage of delivering targeted dose to 

receptor-positive tissue while sparing normal tissue. However, the use of 
90

Y must be paired with 

an imaging tracer counterpart for dosimetry calculations. The imaging tracer may not be 

chemically identical but must yield comparable radiopharmacokinetics and biodistribution. 

Recently a new analogue DOTA
0
-Tyr

3
-octreotate has been developed with a ninefold higher 

affinity for the somatostatin receptor subtype 2 as compared with DOTA
0
-Tyr

3
-octreotide 

(Kwekkeboom et al. 2003). Octreotate has been labeled with the beta and gamma-emitting 

radionuclide 
177

Lu for therapy, offering several benefits over 
111

In and 
90

Y labeled radiopeptides. 

Studies indicated that the concentration of 
177

Lu-octreotate was comparable to 
111

In-octreotide 

for normal tissue but was up to fourfold higher for tumors. The increased tumor uptake obtained 

with 
177

Lu-octreotate results in higher absorbed doses to malignant cells with similar doses to 

organs at risk for toxicity. 
177

Lu-labeled peptides offer the advantage of having a lower 

maximum beta energy (0.49 MeV) and penetration range (2 mm) compared to 
90

Y which may be 

important when targeting small tumors. 
177

Lu also decays via gamma emission allowing for 
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activity quantification and dosimetry calculations using the therapeutic agent. A clinical 

investigation of the use of 
177

Lu-DOTA
0
-Tyr

3
-octreotate for treatment of inoperable, 

somatostatin receptor positive gastro-entero-pancreatic neuroendocrine tumors is currently 

ongoing. 

Selective Internal Radiation Therapy 

Radiolabeled microspheres selectively treat primary or metastatic liver tumors through 

infusion into the hepatic artery. This treatment, known as SIRT, is based on observation that liver 

tumors larger than 2 cm in diameter receive more than 80% of their blood supply from the 

hepatic artery (Giammarile et al. 2011). Conversely, normal liver parenchyma receives the 

majority of its blood from the portal vein. The use of microspheres provides a highly specific 

treatment with upwards of 90% of the radioactivity localized in the liver. 

90
Y embedded in resin or glass microspheres is the most popular radionuclide for SIRT. Fat 

droplets of iodized esters of poppy seed oil are also used by substituting stable iodine (
127

I) with 

radioiodine. Microspheres containing 
166

Ho and 
188

Re are also used. With the exception of 
90

Y, 

these radionuclides emit gamma photons that can be imaged, permitting patient-specific dose 

estimates from SPECT (Burrill et al. 2011, Shcherbinin et al. 2014). 

Internal Dose Calculations 

Internal dose assessment requires the determination of the total energy absorbed per unit 

mass of tissue for volumes of interest (i.e. whole organs, tumors, or voxels). The absorbed dose 

from internal sources is dependent on the type of particles emitted, their energies, and the tissues 

with which they interact. Absorbed dose calculations also require measurement of the uptake and 

retention of radiopharmaceuticals administered to the patient. Two approaches to internal dose 

calculations, fixed-geometry and 3D image-based dosimetry, are described in this section. 
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Fixed-Geometry Dosimetry 

The conventional method for estimating absorbed dose from internal sources was 

standardized in the 1960’s by the Medical Internal Radiation Dose (MIRD) committee of the 

Society of Nuclear Medicine (Loevinger & Berman 1976, Loevinger et al. 1988). The MIRD 

approach divides the dose calculation into the physical factors that determine the fractional 

energy of emitted particles absorbed by the tissue and the biodistribution of activity in the body. 

The method calculates the radiation dose to a target organ from radioactivity in one or more 

source organs based on absorbed fractions derived from a fixed geometry using a standard 

anatomical model.  

Fixed geometry dosimetry using the MIRD schema separates the components of absorbed 

dose in a target volume into three distinct quantities. The dose is dependent on (1) the amount of 

activity as a function of time in the source organ, (2) the energy emitted per disintegration in the 

source organ and (3) the fraction of emitted energy absorbed by the target organ. 

Cumulated Activity 

Dose delivered by a source organ to a target organ is a function of the amount of activity in 

the source organ and the time the activity is present. The product of these values characterizes 

the number of total disintegrations in a source volume. This quantity, called cumulated activity 

(Ãs), is determined by integrating the time-activity curve for a particular source organ (see 

equation II.1). 

 𝐴̃𝑠 = ∫ 𝐴𝑠(𝑡)𝑑𝑡
∞

0

= 𝐴0∫ 𝑓𝑠(𝑡)𝑑𝑡
∞

0

 II.1 

The number of disintegrations in the source region depends on both the spatial and temporal 

distribution of the radionuclide within the body. Clinically, this value is obtained from a time-
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sequence of nuclear medicine scans after injection of the radiopharmaceutical. These data are 

modeled as a sum of exponential functions (see equation II.2), with effective clearance rates 

dependent on the physical and biological half-lives of the source. 

 𝑓𝑠(𝑡) = 𝑓1𝑒
−(𝜆1+𝜆𝑝)𝑡 + 𝑓2𝑒

−(𝜆2+𝜆𝑝)𝑡 +⋯+ 𝑓𝑁𝑒
−(𝜆𝑁+𝜆𝑝)𝑡 II.2 

The terms f1…fN represent the fractional uptake of administered activity within the first to 

N
th
 components of the source region, λ1… λN represent the biological clearance rates for the 

corresponding N components and λp is the physical decay constant of the radioactive source 

(Stabin 2008b). 

Energy Emitted Per Disintegration 

The mean energy emitted per disintegration (Δi), also known as the equilibrium absorbed 

dose constant, is a product of both the average energy of the i
th 

emission and the relative 

frequency of the emission per decay. The equilibrium absorbed dose constant is a physical 

property of the radionuclide and may be obtained from standard dosimetry tables. For sources 

that have multiple emissions in their decay scheme, the total mean energy per transition must be 

calculated as the sum of the mean energies for all particles emitted. The product of the mean 

energy emitted per disintegration and the cumulated activity serves as an expression for the total 

energy emitted by the i
th 

emission for the time radioactivity is present in the source organ. 

Absorbed Fraction 

The final quantity in the MIRD schema for absorbed dose calculations is the absorbed 

fraction (ϕi). The absorbed fraction accounts for the emission type and particle energy as well as 

the geometrical factors relating the source to the target tissue. This value represents fraction of 

the total energy emitted in a source region that is absorbed in the target organ. The target 

receiving the energy can be the region emitting the radiation (self-dose) or other organs 
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throughout the body (cross-organ dose). For non-penetrating radiation (see Figure II.2a), most 

energy is deposited in the source resulting in an absorbed fraction near or equal to unity. In 

human tissue, beta particles, electrons and photons with energies below 20 keV are classified as 

‘non-penetrating’ radiation (Loevinger et al. 1988). Radiation that deposits significant energy to 

organs other than the source is labeled as ‘penetrating’ and will have absorbed fractions between 

zero and one (see Figure II.2b). Because the absorbed fraction is dependent on the geometry 

relating the source region to the target region and the absorption properties of the tissues 

comprising the body, values are often obtained from MC calculations that model particle 

transport and energy deposition between source and target regions. 

 

Figure II.2: Non-penetrating and penetrating radiation in human tissue. 

Absorbed Dose 

Expressing the total absorbed energy in terms of cumulated activity (𝐴̃𝑠), energy emitted per 

disintegration (Δi), and absorbed fraction (ϕi ) results in an equation describing the dose 

contribution to a target region from a source given by: 
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 𝐷𝑇→𝑆 =
𝑘𝐴̃𝑆 × ∑ Δ𝑖 ∙ 𝜙𝑖𝑖

𝑚𝑇
 II.3 

In equation II.3, mT is the mass of the target region and k denotes a constant of proportionality. It 

can be reduced to a simple product of two values, the cumulated activity in a source region (𝐴̃𝑠) 

and the absorbed dose to a target region per unit cumulated activity in the source, called the S-

value (S) (see equation II.4). 

 𝐷𝑇←𝑆 = 𝐴̃𝑆 × 𝑆 II.4 

By comparing equation II.3 to equation II.4, the S-value takes the following form: 

 𝑆𝑇←𝑆 =
𝑘 ∑ Δ𝑖 ∙ 𝜙𝑖𝑖

𝑚𝑇
 II.5 

The total absorbed dose to the target (DT) is simply the sum of the dose contributions to the 

target from all the different source regions (see equation II.6). 

 𝐷𝑇 =∑𝐴̃𝑆𝑖 × 𝑆𝑇←𝑆𝑖
𝑖

 II.6 

The virtue of a fixed-geometry approach to dosimetry is that it reduces complex 

computations to a simple formula. S-values can be pre-calculated for a specific anatomic model 

and tabulated for each radionuclide, considerably reducing the required numerical work. The 

methodology is easily extended to clinical use in the form of software applications, requiring the 

user to only provide the cumulated activity for each source organ exhibiting uptake. The 

RAdiation Dose Assessment Resource (RADAR) Task Group of the Society of Nuclear 

Medicine has created large databases of S-values, calling them instead Dose Factors (DFs) 

(Stabin & Siegel 2003). 
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Three-Dimensional Image-based Dosimetry  

For many years, dose calculations were limited by available computational resources and 

were generated using fixed geometry with standard phantoms. The approximations of applying a 

fixed geometry approach to patient dosimetry could result in errors up to 100% (Flux et al. 

2006). While these uncertainties are acceptable for estimating stochastic risks from diagnostic 

nuclear medicine studies and radiation protection surveys, they are inadequate for therapeutic 

dosimetry when tumor control and toxicity are imperative. Several other limitations arise when 

fixed-geometry dosimetry is employed in TRT. Fixed-geometry dosimetry has no way to 

incorporate the spatial distribution of activity and only reports mean organ doses from uniform 

activity sources. Moreover, the use of pre-determined specific absorbed fractions (SAFs), the 

absorbed fraction scaled by the mass of the target volume, from standard phantoms lacks a 

suitable method for quantifying dose to and from tumor volumes, which is the primary goal of 

dosimetry for disease-targeting radioactive agents. Finally, radiobiological models, used to 

assess the biologic effects indicative of toxicity and tumor control from non-uniform absorbed 

doses, require knowledge of the spatial dose distribution to tumors and sensitive tissue. In the 

last few decades, significant efforts have been made towards patient-specific image-based 

approaches to dosimetry. Technological advancements in tomographic image, the availability of 

greater computational resources, and enhanced simulation capabilities have overcome many of 

the limitations to performing voxel-based 3D dosimetry. 

Image-based dosimetry requires the following essential components. 3D anatomical images 

enable the definition of volumes of interest (organs and tumor) and provide tissue density 

information. Time-sequential voxel-based activity distributions describe the radiopharmaceutical 

kinetics permit the calculation of total absorbed dose. Lastly, a computational method for dose 
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calculation in the patient-specific model, such as MC simulation, is necessary. A detailed 

discussion of each of these elements is provided below. 

Anatomical Model 

The application of absorbed fractions to patient anatomy that greatly differs from a standard 

phantom causes a large amount of uncertainty in dose estimates using the MIRD schema. 

Incorporating a patient-specific anatomical model helps to reduce the error in the dose 

calculation. Patient anatomy provides accurate information about organ sizes and densities and 

permits tumor localization. Suitable image modalities for obtaining anatomical data include CT 

and magnetic resonance imaging (MRI), as both yield high contrast and high resolution 3D 

images. Image segmentation techniques, both automatic and manual, are used to define source 

and target region of interests (ROIs). 

Radiopharmaceutical Kinetics 

Personalized dose estimates require a quantitative measurement of the biodistribution of the 

radionuclide based on the uptake, retention and clearance rates of different organs. Once the 

source regions are identified from anatomic imaging, the distribution of the radiopharmaceutical 

in the body can be determined by sequential quantitative imaging methods such as SPECT or 

PET. At the present time, most therapeutic radionuclides do not emit positrons, making SPECT 

more applicable for activity quantification. However, there have been several studies 

investigating the use of PET-based imaging analogues in 3D dosimetry (Hobbs et al. 2009, 

Sgouros et al. 2011, Sgouros et al. 2004).  

The selection of optimal time points for sampling is an important factor in activity 

quantification. The temporal sampling is related to the effective half-life of the 

radiopharmaceutical and applying inappropriate sampling points may have a significant effect on 
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the accuracy of the cumulated activity measurements. Insufficient sampling of tissue activity at 

times just after administration results in an overestimation of the area under the time-activity 

curve. If long-term retention is neglected from insufficient sampling at times long after 

administration, the cumulated activity will be underestimated (Siegel et al. 1999). Imaging after 

administering a therapeutic level of activity may be postponed due to the dead time of the 

camera. A short but finite amount of time is required to process a recorded event and proceeding 

events may be lost or incorrectly positioned during this time. At high levels of activity, these 

losses may be substantial, requiring either a delay of imaging, dead-time correction or both. 

When the imaging tracer differs from the therapeutic one, it is necessary to correlate the 

behavior of the imaging and the therapeutic radiopharmaceutical. For chemically different 

imaging tracers, as is the case when using a gamma-emitting image surrogate to predict the 

therapeutic response from beta emitters such as 
90

Y, it is assumed that the similar physical and 

biological half-lives of the two agents yield comparable in vivo pharmacokinetics and 

biodistributions (Brans et al. 2007). Half-life differences must be accounted for when 

determining the cumulated activity for the therapeutic agent by multiplying the measured activity 

at a given time point by the ratio between the decay constants for the therapeutic agent and 

imaging tracer. 

The tomographic quality of SPECT permits modeling radiopharmaceutical kinetics for each 

voxel in the source region. Ideally, several SPECT studies are taken over time and registered to 

each other and the anatomical image (CT). The integration of voxel activities yields a 3D 

representation of cumulated activity. If multiple 3D images are unavailable, a hybrid planar/3D 

method of pharmacokinetic analysis is possible. The 3D cumulated activity is derived from a 

single SPECT scan by assuming a static spatial distribution for the region of interest and 
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applying average kinetics over the whole volume from the planar images. Values obtained based 

on average kinetics using the hybrid method may under- or over-estimate voxel-level doses by 

more than 50% compared to estimates made from time-sequenced 3D data (Sgouros et al. 2004). 

It is important to note that the acquisition and reconstruction methods for diagnostic SPECT 

imaging may not be optimal for activity quantification for patient-specific 3D imaged-based 

dosimetry. A review article by Frey et al. (Frey) summarizes aspects of the imaging process that 

affect the reliability of quantitative measurements. Factors that degrade the image during 

acquisition include attenuation and scatter in the patient, increased septal penetration in the 

collimator due to higher energy gamma emissions associated with therapeutic radionuclide, and 

the intrinsic sensitivity of the detector to the emitted photon energies. Reconstruction of 

projection images using iterative statistical algorithms such as ordered-subsets expectation-

maximization (OSEM) compensates for attenuation, scatter, collimator–detector response and 

partial volume effects, and generally yields more accurate quantitative data (He et al. 2005). In 

addition, quantitative methods require a conversion of image counts to a physical activity value. 

For planar imaging, this may be a simple counts-to-activity conversion factor that includes both 

the imaging system sensitivity as well as an approximate correction for source thickness (He & 

Frey 2006). However, voxel-level activity cannot be obtained from multiplication of a spatially 

invariant conversion factor without compensation for physical image degrading effects such as 

attenuation and scatter during reconstruction. The current guidelines for best practices in 

quantitative SPECT imaging for dosimetry are summarized in MIRD Pamphlet 23 (Dewaraja 

et al. 2012). 
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Absorbed Dose Calculations 

Unlike absorbed dose estimates using the MIRD schema, image-based dosimetry does not 

rely on pre-determined SAFs from reference phantoms to relate the cumulated activity in a 

source to the dose deposition in a target. Therefore a method must be employed to model particle 

transport and energy deposition using patient anatomy and the biodistribution of the 

radionuclide. The spatial distribution of absorbed dose is determined by one of several methods 

including assuming complete, local absorption of short-range electrons, the application of voxel 

S values, dose-point kernel convolution, or direct calculation from MC simulation (Dewaraja 

et al. 2012). 

The simplest approach is to assume local energy absorption of all electron and beta 

emissions within the same voxel as the decay. This method is fast as it only requires a rescaling 

of the activity distribution based on the energy spectrum and abundances for the radionuclide. It 

is best suited for pure-beta emitters (i.e. 
90

Y) and may limit accuracy in the absorbed dose 

estimates for radionuclides with significant gamma emissions (i.e. 
131

I) that deposit energy far 

from their source (Ljungberg & Sjögreen-Gleisner 2011). 

Voxel level S value calculations provide another simple technique for determining spatially 

variant dose rates without having to perform patient-specific MC simulations. This method 

applies the MIRD schema to a target voxel using S values for nearby source voxels (see equation 

II.7) (Bolch et al. 1999). 

 𝐷𝑣𝑜𝑥𝑒𝑙 𝑇 =∑𝐴̃𝑣𝑜𝑥𝑒𝑙 𝑆𝑖 × 𝑆𝑣𝑜𝑥𝑒𝑙 𝑇←𝑣𝑜𝑥𝑒𝑙 𝑆𝑖

𝑁

𝑖

 II.7 

Computation of voxel S values assumes the source and target voxels are contained within an 

infinite homogeneous medium. Therefore, voxel S value method offers accurate dosimetry for 
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anatomic regions of uniform density tissue but does not support tissue inhomogeneity. In 

addition, S values are specific to voxel dimensions. S values must be generated for each set of 

tissue type, voxel dimension, and photon or electron energy. Efforts have been made to tabulate 

S values for different voxel dimensions and radionuclides (Lanconelli et al. 2012) and create 

methods to rescale S values to arbitrary voxel sizes (Fernández et al. 2013) in order to make 

voxel S values a reliable and fast approach to dosimetric calculations. 

The dose kernel convolution method (see Figure II.3) involves convolving the spatial 

activity distribution with a medium-specific radionuclide dose kernel. The dose kernel is defined 

as the absorbed dose per decay at a radial distance (r) from the source, assuming an infinite, 

homogeneous medium. Monte Carlo simulation is used to sample initial photon energies from 

the radionuclide decay scheme, generate the particle in a random direction, and score its energy 

deposition at a distance from the point source. 

 

Figure II.3: Dose kernel convolution using both anatomical and functional image information to 

produce a dose map. The CT image on the left provides tissue density information. The center 

image represents the distribution of activity which is convolved with the dose kernel. The image 

on the right is the resulting dose distribution (Tsougos et al. 2010). 

Dose kernels are simple to implement and calculation times are not prohibitively long 

especially if carried out in the Fourier domain. However, the dose kernel method has two major 

shortcomings. First, photon dose kernels do not model dose deposition due to electrons. This 
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limitation may be mitigated by assuming the electron dose is deposited within the voxel 

containing the activity. Second, modeling tissue inhomogeneity is difficult because dose kernels 

are generated assuming an infinite, homogeneous medium. Tissue density corrections can be 

applied using an energy loss factor derived from the specific material dose kernel such as water 

(soft tissue), bone or air (Loudos et al. 2009), but contain significant inherent uncertainties. 

Direct patient-specific dose calculations are possible with the use of MC codes that simulate 

the transport of radiated particles and record energy deposits in complex geometries and for 

heterogeneous media. A personalized simulation is performed based on the patient geometry, 

radionuclide type, and activity concentration. Three-dimensional dose information is determined 

by discretizing the patient body into a voxelized phantom with a different material and activity 

assigned to each voxel. Common MC computer codes suited for internal dosimetry calculations 

include Geometry and Tracking (Geant4) (Agostinelli et al. 2003, Allison et al. 2006), Monte 

Carlo N-Particle (MCNP) (Sweezy et al. 2003) and Electron-Gamma Shower (EGS) (Hirayama 

et al. 2005). These codes have been developed over many years by teams of experts. Some have 

unique advantages (e.g. Geant4's visualization tools are superior to those provided with a 

standard MCNP or EGS installation), but all have undergone significant validation to provide 

reliable results for most particle energies and geometries. 

Monte Carlo methods for dose calculations are known to be the most accurate; however 

there are some limitations. MC simulations are computationally rigorous, requiring considerable 

computing resources, and may exceed time constraints for clinical dosimetry. Furthermore, dose 

estimates from MC methods must be validated. The inherent flexibility in generic MC packages 

may cause large variability in results. Inconsistencies in particle transport and interaction models 
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and cross-section data and variances in patient anatomy and overall simulation geometry may 

contribute to these differences. 

Many of the above techniques are applied to activity distributions at a moment in time after 

administration of the radionuclide. Therefore, the result is a 3D map of the dose rate at the time 

of image acquisition. In order to determine the total absorbed dose, 3D dose rate maps must be 

calculated using sequential SPECT or PET scans, co-registered and integrated voxel-by-voxel. 

Analysis of 3D Absorbed Dose 

Fixed-geometry dosimetry is limited to reporting mean doses to tumor and organs. In reality, 

tissues often manifest a heterogeneous distribution of activity, and thus dose during treatment. 

Results of 3D imaging-based calculations can be expressed as the mean or range of absorbed 

doses for a delineated volume or as a Dose-Volume Histogram (DVH) (see Figure II.4). DVHs 

are valuable for comparing organs doses from TRT to standard constraints used by conventional 

methods such as external beam therapy. Tumor isodose curves overlaid on anatomical images 

indicate the conformality of treatment. Performing these analyses from a pre-therapy tracer study 

allows optimization of the dose delivered to malignant tissue while avoiding possible toxicity 

during treatment. 

Evidence indicates that deterministic biological effects including tumor response and normal 

tissue toxicity are not well predicted by the mean absorbed dose and may be significantly 

influenced by the spatial and temporal dependence of the dose rate (Flynn et al. 2003, 

O’Donoghue 1999). Radiobiological modeling of the 3D absorbed dose distribution may help to 

correlate patient outcome with delivered dose by taking into account these dependencies. 

Converting the spatially-variant dose distribution into the equivalent uniform dose (EUD) results 

in a single dose value that would yield a similar biological response similar. The EUD may 
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indicate the likelihood that the magnitude and spatial distribution of the absorbed dose is 

sufficient for tumor kill. Likewise, the biologically effective dose (BED) is an adjustment to the 

physical dose to yield the expected biological effect if it were delivered at a reference dose rate. 

The BED may provide a metric of how the temporal dependence of dose rate influences response 

and its relationship to tumor control and normal tissue toxicity. 

 

Figure II.4: Dose-volume histograms for metastatic thyroid carcinoma tumors treated with 
131

I 

(Sgouros et al. 2004). 

Use of Anthropomorphic Phantoms in Internal Dosimetry 

The goal of internal dosimetry is to assess the biological response of healthy and diseased 

tissue from a spatially and temporally-dependent distribution of radioactivity in the body. 

Because it is impractical to measure dose from energy imparted to organs using in vivo physical 

detectors, dosimetry methods must rely on realistic computational phantoms to model human 

anatomy. Anatomical models contain body surface definition, organ geometry and volume, and 

tissue densities and compositions. Computational phantoms are classified into one of three main 

categories including stylized phantoms, voxel phantoms, and boundary representation phantoms. 
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This section summarizes each type of anthropomorphic phantom and some of their specific 

applications in internal dosimetry. A comprehensive review of anatomical models used in 

radiation dosimetry has been compiled previously (Xu & Eckerman 2010). 

Stylized Computational Phantoms 

The first type of model developed for dosimetry represented the human body using 

geometric shapes. These mathematical, or stylized, phantoms were based on the idea of a 

standard or “reference man”, characterizing the average size and weight of adults in primarily 

Western populations. The use of simple mathematical equations for organ and body definition 

minimized computational time for simulation of particle interactions from internal emissions. 

The original stylized reference phantom, described below, was created for the specific purpose of 

calculating SAFs for internal dose assessment using the MIRD schema (Snyder et al. 1969). 

Other standard models were also developed to include pediatric ages (Cristy 1980), separate 

male and female adults (Kramer et al. 1982), and even pregnant females at different stages of 

gestation (Stabin et al. 1995). 

Snyder-Fisher Phantom 

In the 1960’s, Snyder and Fisher developed the first stylized computational phantom for 

internal dose assessment (Snyder et al. 1969). The hermaphroditic phantom, shown in Figure 

II.5, consisted of a cylindrical base representing the combined torso, abdomen, and arms. An 

elliptical cylinder modeled the head and neck and legs were approximated as a truncated 

elliptical cone. The dimensions of the phantom were chosen to represent an average-sized man, 

modified later in accordance with the International Commission on Radiological Protection 

(ICRP) Reference Man (ICRP 1975). Originally, the entire phantom consisted of homogeneous 

soft tissue but was later updated to include the skeleton and lungs. 
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Figure II.5: Schematic representation of the stylized Snyder-Fisher phantom (Snyder et al. 1978). 

The MIRD schema was first implemented using S values from the Snyder-Fisher phantom, 

with results published in MIRD Pamphlet No. 5 (Snyder et al. 1969) and a subsequent revision 

(Snyder et al. 1978). SAFs for 12 photon energies were estimated by MC simulation with 

uniform distribution in the source organ. Photon transport was tracked with the assumption of 

local energy deposition from photon-electron interactions. 

Cristy-Eckerman “Family” Phantom Series  

The limitations of scaling the reference adult Snyder-Fisher phantom for use in age-

dependent applications motivated the creation of individualized pediatric phantoms. In the 

1970’s, Cristy and Eckerman developed a series of phantoms of adults and children ages 

newborn, 1, 5, 10 and 15 years (Cristy 1980). These phantoms were constructed in the same 

fashion as the existing Snyder-Fisher adult phantom to form a developmentally consistent 

family. The pediatric phantoms have relatively larger heads; their legs are relatively smaller, and 
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the trunk is relatively thicker than the adult models. The positioning of the organs varies from 

birth to adulthood based on age-dependent anatomical data (see Figure II.6). Reference phantom 

and organ masses were based on ICRP Publication 23 (ICRP 1975). 

Additional improvements on the Snyder-Fisher phantom were made to the Cristy-Eckerman 

series. Female breast tissue was added to the 15-year-old phantom to represent an adult female. 

Breasts were also added to the hermaphroditic adult phantom to represent a larger than average 

female. Modifications to individual organs include an updated heart model and changes to the 

lungs to incorporate different sizes of the right and left lungs. Changes were made to the density 

and composition for soft tissue, lung, and skeletal tissues with different skeletal and soft tissue 

compositions for the newborn phantom. 

-  

Figure II.6: Pediatric phantom series developed by Cristy and Eckerman. This series models the 

anatomy of newborn, 1-year, 5-year, 10-year, 15-year, and adult patients (Cristy & Eckerman 

1987). 

Specific absorbed fractions were calculated for these phantoms using MC simulations of 

photons similar to the method used by Snyder et al. (Cristy & Eckerman 1987). Cristy and 
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Eckerman also implemented a new technique to estimate the dose to red bone marrow in the 

vicinity of higher density bone where electronic equilibrium is not established. The MC transport 

code was adapted to determine the photon fluence in the skeletal volume from the target and 

calculate the dose to the active marrow using the linear attenuation coefficients for those photon 

energies. 

Voxel Computational Phantoms 

Stylized computational phantoms, although simple to implement in MC simulations, lack 

sufficient complexity to realistically model the details of the human body. Computer technology 

advancements in the 1980’s, including the development of tomographic imaging (CT, MRI) to 

visualize internal anatomy, no longer restricted models of the human body to idealized geometric 

shapes. Instead, imaging data could be used to create a highly accurate representation of a human 

body comprised of small 3D volume elements (voxels). These phantoms, named voxel 

computational models, consist of an identification number for each voxel corresponding to a 

tissue type or organ and the specification of its density and elemental composition. 

Many research groups have created voxel-based phantoms (e.g. Williams et al. 1986, Xu 

et al. 2000, Zankl et al. 1988, Zubal et al. 1994). These models consist of either the whole body 

or a partial body region such as head-torso or trunk only. Below is a summary of two of the more 

widely used types of voxel models, the VIP-Man and the GSF family of voxel phantoms. 

VIP-Man  

One of the first whole-body, high resolution voxel computational models, the Visible 

Photographic Man or VIP-Man (see Figure II.7), was developed at the Rensselaer Polytechnic 

Institute (Xu et al. 2000). The phantom was created using high resolution images (voxel size of 

0.33 × 0.33 × 1 mm) of a 38-year-old male from the Visible Human Project that includes 3D 
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representations of the normal male and female human bodies from CT, MRI and color 

photography. Organs were identified on the color images and segmented using mainly manual 

techniques. Because the phantom is a representation of an actual person, the mass of the whole 

body and individual organs are not reference values. The VIP-Man is 103 kg, containing more 

than 30 kg of fat compared to the reference male of 70 kg. 

Monte Carlo simulations of the VIP-Man voxel phantom were used to calculate SAF’s for 

internal electron emitters (Chao & Xu 2001). Voxels were assigned tissue compositions and 

densities using recommended values in ICRP Publication 23 (ICRP 1975). These calculations 

were the first for charged particles and were significant for internal dosimetry. They permitted 

the investigation of subtle dose variations in anatomical structures due to incomplete energy 

absorption of the emitted electrons that were traditionally assumed to be non-penetrating. The 

results showed that over 20% of the energy can escape even large organ volumes at electron 

energies above 1 MeV. 

 

Figure II.7: 3D view of the internal organs of the VIP-Man voxel based model (Xu et al. 2000). 
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GSF Voxel Computational Phantom Family 

A long-term research effort by the National Research Center for Environment and Health 

(GSF) in Neuherberg, Germany resulted in a series of voxel-based phantoms (Petoussi-Henss 

et al. 2002, Veit et al. 1989, Zankl et al. 1988, Zankl & Wittmann 2001). These phantoms were 

created using high-resolution CT images of individuals over a wide range of ages. The subjects 

included both adult males (Frank, Golem, Otoko) and females (Donna and Helga) of various 

physical builds and an infant and child (7 years).  

Organ segmentation was accomplished using a variety of methods. For high contrast 

volumes such as the lung and skeleton, structures were defined based on specified ranges of 

Hounsfield Units (HUs) in the images. For most of the other organs, the mask created from 

image thresholds required additional processing to sharpen boundaries and reduce unwanted 

artifacts. In these cases, a number of image processing software packages were used to perform 

morphological operations (i.e. dilation or erosion based on shape parameters) and manual 

segmentation to clearly define the organ volumes. Due to the difficulty to visually delineate bone 

marrow on a CT image, the amount of red marrow was determined for each bone voxel using 

linear interpolation of the HU between values for pure cortical bone and pure red marrow. Tissue 

densities and compositions were compiled from multiple sources (Cristy 1980, Kramer et al. 

1982). 

The GSF voxel phantom series was used to determine the influence of body size and varying 

organ masses on absorbed doses (Petoussi-Henss et al. 2002). SAFs for internal photon emitters 

were calculated from MC simulation and compared to values from stylized MIRD-type 

phantoms. The SAFs to the voxel phantoms were found to be different (greater or lower) by 

factors of up to 1000 for low photon energies and small organs. Organ doses were comparable if 
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the masses were similar between phantoms, but deviated up to a factor of three in some cases. 

Changes in body morphology including organ size, shape and location contributed to these 

differences, confirming the limitations inherent in stylized geometrical phantoms. 

Boundary Representation Phantoms 

Voxel computational phantoms are anatomically realistic but, because they are created from 

patient images, represent an individual and not a reference man, woman or child. Moreover, 

voxel models may not correctly define the thickness of anatomical structures (i.e. skin or 

stomach and intestinal walls) because it is not possible to segment volumes smaller the resolution 

of the image. In the early 2000’s, efforts began to create “deformable” human models from 

boundary representation (BREP) techniques, which can be manipulated to fit particular organ 

shapes and used to simulate time-dependent body motions. BREP modeling, initially created for 

computer-aided design, delineates solid volumes using a bounding surface consisting of a set of a 

connected faces (or patches). Most BREP phantoms consist of organs and body contours 

constructed from NURBS, a precise mathematical representation of a surface defined by a set of 

control points. These surfaces can be scaled and translated via affine transformations, making 

phantoms constructed from NURBS easily manipulated to replicate the size and shape of a 

specific patient. 

Segars created the first BREP anthropomorphic phantom, the NURBS-based Cardiac Torso 

(NCAT) phantom, which incorporated dynamic modeling of the cardiac and respiratory cycles 

(Segars et al. 1999, Segars et al. 2001a, Segars et al. 2001). Since then, many other NURBS 

phantoms have been developed, including a series of adult and pediatric models at ICRP 

Publication 89 reference ages (Stabin et al. 2012), adult and pediatric phantoms of various ages, 
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sizes and statures (Johnson et al. 2009, Marine et al. 2010) and moderately and severely obese 

adults (Clark et al. 2010). 

NCAT/XCAT Phantom 

As mentioned above, the NCAT phantom (Segars et al. 2001) (see Figure II.8a) was the first 

BREP phantom developed. The phantom was constructed using manually-segmented CT images 

from the Visible Human Project. Segmented structures were converted to polygon meshes that 

were then fit with cubic NURBS surfaces. A time-dependent phantom was created to model the 

cardiac cycle using 4-dimensional (4D) tagged MRI data and respiratory motion based on 

respiratory-gated CT. The NCAT phantom consists of approximately 100 structures, limited to 

the torso region of the body. A later update, the extended cardiac-torso (XCAT) phantom (see 

Figure II.8b), contains thousands of anatomical structures including detailed modeling of the 

brain, nervous and vascular systems (Segars et al. 2010). The original XCAT phantoms were 

scaled to match body and organ volumes for a 50
th
 percentile adult male and female defined in 

ICRP Publication 89 (Valentin 2002). The XCAT series has been further expanded to include a 

number of models representing adults and pediatrics at various ages and sizes (Norris et al. 2014, 

Norris et al. 2014a, Segars et al. 2013). 
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Figure II.8: Boundary representation models constructed from NURBS for organ and body 

surface definition, (a) NCAT and (b) XCAT phantom. 

The NCAT/XCAT phantoms have been used in various applications related to internal 

dosimetry. Quantitative SPECT reconstruction methods have been evaluated using simulated 

projection data from the phantoms (He et al. 2009, He et al. 2005). The impact of 3D volume of 

interest definition on activity quantification using simulated planar and SPECT imaging was 

investigated by randomly moving control points to the nearest neighbor voxel to deform the 

original organ volumes (He & Frey 2010). In this same study, the effect of misregistration of 

sequential SPECT images on time-activity in organs was assessed by shifting the simulated 

images of the NCAT phantom by up to ± 1 voxel in each direction. 

RADAR Reference Adult and Pediatric Phantom Series 

In 2012, a new generation of NURBS-based reference phantoms was created at Vanderbilt 

University to update photon- and electron-SAFs originally derived from stylized models (Stabin 

et al. 2012). The phantom series includes male and female adults, pediatric ages for both sexes 
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and the pregnant woman. They were based on the original NCAT adult phantom (Segars et al. 

2001) with modifications of the organ, body, and fetal masses using ICRP Publication 89 

recommended values (ICRP 2002). 

Changes in the SAFs in the NURBS reference phantoms were observed, but in most cases 

were small. Some cross-organ contributions from photons were found to increase due to organ 

proximity in the NURBS phantoms being much more realistic. Moreover, electron SAFs were 

explicitly modeled using MC simulation and non-negligible contributions were found for organs 

in direct contact (e.g. lung/liver and kidneys/adrenals) due to beta energy deposited in the first 

few millimeters of the boundary. 

Motivation for Patient-Specific Dosimetry 

In contrast with radiotherapy using external sources, patient-specific dose calculations for 

internal emitters are not routinely employed in clinical practice. Typical TRT treatments are 

based on administering a fixed activity to all patients. The aim is to deliver sufficient dose to the 

tumor while limiting toxicity to healthy tissue determined by the maximum tolerated dose in 

clinical trial. The fixed-activity approach is well established for treating thyroid disorders with 

radioactive iodine that has a large therapeutic window (the difference in dose levels between 

tumor and normal tissues). However this method is ill-suited for other forms of therapy including 

RIT and PRRT that have lower tumor-to-normal tissue dose ratios. If a fixed-activity is 

employed, patients are almost always given low amounts of the radionuclide in order to avoid 

harmful effects to normal tissue. Because there is significant variability in the biokinetics of 

radiopharmaceuticals in different patients and because the administered activity is based on the 

maximum tolerated dose of a patient population, only a small fraction of patients receive optimal 
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care. Although this method spares the normal tissue, it may result in incomplete tumor response 

and possible relapse (Stabin 2008c). 

Pre-therapy dosimetry calculations using fixed-geometry methods can be performed to 

assess normal tissue toxicity; however, these measurements are not without significant errors. 

The largest uncertainties stem from applying phantom-related parameters such as SAFs and 

target organ mass to individuals that vary from the median represented by the model. Absorbed 

dose estimates based on standard phantoms may have uncertainties of a factor of two or greater. 

Patient-specific dosimetry can reduce the uncertainty in dose estimates to ±10-20% when data 

acquisition, analysis, and measurement of individual organ volumes are optimized (Stabin 

2008c). 

The most significant obstacle to employing patient-specific dose assessment for clinical 

treatment planning is the lack of data indicating a tumor dose-response correlation. Although 

studies attempting to correlate dose to treatment efficacy and patient survival have been 

conducted, the investigation of dose-effect relationships in TRT has never been the focus of a 

large multi-center clinical trial (Strigari et al. 2014). The limited number of statistically 

significant correlations between delivered dose and patient outcomes combined with the lack of a 

standardized method for performing dosimetry has made clinicians hesitant to adopt an 

individualized approach to treatment. 

Despite the skepticism from the clinical community, significant research findings over the 

past decade indicate the necessity of patient-specific dosimetry, as summarized in a review 

article by Strigari et al. (Strigari). Studies indicate that better outcomes are achieved when 

dosimetry is performed for 
131

I treatments (e.g. Flux et al. 2010, Lassmann et al. 2010). In the 

case of thyroid therapy with radioiodine, the use of activity-based criteria results in over-dosing 
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the majority of patients (Jönsson & Mattsson 2004). A similar comparison was performed for 

treatment of B-cell lymphoma using 
131

I-tositumomab (Brans et al. 2007). It was determined that 

administering activity calculated per kilogram body weight resulted in 50% of patients being 

either over- or under-dosed by 10% or more and 16% of patients by 25% or more compared to 

therapeutic activity calculated on the basis of a diagnostic pre-therapy tracer study. Furthermore, 

Dewajara et al. (Dewaraja) investigated the relationship between tumor dose and patient 

outcomes in 
131

I RIT for lymphoma with the inclusion of radiobiological modeling and found 

clear separation of progression-free survival curves at a threshold of 2 Gy. Dosimetric studies for 

PRRT have largely focused on renal toxicity as a limiting factor in treatment. Barone et al. 

(Barone) determined that nephrotoxicity was dose-dependent for neuroendocrine tumors treated 

with 
90

Y-DOTATOC when including patient-specific parameters such as kidney volume and 

dose rate. Likewise, a comprehensive study of 200 patients treated with 
177

Lu-octreotate using 

the standard protocol of 7.4 GBq per cycle concluded that over 50% of patients could tolerate 

more than the typical four cycles without reaching the kidney dose limit of 23 Gy (Sandström 

et al. 2013). These results indicate that determining both the administered activity per cycle and 

the number of cycles given to each patient is essential to tumor control and toxicity as the 

majority of patients receiving fixed activity amounts die from lack of control of their disease. 

Patient-specific dosimetry was performed in a Phase II clinical study of the safety and response 

of high-risk osteosarcoma tumors to high dose of 
153

Sm-EDTMP as a follow up treatment to the 

standard low-dose administered activity (Senthamizhchelvan et al. 2012). It was determined 

from post-therapy dosimetry for both the low- and high-dose treatments that absorbed tumor 

doses over 21 Gy or EUD greater than 6 Gy led to a reduction of tumor size and stable disease. 
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In summary, evidence suggests that individualized dosimetry offers four major advantages 

over current fixed-activity treatments: 

 The minimum effective and maximum tolerated absorbed doses are determined for 

each individual patient, which allow for optimized treatment and improved 

outcomes.  

 Normal organ toxicity is predicted from pre-therapy dosimetry, preventing 

deleterious side-effects from treatment.  

 3D image-based dosimetry permits radiobiological modeling that accounts for 

varying dose rates and non-uniformity, which is suggested as an improved metric for 

determining tumor dose-response relationships.  

 And lastly, dose-response results of different patients can be compared and 

correlated to outcome. 

Advancements in Patient-Specific Internal Dosimetry 

Over the years, great strides towards patient-specific dosimetry have been made. These 

developments aim to provide clinical techniques for optimized personal treatment planning and 

dose assessment in TRT. Efforts have focused on methods for quantitative imaging, simulation 

applications for dose calculations, and patient outcome prediction with radiobiological modeling 

and analysis of tumor dose-response. This section provides a brief summary of the research that 

has advanced the field of patient-specific dosimetry in TRT. The discussion is not an exhaustive 

review of all research found in the literature, but instead highlights major accomplishments. 

Quantitative Imaging 

The ability to accurately quantify 3D voxel activity at each imaging time point directly 

influences the reliability of dosimetry calculations for TRT. Research efforts have focused on the 
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development and validation of custom image reconstruction algorithms due to the lack of 

commercially available systems supporting quantitative SPECT. Other groups have investigated 

the use of PET imaging surrogates to estimate activity distributions for non-positron emitting 

therapeutic radionuclides. This section presents an overview of current capabilities for activity 

quantification and the results of recent studies aimed to evaluate their efficacy.  

Table II.2 summarizes research studies on quantitative SPECT, including details about the 

reconstruction algorithm and validation methods. Most of these quantitative reconstruction 

methods employ OSEM algorithms that optimize using a different subset of the projections in 

each iterative update. Attenuation correction (AC) and compensation for the collimator-detector 

response (CDR) is performed by including attenuation factors and the depth-dependent CDR in 

the system model matrix. Image-degrading photons from Compton scattering are compensated 

using methods for scatter correction (SC) including triple-energy-window (TEW)-based scatter 

estimation and sophisticated models such as effective scatter source estimation (ESSE). In some 

cases, partial-volume correction (PVC) is applied to small volumes to recover count spill-out. 

Each method requires a camera sensitivity calibration factor that converts reconstructed counts to 

absolute activity derived from experimental measurement of known activity quantities.  
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Table II.2: SPECT reconstruction algorithms for quantitative imaging 

Reference Radionuc. Reconstruction Method Validation Quantification Error 

(Ljungberg et al. 

2002) 

131
I OSEM, CDR, EESE SC, CT-

based AC 

Zubal voxel phantom, SIMIND-

simulated projection images 

9% (total phantom) 

2-54% (most organs) 

(Koral et al. 2005) 
131

I OSEM, CDR, CT-derived AC, 

energy window-based SC, PVC 

Physical lung phantom with central 

100 ml uniform sphere & no bkg. 

5.2-7.3% 

(Dewaraja et al. 

2005) 

131
I OSEM, CDR, CT-based AC, 

TEW SC, no post-filtering 

Zubal voxel phantom with added 

spherical tumor volumes, SIMIND-

simulated projection images 

<7% (organs and spheres 

16-56 ml) 

37% (7 ml sphere) 

(He et al. 2005) 

 

 

(He et al. 2009) 

111
In OSEM, CDR, CT-based AC, 

EESE SC, PVC 

Physical torso phantom with 

uniform spheres, lung, heart, liver 

and bkg. Activity 

Voxelixed NCAT phantom 

population (7 total) 

2-12 % (8-23 ml spheres) 

 

 

1-9% (organ averages) 

(Shcherbinin et al. 

2008) 

(Shcherbinin et al. 

2012) 

111
In, 

131
I 

 

177
Lu 

OSEM, CDR, CT-derived AC, 

analytic photon distribution SC 

Physical thorax phantom with 32 ml 

uniform cylinders & no bkg. 

Physical phantom with 70 ml 

uniform cylinder & no bkg. 

3-5% (32 ml cylinders) 

 

<2% (70 ml cylinder) 

(Dewaraja et al. 

2010a) 

131
I OSEM, CDR, CT-derived AC, 

energy window–based SC 

Physical phantom with 4-95 ml 

uniform spheres & bkg. activity 

<17% (8-95 ml spheres) 

31% (4 ml sphere) 

(Ljungberg & 

Sjögreen-Gleisner 

2011) 

111
In, 

131
I, 

177
Lu 

OSEM, CDR, density AC, 

ESSE SC 

Voxelized XCAT phantom with 

added spherical tumor volumes in 

liver, SIMIND-simulated projection 

images 

<9% (spheres, no bkg.) 

<38% (18-61 ml spheres, 

liver bkg.) 
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In vivo evaluation of quantitative reconstruction algorithms is difficult and therefore 

quantitative accuracy is typically established from either experimental measurements using 

physical phantoms or image simulation studies. Physical phantom measurements represent the 

true imaging capabilities of the clinical system, but often have simplified geometries with 

spherical, uniform sources. Therefore, simulation of image acquisition using voxel-based 

anthropomorphic phantoms with known activity uptake provides a method to determine 

quantitative accuracy in patient geometries. The simulation application SIMIND (Simulation of 

IMaging In Nuclear Detectors) (Ljungberg & Strand 1989) was developed to model all aspects of 

a clinical SPECT camera and has been used to create simulated projection images for 

reconstruction algorithm evaluation. 

There have been several studies designed to obtain quantitative activity from SPECT images 

reconstructed by commercial software. Pereira et al. (Pereira) performed phantom studies with 

99m
Tc, 

131
I and 

111
In using different source activity concentrations in spheres or organ regions and 

variable background activities in the surrounding water. Images were reconstructed with CT-

based attenuation and window-based scatter corrections using the OSEM algorithm on the 

clinical workstation. System calibration factors for each radionuclide were applied to yield 

quantitative activities in spherical sources ranging from 1.4 to 11.5 ml. Quantification errors 

were found to vary greatly with source volume and activity concentration as well as background 

activity level. For the largest sphere (11.5 ml) the errors ranged from 2–30% for 
131

I and from 2–

52% for 
111

In. Another study aimed to quantify activity distributions from 
177

Lu SPECT using a 

commercially available camera system and corresponding reconstruction software (Beauregard 

et al. 2011). Images were reconstructed using a proprietary OSEM algorithm allowing for both 

attenuation and window-based scatter correction with no filtering selected. In addition to 
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applying a system calibration factor to convert counts to activity, a dead time correction factor 

for a paralyzable system based on the observed wide-spectrum count rate was used to 

compensate for dead-time losses. This method was validated with a physical phantom consisting 

of uniform activity cylinders (175 and 2500 ml) with quantitative SPECT activity deviating from 

the calibrated activity between 4 and 10%. 

Quantitative measurements of beta-emitting 
90

Y have been accomplished with SPECT 

through the detection of bremsstrahlung radiation. SPECT imaging of 
90

Y does not rely on a 

photopeak but instead detects the continuous bremsstrahlung energy spectrum with photons 

mostly below 50 keV. Image quality is typically poor due to the low camera sensitivity and non-

linearity at this energy range combined with scatter and septal penetration of high energy 

photons. Despite the poor image quality, 
90

Y bremsstrahlung SPECT has been shown to be an 

effective method for estimating tumor and liver doses and extrahepatic side effects from SIRT 

treatments with 
90

Y microspheres (Ahmadzadehfar et al. 2012, Machac et al. 2007, Walrand 

et al. 2011). 

Research efforts have also focused on using quantitative PET for patient-specific 3D 

dosimetry. Compared to SPECT, PET imaging is more sensitive by two orders of magnitude and 

is currently the most accurate clinical method for determining activity distributions. 

Quantification of PET is well established (Boellaard 2009, Pentlow et al. 1991) and image-

degrading effects, such as random coincidences, dead time, and attenuation and scatter are 

routinely corrected before reconstruction in the clinical setting. However, because the majority of 

therapeutic radionuclides are not positron emitters, the use of PET imaging analogues of the 

same radioisotope is required for 3D dosimetry. Several groups have been successful employing 

high resolution, high sensitivity PET images for TRT dosimetry including using 
124

I as an 
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analogue for 
131

I treatment of thyroid cancer (Hobbs et al. 2009, Kolbert et al. 2007, Kolbert 

et al. 1997, Sgouros et al. 2004) and 
86

Y PET for analysis of possible kidney toxicity from 
90

Y-

DOTA
0
-Tyr

3
-Octreotide in PRRT (Barone et al. 2005).  

Recently, direct assessment of the biodistribution of 
90

Y-labelled therapeutic agents using 

time-of-flight (TOF) PET has been performed for patients undergoing radioembolization of the 

liver with 
90

Y microspheres (Lhommel et al. 2009). Although 
90

Y decays via β
+
 emission, there 

is a minor branch to the 0+ excited state of 
90

Zr that de-excites via electric monopole transition 

with internal electron–positron pair production at an abundance of 32 emissions per one million 

decays (Greenberg & Deutsch 1956). Despite low yield and high intrinsic background noise in 

the detector, successful 
90

Y PET imaging of the liver has been achieved post-therapy with 

superior resolution and sensitivity compared to 
90

Y bremsstrahlung SPECT (Kao et al. 2013, Kao 

et al. 2011). 

Dosimetry Methods 

One major obstacle for patient-specific dosimetry in TRT is the lack of clinical applications 

capable of performing the required complex dose calculations. In response, custom software has 

been developed that implements either fixed-geometry organ-level dose assessment using 

standard phantoms or direct absorbed fraction calculations by dose kernel convolution or MC 

simulation to determine the spatial dose distribution. This section summarizes available 

dosimetry applications and highlights their use in clinical studies on patient-specific dose 

estimation. 

Since the MIRD methodology was developed, several groups have created applications for 

fixed-geometry dosimetry. MIRDOSE3 (Stabin 1996) and its successor Organ Level INternal 

Dose Assessment/EXponential Modeling (OLINDA/EXM) (Stabin et al. 2005) is the most 
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widely distributed fixed-geometry dosimetry software. The current application facilitates the 

implementation of equation II.6 and is capable of determining dose from over 1000 radionuclides 

with patient anatomy based on sex and age using the Cristy-Eckerman phantom series. The dose 

calculations are individualized by adjusting for variations between phantom and patient body and 

organ masses. OLINDA/EXM is also capable of simple tumor modeling in the form of self-dose 

to small unit density spheres of various sizes based on published absorbed fractions assuming 

uniform activity distribution (Stabin & Konijnenberg 2000). Another fixed-geometry dosimetry 

application MABDOSE (Monoclonal AntiBody DOSimEtry) (Johnson et al. 1999) was 

developed in an attempt to overcome the lack of contributing tumor dose from penetrating 

radiation from radionuclides with significant gamma emissions. MABDOSE allowed for user-

defined tumor placement in a standard male or female phantom followed by MC simulation of 

radiation transport for penetrating radiations based on cumulated activities in each source region. 

Combining the energy deposition from the gamma rays with locally deposited energy from 

charged particle radiation produced updated S values for both tumor and normal organs.  

Fixed geometry methods using standard phantoms are not optimal for dose assessment to 

individuals treated with TRT. Organ-level dosimetry applications based on standard phantoms 

including OLINDA/EXM and MABDOSE provide no information about the 3D distribution of 

dose in normal tissue and tumors as spheres with uniform activity. The lack of 3D dose 

information prevents radiobiological analysis, which may be necessary to fully assess toxicity 

and tumor control. In response to these limitations, many groups have developed 3D image-

based dosimetry applications including 3D Internal Dosimetry (3D-ID) (Kolbert et al. 1997) 

upgraded to 3D Radiobiological Dosimetry (3D-RD) (Prideaux et al. 2007), SIMDOS (Tagesson 

et al. 1996), SCMS (Yoriyaz et al. 2001), the Royal Marsden Dosimetry Package (RMDP) (Guy 
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et al. 2003), VoxelDose (Gardin et al. 2003), OEDIPE (Chiavassa et al. 2005), an adapted 

version of Dose Planning Method (DPM) (Wilderman & Dewaraja 2007), and RAYDOSE 

(Marcatili et al. 2013). These custom dosimetry codes typically use MC simulation to determine 

voxel-level dose deposition; although some employ MIRD voxel S values (RMDP, VoxelDose) 

and 3D-ID initially performed dose kernel convolution. 

3D-ID and its successor 3D-RD are the dosimetry codes with the most experience with 

clinical application. 3D-ID was used to perform patient-specific dosimetry for radioiodine 

therapy for thyroid cancer (Kolbert et al. 2007, Sgouros et al. 2004) and 
131

I radiolabeled 

antibody treatment for NHL (Sgouros et al. 2003). Patient-specific dosimetry including 

radiobiological modeling with 3D-RD was implemented for thyroid cancer (Hobbs et al. 2009, 

Prideaux et al. 2007) and 
153

Sm-EDTMP treatment for osteosarcoma (Senthamizhchelvan et al. 

2012). 

Significant progress for 3D imaged-based tumor dosimetry for 
131

I RIT has been 

accomplished using DPM. Studies were performed to measure mean tumor dose that 

incorporated measured changes in tumor volume (Dewaraja et al. 2009, Howard et al. 2011). 

Radiobiological modeling to determine tumor EUD has also been applied using 3D dose 

distributions derived from DPM in conjunction with MATLAB-based routines (Dewaraja et al. 

2014, Dewaraja et al. 2010). 

Clinical investigations of personalized dosimetry in TRT have also been completed using 

custom voxel S value calculations. Doses for ablation of thyroid remnants using 
131

I in 

differentiated thyroid cancer were determined using voxel S values generated from EGSnrc (Flux 

et al. 2010). Voxel based dosimetry in patients undergoing 
90

Y RIT using Zevalin was evaluated 

with MATLAB-based voxel S value convolution from data computed using MCNP (D’Arienzo 
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et al. 2012). Patient-specific dose distributions from microspheres labeled with
188

Re for liver 

embolization (Shcherbinin et al. 2014) and 
177

Lu PRRT for treatment of neuroendocrine tumors 

(Jackson et al. 2013) were produced through convolution of voxel S values from MC simulation 

using custom-based EGSnrc code DOSXYZnrc (Strigari et al. 2006). 

Radiobiological Modeling and Tumor Dose-Response 

The ultimate goal of patient-specific dosimetry is to correlate absorbed dose with tissue 

response. This may be tumor control and regression in the case of tumors or toxicity for 

radiosensitive organs. However, initial attempts to relate mean absorbed tumor doses to patient 

outcome were not successful, especially in the case of RIT (Sgouros et al. 2003). Studies indicate 

that deterministic biological effects including tumor response and normal tissue toxicity are not 

well predicted by the mean absorbed dose and may be significantly influenced by non-uniform 

doses and temporally changing dose rates (e.g. Barone et al. 2005, O’Donoghue 1999, Wessels 

et al. 2008). Radiobiological models that better predict desired treatment end points such as 

normal tissue complication probability and tumor control probability have been developed, but 

require knowledge of the 3D dose distribution to tissue (Sgouros & Hobbs 2014). Recent 

research has focused on identifying dosimetric and radiobiological factors that predict patient 

outcomes. These studies have mainly been retrospective in nature, evaluating tumor dose-

response relationships post treatment.  

The first patient-specific dosimetry application dedicated to radiobiological modeling 3D-

RD incorporates the BED and EUD formalisms (Prideaux et al. 2007). Since its conception, 3D-

RD has been applied to several clinical studies including radiobiological dosimetry for 
131

I 

thyroid cancer (Hobbs et al. 2009, Hobbs et al. 2013, Sgouros et al. 2011), kidney toxicity from 

PRRT (Baechler et al. 2012), and osteosarcoma tumor dosimetry with 
153

Sm-EDTMP 
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(Senthamizhchelvan 2012). The initial thyroid dosimetry studies were limited to a few patients to 

demonstrate clinical application of radiobiological methodology. However, Hobbs et al. (Hobbs) 

used 3D-RD to investigate salivary gland toxicity in 
131

I treatment of thyroid cancer where 

toxicity is observed despite measured absorbed dose values below expected thresholds. 

Retrospective dosimetry for five patients using 3D-RD was performed on serial 
124

I-PET images 

to determine if the BED of salivary glands may correlate better with toxicity and if using 3D 

voxel-based dosimetry may identify localized high absorbed dose values. Similarly, Baechler et 

al. (Baechler) proposed a treatment planning methodology using 3D-RD based on individualized 

dosimetry of kidneys with the goal of reducing renal toxicity in PRRT. The three most common 

radionuclides for PRRT (
177

Lu, 
90

Y, and 
111

In) were evaluated and the approach centered on 

maximizing the administered activity, with optimal fractionation, to limit the absorbed dose or 

the BED to the renal cortex to published constraints. 3D-RD has also been used to assess tumor-

dose response in a clinical trial for 
153

Sm-EDTMP treatment of osteosarcoma 

(Senthamizhchelvan et al. 2012). A sample of 6 patients (19 tumors) who received both low and 

high amounts of administered activity were evaluated three months post-treatment with stable 

disease correlating with absorbed doses above 21 Gy (6 Gy EUD). Likewise statistical tests 

yielded a positive correlation between both mean tumor-absorbed dose and EUD, and percent 

tumor volume reduction. 

Researchers at the University of Michigan developed a methodology to incorporate 

radiobiological modeling in patient-specific 3D dosimetry for NHL 
131

I RIT. (Amro et al. 2010). 

This model was used to evaluate the treatment response of 20 patients that participated in a 3D 

patient-specific dosimetry study (Dewaraja et al. 2010). It was determined with statistical 

significance that a EUD of 200 cGy separated the responders (both partial and complete) from 
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those with stable disease. A regression analysis study of 39 
131

I RIT patients using this model 

assessed the relationship between patient outcomes and various dosimetric values (Dewaraja 

et al. 2014). Mean tumor-absorbed dose and equivalent biologic effect showed statistically 

significant correlation with progression free disease with clear separation of response curves 

when stratified by a mean tumor-absorbed dose of 200 cGy. 

Other groups have also applied radiobiological modeling to RIT. Cicone et al. (Cicone) 

investigated dose non-uniformities in patients receiving 
90

Y RIT for treatment of NHL and their 

correlation with tumor response. BED and EUD were derived from the 3D dose distributions and 

compared with patient outcome three months after treatment. Although the study sample (6 

patients, 11 lesions) was not large enough to yield statistically significant results, complete 

response did correlate with larger tumor BED and EUD whereas patients who received low 

radiobiological doses exhibited stable or progressive disease. Hobbs et al. (Hobbs) developed a 

dosimetric method founded on radiobiologic modeling to optimize a combination therapy of both 

131
I- tositumomab and 

90
Y-ibritumomab tiuxetan for treatment of lymphoma. The treatment 

planning steps center around limiting toxicities to normal organs based BED values and 

optimizing response by maximizing the tumor BED within the established normal-organ 

constraints.  
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CHAPTER III  

 

DEVELOPMENT AND VALIDATION OF VIDA: A VOXEL-BASED DOSIMETRY 

APPLICATION FOR TARGETED RADIONUCLIDE THERAPY 

 

Introduction 

This chapter describes the development of VIDA (Voxel-based Internal Dosimetry 

Application), a 3D image-based dosimetry technique using the Geant4 MC toolkit for voxel-by-

voxel absorbed dose calculation. VIDA performs patient-specific dosimetry by coupling 3D 

anatomical data (CT) with functional images (SPECT or PET). VIDA was designed to perform 

particle transport based on the activity distribution at each time point, thus generating 

instantaneous dose rate maps. The total absorbed dose is determined by fitting the time-

sequenced voxel dose rates to exponential functions and integrating over time. The application 

consists of two main components (see Figure III.1), the Geant4 simulation code to generate 3D 

maps of voxel-level absorbed energy and a custom exponential fitting tool developed in 

MATLAB. This chapter also includes a discussion of the methods used to validate the particle 

transport and energy deposition in the MC simulation. VIDA was validated under several 

conditions including dose to uniform activity spheres and organ dose factors from various 

sources in an anthropomorphic phantom. The content presented in this chapter is an extension of 

a paper by S. D. Kost, Y. K Dewaraja, R. G. Abramson and M. G. Stabin, “VIDA: A voxel-

based dosimetry method for targeted radionuclide therapy using Geant4”, © Mary Ann Liebert, 

Inc., reprinted with permission, from (Cancer Biotherapy and Radiopharmaceuticals, vol. 30, pp. 

16-26, 2015) (Kost et al. 2015). 
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VIDA does not provide a method for quantitative SPECT image reconstruction. 

Quantitative estimation of activity from tomographic images requires attenuation and scatter 

correction as well as knowledge of the collimator-detector response that is highly system 

specific. Therefore, it is assumed that functional images used to model patient pharmacokinetics 

in VIDA are representative of quantitative activity. Moreover, VIDA does not contain a method 

to register time-sequence images. Images may be registered via external algorithms, such as the 

intensity-based registration routine in MATLAB. The incorporation of image registration in 

VIDA is an area for future development. 

 

Figure III.1: VIDA procedure flow with key components and inputs. 

Monte Carlo Simulation 

Geant4 is an open source, integrated radiation transport package that simulates many 

different particles and their interactions based on a user-specified geometry. The toolkit provides 
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a comprehensive framework for all areas of MC simulation including geometry, tracking, 

physics models, and run and event management. In addition, Geant4 features a set of random 

number generators with different sampling algorithms and random distributions (i.e. exponential, 

Gaussian, Poisson). The toolkit was designed for a wide array of applications including particle 

physics, space engineering, and medical physics. Given the broad and flexible nature of the 

toolkit, the user is required to define specific characteristics of their simulation including the 

detector geometry, materials, particles, physics processes, and primary events generation. 

The Geant4 framework is a suitable platform for performing MC simulation for TRT for 

several reasons. The built-in radioactive decay module allows for direct simulation of nearly any 

radionuclide without user specification of the decay spectra. Geant4 is supported by a large 

collaboration of researchers and includes the most accurate and up-to-date models for physical 

processes and particle interactions. Moreover, efforts relating to the validation of Geant4 have 

been extensively published and include relevant topics such as radioactive decay simulation 

(Hauf et al. 2013b) and electromagnetic processes of low energy electrons (Lechner et al. 2009). 

VIDA was developed from an existing simulation that tracked photons and electrons 

uniformly distributed in a source organ using a standard anthropomorphic phantom (Stabin et al. 

2012). The detector definition in this simulation was a parameterized (repeated) volume in each 

dimension to represent a voxelized reference phantom. Voxels were assigned a material type 

based on an integer identification number. The materials modeled included air, soft tissue, lung 

tissue and whole bone with the same density and compositions as the Cristy-Eckerman phantom 

series (Cristy & Eckerman 1987). Primary events consisted of either monoenergetic photons or 

electrons generated uniformly in the source organ that were tracked throughout the body. The 

energy deposited in the whole organ was tallied for each target region based on its identifier. 
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Using this existing simulation as a foundation, several updates and modifications were 

required for VIDA to function as a 3D patient-specific dosimetry code. First, the quantity and 

location of primary events must be based on the activity distribution in the patient. Second, 

primary events must be created with the correct particle types, energies, and abundances in the 

decay scheme of the radionuclide. Third, the energy deposited needed to be tallied at the voxel 

level, creating a 3D map of energy deposition that can be converted to a dose rate map. And 

lastly, the detector geometry and materials definitions required updating to include identification 

of multiple tumor volumes. Detailed descriptions of each part of the simulation are included in 

the following sections. 

Detector Geometry and Materials 

Detector definition in VIDA consists of a nested parameterized 3D volume, as shown in 

Figure III.2. The physical parameterized volume is defined to match the patient image array size 

and voxel dimensions. Each voxel is assigned a tissue type by pairing a specific material with the 

integer identifier for each organ contained within the 3D organ map (see appendix C). 

 

Figure III.2: Schematic drawing of a nested parameterization in Geant4. Repetitions in each 

direction are assigned a copy number. Voxels in the geometry are identified by a unique 

combination of copy numbers representing the row, column and slice position. 
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The material definitions in VIDA (Table III.1) include air for voxels surrounding the 

body contour and soft tissue, lung, cortical bone, red and yellow marrow, whole bone, and whole 

skull derived from data tabulated in International Commission on Radiation Units (ICRU) 

Publication 46 Appendix A (ICRU 1992). Patient geometry is represented by a 3D map of 

integer organ identification numbers instead assigning voxel density and composition directly 

from CT images, as done in the Geant4 DICOM application. This approach allows patient 

anatomy to be modeled by a NURBS-based deformable phantom that is digitized to a 3D organ 

map (see Chapter IV). Organ maps can also be created from conventional segmentation methods 

for delineation of organs of interest and tumor volumes on the patient CT. For multiple time 

points, segmentation of each CT can be time-consuming and tissue maps of relevant materials 

can be quickly created for simulation using density thresholds. VIDA includes several different 

material definitions for skeletal tissue. The NURBS models have cavities inside each bone so 

that cortical bone surfaces and marrow can be assigned specific materials. Similarly, if the 

skeleton is delineated by segmentation, hard bone and marrow voxels may be assigned using 

specific cortical bone thicknesses and marrow cellularity values. In the case of using density 

thresholds to generate an organ map, skeletal tissue should be assigned to whole bone. A flag in 

the data input file (see Appendix D) controls which materials are assigned to the skeleton during 

simulation. 
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Table III.1: Material definitions for VIDA MC simulation 

Material 
Density 

(g/cm
3
) 

Chemical Composition (% by mass) 

H C N O Na P S Cl K Other 

Air 1.21×10
-3

  0.01 75.5 23.2      1.3 (Ar) 

Water 1.00 11.1   88.9       

Soft Tissue
*
 1.03 10.5 25.6 2.7 60.2 0.1 0.2 0.3 0.2 0.2  

Lung Tissue
†
 0.26 10.3 10.5 3.1 74.9 0.2 0.2 0.3 0.3 0.2  

Adipose
&
 0.95 11.4 59.8 0.7 27.8 0.1  0.1 0.1   

Mammary 

Tissue
‡
 

1.06 10.2 15.8 3.7 69.8 0.1 0.1 0.2 0.1   

Whole Bone
§
 1.35 6.5 28.6 3.6 41.7 0.1 5.9 0.2 0.1 0.1 

0.1(Mg) 
13.2 (Ca) 

0.1 (Fe) 

Whole Skull
‖
 1.65 4.8 20.5 4.1 43.5 0.1 8.4 0.3   

0.2 (Mg) 
18.1 (Ca) 

Cortical 

Bone
#
 

1.92 3.4 15.5 4.2 43.5 0.1 10.3 0.3   
0.2 (Mg) 

22.5 (Ca) 

Red Marrow 1.03 10.5 41.4 3.4 43.9  0.1 0.2 0.2 0.2 0.1 (Fe) 

Yellow 

Marrow 
0.98 11.5 64.4 0.7 23.1 0.1  0.1 0.1   

*‘average soft tissue, male’ 

†‘lung, adult healthy, inflated’ 
&’adipose tissue, adult #3’ 

‡’breast-mammary gland adult #3’ 

§composite material defined using average density and elemental compositions of adult whole bones 
(excluding cranium and mandible) 

‖composite material defined using average density and elemental compositions of adult whole cranium 

and mandible 

#’skeleton-cortical bone, adult’ 

 

Particles and Physics Processes 

Geant4 has the capability to model a wide range of particles and the physics processes 

governing their interactions with matter. Each particle type is associated with a unique set of 

processes. The user can choose to apply only those processes that are relevant to their simulation 

and register them via the process manager. In the case of TRT, electromagnetic interactions for 

all decay products must be considered. The particle types registered to the simulation were 
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defined by the particle constructor of the decay physics class and include leptons, bosons, 

mesons, baryons and ions created in radioactive decay. Physics processes in VIDA include decay 

of unstable particles, radioactive decay of unstable isotopes, and standard electromagnetic 

processes such as photoelectric absorption, Compton scattering, gamma conversion, coulomb 

scattering, and bremsstrahlung. 

Geant4 also contains several options for modeling electromagnetic physics processes. 

The standard electromagnetic physics package is optimized for electron and photon interactions 

at high energies between 1 keV and 100 TeV. At low energies, atomic shell structure plays a 

significant role in particle interactions and additional electromagnetic physics processes for 

photons, electrons, hadrons, and ions have been implemented in Geant4 in order to extend the 

validity for these energies. Low energy models available in Geant4 include the Livermore and 

PENELOPE packages that make direct use of shell cross section data, providing reliable results 

for energies as low as 250 eV. This is in contrast with the standard electromagnetic processes 

that rely on parameterizations of these data. 

The physics models implemented in VIDA (Table III.2) are a modified version of the 

standard electromagnetic package. The low energy Livermore and PENELOPE models available 

for the version of Geant4 used in this work (Geant4 9.4) contain older interaction cross-section 

data and the Geant4 Low Energy Electromagnetic Physics Working Group advised against their 

use. Moreover, the standard package available for Geant4 9.4 was updated to be a coherent 

approach to the modelling of all electromagnetic interactions over both low and high energies 

(Ivanchenko et al. 2011). Options were selected to increase accuracy when tracking electrons, 

hadrons, and ions at low energies. Detailed explanations for these options follow below. 
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Table III.2: Electromagnetic processes in VIDA MC simulation. 

Particle Type EM Process Model 

Gamma 

Photoelectric Effect (G4PEEffectFluoModel) 

Compton Scattering Klein-Nishina (G4KleinNishinaModel) 

Gamma Conversion Bethe-Heitler (G4BetheHeitlerModel) 

e
‒
 and e

+
 

Multiple Scattering L. Urban (G4UrbanMscModel95) 

Ionization 

 

Möller (e
‒
e

‒
) Bhabha (e

+
e

‒
) 

(G4MollerBhabhaModel) 

Bremsstrahlung (G4eBremsstrahlungModel) 

e
+ 

e
‒ 

Annihilation (e
+ 

only) (G4eplusAnnihilation) 

 

VIDA includes a Compton scattering model that allows atomic de-excitation of the resulting 

ionized atom. The standard model for Compton scattering in Geant4 assumes the energy of the 

recoil electron is large compared to the binding energy and ignores the binding energy when 

determining the kinetic energy of the electron. This assumption becomes invalid in the low 

energy realm. The Compton scattering model used in VIDA contains Doppler broadening due to 

the non-negligible influence of atomic shell effects at low interaction energies that may result in 

interactions with non-valance electrons producing atomic shell vacancies.  

Atomic relaxation processes induced by ionization events that leave the atom in an 

excited state are activated in VIDA. These processes include fluorescence and Auger electron 

emission and make use of radiative and non-radiative transition probabilities for each sub-shell 

of each element. Characteristic x-rays and Auger electrons are produced above the same 

threshold energy as secondary electrons and bremsstrahlung gammas, defined in the simulation 

as a production cut range (set to 1 mm for electrons, positrons, and gamma rays). 

Many interaction parameters including the mean rate of energy loss below the secondary 

particle production cut, the total cross section per atom for the ejection of a secondary of energy 
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greater than the production cut and, given multiple processes providing energy loss for a given 

particle, the total continuous part of the energy loss are pre-calculated during run initialization 

and stored by Geant4 in tables for use in the simulation. By default, the standard electromagnetic 

package generates these data across the energy interval from 100 eV to 10 TeV divided into 84 

bins. In order to increase the sampling across the range of energies encountered in TRT 

dosimetry, the energy interval in VIDA was set from 10 eV to 50 MeV divided into 220 bins. 

One of the most critical parameters in MC simulation is the step size limit. The 

simulation must balance computational efficiency while also ensuring the step size is small 

enough that all relevant interaction cross sections remain approximately constant during the step 

(an assumption required to randomly sample the distance to interaction for each physics process). 

Continuous energy loss imposes an additional limit on the step size due to the energy 

dependence of interaction cross sections. Typically, tracking precision can be preserved while 

not compromising execution performance by limiting the step-size to no more than 20% of the 

stopping range. At low kinetic energies (i.e. less than 1 MeV), this limit results in step sizes that 

are too short. Geant4 imposes a lower limit on the step size, controlling the step function with 

two parameters (see Figure III.3). At high energy, the step is limited by the ratio of step size to 

stopping range (dRoverRange = 0.20) As the particle interacts and loses kinetic energy, the step 

size decreases gradually until it becomes lower than a specified cut off (finalRange). Below this 

range, the remaining distanced traveled is completed in a final step. A large portion of the energy 

imparted to tissue in TRT comes from continuous energy loss from charged particles and the 

parameter finalRange in VIDA was reduced from the default of 1.0 mm to 0.1 mm for electrons 

and positrons to ensure accurate dose deposition. 
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Figure III.3: Step size control in Geant4 with dRoverRange and finalRange. 

The multiple scattering (MSC) algorithm for charged particles accounts for changes in 

the geometrical step length due to scatterings along the step. The MSC models in Genat4 limit 

the step size based on three parameters, two of which may be modified by the user (Ivanchenko 

et al. 2010). The step size limit (L) for MSC is determined by computing the minimum of the 

following values: 

 𝐿 = min {𝐹𝑅 ∙ max(𝑅, 𝜆) , 𝐹𝑆 ∙ 𝑠, 𝐷 𝐹𝐺⁄ } III.1 

The range factor (FR) scales the maximum range computed based on the particle energy and 

inverse interaction cross sections (λ) for all possible interactions. If FR is decreased, the limit on 

step size decreases and the simulation will perform more steps. The distance to a geometrical 

boundary (D) is weighted by the geometry factor (FG) to insure a minimal number of simulation 

steps within each volume. An additional safety factor (Fs), fixed at 0.3, weights the straight 

distance between the start and end point of the step (s). The default values for MSC range factors 

(“fUseSafety”) are 0.04 for FR, and FG is ignored. The low energy electromagnetic processes 

constructor used in the VIDA employs the strictest variant for MSC step sizes 

("fUseDistanceToBoundary") setting FR to 0.04 and FG to 2.5. 
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Primary Event Generation and Scoring 

Instead of randomly placing events in the source region to create a uniform activity 

distribution, events in VIDA are generated voxel-by-voxel based on an activity map derived 

from quantitative SPECT or PET imaging. The simulation can be run to include events in the 

whole body or by selecting an organ or tumor volume as source, as specified in the input file (see 

Appendix D). Within each voxel, events are assumed to be uniformly distributed, with randomly 

selected position and direction vectors. 

VIDA employs the built-in radioactive decay module (Hauf et al. 2013a) to produce 

primary particles based on the branching ratios and decay energy of the radionuclide of interest. 

The radionuclide is defined as an ion with an atomic number and mass from the simulation input 

file. The decay library includes information on the nuclear half-life, nuclear structure of the 

parent and progeny, branching ratios, and energy of the decay structure taken from the Evaluated 

Nuclear Structure Data File (Tuli 1996) for each nuclide. For the case of nuclides that decay to 

excited isomers, the prompt de-excitation of the daughter nucleus via isomeric transition occurs 

based on photon evaporation files that include internal conversion coefficients. 

Particle interactions in Geant4 are performed “silently,” requiring the user to define a 

scorer for the detector volume(s) to extract desired information. Each scorer collects one physics 

quantity for each physical volume. VIDA employs a primitive scorer for deposited energy. 

Energy deposition due to each primary event, including secondary particles and any subsequent 

gamma emission due to de-excitation of the nucleus, is tallied for each voxel. Once all events are 

tracked, the simulation produces a map of the total energy deposited that is used to create a 3D 

dose rate map for input to VIDA’s voxel-level kinetics processing. 
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The ability to produce primary events based on the decay scheme of a radionuclide and 

perform whole field of view simulation by sampling the activity distribution in a patient from 3D 

functional image is a distinctive feature of VIDA. Other 3D dosimetry applications such as 3D-

RD (Prideaux et al. 2007) require separate simulations of decay products (i.e. electrons for β
‒
 and 

Auger emission or photons for gamma emission and characteristic x-rays). The energy 

deposition distributions from all decay components must then be added together, weighted by the 

transition probabilities. The Geant4 3D dosimetry code RAYDOSE (Marcatili et al. 2013) uses 

the general particle source (GPS) to access the radioactive decay module. The GPS is limited to 

generating primary particles with 2D spatial sampling and thus, each slice of the functional 

image must be run independently. RAYDOSE must then perform a post-processing summation 

of the 3D dose rate maps corresponding to each slice as the source of activity. Another Geant4 

dosimetry application for internal dosimetry GRNT (McKay 2011)
 
uses the command line 

interface to define all necessary simulation components including phantom geometry, physics 

options, simulation materials, and the radionuclide emission spectrum. Although this approach 

may offer increased flexibility, it also demands significant effort from the user to create a 

working simulation. 

3D Kinetics Processing 

Patient kinetics modeling is performed by the exponential fitting module in VIDA. This 

module (see Figure III.4) consists of a MATLAB-based GUI for curve fitting by iterative least 

squares estimation (Statistics Toolbox, Release 2012a). Non-linear regression is performed using 

the Levenberg-Marquardt nonlinear least squares algorithm. The user has a choice of fit 

functions depending on uptake kinetics and number of sequential scans. Instantaneous activity 
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uptake, resulting in exponentially decaying dose rates, can be fit to a mono-exponential or bi-

exponential function of the general form: 

𝐷̇(𝑡) = 𝐷1̇𝑒
−𝜆1𝑡 + 𝐷2̇𝑒

−𝜆2𝑡. 

Initial guesses for the rate components (𝐷1̇ and 𝐷2̇) are derived from the time-sequence data and 

elimination constants (λ1 and λ2) from the physical half-life of the radionuclide of interest. The 

fitting algorithm automatically detects voxels with non-instantaneous uptake (i.e. tumor) and fits 

these data to a bi-exponential including the (0, 0) point of the form: 

𝐷̇(𝑡) = 𝐷0̇(𝑒
−𝜆1𝑡 − 𝑒−𝜆2𝑡). 

The voxel dose is computed by integration of the fitted function based on a time interval supplied 

by the user, with a default range of zero to infinity. Non-physical clearance (e.g. increased 

activity at later time points) may arise at body and organ boundaries due to errors in image 

registration across sequential scans. The application checks for these occurrences during the fit 

routine and attempts to fit an exponential curve with this time point omitted. 

The exponential fitting tool in VIDA provides the user with several options. The user may 

choose to fit the entire body in the image field of view or select specific organs and tumors based 

on the organ map. Also, the user may specify the resolution of the resulting dose map. A scaled 

map with voxel dimensions twice as large in the transverse plane is created by fitting a voxel 

dose curve to the data in the corresponding 2×2×1 cell in the original array. This option 

decreases the overall processing time and may facilitate regression convergence when data are 

only available for a limited number of time points. 
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Figure III.4: Graphical user interface of the MATLAB-based exponential fitting tool in VIDA. 

Evaluation tools are provided by the exponential fitting module to assess the results. The 

user can plot a histogram of the coefficients of determination (R
2
) for fitted voxels. If necessary, 

voxels with R
2
 values below a user-defined threshold may be refined by re-running the 

regression using an array of different initial coefficient values to improve the fit. In addition, the 

VIDA exponential fitting module provides a three-plane viewer to evaluate the results and plot 

the raw data and fitted curve for a selected voxel (see Figure III.5).  



65 

 

 

Figure III.5: 3D viewer in VIDA exponential fitting tool to evaluate integrated dose map and 

voxel fits. 

VIDA was designed to generate dose rate maps at each time point and perform curve fitting 

and integration of dose at the voxel. Although this technique requires additional simulations, the 

rational for this approach is twofold. The determination of instantaneous dose rates permits 

inclusion of tumor regression over scan times in the absorbed dose estimates. Also, incorporation 

of radiobiological models requires 3D absorbed dose rate images at each time point rather than 

the simulation of absorbed dose from a single map of cumulated activity. A similar approach of 

generating multiple dose rate maps has been implemented in other dosimetry studies (Dewaraja 
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et al. 2009, Howard et al. 2011, Senthamizhchelvan et al. 2012, Sgouros et al. 2011). However, if 

desired, the user can use the exponential fitting tool in VIDA to create a map of cumulated 

activity for input in the MC simulation to determine the integrated dose in each voxel with only 

one run. 

Validation 

Due to the inherent flexibility of MC simulation tools such as Geant4, verification of the 

results is of the utmost importance. Monte Carlo results in VIDA were validated using two 

independent techniques. The first method applies a simple geometry of a spherical source in a 

semi-infinite scattering medium. The self-dose to spheres of various volumes was determined 

assuming a uniformly distributed activity. The second approach compared dose factors for 

selected target organs in a standard male reference phantom assuming uniform activity in the 

source organs. 

Methods 

Simulations were performed to determine absorbed fractions for self-absorption in unit-

density spheres ranging in size from 10 to 1000 grams. For consistency with the way a patient is 

modeled, each sphere was “voxelized” into an array of cells large enough to include the 

surrounding scattering medium. The spatial resolution of the voxelized map was chosen to limit 

the error in sphere mass due to the digitized approximation of the surface to less than 0.5%. The 

spheres were modeled as a tissue-equivalent material surrounded by a semi-infinite scattering 

medium of water. The tissue composition of the sphere was taken from MIRD Pamphlets 3 and 8 

(Brownell et al. 1968, Ellett & Humes 1972), chosen to facilitate comparison to previously 

published results.  
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Uniform activity was simulated for common radionuclides used in TRT including 
90

Y, 

131
I, 

111
In and 

177
Lu. For each radionuclide of interest, one million events were tracked resulting 

in absorbed energies within the sphere with relative errors of less than 0.5%. Relative error is 

defined as the 1σ standard deviation of the average tally (energy deposited) divided by the 

average tally (Sweezy et al. 2003). Self-dose factors were calculated and compared the unit 

density sphere model in OLINDA/EXM (Stabin et al. 2005). The OLINDA/EXM program 

calculates dose factors from self-irradiation of unit density spheres of discrete masses ranging 

from 0.01 to 6000 grams. These doses factors are based on the most currently published 

absorbed fractions of photon and electron emitters in spheres of various sizes (Stabin & 

Konijnenberg 2000) 

In order to validate VIDA in a more complex geometry with different tissue types, dose 

factors for several organs of interest were determined using the RADAR reference adult male 

phantom (see Figure III.6) (Stabin et al. 2012). Cross-organ dose factors were included to 

confirm dose contributions from far-reaching photons. Phantom anatomy is represented by 

NURBS surfaces adapted from the 4D NCAT/XCAT phantom (Segars et al. 2001, Segars et al. 

2010) to have reference organ masses for the adult male defined by ICRP publication 89 (ICRP 

2002). The phantom was rendered in voxel format with a resolution of 1.5 x 1.5 x 5.0 mm to 

create an organ map for simulation. Any voxels in the array outside of the phantom were defined 

as air. Instead of using the default materials defined in Table III.1, simulation materials were 

changed to the densities and compositions of soft tissue, lungs and bone (see Table III.3) used to 

generate new specific absorbed fractions (SAFs) for the RADAR reference data.  
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Figure III.6: Anterior views of the RADAR adult male NURBS phantom. 

Simulations were performed for the same radionuclides as the uniform spheres (
90

Y, 
131

I, 

111
In, and 

177
Lu) with three different organs designated as the source of radioactivity (liver, 

spleen, and pancreas). These organs were chosen as representative sources centrally located in 

the body with varying shape. Each run generated 5 million decay events uniformly throughout 

the source organ, resulting in relative errors of less than 2% in the total energy deposited in each 

target volume. Dose factors were determined using the average dose deposited in each target 

organ and compared to reference data. Target volumes included the three source organs and also 

the lungs and kidneys to evaluate self-dose and cross-organ doses to distant structures that may 

be of interest in TRT dosimetry.
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Table III.3: Materials used in the simulation of dose factors for the reference adult male phantom. Tissue definitions taken from Oak 

Ridge National Lab Report ORNL/TM-8381/V1, Table A-1 (Cristy & Eckerman 1987). 

Material 
Density 

(g/cm
3
) 

Chemical Composition (% by mass) 

H C N O Na Mg Si P S Cl K Other 

Air 1.21×10
-3

  0.01 75.5 23.2        1.3 (Ar) 

Soft Tissue
*
 1.03 10.45 25.66 2.49 63.53 0.11 0.01 0.03 0.13 0.20 0.13 0.21 0.02 (Ca) 

Lung Tissue
†
 0.296 10.13 10.24 2.87 75.75 0.18 0.01 0.01 0.08 0.23 0.27 0.19 0.01 (Ca), 0.04 (Fe) 

Whole Bone
‡
 1.40 7.34 25.48 3.06 47.89 0.33 0.11  5.10 0.17 0.14 0.15 

0.03 (F), 0.01 (Fe), 

10.19 (Ca)  
*
Also contains 0.005% or less of Fe, Zn, Rb and Zr 

†
Also contains 0.005% or less of Zn and Rb 

‡
Also contains 0.005% or less of Si, Zn, Rb, Sr, and Pb 
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Results 

Dose factors for self-dose to uniform activity spheres are shown in Figure III.7. The 

differences between VIDA and OLINDA/EXM (Stabin et al. 2005) ranged from 0.4% to 5%, 

with the largest deviations occurring in the smallest sphere (see Table III.4). Dose factors for 
90

Y 

show the largest difference between the two models with a range of 2–5%. 

 

Figure III.7: DF comparison between VIDA and OLINDA/EXM for unit density soft tissue 

spheres of different masses.  

 Table III.4: Relative percent differences in VIDA and OLINDA/EXM sphere dose factors
 

Mass (g) Diameter (cm) 
131

I 
90

Y 
111

In 
177

Lu 

10 2.7 -1.4 -5.0 3.8 -1.3 

20 3.4 -0.9 -4.1 3.8 -0.9 

100 5.8 -0.9 -2.5 2.8 -0.7 

400 9.1 -0.9 -2.3 0.9 -0.7 

1000 12.4 -0.5 -2.1 0.4 -0.4 

Relative % difference defined as 100 × (DFVIDA – DFOLINDA) / DFOLINDA. 
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Figure III.8: Self and cross organ dose factors for liver, spleen, and pancreas in the RADAR adult male phantom. Solid bars are 

reference values (Stabin et al. 2012) and outlined bars are from VIDA. Percent differences are listed above each pair, defined as 100 × 

(DFVIDA – DFRADAR) / DFRADAR. 
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Results for the reference phantom study are presented in Figure III.8. Cross-organ dose 

factors are omitted for 
90

Y because beta-emission energy is mostly absorbed locally. Any dose 

deposited in target regions far from the source organ is mainly due to contributions of 

bremsstrahlung radiation, with low scoring statistics. Deviations in the dose factors for organ 

self-dose ranged between 0.6% and 5%. The difference in cross-organ dose factors spanned from 

0% to 9% with VIDA results being lower than OLINDA/EXM values for almost all source-target 

organ pairs. 

Discussion 

The agreement in dose factors for the spheres was within 5% and improved with 

increasing mass, due to the decreased likelihood of an electron escaping the source volume 

before complete energy absorption. For all sphere sizes, the largest differences occurred for 
90

Y, 

a nearly pure beta emitter. The discrepancy is most likely due to different methods used to 

sample the beta energy spectrum. OLINDA/EXM applies a single SAF for the average energy of 

the beta emission spectrum, whereas beta particles created from a decay event in Geant4 are 

assigned energies by sampling the β-Fermi-function (Hauf et al. 2013a). Beta emissions with 

energy higher than the spectrum mean have a longer range in tissue and higher interaction 

likelihood; however there is also an increased possibility of these electrons exiting the sphere 

without being scored, which results in less total energy absorbed reflected by the lower dose 

factors from VIDA. 

For radionuclides that undergo beta decay (
131

I, 
90

Y and 
177

Lu), dose factors calculated by 

VIDA for spheres and the majority of source/target pairs in the reference phantom are slightly 

lower compared to OLINDA/EXM. However, all self-dose factors from VIDA are higher for 

111
In. 

111
In decays by electron capture and dose is locally deposited by low energy Auger 
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electrons and small yield internal conversion electrons. The difference in 
111

In self-dose factors 

may be due to error in the interpolation of SAFs for the very low energy Auger electrons by 

OLINDA/EXM and improved low energy electron transport models in Geant4 compared to 

MNCP4B; nonetheless, the differences are small. 

Several other groups have performed simulations of internal radioactive sources using 

Geant4. Amato et al. (Amato, Amato) reported absorbed fractions for monoenergetic photons 

and electrons in ellipsoids. Using these data, they specified the average energy deposited per 

disintegration of 
131

I as a function of the generalized radius. The energy deposited per 

disintegration of 
131

I by VIDA for the two smallest spheres (10 and 20 g) was 201 keV and 205 

keV respectively. These energies are in excellent agreement with Amato et al. (Amato) for 

ellipsoidal sources with generalized radii of 1.34 cm (201 keV) and 1.68 cm (206 keV). The 

dosimetry application RAYDOSE (Marcatili et al. 2013) was validated using dose factors for 

water spheres based on imaging a phantom containing activity-filled spheres of various sizes. For 

131
I and 

177
Lu, RAYDOSE dose factors were within 1–3% of OLINDA/EXM and agree with the 

evaluation of VIDA and OLINDA/EXM for spheres of comparable sizes. The radionuclide 

therapy code GRNT (McKay 2011) was validated by comparing organ dose factors from the 

MIRD-5 phantom to RADAR reference data. The relative differences found using GRNT for 

liver as the source organ were approximately 5% for self-dose factors and 1-10% for cross-organ 

dose factors to the kidneys, lungs, pancreas, and spleen for 
131

I and 
90

Y, which are similar to 

those from VIDA. 

Summary 

We have developed VIDA, an application for patient-specific dosimetry in targeted 

therapy using the Geant4 Monte Carlo toolkit to model radiation absorption in tissue from 
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internal emitters. The simulation generates voxel-level dose rate maps based on anatomical and 

quantitative functional imaging. It has been benchmarked with results using the RADAR 

formalism including self-dose factors for uniform activity spheres and organ self-dose and cross-

organ doses in a standard phantom. Validation results were compared to published results from 

other Geant4-based dosimetry methods with excellent concordance. VIDA also includes a useful 

curve fitting tool to automate voxel-level dose rate fitting and integration over time to create a 

3D absorbed dose map. It is our aim to employ this dosimetry technique in conjunction with 

patient-specific organ maps created from a deformable NURBS anatomical model. The method 

for creating an individualized patient model from a standard NURBS model is the topic of 

Chapter IV. VIDA, combined with the ability to define patient anatomy from a deformable 

phantom, offers a novel method for patient-specific dosimetry in TRT that can be completed in a 

short time-frame more favorable with the clinical treatment schedule. 
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CHAPTER IV  

 

PATIENT-SPECIFIC ANATOMICAL MODELING USING DEFORMABLE NURBS 

PHANTOMS  

 

Introduction 

Patient-specific dose assessment requires three distinct components. Anatomical images 

enable the definition of volumes of interest (VOIs) and provide tissue density information. Time-

sequential voxel-based quantitative activity distributions reveal the radiopharmaceutical kinetics 

in the patient. A computational method, such as MC simulation, calculates the absorbed dose in 

the patient-specific model. Much of the progress in patient-specific dosimetry in TRT focuses on 

the latter two elements. Definition of VOIs is still primarily limited to manual or semi-automatic 

segmentation, which is a time consuming and labor-intensive endeavor. Often, this step is a 

major bottleneck in the overall dosimetry process and full-scale patient segmentation is avoided. 

Dosimetry studies have restricted their focus solely on tumor dose (Dewaraja et al. 2014, 

Senthamizhchelvan et al. 2012), alleviating the need to define healthy organs. In some cases, 

such as RIT for lymphoma, this approach is permissible because the doses are low and do not 

pose a risk for organ toxicity. Other studies have employed simple segmentation methods to 

define dose limiting volumes for treatment planning, such as using an activity threshold to 

separate lung tissue from thyroid cancer metastases (Sgouros et al. 2011). Newly-developed 

molecular-based therapies (i.e. PRRT) have a much lower therapeutic window and the risk to 

normal tissues, especially kidneys, is high. This necessitates calculation of dose to not only 

tumor volumes but also to radiosensitive organs, and performing satisfactory dosimetry for these 

treatments requires delineating multiple volumes from anatomical patient data. To date, PRRT 
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dosimetry studies have used manually drawn VOIs (Baechler et al. 2012) or mean activity 

concentrations of spherical volumes inside organs of interest (Sandström et al. 2013) to obtain 

dose estimates to organs such as liver, kidney and spleen. Compared to manual segmentation, the 

approach by Sandström et al. is simple and efficient, but limits organ doses to mean values 

assuming a uniform activity distribution in the organ. 

There has been growing interest in constructing NURBS-based patient-specific phantoms 

for use in dosimetry. Numerous patient-specific NURBS-based XCAT models have been 

developed by Duke University to assess CT dose in pediatric patients (Norris et al. 2014, Norris 

et al. 2014a) and adults (Segars et al. 2013). These models were constructed based on manually-

segmented patient CT data. The bones and major organs were segmented from the CT data to 

define a framework for each phantom. The multichannel large deformation diffeomorphic metric 

mapping (MC-LDDMM) algorithm (Segars et al. 2009, Tward et al. 2011) was used to calculate 

a high-level transform from a given XCAT template (male or female) to the segmented 

framework for each patient. The transform was then applied to the XCAT phantom template 

(Segars et al. 2010) to define the additional organs and structures, not segmented from the CT 

data, into the patient-specific model, creating a new patient-specific XCAT phantom. 

The MC-LDDMM algorithm relies on the manually-segmented patient organs as landmarks 

to deform the entire phantom. This approach provides accurate results, with structures in 

agreement within a few voxels and organ dose estimates within 10%. However, the 

computational time to produce a patient-specific model is considerable, and significantly varies 

depending on the number of processors and patient size (less than an hour for a small patient 

using 24 processors up to 28 hours for a large patient using a single processor). This method of 

patient-specific NURBS modeling does not completely eliminate manual segmentation and may 
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require excessive computational processing power and time for it to be viable for clinical 

treatment planning for TRT. Moreover, the conversion of the segmented structures to 3D 

NURBS surfaces requires the use of commercial NURBS modeling software such as Rhinoceros 

3D (McNeel North America, Seattle, WA). 

Here, we describe a more efficient method for creating patient-specific models by deforming 

a NURBS reference phantom. In order to complete this task, we have developed custom software 

with a collection of tools and algorithms that can be used to manipulate the NURBS surfaces that 

define the reference organs to match the patient anatomy. The software loads patient CT images 

and overlays the outline of phantom in each viewing plane. Following a specified work-flow, the 

user modifies the body contour, skeleton, and individual organs to reflect the anatomical data in 

the CT. This chapter is organized into three main sections. The first section introduces the reader 

to NURBS and provides a formal definition of their mathematical form. The second section 

outlines the development of the software, including descriptions of the implemented algorithms 

and the procedure to construct a patient-specific NURBS model. The chapter concludes with the 

validation of the method using manually-segmented PET/CT images. 

Overview of NURBS 

Non-Uniform Rational B-Splines (NURBS) are mathematical representations of arbitrary 

3D geometries using polynomial basis functions. A NURBS model is defined by its degree and 

contains control points, corresponding weights, knot vectors, and a set of evaluation rules for the 

polynomial basis functions that determine how the control points influence the geometry. 

Surfaces are defined by a bi-directional NURBS model with parametric variables u in longitude 

and v in latitude. Points on the surface S(u, v) are defined by the following equation (Piegl & 

Tiller 1997): 
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 𝐒(𝑢, 𝑣) =
∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)𝑤𝑖,𝑗𝑷𝑖,𝑗

𝑚
𝑗=0

𝑛
𝑖=0

∑ ∑ 𝑁𝑖,𝑝(𝑢)𝑁𝑗,𝑞(𝑣)
𝑚
𝑗=0

𝑛
𝑖=0 𝑤𝑖,𝑗

 IV.1 

where Pi,j is a control point weighted by the scalar value wi,j, and Ni,p(u) and Nj.q(v) are 

polynomial (B-spline) basis functions of degree p and q respectively. The surface points of S(u,v) 

and the (n + 1) by (m + 1) matrix of control points P in equation IV.1 are expressed in 

homogeneous coordinates (x, y, z, 1). 

The basic shape of the surface geometry is governed by the control points that may, but 

typically do not, lie on the surface. Instead, control points fall on a grid defined by the knot 

vectors U and V:  

 

𝐔 = (0,… ,0⏟  
𝑝+1

, 𝑢𝑝+1, … 𝑢𝑟−𝑝−1, 1,… ,1⏟  
𝑝+1

) 

𝐕 = (0,… ,0⏟  
𝑞+1

, 𝑣𝑞+1, … 𝑣𝑠−𝑞−1, 1,… ,1⏟  
𝑞+1

) 

IV.2 

where r = n + p + 1 and s = m + q + 1. The knot vectors partition the surface into piecewise 

components in the parametric directions u and v (see Figure IV.1). Knot intervals are not 

restricted to uniform spacing, hence “non-uniform” in the name NURBS. Control over the 

spacing and multiplicity of the knots provides the ability to define complex geometries, including 

sharp edges, without discontinuities.  
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Figure IV.1: Schematic representation of knot vectors that divide the NURBS surface into 

piecewise segments. Surface degree of p = 3 and q = 3 with knot vectors given by U = (0, 0, 0, 0, 

u1, u2, 1, 1, 1, 1) and V = (0, 0, 0, 0, v1, v2, 1, 1, 1, 1). Note that the spacing is not uniform in each 

parametric direction. 

Each piecewise component of the surface has a set of unique basis functions that weight the 

control points. Basis functions Ni,p(u) and Nj,q(v) are defined by equation IV.3. For each point on 

the surface S(u,v), basis functions are only non-zero over the knot interval [ui,ui+p+1) and 

[vj,vj+q+1) of U and V respectively, where ui ≤ u < ui+1 and vj ≤ v < vj+1. The weighting coefficient 

of control point Pi,j is the product of Ni,p(u), Nj,q(v) and wi,j, and is therefore only non-zero if at 

least one basis function is non-zero over the knot interval. This property creates local control of 

the surface shape, and altering the position of a control point only influences the p + 1 (or q + 1) 

neighboring surface patches (see Figure IV.2). 

 

𝑁𝑖,0(𝑢) = {
 1, 𝑖𝑓 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑁𝑖,𝑝(𝑢) =
𝑢 − 𝑢𝑖
𝑢𝑖+𝑝 − 𝑢𝑖

𝑁𝑖,𝑝−1(𝑢) +
𝑢𝑖+𝑝+1 − 𝑢

𝑢𝑖+𝑝+1 − 𝑢𝑖−1
𝑁𝑖+1,𝑝−1(𝑢) 

IV.3 
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Figure IV.2: Modification of NURBS surface by moving control points. (a) NURBS 

representation of a plane with controls points (*) aligned on the surface. (b) Surface with shaped 

altered by translating two of the center control points in the z-axis. 

As shown in equation IV.3, the area of the surface impacted by the control points depends 

on the degree of the NURBS model. Thus increasing the degree of the model, in turn increasing 

the degree of the basis polynomials, will result in control points influencing a larger area of the 

surface. Although higher degree polynomials provide increased flexibility, they may also affect 

the smoothness of the surface and create unwanted bumps. Typically, cubic polynomial basis 

functions (degree = 3) provide an adequate compromise between elasticity and constraint. The 

degree of all NURBS models used in this work is three in both parametric directions. 

Although NURBS are complex mathematical models, they have many properties that make 

them a desirable primitive for modeling patient anatomy. NURBS surfaces have affine 

invariance, meaning that applying a transformation to the surface is equivalent to applying the 

same transformation to the control net that defines the surface. A surface is easily translated, 

rotated or scaled by multiplying the matrix of control points (Pi,j) by the appropriate 

transformation matrix (T): 

  𝐏𝒊,𝒋
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = 𝑻𝐏𝒊,𝒋 IV.4 

The local morphology of a surface can also be altered by manipulating individual control points. 

If the location a control point changes, only the piecewise surface patches influenced by that 
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specific point (through non-zero basis functions) are modified. The local modification property 

of NURBS allows specific areas on the surface to be deformed by the altering the positions of 

the control points. Thus, organs in the phantom template can be modified to match patient 

anatomy as if they were made of clay. Additionally, NURBS surfaces are continuous and surface 

points can be expressed at any resolution. This permits the creation of a 3D image map of the 

anatomical NURBS phantom to be generated with arbitrary spatial resolution. Thus, patient-

specific NURBS phantom can be transformed or “voxelized” to create an organ map that 

matches the spatial resolution of the quantitative activity images. 

Development of the Phantom Morphus Software 

Introduction 

The Phantom Morphus software is based on an existing interactive application to model 

patient populations using the NCAT Phantom (Segars et al. 2000, Segars et al. 2001). The 

focused use of this software was to study patient anatomy in myocardial SPECT and was limited 

to anatomical modifications to the original NCAT phantom using SPECT images as a reference. 

The transformations included translation and scaling of the diaphragm, heart, lungs, rib cage, and 

body outline as well as rotations of the rib cage and heart. The remaining organs (liver, spleen, 

stomach and kidneys) were not deformed. 

We have expanded this software to perform interactive modification of anatomical structures 

guided by high-resolution CT as a method to create full body patient-specific models for 

dosimetry in TRT. The NCAT phantom, initially limited to torso anatomy including the heart, 

lungs, liver, stomach, spleen, kidneys and surrounding skeleton (sternum, ribs, and thoracic 

vertebrae), has been extended to the entire body resulting in the XCAT phantom (Segars et al. 

2010). The Phantom Morphus software employs the extended full-body XCAT phantom to 
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create individualized anatomical models that include all organs at risk for TRT and a complete 

skeleton for bone marrow dosimetry. Ten small spherical surfaces were added to the reference 

phantom used in Phantom Morphus for definition of tumor volumes. In addition to applying 

simple affine transformations to the control points, the software includes new algorithms that 

enable non-rigid transformations of the organ models. This section contains descriptions of these 

algorithms as well as a detailed summary of the overall software design. Guidance is given on 

how to use Phantom Morphus to construct a patient-specific model. 

Software Design 

Phantom Morphus is written in Visual C++ using the OpenGL application programming 

interface for rendering 3D graphics. The main GUI (see Figure IV.3) consists of two display 

windows, one for the 3D NURBS phantom and the other containing a 2D display of the CT 

image, with transverse, sagittal and coronal view options. The user loads a patient CT by 

selecting “Load Patient Data” from the “Patient Data” drop down menu. The phantom is 

rendered as an overlay to the CT image using triangulated surfaces that match the voxel 

dimensions of the CT image. 

The CT data must be in raw image format to load into Phantom Morphus. Because raw data 

lacks header information, the user must specify the image dimensions (number of rows, columns, 

and slices) and the data type and storage order (e.g. unsigned short, big-endian) before the 

software can load the data into memory. The user must also set the voxel dimensions of the 

image in the “Image View Tools” GUI (see Figure IV.4) so that the NURBS surfaces are 

triangulated and displayed over the 2D CT image at the matching resolution. The Image View 

Tools panel also contains other image display options including zoom, brightness and contrast 

adjustment and toggles between the three image planes (transverse, coronal, and sagittal). 
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Figure IV.3: 3D and 2D views of the Phantom Morphus software main graphical user interface. 

Selection of phantom structures for transformation is handled by the “Phantom Structures” 

window (see Figure IV.5). The user is permitted to select a single organ or a set of organs for 

manipulation. Options to display or hide selected and unselected objects in the CT image 

window are available. The organ models in the 3D phantom view window can be rendered as 

wireframe (default for body contour) or solid objects (default for organs and skeleton). The 

control points of the selected structures can also be shown in the 2D image view. 
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Figure IV.4: GUI of image view tools for CT image display. 

 

Figure IV.5: GUI for NURBS phantom viewing options and selection of structures. 
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A screen capture of the “Tools” window is show in Figure IV.6. This GUI contains all the 

tools provided to the user to deform the template organ. The window is divided into three main 

sub-panels. One sub-panel includes the available options for modifying the surface(s) using 

affine transformations. Another sub-panel contains a set of standard segmentation tools to 

manually define volumes of interest from the CT image. The third sub-panel includes special 

transformation tools for surface modification. Details of these custom deformation algorithms are 

given in the following section. 

 

Figure IV.6: GUI of surface transformation tools. 

Transformation Algorithms 

Affine Transformations 

Modification of organ models by affine transformation is performed by applying a 

transformation matrix to the control points (see equation IV.4). The affine transformations 

available in Phantom Morphus include translation, rotation and scaling. These transformations 

can be applied to multiple structures at the same time by selecting them in the “Phantom 

Structures” window. Translation of surfaces in a specific direction, denoted as x, y, and z in the 

“Tools” window, is performed by simply translating the coordinates of the control points by a 

user-specified amount. Selected surfaces can also be translated in the 2D slice view using the 

mouse by clicking and dragging the selected surface overlays to the desired position. Rotation of 

selected structures is performed about the center each object. The coordinates of the control 
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points are rotated in the selected plane about this center point. The anterior-posterior plane is 

designated as the x direction, the lateral plane as the y direction, and the longitudinal plane as the 

z direction. Models can be scaled in several different ways. Scaling can be performed in only one 

dimension about the center of the selected object based on a user-specified scale factor. Scale 

factors larger than one will dilate the surface in the selected dimension and factors less than one 

will shrink the surface. The surface may also be scaled in 3D by the scale factor about the center 

point of the model or a selected center point defined by click the mouse in the 2D image view. 

A first order approximation of patient-specific organ anatomy can be achieved by applying 

affine transformations to the reference organs. Figure IV.7 shows an example of the original left 

kidney and the modified organ shape using only affine transformations. The kidney was scaled 

by a factor of 1.1 in the longitudinal direction, rotated -15° about the lateral plane and centered 

on the patient CT by translation using the mouse in the 2D view. 

 

Figure IV.7: Result of organ modification using affine transformation of the left kidney. The top 

panel shows the original position of left kidney. The bottom panel shows the organ after scaling, 

rotation and translation. The phantom kidney is shown as a yellow contour in the images. 
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Surface Fitting to Threshold Mask 

Phantom Morphus has the capability of fitting an existing surface to a defined mask. 

Although this is not different from conventional methods of manual segmentation, it does offer 

an efficient way to deform surfaces of high contrast with surrounding tissue such as the lungs 

and body contour. The user first defines ROI contours using the mouse in the 2D image view. 

The software has the ability to interpolate the contours in the longitudinal plane so the user is not 

required to manually define the ROI on each image slice. Once the contours are complete, the 

ROI surface is created using a minimum and maximum threshold of CT intensities set in the 

“Image View Tools” window. If necessary, the defined ROI can be dilated or eroded to refine its 

shape. The user then has the option of fitting the entire NURBS surface to the threshold mask or 

the partial surface that spans the mask. The latter option is especially useful for fitting 

incomplete body contours or lung volumes to CT images spanning a partial field of view of the 

patient anatomy commonly encountered in imaging data available in TRT (see Chapter 5 for 

examples). 

Surface Fitting to a Point Cloud 

Many methods to fit NURBS curves and surfaces to a set of measured data points have been 

developed (Brujic et al. 2011, Brujic et al. 2002, Cheng et al. 2004, Flöry & Hofer 2010, 

Pottmann & Leopoldseder 2003, Ristic et al. 2004, Wang et al. 2006). This process, known as 

reverse engineering, is especially important in computer-aided design. Most approaches employ 

least-squares optimization of a defined function relating the distance between each measured 

point and the closest point on the NURBS surface, denoted as the “foot point”. The algorithm 

developed to fit a surface to a point cloud for the Phantom Morphus software utilizes point 

distance minimization (PDM) that essentially solves a set of generalized normal equations to 
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minimize the sum of the squares of the distance between the base surface and the measured data 

(Brujic et al. 2011, Brujic et al. 2002). The surface fitting algorithm consists of three main steps: 

point inversion to determine the corresponding surface parameter values (u, v) of the foot point 

for each point in the point cloud, setting up the system of linear equations including the 

introduction of additional criteria to regularize the system and ensure the overall minimization 

problem is well posed, and solving the linear system using an iterative least squares algorithm. 

These steps are iterated using the updated surface until a tolerance or iteration limit is reached. 

Point inversion is performed using a second order geometrical algorithm (Hu & Wallner 

2005). The iterative algorithm projects the point onto a curvature circle using an initial guess for 

the foot point (see Figure IV.8). This projection is used to update the surface parameter values 

(u, v) of the foot point until convergence is reached. The point projection requires a good initial 

guess of surface parameter values. We have implemented the method of surface patch 

elimination in Ma and Hewitt (Ma & Hewitt 2003) to obtain the initial guess. This approach 

exploits the convex hull property of NURBS surfaces to excluded surface regions. The surface is 

first subdivided into Bézier patches (defined below). Using the geometrical relationship between 

the cloud point and the control point net of each Bézier patch, candidate patches are identified 

and used to obtain the initial surface parameters (u, v) of the foot point.  
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Figure IV.8: Example iteration of point inversion algorithm. The cloud point (black dot) is 

projected onto the curvature circle (black curve) to update the surface parameters corresponding 

to the foot point. The red arrows indicate the tangent and normal vectors at the current surface 

point. 

A Bézier patch is similar to a NURBS surface, defined by a set of control points weighted 

by Bezier basis functions: 

 𝑸(𝑢, 𝑣) = ∑∑𝑷𝒊𝒋𝐵𝑖,𝑛(𝑢)𝐵𝑗,𝑚(𝑣)

𝑚

𝑗=0

𝑛

𝑖=0

 IV.5 

The basis functions, or Bernstein polynomials, are defined by: 

 

𝐵𝑖,𝑛(𝑢) =
𝑛!

𝑖! (𝑛 − 𝑖)!
𝑢𝑖(1 − 𝑢)𝑛−𝑖  

𝐵𝑗,𝑚(𝑣) =
𝑚!

𝑗! (𝑚 − 𝑗)!
𝑣𝑗(1 − 𝑣)𝑚−𝑗 

IV.6 

with n and m the degrees of the polynomials in the u and v directions, respectively. The main 

difference between a Bézier patch and a NURBS surface is that the control point net of Bézier 

patch has only (n + 1)(m + 1) control points. For a cubic Bézier patch, there are a total of 16 
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control points. The surface of the Bézier patch Q passes through the control points at the four 

corners, with Q(0,0) = P00, Q(0,1) = P01, Q(1,0) = P10, and Q(0,0) = P11.  

NURBS surfaces can be subdivided into multiple Bézier patches using knot insertion (Piegl 

& Tiller 1997). Given a NURBS surface of degree p and q (see equation IV.1), the Bézier 

patches are obtained by inserting interior knots in until each knot in U has multiplicity p and then 

until each knot in V has multiplicity q. Once the surface is subdivided, each Bézier patch can be 

tested to determine if the foot point is located within the patch, by discarding any patches which 

the closest surface point to the cloud point is on one of the four boundary curves (see Figure 

IV.9). Once the closest Bézier patch is located, the midpoint of the (u, v) span for this patch is 

used as the initial guess in the point inversion algorithm. 

 

Figure IV.9: Eliminated Bézier patch. Closest surface points lay on the boundary curves. 

Fitting a NURBS surface to a series of points becomes a linear optimization problem under 

the assumption that the weights and knot vectors are fixed and only the control points are 

unknown. The function for minimization is defined by equation IV.7 with Qk representing each 

cloud point with the corresponding closest surface point given by S(uk,vk) and fs is a 
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regularization term to prohibit rank-deficiency or an ill-conditioned system and ensure a smooth 

surface. 

 𝑓 =
1

2
∑‖𝑸𝒌 − 𝑺(𝒖𝒌, 𝒗𝒌)‖

2

𝑀

𝑘=1

+ 𝜆𝑓𝑠  IV.7 

The point cloud minimization algorithm in Phantom Morphus includes two regularization terms 

modulated by separate weights (α and β). The first regularization term is generated by the 

assumption that control points approximate the shape of the surface by the convex hull property 

and should stay close to the surface (Brujic et al 2011). Mathematically this term is expressed as: 

 𝑓1 =∑∑‖𝑷𝒊,𝒋 − 𝑺(𝒖𝒊,𝒋, 𝒗𝒊,𝒋)‖
2

𝑚

𝑗=0

𝑛

𝑖=0

 IV.8 

where Pi,j are the control points and S(ui,j,vi,j) are the corresponding surface points. The 

parametrization points ui,j and vi,j are determined using Greville abscissae (Milroy et al. 1995). 

The second term regularizes the surface curvature by applying a discretized version of the 

Laplacian to the control points in both parametric directions (u and v) (see equation IV.9).  

 𝑃𝑖,𝑗 =
1

4
(𝑃𝑖−1,𝑗 + 𝑃𝑖+1,𝑗 + 𝑃𝑖,𝑗−1 + 𝑃𝑖,𝑗+1) IV.9 

The linear system of equations determined by evaluating the basis functions of S(uk,vk) and 

S(ui,j,vi,j), and the discretized Laplacian is sparse. The software solves for a new set of control 

point positions using the LSMR algorithm for sparse least squares problems (Fong & Saunders 

2011) using modulation weights α and β of 0.5 and 0.1 respectively. The surface model is then 

updated and these steps are repeated until the system converges or a maximum number of 

iterations are completed. 

One of the key factors in the success of the PDM algorithm is the ability to choose an initial 

surface that is a good approximation to the point cloud of measured data. The anatomy of the 
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reference phantom provides a template for organ geometry that makes surface fitting using PDM 

an efficient method for patient-specific anatomical modeling. Although this approach still relies 

on user interaction, defining organ and tumor volumes via point cloud fitting only requires the 

user to only select a set of surface points that are representative of the overall shape compared to 

time-intensive slice-by-slice contouring. 

Fit Intestines with Vector Field Transform 

Digestive organs are complex in morphology, with many twists and turns, and change 

temporally during the course of a patient’s treatment. The complexity of their shape makes them 

difficult to deform to match the patient anatomy. We have implemented a method to fit reference 

organs to the general shape of the small intestines, colon, and rectum of the patient using a vector 

field transform. The NURBS template model includes two boundary surfaces that completely 

enclose the bowel. Using the methods described above, the user deforms one of these surfaces to 

match the complete boundary of the intestines and rectum using the CT image as a reference. 

The differences between the two boundary surfaces are used to calculate field motion vectors 

that represent the necessary transformation from a point on the original boundary to the 

correspond point on the patient-specific boundary. These motion vectors are then applied to each 

of organ models to shift the control point locations to fit the intestines inside the patient 

abdomen. Although this approach does not account for exact differences between the surfaces of 

reference phantom and patient bowel, it does provide an estimate of where the small intestines, 

colon and rectum are positioned relative to the other organs in the abdominal cavity of the 

patient. 
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Construction of Patient-Specific Models 

The workflow to construct patient-specific models using the Phantom Morphus software is a 

top down approach. The process begins with coarse alignment of the entire phantom to the body, 

first in the transverse plane and then in the coronal and sagittal views, using the base of the lungs 

as a reference landmark. Once general alignment is achieved, the next step is to scale the body 

trunk in each dimension. It is important to not scale the body based on the external body contour, 

especially if the patient is overweight or obese, but with respect to the internal organs. This can 

be achieved by using the rib cage as a reference in the anterior-posterior and lateral directions 

and the length of the spinal column in the longitudinal plane. 

 

Figure IV.10: Example of data point selection and results for surface fitting to a point cloud. 

Each pair of images represents one set of results. The left image in each pair shows the original 

phantom kidney contour along with the point cloud to fit. The right image in each pair shows the 

resulting contour of the fitted phantom kidney. 
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The next step is to modify each organ to match the patient anatomy. The NURBS surface 

can be centered by over the organ using the “click and drag” function. Once centered, the user 

can scale and rotate the surface in each dimension to improve the alignment. Often, using these 

affine transformations may result in a suitable organ volume. If refinement is required, the point 

cloud surface fit algorithm can be applied. The user selects points along the organ boundary on 

the CT. This should be done at each end of the organ and on a subset of slices between the ends 

(see Figure IV.10). Areas of high curvature require more densely defined points. The user 

specifies the number of times the least squares fitting is performed (default = 5). Larger and 

complex surfaces require more iterations to achieve acceptable results. 

The right and left lungs can be matched to the patient anatomy by fitting the NURBS 

surfaces to a masked defined by a threshold or by using the point cloud surface fitting algorithm. 

Because all NURBS surfaces in the reference phantom are closed at both end points, both lung 

surfaces actually extend down past the base in order include the area in the base of the lungs at 

the position of the diaphragm (see Figure IV.11a). In the transverse view, the right lung will have 

significant overlap with the liver and the left lung will continue down into the spleen and 

stomach. These overlaps will be handled during the voxelization process as the organs are 

converted in a specific order. Thus, the liver surface will replace the areas of right lung that 

coincide. Because there is significant mediastinum between the base of the left lung and the top 

of the spleen and stomach, the excess lung surface is corrected by placement of a NURBS 

surface representing the left diaphragm. Once the left lung is deformed to match the patient, the 

left diaphragm should be adjusted at the lung base. During voxelization, the left diaphragm is 

voxelized as body and then areas that overlap with the spleen and stomach replace those voxels 

(see Figure IV.11b). 
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Figure IV.11: Overlap of the lungs at the base before deforming structures to match the patient 

(a) and after modification (b). The white area is the left diaphragm that is voxelized as body and 

replaced by other organs including the spleen (red), stomach and heart (pink). 

The small and large intestines cannot be deformed with the point cloud surface fit algorithm. 

In order to accurately represent the bowel loops and avoid self-intersection of the surface, the 

small intestine is comprised of a series of NURBS surfaces. Likewise, parts of the large 

intestines, namely the transcending and sigmoid colon, consist of more than one NURBS surface. 

The abdominal anatomy of the patient can be approximated in one of two ways. The user can 

apply a vector field transform to these organs by first delineating a boundary surface around the 

entire bowel. This algorithm requires the entire bowel to be visible in the patient CT. The 

alternate method for creating patient-specific abdominal organs is to use affine transformations 

to estimate the size and position of the small and large intestines. 

Definition of the patient’s skeleton is achieved by applying affine transformations to 

individual or groups of bones in the phantom. Additionally, the user can create patient-specific 

ribs by using an algorithm that fits a NURBS surface to a center line through each rib defined by 

the user on the image. Depending on the image size, the task of modifying each bone to match 

the patient may be tedious and lengthy. If this process is time-prohibited, the skeleton can be 

added to the 3D organ map after voxelization by identifying voxels containing bone using a 
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threshold mask. The bone voxels can then be modeled as whole bone during MC simulation. The 

definition of each bone surface using the NURBS model has one advantage. The voxelization 

process can be modified to insert marrow cavities inside each bone. Using a few anatomical 

measurements on the patient CT, patient-specific active marrow mass in each bone can be 

estimated (Pichardo et al. 2007) and used to populate voxels in the cavity as red marrow. Then 

dosimetry can be performed using VIDA with a skeleton that contains separate cortical bone, 

yellow and marrow voxels. This approach provides a method to estimate red marrow dose that is 

not easily performed when the skeleton is modeled as whole bone. Often, red marrow toxicity is 

a concern in TRT and the ability to measure energy deposition in voxels specified as red marrow 

during MC simulation may offer improved dose estimates to this radiosensitive organ compared 

to currently available approaches such as fixed geometry dosimetry based on measuring 

radioactivity levels in blood after treatment (Forrer et al. 2009). 

The final step in creating a patient-specific NURBS model is to fit the body contour. The 

reference NURBS phantom has separate surfaces representing the trunk, right and left arms, and 

right and left legs. The fastest way to deform these surfaces to match the patient is to fit either 

the whole surface or partial NURBS to a mask. The body contour mask can be quickly created 

by applying a threshold to user-defined ROI contours. These contours are drawn on a subset of 

the CT slices, with interpolation performed between each one to achieve a continuous mask (see 

Figure IV.12). 
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Figure IV.12: Example of fitting the body contour to the patient. The ROI contours are defined 

approximately every 20 slices in the axial view (top). The surface mask is created using a 

threshold range of CT intensities and interpolated in the longitudinal direction (lower left). The 

partial NURBS surface is fit to the mask (lower right). 

Validation 

Introduction 

Techniques for image segmentation require appropriate validation, especially if the 

results will be used in patient treatment. There is a long history of the use of standard test images 

for image validation, dating as far back as 1974 with the development of the Shepp-Logan head 

phantom for testing of CT image reconstruction algorithms (Shepp & Logan 1974). 
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Segmentation standards have been created for various regions of the body including the brain 

(Aubert-Broche et al. 2006, Collins et al. 1998) and lung (Armato III et al. 2004) to validate 

interactive, semi-automatic and automatic segmentation methods. Typically these standards are 

generated using high-resolution images of individual patients or realistic simulated anatomical 

volumes. 

The primary difficulty in quantifying the performance of medical image segmentation 

techniques is the lack of ground truth for in vivo data. Interactive drawing of volumes of interest 

by experts is often the gold standard for segmentation in clinical practice, as in the case for TRT. 

Therefore, we chose to validate the construction of patient-specific deformable models using a 

set of manually-segmented high-resolution CT images. PET/CT data was selected because the 

large field of view included all organs of interest to TRT. Additionally, the inclusion of the PET 

data facilitated the investigation of how patient-anatomy defined by deformable NURBS impacts 

the dosimetry. 

In this section, we present the validation of patient-specific NURBS models constructed 

using the methods described previously in this chapter. Patient-specific models were built and 

compared to manually-segmented organs verified by a radiologist with experience in body CT. 

Several evaluation metrics were applied, including volume differences, set similarity coefficients 

of spatial overlap, and Euclidean distance between surfaces. 3D imaged-based dosimetry was 

also performed using VIDA to assess the relevance of volume misfits between deformable 

models and patient anatomy to organ dose. 
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Methods 

Patient Data 

Four adult patients, two male and two female, who had undergone an 
18

F-FPEB 

dosimetry study for a new radioligand that binds to the metabotropic glutamate receptor subtype 

5 (Kessler et al. 2014) were chosen from our archives. The 
18

F-FPEB study received approval 

from our institutional review boards and all subjects the provided written informed consent 

before enrollment. All images were anonymized prior to use in accordance with the Health 

Insurance Portability and Accountability Act (HIPPA). Patient demographics and anthropometry 

are presented in Table IV.1. 

Table IV.1: Description of patients used in deformable model validation 

Patient Sex Age (yr) Height (m) Weight (kg) 

1 F 19 1.65 72 

2 F 52 1.68 84 

3 M 23 1.65 77 

4 M 22 1.80 72 

 

The PET/CT studies include high resolution CT images (1.37×1.37×3.27 mm
3
) with a 

field of view spanning from the top of the skull down to the mid-femur. Patient anatomy was 

defined using a combination of manual and semi-automatic segmentation techniques included in 

the ITK-SNAP toolkit (Yushkevich et al. 2006). Organ volumes were verified by a subspecialty 

radiologist with experience in both body CT and nuclear medicine. Likewise, patient-specific 

NURBS models were created using the CT image as a template for deformation using the 

process described in the previous section. The manually-segmented standards and deformable 

models included all trunk organs, ranging from the heart and lungs in the upper chest to the 

reproductive organs in the lower pelvis.  



100 

 

Evaluation Metrics 

Three evaluation metrics often used to assess image segmentation results of the same 

structure were chosen to evaluate the organ volumes in the patient-specific NURBS models 

(Van Ginneken et al. 2007). The organs volumes from manual segmentation using were set at the 

reference or “ground truth” for this analysis. First, the volumetric error of each organ was 

calculated as the relative percent difference between the total target and reference volumes. 

Over-definition of the NURBS organ is indicated by a positive difference and under-definition is 

given by a negative value. The Jaccard similarity metric (Jaccard 1912) was used to determine 

the percent volumetric overlap. The Jaccard similarity coefficient (J) is defined as the size of the 

intersection divided by the size of the union of the sample sets (A and B) (see equation IV.10). 

 𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 IV.10 

The average surface distance between the two organs was calculated using Euclidean distance 

mapping (Danielsson 1980, Mishchenko 2015). Surface boundaries of the reference and target 

volumes were delineated and for each voxel in the target the distance to closest voxel to the 

reference boundary was determined. The average of all these distances was tallied to produce a 

metric of the average symmetric absolute surface distance between the segmented and NURBS 

organ. These evaluation metrics were applied to the entire body contour and skeleton to assess 

the global accuracy of the patient-specific NURBS models. Individual organs of importance to 

dosimetry in TRT were evaluated including lungs, heart, liver, spleen, kidneys, and gall bladder. 

Dosimetry 

To assess the impact of discrepancies in the patient-specific model anatomy on dosimetry, 

organ maps were generated from the individualized phantoms and used as input into VIDA to 

obtain dose rate maps. NURBS models were voxelized at resolution of the PET images 
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(5.47×5.47×3.27 mm
3
). The voxelization program assigns organ ID numbers to each voxel as 

specified in an input parameter file. The integer IDs were assigned to organs to match those used 

in VIDA (see Appendix D). Overlapping surfaces (e.g. liver and right lung) are handled based on 

a priority value assigned to each organ. For voxels corresponding to surface overlap, the voxel is 

assigned the ID number of the organ with the highest priority. These results were compared to 

dose rate maps generated by VIDA for the reference anatomy using manually-segmented organ 

maps. In order to match the resolution of the PET images, the organ maps created using manual 

segmentation methods were down-sampled from 512×512 pixels to 128×128 pixels in the 

transverse plane with nearest neighbor interpolation of the organ identification numbers. 

VIDA was run using 
131

I as the radionuclide to assess the locally-deposited dose from 

charged beta particles and dose due to penetrating radiation from gamma emission. 

Approximately 10 million primary decay events were simulated, distributed non-uniformly 

specific to voxel-level PET activity for the patient. The simulated field of view covered the 

complete torso from above the apex of the lung to the bottom of the ischium in order to estimate 

dose to most radiosensitive organs. The skeleton was modeled as whole bone (see Table III.1). 

Results 

Patient-specific NURBS models and the corresponding manually-segmented reference 

models are shown in shown in Figure IV.13. The results from applying the evaluation metrics to 

individual volumes of interest are summarized in Table IV.2. Mean and standard deviations of 

the evaluation metrics for each organ across all patients are presented in Table IV.3. With the 

exception of the gall bladder and the distributed skeleton, most NURBS organ volumes differ 

less than 10% on average compared to the manually-segmented structures. The average 
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Euclidean distance between surface boundaries ranged from 1.3 to 3.8 mm, corresponding to a 

separation of approximately 1 to 3 voxels. 

 

Figure IV.13: Example patient-specific NURBS model and reference manual segmentation for 

(b) male and (b) female patients. The opaque body contours and breasts are not shown. 
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Table IV.2: Evaluation metrics for patient-specific deformable models 

Organ 
Volume 

Diff. (%) 

Volume 

Overlap (%) 

Avg. Distance 

Error (mm) 

Volume 

Diff. (%) 

Volume 

Overlap (%) 

Avg. Distance 

Error (mm) 

 Patient 1 Patient 2 

Body 2.7 94.6 2.0 2.4 94.4 2.6 

Skeleton 28.0 53.1 2.4 12.0 47.6 3.6 

Gall 

Bladder 
56.0 58.8 2.7 71.5 54.4 2.6 

Heart -10.7 74.3 1.9 9.2 78.3 2.7 

Kidneys 5.2 82.7 1.3 0.0 82.6 1.5 

Liver 1.7 88.6 1.5 1.5 86.9 1.9 

Lungs 13.1 80.3 1.9 5.9 84.6 1.9 

Spleen 7.0 79.4 1.8 7.0 81.5 1.7 

 Patient 3 Patient 4 

Body 5.5 90.4 3.8 0.0 93.7 2.2 

Skeleton 12.0 53.4 2.1 21.5 49.9 2.5 

Gall 

Bladder 
3.4 45.8 2.9 39.5 62.4 1.8 

Heart 10.0 78.9 2.3 -1.6 78.9 2.1 

Kidneys 0.8 83.2 1.3 8.8 79.4 1.5 

Liver -15.5 71.2 3.7 4.7 82.5 2.2 

Lungs 6.6 83.6 2.1 9.7 85.4 1.8 

Spleen -4.9 68.6 2.2 -9.9 82.6 1.6 

 

Table IV.3: Mean evaluation metrics for each organ 

 Volume Diff. (%) Vol. Overlap (%) Avg. Distance Error (mm) 

Body 2.7 ± 2.2 93.3 ± 2.0 2.6 ± 0.8 

Skeleton 18.4 ± 7.8 51.0 ± 2.8 2.7 ± 0.6 

Gall Bladder 42.6 ± 29.2 55.3 ± 7.2 2.4 ± 0.4 

Heart 7.9 ± 4.2 77.6 ± 2.2 2.2 ± 0.3 

Kidneys 3.7 ± 4.1 81.7 ± 1.7 1.4 ± 0.1 

Liver 5.8 ± 6.6 82.3 ± 7.8 2.3 ± 1.0 

Lungs 8.8 ± 3.3 83.5 ± 2.2 1.9 ± 0.1 

Spleen 7.2 ± 2.0 78.0 ± 6.4 1.8 ± 0.3 
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Relative percent differences in organ doses using the patient-specific NURBS model 

compared to manually-segmented organ volumes are given in Table IV.4. With the exception of 

lung, the mean absorbed doses calculated from the NURBS models agree with results from 

manually segmented volumes to within 10%. 

Table IV.4: Comparison of organ absorbed doses calculated from patient-specific NURBS 

models and manually segmented CT data expressed in relative percent differences 

Patient Heart Lung Liver Kidney Spleen Skeleton 

1 5.7 20.3 -1.1 3.2 -0.6 -2.0 

2 1.1 3.4 -1.0 1.4 -2.4 -4.1 

3 0.2 18.2 6.8 -0.4 0.1 0.7 

4 -5.7 8.0 -3.8 1.2 1.0 -2.7 

Relative difference defined as 100 × (DNURBS – DManual) / DManual. 

 

Discussion 

The creation of patient-specific NURBS models was evaluated using a set of manually 

segmented patient CTs. Whole body patient models were created in a few hours, resulting in a 

marked reduction of time compared to user-guided manual and semi-automatic segmentation of 

the CT. The ability to convert the NURBS surfaces to a 3D array of voxels at any resolution 

allows these models to be used in image-based dosimetry applications. 

Overall, the organ volumes from the patient-specific NURBS models agree with manually 

segmented structures on average to within 10%. Two exceptions are the gall bladder and lungs. 

The gall bladder is a small organ that is susceptible to large percent volume differences; 

however, the gall bladder is rarely a concern as an organ at risk in TRT. In all the patients, the 

lung volumes in the NURBS models are larger. The over-definition of the lungs is most likely 

due to the inclusion of the bronchi within the NURBS surface. These were excluded from the 

manual segmentation but the NURBS surfaces for the lungs are smooth and do not have the level 
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of complexity required to shape the surface around the bronchi. Previous studies (e.g. Hermoye 

et al. 2005) have reported that variation in organ volumes manually segmented by experts can 

differ by upwards of 20%, and that these volumes differ with truth by an average of 12%. The 

difference in organ volumes using a deformable NURBS phantom compared to manually 

segmented organs are consistent with differences that may occur between slice-by-slice 

segmentations performed by two different experts. 

Comparison of organ volumes does not provide any information about the position of the 

NURBS surfaces in relation to the manually-segmented structures. The Jaccard coefficient is a 

statistic used to assess similarity between samples and was used to determine the percentage of 

volume overlap between NURBS surfaces and manually-segmented organs. With the exception 

of the gall bladder and skeleton, the NURBS organs overlap with manually defined organs by 

78% or more. The dissimilarity in gall bladder overlap is related to the large volumes in the 

NURBS models, which is on average almost 50% larger than manually-segmented volumes. The 

NURBS skeleton also showed poor alignment compared to bones that were defined semi-

automatically using the snake evolution in ITK-SNAP. There are two factors that may contribute 

to the variation in skeletons. One, only affine transformations were applied to the NURBS bones 

to create a patient-specific skeleton. Bone shape and curvature may vary between the reference 

phantom and the patient. One notable example is the pelvis, which is larger and broader in 

women. Using a hermaphroditic reference phantom generated from male anatomy may 

contribute to the inaccuracy of modeling the female pelvis. Also, some of the bones in the 

NURBS phantoms fail to adequately represent the complex skeletal anatomy, including the 

scapulae and sacrum. The NURBS model of the sacrum does not include space for the sacral 

canal and foramina. Similarly, the surface representing the scapula does not model the curvature 
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of the coracoid process and acromion and overestimates the thickness of the infraspinous fossa. 

These differences may explain the volume of the NURBS skeleton is 10-25% larger compared to 

manually-segmented bones and percent volume overlap is less than 50%. 

The average Euclidean distance from each NURBS organ boundary to the manually-

segmented volume was determined. Overall average distance errors for the organs analyzed in 

this study ranged from 1 to 3 mm. These distances are similar to those calculated for a NURBS-

based pediatric phantom created using the automated MC-LDDMM mapping method (Segars 

et al. 2009). For the high resolution CT images (1.37×1.37×3.27 mm
3
), these distances 

correspond to differences of 1 to 3 voxels; however they are well contained within a voxel in the 

activity image (5.47×5.47×3.27 mm
3
). Thus, errors in the position of organs created using 

deformable NURBS phantoms may not impact the dosimetry results significantly depending on 

the resolution of the available SPECT or PET images. 

Other studies have evaluated CT-based automatic and semi-automatic organ segmentation 

methods using metrics of percent volume overlap and surface distance error. A survey of image 

processing techniques for liver segmentation (Campadelli et al. 2009) summarizes results from 

the literature. Average percent volume overlap compared to manually-segmented livers ranged 

from 78% to 95% for various methods including model fitting, gray-level based thresholds, and 

probabilistic atlases. Average surface distances reported ranged from 2 to 2.3 mm. The average 

percent volume overlap for NURBS-based livers was 84% with average surface distances to 

manual-volumes of 2.0 mm. Both metrics fall within the ranges reported for other liver 

segmentation studies. Automatic kidney segmentation using m-rep models was compared to 

manual segmentation by experts (Rao et al. 2005). For 12 target images, the average volume 

overlap was 82% with a mean surface separation of 1.8 mm. Our results are similar with an 
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average percent volume overlap of 82% and distance error of 1.4 mm. One reason for the 

difference between the NURBS kidneys and manually-segmented volumes is the inclusion of 

parts of the renal vein, artery, and pelvis in the NURBS structure that were not identified in the 

kidney volumes during manual segmentation. Nonetheless, the results of evaluating organ 

volumes of patient-specific NURBS compared to slice-by-slice manual definition are similar to 

outcomes from other automatic and semi-automatic CT-based segmentation methods. 

The impact of using patient-specific NURBS models on organ doses from internal emitters 

was also assessed. The patient-specific NURBS models created in this study were voxelized at 

the resolution of the PET activity data and used to define anatomy during MC simulation using 

VIDA. Although this activity represents the uptake of 
18

F, organ doses were estimated by MC 

simulation assuming 
131

I, a radionuclide commonly used in TRT. The rational of using 
131

I 

instead of 
18

F was to assess dose to organs from a radionuclide that emits both short-ranged beta 

particles and gamma rays that deposit dose at larger distances. 
18

F decays mainly through 

positron emission and the high energy annihilation photons do not deposit as much dose 

compared to the beta-emitting radionuclides used in TRT. In general, the organ doses from the 

NURBS models are within 10% of those generated using manually-segmented organ maps with 

the exception of lung dose in patients 1 and 3. The lungs have low uptake of 
18

F-FPEB and the 

increased lung doses in the patient-specific NURBS models could be due to the erroneous 

inclusion of high-activity pulmonary veins and arteries and liver in the NURBS surfaces defining 

the lungs. We conclude that using deformable NURBS to define patient anatomy does not 

contribute to the uncertainty in dose estimates to a greater extent than other factors such as 

accuracy in activity quantification and statistical error from MC simulation. 
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Summary 

We have developed a new method for creating patient-specific models by deforming a 

NURBS-based anthropomorphic reference phantom. The software creates an interactive 

environment for the user to easily transform organ models using patient CT data as a guide. 

Models of patient anatomy ranging from the shoulders down to the bottom of the pelvis can be 

created in a few hours. Using deformable models significantly reduces the time required to 

outline patient anatomy compared to conventional manual and semi-automatic segmentation. 

This chapter has demonstrated a preliminary method for creating NURBS-based patient-specific 

models for use in dose optimization for TRT.  

Currently, the software employs a single reference phantom representing a 50
th
 percentile 

person. Substantial modifications to the reference anatomy may be required depending on the 

height and weight of the patient. NURBS-based reference phantoms of larger and smaller normal 

stature (Marine et al. 2010) and different levels of obesity (Clark et al. 2010) have been 

developed. The process of creating patient-specific NURBS models described in this chapter 

may be expedited by matching the patient to a reference phantom using patient information 

including height, weight and body-mass index. 

Phantom Morphus includes a novel algorithm to fit a reference surface to a point cloud 

outlining the boundary of the patient organ. This non-rigid transformation exploits the local 

surface modification property of the model’s control points to create an accurate representation 

of the patient organ. The current algorithm performs a least squares minimization of the distance 

between cloud points and the surface point. It has been shown that using different minimization 

schemes such as tangent distance minimization (TDM) and surface distance minimization 

(SDM) yield faster convergence and prevent the system from becoming trapped in a local 
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minimum that may create surfaces with self-intersections (Cheng et al. 2004, Wang et al. 2006). 

Employing SDM in the Phantom Morphus surface fitting algorithm may increase efficiency and 

produce more accurate surfaces. 
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CHAPTER V  

 

APPLICATION TO PATIENT STUDIES 

 

Introduction 

Understanding tumor response and normal tissue toxicity are vital for successful treatment 

using TRT. Each patient has different pharmacokinetics and fixed activity protocols result in 

vastly different doses to both healthy and malignant tissue. Treatment optimization in TRT using 

image-based3D patient-specific dosimetry requires measuring the spatial distribution of 

radioactivity over time to obtain an absorbed dose calculation based on administration of a small 

tracer amount of radioactivity. Measurement of temporally-dependent spatial distributions of 

radioactivity involves acquisition a set of SPECT/CT or PET/CT images at several time points 

after administration of the tracer dose. 3D dose rate maps are generated from the time-sequence 

activity information, which are then integrated to determine the absorbed dose. Predicted organ 

and tumor doses, along with dose limits to organs at risk and knowledge of tumor-dose response, 

are used to optimize the therapeutic administered activity. 

In this chapter we present results of patient-specific dose calculations two follicular NHL 

patients treated with 
131

I-labeled tositumomab (Bexxar®). VIDA was used to predict dose from a 

tracer study and also determine the actual administered absorbed dose from treatment based on 

post-therapy imaging. 3D dose maps were obtained using both manually-segmented patient 

anatomy and from a patient-specific NURBS phantom generated using the techniques described 

in chapter 4. Results were compared to standard reference doses from RADAR adult phantom 

and tumor doses from the Dose Planning Method (DPM) MC software (Dewaraja et al. 2009, 
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Howard et al. 2011, Wilderman & Dewaraja 2007) using the same tumor VOIs in order to 

minimize error due to differences in segmentation between institutions. The content presented in 

this chapter is an extension of a paper by S. D. Kost, Y. K Dewaraja, R. G. Abramson and M. G. 

Stabin, “VIDA: A voxel-based dosimetry method for targeted radionuclide therapy using 

Geant4”, © Mary Ann Liebert, Inc., reprinted with permission, from Cancer Biotherapy and 

Radiopharmaceuticals, vol. 30, pp. 16-26, 2015 (Kost et al. 2015). 

Methods 

Patient Data 

Individualized dosimetry was performed for two NHL patients treated with 
131

I-labeled 

tositumomab (Bexxar®) using multiple SPECT/CT scans. The treatment protocol is summarized 

here; additional details are described in Dewaraja et al. (Dewaraja). All patients participating in 

the study provided written informed consent for the additional SPECT/CT scans not included in 

the clinical protocol.  

SPECT/CT images were acquired using a Symbia TruePoint system (Hoffman Esta, IL). 

Each patient was imaged at three time points after administration of a diagnostic tracer of 

approximately 185 MBq. Therapeutic doses were administered to deliver a nominal whole-body 

absorbed dose of 75 cGy based on post-tracer imaging (see Table V.1). Patients were imaged 

again at three time points post-therapy, with a delay for the first scan of approximately 48 hours 

due to dead time and exposure considerations (Patient 1, 47.5 hours; Patient 2, 48.58 hours). 
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Table V.1: Administered tracer and therapy activity and whole body pharmacokinetics. 

 Patient 1 Patient 2 

Administered tracer activity (MBq) 189 196 

Tracer effective half-life (hours) 60 48 

Tracer residence time (hours) 40 38 

Administered therapy activity (GBq) 3.74 3.43 

Therapy effective half-life (hours) 61 46 

Therapy residence time (hours) 41 38 

 

SPECT/CT images were acquired with a 128×128 matrix and a pixel size of 4.8 mm 

using a high-energy parallel-hole collimator. Scatter correction was performed using the triple-

energy-window technique. The CT data were reconstructed to an image size of 512×512×196 

using commercial software. Quantitative SPECT with an array size 512×512×78 was obtained 

with a custom 3D OSEM reconstruction algorithm using 35 iterations and 6 subsets. The 

reconstruction algorithm includes 3D depth-dependent detector-response compensation, 

attenuation and scatter correction, and dead-time correction for the post-therapy projection data.  

Image counts were converted to activity using a calibration factor specific to the 

SPECT/CT scanner and radionuclide. The calibration factor was obtained from measurement of 

a 100 ml plastic sphere filled with a known amount of 
131

I activity placed in an elliptical water 

phantom. Recovery coefficients for partial volume correction were not applied as tumor and 

organ volumes were large and there is no widely accepted, well-validated method for voxel-by-

voxel compensation. Additional details of image acquisition, reconstruction and activity 

quantification for this dosimetry study are included elsewhere (Dewaraja et al. 2009, Dewaraja 

et al. 2005, Dewaraja et al. 2010). 
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Patient-Specific Anatomical Models 

Patient anatomy was defined using two methods. Tumors and normal tissue organs were 

segmented on the high resolution first post-tracer CT image (512×512×196 matrix, 

0.98×0.98×2.0 mm voxel size) using a combination of manual and semi-automatic segmentation 

techniques included in the ITK/SNAP toolkit (Yushkevich et al. 2006). Organ volumes were 

verified and tumors were identified by a subspecialty radiologist with experience in both body 

CT and nuclear medicine. Additionally, patient-specific NURBS models were created using the 

CT scan from first post-tracer SPECT/CT study following the methods described in Chapter 4. 

The NURBS phantoms were only used to model patient organs and not to define tumor volumes. 

Voxel-based Dosimetry 

Dose rate maps at each time point were obtained using VIDA (see Chapter 3). An organ 

ID map defining different materials for simulation (see Table C.1) was automatically generated 

from the CT images in a pre-processing step using MATLAB. First, CT images were converted 

to density maps using a bi-linear fit calibration curve relating HU to material density based on 

data from Schneider et al. (Schneider). Air was defined for voxel densities less than 0.15 g/cm
3
, 

lung by a range of 0.15 g/cm
3 
to 0.61 g/cm

3
, soft tissue between 0.61 g/cm

3
 and 1.17 g/cm

3
and 

whole bone greater than 1.17 g/cm
3
. Activity maps were sampled to simulate 20 million events, 

resulting in relative errors in the deposited energy of less than 1% in whole organs and a 

maximum of 10% for individual voxels in the tumor and organs of interest. The voxel-tallied 

energy deposited was converted to absorbed dose using voxel masses derived from the 

simulation tissue densities (see Table III.1). Instantaneous dose-rate maps per administered 

activity were generated by scaling the dose deposited in each voxel by the ratio of actual field-of-

view activity to simulated activity. 
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Conversion to 3D Absorbed Dose 

Each 3D deposited energy map from the MC simulation was converted to an 

instantaneous dose-rate map using voxel masses calculated from the materials in Table III.1. CT-

based registration of serial dose-rate images was performed with an affine rigid registration 

algorithm based on maximizing mutual information (Viola & Wells III 1997) developed by the 

Vanderbilt University Institute of Imaging Science. The CT images were down-sampled to a 

resolution of 256×256×78 (1.95×1.95×5.0 mm) to match the slice thickness of the SPECT data 

and to expedite registration. The CT image set of the first post-tracer scan was assigned to be the 

reference image in the registration algorithm. All other time points were registered to the 

reference image by first performing CT–CT registration and applying the transformation 

matrices to the corresponding dose-rate maps. 

Voxel-level dose-rate curves were fit to a mono-exponential decay function for both the 

pre-therapy tracer data and the post-therapy scans using the exponential fitting tool in VIDA. An 

absorbed dose map with voxel dimensions of 3.9×3.9×5.0 mm
3
 (128×128×78 array) was 

generated using the option to fit a voxel dose curve to all data in the corresponding 2×2×1 cell 

array of the higher resolution dose-rate maps. This resolution was chosen to improve fit results, 

decrease processing time, and estimate voxel doses at the resolution of the SPECT camera (full 

width at half maximum ≤ 3.9 mm). 

Tumor and Organ Dosimetry 

Malignant lymphomas can be highly sensitive to radiation, leading to measurable changes 

in volume within the first few days of treatment (DeNardo et al. 1998). The effect of tumor 

regression on absorbed tumor dose was investigated by defining tumor VOIs on the CT at each 

time point. The average absorbed tumor dose was calculated by fitting the volume-adjusted dose 
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rate curve. A comparison was made to mean absorbed tumor doses from the DPM MC software
 

(Dewaraja et al. 2009, Howard et al. 2011, Wilderman & Dewaraja 2007) using the same tumor 

VOIs in order to minimize error due to differences in segmentation between institutions. 

Organ dosimetry was performed based on both the manually-segmented images and 

patient-specific NURBS phantoms. Manually-segmented organ maps were down-sampled to 

same size of the dose map (128×128×78). Organ maps were also created by voxelizing the 

NURBS phantoms this resolution. Because tumors were not explicitly modeled in the patient-

specific NURBS models, the manually-segmented tumor volumes were added to the voxelized 

data in a post-processing step. Mean absorbed organ doses were compared to reference doses 

calculated for the RADAR phantom, with correction for differences in organ mass between 

patient and reference phantom. Tumor dose-volume histograms were also generated for both the 

predicted dose using the tracer study results and the actual delivered dose assuming a static 

initial tumor volume. 

Results 

SPECT/CT images with tumor outlines and resulting dose maps for each patient are shown 

in Figure V.1. Between the initial tracer study and the last imaging point post-therapy, significant 

decreases in both tumor volumes occurred (see Table V.2). When accounting for shrinkage, the 

tumor dose differed as much as 16% compared to the mean absorbed dose to a static volume. 

Table V.2 also lists the mean tumor doses with decreasing mass calculated using the DPM MC 

software. Mean tumor doses from VIDA and DPM agree within 12% or less. 
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Figure V.1: Fused SPECT/CT images for (a) Patient 1 and (b) Patient 2 with matching 3D dose 

maps overlaid on CT for (c) Patient 1 and (d) Patient 2. Dose maps are displayed in Gy. 

Table V.2: Comparison of mean absorbed tumor doses between VIDA and DPM. 

 
Patient 1:  

Abdominal Tumor 

Patient 2:  

Lt. Axillary Tumor 

Initial tumor volume ( ml) 269 226 

Total tumor shrinkage 53% 23% 

 VIDA DPM VIDA DPM 

Predicted dose, static vol. (cGy) 291 — 153 — 

Predicted dose, changing vol. (cGy) 292 261 (12%) 154 164 (-6.1%) 

Delivered dose, static vol. (cGy) 196 — 150 — 

Delivered dose, changing vol. (cGy) 252 266 (-5.3%) 151 162 (-6.8%) 

Relative difference defined as 100 × (DVIDA – DDPM) / DDPM. 

 



117 

 

 

Figure V.2: Patient anatomy defined by (a) manual segmentation and (b) deformable NURBS. 

Patient-specific anatomy was defined using two different methods, by manually-

segmented organ volumes and a deformable NURBS model (see Figure V.2). Mean absorbed 

doses to tumor and organs were calculated for both types of patient models and compared to 

results from dose factors derived from the RADAR adult male reference phantom (Stabin et al. 

2012) and the unity density sphere model (Stabin & Konijnenberg 2000). Organ doses are 

reported only if the entire volume was included in the field of view. With the exception of heart 

dose in patient 1, the organ doses from the patient-specific NURBS models agrees with manually 

segmented organs within 10%. In all cases, the mean absorbed doses to organs in NURBS model 

were larger. Compared to the reference phantom, patient organ doses differed by 3 to 19%. 
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Table V.3: Mean absorbed doses to organs and tumors from post-therapy dosimetry. 

 Patient 1 Patient 2 

 
VIDA Dose (cGy) 

RADAR Dose 

(cGy) 

VIDA Dose (cGy) 
RADAR Dose 

(cGy) 
Organ 

Segmented 

Model 

NURBS 

Model 

Segmented 

Model 

NURBS 

Model 

Lungs — — — 221 224 [1%] 254 (-13%) 

Heart 411 504 [23%] 438 (-6%) 311 322 [7%] 380 (-18%) 

Spleen 186 207 [11%] 191 (-3%) 183 189 [3%] 160 (14%) 

Liver 223 246 [10%]  210 (6%) — — — 

Kidneys 190 194 [2%] 160 (19%) — — — 

Tumor 196 — 187 (5%) 150 — 135 (11%) 

Relative percent differences (in brackets) defined as 100 × (DNURBS – DManual) / DManual  

Relative percent differences (in parentheses) defined as 100 × (DVIDA – DRADAR) / DRADAR 

 

Additionally, tumor DVHs (see Figure V.3) were generated using volumes from the first 

post-tracer scan for both the predicted dose from the tracer study and the delivered dose from 

treatment. The first post-tracer time point, scaled by the ratio of activity administered for the 

therapy and tracer studies, was included in the therapy data set due to the lack of an early 

imaging time point. 

 

Figure V.3: Tumor DVHs from tracer and therapy scans for (a) Patient 1 and (b) Patient 2. The 

tumor volumes were taken from the first post-tracer scan. 
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Discussion 

We have performed SPECT-based tumor and organ dosimetry for patients receiving 
131

I 

RIT using VIDA and patient-specific anatomical models created from a deformable NURBS 

phantom using the Phantom Morphus software. This study investigated VIDA’s treatment of 

non-uniform activity distributions and clinical utility of using deformable phantoms in TRT dose 

assessment. Tumor doses, accounting for volume changes over the scan times, were compared to 

DPM MC, offering an additional validation of VIDA for application to patient dosimetry. 

Tumor volumes were manually segmented from the CT for each time point by a 

radiologist with expertise in body CT. When we account for changes in tumor volumes, the 

tracer-predicted tumor doses concur with the delivered therapeutic dose within 16%. For both 

patients, the tracer scans over-predict the delivered dose, although the difference for patient 2 is 

very small. This trend is consistent with a previously reported study (Dewaraja et al. 2009). The 

therapy-delivered mean absorbed doses were compared to results from DPM MC using the same 

tumor volumes. With the exception of the tracer study for Patient 1, the tumor doses from VIDA 

are lower by 5–7% compared to DPM. Our dose rates for the changing tumor volumes were 

derived from mean values from the 3D energy deposited maps for the tumor VOI defined at each 

time point. These volume-averaged dose rates were fit to a bi-exponential curve and directly 

integrated to determine the mean tumor dose. In comparison, the calculation of the mean tumor-

absorbed dose using DPM involves a piecewise integration of the absorbed dose rates over three 

time periods using a mixed model fit (Schipper et al. 2012). These varying approaches may 

account for the discrepancies in tumor dose, even though the differences in instantaneous tumor 

absorbed-dose rates between the two simulations were less than 2%.  
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Figure V.4 Overlay of high heart activity uptake in patient 1 on CT image 

Mean absorbed organ doses from the patient-specific NURBS models were compared to 

manually-segmented data with relative differences of 1% to 23%. That largest difference occurs 

in the heart dose for patient 1. This could be due to the high activity in blood (see Figure V.4) in 

conjunction with the smaller heart volume in the NURBS model (-8.3%) compared to the 

manually-defined heart VOI. The smaller NURBS surface may fail to encompass regions of the 

outer heart wall that received lower doses, skewing the mean absorbed dose higher. All other 

NURBS organs showed good agreement with doses from the manually-segmented patient model 

with organ doses higher in the NURBS models in all patients. The bias towards higher doses in 

the NURBS organs may be due to their larger organ volumes, with differences ranging from 1% 

to 15%. However, this trend was not observed in the validation study of patient-specific NURBS 

models and no correlation between volume differences and the over- or underestimation of organ 

dose is indicated (see Chapter 4). One possible explanation for the higher doses may be the way 

the NURBS surfaces are voxelized, leading to a systematic difference in absorbed dose. Another 

contributing factor to the differences in organ doses may be slight errors in the registration 

between the NURBS model and 3D absorbed dose map. As this study consisted of only two 
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patients, further investigation must be performed in order to fully quantify any effect organ doses 

calculated using patient-specific NURBS models in 3D image-based time-sequenced TRT 

dosimetry. 

Patient mean absorbed organ doses from the manually-defined volumes and patient-

specific NURBS model were compared to doses from a reference phantom with relative 

differences less than 20% (see Table V.3). The differences could be caused by several different 

factors. The reference dose calculations were performed based on activity in user-specified 

source organs. Activity in the rest of the field of view was assigned to the body remainder. The 

dose to target organs from the body remainder activity is calculated based on a uniform 

distribution of this activity spread across the entire volume in the phantom (including arms and 

legs). Thus, we would expect the reference organ doses to be lower compared to VIDA where 

dose is deposited in target organs from activity solely from the available field of view. Also, 

there are slight differences in the material densities and compositions in VIDA compared to 

those used to generate the SAFs for the RADAR reference phantom. The lung density is lower in 

VIDA by more than 10%, which may account for the underestimation of lung dose for Patient 2. 

Additionally, tumor doses were also compared to self-irradiation doses using the uniform sphere 

model in OLINDA/EXM. As expected, the tumor doses from VIDA are larger by 5-11% due to 

the contribution from the remaining body. 

Tumor DVHs were generated based on the predicted and delivered dose maps (see Figure 

V.3). Tumor volumes were defined based on segmentation of CT from the first post tracer scan. 

It is difficult to assess the impact of tumor regression on 3D dose heterogeneities, and mass 

changes across the imaging time period were not incorporated in the DVHs. Both patients exhibit 

more conformal dose distributions for the delivered tumor dose compared to the tracer-predicted 
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distribution. The maximum delivered dose is also lower compared to the predicted DVH. One 

possible explanation for these differences is an increased antibody clearance in tumor cells after 

treatment due to radiobiological damage caused by the tracer dose, as previously suggested by 

Eary et al. (Eary). 

Many contributing factors make estimating the uncertainty in organ and tumor doses for 

patient studies difficult. When performing voxel-based patient dosimetry using MC, there are 

multiple sources of error, including the quantification of the activity distribution, the fidelity of 

the registration process between the serial SPECT/CT scans, and the ability to properly define 

organ and tumor volumes. Also, fitting voxel dose rates with a limited number of time points 

may introduce additional uncertainty. Acquisition of more than 3 sequential SPECT scans post-

tracer or post-therapy administration would reduce uncertainty in the 3D dose from the fitting 

process but may be prohibitive in the clinical environment.  

The 3D OSEM reconstruction methods used for the patient studies in this work have 

produced quantitative results within 10% for volumes 16 ml and larger without partial volume 

correction (Dewaraja et al. 2005). Furthermore, the organ and tumor volumes in the patient 

studies presented here are sufficiently large, preventing partial volume effects from being a 

significant source of error in the average absorbed doses. MIRD Pamphlet 23 recommends PVC 

for objects less than dimensions of 3 × Full Width at Half Maximum (FWHM) of the spatial 

resolution of reconstructed images, but a well-validated method for voxel based corrections for 

SPECT has yet to be developed (Dewaraja et al. 2012). Therefore, voxel-level PVC was not 

applied prior to using the activity distributions in VIDA. In order to mitigate the uncertainty in 

reported doses due to partial volume effects, we limited the voxel resolution of the 3D dose map 
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to 3.908×3.908×5 mm
3
, a factor of four larger than the original reconstructed image resolution 

and on the order of the intrinsic FWHM of the SPECT system used to acquire the data. 

Image registration accuracy for 3D internal dosimetry has been discussed previously (He 

& Frey 2010, Papavasileiou et al. 2007, Sjögreen-Gleisner et al. 2009). Availability of high 

resolution co-registered SPECT/CT images in our patient studies permitted CT based 

registration. Thus, possible errors in SPECT-SPECT registration from poor spatial resolution and 

temporal variability in the activity distributions were avoided. A mutual information rigid 

registration algorithm was used in this study. Non-rigid techniques have been shown to provide 

the most robust results; however only small differences in doses for volumes of interest were 

found between rigid and non-rigid registration (Sjögreen-Gleisner et al. 2009). Nonetheless, rigid 

registration may affect the accuracy of the 3D dose to the axillary tumor in Patient 2, as non-rigid 

movements are more likely to occur in the neck and shoulder region of the body. An effort to 

quantify the effects of mis-registration on 3D patient dose was beyond the scope of the present 

study. 

Organ segmentation may also contribute to the uncertainty in reported doses. Errors in 

structure are typically small compared to those from image registration; however erosion or 

dilation of the volume by only one voxel can contribute as much of 7% difference in activity (He 

& Frey 2010). Because volume of interest definition is typically a subjective task reliant on 

human observation, it is difficult to predict the true magnitude of the error. The tumor volumes 

were identical in VIDA and DPM to avoid segmentation uncertainties in our relative dose 

comparisons, but no assessment was done to determine the error in the defined volumes outlined 

by the radiologist compared to the true physical volumes. Additionally, tumor volumes were not 

created in the NURBS models, although there are tumor surfaces included in the reference 



124 

 

NURBS phantom. It is possible to outline the tumor and fit these structures to NURBS surface. 

The accuracy of this method and its impact on tumor dosimetry is an area of future investigation.  

Summary 

Evidence of correlation between patient outcomes and dosimetric quantities including tumor 

absorbed dose and equivalent biological effect (Dewaraja et al. 2014), and between organ dose 

and toxicity (Bodei et al. 2008, Stillebroer et al. 2012) exemplifies the benefit of performing 

patient-specific treatment planning in TRT. In this chapter, we have shown how VIDA can be 

used to predict 3D tumor and organ doses from time-sequenced SPECT/CT scans acquired after 

tracer administration of radioactivity. Despite requiring time-intensive Monte Carlo simulations, 

dosimetry results from VIDA can be obtained within 24-48 hours of obtaining the final image set 

of the study. Thus, VIDA is capable of performing treatment planning with a similar timeline as 

accepted clinical procedures for dose optimization and quality assurance in external bean 

radiation therapy.  

In this clinical study, we also reported organ doses using patient-specific anatomy derived 

from a deformable NURBS model. Our results show that dosimetry using organ volumes from 

NURBS-based phantoms agree within 1–23% of doses obtained from manually-segmented 

volumes of interest. The reduction in time required to create a patient-specific NURBS model 

compared to conventional segmentation techniques (i.e. 2–3 hours versus 8–12 hours depending 

on field of view, organs at risk and inclusion of individual bone surfaces) resolves one of the 

major impediments to performing dosimetry in TRT clinically. 
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CHAPTER VI  

 

DISCUSSION AND CONCLUSIONS 

 

Summary of Results 

Recent advancements in health care have ushered in the era of personalized medicine with 

the goal of tailoring medical treatment to the individual. Targeted radionuclide therapies offer the 

prospect of highly individualized cancer treatments. However, the necessary dose assessment 

required to optimize patient treatment is not routinely employed as a clinical tool. The objective 

of this work was to develop a clinical application to perform patient-specific dosimetry in 

targeted radionuclide therapy with the use of deformable anthropomorphic phantoms. The 

developed dosimetry method includes two separate applications, VIDA to perform 3D dose 

estimation using the Geant4 toolkit and the Phantom Morphus software to create patient-specific 

models from a NURBS-based reference phantom using CT images as a template for the 

transformation. The utility of these applications was evaluated with two studies. Manually 

segmented PET/CT images were compared to the patient-specific NURBS model to investigate 

the ability to construct an accurate representation of a patient using the Phantom Morphus 

software. Application of the dosimetry code to 
131

I RIT patient studies demonstrated the clinical 

feasibility of this method (time, work-flow etc.) and comparison to another dosimetry code 

validated the accuracy of the dose results. 

The first goal of this work was to develop VIDA, a 3D dosimetry application based on 

Monte Carlo simulations performed by the Geant4 toolkit. The application consists of three 

major components, the Geant4 simulation code performs particle transport and tallies energy 
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deposition in each voxel based on user-supplied organ and activity maps, the fitting tool fits 

exponential functions to the time-sequenced dose rate maps and integrates the fit to calculate 

voxel-based absorbed doses, and evaluation of the dosimetry results is performed by computing 

tumor and organ mean absorbed doses and dose-volume histograms. 

Studies have indicated that dosimetric factors, including tumor absorbed dose and equivalent 

biologic effect, are predictive of patient outcomes (Dewaraja et al. 2014). Additionally, our 

application of VIDA to RIT patient studies indicates that tracer dosimetry is a good predictor of 

therapeutic tumor doses (see Chapter 5). Given the importance of accurate dose estimates to 

predictive outcomes, VIDA can be used for patient-specific treatment planning in a clinical 

setting. VIDA’s workflow is designed to calculate voxel-level dose rate maps from a set nuclear 

medicine studies acquired at several time points after the administration of a tracer amount of 

radioactivity and integrate these over time. Although this approach requires multiple MC 

simulations, it does not impose additional time to perform the dosimetry as each simulation 

commences soon after the completion of each scan, exploiting the time interval between image 

acquisitions. The time-limiting step is the dose-rate simulation of the last scan and the voxel-by-

voxel integration of dose rates. Simulation of dose-rate maps with relative uncertainties of less 

than 10% in each voxel by VIDA require approximately 20 hours to complete without parallel 

computing; these times are on the order with other 3D dosimetry codes (Furhang et al. 1997, 

Marcatili et al. 2013). Therefore, patient-specific dose estimates can be completed within 48 

hours of the last tracer scan. This time frame is comparable to the treatment planning timetable 

for external beam therapy, as the completion of intensity-modulated radiation therapy planning 

and quality assurance requires at least two days after acquisition of the patient CT. We conclude 

that VIDA is a viable method for prospective image-based treatment planning for patients 
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receiving TRT. The ability to predict tumor and organ doses and optimize delivered dose lends to 

improved treatment outcomes and minimizes toxicity and harmful side-effects. 

The second and third objectives of this work were the development of a software application 

to create NURBS-based patient-specific anatomical models using patient CT as a template and 

the evaluation of these models compared to manually-segmented volumes, the current gold 

standard in TRT. The Phantom Morphus software developed as a part of this dissertation 

provides an interactive platform for a user to deform a reference NURBS model based on patient 

anatomy from CT imaging. This approach significantly reduces the time required to define 

volumes of interest for dose assessment. Additionally, the use of the NURBS XCAT phantom 

offers a new method of modeling bone marrow in the skeleton as each bone surface contains a 

marrow cavity that can be populated with red marrow voxels. Bone marrow is often the dose-

limiting organ when radiolabeled antibodies are employed (i.e. RIT) and the ability to measure 

dose to red marrow regions of the skeleton when MC simulation is employed may provide an 

alternative method for estimating dose compared to analysis of activity in blood. The ability to 

accurately model patient anatomy using deformable models was assessed using PET/CT studies 

of four patients. Evaluation metrics including total volume difference, percent volume overlap 

and average surface distance error were used to compare the NURBS models to careful slice-by-

slice manual segmentations. Overall, the NURBS organs were in good agreement with manually-

segmented volumes and the differences observed were similar to results by controlled observer 

studies of other automatic and semi-automatic segmentation methods (Campadelli et al. 2009, 

Rao et al. 2005, Segars et al. 2009). 

NURBS-based patient-specific anatomical models may have applications other than tissue 

and organ definition in dose assessment. One notable example is tracking tumor motion during 
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treatment with external beam therapy. The XCAT phantom includes 4D models of respiratory 

and cardiac cycles (Segars et al. 2010) that can be used to track the position of the lung lesions 

during treatment. The XCAT phantom contains thousands of anatomical structures. Given this 

complexity, the use of patient-specific NURBS models may expand into other medical 

applications beside cancer radiation therapy as personalized medicine grows.  

The final goal of this work was to apply VIDA and Phantom Morphus to perform 3D 

dosimetry in patients receiving 
131

I RIT for NHL. This study demonstrated the clinical viability 

of these applications and also provided additional validation of the dose results by comparing 

tumor doses obtained using VIDA to another established MC dosimetry method (DPM). The 

tumor doses from VIDA were in agreement with those from DPM within 12%. Likewise, 

differences in organ doses between manually-segmented volumes and NURBS-based models 

were small, with differences being typically 10% or lower. We conclude that the dosimetry 

methods described in this work provide a novel and accurate approach to dose assessment in 

TRT and form a practicable solution to performing clinic patient-specific dosimetry prior to 

therapeutic treatment, which is currently not widely available. This will permit optimized 

treatment for each patient, hopefully leading to better outcomes and longer survival. 

Future Work 

Currently, the methods for performing patient-specific dosimetry described in this work are 

contained in individual applications. The Phantom Morphus software is a stand-alone application 

used to create patient-specific NURBS models. The resulting model is then converted to a voxel 

format by a command line voxelization program and must be registered to the activity data. Prior 

to running VIDA Monte Carlo, additional processing steps are necessary to create an activity 

map with the desired number of decay events and to ensure the model is registered to the activity 
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data. These steps are completed in MATLAB. Once 3D energy deposited maps are generated 

from the MC simulations, these time-sequenced maps are converted o dose-rate maps and co-

registered using custom MATLAB scripts. The voxel-by-voxel exponential fitting is performed 

using VIDA’s fitting tool, and the resulting 3D integrated dose map is used to generate tumor 

and organ DVHs and mean absorbed dose values. The future direction of this project will focus 

on integrating these processes, with the exception of the MC simulation typically performed on a 

computing cluster, into a single comprehensive software package. 

Future work will also emphasize optimization of MC simulations to increase computational 

efficiency. Beginning with the release of Geant4 version 10.0 (December 2013), multi-threaded 

processing is possible to allow for efficient execution of simulations using parallel computing 

architectures (Cosmo, G. (). Multi-threading occurs at the event level, and the generation of 

events in parallel leads to a linear speed up of processing time with the number of threads used. 

Running VIDA on a computing cluster using the multi-threading capabilities of Geant4 10.0 

would result in decreased simulation time, greatly reducing the overall time required to perform 

patient-specific treatment planning in TRT in a clinical setting. Furthermore, it is possible to 

decrease simulation run times by altering the way Geant4 navigates voxel boundaries. We plan 

on investigating modification of the voxel search algorithm for parametrized volumes to increase 

simulation efficiency (Jiang & Paganetti 2004). Others groups, who have performed voxelized 

dose calculations with this customized geometry navigation library, have seen run time 

improvement of two orders of magnitude (Sutherland et al. 2007). If the impact on VIDA’s 

simulation time is similar, the particle transport can be performed in a matter of minutes 

compared to around 20–30 hours. 
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The method for creating patient-specific NURBS models can be advanced and improved. 

We aim to optimize the point cloud surface fitting algorithm using surface distance minimization 

instead of the current point distance method. The addition of different reference phantoms sizes 

as a starting point for creating patient-specific models may shorten the overall time required to 

deform the reference organs to match the patient. As mentioned earlier, more and more XCAT 

phantoms are being produced which may form a library of reference phantoms. Other NURBS 

phantom libraries may also be used. The inclusion of an atlas of NURBS organs representing a 

variety of morphologies and anatomical orientations that can be interchanged with reference 

anatomies may also facilitate the process and further reduce the fitting time. 

The scope of this work was limited to the assessment of absorbed dose, namely the amount 

of energy deposited per unit of mass. Because TRT involves the use of open source radioactivity, 

the temporal change in dose rate as the radionuclide decay may play a significant role in the 

biological response to treatment. Studies have shown that incorporation of radiobiological 

modeling in dosimetric analysis may better elucidate tumor-dose response and correlate with 

therapy endpoints (Dewaraja et al. 2014, Dewaraja et al. 2010). Thus, including radiobiological 

modeling in VIDA is a logical extension of this work.  

The study of molecular-based targets is growing and many new radiopharmaceuticals for 

use in TRT have been developed. As the ability to treat disease with targeted radiolabel agents 

grows, so does the necessity for fast and accurate dose assessment. With the ability to quickly 

create anatomical models and perform MC simulation of decay of any radionuclide, the methods 

described in this work provide a foundation for a clinical dosimetry application that can be 

widely distributed with a broad use in many types of targeted radionuclide treatments. 
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APPENDIX A  

 

PHYSICAL PRINCIPLES OF INTERNAL DOSIMETRY 

 

Several fundamental physical principles shape the field of nuclear medicine and the 

methodology behind internal dosimetry. Outlined in this appendix, these principles include the 

modes of radioactive decay and how particles emitted through these mechanisms interact with 

matter. Absorbed dose, the primary measure of the biological effects caused by ionizing 

radiation is formally defined and radiobiological considerations in internal dosimetry are briefly 

described. More in-depth discussions of the physics of nuclear medicine and radiobiology are 

found in textbooks on these subjects (Bushberg et al. 2011, Cherry et al. 2012, Hall & Giaccia 

2006, Stabin 2007, Stabin 2008a). 

Radioactive Decay Mechanisms 

Nuclear medicine involves the use of substances in the form of a drug, chemical, or 

compound labeled with a radioactive isotope to diagnosis or treat disease. Radioactive decay is 

the transition of an unstable atomic nucleus to a lower energy level, producing ionizing radiation 

in the process. Three types of radioactive decay, alpha, beta, and gamma emission, provide the 

physical mechanism for detecting malignant tissue and depositing dose in radionuclide therapy. 

Alpha (α) decay occurs in heavy nuclei with the ejection of an alpha particle consisting of 

two protons and two neutrons (a helium nucleus, 𝐻𝑒2
4 ). Radium decay into the inert gas radon is 

an example of α-decay (see equation A.1). Although not traditionally used in targeted therapy, 

alpha-particle emitters provide high potency and specificity and have been a focus of 

investigation for cancer therapies. The first and only alpha-emitting radiopharmaceutical for use 
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in humans, 
223

Ra dichloride (Xofigo, Bayer Healthcare) for treatment of metastatic castration-

resistant prostate cancer, received FDA approval in 2013 (Parker et al. 2013). 

 𝑅𝑎88
226 → 𝑅𝑛86

222 + 𝐻𝑒2
4  A.1 

Atomic nuclei with a ratio of neutrons to protons that is either too high or too low for 

stability undergo radioactive decay with the emission of a beta (β) particle. Two types of beta 

decay occur. In the case when the nucleus has an excess neutron, the neutron transforms into a 

proton and an electron (β
‒
 particle) is ejected from the nucleus. The generalized formula for β

‒ 

decay is given by equation A.2. 

 𝑛0
1 → 𝑝1

1 + 𝑒− + 𝜈̅ A.2 

Positron (β
+
) decay results in a nuclear transition for a nucleus with an excess proton. The proton 

transforms into a neutron and a positron and neutrino are ejected from the nucleus (see equation 

A.3). The emission of the neutrino or antineutrino conserves lepton number in the transition. 

 𝑝1
1 → 𝑛0

1 + 𝑒+ + 𝜈 A.3 

Beta decay is characterized by the maximum energy of the emitted particle. However, many 

particles are ejected with energies less than the maximum with the remaining energy carried 

away by the neutrino or antineutrino. This results in a spectrum of beta energies with a mean 

value of approximately one-third of the maximum. 

Beta decay plays a vital role in internal dosimetry. Targeted therapy relies on β
‒
 emission to 

deliver dose to diseased tissue through electron interactions with matter. PET provides 3D 

functional imaging by coincidence detection of annihilation photons created as secondary 

products of β
+
 decay. The positron emitted through β

+
 decay will quickly interact with an 

electron creating an annihilation event and the detection of these photons pinpoints the uptake of 

the radiopharmaceutical.  
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A competing process to β
+
 decay is electron capture (see equation A.4), in which the number 

of neutrons in the nuclide increases by capturing an orbital electron. Electron capture does not 

directly produce ionizing particles but characteristic x-rays or one or more Auger electrons are 

released to fill the vacancy of the inner shell electron. 

Radioactive decay events often leave the progeny nucleus in an excited energy state. The 

nucleus returns to the ground state via isometric decay producing one or more gamma rays with 

characteristic energies based on transition probabilities. SPECT detects these gamma emissions 

and provides a method to quantify the activity distribution within the patient. 

In some cases, an isomeric transition occurs by internal conversion where an electron 

interacts with the nucleus and the energy contained in the excited nuclear state transfers to the 

electron. The electron is ejected from the atom with kinetic energy equal to the energy released 

by the nucleus reduced by the binding energy of the electron. In addition to the ejected electron, 

characteristic x-rays or one or more Auger electrons are created when the vacancy of the inner 

shell electron is filled. 

Radioactive decay is a stochastic event and the momentary prediction of which radioactive 

atoms will decay is not achievable. However, given a large sample of radioactive atoms, the 

average rate of decay is an exponential process where the amount of nuclear transformations is 

proportional to the number of unstable atoms present. The mathematical expression for the 

number of radioactive atoms as a function of time is derived from the relationship in equation 

A.5. 

 −
𝑑𝑁

𝑑𝑡
= 𝜆𝑁 A.5 

 𝑝 + 𝑒− → 𝑛0
1 + 𝜈1

1  A.4 
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The minus sign represents that the rate of decaying atoms decreases with time and λ is a 

proportionality constant is known as the decay constant. The left-hand side of equation A.5, the 

number of radioactive atoms undergoing nuclear transformations per unit time, is called the 

activity (A). 

The solution to the differential equation A.5 defines the number of atoms remaining after 

time t given an initial quantity of N0 atoms, given by: 

 𝑁(𝑡) = 𝑁0𝑒
−𝜆𝑡 A.6 

Equation A.6 can be expressed in terms of activity by multiplying both sides by the decay 

constant. Activity behaves exponentially and decreases by a constant fraction in a given time 

interval. 

 𝐴(𝑡) = 𝐴0𝑒
−𝜆𝑡 A.7 

The half-life (T1/2) of a radionuclide is defined as the time required for half of the unstable 

atoms to undergo nuclear transformation, resulting in a residual of 50% of the initial activity. 

Half-life is inversely proportional to the decay constant with the following relation: 

 𝑇1/2 =
ln2

𝜆
 A.8 

Half-life and the decay constant are characteristic of each radionuclide and can vary from less 

than a picosecond to more than billions of years. 

Particle Interactions in Matter 

Particles created during radioactive decay interact with the environment in different manners 

depending on their mass and electric charge. Electrons and positrons interact with other charge 

particles, such as electrons and nuclei in the medium, primarily through the electromagnetic 

force and may produce secondary charged particles capable of their own interactions. Neutral 

particles, such as photons, randomly interact with matter depending on the probability cross-
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sections that are specific to a material. The energy loss from particle absorption, attenuation, and 

scattering is the source of the biological effect of ionizing radiation. Figures in this section were 

adapted from Bushberg et al. (Bushberg).  

Charged Particle Interactions 

Charged particles, including electrons and alpha particles of decay events, continuously 

interact through the Coulomb force with atoms present in matter and lose kinetic energy through 

excitation, ionization, and radiative losses. Electromagnetic interactions occur between a free 

electron and atomic nuclei as well as other electrons in the medium. Heavy charged particles, 

such as an alpha particle, primarily lose energy though coulombic interactions between their 

positive charge and the negative electrons of the absorber atoms. 

Inelastic collision with atomic electrons is the principal process of charged particle energy 

transfer, resulting in the excitation or ionization of orbital electrons in the interaction medium. 

Excitation occurs when some of the energy of the incident particle is transferred to an electron in 

the absorbing material causing promotion to a higher orbital level (see Figure A.1a). The excited 

orbital electron will return to a lower energy level and emit characteristic x-rays or Auger 

electrons (see Figure A.1b). If the energy transferred exceeds the binding energy of the orbital 

electron, the electron is ionized and ejected from the atom. When the impulse of the charge 

particle is large enough, the ionized electron may have sufficient kinetic energy to undergo its 

own interactions as shown in Figure A.2. These electrons are called delta rays and represent an 

indirect method for transferring the charged particle energy to the absorbing medium.  
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Figure A.1: (a) Excitation of orbital electron due to inelastic collision with a charged particle. (b) 

Characteristic x-ray emission from relaxation of excited electron. 

 

Figure A.2: Ionization of orbital electron and subsequent excitation by the δ-ray electron. 

Charged particles are scattered through interactions with atomic electrons in the form of 

elastic collisions. In an elastic scattering event, the total kinetic energy of the colliding particles 

is unchanged. This process is only significant for low-energy electrons and results in small 

energy transfers.  

Electrons also interact with the nucleus in the form of elastic or inelastic collisions. The 

elastic collision of an electron with a nucleus, known as Rutherford scattering, does not produce 
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radiation nor excite the nucleus. The charged particle only loses energy through the recoil of the 

nucleus. The inelastic collision of an electron with a nucleus results in a loss of kinetic energy 

through the deflection of the electron path by the positively charged nucleus. The energy lost is 

carried away by electromagnetic radiation called bremsstrahlung (see Figure A.3). If the electron 

has sufficient kinetic energy, the inelastic collision may excite the nucleus to a higher energy 

level and result in gamma emission through isomeric transition. 

 

Figure A.3: Bremsstrahlung emission due to coulombic interaction between a free electron and 

the nucleus of an atom. 

Positrons, positively charged anti-electrons produced in β
+
 decay, lose kinetic energy in the 

same way as electrons by excitation, ionization, and radiative interactions. Once at rest, a 

positron interacts with a negatively charged electron and the pair is annihilated. The rest masses 

of the positron and electron are converted to electromagnetic radiation in the form of two 

annihilation photons, each with energy of 0.511 MeV. 

The distance a charged particle travels in matter is dependent on the rate of energy loss, 

which is a function of the type of charged particle and the density of the medium. The amount of 

energy deposited locally along the path length of a charged particle is defined as the linear 

energy transfer and is proportional to the square of the charge and inversely proportional to the 
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kinetic energy. The total energy loss rate is called the linear stopping power and includes 

radiative losses through bremsstrahlung photons, which may deposit energy at some distance 

from the particle track. 

The range of a charged particle is defined as the distance the particle penetrates the 

interaction medium. Heavy charged particles (α particles) lose energy in a continuous process 

with only slight deflections caused by collisions with atoms and orbital electrons. Thus, the range 

of an α particle is essentially equal to its path length. Electrons may undergo sharp deflections as 

they travel through the interaction medium and follow a tortuous path that is longer than the 

range. Electron ranges are variable even for particles with the same kinetic energy due to 

interaction probabilities. Maximum and mean ranges are calculated by measuring the relative 

number of particles transmitted as a function of the absorbed thickness. 

Photon Interactions 

Photons are electromagnetic radiation with no mass and no charge and because they are 

electrically neutral, they do not interact via the Coulomb force progressively along their path 

length. Instead, the interaction between photons and matter is a stochastic process governed by 

interaction probabilities, resulting in scattering or absorption of the photon. The four major types 

of interactions between photons and matter are coherent (Rayleigh) scattering, the photoelectric 

effect, Compton scattering, and pair production. The most important photon interactions in 

internal dosimetry include photoelectric absorption and Compton scattering due to the creation of 

free electrons that in turn cause ionization effects. Photon interactions via pair production are 

limited to photon energies greater than twice the rest mass of an electron, which exceeds the 

energies typical for gamma emissions of common radionuclides. 
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Coherent scattering is an elastic collision between a photon and a bound electron in an atom, 

resulting in the deflection of the photon without the loss of energy (see Figure A.4). Coherent 

scattering occurs with low energy radiation that is less than the binding energy of the interacting 

orbital electron. Because the photon loses no energy, coherent scattering does not contribute to 

patient dose. 

 

Figure A.4: Coherent scattering of photon from interaction with orbital electron. 

The photoelectric effect is an interaction in which the photon is completely absorbed by an 

atom. The energy absorbed transfers to an orbital electron and causes the electron to be ejected 

from the atom with a kinetic energy equal to the difference between the incident photon and the 

binding energy (see Figure A.5). Photoelectric absorption occurs only when the energy of the 

photon exceeds the binding energy of the shell of the interacting electron. If sufficient energy 

exists, the innermost shell is the most probable electron orbital to participate in the photoelectric 

effect. In low-Z materials such as soft tissue, the binding energies are less than a few keV and 

rarely limit photoelectric interactions.  
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Figure A.5: The photoelectric effect. 

The probability of a photoelectric event is approximately proportional to Z
3
/E

3
, where Z is 

the atomic number of the interaction medium and E is the incident photon energy. For low 

photon energies and high-Z materials, photoelectric absorption is the predominant mechanism 

for photon interaction. 

Compton scattering results when an incident photon interacts with an outer shell electron 

imparting some of its energy to the electron and causing a re-emission of a photon at an angle 

with respect to the original path (see Figure A.6). The electron, initially assumed to be at rest, 

gains kinetic energy and is ejected from the atom. The energy of the scattered photon (E′) 

depends on both the initial photon energy (E0) and the scattering angles (θ) (see equation A.9). 

The amount of energy transferred to the electron ranges from zero to a maximum for a scattering 

angle of 180°.  

 
𝐸′ =

𝐸0

1 +
𝐸0
𝑚𝑒𝑐2

(1 − cos𝜃)
 

A.9 

Unlike the photoelectric effect, Compton scattering is most likely to occur between photons 

and valence shell electrons. The probability is almost independent of the atomic number of the 
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scattering medium and instead is directly proportional to the electron density of the material and 

decreases with increasing photon energy. The maximum amount of energy transferred to the 

Compton electron is very small for low energy photons and is independent of the interaction 

probability. As the photon energy increases, the ratio between photon energy and electron rest 

mass increases and the maximum fractional energy transferred approaches unity for energies 

above 10 MeV. 

 

Figure A.6: Compton scattering of an incident photon. 

Compton scattering is the predominant interaction for gamma ray energies typically 

produced by radionuclides used in nuclear medicine. The ejected electron will interact with the 

absorbing medium and lose energy via excitation and ionization of other atoms. The scattered 

photon may or may not interact again as it traverses the medium. 

Absorbed Dose 

The fundamental metric relating to biological response in radionuclide therapy is absorbed 

dose, the energy absorbed per unit mass of tissue. Absorbed dose is applicable to all types of 

ionizing radiation, both directly and indirectly ionizing sources and can be measured for sources 
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external to the absorbing medium or for radiation distributed within. The absorbed dose (D) is 

expressed in terms of the stochastic quantity energy imparted (ε) and is defined in equation A.10 

as the expectation value of the energy imparted to matter per unit mass (m) at a point (Attix 

1986). The unit of absorbed dose is called a gray (1 Gy = 1 J/kg). 

 𝐷 =
𝑑𝜀

𝑑𝑚
 A.10 

The energy imparted is the difference between the radiant energy of charged and uncharged 

particles entering the volume and the radiant energy leaving the volume, accounting for net 

energy derived from rest mass within the volume (i.e. electron-positron annihilation). For 

indirectly ionizing radiation, as in the case of photons, the energy is imparted to the absorbing 

medium in two steps. First, kinetic energy is transferred from the ionizing radiation to secondary 

charged particles (i.e. electrons and positrons). These charged particles then lose kinetic energy 

to the medium resulting in absorbed dose. The secondary charged particles may also experience 

bremsstrahlung losses that do not contribute to locally imparted energy. 

Radiobiological Considerations 

Although simple and straightforward, absorbed dose calculations do not always predict the 

response of living tissue to ionizing radiation. Factors such as the type of radiation, the radiation 

energy and the rate of energy deposition can influence the biological effects. In nuclear 

medicine, the dose rate varies temporally with the physical and biological decay of the 

radioisotope. The dose rate rises from zero after administration of the activity to a peak value and 

then drops back to zero after many effective half-lives of the source. One method used to 

quantify the effect on response due to dose rate is the Biologically Effective Dose (BED). BED 

is an adjustment of the measured absorbed dose to reflect the expected biological effect as 
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delivered at a reference dose rate. The reference value is chosen to approach zero when the total 

dose is delivered in an infinite number of infinitesimally small fractions (Sgouros et al. 2008).  

BED is based on the linear-quadratic (LQ) model of radiobiological effect that emphasizes 

two distinct types of DNA damage leading to cell death (see Figure A.7). The first type of 

damage occurs when adjacent DNA strands break from a single ionizing event and is 

proportional to the dose. The second type of damage results from two proximal single-strand 

breaks due to separate ionizing events and is proportional to the square of the dose. If only one 

single-strand break occurs, damage may be potentially repairable and is categorized as sub-

lethal. 

 

Figure A.7: The linear-quadratic model of the radiation effect on biological tissue with α the 

number of logs of cell kill per Gy and β the number of logs of cell kill per Gy
2
. 

BED is expressed as the product of the total physical dose and a relative effectiveness (RE) 

factor that accounts for radiobiological parameters and the dose delivery method (Dale & 

Carabe-Fernandez 2005). The RE factor depends on two principal radiobiological parameters: 

the tissue α/β ratio and the sub-lethal damage recovery constant (µ). The α/β ratio measures the 
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relative importance of the two processes that result in DNA double strand breaks in the LQ 

model (Dale 1985). For therapy with an exponentially decreasing dose rate, the BED is 

expressed in equation A.11 where 𝐷̇0 is the initial dose rate and λ is the rate constant describing 

exponential loss of activity. 

 𝐵𝐸𝐷 =  
𝐷̇0
𝜆
(1 +

𝐷̇0
(𝜇 + 𝜆)(𝛼 𝛽⁄ )

) A.11 

 An alternative method has been proposed for tissue volumes with dose rates that are not well 

fitted with a single decreasing exponential but is rarely implemented clinically as dosimetry 

studies often lack sufficient time points to resolve uptake and clearance-related dose-rate 

differences (Sgouros et al. 2008). 

The relevance of BED to target radionuclide therapy is twofold. One, BED is a useful way 

to compare the effectiveness of targeted therapy to other radiation therapy delivery methods 

including external beam and brachytherapy. Two, absorbed dose values may not be indicative of 

tumor and normal tissue response to certain lower molecular weight targeting agents. The 

biokinetics of these agents differ greatly and pre-clinical and clinical evidence (Wessels et al. 

2008) suggest that the dose rate may be a significant factor in tumor response and normal organ 

toxicity. 

Another radiobiological quantity, equivalent uniform dose (EUD), has potential use in 

assessing tumor response and comparing different tumor absorbed dose distributions across a 

patient population. Accounting for cell kill parameters α and β, EUD is defined as the uniform 

dose that would produce the same biological response as the original spatially-varying absorbed 

dose. EUD is derived by equating the surviving fraction from a uniform absorbed dose to the 

surviving fraction from the probability distribution of normalized BED values (Amro et al. 2010, 

Niemierko 1997, Sgouros et al. 2008).   
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APPENDIX B  

 

FUNDAMENTALS OF NUCLEAR MEDICINE IMAGING 

 

Dosimetry requires knowledge of the spatial distribution of radioactivity within the body. 

Due to the inability to directly measure activity in vivo, tomographic imaging techniques that 

detect emitted particles from radioactive decay have been developed to estimate the 3D 

distribution. Nuclear medicine imaging modalities are characterized by the types of particles 

detected. SPECT imaging relies on the detection of single photons, either x-rays or gamma rays, 

emitted during radioactive decay. PET is an indirect method of imaging radionuclides that decay 

via β
+
 emission by the detection of pairs of photons produced during an annihilation event 

between the emitted positron and an electron in the body. The basic procedures for SPECT and 

PET imaging are described below; additional details may be found in textbooks on medical 

imaging (Bushberg et al. 2011, Cherry et al. 2012) 

Single Photon Emission Computed Tomography (SPECT) 

SPECT imaging of a radiolabeled pharmaceutical is performed by detecting single photons 

emitted through the radioactive decay process that travel through the body by a scintillation 

camera. The camera rotates around the patient and projection images are taken at different angles 

(see Figure B.1). The camera consists of a collimator, scintillation crystal, photomultiplier tubes, 

and positioning electronics. The collimator serves to focus the camera towards direct emissions 

and minimizes the detection of scattered photons. Photons that pass through the collimator 

interact with the scintillation crystal, typically sodium iodide (NaI). This interaction converts the 

photon energy to visible light that is then collected by an array of photomultiplier tubes (PMTs). 
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The photocathode in the PMT converts the visible light to electrons. The electronic signal is 

amplified as it travels through the PMT array and is processed by the computer electronics to 

determine the position and energy of the event. The number of events collected is proportional to 

the activity at each point. 

  

Figure B.1: SPECT camera and image acquisition. 

One factor that limits the detection sensitivity of SPECT is photon attenuation. As photons 

travel through the body, they interact with tissue and may be scattered or absorbed. This non-

uniform attenuation is dependent on both the distance the photon travels through the body and 

tissue densities along its path (see Figure B.2). The camera cannot distinguish between increased 

counts originating from a point of increased activity or reduced attenuation from photons 

traversing low density tissue (i.e. lungs). Without correction, artifacts of increased counts in 

areas of low attenuation (body periphery and low tissue density) and reduced counts in areas of 

high attenuation (body center and high tissue density) may occur. Correction for attenuation 
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effects requires knowledge of the attenuation coefficient distribution in the patient. Thus, the 

SPECT camera system is coupled to CT to provide co-registered attenuation maps for correction 

during image reconstruction.  

 

Figure B.2: Non-uniform attenuation in SPECT. 

Gamma rays also interact with tissue through Compton scattering causing deflection from 

their original path and a loss in energy. These scattered photons may be detected within the 

photopeak window (see Figure B.3), resulting in reduced image contrast. One approach to 

reducing scatter is to improve the energy resolution of the scintillator as NaI has relatively poor 

energy resolution (e.g. 10% FWHM at 140 keV) and requires a large acquisition window to 

achieve good signal. Semiconductor detectors such as cadmium telluride and cadmium zinc 

telluride offer improved energy resolution between 2–5% for 140 keV gamma rays (Madsen 

2007). Compensation for the reduction in image contrast from scatter may also be achieved using 

energy-distribution-based methods. One example of energy-distribution-based scatter correction 

is the TEW method. Scatter in the photopeak window is estimated by acquiring counts in narrow 
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energy windows on each side of the photopeak and determining the area under the trapezoid 

formed by the signal in each of these windows. 

 

Figure B.3: Compton scattering in SPECT. Scattered photons may be detected in the energy 

window of the photopeak causing decreased image contrast. Correction is made using the triple-

energy-window method, shown by the shaded trapezoid 

Several other degrading factors besides attenuation affect the sensitivity, contrast and 

resolution of SPECT images. SPECT is photon limited with more than 99% of all photons 

emitted in the patient absorbed by the collimator. Noise from low counting statistics in the image 

contributes to loss of contrast. The detection efficiency can be increased by having wider spaces 

between the septa in the collimator, but this reduces the spatial resolution of the image. Thus, a 

tradeoff exists between spatial resolution and efficiency when considering the design of the 

collimator. One way of obtaining a higher counting efficiency without changing the collimation 

is for the SPECT system to have two rotating camera heads. The CDR also contributes to the 

sensitivity and spatial resolution of SPECT. CDR consists of three main components: the 

geometric response, septal penetration, and collimator scatter. Geometric response refers to the 

finite solid angle subtended by the collimator holes. This angle increases with increased distance 

from the detector and resolution is non-uniform with depth (see Figure B.4). While the geometric 
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response can be represented in analytical form, the septal penetration and collimator scatter 

response must be modeled using more advanced techniques such as MC simulation or function 

fitting of point-source measurements (Chun et al. 2013). 

 

Figure B.4: Geometric contribution to CDR. The spatial resolution of the camera decreases with 

increasing depth of the imaging plane. 

The images collected by the SPECT camera are 2D projections taken at different angles. 

These projection images are input into algorithms to reconstruct the 3D distribution of activity. 

Reconstruction algorithms are either analytical or iterative. Analytical reconstruction, such as 

filtered back projection (FBP), uses mathematical solutions to solve the inverse problem of 

determining the 3D activity distribution that forms the projection data. In essence, each 

projection is smeared back along the path of collection and areas of high activity will add 

constructively in the superposition of all projection angles. Analytical reconstruction is simple to 

implement but does not account for image degrading effects including depth-dependent spatial 

resolution, attenuation and scatter. In order to compensate for attenuation and noise, iterative 

approaches to SPECT reconstruction were developed. Iterative reconstruction algorithms start 

with an initial guess of the activity distribution and forward project this distribution through a 
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model of the SPECT camera. The resulting 2D projections are compared to the actual data and 

the difference between them is used to update the original source distribution. This process is 

repeated until convergence is reached. Common iterative algorithms include maximum-

likelihood expectation maximization (MLEM) and OSEM. The MLEM algorithm compares all 

projection data when updating the distribution. The OSEM algorithm is a modification to MLEM 

with data grouped into subsets for comparison between calculated and real projections. Thus, the 

OSEM is computationally more efficient and results in more rapid and accurate data 

convergence. The benefit to iterative algorithms is the ability to incorporate models of 

attenuation, scatter, and CDR specific to the SPECT system. The main limitation to interactive 

techniques is an increased processing time, especially when a large number of iterations is 

required. However, improved computer speeds enabled iterative methods to become the standard 

for clinical SPECT reconstruction.  

Positron Emission Tomography (PET) 

PET imaging is based on the detection of annihilation photons created from the interaction 

of a positron and electron. Thus, PET tracers contain radioisotopes that undergo β
+
 decay. 

Conservation of momentum requires that the photons are emitted in opposite directions and are 

subsequently detected by a ring of detector elements, shown in Figure B.5. The elements are 

linked electronically and isolate events that occur nearly simultaneously. These coincidence 

events create a line of response (LOR) and form projections that are then reconstructed into 

tomographic images. Because the beta particles only travel a short distance before annihilating 

with an electron, the reconstructed images represent the spatial distribution of radioactivity in the 

body, just as with SPECT images formed by single photon events. 
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Figure B.5: PET imaging acquisition and electronic collimation by coincidence event detection. 

Similar to SPECT systems, the PET detector ring consists of scintillation crystals linked to 

PMTs. However, due to the poor detection efficiency of NaI at the energy of annihilation 

photons (511 keV), scintillation crystals used in PET typically have a higher density and 

effective atomic number, such as bismuth germanium oxide (BGO), gadolinium oxyorthosilicate 

(GSO), or lutetium oxyorthosilicate (LSO). One difference in the PET detector is the lack of a 

physical collimator. Instead, the positional information of an event is defined by the LOR joining 

the two crystal elements that detected the coincidence events, known as electronic collimation. 

Unlike physical collimation, electronic collimation is able to make use of signals from photons 

detected from a range of incident angles and not only those with angles normal to the collimator 

face. This leads to better sensitivity and increased spatial resolution in PET compared to SPECT. 

PET systems typically employ multiple detector rings aligned in the axial direction. These 

camera systems can operate in two different modes. In 2D PET, thin layers of septa are placed 

between the detector rings to reduce interplane scatter. Coincidence events are limited to 

detectors within the same ring or close neighbors. In 3D PET, the septa are removed and LORs 
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are formed between all detector pairs, increasing the overall sensitivity of the camera. Increased 

detector sensitivity reduces patient dose and produces higher quality images with less noise. 

The three types of coincidence events that can be detected, true, scattered, and random are 

illustrated in Figure B.6. In a true event, the photon pair leaves the annihilation site and travel 

through the body without interaction where they are both detected within the timing interval for a 

coincidence event. If one or both of the photons undergoes Compton scattering in the body 

before being detected, a scattered coincidence event forms an incorrect LOR. A random event 

occurs by an incorrect pairing of photons from different annihilations that are detected within the 

coincidence time window. The photon pairs of these detected photons are either absorbed in the 

body or pass through the scintillator without interacting. Both scattered and random events 

contribute to noise in the image with scattered events accounting for up to 40% of the total. 

 

Figure B.6: Types of detection events in PET: (a) true, (b) scattered, and (c) random. The dotted 

lines indicate the assigned and incorrect LOR for scattered and random events 

The resolution of PET is limited by several physical factors. The spatial resolution is 

defined, in part, by the positron range in tissue. Once emitted, the positron will travel a short 

distance, experiencing multiple interactions that reduce its kinetic energy until it slows down and 

annihilates with an electron. The energy and subsequent range of the emitted positron depends 

on the PET radioisotope; for 
18

F, the range in tissue before annihilation is approximately 1 mm 
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(Levin & Hoffman 1999). Additionally there is a loss in spatial resolution due to non-collinearity 

of the photons that occurs if the positron is not exactly at rest at the time of annihilation. For 
18

F, 

the distribution of angular deviation from 180° was measured experimentally in a patient with 

FHWM of 0.54 degrees (Shibuya et al. 2007). The loss in spatial resolution due to non-

collinearity depends on the diameter of the detector ring and is approximately 1.5 mm (FHWM) 

for an 80-cm system (Levin & Hoffman 1999). 

In order to achieve quantitative results, several corrections must be applied to PET images 

including normalization and compensation for random coincidence, scatter, and attenuation. PET 

image reconstruction is performed with the assumption that all LORs have the same sensitivity. 

However, due to differences in scintillation crystals and PMT response, each detector element 

has a different efficiency. Correction is performed by individual normalization for each. Random 

coincidences must be subtracted from the total number of events. Correction for random events 

is based on the rate of single events in each detector channel (r) and the camera resolving time 

(t). The rate of random coincidences for a given LOR between the i
th
 and j

th
 detector elements is: 

 𝑅𝑖𝑗 = 2𝑡𝑟𝑖𝑟𝑗 B.1 

Another technique for random event correction is delayed event subtraction. Here, a channel is 

created to measure signal from one detector that is delayed by an interval greater than the 

resolving time for true coincidence. The events detected by the delayed channel are not true 

coincidences and represent an estimate of the number of random coincidences in the prompt 

signal. Scatter correction is particularly important in 3D PET where gains in sensitivity are 

coupled to an increase in scattered events. Correction of scattered events is typically performed 

using modeled-based algorithms. These algorithms require knowledge of the attenuation in the 
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patient obtained from CT and a model of the scanner geometry and detector to calculate the 

percentage of Compton scattered photons incident on each detector.  

The necessity of attenuation correction is greater for PET compared to SPECT because 

image data is dependent of the detection of not one but two photons. Attenuation increases image 

noise, artifacts, and distortion and correction is required for both qualitative and quantitative use 

of PET images. This is exacerbated in overweight or obese patients with larger body widths. 

However, unlike with SPECT, attenuation in PET can be determined by an attenuation map 

generated through CT. The probability of detecting each photon is given by: 

 𝑃(𝑥′) = 𝑒𝑥𝑝 (−∫ 𝜇(𝑥)𝑑𝑥
𝑥′

0

) B.2 

where μ(x) is the position-dependent linear attenuation coefficient and x′ is the total path length 

traveled through the photon. Therefore the total probability of detecting both photons is 

 𝑃𝑡𝑜𝑡 = 𝑃1𝑃2 = 𝑒𝑥𝑝 (−∫ 𝜇(𝑥)𝑑𝑥
𝑎

0

) B.3 

where a is the total length of the LOR. The attenuation correction factor is then 1 - Ptot. 

Image reconstruction for PET is similar to SPECT imaging. Analytical reconstruction, 

including FBP, can be applied to both 2D and 3D acquisition modes. In 2D PET, the in-plane 

LORs are arranged to form a set of 1D parallel projections (see Figure B.7); in 3D mode, the 

LORs may be arranged into 2D sets of parallel projections. Although corrections for scatter, 

random coincidences, and the effects of attenuation can be applied to the projection data prior to 

reconstruction, FBP often results in images with amplified noise and streak artifacts. Iterative 

methods alleviate many of the problems of FBP and permit the use of advanced image projection 

models that incorporate detector sensitivity, scatter and random correction models, and artifact 
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and noise reduction techniques directly into the PET reconstruction algorithm. Thus, iterative 

reconstruction improves image quality and yields quantitative results required for dosimetry. 

 

Figure B.7: PET projection data formed from events collected in a single detector ring. 

Advancements in PET imaging include the capability of measuring photon time-of-flight 

(TOF). These systems exploit high light-output scintillators, high-performance PMTs and fast-

timing electronics, to achieve an intrinsic system timing resolution of approximately 600 

picoseconds (Karp et al. 2008). TOF PET systems use the time difference between detection of 

each coincident photon to localize the annihilation event along the LOR. The reduction in 

positional uncertainty results in detector sensitivity gain of up to a factor of four. Therefore, the 

use of TOF information can either decrease the scan time or enhance image contrast in PET. 

TOF PET is particularly useful for imaging large patients, in which increased attenuation and 

scatter results in poor image quality. In order to obtain the same noise-equivalent image for an 

obese patient compared to an average-sized patient, the acquisition time increases dramatically 

and is often unreasonable for clinical imaging. The increased sensitivity of TOF PET leads to 

improved image quality for heavy patients without increasing the scan time.  
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APPENDIX C  

 

OVERVIEW OF MONTE CARLO METHODS 

 

Monte Carlo methods describe statistical sampling techniques that approximate solutions to 

quantitative problems when closed form solutions are not attainable. The method was first 

developed at Los Alamos National Laboratory in 1946 by Stanislaw Ulam and John Von 

Neumann to estimate distances neutrons travel through various materials for radiation shielding 

calculations (Eckhardt 1987). Monte Carlo relies on repeated random sampling to obtain numeric 

results of an unknown probability distribution. Advancements in computer processing and 

architecture in the past 50 years have allowed Monte Carlo modeling and simulation of complex 

systems in many different disciplines. 

Monte Carlo assumes that the system of interest is stochastic in nature, with events and input 

data described in probabilistic terms. The methodology follows three general steps (Harrison 

2010, Raychaudhuri 2008). First, models of the probability density functions (PDFs) defining the 

range of simulation possibilities and their relative probability for each step in the system must be 

created. The PDF is not restricted to an analytical form and may be formulated from 

experimental data, theory or by a combination of data fitting to theory. Once the statistical 

distribution of each input parameter is defined, a set of random numbers is generated to sample 

these distributions to obtain a set of output parameters. This process is repeated, resulting in a 

collection of possible outcomes. The final step tallies the outcomes and statistical analysis is 

performed to provide a statistical confidence of the results as a function of the number of trials. 
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Monte Carlo methods depend on generating a large quantity of random numbers. Truly 

random numbers, such as the time of a radioactive decay event, cannot be created 

algorithmically. Instead, computers generate pseudo-random numbers uniformly over a given 

range of values using a deterministic pattern with an initial “random” seed. These numbers are 

typically sufficient for Monte Carlo, as the goal is to randomly sample large sets of data so that 

the samples are approximately evenly distributed. One benefit of pseudo-random numbers is that 

the sequence can be reproduced for testing or debugging if the same initial seed is used. 

There are various ways to sample continuous or discrete distributions. The inverse transform 

method is the most direct method and can be applied to distributions with invertible PDFs. First 

the integral of the PDF is calculated, denoted as the cumulative distribution function (CDF) that 

is continuous and strictly increasing in [0,1): 

 𝐹(𝑥) = ∫ 𝑝(𝑥)
1

0

 C.1 

Two steps are required to sample a random value x from the PDF. First, generate a random 

number u on the interval [0,1) and locate this position on the y-axis of the CDF. The random 

sample x is given by the inverse of the CDF: 

 𝑥 = 𝐹−1(𝑢) C.2 

The inverse transformation method can also be used when the distribution is discrete. A 

discrete distribution is expressed in terms of the probability mass function (PMF), p(xi), and the 

cumulative PMF is given by: 

 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑝(𝑥𝑖)

𝑥𝑖≤𝑥

 C.3 
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Again, the initial step involves sampling a random number u. The randomly sampled xi from p is 

determined by the smallest positive integer i such that u ≤ F(x). 

The inverse method is used in Geant4 to sample the distance a particle travels before 

interacting with the medium via a specific physical process (e.g Compton Scattering) 

(Agostinelli et al. 2003). The distance to interaction for a given process is determined by the 

mean free path (λ) of the particle. The probability of traveling a distance x without interaction is: 

 𝑃(𝑥) = 𝑒−𝑛𝜆  C.4 

where nλ represents the total number of mean free paths traversed, which is independent of the 

interaction material. 

 𝑛𝜆 = ∫
𝑑𝑥

𝜆(𝑥)

𝑥2

𝑥1

 C.5 

The distance to the point of interaction, s(x), given by the product of nλ and λ(x), can be 

sampled with a random number (η) uniformly distributed in the range (0,1): 

 𝑛𝜆 = −log (𝜂) 
C.6 

This sampling is performed for all possible particle interactions. The process which returns 

the smallest distance is selected and its post step action is executed. If this is an interaction or 

decay, the particle is “killed” and secondary particles are generated and tracked. If not, the 

particle gets another chance to interact. The number of mean free paths for each unselected 

process is decremented by an amount corresponding to the length of the current step and the 

whole algorithm is repeated. An illustration of reducing the photon interaction lengths during 

Monte Carlo simulation is given in Figure C.1. 
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Figure C.1: Process of reducing photon interaction lengths during Monte Carlo simulation of 

particle interactions in matter. 

In the case when the CDF is not invertible or when the inverse method is computationally 

slow, other sampling techniques may be employed. One such method is the accept-reject 

algorithm, first introduced by von Neumann (Neumann 1951). The acceptance-rejection 

approach is based on the observation that random variable selection is equivalent to uniformly 

sampling the area under the density function. The PDF of an arbitrary distribution f(x) is sampled 

by choosing another distribution g(x) that can be directly sampled, with the only restriction being 

f(x) < M*g(x) for a constant M greater than 1. First, sample x from g(x) and an additional random 

number, u, in the range (0,1). Then, check if u < f(x)/M*g(x). If true, accept x and if not, reject 

the sampling and repeat. This method requires generating 2 random numbers and may lead to a 

lot of unwanted samples depending on the form of the distribution function. The number of 

rejections is exacerbated at higher dimensions and other more sophisticated sampling methods 

such as adaptive rejection sampling or the Metropolis-Hastings algorithm may be more efficient 

(Hastings 1970, Rubinstein & Kroese 2011). 

The results of a Monte Carlo simulation represent an average of contributions from each 

history over the course of the entire sampling. Therefore, Monte Carlo methods are subject to 
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statistical analysis in order to establish the confidence in the results. One way to assess the 

statistical precision of the simulation tally is to estimate the relative error (R): 

 𝑅 = √
1

𝑁
(
𝑥2̅̅ ̅

𝑥̅2
− 1) C.7 

where N is the number of histories, the mean, 𝑥̅, is the average value of the scores xi, and 𝑥2̅̅ ̅ is 

the average value of the square of the scores, 𝑥𝑖
2. Equation IV.9 demonstrates that the relative 

error depends on the inverse square root of the number of histories, and in order to reduce the 

uncertainty by a factor of two, one must increase the number of samples by fourfold. It is 

important to note that this statistical analysis only evaluates the precision of the results and not 

the accuracy of how close the simulation estimates the true physical value. More details on 

estimating Monte Carlo precision and factors affecting the simulation accuracy can be found in 

Volume 1 of the MCNP manual (Sweezy et al. 2003). 
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APPENDIX D 

 

MATERIAL TYPES AND INDENTIFIERS FOR ORGANS IN VIDA 

 

Table C.1 lists the identification number and material used for each organ in VIDA. The 

density and composition of each material is defined in Table III.1. The skeleton may be defined 

as either whole bone or separated into cortical bone, red and yellow marrow as designated by the 

user in the simulation input file (Appendix E). 

Table C.1: List of organs and assigned material type in VIDA Monte Carlo simulation.
 

Organ/Region ID Material 

Body (remainder) 1 Soft tissue 

Brain 2 Soft tissue 

Cerebellum 3 Soft tissue 

Brain stem 4 Soft tissue 

Salivary glands 5 Soft tissue 

Esophagus 6 Soft tissue 

Right thyroid 7 Soft tissue 

Left thyroid 8 Soft tissue 

Thymus 9 Soft tissue 

Right eye 10 Soft tissue 

Right eye lens 11 Soft tissue 

Left eye 12 Soft tissue 

Left eye lens 13 Soft tissue 

Right lung 14 Lung tissue 

Left lung 15 Lung tissue 

Liver 16 Soft tissue 

Gall bladder 17 Soft tissue 

Right kidney 18 Soft tissue 

Left kidney 19 Soft tissue 

Right adrenal 20 Soft tissue 

Left adrenal 21 Soft tissue 
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Stomach 22 Soft tissue 

Spleen 23 Soft tissue 

Heart 24 Soft tissue 

Pancreas 25 Soft tissue 

Bladder 26 Soft tissue 

Bladder contents 27 Water 

Ascending large intestine 28 Soft tissue 

Transcending large intestine 29 Soft tissue 

Descending large intestine 30 Soft tissue 

Sigmoid 31 Soft tissue 

Rectum 32 Soft tissue 

Small intestine 33 Soft tissue 

GI contents  34 Soft tissue 

Prostate (male only) 35 Soft tissue 

Right testicle (male only) 36 Soft tissue 

Left testicle (male only) 37 Soft tissue 

Uterus (female only) 38 Soft tissue 

Right ovary (female only) 39 Soft tissue 

Left ovary (female only) 40 Soft tissue 

Right breast 41 50% mammary / 50% adipose tissue 

Left breast 42 50% mammary / 50% adipose tissue 

Air 44 Air 

Skeleton (omitting skull/mandible) 46-74 Whole bone or cortical bone 

Skull 75 Whole skull or cortical bone 

Mandible 76 Whole skull or cortical bone 

Yellow marrow 77 Yellow marrow 

Red marrow 78-108 Red marrow 

Adipose 109 Adipose tissue 

Tumors 111-120 Soft tissue 

  



163 

 

APPENDIX E 

 

SAMPLE INPUT FILE FOR VIDA MONTE CARLO SIMULATION 

 

The following is an example input file (data.dat) used for input to VIDA MC. The file 

indicates the location and names of the organ and activity maps and their dimensions. The user 

defines the source organs for primary events. This may be an individual organ (see Appendix D) 

or an identifier to run the whole body (999) or all organs (555). The user also specifies the 

atomic and mass numbers of the radionuclide and the type of material for the skeleton. The bone 

and marrow IDs can be defined as a single whole bone material (WB) or as distinct cortical bone, 

red and yellow marrow (RM). 

----------------------------------------------------------------- 

Sample data.dat file. The order of inputs is important. 

----------------------------------------------------------------- 

 

./organ_map.txt : 3D organ map file name 

./activity_map.txt : 3D activity map file name 

213 : number of columns 

142 : number of rows 

78 : number of slices 

1.9531 1.9531 5.0 : voxel dimensions, in mm (col, row, slice) 

999 : source organ (999 = body, 555 = organs) 

53 : radionuclide atomic number 

131 : radionuclide mass number 

WB : marrow type (WB = mixture, RM = marrow) 

exit : indicates end of input file 
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