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Chapter	1:	Overview	

1.1:	Abstract	

Pathway	 exploration	 can	 support	 clinical	 research	 efforts	 and	 shared	 decision	making	

between	providers,	patients,	and	their	families.		In	this	work,	we	extend	the	Pathfinder	temporal	

abstraction	method	and	developed	a	corresponding	visualization	platform	to	identify	treatment	

event	 paths.	 	 	 We	 used	 manually	 curated	 cancer	 registry	 data	 and	 administrative	 data	 to	

generate	 a	 pathway	 exploration	 framework	 to	 compare	 data	 sources,	 assess	 clinical	 quality	

measures,	re-create	the	analysis	of	published	studies.		We	additionally	developed	a	decision	aid	

based	on	the	care	path	visualizations	to	support	patient	education	and	shared	decision	making.		

We	 demonstrated	 how	 our	 exploration	 framework	 is	 generalizable	 enough	 to	 represent	 the	

majority	of	breast	cancer	quality	measures	from	certain	organizations	and	that	we	could	support	

replicating	previously	published	studies.		Additionally,	we	developed,	received	feedback	on,	and	

plan	to	pilot	a	patient	education	decision	aid	to	support	shared	decision	making.		Future	work	is	

needed	 to	 develop	 data	 driven	 methods	 that	 fit	 the	 abstraction	 framework	 and	 can	 utilize	

clinical	 data	 that	 is	 generated	 during	 the	 course	 of	 care.	 	 This	 work	 can	 help	 healthcare	

providers,	 organizations,	 and	 patients	 make	 better	 healthcare	 decisions	 and	 assess	

performance.	

1.2:	Chapter	Summary	

The	focus	of	Chapter	2	is	aimed	at	describing	how	understanding	paths	of	care	can	help	

healthcare	overcome	its	many	challenges,	specifically	in	breast	cancer	care.		Section	2.1	reviews	
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how	 continuous	 pathway	 exploration	 is	 important	 in	 helping	 healthcare	 tackle	 its	 financial	

challenges,	 keep	up	with	new	advancements,	 and	 reduce	unnecessary	 variability.	 	 Section	2.2	

describes	the	large	footprint	of	cancer	care	 in	the	healthcare	system	and	the	efforts	that	have	

been	 made	 to	 monitor	 the	 quality	 of	 care.	 	 Section	 2.3	 specifically	 discusses	 the	 role	 that	

decision-aids	can	play	in	supporting	decision	making	of	patients	and	their	families	as	well	as	give	

providers	more	information	to	make	better	recommendations.		Finally,	section	2.4	describes	the	

challenges	of	achieving	near	 real	 time	pathway	exploration	and	quality	measurement	and	 the	

opportunities	of	using	electronic	medical	record	data	to	accomplish	it.		

Chapter	3	focuses	on	the	methods	that	have	been	used	to	track	longitudinal	clinical	care	

patterns.		Section	3.1	reviews	the	importance	of	identifying	care	patterns	for	continuous	quality	

monitoring.	 	Section	3.2	compares	 the	 impact	of	various	clinical	data	sources	can	have	on	the	

types	of	resulting	analysis.		Section	3.3	reviews	prior	methods	used	in	identifying	care	patterns	

in	 clinical	 data	 including	 temporal	 abstraction,	 data	 visualization,	 and	event	 sequence	mining.		

Section	 3.3	 focuses	 on	 reviewing	 the	 general	 components	 of	 a	 temporal	 abstraction	 system.		

Section	 3.4	 addresses	 the	 importance	 and	 past	work	 of	 visualization	 of	 abstracted	 pathways.		

Finally,	section	3.5	discusses	the	hypothesis	and	aim	of	this	study	to	develop	a	scalable	pathway	

exploration	framework.	

Chapter	 4	 describes	 our	 Pathfinder	methodology	 for	 generating	 quality	metrics	 using	

general	temporal	abstraction	components.		Section	4.1	describes	where	the	clinical	data	used	in	

this	 study	 comes	 from	 and	 how	 it	 is	 stored.	 	 Section	 4.2	 provides	 an	 overview	 of	 the	 five	

subtasks	of	the	Pathfinder	method.		Section	4.3	focuses	on	the	extraction	and	representation	of	

the	clinical	data.		Section	4.4	describes	the	development	of	our	interactive	pathway	visualization	

and	 exploration	 platform.	 	 Section	 4.5	 describes	 how	 this	 platform	 can	 be	 used	 to	 support	
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clinical	research	efforts	by	assessing	clinical	quality.		Section	4.6	describes	our	development	of	a	

patient-facing	decision	aid	to	support	shared	decision	making.	

Chapter	5	presents	 the	results	of	 the	Pathfinder	methodology.	 	Section	5.1	 focuses	on	

characterizing	 the	 data	 that	 is	 extracted	 for	 our	 patient	 cohort.	 	 Section	 5.2	 describes	 the	

distribution	 of	 treatment	 event	 sequences	 resulting	 from	 the	 temporal	 abstraction	 subtasks.		

Section	 5.3	 presents	 the	 features	 implemented	 for	 the	 pathway	 exploration	 framework	 and	

their	 results.	 	 Section	 5.4	 describes	 the	 ability	 of	 the	 exploration	 framework	 to	 assess	 clinical	

quality	 measures	 and	 replicate	 previously	 published	 clinical	 studies.	 	 Finally,	 section	 5.5	

describes	the	development	of	and	feedback	received	on	our	data-driven	decision	aid.	

Chapter	 6	 discusses	 the	 conclusions	 that	 have	 resulted	 from	 this	 work	 and	 the	 next	

steps.		Section	6.1	reviews	this	work’s	contributions	to	the	informatics	domain	while	Section	6.2	

is	focused	on	related	limitations	and	future	directions.		Sections	6.3	and	6.4	covers	the	same	in	

the	clinical	domain.	
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Chapter	2:		Pathway	Exploration	to	Support	Quality	Measurement	and	

Decision	Aids-as-a-Service	

Complex	healthcare	decisions	often	require	decision	aids	to	help	patients	participate	in	

a	 shared	 decision	 making	 process	 (Section	 2.1).	 	 Breast	 cancer	 treatment	 is	 multimodal	 and	

longitudinal	 and	 the	 growing	 focus	 on	 the	 disease	 has	 led	 to	 a	 special	 emphasis	 on	 quality	

improvement	 (Section	 2.2).	 	 Data-driven	 decision	 aids	 can	 help	 patients	 and	 providers	 make	

informed	decisions	using	a	raw	data	source	(Section	2.3).	 	Constructing	paths	of	care	has	been	

challenging	 for	 healthcare	 organizations	 due	 to	 the	 irregular	 nature	 of	 clinical	 data	 and	 the	

differences	 in	 the	 level	 of	 abstraction	 of	 concepts	 between	 the	 data	 and	 the	 quality	metrics.		

Care	 paths	 can	 be	 visualized	 and	 explored	 in	 a	 data-driven	 fashion	 to	 help	 patients	 and	

providers	make	better	decisions	(Section	2.4).	

2.1:	Imperative	for	Pathway	Exploration	

Healthcare	 delivery	 is	 often	 multi-disciplinary	 and	 involves	 complex	 clinical	 decision-

making.	 	 As	 healthcare	 costs	 rise,	 value	 in	 healthcare	 should	 be	 centered	on	 the	 efficiency	 in	

generating	outcomes	for	a	patient’s	health	status,	process	of	recovery,	and	sustainability	of	the	

achieved	health	 (Porter,	 2010).	 	 As	 best	 practices	 in	 healthcare	evolve,	 it	 is	 also	 important	 to	

track	 the	 impact	 of	 new	 clinical	 knowledge.	 	 There	 have	 been	 significant	 advances	 in	 the	

development	 of	 new	 diagnostics	 and	 therapeutics	 (Collins,	 2011),	 advancement	 of	 genomic	

medicine	(Hamburg	&	Collins,	2010),	and	use	of	patient-generated	data	to	personalize	care	(M.	

Swan,	2012).		Patients	are	often	unable	to	participate	in	a	shared	decision	making	process	with	
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their	 provider	 as	 they	 might	 have	 difficulty	 understanding	 their	 care	 plan	 and	 might	 feel	

intimidated	 by	 the	 decision	making	 process	 (Knops	 et	 al.,	 2013;	Waljee,	 Rogers,	&	Alderman,	

2007).		Decision	aids	can	help	providers,	patients,	and	their	families	make	better	decisions	and	

we	believe	we	can	support	an	effective	shared	decision	making	effort	by	developing	population-

based	data	visualizations.	

“Unnecessary	variability	in	clinical	care	also	plays	a	major	role	in	the	quality	and	value	of	

clinical	 care.	 	 Variability	 that	 stems	 from	 poor	 care	 processes,	 improper	 usage	 of	 health	 IT	

systems,	 or	 divergence	 from	 clear	 guidelines	 should	 be	 curtailed;	 institutional	 efforts	 to	

understand	and	rectify	 these	 issues	have	been	shown	to	 improve	the	quality	and	efficiency	of	

care	 (Ancker	 et	 al.,	 2014;	 James	 &	 Savitz,	 2011).	 	 However,	 it	 is	 still	 important	 to	 allow	 for	

flexibility	 from	 standardized	 clinical	 guidelines	 to	 enable	 patient	 choice,	 socioeconomic	

considerations,	and	clinical	complexity.		In	assessing	clinical	quality,	utilization	of	shared	decision	

making	 between	 patients	 and	 providers	 should	 be	 viewed	 as	 a	 positive,	 even	 if	 the	 patient	

makes	 a	 choice	 that	 deviates	 from	 the	 standard	 path	 (Oshima	 Lee	&	 Emanuel,	 2013;	 Quill	 &	

Holloway,	 2012).	 	 Additionally,	 in	 cases	 where	 patients	 have	 multiple	 comorbid	 conditions,	

providers	must	 be	 empowered	 to	 focus	 on	 the	patient	 as	 a	whole	 rather	 than	 apply	multiple	

clinical	 guidelines	 (Boyd	 et	 al.,	 2005;	 Tinetti,	 Fried,	 &	 Boyd,	 2012).	 	 While	 many	 have	

concentrated	on	the	role	of	geography	in	the	variability	of	patient	care,	efforts	to	reform	clinical	

decision	 making	 should	 still	 be	 targeted	 at	 where	 decisions	 are	 made:	 healthcare	 providers,	

organizations,	 and	 networks	 (Newhouse	 et	 al.,	 2013).	 	 Given	 both	 the	 necessary	 and	

unnecessary	variability	 in	healthcare,	 it	 is	 important	to	understand	clinical	care	paths	from	the	

perspective	of	the	individual	patient	case”	(Atreya,	2015).	



	 6	
	

Breast	cancer	care	 is	a	microcosm	of	 the	many	challenges	 facing	healthcare	due	 to	 its	

multimodal	 and	 longitudinal	 treatment	 as	well	 as	 its	 growing	 survivor	 population.	 	 There	 are	

three	primary	modes	of	treatment	that	are	administered	based	on	the	stage,	tumor	biology,	and	

patient’s	preferences.	 	 In	 the	curative	setting	 (stages	 I-III),	 surgery	 is	used	to	excise	 the	tumor	

and	 regional	 lymph	nodes.	 	 Surgical	 options	 include	breast	 conserving	 surgery	or	mastectomy	

with	or	without	reconstruction.	Radiation	therapy	is	used	as	an	adjuvant	therapy	to	surgery	to	

provide	 local	 control	 at	 the	 tumor	 site	 through	use	of	 ionizing	 radiation	 to	damage	of	 tumor.		

Systemic	drug	therapy	treats	both	the	breast	and	the	rest	of	the	body.		There	are	three	types	of	

systemic	 therapy	 used	 to	 treat	 breast	 cancer:	 chemotherapy,	 hormone	 therapy	 for	 hormone	

receptor	 positive	 disease,	 and	 anti-HER2	 therapy	 for	 HER2	 positive	 disease.	 	 The	 choice	 and	

sequencing	 of	 these	 complex	multi-modal	 treatments	 depends	 upon	 both	 tumor	 and	 patient	

features.			

In	 oncology	 care,	 clinical	 pathways	 have	 traditionally	 been	 used	 to	 define	 evidence-

based	 care	 plans	 based	 on	 specific	 patient	 and	 tumor	 characteristics.	 	 Pathways	 began	 to	 be	

used	 after	 the	 2003	 Medicare	 Prescription	 Drug,	 Modernization,	 and	 Improvement	 Act	 as	 a	

method	 to	balance	 cost	 and	quality	of	 care.	 	 Some	pathway	 systems	exist	 as	 standalone	web	

portals	 where	 providers	 enter	 patient	 information	 and	 the	 system	 generates	 clinical	

recommendations.	 	 Pathways	have	 also	been	 integrated	 into	 electronic	medical	 record	 (EMR)	

systems	 in	 order	 to	 reduce	 errors,	 increase	 efficiency,	 and	 help	 streamline	 reimbursement	

procedures	 (Gesme	 &	 Wiseman,	 2011;	 Zon	 et	 al.,	 2016).	 	 	 Studies	 have	 demonstrated	 that	

pathways	 have	 reduced	 costs	while	 at	 least	maintaining	 the	 quality	 of	 care	 (Hoverman	 et	 al.,	

2011;	Neubauer	et	al.,	2010).		On	the	other	hand,	pathways	are	sometimes	criticized	due	to	the	

transparency	 in	 how	 they	 are	 developed,	 the	 administrative	 burden	 of	 a	 growing	 number	 of	
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pathways,	 and	 that	 they	 might	 be	 too	 ‘cookie-cutter’	 (Gesme	 &	 Wiseman,	 2011;	 Kinsman,	

Rotter,	James,	Snow,	&	Willis,	2010;	Zon	et	al.,	2016).			

While	clinical	pathways	use	protocols	to	define	the	care	path,	data-driven	exploration	of	

sequences	 of	 diagnostic	 and	 treatment	 events	 can	 allow	 patients,	 providers,	 and	 clinical	

researchers	to	explore	care	paths	on	their	own.		Understanding	care	paths	can	be	aided	through	

effective	 data	 visualization	 and	 allowing	 technology	 to	 augment	 human	 reasoning	 (Friedman,	

2009;	Miller	&	Masarie,	1990;	Spence,	2006).			

2.2:	Importance	of	Quality	Metrics	in	Cancer	Care	

“Breast	cancer	is	the	most	common	cancer	among	women	in	the	United	States	with	an	

estimated	 232,670	 new	 cases	 diagnosed	 and	 40,000	 breast	 cancer	 related	 deaths	 in	 2014.		

Women	in	the	United	States	have	a	12.3%	lifetime	risk	of	developing	breast	cancer,	but	benefit	

from	a	very	high	median	5-year	survival	rate	of	89.2%	(Siegel,	Ma,	Zou,	&	Jemal,	2014).			Breast	

cancer	accounts	for	14%	of	all	cancer	cases	in	the	US,	and	13.2%	of	total	cancer	costs.	With	the	

increasing	number	of	survivors,	including	3.46	million	women	in	2010,	and	an	aging	population,	

the	estimated	2010	cost	of	$16.5	billion	is	expected	to	increase	24%	over	the	following	decade	

(Mariotto,	Yabroff,	Shao,	Feuer,	&	Brown,	2011).	 	Breast	cancer	will	continue	to	be	one	of	the	

primary	areas	of	care	delivery,	especially	as	the	number	of	survivors	continues	to	grow”	(Atreya,	

2015).	

“With	 advances	 in	 breast	 cancer	 research	 and	 the	 trend	 towards	 shared	 decision-

making,	 there	 is	 growing	 tension	 between	 personalized	 and	 pathway	 driven	 care.	 	 Evidence	

behind	the	NCCN	guidelines	has	shown	that	only	6%	of	the	guidelines	are	based	off	category	I	
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evidence,	such	as	randomized	controlled	trials	(RCTs).		In	breast	cancer,	staging	guidelines	have	

100%	of	 the	content	based	on	 level	 IIA	evidence	 (lower	 level	evidence	with	consensus);	 initial	

therapy	 guidelines	 have	 42%	 of	 content	 based	 on	 level	 I,	 42%	 on	 level	 IIA,	 11%	 on	 level	 IIB	

(lower	level	evidence	without	uniform	consensus	but	no	major	disagreement),	and	5%	on	level	

III	evidence	(major	disagreements);	salvage	therapy	guidelines	have	100%	of	the	content	based	

on	 level	 IIA	 evidence;	 surveillance	 guidelines	 have	 67%	of	 the	 content	 based	 on	 level	 IIA	 and	

33%	 on	 level	 IIB	 evidence	 (Poonacha	 &	 Go,	 2011).	 	 The	 appropriate	 level	 of	 adherence	 to	

guidelines	in	comparison	to	deviation	from	the	pathway	in	order	to	personalize	care	is	uncertain	

given	the	varying	levels	of	evidence	behind	the	guideline	(R.	C.	Chen,	2013).		As	quality	reporting	

becomes	tied	to	reimbursement	and	the	value	of	personalized	diagnostics	and	therapeutics	are	

determined	by	payers	 (Weldon,	Trosman,	Gradishar,	Benson,	&	Schink,	2012),	 the	 strength	of	

evidence	 behind	 guidelines	 is	 another	 important	 factor	 to	 determine	 the	 balance	 between	

pathway-based	and	personalized	care”	(Atreya,	2015).	

“Since	 the	 1970’s,	 the	 number	 of	 breast	 cancer	 centers	 delivering	 complex	 care	 has	

increased.		In	order	to	externally	validate	the	quality	of	these	centers,	accreditation	bodies	have	

been	instituted	that	enable	breast	centers	to	voluntarily	participate	in	trusted	quality	assurance	

programs.	 	 External	 accreditation	 began	 with	 the	 Joint	 Commission	 on	 Accreditation	 of	

Healthcare	Organizations	(JCAHO)	in	1951	and	a	number	of	cancer-specific	accreditation	bodies	

have	been	 instituted	since	three	major	 IOM	reports	were	released	 in	1999-2001	 (Edge,	2013).		

Breast	 cancer	 specific	 accreditation	 programs	 include	 the	 National	 Accreditation	 Program	 for	

Breast	 Centers	 (NAPBC)	 (Burgin,	 2010;	 “National	 Accreditation	 Program	 for	 Breast	 Centers	

(NAPBC),”	n.d.)	and	the	National	Quality	Measures	for	Breast	Centers	(NQMBC)	(Kaufman	et	al.,	

2010;	 “National	 Quality	 Measures	 for	 Breast	 Centers	 (NQMBC),”	 n.d.).	 	 Many	 professional	
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organizations	also	have	breast	cancer	quality	components	as	part	of	their	accreditation	including	

The	 Quality	 Oncology	 Practice	 Initiative	 (QOPI)	 (Goldwein	 &	 Rose,	 2007;	 Peterson,	 2012;	

“Quality	Oncology	Practice	Initiative	(QOPI),”	n.d.),	National	Quality	Forum	(NQF)	Breast	Quality	

Measures	 (“National	 Quality	 Forum	 (NQF),”	 n.d.;	 Thompson	 et	 al.,	 2012),	 the	 College	 of	

American	Pathology	(CAP)	(“College	of	American	Pathology	(CAP),”	n.d.),	the	American	College	

of	Radiology	(ACR)	(“College	of	American	Radiology,”	n.d.),	and	the	Commission	on	Cancer	(CoC)	

(“Commission	 on	 Cancer,”	 n.d.;	 Minami	 et	 al.,	 2016).	 	 The	 most	 common	 method	 of	

accreditation	 among	 these	 organizations	 is	 through	 quality	 reporting.	 	 Complying	 with	 the	

quality	 audits	 is	 costly	 and	 time	 consuming,	 with	 overall	 hospital	 accreditation	 and	 licensure	

costs	 estimated	 to	 be	 $8.6	 billion	 annually	 (Conover,	 2012).	 	 Because	 of	 the	 high	 costs,	 the	

quality	 reporting	 is	 periodic	 and	 not	 continuous	which	 limits	 its	 value.	 	 In	 addition,	 there	 are	

mixed	results	in	analyzing	the	success	that	accreditation	programs	have	on	improving	the	quality	

of	care	(Greenfield	&	Braithwaite,	2008;	Merkow,	Chung,	Paruch,	Bentrem,	&	Bilimoria,	2014).		

The	 growth	 of	 accreditation	 for	 cancer	 care	 has	 increased	 the	 pressure	 on	 cancer	 centers	 to	

track	quality	and	on	the	accreditation	programs	to	demonstrate	their	value	 in	 improving	care”	

(Atreya,	2015).	

Quality	metrics	play	a	major	 role	 in	assessing	quality	 for	accrediting	organizations	and	

for	 new	 quality	 and	 population-oriented	 payment	models.	 	 Three	major	 categories	 of	 quality	

metrics	 include	 clinical	 metrics	 that	 assess	 the	 quality	 of	 clinical	 decision-making,	 process	

metrics	that	measures	the	operational	execution	of	a	clinical	decision,	and	outcome	metrics	that	

evaluates	 the	 clinical	 outcome	 for	 the	 patient.	 	 In	 this	 study,	 we	 chose	 to	 focus	 on	 clinical	

metrics	that	involved	patterns	of	care.		These	metrics	assess	the	patterns	of	care	with	regard	to	

systemic	therapy,	surgery,	and	radiation	therapy	usage.	 	Quality	metrics	are	a	vital	component	
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for	improving	the	quality	of	breast	cancer	patients.	

A	significant	effort	to	record	cases	of	cancer	began	with	the	National	Cancer	Act	of	1971	

and	the	establishment	of	the	Surveillance,	Epidemiology,	and	End	Results	Program	(SEER)	at	the	

National	Cancer	 Institute	 (NCI)	 (Warren,	Klabunde,	Schrag,	Bach,	&	Riley,	2001).	 	SEER	collects	

data	 from	 select	 regions	 around	 the	 country.	 	 In	 order	 to	 expand	 this	 collection	 effort,	 the	

Cancer	Registries	Amendment	Act	of	1992	established	the	National	Program	of	Cancer	Registries	

(NPCR)	at	the	Center	for	Disease	Control	(CDC)	to	expand	state	cancer	registry	programs.		SEER	

and	NPCR	are	considered	population-based	 registries.	 	On	 the	other	hand,	 the	National	Caner	

Data	 Base	 (NCDB),	 which	 is	 managed	 by	 the	 Commission	 on	 Cancer	 (COC)	 via	 the	 American	

College	of	Surgeons	(AcoS)	and	the	American	Cancer	Society	(ACS),	is	a	hospital-based	registry.		

Participation	 in	 the	 NCDB	 is	 required	 in	 order	 to	 be	 designated	 as	 a	 COC-approved	 cancer	

center(J.	Swan	et	al.,	1998;	P.	Wingo	&	Howe,	2005).	

The	 learning	 health	 system	 extends	 past	 the	 system	 of	 cancer	 registries	 and	 aims	 to	

continuously	 learn	best	practices	 from	previously	 seen	patients	 in	order	 to	 inform	 the	care	of	

patients	 in	 the	 future.	 	 To	 accomplish	 this,	 clinical	 &	 patient	 generated	 data	 should	 be	

continuously	 collected,	 analyzed,	 and	 utilized	 to	 generate	 new	 knowledge.	 	 Newly	 developed	

knowledge	should	then	be	 implemented	 in	clinical	care	that	will	generate	additional	data	 that	

can	be	evaluated	in	order	to	generate	additional	hypothesis	(Abernethy	et	al.,	2010;	Etheredge,	

2007,	 2014).	 One	 example	 of	 an	 effort	 to	 put	 the	 learning	 health	 care	 system	 concept	 into	

practice	 is	ASCO’s	CancerLinQ	program	 (Sledge,	Miller,	&	Hauser,	 2013).	 	 It	 is	modeled	as	 the	

successor	 to	 the	Quality	Oncology	Practice	 Initiative	 (QOPI)	–	 it	 aims	 to	 collect	 clinical	data	 in	

real	 time	 and	 analyze	 &	 compare	 it	 to	 guidelines.	 	 CancerLinQ	 will,	 for	 example,	 collect	

comprehensive	 EMR	 data	 (i.e.,	 demographics,	 billing	 codes,	 notes,	 history,	 laboratory	 data,	
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medications).	 	This	data	will	be	used	 to	deliver	 real-time	clinical	decision	support	 to	providers	

and	 to	update	clinical	practice	guidelines.	 	CancerLinQ	 is	ASCO’s	 implementation	of	a	 learning	

health	 system	 as	 it	 aims	 to	 collect,	 aggregate,	 and	 analyze	 clinical	 data	 to	 generate	 new	

knowledge	while	feeding	insights	back	to	providers(Sledge,	Hudis,	et	al.,	2013;	Sledge,	Miller,	et	

al.,	2013).	

2.3:	Decision	Aids	in	Breast	Cancer	Care	

Breast	 cancer	 patients	 face	 difficult	 decisions	 about	 their	 care	 without	 a	 full	

understanding	 of	 their	 options.	 	 Women	 often	 have	 a	 choice	 between	 a	 breast	 conserving	

surgery	 (BCS),	where	only	 the	 tumor	 is	 removed,	 and	mastectomy,	where	 the	entire	breast	 is	

removed.		It	is	especially	important	to	understand	surgical	options,	as	the	procedures	are	often	

irreversible.		While	some	patients	prefer	to	have	their	doctor	take	the	lead	decision	making	role,	

many	patients	want	to	participate	 in	a	shared	decision	making	process.	 	Decision	aid	tools	can	

help	provide	the	patient	with	easy	to	understand	information	on	potential	options	(Knops	et	al.,	

2013;	Waljee	et	al.,	2007).	

Traditional	decision	aid	studies	 in	breast	cancer	care	have	utilized	brochures,	booklets,	

audiotapes,	 and	 videotapes	 to	 assess	 items	 such	 as	 the	 patients’	 knowledge,	 final	 treatment	

decision,	 patient	 satisfaction,	 and	 decisional	 conflict/regret.	 	 Decision	 aids	 focused	 on	 early	

stage	breast	cancer	tended	to	help	fortify	patient	knowledge,	reduce	decisional	regret,	increase	

patient	satisfaction,	and	improve	doctor-patient	communication.		Additionally,	use	of	a	decision	

aid	 for	 surgical	 decisions	 tended	 to	 lead	 patients	 to	 choose	 the	 more	 conservative	 and	 less	

invasive	option	(Knops	et	al.,	2013;	Waljee	et	al.,	2007).	
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The	 content	 in	 traditional	 decision	 aids	 is	 often	 written	 or	 recorded	 based	 on	

information	in	previously	published	studies.		Data-driven	decision	aid	tools,	instead,	directly	use	

actual	data	 to	help	patients	and	providers	make	decisions.	 	There	are	a	variety	of	 these	data-

driven	tools	online	that	pull	from	a	variety	of	data	sources	and	have	differing	target	audiences.		

In	 breast	 cancer	 care,	 “Adjuvant!	 Online”	 supports	 decision	 making	 for	 adjuvant	 systemic	

therapy	 for	 women	 with	 early	 stage	 breast	 cancer	 (Ravdin,	 2001).	 	 The	 survival	 rates	 per	

treatment	type	are	based	on	data	from	the	SEER	cancer	registry	and	various	meta-analysis	from	

adjuvant	 breast	 cancer	 clinical	 trials.	 	 This	 tool	 is	 intended	 to	 only	 be	 used	 by	 healthcare	

providers	and	requires	a	login.		Providers	can	review	and	share	a	printout	of	the	online	tool	with	

the	 patient.	 	 Other	 tools	 are	 broadly	 available	 to	 the	 public.	 	 For	 example,	 the	 NorthShore	

“What’s	 Going	 Around”	 tool	 shows	 the	 fraction	 of	 patients	 with	 strep	 throat,	 influenza,	

pertussis,	 pediatric	 asthma,	 and	 gastroenteritis	 that	 have	 been	 seen	 at	 the	 NorthShore	

University	 HealthSystem	 on	 a	 geographic	 heat	 map	 of	 the	 Evanston	 region	 (Campbell	 et	 al.,	

2015).		The	data	is	derived	from	the	NorthShore	electronic	medical	record	(EMR)	system	that	is	

analyzed	 nightly	 to	 identify	 newly	 diagnosed	 patients	with	 the	 illnesses	 using	 a	 set	 of	 logistic	

regression	models.		Finally,	ProPublica’s	“Surgeon	Scorecard”	helps	prospective	patients	review	

specific	surgeon	and	hospital	adjusted	complication	rates	based	on	30-day	readmissions	across	

eight	specific	surgical	procedures	(Pierce	&	Allen,	2015).	 	This	tool	is	based	on	Medicare	billing	

data	from	2009-2013.		This	tool	only	showed	the	adjusted	complication	rate	and	surgical	volume	

per	 surgeon,	 but	 does	 not	 show	 any	 additional	 information	 on	 the	 patient	 population	 or	

adjustment	process	per-surgeon.	
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2.4:	Challenges	and	Opportunities	for	Pathway	Exploration	in	Cancer	Care	

Generating	 explorable	 care	 paths	 from	medical	 record	 data	 is	 a	 challenge	 due	 to	 the	

unstructured	and	irregular	nature	of	the	content.		“Curated	databases,	such	as	cancer	registries,	

contain	 manually	 structured,	 standardized	 data	 that	 makes	 it	 easier	 to	 build	 care	 paths.		

However,	the	maintenance	of	the	data	requires	significant	time	and	manpower	investments.		In	

addition,	 cancer	 registries	are	often	missing	 important	 information	as	 they	do	not	 include	 the	

entire	clinical	population	due	 to	 their	 inclusion	criteria	and	do	not	contain	all	 the	clinical	data	

due	to	the	limited	reporting	requirements.		Even	with	structured	clinical	data,	understanding	the	

information	at	the	proper	level	of	abstraction	is	a	major	challenge.		However,	data	stored	in	the	

registry	or	medical	record	is	often	not	at	the	level	of	abstraction	posed	by	the	clinical	question.	

NAACCR,	 SEER,	 the	 NCI	 Thesaurus,	 and	 others	 work	 to	 meet	 this	 challenge	 by	 developing	

hierarchical	 ontologies	 and	 dictionaries	 to	 represent	 clinical	 data	 (Bilimoria,	 Stewart,	

Winchester,	&	Ko,	2008;	de	Coronado,	Haber,	Sioutos,	Tuttle,	&	Wright,	2004;	“NCI	Thesaurus,”	

n.d.).	 	Understanding	 the	abstraction	of	clinical	data	 is	 important	 in	 representing	 terms	at	 the	

proper	level	on	a	hierarchy	as	well	as	representing	terms	that	represent	a	pattern	of	care	over	

time”	(Atreya,	2015).				

“The	 need	 for	 variable	 and	 dynamic	 abstraction	 is	 demonstrated	 by	 the	 breast	

conserving	 surgery	 event	 which	 is	 a	 part	 of	 both	 the	 re-excision	 rate	 and	 radiation	 therapy	

quality	metrics.		First,	the	“is-a”	relationship	allows	a	lumpectomy	event	to	also	be	represented	

as	a	breast	conserving	surgery	and	surgery	event.	 	Maintaining	 this	 “is-a”	hierarchy	allows	 for	

clinical	concepts	to	be	vertically	abstracted	to	a	certain	level	on	the	hierarchy	depending	on	the	

quality	metric	being	evaluated.		Figure	1	represents	this	vertical	abstraction	from	a	subsection	of	



	 14	
	

the	NCI	Thesaurus.		Second,	the	sequence	of	surgical	events	over	time	also	determines	how	the	

event	and	a	patient’s	course	of	care	should	be	classified.		For	example,	if	two	breast	conserving	

surgeries	 occur	 during	 the	 course	 of	 care,	 the	 second	 surgery	 could	 be	 understood	 as	 a	 re-

excision	event	because	a	second	invasive	surgery	was	required.		This	requires	that	a	sequence	of	

events	 be	 defined	 through	 a	 set	 of	 horizontal	 abstractions	 that	 can	 represent	 the	 temporal	

nature	of	event	sequences.	 	Figure	1	demonstrates	the	set	of	horizontal	abstractions	that	help	

define	the	consolidation	of	surgical	events	into	representing	either	a	breast	conserving	surgery	

or	mastectomy	based	on	the	presence	of	a	mastectomy	in	the	surgical	sequence.		These	vertical	

and	 horizontal	 abstractions	 are	 necessary	 to	 organize	 patient	 cohorts	 by	 treatment	 event	

sequences	in	order	to	identify	patient	pathways”	(Atreya,	2015).	

Finally,	delivering	pathway	exploration	to	stakeholders	effectively	 in	a	dynamic	fashion	

is	a	major	challenge.		The	development	of	these	care	paths	is	only	useful	if	they	have	a	tangible	

impact	on	the	quality	of	care.		“This	will	require	study	of	how	best	to	visualize	and	communicate	

this	 information	 to	 providers,	 patients,	 and	 administrators.	 	 As	 cancer	 providers	 continue	 to	

adopt	electronic	medical	record	(EMR)	systems,	it	may	become	possible	to	track	clinical	care	in	

real	time	as	information	is	aggregated	digitally”	(Atreya,	2015).		New	algorithms	will	be	required	

that	can	 learn	from	data,	 identify	patterns,	and	abstract	the	data	accordingly.	 	 In	addition,	we	

will	 need	 new	 ways	 to	 communicate	 this	 information	 to	 healthcare	 stakeholders	 to	 allow	

providers,	patients,	and	their	families	to	learn	from	every	clinical	encounter.	
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Figure	1:	Example	of	vertical	and	horizontal	abstraction	for	linking	clinical	data	with	quality	
metrics	

Top:	 Vertical	 abstraction	 for	 the	 concept	 Breast	 Conserving	 Surgery	 demonstrates	 how	
concepts	can	be	organized	hierarchically	using	“is-a”	relationships.	

Bottom:	Horizontal	abstraction	that	demonstrates	how	the	interpretation	of	events	can	be	
determined	 by	 the	 temporal	 sequence	 of	 events.	 	 In	 this	 case,	 the	 second	 breast	
conserving	 surgery	 can	 be	 considered	 a	 re-excision	 event	 while	 the	 full	 set	 of	 events	 is	
defined	by	the	resulting	mastectomy.	
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Chapter	3:	Tracking	Clinical	Care	Patterns	

Pathway	 exploration	 requires	 multiple	 subtasks	 to	 convert	 raw	 clinical	 data	 to	 care	

paths	 and	 patterns	 (Section	 3.1).	 	 Care	 pathways	 have	 the	 potential	 to	 be	 developed	 from	

cancer	registry	and	electronic	medical	record	data	(Section	3.2).	 	Temporal	abstraction	has	the	

potential	 to	 enable	 this	 process	 as	 it	 allows	 for	 the	 representation	 of	 clinical	 data	 at	 varying	

levels	 of	 granularity	 based	 on	 its	 usage.	 	 The	 use	 of	 formal,	 knowledge-based	 models	 to	

represent	 temporal	 concepts	 with	 clinical	 data	 began	 in	 the	 1980s	 and	 have	 since	 grown	

(Section	 3.3).	 	 Visualization	methods	 have	 allowed	 clinical	 experts	 to	 identify	 clinical	 patterns	

from	 the	 abstracted	 information	 (Section	 3.4).	 	 This	 study	 will	 aim	 to	 develop	 a	 scalable	

framework	to	identify	and	visualize	patterns	of	care	at	multiple	levels	of	abstraction	and	use	it	

to	support	a	pathway	exploration	framework	(Section	3.5)	

3.1:	Imperative	for	Tracking	Clinical	Care	Patterns	Over	Time	

Pathway	 exploration	 requires	 the	 ability	 to	 dynamically	 abstract	 clinical	 data	 and	

identify	complex	clinical	care	patterns.	 	Clinical	data	entered	into	the	medical	record	system	is	

often	 not	 at	 the	 level	 of	 vertical	 abstraction	 necessary	 to	 answer	 various	 clinical	 questions.		

Furthermore,	clinical	data	can	be	missing,	unevenly	spaced	over	 time,	and	unstructured.	 	As	a	

result,	methods	to	identify	the	optimal	set	of	abstractions	for	clinical	data	elements	are	vital	for	

allowing	 pathways	 to	 be	 explored	 in	 the	 most	 clinically	 relevant	 fashion	 (Figure	 2).		

“Additionally,	 many	 quality	 metrics	 require	 an	 understanding	 of	 the	 patient’s	 treatment	

pathway.		Effective	horizontal	abstraction	and	pattern	recognition	of	clinical	events	is	important	
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in	understanding	the	patient’s	treatment	course.		Methods	that	can	incorporate	clinical	context	

across	time	to	aid	in	clinical	data	interpretation	are	required	to	abstract	clinical	data	horizontally	

and	vertically	to	generate	care	paths”	(Atreya,	2015).	

	

	

3.2:	Impact	of	Clinical	Data	Sources	of	Extracted	Care	Paths	

	 Two	primary	sources	of	clinical	data	 for	cancer	patients	 include	the	electronic	medical	

record	 (EMR)	 and	 the	 cancer	 registry.	 	Medical	 record	 data	 is	 generated	 through	 the	 normal	

course	of	care	by	healthcare	providers.	 	While	 it	 is	often	more	detailed,	 it	 is	also	often	messy,	

irregular,	and	can	be	prone	to	missing	data	on	care	that	took	place	at	external	facilities.		Cancer	

registries,	 on	 the	 other	 hand,	 are	manually	 curated,	 structured	 using	 a	 customized	 encoding	

scheme,	 and	 often	 fill	 in	 care	 delivered	 externally.	 	 Information	 contained	 in	 registries	 is	 less	

detailed	than	what	is	stored	in	the	medical	record.		Finally,	while	the	population	of	patients	in	a	

	
Figure	2:	Converting	raw	event	sequences	to	information	for	pathway	exploration	

Pathway	exploration	 requires	 that	 raw	event	sequences	be	 abstracted	 to	understand	 the	
series	at	the	proper	level	of	granularity	necessary	to	generate	the	desired	quality	metric.	
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cancer	registry	at	a	single	institution	will	be	smaller	than	the	full	cancer	patient	cohort,	cancer	

registries	can	be	aggregated	nationwide.	 	As	a	 result,	cancer	 registries	can	cover	a	majority	of	

the	United	States	population	(Figure	3).	

	

	

	

The	National	 Coordinating	 Council	 for	 Cancer	 Surveillance	 (NCCCS)	 is	 a	 consortium	 of	

the	ACS,	AcoS,	CDC,	NCI,	NCRA,	and	the	North	American	Association	of	Central	Cancer	Registries	

(NAACCR)	that	was	formed	in	1995	to	facilitate	the	process	of	coordinating	data	standards	and	

collection	requirements.		NAACCR	helps	develop	standards	for	population-based	registries	while	

the	 COC	 helps	 develop	 standards	 for	 hospital-based	 registries.	 	 As	 a	 result	 of	 coordinating	

	
Figure	3:	Tradeoffs	in	detail,	completeness,	and	size	between	data	sources	

Local	medical	 record	 data,	while	 rich	 in	 detail	with	 laboratory	 results,	 clinical	 notes,	 and	
other	 granular	 details,	 only	 contains	 information	on	 the	 subset	 of	 clinical	 care	 that	 their	
patients	 receive	 at	 that	 institution.	 	 The	 local	 cancer	 registry	 curates	 a	 more	 complete	
picture	 of	 a	 cancer	 patients’	 clinical	 care	 but	 only	 across	 a	 select	 number	of	 data	 types.		
The	national	registry	can	compile	the	largest	dataset	based	on	smaller	registries.	
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efforts,	 there	has	been	a	general	standardization	 in	the	data	collection	process	 (J.	Swan	et	al.,	

1998;	 P.	 Wingo	 &	 Howe,	 2005).	 	 Any	 neoplasm	 with	 a	 behavior	 code	 of	 2	 or	 3	 (in	 situ	 or	

malignant)	 is	 required	 to	 be	 reported	 for	 the	 NCDB,	 NPCR,	 and	 SEER	 using	 ICD-O-3	 (ICD-

Oncology,	3rd	ed.)	with	the	exception	of	squamous	cell	and	basal	cell	carcinoma	of	the	skin	and	

carcinoma	in	 situ	of	 the	 cervix	 uteri.	 	 Additionally,	 the	 NCDB,	 NPCR,	 and	 SEER	 require	 the	

reporting	 of	 all	 non-malignant	 primary	 intracranial	 and	 central	 nervous	 system	 tumors.	 	 The	

SEER	 and	 NPCR	 population-based	 registries	 will	 consolidate	 data	 from	 the	 various	 reporting	

sites.	 	 The	 NCDB,	 as	 a	 hospital-based	 registry,	 utilizes	 a	 class	 of	 case	 designation	 to	 define	

analytic	and	non-analytic	cases.		Analytic	cases	indicate	a	hospital’s	primary	role	in	managing	the	

patients’	cancer	and	must	be	fully	abstracted	(including	treatment	and	outcome).		Non-analytic	

cases	only	require	an	indication	of	why	a	patient	was	seen	at	the	institution	and	any	additional	

compliance	with	locally	set	standards	(“NAACCR	Chapter	III:	Standards	for	Tumor	Inclusion	and	

Reportability,”	n.d.,	“NAACCR	Chapter	X:	Data	Dictionary,”	n.d.;	J.	Swan	et	al.,	1998;	P.	Wingo	&	

Howe,	2005).	

The	 cancer	 registry	 is	 updated	 on	 a	 regular	 basis	 as	 cancer	 cases	 are	 identified	

(casefinding),	 reported,	and	abstracted	by	cancer	 registrars.	 	Certified	Tumor	Registrars	 (CTRs)	

are	 cancer	 registrars	 who	 have	 achieved	 certification	 via	 a	 training	 and	 continual	 education	

program	which	was	developed	by	the	National	Cancer	Registrars	Association	(NCRA)	(J.	Swan	et	

al.,	 1998).	 	 Data	 is	 collected	 on	 patient	 demographics,	 cancer	 stage,	 tumor	 pathology,	 co-

morbidities,	treatments,	and	vital	status	so	that	survival	outcomes	can	be	measured	(i.e.,	5-year	

survival).	 	 The	 registry	 staff	 use	 the	 NAACCR	 cancer	 registry	 data	 dictionary,	 the	 Facility	

Oncology	 Registry	 Data	 Standards	 (FORDS)	 manual	 from	 the	 CoC,	 and	 the	 American	 Joint	

Committee	 on	 Cancer	 (AJCC)	 Tumor-Node-Metastasis	 (TNM)	 staging	 standards	 (“NAACCR	

Chapter	X:	Data	Dictionary,”	n.d.;	J.	Swan	et	al.,	1998).	
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State	 cancer	 registries	 are	 managed	 by	 the	 NPCR	 via	 the	 CDC	 and	 are	 a	 population-

based	registry.	 	The	CDC	supports	cancer	registries	 in	45	states,	Washington	DC,	and	three	US	

territories,	covering	96%	of	the	US	population.		Given	the	large	population	captured	in	the	NPCR	

(as	well	as	each	individual	state	registry)	and	the	abstracted	and	structured	nature	of	the	data	

acquired,	the	NPCR	data	can	be	utilized	to	assess	national	and	state-wide	trends	over	time	with	

regard	to	cancer	diagnosis,	treatment,	and	outcome.		For	example,	the	NPCR	is	used	(along	with	

SEER)	 to	 generate	 the	 annual	 United	 States	 Cancer	 Statistics	 (USCS)	 that	 compiles	 incidence	

data.	 	 The	 primary	 benefit	 of	 the	 NPCR	 is	 as	 a	 population-based	 registry	 that	 has	 almost	

complete	 national	 coverage.	 	 A	weakness	 of	 the	NPCR	 is	 the	 lack	 of	 information	 collected	on	

recurrence.	 	 In	 fact,	 only	 the	NCDB	 collects	 recurrence	data	 (but	 is	 not	 publically	 available	 or	

reported	on	due	to	concerns	on	completeness).		Another	possible	weakness	(depending	on	the	

goal	of	the	study)	is	the	relative	underrepresentation	of	minority	populations	compared	to	SEER	

(In	et	al.,	2014;	P.	A.	Wingo	et	al.,	2003).	

In	comparison	to	cancer	registries,	there	are	many	data	resources	typically	stored	in	an	

electronic	 medical	 record	 (EMR)	 system	 that	 can	 be	 used	 for	 phenotyping.(Denny,	 2012)		

Administrative	 data	 includes	 billing	 data	 such	 as	 ICD-9-CM/ICD-10-CM	 codes	 (International	

Classification	 of	Diseases)	 and	CPT	 codes	 (Current	 Procedural	 Terminology).	 	 ICD-9-CM	 covers	

codes	used	to	bill	for	the	management	of	diseases,	identification	of	symptoms,	as	well	as	a	few	

procedures.	 	 ICD-9-CM	 is	 the	 US	 version	 of	 the	 ICD-9	 terminology	 developed	 by	 the	 World	

Health	Organization.	 	CPT	 is	used	 to	code	 for	procedures	and	other	clinical	 services.	 	CPT	was	

developed	 by	 and	 is	 maintained	 by	 the	 American	 Medical	 Association.	 	 When	 used	 for	

phenotyping	(for	a	disease	state),	CPT	codes	will	have	a	high	specificity	and	low	sensitivity.		ICD-

9-CM	codes,	on	the	other	hand,	will	have	low	specificity	but	high	sensitivity.	

Clinical	 medical	 record	 data	 includes	 laboratory	 data,	 orders/reports	 from	 ancillary	
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services,	medications,	 and	 clinical	 notes.	 	 	 There	will	 often	be	multiple	 laboratory	 results	 and	

vital	 signs	 recorded	 in	 the	 EHR	per	 patient	 in	 a	 longitudinal	 fashion.	 	 Vital	 signs	will	 often	 be	

recorded	 as	 a	 structured	 value	 while	 laboratory	 results	 can	 be	 reported	 in	 a	 structured	 or	

unstructured	 form	 (will	 be	discussed	 later).	 	 Pathology,	 imaging,	 and	other	 testing	orders	 and	

reports	convey	specific	information	on	the	type	and	results	of	a	clinical	test.		These	reports	will	

often	contain	both	structured	and	unstructured	content	in	free	text	(i.e.,	data	might	have	been	

partially	 inputted	using	a	structured	reporting	tool).	 	Medication	data	 indicates	that	a	clinician	

decided	 to	prescribe	 a	medication.	 	 Additionally,	 changes	 in	medication	 list	 (i.e.,	medications,	

dosages)	 can	 be	 tracked	 over	 time.	 	 Medication	 data	 can	 be	 found	 in	 a	 variety	 of	 sources	

depending	on	the	EHR	being	used	(i.e.,	structured	computerized	provider	order	entry,	bar	code	

administration,	 structured	medication	 reconciliation).	 	 Clinical	 notes	 that	 are	 typed	 into	 EHRs	

can	be	used	to	understand	how	healthcare	providers	described	the	patients’	history	of	present	

illness,	 past	 medical/surgical	 history,	 social	 and	 family	 history,	 physical	 exam,	 and	

assessment/plan	 at	 multiple	 points	 in	 time.	 	 These	 notes	 are	 often	 unstructured	 (unless	

generated	through	a	structured	coding	user	interface).	

3.3:	Organizing	Clinical	Data	to	Represent	Treatment	Patterns		

“Prior	 methods	 for	 tracking	 clinical	 care	 patterns	 have	 included	 heuristic,	 knowledge	

based,	 and	 probabilistic	 approaches.	 	 Temporal	 abstraction	 methods	 aim	 to	 use	 knowledge-

based	 and	 heuristic	 processes	 to	 organize	 clinical	 events	 at	 a	 higher	 level	 and	 elicit	 useful	

information	from	the	abstractions.		Data	visualization	has	been	utilized	for	empowering	clinical	

experts	to	identify	patterns	from	longitudinal	clinical	data	of	both	individual	patients	and	clinical	

populations.	 	 Finally,	 data	mining	 approaches,	 including	 event	 sequence	mining	methods,	 can	
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aid	in	the	discovery	of	temporal	associations	from	clinical	data.		Temporal	abstraction	methods	

are	 valuable	 in	 representing	 data	 on	multiple	 levels;	 they	 can	 help	 improve	 human	 cognition	

through	 the	 incorporation	 of	 data	 visualization	 methods	 and	 can	 be	 made	 more	 scalable	

through	the	use	of	data	mining	methods”	(Atreya,	2015).		

Methods	for	temporal	representation	and	reasoning	in	medicine	have	been	extensively	

reviewed	 (Adlassnig,	 Combi,	 Das,	 Keravnou,	 &	 Pozzi,	 2006;	 Augusto,	 2005;	 Combi	 &	 Shahar,	

1997;	M.	G.	Kahn,	Fagan,	&	Sheiner,	1991;	Orphanou,	Stassopoulou,	&	Keravnou,	2014;	Stacey	&	

McGregor,	 2007).	 	 Of	 those,	 the	 Knowledge	 Based	 Temporal	 Abstraction	 (KBTA)	 method	

developed	 by	 Yuval	 Shahar	 and	 colleagues,	 remains	 the	 central	 foundation	 for	 a	 knowledge-

level	framework	for	formalizing	the	requirements	for	an	abstraction	ontology	and	methodology	

(Y	 Shahar,	 Tu,	 &	 Musen,	 1992;	 Yuval	 Shahar,	 2013;	 Yuval	 Shahar	 &	 Musen,	 1996).	 	 The	

representation	 of	 and	 relationships	 between	 temporal	 events	 and	 intervals	 were	 originally	

formally	defined	 in	the	1980s	to	represent	time	series	data	 in	the	field	of	artificial	 intelligence	

(Allen,	 1984;	 Kowalski	 &	 Sergot,	 1989;	 Mcdermott,	 1982;	 Shoham,	 1987).	 	 Original	 clinical	

knowledge	based	systems	such	as	MYCIN	(Shortliffe,	1977)	and	Internist-I	(RA,	HE,	&	JM,	1982)	

focused	 on	 representing	 clinical	 domain	 knowledge	 and	 used	 their	 symbolic	 structures	 to	

represent	 temporal	 features	 along	 with	 the	 clinical	 ontology	 in	 a	 post-coordinated	 manner	

without	 dynamically	 abstracting	 the	 temporal	 data.	 	 The	 first	 system	 to	 utilize	 temporal	

abstraction	was	 Fagan’s	 ventilator	management	 system	 that	 tracked	 context-specific	 rules	 for	

clinical	parameters	 (Fagan	&	Kunz,	1984).	 	Early	systems	that	handled	time	series	data	did	not	

use	a	temporal	ontology	and	used	simple	abstraction	hierarchies	 (i.e.,	summarization	program	

(Downs,	 Walker,	 &	 Blum,	 1986),	 IDEFIX	 (de	 Zegher-Geets,	 Freeman,	 Walker,	 Blum,	 &	

Wiederhold,	 1988))	 or	 maintained	 simple	 relationships	 (i.e.,	 TCS	 (Russ,	 1995)).	 	 The	 TOPAZ	
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system	had	a	temporal	interpretation	scheme	with	a	management	and	query	system,	however	it	

was	 domain-specific	 and	 lacked	 generalizability	 (M.	 G.	 Kahn,	 1991;	 M.	 G.	 Kahn,	 Fagan,	 &	

Sheiner,	1991;	M.	G.	Kahn,	Fagan,	&	Tu,	1991;	M.	Kahn,	Tu,	&	Fagan,	1991).		The	TrenDx	system	

used	specific	pre-defined	clinical	event	patterns	and	had	the	ability	to	fit	partial	patterns,	while	

avoiding	a	more	data-driven	approach	(I.	J.	Haimowitz	&	Kohane,	1993;	I.	Haimowitz	&	Kohane,	

1993;	 Kohane	 &	 Haimowitz,	 1993).	 	 Temporal	 abstraction	 systems	 have	 advanced	 from	

developing	 temporal	 representation	 structures	 to	 developing	 the	 ability	 to	 organize	 medical	

record	data	temporally	(Atreya,	2015).	

“The	 original	 KBTA	 implementation	 was	 the	 RESUME	 system	 that	 implemented	 the	

temporal	 abstraction	 platform	 and	 has	 been	 tested	 on	 a	 variety	 of	 clinical	 domains	 including	

oncology,	 AIDS,	 and	 insulin-dependent	 diabetes	 (Y	 Shahar	 &	 Musen,	 1992;	 Yuval	 Shahar	 &	

Musen,	1996).	 	An	ecosystem	of	 tools	was	developed	around	 the	RESUME	system	 in	order	 to	

operationalize	 it:	 	 CAPSUL	 is	 a	 temporal	 pattern	 language	 that	was	 developed	 and	 integrated	

with	RESUME	to	allow	complex	pattern	creation	and	querying	 (S	Chakravarty	&	Shahar,	2001;	

Shubha	Chakravarty	&	Shahar,	2001);		EON	extended	its	capabilities	to	therapy	planning	(Musen,	

Tu,	 Das,	 &	 Shahar,	 1996);	 TZOLKIN	 contained	 the	 database	 architecture	 and	 enabled	 the	

querying	of	the	data	based	on	their	abstraction	goals	(Nguyen,	Shahar,	&	Tu,	1999);	Asbru	was	

developed	 as	 a	 method	 of	 representing	 skeletal	 guideline	 plans	 (Miksch,	 Shahar,	 &	 Johnson,	

1997)	which	was	a	part	of	the	Asgaard	project	involved	with	utilizing	those	plans	in	the	clinical	

domain	 (Yuval	 Shahar,	Miksch,	&	 Johnson,	 1998);	 ALMA	 (Balaban,	 Boaz,	&	 Shahar,	 2003)	 and	

IDAN	(Boaz	&	Shahar,	2005),	 the	updated	versions	of	RESUME	and	TZOLKIN,	use	a	distributed	

architecture	and	can	be	 linked	to	various	knowledge	bases	and	ontologies;	Momentum	allows	

the	system	to	handle	streaming	data	as	information	is	entered	into	the	clinical	record	(Spokoiny	
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&	 Shahar,	 2003).	 	 A	 large	 complement	 of	 tools	 was	 shown	 to	 be	 necessary	 to	 implement,	

maintain,	and	scale	a	temporal	abstraction	system	in	the	clinical	setting”	(Atreya,	2015).	

“Data	mining	and	statistical	approaches	can	also	help	identify	treatment	patterns	from	

longitudinal	 clinical	 data.	 	 Association	 rule	 mining	 is	 a	 method	 for	 identifying	 association	

patterns	between	categorical	variables	and	was	often	used	 in	analysis	of	customer	transaction	

data	 (Rakesh	 Agrawal,	 Imieliński,	 &	 Swami,	 1993).	 	 Event	 sequence	 mining,	 an	 extension	 of	

association	rule	mining,	has	aimed	since	its	introduction	(R.	Agrawal	&	Srikant,	1995)	to	identify	

temporal	event	patterns	based	on	time	stamped	data	(Bellazzi,	Ferrazzi,	&	Sacchi,	2011;	Bellazzi,	

Sacchi,	 &	 Concaro,	 2009).	 	 In	 addition	 to	 customer	 transaction	 data,	 event	 sequence	 mining	

methods	 have	 been	 applied	 to	 identifying	 plan	 failures	 and	 network	 alarms	 and	 research	 has	

focused	on	developing	more	efficient	algorithms	 (Zaki,	2001).	 	 These	methods	have	also	been	

applied	 to	 clinical	 data	 in	 KarmaLego	 (Moskovitch	 &	 Shahar,	 2009)	 (part	 of	 RESUME	 KBTA	

ecosystem)	and	ChronoMiner	(Raj,	O’Connor,	&	Das,	2007)	(ontology-based	pattern	mining),	as	

well	 as	 to	 administrative	 data	 (Norén,	 Hopstadius,	 Bate,	 Star,	 &	 Edwards,	 2009).	 	 KarmaLego	

uses	 event	 sequence	 mining	 methods	 in	 the	 context	 of	 its	 KBTA	 framework	 to	 identify	 time	

interval	related	patterns	(TIRPs).		It	was	demonstrated	on	a	set	of	diabetes	patient	data	and	was	

used	to	discover	and	classify	patient	subgroups.		Chronominer	is	another	pattern	mining	system	

that	searches	for	patterns	simultaneously	at	multiple	levels	of	abstraction	and	was	tested	on	HIV	

patient	data	to	assess	genetic	mutations	acquired	during	therapy.	 	Event	sequence	mining	can	

be	an	effective	method	for	identifying	common	event	patterns	in	clinical	data	in	the	context	of	a	

temporal	abstraction	framework”	(Atreya,	2015).	

Generating	 explorable	 care	 paths	 is	 challenging	 and	 often	 requires	 the	 abstraction	 of	

clinical	data	and	the	use	of	event	patterns.		Temporal	abstraction	and	data	mining	methods	will	
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be	necessary	 to	align	raw	clinical	data	with	 longitudinal	pathways.	 	Breast	cancer	 treatment	 is	

multimodal	 and	 variable.	 	 As	 a	 result,	 efforts	 to	 study	 clinical	 quality	 have	 been	 slow	 and	

required	manual	 review.	 	We	plan	 to	develop	a	 temporal	abstraction	 framework	 to	develop	a	

pathway	exploration	framework	for	breast	cancer	care.	

3.4:	Visualizing	Paths	of	Care	

“Learning	 patterns	 of	 care	 from	 abstracted	 clinical	 data	 can	 be	 improved	 through	

effective	 data	 visualization	 and	 allowing	 technology	 to	 augment	 human	 reasoning	 (Friedman,	

2009;	Miller	&	Masarie,	1990;	Spence,	2006).		A	1994	article	was	one	of	the	earliest	to	propose	

using	graphs	to	summarize	patient	data	from	multiple	sources	(Powsner	&	Tufte,	1994).	 	Since	

then,	 the	 two	 most	 published	 tools	 for	 temporal	 data	 visualization	 have	 been	 the	 LifeLines	

(Plaisant,	Milash,	Rose,	Widoff,	&	Shneiderman,	1996)/LifeFlow	 (Krist	Wongsuphasawat,	2011)	

systems	by	Plaisant	and	Shneiderman	as	well	as	 the	KNAVE	(Yuval	Shahar,	Goren-Bar,	Boaz,	&	

Tahan,	 2006)/VISITORS	 (Klimov,	 Shahar,	 &	 Taieb-Maimon,	 2010)	 tools	 by	 Shahar	 which	 are	 a	

part	of	the	RESUME	KBTA	ecosystem.		Plaisant	and	Shahar	both	initially	focused	on	generating	

graphs	for	the	clinical	data	of	a	single	patient	and	have	progressed	to	visualizing	the	trends	of	

care	 across	 thousands	 of	 patients.	 	 These	 and	 other	 systems	 have	 been	 used	 to	 help	 clinical	

experts	more	effectively	understand	clinical	records	of	 individual	patients	and	patterns	of	care	

across	 clinical	 populations	 (K.	 Wongsuphasawat	 &	 Gotz,	 2012;	 Zhang,	 Wang,	 Ahmed,	 &	

Ramakrishnan,	2013)	“	(Atreya,	2015).	

Patient	level	visualizations	can	be	helpful	in	summarizing	a	complex	medical	record.		For	

example,	 the	 LifeLines	 system	 represents	 events	 of	 variable-length	 duration	 on	 a	 timeline	 so	
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that	 a	 user	 can	 see	 how	 the	 occurrence	 of	 various	 events	 are	 related.	 	 While	 patient	 level	

timelines	allow	the	user	to	identify	patient	level	patterns,	population	level	visualization	systems	

such	as	LifeFlow	allow	users	to	filter	on	multiple	patient	records	in	a	compact	fashion.		Scalable	

population-based	 visualization	 tools	 need	 to	 be	 able	 to	 represent	 variable	 sized	 populations	

from	thousands	to	millions	of	patients	using	a	similar	representation	(Plaisant	et	al.,	1996;	Krist	

Wongsuphasawat,	2011).		One	challenge	for	developing	scalable	visualizations	is	the	number	of	

potential	 values	 for	 specific	 features.	 	 For	 example,	 there	 are	 many	 kinds	 of	 unique	 surgical	

procedures;	these	can	be	organized	 into	a	hierarchical	structure.	 	By	using	the	higher	 levels	of	

representation,	 visualizations	 can	 show	 more	 information	 more	 compactly	 (Guerra-Gomez,	

Pack,	Plaisant,	&	Shneiderman,	2013).	

Of	 fifteen	 articles	 between	 1996	 and	 2013	 that	 discuss	 temporal	 clinical	 data	

visualization,	 13	 focused	 on	 clinical	 decision	 support	 while	 only	 two	 focused	 on	 quality	

improvement	 (West,	Borland,	&	Hammond,	2014).	 	With	a	growing	number	of	quality	metrics	

and	increasing	cost	of	care,	data	visualization	across	a	medical	record	system	can	allow	for	more	

effective	 analysis	 of	 the	 quality	 of	 clinical	 practice	 (“Advancing	 Meaningful	 Use:	 Simplifying	

Complex	 Clinical	 Metrics	 Through	 Visual	 Representation,”	 2010).	 	 Data	 visualization	 can	 help	

clinical	experts	to	identify	treatment	patterns	across	clinical	populations	and	effectively	deliver	

quality	metrics	to	various	stakeholders.	

In	this	work,	we	aggregate	and	display	the	abstracted	treatment	paths	across	our	breast	

cancer	 patient	 population(Krist	Wongsuphasawat,	 2011).	 	 Aggregation	 is	 necessary	 to	 enable	

scalable	 visualization	 of	 large	 patient	 cohorts	 and	 avoid	 trying	 to	 display	 a	 large	 number	 of	

individual	patient	records	in	a	confined	visual	space.		This	aggregation	step	involves	the	grouping	

of	events	across	treatment	paths	to	find	common	prefix,	root,	and/or	suffix	sequences	(Figure	
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4).		The	visualization	step	is	focused	on	using	color-coded	event	bars	to	represent	events	where	

the	color	of	the	bar	represents	the	event	type,	the	height	of	the	bar	represents	the	fraction	of	

patients	with	that	event	in	the	sequence,	and	the	position	of	the	bar	represents	the	position	of	

the	 event	 in	 the	 sequences	 treatment	 events.	 	 Using	 the	 fraction	 of	 patients	 is	 scalable	 as	 a	

constant	visual	space	can	represent	100%	of	 the	population.	 	The	LifeFlow	visualizations	 (Krist	

Wongsuphasawat,	2011)	use	prefix	aggregates	and	are	based	on	the	 Icicle	Tree	diagram.	 	This	

has	the	potential	to	lead	to	a	complex	tree	of	sequences	when	the	treatment	paths	are	long	and	

highly	variable(Monroe,	Lan,	Lee,	Plaisant,	&	Shneiderman,	2013).		The	Sankey	diagram	aims	to	

further	 group	 sequences	 by	 representing	 prefix,	 root,	 and	 suffix	 aggregate	 patterns	 using	 a	

similar	 design	 principle	 (Riehmann,	 Hanfler,	 &	 Froehlich,	 2005).	 	 This	 leads	 to	 greater	

consolidation	 across	 patients	 along	 the	 full	 length	 of	 the	 treatment	 path	 as	 event	 sequence	

aggregates	can	both	diverge	and	converge.			

	
Figure	4:	Visualizing	aggregate	paths	with	icicle	tree	(L)	diagrams	and	Sankey	(R)	diagrams	

Visualizing	 aggregate	 paths	 involves	 representing	 prefix,	 root,	 and	 suffix	 aggregate	
patterns.		Both	the	icicle	tree	(left)	and	Sankey	(right)	diagrams	handle	prefix	aggregates	(1	
à	 2a)	 by	displaying	 a	 diverging	path.	 	 The	 icicle	 tree	 and	 Sankey	diagrams	handle	 suffix	
aggregates	 (2a/2b	à	3)	 differently	 as	 icicle	 tree	diagrams	do	not	converge	while	Sankey	
diagrams	do.		As	a	result,	Sankey	diagrams	can	be	more	compact.	
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3.5:	Hypothesis	and	Aims	

Our	 objective	 is	 to	 develop	 a	 scalable	 framework	 to	 identify	 and	 visualize	 patterns	 of	

care	at	multiple	 levels	of	abstraction	and	use	 it	 to	 support	a	pathway	exploration	 framework.		

We	hypothesize	that	a	 framework	that	consists	of	vertical	and	horizontal	abstraction	methods	

can	help	generate	data-driven	care	paths	and	develop	interactive	path	visualizations	to	 inform	

patients	and	providers.		

Aim	1:	Develop	a	scalable	framework	to	extract	and	abstract	breast	cancer	event	data	to	

develop	a	pathway	exploration	framework	

Aim	2:	Evaluate	the	quality	of	care	using	a	pathway	exploration	framework	

Aim	3:	Visualize	care	paths	to	deliver	decision	aids-as-a-service	

	

	 	



	 29	
	

Chapter	4:	The	Pathfinder	Framework	

This	 chapter	 describes	 the	 Cancer	 Pathfinder	 framework	 and	 its	 application	 to	

supporting	 pathway	 exploration.	 	 The	 data	 for	 this	 study	 is	 derived	 from	 the	National	 Cancer	

Database	 and	 the	 Vanderbilt	 University	Medical	 Center	 (VUMC)	 cancer	 registry	 (Section	 4.1).		

The	 Cancer	 Pathfinder	 method	 consists	 of	 five	 sub-tasks	 including	 data	 extraction,	 data	

standardization,	 vertical	 abstraction,	 horizontal	 abstraction,	 and	 pathway	 exploration	 (Section	

4.2,	 4.3).	 	We	 developed	 a	 tool	 to	 dynamically	 and	 interactively	 explore	 care	 paths	 of	 breast	

cancer	patients	(Section	4.4).	 	We	next	demonstrated	how	the	pathway	exploration	tool	could	

support	quality	measurement	(Section	4.5).	Finally,	we	developed	a	data-driven	decision	aid	that	

uses	 interactive	 care	 path	 visualizations	 to	 help	 patients	 engage	 in	 a	 shared	 decision	making	

process	(Section	4.6).	

4.1:	Clinical	Setting	and	Patient	Data	Sources	

This	study	primarily	used	data	collected	from	the	cancer	registry	at	the	National	Cancer	

Database	 (NCDB)	 and	 the	 Vanderbilt-Ingram	 Cancer	 Center	 (VICC).	 	 Additionally,	 data	 was	

collected	from	clinical	information	systems	at	Vanderbilt	University	Medical	Center	(VUMC)	and	

Vanderbilt-Ingram	Cancer	Center	(VICC).	 	The	 identifiable	patient	data	from	Vanderbilt	used	 in	

this	 study	 included	 information	 on	 demographics,	 treatments,	 billing	 codes,	 outcomes,	 and	

providers.			The	de-identified	patient	data	from	the	NCDB	included	demographic	and	treatment	

information.	 	 This	 study	 has	 been	 reviewed	 and	 approved	 by	 the	 VUMC	 Institutional	 Review	

Board	(IRB)	as	expedited	and	minimal	risk	health	sciences	study	#130957.	
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The	 NCDB	 is	 an	 aggregation	 of	 cancer	 registry	 data	 from	 over	 1500	 Commission	 on	

Cancer	 (CoC)-accredited	 sites	 nationwide	 and	 is	 jointly	 sponsored	 by	 the	American	 College	 of	

Surgeons	 (ACoS)	 and	 the	 American	 Cancer	 Society	 (ACS).	 	 New	 patient	 records	 in	 the	 NCDB	

represent	approximately	70%	of	newly	diagnosed	cases	across	the	country.		We	applied	for	and	

were	 granted	 access	 to	 use	 the	NCDB	 2013	 Participant	User	 File	 (PUF)	 that	was	 compiled	 on	

January	 26,	 2016.	 	 The	 NCDB	 PUF	 is	 a	 de-identified	 dataset	 containing	 cancer	 registry	 data	

collected	from	the	CoC	member	sites.	

“VUMC	is	a	tertiary	care	academic	medical	center	with	906	beds	for	general	medical	and	

surgical	 purposes,	 and	 approximately	 49,000	 admissions,	 22,000	 inpatient	 surgeries,	 30,500	

outpatient	 surgeries,	 and	 108,000	 emergency	 room	 visits	 annually.	 	 The	 cancer	 registry	 at	

VICC/VUMC	is	a	manually	curated,	structured	source	of	data	on	cancer	patients’	demographics,	

diagnosis,	treatments,	and	survival	outcomes.		Based	on	CoC	guidelines,	patients	are	required	to	

be	entered	 into	the	cancer	registry	when	their	“class	of	case”	 indicates	that	at	 least	the	 initial	

diagnoses	 or	 all	 or	 part	 of	 the	 first	 course	 of	 therapy	 are	 conducted	 at	 the	 home	 institution.		

Reportable	 cases	 must	 be	 entered	 into	 the	 system	 no	 later	 than	 six	 months	 after	 they	 are	

deemed	eligible.	 	The	cancer	registry	at	VICC	has	been	certified	by	the	Commission	on	Cancer,	

which	 designates	 the	 system’s	 high	 performance	 in	 case	 identification	 and	 annotation.	 	 The	

cancer	 registry	 is	 a	highly	 curated	and	 structured	data	 source	 that	 represents	 a	 subset	of	 the	

cancer	patients	seen	at	VUMC”	(Atreya,	2015).	

Cancer	 registries	 are	 encoded	 using	 the	 NAACCR	 cancer	 registry	 data	 dictionary,	 the	

Facility	 Oncology	 Registry	 Data	 Standards	 (FORDS)	 manual	 from	 the	 Commission	 on	 Cancer	

(CoC),	and	the	AJCC	staging	standards	to	codify	information	on	cancer	patients’	demographics,	

tumor	 characteristics,	 and	 treatment	 information.	 	 At	 Vanderbilt,	 a	 team	 of	 specially	 trained	

nurse	 registrars	 maintains	 the	 database	 using	 the	METRIQ	 cancer	 registry	 data	 management	
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system	from	Elekta.		

“In	addition	to	the	data	from	the	tumor	registry	system,	we	also	leveraged	clinical	and	

administrative	data	from	the	VUMC	Research	Derivative	(RD)	(Danciu	et	al.,	2014).		The	RD	is	a	

database	 of	 clinical	 and	 related	 data	 derived	 from	 VUMC	 clinical	 information	 systems,	

restructured	for	research,	and	stored	on	a	Netezza	(“IBM	Netezza	Data	Warehouse	Appliances	–	

The	Simple	Data	Warehouse	Appliance	for	Serious	Analytics,”	2014)	system.	The	medical	record	

number	 and	 other	 identifiers	 are	 preserved	 within	 the	 database.		 Data	 types	 include	

reimbursement	 codes,	 clinical	 notes	 and	 documentation,	 nursing	 records,	 medication	 data,	

laboratory	data,	encounter	and	visit	data,	among	others.		Output	may	 include	structured	data	

points,	such	as	ICD-9-CM	(International	Classification	of	Disease)	codes,	CPT	(Current	Procedural	

Terminology)	codes,	encounter	dates,	semi-structured	data	such	as	laboratory	tests	and	results,	

or	unstructured	data	such	as	physician	progress	reports”	(Atreya,	2015).	

4.2:	The	Cancer	Pathfinder	Framework	for	Pathway	Exploration	

The	 general	 abstraction	 methodology	 for	 pathway	 exploration	 consists	 of	 five	 major	

subtasks:	data	extraction,	data	standardization,	vertical	abstraction,	horizontal	abstraction,	and	

pathway	 exploration	 (Figure	 5).	 	 Data	 extraction	 involves	 the	 collection	 of	 the	 raw,	 time-

stamped	 diagnostic	 and	 treatment	 event	 data.	 	 The	 data	 standardization	 subtask	 involves	

structuring	 and	mapping	 the	 information	 from	 the	 data	 extraction	 subtask	 to	 a	 set	 of	 one	 or	

more	formal	ontologies.		The	vertical	abstraction	subtask	involves	utilizing	the	hierarchies	of	the	

ontologies	 in	use	 to	 identify	higher-level	abstractions	 for	concepts	 representing	 the	 treatment	

events.	 	 The	horizontal	 abstraction	 subtask	uses	 clinical	 and	 temporal	 patterns	 to	 consolidate	

events	over	time	to	simplify	the	treatment	event	sequences.		The	pathway	exploration	subtask	
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involves	allowing	users	to	dynamically	query	different	care	paths	using	patient	feature	filtering,	

vertical	and	horizontal	abstraction,	and	treatment	filtering.		This	series	of	five	subtasks	converts	

raw	data	to	a	form	that	can	be	used	to	evaluate	quality	and	support	shared	decision-making.	

	

This	abstraction	methodology	was	 implemented	 in	 the	 form	of	a	web	application	 that	

will	be	publicly	available	online.	 	The	 raw	data	 to	be	 read	 for	 the	data	extraction	subtask	was	

pulled	from	the	NCDB	PUF	File	and	the	VUMC	METRIQ	cancer	registry	system.		The	event	data	

was	 processed	 in	 the	 standardization	 subtask	 then	 loaded	 into	 an	 in-memory	 SQL	 database	

	
	
Figure	5:	The	five	subtasks	of	the	cancer	pathfinder	pathway	exploration	framework	
The	 generalizable	abstraction	methodology	utilizes	 five	subtasks	 (middle)	 as	well	 as	 their	
inputs	 (left)	 and	 outputs	 (right)	 to	 develop	 abstracted	 treatment	 event	 sequences	 from	
raw	 event	 data	 for	 pathway	 exploration.	 The	 method	 involves	 six	 subtasks:	 data	
extraction,	data	standardization,	vertical	abstraction,	horizontal	abstraction,	and	pathway	
exploration.	
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(MemSQL)	 that	was	 running	 on	 a	 non-critical	 server	 operated	 by	 VUMC	 IT.	 	 The	 vertical	 and	

horizontal	 abstraction	 subtasks	 are	 implemented	 in	 the	 web	 application	 in	 JavaScript.	 	 The	

interactive	 pathway	 exploration	 and	 visualization	 tool	 is	 implemented	 in	 JavaScript	 using	 the	

React.js	 framework	 and	 d3.js	 visualization	 library.	 	 A	 Node.js	 server	 uses	 a	 REST	 API	 to	 run	

queries	against	the	MemSQL	database	and	return	results	to	the	web	application	client.	

4.3:	Extraction	and	Representation	of	Cancer	Registry	Data	

The	 data	 extraction	 subtask	 consisted	 of	 selecting	 patient	 records	 for	 adult	 women	

diagnosed	with	breast	cancer	from	the	Vanderbilt	cancer	registry	and	NCDB	PUF.		Diagnosis	and	

treatment	 event	 data	 on	 biopsy,	 chemotherapy,	 immunotherapy,	 surgery,	 hormone	 therapy,	

and	radiation	therapy	were	extracted	from	the	VUMC	cancer	registry	and	NCDB	PUF.		The	event	

data	in	the	VUMC	cancer	registry	is	more	detailed	than	the	NCDB	as	it	provides	more	detail	on	

the	 specific	 types	of	 treatment	as	well	 as	providing	multiple	event	dates	per	event	 type.	 	The	

NCDB	on	 the	other	hand	only	provides	detailed	 treatment	 information	on	 surgical	events	and	

only	contains	information	on	a	maximum	of	two	surgical	events	and	one	of	every	other	kind	of	

diagnostic	or	treatment	event.	 	Thus,	the	NCDB	PUF	dataset	is	 itself,	already	partially	vertically	

and	horizontally	abstracted	compared	to	the	VUMC	tumor	registry.	 	For	each	extracted	event,	

the	number	of	days	since	diagnosis	was	also	calculated.		We	characterized	the	patient	cohort	by	

the	patients’	age	at	diagnosis,	race,	primary	cancer	site,	histology,	and	clinical	stage.	
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“The	data	standardization	subtask	 involved	the	mapping	of	treatment	events	 from	the	

cancer	 registry	and	administrative	data	 to	 the	NCI	Thesaurus	 in	order	 to	maintain	a	 common,	

formal	 ontology	 (Figure	 6).	 	 The	 NCI	 Thesaurus	 is	 a	 specialized	 ontology	 for	 cancer	 and	 has	

hierarchies	that	focus	on	cancer	specific	procedures,	unlike	other	ontologies	such	as	SNOMED-

	
Figure	6:	Example	of	the	data	extraction	and	normalization	subtasks	

Examples	of	FORDS	manual	 surgical	 codes	 (i.e.,	22)	 and	CPT	codes	 (i.e.,	19301)	extracted	
from	 the	 cancer	 registry	 and	 administrative	 data,	 respectively,	 are	 shown	 in	 the	 data	
extraction	step.			A	manually	derived	mapping	to	NCI	Thesaurus	concepts	(i.e.,	C15755)	was	
used	to	implement	the	data	normalization	step.	
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CT.		The	linkage	between	the	cancer	registry	procedure	terms	with	NCI	thesaurus	concepts	was	

conducted	manually	 by	 an	MD/PhD	 student	 and	 overseen	 by	 a	medical	 oncologist.	 	 This	was	

necessary	because	linkages	between	the	NCI	Thesaurus	and	both	CPT	and	FORDS	codes	are	not	

publically	available	due	to	copyright	restrictions	from	the	American	Medical	Association	(AMA)	

and	 CoC,	 respectively.	 	 The	 conversion	 to	 the	 NCI	 thesaurus	 allows	 for	 a	 more	 formalized	

abstraction	process	and	for	comparison	between	different	data	sources”	(Atreya,	2015).		

“The	 vertical	 abstraction	 subtask	 involved	 the	 parsing	 of	 the	 ontological	 hierarchy	 as	

well	 as	 consolidating	 similar	events	 that	occur	 simultaneously	 (Figure	7).	 	A	 subset	of	 the	NCI	

Thesaurus	hierarchy	generated	the	vertical	abstractions	for	surgical	treatment	events.		We	used	

three	 levels	 of	 vertical	 abstraction	 to	 represent	 the	 specific	 surgical	 terms.	 	 Base	 level	V0	 the	

most	granular	level,	represents	the	specific	type	of	surgical	procedure	such	as	a	lumpectomy	or	

subcutaneous	 mastectomy.	 	 Level	 V1,	 the	 next	 level	 of	 abstraction,	 represents	 the	 event	

subtypes	Mastectomy	 and	 Breast	 Conservation	 Treatment.	 	 Level	 V2,	 the	 final	 generalization,	

consolidates	both	 terms	 to	 the	 concept	 “Surgery”.	 	 In	addition	 to	 the	 surgical	 term	hierarchy,	

similar	 treatment	events	occurring	on	 the	 same	day	were	consolidated	 to	a	 single	event.	 	 For	

example,	two	chemotherapy	events	 listed	on	the	same	day	for	two	separate	medications	(i.e.,	

doxorubicin	 and	 cyclophosphamide)	 would	 be	 vertically	 abstracted	 into	 one	 chemotherapy	

event.	 	 The	 vertical	 abstractions	 are	 stored	 for	 use	 by	 the	 quality	 metric	 querying	 and	

visualization	subtasks”	(Atreya,	2015).	
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Figure	7:	Example	of	vertical	abstraction	subtask	for	treatment	event	sequences	

The	NCI	Thesaurus	ontology	tree	for	breast	cancer	therapeutic	procedure	was	used	for	the	
vertical	abstraction	subtask	to	aggregate	surgical	events	to	their	subtype.		There	are	three	
vertical	 levels	 of	 abstraction	 represented	 in	 this	 hierarchy	 with	 the	 top	 tier	 (V2)	
representing	 a	 surgical	 procedure,	 the	middle	 tier	 (V1)	 representing	 mastectomy	 versus	
breast	 conserving	 surgery,	 and	 the	 last,	most	 granular	 tier	 (V0)	 representing	 the	 specific	
type	of	surgery.	
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“The	 horizontal	 abstraction	 subtask	 simplifies	 the	 representation	 of	 the	 sequence	 of	

treatment	 events	 (Figure	8).	 	 Base	 level	H0,	 shows	 the	 sequence	of	 treatment	 events	 as	 they	

occurred.	 	 The	 first	 level	 of	 abstraction,	 level	 H1,	 removes	 sequentially	 repeating	 treatment	

events.	 	 This	 allows	 for	 the	 representation	 of	 the	 sequence	 of	 treatment	 event	 types.	 	 For	

example,	a	single	surgical	event	could	represent	a	series	of	re-excision	surgeries.		Level	H2,	the	

final	 level	of	horizontal	abstraction,	represents	the	order	of	the	first	time	any	treatment	event	

takes	place.		This	is	valuable	in	cancer	care	where	the	terms	adjuvant	(after	the	primary	therapy)	

and	 neoadjuvant	 (before	 the	 primary	 therapy)	 refer	 to	 the	 sequence	 of	 chemotherapy	 with	

respect	 to	surgery.	 	As	with	 the	vertical	abstractions,	all	horizontal	abstractions	are	stored	 for	

quality	metric	querying	and	visualization”	(Atreya,	2015).	

	

	

	
Figure	8:	Example	of	horizontal	abstraction	subtask	for	treatment	event	sequences	

The	 horizontal	 abstraction	 process	 represents	 treatment	 ordering	 on	 three	 levels.	 	 The	
original	 treatment	 order	 (H0)	 represents	 every	 treatment	 event	 in	 order	 at	 any	 level	 of	
vertical	abstraction.		The	first	level	of	abstraction	(H1)	removes	any	immediately	adjacent	
repeating	 treatment	 events.	 	 The	 final	 level	 of	 abstraction	 (H2)	 represents	 only	 the	 first	
type	of	treatment	event	in	the	sequence.	
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After	conducting	the	first	four	subtasks	of	our	methodology,	we	sought	to	characterize	

the	 treatment	 event	 sequences	 for	 stage	 I-III	 breast	 cancer	 patients	 by	 evaluating	 the	

abstraction	 subtasks,	 visualizing	 the	 treatment	 paths,	 and	 searching	 for	 common	 treatment	

patterns.	 	 To	 evaluate	 abstraction	 process	 we	 assessed	 the	 reduction	 in	 complexity	 of	 the	

treatment	 event	 sequences	 by	 using	 three	 metrics:	 1)	 we	 counted	 the	 number	 of	 unique	

treatment	 event	 sequences	 at	 each	 abstraction	 level	 (V0H0,	 V1H0,	 V1H1,	 V1H2,	 V2H0,	 V2H1,	

V2H2);	 2)	 we	 calculated	 the	 number	 of	 treatment	 events	 per	 event	 sequence	 at	 the	 highest	

(V2H2)	 and	 lowest	 (V0H0)	 levels	 of	 abstraction	 to	 understand	 how	 the	 method	 reduces	

complexity;	 and	 3)	 we	 measured	 how	 the	 horizontal	 abstraction	 subtask	 consolidated	 the	

number	of	treatment	events	from	the	V2H0	to	V2H1	and	V2H2	abstractions.			

4.4:	Interactive	Pathway	Exploration	and	Visualization	

The	pathway	exploration	subtask	consisted	of	selecting	Sankey	visualization	technique	is	

an	effective	 technique	 for	 representing	 the	magnitude	of	 flow	between	sequential	nodes	 that	

represent	diagnostic	and	treatment	events.		We	represented	each	treatment	event	as	a	node	in	

the	Sankey	diagram	with	 the	height	of	 the	node	 representing	 the	 relative	number	of	patients	

experiencing	 that	 event.	 	 The	 Sankey	 diagram	 represents	 the	 sequence	 events	 but	 not	 the	

precise	 temporal	 duration.	 	 This	 visualization	 was	 implemented	 as	 part	 of	 an	 online	 web	

application.	

We	developed	an	interactive	Sankey	diagram	to	allow	users	to	dynamically	explore	the	

care	paths	using	vertical	and	horizontal	abstractions	as	well	as	selecting	specific	nodes	and	links.		

Nodes	 represent	 treatment	 events	 and	 displayed	 as	 vertical	 rectangles	 where	 the	 height	 is	

proportional	to	the	number	of	patients	undergoing	the	treatment.	 	Links	represent	the	flow	of	
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patients	 from	 node	 to	 node	 (event	 to	 event)	 where	 the	 vertical	 thickness	 of	 the	 link	 is	

proportional	 to	 the	number	of	patients.	 	We	have	 implemented	a	variety	of	 features	 to	allow	

users	to	dynamically	explore	the	Sankey	diagram	including	feature	filtering,	vertical	abstraction,	

horizontal	abstraction,	and	treatment	filtering.	

We	use	a	 series	of	bar	charts	and	histograms	 to	allow	users	 to	view	and	 filter	various	

patient	 demographics,	 tumor	 and	 disease	 characteristics,	 and,	 for	 NCDB	 data,	 hospital	

characteristics.	 	Users	 can	dynamically	 interact	with	 these	 features	 to	explore	 the	 interplay	of	

how	different	features	interact	(i.e.,	how	does	the	cancer	stage	affect	the	care	path).		Users	can	

vertically	 abstract	 treatment	events	by	double-clicking	on	a	 specific	node	 to	 split	 it	 into	more	

granular	events.		We	use	the	vertical	abstraction	hierarchies	to	define	how	the	treatment	event	

node	should	be	split	into	its	subcomponents.		This	transition	will	be	animated	for	the	user	to	see	

the	 abstraction	 process.	 	 Additionally,	 users	 can	 toggle	 between	 different	 levels	 of	 horizontal	

abstraction	for	VUMC	registry	data.		The	user	can	simplify	the	Sankey	diagram	by	shortening	and	

simplifying	 the	 event	 sequences	 in	 case	 the	 clinical	 question	 they	 are	 investigating	 does	 not	

require	 the	 full	 sequence	 complexity.	 	 Finally,	 users	 can	 single-click	 on	nodes	 and	 links	 in	 the	

Sankey	 diagram	 to	 filter	 the	 population	 to	 the	 set	 of	 patients	 that	 had	 an	 event	 in	 a	 specific	

position	 (i.e.,	 mastectomy	 as	 the	 second	 treatment	 event)	 or	 event	 transition	 in	 a	 specific	

position	 (i.e.,	 breast	 conserving	 surgery	 as	 the	 first	 treatment	 event	 to	 mastectomy	 as	 the	

second).	

To	 support	 the	pathway	exploration	 tool,	 care	path	events	and	other	patient	 features	

were	loaded	in	a	MemSQL	database.		Care	path	events	and	event	transitions	were	loaded	at	the	

V1H0	 level	 of	 abstraction	 in	 sequence.	 	 For	 example,	 the	 first,	 second,	 and	 subsequent	

treatment	events	were	stored	in	separate	columns.		Additionally,	the	first	and	subsequent	event	

transitions	 (treatment	 event	 one	 to	 event	 two)	 were	 also	 stored	 in	 separate	 columns.	 	 This	
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enables	users	to	filter	on	specific	events	and	transitions	by	filtering	the	table.	

4.5:	Pathway-Based	Quality	Measurement	From	Cancer	Registry	Data	

The	 interactive	 Sankey	 diagram	 tool	 enables	 users	 to	 filter	 on	 patient	 characteristics,	

treatment	type,	and	treatment	path	abstraction	levels.		The	user	can	navigate	to	the	necessary	

vertical	and	horizontal	level	of	abstraction	needed	to	answer	a	specific	clinical	question.		Users	

are	 able	 to	 assess	 a	 measure	 of	 quality	 from	 the	 interactive	 pathway	 exploration	 tool	 using	

either	a	basic	visual	assessment	or	a	specific	comparative	tool.	

A	 simple	 visual	 assessment	 can	 help	 identify	 the	 frequency	 of	 certain	 care	 paths	 in	 a	

Sankey	diagram.	 	Users	could	filter	based	on	a	specific	type	of	treatment	for	a	specific	patient	

population	and	look	at	the	relative	frequency	of	the	resulting	care	paths.		For	example,	to	assess	

the	re-excision	rate	quality	measure,	a	user	could	filter	the	Sankey	diagram	to	show	only	surgical	

events,	double-click	on	 the	event	nodes	 to	 show	the	 type	of	 surgery	 in	more	detail,	 and	 then	

single-click	 on	 the	 first	 breast	 conserving	 surgery	node	 in	 the	 sequence	 to	 select	 the	patients	

that	began	their	surgical	course	of	care	with	a	breast	conserving	surgery.	

We	will	 characterize	 the	 effectiveness	 of	 our	 pathway-based	 quality	measurement	 by	

evaluating	its	ability	to	represent	breast	cancer	quality	measures	that	have	been	published	using	

NCDB	data	and	that	are	used	by	accreditation	organizations	such	as	QOPI,	NQMBC,	and	RQRS.		

We	will	aim	to	replicate	the	analysis	conducted	in	breast	cancer	quality	studies	using	the	NCDB.		

Many	of	these	studies	are	listed	in	the	NCDB	bibliography	and	we	have	also	selected	additional	

recent	 publications.	 	 We	 will	 also	 lead	 a	 discussion	 section	 at	 a	 breast	 cancer	 tumor	 board	

meeting	to	get	feedback	from	healthcare	providers.	
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4.6:	Data-Driven	Decision	Aids	 	

We	 have	 developed	 a	 web-based	 educational	 tool	 to	 inform	 patients	 about	 their	

treatment	 options	 by	 displaying	 information	 based	 on	 the	 treatment	 pathways	 of	 previous	

breast	cancer	patients	at	Vanderbilt.	The	educational	 intervention	is	a	multi-page	website	that	

briefly	 introduces	 the	patient	 to	 topics,	 terminology,	and	 information	 related	 to	breast	cancer	

treatment.		In	addition	to	explanations,	Sankey	diagrams	accompany	the	text	and	illustrate	the	

pathways	 through	 treatment	 undergone	 by	 VUMC	 patients.	 	 We	 used	 cancer	 registry	 and	

administrative	 CPT	 codes	 for	 women	 diagnosed	 with	 stage	 I-III	 breast	 cancer	 between	 2010-	

2014	 at	 VUMC.	 	We	 have	 designed	 a	web-based	 "storyboard"	 to	 educate	 new	 breast	 cancer	

patients	about	their	treatment	options.	 	We	also	reviewed	our	decision	aid	with	breast	cancer	

patient	advocates	to	receive	their	feedback.	

The	goal	of	the	tool	is	for	patients	to	be	introduced	to	treatment	concepts	and	pathways	

so	that	they	can	be	as	informed	as	possible	as	they	engage	their	providers	in	the	shared	decision	

making	process.	 	Moreover,	by	displaying	the	relative	rates	of	these	decisions	made	by	a	large	

cohort	of	 recent	 (2010-2014)	patients	 at	VUMC,	 these	 visualizations	 allow	 for	patients	 to	 feel	

supported	and	comfortable	with	their	range	of	options	knowing	other	women	have	undergone	

the	 same	decisions	and	 treatments.	 The	multiple	pages	of	 the	 site	 cover	 the	 following	 topics:	

introduction	to	the	types	of	breast	cancer	treatment,	 introduction	to	how	the	tool	works,	 first	

course	 of	 treatment,	 breast	 conserving	 surgery	 (“lumpectomy”),	 mastectomy	 and	

reconstruction,	pre-surgical	drug	therapy,	and	post-surgical	drug	therapy.	

This	data-driven	decision	aid	 is	 implemented	in	the	form	of	a	web	application	that	will	

be	available	online.			The	interactive	pathway	exploration	and	visualization	tool	is	implemented	
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in	 JavaScript	 using	 the	 React.js	 framework	 and	 d3.js	 visualization	 library.	 	 A	 Node.js	 server	

running	on	a	non-critical	server	operated	by	VUMC	IT	is	used	to	serve	the	web	application.	 	
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Chapter	5:	Results	of	the	Pathfinder	Methodology	

We	 extracted	 breast	 cancer	 patient	 data	 from	 the	 VUMC	 and	 NCDB	 cancer	 registries	

(Section	 5.1).	 	 We	 applied	 the	 abstraction	 method	 to	 standardize	 treatment	 event	

representation	and	then	developed	and	evaluated	the	treatment	event	sequences	(Section	5.2).		

We	present	our	pathway	exploration	tool	and	describe	its	various	features	in	Section	5.3.	 	Our	

pathway	exploration	 framework	 is	 robust	 and	 can	 represent	 the	majority	of	 quality	measures	

from	 accreditation	 agencies	 and	 can	 replicate	 most	 of	 the	 studies	 conducted	 on	 NCDB	 data	

sources	(Section	5.4).		Finally,	we	describe	our	data-driven	decision	aid,	which	introduces	newly	

diagnosed	breast	cancer	patients	to	potential	treatment	options	(Section	5.5).	

5.1:	Data	Extraction	from	Cancer	Registry	for	Breast	Cancer	Patient	Cohort	

We	 extracted	 the	 records	 of	 1528	 stage	 I-III	 female	 breast	 cancer	 patients	 diagnosed	

between	2000-2012	from	the	Vanderbilt	cancer	registry	that	had	undergone	some	diagnostic	or	

treatment	 event,	 had	 a	 full	 NAACCR	 record	 in	 the	 data	 warehouse,	 and	 met	 our	 inclusion	

criteria.	 	 The	 72	 experimental	 treatment	 events	 were	 mapped	 to	 their	 respective	 68	

chemotherapy	events	and	4	hormone	therapy	events.		The	demographic	characteristics	for	this	

population	are	presented	in	Table	1.	
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Table	1:	Demographic	characteristics	of	the	VUMC	breast	cancer	patient	cohort	
Characteristic	 Median	 1st	Quartile	 3rd	Quartile	 Min	 Max	

Age	at	diagnosis	
(N=1528)	 54	 46	 64	 21	 99	

Characteristic	 Category	 Count	

Race	
(top	3)	

Total	 1528	
White	 1311	(85.8%)	
Black	 171	(11.2%)	

Other	Asian,	including	Asian	or	Oriental,	NOS	 16	(1.0%)	

Primary	Site	
(all)	

Total	 1528	
C500,	Nipple	 10	(0.7%)	

C501,	Central	portion	of	breast	(subareolar)	 85	(5.6%)	
C502,	Upper	inner	quadrant	 159	(10.4%)	
C503,	Lower	inner	quadrant	 107	(7.0%)	
C504,	Upper	outer	quadrant	 621	(40.6%)	
C505,	Lower	outer	quadrant	 120	(7.9%)	

C506,	Axillary	tail	 4	(0.3%)	
C508,	Overlapping	lesion	of	breast	 314	(20.5%)	
C509,	Not	otherwise	specified	(NOS)	 108	(7.1%)	

Histology	
(top	5)	

Total	 1528	
8500/3,	Infiltrating	duct	carcinoma,	NOS	 888	(58.1%)	

8010/3,	Carcinoma,	NOS	 243	(15.9%)	
8520/3,	Lobular	carcinoma,	NOS	 113	(7.4%)	

8522/3,	Infiltrating	duct	and	lobular	carcinoma	 76	(5.0%)	
8211/3,	Tubular	adenocarcinoma	 63	(4.1%)	

Clinical	stage	
(all)	

Total	 1528	
1	 854	(55.9%)	
2	 503	(32.9%)	
3	 171	(11.2%)	

	
Demographic	 characteristics	 are	 provided	 for	 the	 1528	 patient	 records	 in	 the	 VUMC	 breast	
cancer	 patient	 cohort.	 	 Characteristics	 derived	 from	 the	 cancer	 registry	 include	 age,	 race,	
primary	tumor	site,	histology,	and	clinical	stage.	
	

	

We	extracted	the	records	of	2032209	stage	0-IV	male	and	female	breast	cancer	patients	

diagnosed	 between	 2004-2013	 from	 the	 NCDB	 registry.	 	 There	 were	 2013590	 (99%)	 female	

patients	 in	 this	dataset.	 	 The	demographic	 characteristics	 for	 this	population	are	presented	 in	

Table	2.	
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Table	2:	Demographic	characteristics	of	the	NCDB	breast	cancer	patient	cohort	
Characteristic	 Median	 1st	Quartile	 3rd	Quartile	 Min	 Max	

Age	at	diagnosis	
(N=2032209)	 60	 51	 71	 18	 90	

Characteristic	 Category	 Count	

Race	
(top	3)	

Total	 2032209	
White	 1698317	(83.6%)	
Black	 229019	(11.3%)	

Unknown	 23787	(1.2%)	

Primary	Site	
(all)	

Total	 2032209	
C500,	Nipple	 13693	(0.7%)	

C501,	Central	portion	of	breast	(subareolar)	 111222	(5.5%)	
C502,	Upper	inner	quadrant	 208432	(10.3%)	
C503,	Lower	inner	quadrant	 113093	(5.6%)	
C504,	Upper	outer	quadrant	 672861	(33.1%)	
C505,	Lower	outer	quadrant	 139850	(6.9%)	

C506,	Axillary	tail	 8445	(0.4%)	
C508,	Overlapping	lesion	of	breast	 432734	(21.3%)	
C509,	Not	otherwise	specified	(NOS)	 331879	(16.3%)	

Histology	
(top	5)	

Total	 2032209	
8500/3,	Infiltrating	duct	carcinoma,	NOS	 1185587	(58.3%)	

8500/3,	Intraductal	carcinoma,	noninfiltrating	NOS	 160411	(7.9%)	
8520/3,	Lobular	carcinoma,	NOS	 143317	(7.1%)	

8522/3,	Infiltrating	duct	and	lobular	carcinoma	 88533	(4.4%)	
8523/2	Infiltr.	duct	mixed	with	other	types	of	

carcinoma,	in	situ	 76694	(3.8%)	

Clinical	stage	
(all)	

Total	 2032209	
0	 334413	(16.5%)	
1	 312954	(15.4%)	
2	 336917	(16.6%)	
3	 96144	(4.7%)	
4	 71620	(3.5%)	

	
Demographic	 characteristics	 are	 provided	 for	 the	 2,032,209	 patient	 records	 in	 our	 NCDB	
breast	 cancer	 patient	 cohort.	 	 Characteristics	 derived	 from	 the	 cancer	 registry	 include	 age,	
race,	primary	tumor	site,	histology,	and	clinical	stage.	

	

We	 compared	 the	 number	 of	 treatment	 events	 in	 the	 VUMC	 and	 NCDB	 datasets	 for	

stage	I-III	patients	(Table	3).		The	1528	VUMC	registry	patient	cases	had	4893	treatment	events	

including	1812	 surgical	events,	1239	chemotherapy	events,	958	hormone	 therapy	events,	 and	

884	 radiation	 therapy	 events	 with	 an	 average	 of	 3.2	 treatment	 events	 per	 patient.	 	 These	

1474032	 NCDB	 cases	 had	 3878189treatment	 events	 including	 1691571	 definitive	 surgical	

events,	589236	chemotherapy	events,	795575	hormone	therapy	events,	and	801807	radiation	

therapy	 events	 with	 an	 average	 of	 2.6	 treatment	 events	 per	 patient.	 	 This	 difference	 in	 the	

number	of	treatment	events	per	patient	is	due	to	the	pre-horizontally	abstracted	nature	of	the	
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NCDB	 treatment	 event	 data.	 	 The	 pre-abstracted	 nature	 of	 the	 NCDB	 data	 leads	 to	 fewer	

treatment	events	per	patient	which	 is	highlighted	by	the	0.8	chemotherapy	events	per	patient	

present	in	the	VUMC	registry	compared	to	0.4	in	the	NCDB.	

	

	

Table	3:	Number	of	treatment	events	in	NCDB	and	VUMC	registries	
	 NCDB	 VUMC	Registry	
#	of	Patients	 1474032	 1528	
Treatment	Events	 #	events	(#	events	per	patient)	
Total	#	of	Events	 3878189	(2.6)	 4893	(3.2)	
Surgical	events	 1691571	(1.1)	 1812	(1.2)	
Chemotherapy	 589236	(0.4)	 1239	(0.8)	
Hormone	therapy	 795575	(0.5)	 958	(0.6)	
Radiation	therapy	 801807	(0.5)	 884	(0.6)	

	
The	number	of	treatment	events	and	treatment	events	per	patient	present	 in	the	NCDB	and	
VUMC	cancer	 registry	 for	 stage	 I-III	 patients.	 	 There	 are	2.6	 events	per	patient	 in	 the	NCDB	
compared	 to	3.2	 in	 the	VUMC	registry.	 	The	greatest	difference	 is	 for	 the	0.4	chemotherapy	
events	 in	 the	 NCDB	 compared	 to	 the	 0.8	 chemotherapy	 events	 per	 patient	 in	 the	 VUMC	
registry.	
	

5.2:	Data	Normalization	and	Abstraction	from	Cancer	Registry	Data	

The	 standardization	 process	 simplified	 the	 representation	 of	 surgical	 events	 from	 35	

FORDS	 cancer	 registry	 surgical	 codes	 to	 8	 NCI	 Thesaurus	 clinical	 concepts	 for	 the	 primary	

surgical	treatments	in	the	NCDB	and	VUMC	registry.		The	mapping	between	the	FORDS	and	NCI	

thesaurus	concepts	can	be	found	in	Supplemental	Table	1.	

The	 lowest	 level	 (V0H0)	 of	 abstraction	 yielded	 391	 unique	 treatment	 event	 sequences	

while	 the	 highest	 level	 (V2H2)	 of	 abstraction	 had	 45.	 	 The	 vertical	 and	 horizontal	 abstraction	

process	 provided	 an	 8.7-fold	 reduction	 in	 the	 number	 of	 unique	 treatment	 strings.	 	 a	 42%	

decrease	 (3.1	 bits)	 in	 Shannon	 entropy,	 and	 8.3-fold	 decrease	 in	 diversity	 from	 the	 least	

abstracted	(V0H0)	to	most	abstracted	(V2H2)	representation	(Table	4).		The	analysis	of	Shannon’s	
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entropy	shows	how	the	amount	of	information	contained	in	an	event	sequence	is	reduced	from	

8.3	bits	at	abstraction	level	V0H0	to	4.2	bits	at	level	V2H2.		The	diversity,	which	is	derived	from	

the	 Shannon	 entropy,	 shows	 how	 the	 effective	 number	 of	 treatment	 event	 sequences	 is	

reduced	 from	156.3	event	 sequences	at	 the	V0H0	abstraction	 level	 to	18.9	at	 the	V2H2	 level.		

The	 greatest	 percent	 decrease	 from	 actual	 to	 effective	 number	 of	 sequences	 between	

abstraction	levels	V0H0	and	V2H2	occurred	at	the	V2H1	level	of	abstraction	while	the	smallest	

occurred	 at	 the	 V1H2	 level.	 	 The	 fraction	 of	 event	 sequences	 needed	 to	 cover	 90%	 of	 the	

population	 decreased	 from	 0.63	 to	 0.36.	 We	 also	 counted	 the	 number	 of	 most	 frequently	

occurring	 treatment	 event	 sequences	 that	 represented	 90%	 of	 the	 patient	 population.	 	 We	

showed	how	the	fraction	of	event	sequences	needed	to	cover	90%	of	the	population	decreased	

from	 62.7%	 at	 V0H0	 to	 35.5%	 at	 V2H2.	 	 The	 greatest	 relative	 concentration	 of	 sequences	

occurred	 at	 the	 V2H1	 level	 of	 abstraction	 while	 the	 lowest	 occurred	 at	 the	 V1H2	 level.	 	 The	

distribution	of	treatment	event	sequence	frequency	exhibited	an	exponential	distribution	with	a	

long	tail	that	was	compacted	through	the	abstraction	process	(Figure	9).	
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Table	4:	Treatment	event	sequences	in	VUMC	registry	

	

Level	of	
abstraction	

#	of	
unique	

treatment	
event	

sequences	

#	(%)	of	unique	
treatment	
event	

sequences	to	
cover	90%	of	
population	

Shannon	
entropy	for	set	

of	unique	
treatment	event	
sequences	(bits	

per	event	
sequence)	

Diversity	of	
event	

sequences	
based	on	
Shannon’s	
entropy	

(effective	#	of	
sequences)	

%	decrease	from	
#	of	actual	to	
effective	

treatment	event	
sequences	

Raw	data	 632	 480	(75.8%)	 8.3	 322.7	 48.9%	
Level	V0H0	
abstraction	 391	 245	(62.7%)	 7.3	 156.3	 60.0%	

Level	V1H0	
abstraction	 265	 126	(47.5%)	 6.4	 86.6	 67.3%	

Level	V2H0	
abstraction	 205	 79	(38.5%)	 5.9	 60.1	 70.7%	

Level	V1H1	
abstraction	 154	 54	(35.1%)	 5.5	 45.5	 70.5%	

Level	V2H1	
abstraction	 97	 26	(26.8%)	 4.7	 26.0	 73.2%	

Level	V1H2	

abstraction	 73	 28	(38.4%)	 4.9	 30.3	 58.5%	

Level	V2H2	
abstraction	 45	 16	(35.5%)	 4.2	 18.9	 58.0%	

	
The	abstracted	 treatment	event	 sequences	 for	 1528	 stage	 I-III	VUMC	breast	 cancer	patients	
showed	 a	 8.7-fold	 reduction	 in	 the	 number	 of	 unique	 treatment	 strings,	 a	 42%	 decrease	 in	
Shannon	entropy,	and	8.3-fold	decrease	in	effective	diversity	from	the	least	abstracted	(V0H0)	
to	most	abstracted	(V2H2)	representation.	
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The	 NCDB	 provides	 pre-abstracted	 treatment	 data	 where	 either	 one	 or	 two	 surgical	

events	and	only	one	event	of	every	other	kind	of	treatment	are	provided.		The	vertical	and	part-

horizontal	 abstraction	process	a	5.6-fold	 reduction	 in	 the	number	of	unique	 treatment	 strings	

	
Figure	 9:	 Distribution	 of	 treatment	 event	 sequences	 across	 patients	 at	 abstraction	 levels	
V1H0	and	V2H1	

The	number	of	VUMC	patients	per	treatment	event	sequence	at	two	 levels	of	abstraction	
(V1H0	 on	 left,	 V2H1	 on	 right)	 is	 shown	 in	 descending	 order	 (top	 to	 bottom)	 and	
demonstrates	 an	 exponential	 distribution.	 	 The	 color	 of	 the	 bar	 represents	 the	 average	
cancer	stage	of	the	patients	with	a	specific	treatment	path	(red	represents	a	higher	stage	
compared	 to	 blue).	 	 	 The	 lower	 level	 of	 abstraction	 (V1H0)	 has	 265	 event	 sequences	 in	
which	 47.5%	 of	 the	 sequences	 are	 required	 to	 represent	 90%	 of	 the	 patient	 population.		
The	higher	level	of	abstraction	(V2H1)	has	97	event	sequences	in	which	26.8%	of	sequences	
are	required	to	represent	90%	of	the	patient	population.	
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from	 353	 to	 65	 unique	 sequences.	 	 The	 abstraction	 process	 also	 led	 to	 a	 27%	 decrease	 in	

Shannon	entropy,	and	a	2.6-fold	decrease	in	diversity	from	the	least	abstracted	(V1H1*)	to	the	

most	 abstracted	 (V2H2)	 representation	 (Table	 5).	 	 The	 diversity,	 which	 is	 derived	 from	 the	

Shannon	 entropy,	 shows	 how	 the	 effective	 number	 of	 treatment	 event	 sequences	 is	 reduced	

from	 38.7	 event	 sequences	 at	 the	 V1H1*	 abstraction	 level	 to	 14.8	 at	 the	 V2H2	 level.	 	 The	

greatest	percent	decrease	 from	actual	 to	effective	number	of	 sequences	between	abstraction	

levels	V1H1*	while	the	smallest	occurred	at	the	V2H2	level.		The	greatest	relative	concentration	

of	sequences	occurred	at	the	V1H1*	level	of	abstraction	while	the	lowest	occurred	at	the	V2H2	

level.	 	The	distribution	of	treatment	event	sequence	frequency	had	an	exponential	distribution	

(Figure	 10).	 	 We	 showed	 how	 the	 fraction	 of	 event	 sequences	 needed	 to	 cover	 90%	 of	 the	

population	increased	from	10.8%	at	V0H0	to	16.9%	at	V2H2.		The	greatest	relative	concentration	

of	sequences	occurred	at	the	V2H1	level	of	abstraction	while	the	 lowest	occurred	at	the	V1H2	

level.	

	

Table	5:	Treatment	event	sequences	in	NCDB	registry	

Level	of	
NCDB	
surgical	

abstraction	

#	of	
unique	

treatment	
event	

sequences	

#	(%)	of	unique	
treatment	
event	

sequences	to	
cover	90%	of	
population	

Shannon	
entropy	for	set	

of	unique	
treatment	event	
sequences	(bits	

per	event	
sequence)	

Diversity	of	
event	

sequences	
based	on	
Shannon’s	
entropy	

(effective	#	of	
sequences)	

%	decrease	from	
#	of	actual	to	
effective	

treatment	event	
sequences	

Level	V1H1*	
abstraction	 353	 38	(10.8%)	 5.3	 38.7	 89.0%	

Level	V1H2	
abstraction	 149	 21	(14.1%)	 4.5	 23.4	 84.3%	

Level	V2H1*	
abstraction	 163	 22	(13.5%)	 4.6	 24.5	 85.0%	

Level	V2H2	
abstraction	 65	 11	(16.9%)	 3.9	 14.8	 77.2%	

	
The	abstracted	treatment	event	sequences	for	1474032	stage	I-III	NCDB	breast	cancer	patients	
showed	 a	 5.6-fold	 reduction	 in	 the	 number	 of	 unique	 treatment	 strings,	 a	 27%	 decrease	 in	
Shannon	 entropy,	 and	 2.6-fold	 decrease	 in	 effective	 diversity	 from	 the	 least	 abstracted	
(V1H1*)	to	most	abstracted	(V2H2)	representation.	
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Many	 of	 the	 top	 10	 treatment	 event	 sequences	 in	 the	 NCDB	 and	 VUMC	 registry	 are	

similar	at	the	V2H2	level	of	abstraction	(Table	6).		Of	the	top	10	sequences,	all	but	one	in	each	

list	are	present	in	the	other.		The	only	exceptions	in	each	list	(S-C-R-H	in	the	NCDB	and	S-C-H-R	in	

the	NCDB)	are	present	in	the	11th	spot	in	the	other.		Of	the	top	10	sequences	in	each	list,	only	

	
Figure	10:	Distribution	of	treatment	event	sequences	across	patients	at	abstraction	levels	
V1H1*	and	V2H2	

The	number	of	NCDB	patients	per	treatment	event	sequence	at	two	levels	of	abstraction	
(V1H1*	 on	 left,	 V2H2	 on	 right)	 is	 shown	 in	 descending	 order	 (top	 to	 bottom)	 and	
demonstrates	 an	 exponential	 distribution.	 	 The	 color	 of	 the	 bar	 represents	 the	 average	
cancer	stage	of	the	patients	with	a	specific	treatment	path	(red	represents	a	higher	stage	
compared	 to	blue).	 	 	 The	 lower	 level	 of	 abstraction	 (V1H1*)	 has	 365	 event	 sequences	 in	
which	9.9%	of	the	sequences	are	required	to	represent	90%	of	the	patient	population.		The	
higher	level	of	abstraction	(V2H2)	has	65	event	sequences	in	which	18.5%	of	sequences	are	
required	to	represent	90%	of	the	patient	population.	
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the	 sequence	 C-S-R	 in	 the	 VUMC	 registry	 is	 the	 only	 sequence	 involving	 neo-adjuvant	

chemotherapy	while	all	other	sequences	began	with	a	surgical	treatment.	

	

Table	6:	Top	10	treatment	event	sequences	in	the	NCDB	and	VUMC	registries	
NCDB	Top	10	Sequences	 VUMC	Top	10	Sequences	

Sequence	 Count	(%)	 Sequence	 Count	(%)	
S	 218886	(15.3%)	 S-H-R	 172	(11.3%)	

S-R-H	 205252	(14.4%)	 S-H	 171	(11.2%)	
S-H	 168976	(11.8%)	 S	 149	(9.8%)	
S-R	 136714	(9.6%)	 S-C-H	 114	(7.5%)	

S-C-R-H	 117812	(8.2%)	 S-R	 104	(6.8%)	
S-C-R	 103277	(7.2%)	 C-S-R	 96	(6.3%)	

S-C	 86396	(6.0%)	 S-C-R	 96	(6.3%)	
S-H-R	 78505	(5.5%)	 S-C-H-R	 93	(6.1%)	
S-C-H	 74262	(5.2%)	 S-R-H	 79	(5.2%)	
C-S-R	 39568	(2.8%)	 S-C	 79	(5.2%)	

	
The	top	10	treatment	event	sequences	for	stage	I-III	patients	in	the	NCDB	and	VUMC	registries	
are	 listed	 at	 the	 V2H2	 abstraction	 level	 along	 with	 the	 count	 and	 percentage	 for	 each	
sequence.	
	

5.3:	Pathway	Exploration	

The	 interactive	 pathway	 exploration	 tools	 for	 NCDB	 and	 VUMC	 cancer	 registry	 data	

utilize	 Sankey	 diagrams	 and	 other	 charts	 representing	 patient,	 tumor,	 and	 hospital	 features.		

This	 pathway	 exploration	 tool	 can	 be	 accessed	 at	 https://www.cancerpathfinder.org.	 	 Each	

Sankey	and	chart	element	is	filterable	allowing	users	to	drill	into	the	underlying	data.		Our	tool	

enables	 a	 variety	 of	 features	 including	 vertical	 abstraction,	 horizontal	 abstraction,	 treatment	

filtering,	 patient	 and	 tumor	 features,	 and	 hospital	 features.	 	 We	 will	 walk	 through	 various	

important	patient	features	to	demonstrate	the	value	of	the	tool	features	(Table	7).	
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Table	7:	Treatment	path	filtering	examples	
Filters	 Dataset	 Fraction	of	First	Treatment	in	Path	
	 	 Surgery	 Chemotherapy	 Hormone	therapy	 Radiation	

therapy	
No	filters	 NCDB	 89.8%	 6.9%	 2.5%	 0.8%	
HER2	positive	 NCDB	 78.0%	 18.8%	 2.1%	 1.0%	
Clinical	&	pathologic	stage	I	 VUMC	 87.8%	 2.6%	 4.9%	 4.6%	
Clinical	&	pathologic	stage	III	 NCDB	 65.3%	 31.1%	 3.2%	 0.3%	
Clinical	 &	 pathologic	 stage	 III	
and	triple	negative	

NCDB	 60.4%	 38.8%	 0.4%	 0.4%	

Clinical	&	pathologic	stage	I	 VUMC	 65.4%	BCS	
20.6%	

Mastectomy	
1.8%	Unknown	

surgery	

2.6%	 4.9%	 4.6%	

First	 event	 only	 &	 clinical	 +	
pathological	stage	I	

VUMC	 65.4%	BCS	
20.6%	

Mastectomy	
1.8%	Unknown	

surgery	

2.6%	 4.9%	 4.6%	

	
The	distribution	of	the	first	step	of	the	treatment	paths	described	in	this	section	are	displayed.	
	

Users	 can	 filter	 on	 the	 patient	 population	 using	 a	 variety	 of	 patient	 and	 tumor	

characteristics	that	are	represented	by	a	set	of	bar	charts	and	histograms.		In	the	NCDB	dataset,	

users	will	also	be	able	to	filter	on	hospital	characteristics.		To	demonstrate	this	feature,	we	walk	

through	a	series	of	examples.	 	We	first	 look	at	how	focusing	on	HER2	positive	patients	affects	

the	distribution	 for	 the	year	of	diagnosis	as	most	 testing	has	been	done	since	2010.	 	We	next	

compared	 the	 treatment	 paths	 and	 the	 fraction	 of	 patients	 that	 undergo	 neo-adjuvant	

chemotherapy	for	stage	I	and	stage	III	patients.		A	larger	fraction	of	patients	with	stage	III	cancer	

undergo	neo-adjuvant	 chemotherapy	 in	order	 to	 shrink	 the	 tumor	before	 a	potential	 surgery.		

This	fraction	grows	for	patients	with	stage	III,	triple	negative	breast	cancer.	 	We	demonstrated	

vertical	 abstraction	 by	 splitting	 the	 surgical	 concept	 into	 breast	 conserving	 surgery	 and	

mastectomy	to	demonstrate	their	divergent	treatment	path.	

We	have	 enabled	dynamic	 vertical	 abstraction	 to	 aid	 in	 the	 exploration	 of	VUMC	and	
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NCDB	cancer	registry.		The	tool	defaults	to	showing	all	treatment	events	at	the	highest	(V2)	level	

of	abstraction.		If	there	is	a	lower	level	of	abstraction	available,	the	user	is	able	to	double	click	

on	 the	 vertical	 bar	 of	 a	 Sankey	 diagram	 that	 represents	 an	 event.	 	 The	 bar	 then	 splits	 into	

multiple	 vertical	bars	 representing	 the	 respective	next	 lower	 level	of	 vertical	 abstraction	 (V1).		

This	next	level	would	show	separate	vertical	treatment	bars	for	breast	conserving	surgery	(BCS)	

and	mastectomy.		For	example,	stage	I	breast	cancer	patients	who	begin	with	surgical	treatment	

undergo	a	BCS	65%	and	a	mastectomy	21%	of	the	time.	

Users	can	also	filter	out	certain	kinds	of	treatment	events	from	the	Sankey	diagram	to	

help	reduce	the	amount	of	information	being	presented	and	focus	on	the	interaction	of	specific	

modalities	of	 treatment.	 	For	example,	a	user	could	choose	 to	view	only	surgical	paths	 if	 they	

had	a	 surgery	 specific	question	 (i.e.,	 re-excision	 rate).	 	Additionally,	 if	 a	user	wants	 to	 identify	

the	rate	of	radiation	therapy	after	lumpectomy,	the	user	could	filter	out	hormone	therapy	and	

chemotherapy.	

Users	 are	 able	 to	 dynamically	 alter	 the	 horizontal	 abstraction	 level	 by	 using	 a	 set	 of	

toggle	buttons	near	the	Sankey	diagram	for	VUMC	cancer	registry	data.		The	users	can	choose	to	

view	every	treatment	event	in	the	path,	only	non-repeating	events,	or	only	one	event	of	every	

kind.	

The	pathway	exploration	platform	was	presented	to	a	meeting	of	the	Vanderbilt	Breast	

Center	tumor	board	in	order	to	get	their	feedback.		The	interdisciplinary	team	of	breast	cancer	

providers	 believed	 that	 the	 tool	 could	 be	 very	 valuable	 support	 for	 research	 and	 quality	

improvement	efforts	of	Vanderbilt	and	national	cancer	datasets.		Providers	also	stressed	that	to	

use	the	tool	with	patients,	they	would	need	to	easily	access	simplified	treatment	paths	as	shown	

in	the	patient	education	tool	(see	section	5.5).		The	version	of	the	tool	that	was	presented	to	the	
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tumor	 board	 was	 prior	 to	 the	 implementation	 of	 the	 treatment	 filtering	 feature	 and	 the	

feedback	 received	 demonstrated	 the	 importance	 of	 that	 feature	 in	 simplifying	 the	 Sankey	

diagram	to	make	it	easier	to	comprehend	in	a	clinical	setting.	

5.4:	Pathway	Based	Quality	Measurement	

We	determined	that	all	of	the	QOPI,	NQMBC,	and	RQRS	measures	we	assessed	could	be	

effectively	represented	by	our	abstraction	method	with	the	addition	of	temporal	constraints	and	

more	 event	 types	 (Table	 9,	 10).	 	Without	 any	 additional	 functionality,	 the	 current	 framework	

could	measure	14	of	20	measures	that	 involve	the	relative	frequency	of	treatment	events,	the	

focus	of	this	work.		The	other	six	measures	require	calculation	of	the	absolute	temporal	duration	

between	events.		There	are	46	additional	measures	that	utilize	additional	event	types	including	

diagnostic	 (i.e.,	 imaging,	 biopsy,	 labs),	 clinical	 encounter	 (i.e.,	 pathology	 report,	 proper	

assessment	 conducted),	 and	 outcome	 (i.e.,	 complications,	 survival)	 events	 that	 were	 not	 the	

focus	of	this	work.		If	we	represented	these	events	in	our	framework,	we	could	represent	32	of	

the	 46	 measures.	 	 The	 remaining	 14	 measures	 would	 again	 require	 the	 implementation	 of	

specific	temporal	constraints.	
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Table	8:	Quality	measure	representation	of	cancer	pathfinder	framework	

Quality Measure 
Pattern Type 

Framework's Ability to Represent Measures	 	
Complete Partial Unable to 

Represent 
Measure Total Other Event 

Types 
Temporal 

Constraints 

Treatment Events Only 14 (70%) 0 (0%) 6 (30%) 0 (0%) 20 (30%) 

Treatment & Other Events 0 (0%) 12 (100%) 7 (58%) 0 (0%) 12 (18%) 

Other Events Only 0 (0%) 34 (100%) 7 (21%) 0 (0%) 34 (52%) 

All Quality Measures 14 (21%) 46 (70%) 21 (32%) 0 (0%) 66 (100%) 

	
The	ability	of	this	framework	to	either	completely,	partially,	or	not	represent	quality	measures	
from	QOPI,	NQMBC,	and	RQRS	is	shown	below.		If	the	framework	can	partially	represent	the	
measure,	then	the	additional	feature	necessary	to	completely	represent	the	measure	is	listed.	

We	evaluated	previously	published	breast	cancer	studies	that	were	based	on	the	NCDB	

to	determine	if	our	pathway	exploration	framework	could	help	a	clinical	researcher	answer	the	

question.	 	 We	 identified	 23	 references	 in	 NCDB	 bibliography	 from	 2006-2013	 as	 well	 as	 7	

additional	articles	using	NCDB	data	from	2013-2016.		For	each	study,	we	assessed	if	the	measure	

of	 quality	 or	 clinical	 question	 discussed	 in	 the	 article	 could	 be	 evaluated	 using	 our	 pathway	

exploration	 framework.	 	 If	 studies	 that	 could	 not	 be	 re-created,	 we	 identified	 what	 missing	

features	would	be	necessary	to	include	in	the	system.		While	only	five	of	the	30	current	studies	

can	currently	be	replicated	using	the	pathway	exploration	tool	in	its	current	state,	most	others	

are	easily	added	by	 including	more	features	from	the	dataset.	 	Four	of	the	30	studies	will	also	

require	 the	 addition	 of	 temporal	 features	 to	 select	 specific	 time	 intervals	 between	 events.		

(Table	10).	

	

Table	9:	Breast	cancer	clinical	research	studies	in	NCDB	registry	

Clinical	Study	 Framework	
Ability	 to	
Represent	
Study	

Feature	Needed	to	Enable	Full	
Representation	

Ethnic	distribution	for	clinical	trial	accrual	(Newman	
et	al.,	2006)	

Partial	 Patient	feature	filter	

Insurance	 status	 vs.	 early	 or	 advanced	 stage	 of	 Partial	 Patient	feature	filter	
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disease	 at	 diagnosis	 (M.	 T.	 Halpern,	 Bian,	 Ward,	
Schrag,	&	Chen,	2007)	
Treatment	 trends	 and	 survival	 for	 T1	 cancers	
(Kennedy	et	al.,	2007)	

Partial	 Patient	feature	filter	

Treatment	 for	 metaplastic	 breast	 cancer	 (Pezzi	 et	
al.,	2007)	

Partial	 Patient	feature	filter	

Rate	of	 sentinel	 lymph	node	biopsy	 (A.	 Y.	 Chen	et	
al.,	2008)	

Partial	 Patient	feature	filter	

Rate	 of	 sentinel	 lymph	 node	 biopsy	 and	 axillary	
lymph	node	dissection	(M.	Halpern,	Chen,	Marlow,	
&	Ward,	2009)	

Partial	 Patient	feature	filter	

Race	 vs.	 tumor	 characteristics	 (Desantis,	 Jemal,	 &	
Ward,	2010)	

Partial	 Patient	feature	filter	

Time	between	surgery	and	adjuvant	chemotherapy	
(S.	A.	Fedewa,	Ward,	Stewart,	&	Edge,	2010)	

Partial	 Temporal	constraint	

Rate	 of	 contralateral	 prophylactic	 mastectomy	
(Yao,	Stewart,	Winchester,	&	Winchester,	2010)	

Partial	 Treatment	event	detail	

Time	 to	 initial	 treatment	post-biopsy	 (S.	 a	 Fedewa	
et	al.,	2011)	

Partial	 Temporal	constraint	

Race	 and	 insurance	 status	 vs.	 hormone	 receptor	
testing,	 regional	 therapy,	 and	 chemotherapy	
(Freedman	et	al.,	2011)	

Partial	 Patient	feature	filter	

Geography	and	 institution	vs.	 race	vs.	early	or	 late	
stage	 of	 disease	 at	 presentation	 (Keller,	 Guilfoyle,	
&	Sariego,	2011)	

Partial	 Patient	feature	filter	

Diagnosis	 via	 needle	 biopsy	 vs.	 excision	 in	 T3	
cancers	(Williams	et	al.,	2011)	

Partial	 Patient	feature	filter	

Age	 vs.	 mastectomy	 or	 breast	 conserving	 surgery	
(Freedman	et	al.,	2012)	

Complete	 Patient	feature	filter	

Compare	 male	 vs.	 female	 breast	 cancer	 (Greif,	
Pezzi,	Klimberg,	Bailey,	&	Zuraek,	2012)	

Partial	 Patient	feature	filter	

TNM	 stage	 vs.	 post-mastectomy	 radiation	 (Huo	 et	
al.,	2012)	

Complete	 Patient	feature	filter	

Age	vs.	post-lumpectomy	radiation	(K.	et	al.,	2012)	 Complete	 Patient	feature	filter	
Socioeconomic	 factors	 vs.	 rate	 of	 reconstructive	
surgery	(Sisco	et	al.,	2012)	

Partial	 Patient	feature	filter	

Specific	 radiation	 therapy	 factors	 (Czechura	 et	 al.,	
2013)	

Partial	 Treatment	event	detail	

Race	 vs.	 sentinel	 lymph	 node	 biopsy	 and	 axillary	
lymph	 node	 dissection	 (Black,	 Jiang,	 Kuerer,	
Buchholz,	&	Smith,	2014)	

Partial	 Treatment	event	detail	

Specific	 radiation	 therapy	 factors	 (Wang	 et	 al.,	
2014)	

Partial	 Treatment	event	detail	

Time	 to	 surgery/treatment	 vs.	 unilateral	 and	
bilateral	mastectomy	(Sharpe	et	al.,	2014)	

Partial	 Add	temporal	features	

Treatment	 vs.	 survival	 in	 inflammatory	 disease	
(Rueth	et	al.,	2014)	

Partial	 Patient	feature	filter	

Guideline	 concordance	 on	 radiation	 therapy	 for	
DCIS	patients	(Yao	et	al.,	2014)	

Partial	 Patient	feature	filter	

Tumor	 size	 and	 lymph	 node	 ratio	 -	 #	 positive	 /	 #	
examined	lymph	nodes	(Wiznia	et	al.,	2014)	

Partial	 Patient	feature	filter	

Mastectomy	 rate	 in	 lumpectomy-eligible	 Complete	 Patient	feature	filter	
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population	 (Kummerow,	 Du,	 Penson,	 Shyr,	 &	
Hooks,	2015)	
Race	 vs.	 chemotherapy	 usage	 and	 pathologic	
complete	response	(Killelea	et	al.,	2015)	

Partial	 Patient	feature	filter	

Post-mastectomy	 radiation	 usage	 (Minami	 et	 al.,	
2016)	

Complete	 	

Survival	and	time	to	surgery	from	diagnosis	(Bleiche	
et	al.,	2016)	

Partial	 Temporal	constraint	

No	 neo-adjuvant	 chemotherapy	 with	 lumpectomy	
and	regional	nodal	irradiation	(Hou,	Yao,	Jaskowiak,	
Hasan,	&	Winchester,	2012)	

Partial	 Treatment	event	detail	

	
Clinical	 breast	 cancer	 studies	 using	 NCDB	 data	 are	 listed.	 	 We	 determined	 if	 our	 pathway	
exploration	 framework	 can	 be	 used	 to	 answer	 the	 same	 clinical	 question	 evaluated	 in	 the	
previously	 published	 studies.	 	 We	 list	 categorized	 the	 ability	 to	 answer	 the	 question	 as	
complete	(can	represent	the	quality	measure),	partial	(can	represent	the	quality	measure	with	
the	 addition	 of	 a	 simple	 feature),	 and	 not	 possible	 (not	 possible	 to	 represent	 the	 quality	
measure).		In	the	case	of	partial	determination,	the	additional	feature	necessary	was	listed.	
	

We	 replicated	parts	of	a	2012	 study	 that	assessed	post-mastectomy	 radiation	 therapy	

for	 patients	with	 one	 to	 three	 positive	 lymph	 nodes.	 	 The	 study	 demonstrated	 that	 between	

1998-2007,	 approximately	 20%	 of	 T1-2,	 N1	 patients	 underwent	 radiation	 therapy	 after	

mastectomy	and	that	age	was	 inversely	correlated	as	31.3%	of	patients	under	age	40	received	

radiation	compared	to	8.2%	of	patients	above	the	age	of	80	(Huo	et	al.,	2012).		We	were	able	to	

show	 similar	 proportions	 of	 state	 II	 breast	 cancer	 patients	 between	 2004-2007	 having	 post-

mastectomy	radiation.		Across	all	ages,	21.9%	of	stage	II	patients	(4098	out	of	50,293)	between	

2004-2007	had	post	mastectomy	radiation	(33.6%,	555	of	4,650	under	the	age	of	40	&	8.2%,	189	

of	4,880	over	 the	age	of	80)	 (Figure	11).	 	 In	 addition,	we	were	able	 to	update	 the	analysis	 to	

show	a	slight	increase	in	the	rate	of	post-mastectomy	radiation.		Between	2010-2013,	26.1%	of	

stage	 II	 breast	 cancer	 patients	 underwent	 post-mastectomy	 radiation	 therapy	 (40%,	 1,475	 of	

7,071	patients	under	age	40	&	9.9%,	534	of	10,980	patients	above	age	80).	
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Figure	11:	Partial	 replication	of	 a	2012	study	 that	assessed	post-mastectomy	radiation	
therapy.	

The	pathway	exploration	can	show	that	fraction	of	stage	 II	breast	cancer	patients	under	
the	age	of	40	between	2004-2007	that	underwent	post-mastectomy	radiation.	
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5.5:	Data-Driven	Decision	Aids	

We	 developed	 an	 educational,	 data-driven	 decision	 aid	 with	 seven	 web-pages	 that	

introduces	 new	 breast	 cancer	 patients	 to	 the	 modalities	 of	 treatment,	 explains	 how	 Sankey	

diagrams	are	interpreted,	outlines	the	first	course	of	treatment,	introduces	local	therapy	in	the	

context	 of	 lumpectomy	 and	 mastectomy,	 and	 discusses	 pre-	 and	 post-surgical	 drug	 therapy.		

This	decision	aid	can	be	accessed	at	https://www.mypathfinder.app.vumc.org.		We	used	VUMC	

cancer	registry	and	administrative	CPT	codes	for	women	diagnosed	with	stage	0-III	breast	cancer	

between	 FY2010-14	 to	 generate	 the	 Sankey	 diagrams.	 	 In	 order	 to	 simplify	 the	 diagrams	 for	

patients,	 we	 faded	 in	 new	 sections	 of	 a	 Sankey	 diagram	 as	 the	 patient	 scrolls	 through	 the	

screen.	

The	 first	 page	 of	 the	 educational	 decision	 aid	 is	 focused	 on	 introducing	 the	 different	

modalities	of	 treatment.	 	 The	 second	page	of	 the	decision	aid	 introduces	 the	 Sankey	diagram	

concept	 and	how	 it	will	 represent	 various	 treatment	 options.	 	 A	 simple	mock	 treatment	 path	

was	developed	to	show	how	a	treatment	path	could	diverge	and	converge	as	patients	complete	

their	 care	at	different	 steps.	 	 The	 third	page	presents	a	broad	overview	of	how	breast	 cancer	

treatment	begins	either	with	a	surgery	or	with	chemotherapy.	 	We	walk	patients	 through	two	

separate	 Sankey	 diagrams	 that	 begin	 with	 lumpectomy,	 mastectomy,	 or	 chemotherapy.	 	 For	

patients	 that	 begin	with	 surgery,	we	 also	 visualize	 subsequent	 drug	 therapies.	 	We	 simplified	

this	 Sankey	 diagram	 to	 always	 show	 that	 hormone	 therapy	 begins	 after	 radiation	 therapy	 to	

avoid	the	visual	complexity	for	few	cases	where	they	begin	near	the	same	time.		The	fourth	page	

introduces	 the	 lumpectomy	 surgery	 and	 related	 local	 therapies.	 	 The	 surgical	 path	 introduces	

the	concept	of	a	re-excision	as	well	as	the	case	where	the	patients	have	a	mastectomy	after	an	
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initial	lumpectomy.		Additionally,	this	page	shows	how	a	large	fraction	of	patients	that	undergo	

a	 lumpectomy	 go	 on	 to	 have	 local	 radiation	 therapy.	 	 This	 section	 also	 links	 out	 to	 various	

supporting	websites	that	provide	more	detailed	information	on	the	specific	forms	of	treatment.		

The	fifth	page	walks	through	the	decision	making	process	for	the	mastectomy	procedure	as	well	

as	breast	reconstruction.	 	The	Sankey	diagram	walks	through	option	of	unilateral	and	bilateral	

mastectomy	and	the	choice	of	having	or	bypassing	reconstructive	surgery.		The	Sankey	diagram	

also	shows	the	rates	of	the	types	of	breast	reconstruction.	 	Finally,	 the	Sankey	diagram	shows	

how	 a	 small	 fraction	 of	 this	 population	 has	 radiation	 therapy.	 	 The	 sixth	 page	 presents	 the	

concept	 of	 neo-adjuvant	 chemotherapy	 when	 focusing	 on	 pre-surgical	 drug	 therapy.	 	 The	

Sankey	diagram	shows	the	fraction	of	patients	that	begin	with	chemotherapy	and	go	on	to	have	

either	 a	 lumpectomy	 or	 mastectomy.	 	 The	 seventh	 page	 displays	 post-surgical	 therapy	 as	 it	

describes	adjuvant	chemotherapy	and	hormone	therapy	after	a	lumpectomy	or	mastectomy.	

The	data-driven	decision	aid	was	presented	to	both	a	meeting	of	the	Vanderbilt	Breast	

Center	 tumor	 board	 as	well	 as	 a	 group	 of	 breast	 cancer	 patient	 advocates	 affiliated	with	 the	

Vanderbilt-Ingram	Cancer	Center	in	order	to	get	their	feedback.		Both	groups	provided	positive	

feedback	that	the	tool	effectively	presented	educational	material	in	a	story	format	with	simple	

visualizations	 that	 patients	 could	 understand	 and	 read	 through	 even	 prior	 to	 their	 initial	

appointment.		The	patient	advocates	appreciated	the	ease	of	use	of	the	tool	as	it	only	required	

scrolling	down	 the	page	 to	 see	 the	visualizations	develop.	 	The	discussion	at	 the	 tumor	board	

focused	 on	 the	 nature	 of	 the	 materials	 patients	 access	 on	 the	 internet	 prior	 to	 their	

appointment.	 	 While	 some	 providers	 were	 initially	 concerned	 about	 the	 patients	 receiving	

information	without	 the	 provider	 present,	 others	 commented	 that	 the	 patients	 already	were	

seeing	information	online	and	this	resource	would	be	well	curated	
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Chapter	6:	Conclusions	and	Discussion	

6.1:	Informatics	Contributions	

We	 have	 developed	 an	 abstraction	 framework	 that	 simplifies	 raw	 treatment	 event	

sequences	 to	 overcome	 challenges	 in	 directly	 exploring	 care	 pathways.	 It	 enables	 the	

representation	of	patterns	of	care,	the	evaluation	of	desired	quality	measures,	and	development	

of	decision-aids	for	our	breast	cancer	patient	population.		We	mapped	surgical	events	to	clinical	

concepts	and	developed	abstraction	rules	based	on	conceptual	hierarchies	and	event	sequence	

patterns.		We	were	able	to	analyze,	visualize,	and	explore	treatment	paths	across	our	population	

by	 building	 a	 pathway	 exploration	 tool	 based	 on	 our	 abstraction	 methodology.	 	 We	 gained	

insight	 into	 how	 the	 abstraction	 process	 compacts	 treatment	 event	 sequences	 and	 provides	

different	views	of	 the	variability	across	 treatment	paths	 in	 the	population.	 	We	demonstrated	

how	 this	 framework	 could	generate	quality	measures	by	 identifying	a	 reduction	 in	 re-excision	

rate	over	the	past	decade.	

Prior	 work	 in	 temporal	 abstraction	 has	 often	 focused	 abstracting	 events	 to	 a	 specific	

level	 of	 granularity	 in	 order	 to	 generate	 a	 specific	 decision	 support	 item.	 	By	 representing	

treatment	event	sequences	at	multiple	levels	of	vertical	and	horizontal	abstraction	we	can	study	

the	 different	 data	 representations	 to	 understand	 how	 each	 abstraction	 level	 portrayed	

treatment	paths.		We	can	then	dynamically	query	them	based	on	the	clinical	question	at	hand.				

Analysis	 of	 the	 abstractions	 for	 VUMC	 cancer	 registry	 data	 showed	 how	 aggregated	

treatment	 event	 paths	 could	 simplify	 the	 information’s	 representation	 and	 enable	 effective	

exploration	 of	 the	 data.	 	While	 the	majority	 of	 treatment	 event	 sequences	were	 aggregated,	
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some	 highly-variable	 care	 in	 the	 long	 tail	 of	 the	 distribution	 was	 not	 simplified	 through	 the	

abstraction	process.		This	long	tail	was	most	compacted	when	represented	only	by	the	relative	

order	of	treatment	events	(H2	abstraction)	due	to	the	smaller	relative	decrease	in	the	number	

of	actual	to	effective	number	of	sequences.	 	On	the	other	hand,	the	greatest	concentration	of	

frequently	occurring	 treatment	paths	and	elongation	of	 the	 long	 tail	occurred	when	using	 the	

full	ordering	of	non-repeating	treatment	events	(H1	abstraction).		The	analysis	of	the	abstraction	

process	demonstrates	how	the	simplification	of	treatment	pathways	can	lead	to	variable	sizing	

and	diversity	of	patient	cohorts.	

The	abstraction	of	the	NCDB	treatment	paths	was	different	because	the	NCDB	included	

pre-abstracted	 treatment	 events.	 	 For	 example,	 only	 two	 surgical	 events	were	 provided	 (first	

and	definitive)	and	the	type	of	surgery	was	only	provided	at	the	V0	level	of	abstraction	for	the	

definitive	 one.	 	 Additionally,	 other	 treatment	 events	 were	 pre-abstracted	 at	 the	 V2H2	

abstraction	level.		As	a	result,	the	results	are	not	directly	comparable	to	the	VUMC	assessment.		

The	 effective	 number	 of	 sequences	 provided	 a	means	 for	 comparing	 the	 NCDB	 abstractions.		

The	V2H2	abstractions	between	the	NCDB	and	VUMC	were	similar	(14.8	and	18.9,	respectively).		

The	 closest	 match	 the	 original	 NCDB	 event	 sequence	 (V1H1*)	 with	 38.7	 effective	 event	

sequences	is	in	between	VUMC’s	V1H2	and	V1H1	levels	of	abstraction	(30.3	and	45.5	sequences,	

respectively).	 	 The	 V1H1*	 abstraction	 level	 led	 to	 the	 greatest	 consolidation	 of	 treatment	

sequences.	 	The	number	of	unique	treatment	event	sequences	outpaced	the	effective	number	

of	sequences	when	moving	to	higher	levels	of	abstraction.	

Sankey	diagrams	of	the	abstraction	process’	aggregation	of	treatment	event	sequences	

across	 the	 population	 depict	 the	 degree	 of	 concentration	 of	 treatment	 paths	 and	 provides	

different	 views	 of	 the	 data	 representation	 that	 could	 each	 provide	 valuable	 information	 to	
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various	healthcare	stakeholders.			While	the	V2H2	level	diagram	can	help	identify	patients	on	an	

adjuvant	or	neo-adjuvant	 course	of	 chemotherapy	based	on	 the	ordering	of	events,	 the	more	

complex	V1H0	 level	diagram	shows	the	different	paths	patients	 take	after	a	breast	conserving	

surgery	or	mastectomy.		The	Sankey	diagram	for	the	re-excision	rate	quality	measure	shows	the	

value	 of	 zooming	 in	 on	 a	 specific	 patient	 population	 to	 show	 the	 full	 path	 of	 surgical	 events	

versus	just	reporting	a	re-excision	rate.		Quality	measures	are	often	communicated	by	providing	

a	 rate	 value;	 visualizations	 such	 as	 Sankey	 diagrams	 have	 the	 potential	 to	 provide	 a	 more	

comprehensive	view.		This	demonstrates	the	potential	power	of	pathway	exploration	to	provide	

a	 more	 holistic	 view	 of	 care	 paths	 for	 quality	 improvement,	 discovery,	 and	 educational	

purposes.	

6.2:	Informatics	Limitations	and	Future	Directions	

The	evaluation	of	our	abstraction	method	is	limited	as	it	still	relies	on	manually	curated	

and	structured	cancer	registry	data.	 	Cancer	registries	are	often	missing	important	information	

as	 they	do	not	 include	 the	entire	 clinical	population	due	 to	 their	 inclusion	 criteria	and	do	not	

contain	 all	 the	 clinical	 data	 due	 to	 the	 limited	 reporting	 requirements.	 	 Furthermore,	 the	

curation	effort	by	cancer	centers	 requires	a	 staff	of	 full	 time	employees	 to	 review	and	code	a	

clinical	case	at	an	estimated	pace	of	5	cases	per	day	per	person(Kolender,	2009).		There	is	often	

a	 long	delay	 (i.e.,	 6	months)	 from	when	 care	 is	 delivered	 to	when	 the	 case	 is	 encoded	 in	 the	

registry.	 	 In	 this	 encoding	 process,	 rich	 information	 in	 the	medical	 record	 is	 lost.	 	 In	 order	 to	

achieve	 the	 goal	 of	 real-time	 quality	 improvement	 frameworks,	 we	 will	 need	 to	 use	

administrative	data	and	data	derived	from	the	medical	record.			This	will	come	with	its	own	data	
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extraction,	 quality,	 and	 standardization	 challenges	 but	 will	 also	 provide	 the	 opportunity	 to	

represent	more	granular	events.			

Our	 method	 is	 also	 prevented	 from	 being	 truly	 scalable	 because	 we	 used	 manually	

derived	concept	mappings	and	an	explicitly	selected	section	of	the	NCI	Thesaurus	hierarchy.		We	

will	 have	 to	 be	 able	 to	 not	 only	 develop	 our	 treatment	mappings	 in	 a	 scalable	 way	 but	 also	

efficiently	extract	the	hierarchy	as	needed	for	a	particular	quality	question.	

Our	treatment	event	sequences	maintain	temporal	order	but	the	actual	event	times	are	

abstracted	away.		This	prevents	queries	based	on	time	intervals	or	time	lengths	of	event	paths	

that	 is	 necessary	 for	 some	 certification	 programs’	 quality	 measures.	 	 In	 future	 work,	 the	

framework	will	be	extended	to	include	additional	temporal	relationships.	

Our	abstraction	framework	as	well	as	our	use	of	Sankey	diagrams	allows	our	treatment	

path	visualizations	to	be	scalable	in	handling	many	patients	as	well	as	handling	long	and	variable	

treatment	 paths.	 	 Vertical	 abstraction	 collapses	 the	 types	 of	 potential	 treatment	 events,	

horizontal	abstraction	consolidates	the	length	of	the	treatment	paths,	while	the	Sankey	diagram	

aggregates	sequences	based	on	their	prefix,	root,	and	suffix.		These	simplified	representations	of	

complex	treatment	paths	have	the	potential	to	provide	additional	visual	context	for	treatment	

event	sequences	and	can	be	beneficial	in	understanding	patient	populations	in	comparison	to	a	

single	 quality	 measure	 rate.	 	 The	 integration	 of	 an	 interactive	 visualization	 system	 into	 a	

temporal	 abstraction	 framework	 focused	 on	 continuous	 quality	 measurement	 could	 help	

improve	the	quality	of	care	and	shared	decision-making.	
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6.3:	Clinical	Contributions	

This	 abstraction	 process	 could	 be	 used	 to	 more	 systematically	 generate	 insights	 into	

clinical	 care.	 	We	 could	 identify	 patterns	 in	 the	 abstracted	 treatment	 event	 sequences	 either	

visually	with	the	Sankey	diagram	or	through	analytical	methods.		For	example,	one	of	the	most	

common	 patterns	 at	 the	 V1Hx	 level	 is	 a	 breast	 conserving	 surgery	 (BCS)	 event	 followed	 by	

radiation	therapy.		This	is,	in	fact,	an	important	quality	measure	as	the	use	of	radiation	following	

a	BCS	 can	 reduce	 the	 rate	of	 local	 cancer	 recurrence.	 	Another	 common	pattern	 at	 the	V1H0	

level	 is	a	BCS	followed	by	another	BCS,	or	a	re-excision	event.	 	A	number	of	common	patterns	

derived	from	the	event	sequences	represent	important	processes	of	care	and	could	be	used	as	

input	 patterns	 in	 our	 framework.	 	 Additionally,	 the	 abstracted	 treatment	 sequences	 can	 be	

compared	 according	 to	 a	 variety	 of	 patient	 factors	 such	 as	 cancer	 stage,	 comorbidities,	 or	

whether	they	were	referred	to	Vanderbilt	after	an	initial	treatment	failed.		For	example,	Figure	

5.2.1	 demonstrates	 how	 more	 frequently	 occurring	 treatment	 paths	 have	 a	 lower	 average	

cancer	 stage	 and	 paths	 involving	 neoadjuvant	 chemotherapy	 (chemotherapy	 before	 curative	

therapy)	 have	 a	 higher	 cancer	 stage.	 This	 can	 provide	 new	ways	 of	 organizing	 the	 abstracted	

treatment	 event	 sequences	 and	 potentially	 help	 a	 user	 interpret	 infrequently	 occurring	

sequences	in	comparison	to	a	similar	frequent	one.	

Our	pathway	exploration	tool	extends	this	opportunity	by	enabling	users	to	dynamically	

look	at	how	various	patient	and	tumor	features	interact	with	treatment	paths	across	the	VUMC	

or	 NCDB	 breast	 cancer	 patient	 population.	 	 This	 tool	 enables	 users	 to	 develop	 a	 more	

comprehensive	feel	for	the	relative	frequencies	of	events	(i.e.,	rate	of	hormone	therapy	in	triple	

negative	breast	 cancer	patients)	 as	well	 as	avoid	misinterpreting	potential	 irregularities	 in	 the	
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data	(i.e.,	HER2	data	only	exists	after	2009).		As	a	result,	this	tool	can	be	used	to	answer	clinical	

questions	or	educate	new	breast	cancer	patients.		By	incorporating	the	abstraction	methodology	

into	the	treatment	path,	the	user	can	view	the	treatment	path	at	the	highest	level	of	abstraction	

by	default.	 	This	avoids	overloading	the	user	with	unnecessary	data.	 	 Instead,	the	user	can	dig	

deeper	 through	 the	 vertical	 and	 horizontal	 abstraction	 controls	 to	 gain	 a	 deeper	 view	 of	 the	

treatment	paths.	

Our	abstraction	methodology	can	generate	quality	measures	in	a	more	scalable	way	and	

with	 less	manual	 effort	 compared	 to	existing	methods.	 	Manual	 abstraction	 from	 the	medical	

record	 is	 required	 for	 QOPI	 and	 NQMBC.	 	 Prior	 studies	 have	 shown	 that	 the,	 at	 most,	

semiannual	 QOPI	 abstraction	 process	 requires	 ~48	 to	 90	 minutes	 per	 patient,	 although	 the	

abstractor	becomes	more	efficient	with	more	experience(Blayney	et	al.,	2009).		This	is	similar	to	

the	effort	required	at	Vanderbilt	where	40	man-hours	for	80	patient	abstractions	are	required	

each	year	with	an	expected	100	man-hours	every	third	year	for	re-certification.		The	RQRS	is	an	

automated	system	for	generating	specific	quality	measures	from	cancer	registry	data.		However,	

RQRS	only	 generates	 a	 few,	 specific	measures	 from	 structured	 cancer	 registry	 elements.	 	Our	

system	 can	 automatically	 generate	 quality	measures	 in	 a	more	 dynamic	 and	 scalable	 fashion.		

We	 are	 able	 to	 use	 different	 patterns	 to	 generate	 various	 quality	 measures	 and	 have	 the	

potential	 to	 take	 in	 diagnostic,	 clinical	 encounter,	 and	 outcome	 event	 data	 from	 a	 variety	 of	

sources	(i.e.,	cancer	registry,	administrative	data,	medical	record)	in	addition	to	treatment	event	

data.	 	We	were	able	to	demonstrate	that	our	 framework	 is	generalizable	enough	to	represent	

the	majority	 of	 quality	measures	 from	 the	QOPI,	 NQMBC,	 and	 RQRS	with	 the	 only	 additional	

requirement	being	the	inclusion	of	temporal	constraints.	

We	 demonstrated	 how	 the	 pathway	 exploration	 platform	 could	 help	 users	 replicate	
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previously	conducted	studies	by	assessing	the	rate	of	use	of	post-mastectomy	radiation	therapy.		

Additionally,	we	were	able	to	show	how	our	system	could	help	track	the	results	going	forward	

without	having	to	repeat	the	study	as	the	trend	could	be	viewed	using	a	future	dataset.		There	

are	two	primary	limiting	factors	which	need	to	be	addressed	in	order	to	be	able	to	handle	the	

full	breadth	of	clinical	questions	that	researchers	have	asked	of	the	NCDB	dataset.		First,	the	tool	

needs	to	make	all	of	the	data	elements	in	the	NCDB	available	through	the	pathway	exploration	

tool.		Many	of	the	studies	use	data	elements	that	are	not	currently	available	(i.e.,	specific	TNM	

staging,	insurance	status,	type	of	radiation	therapy).		Second,	the	ability	to	filter	on	the	duration	

between	treatment	events	will	be	needed	to	answer	various	temporally-related	questions.	

Our	 data-driven	 decision	 aid	 for	 new	 breast	 cancer	 patients	 demonstrates	 how	 local	

VUMC	cancer	registry	data	can	be	used	to	inform	VUMC	patients	on	the	performance	and	risks	

of	treatment	at	VUMC.		Vanderbilt	patients	can	understand	how	their	specific	providers	tend	to	

treat	 patients	 and	 develop	 a	 local	 assessment	 of	 care	 rather	 than	 national	 quality	measures.		

Additionally,	our	decision	aid	tool	uses	a	simple,	natural	scrolling	motion	to	introduce	potentially	

complex	Sankey	diagrams	piece-by-piece	in	the	form	of	a	story.		By	allowing	the	patient	to	scroll	

forward	and	backward	while	they	read	the	text	and	observe	Sankey	diagram	components	fading	

in	 and	 out,	 they	 are	 able	 to	 work	 at	 their	 own	 pace	 to	 develop	 an	 understanding	 of	 care.		

Additionally,	 this	allows	us	to	manage	what	external	sites	we	provide	 links	 for.	 	Patients	often	

will	 search	 the	 Internet	 for	 information	 on	 their	 disease	 and	 potential	 treatment	 options.		

Providing	links	in	this	site	allows	us	to	curate	the	best	sources	of	information	for	our	patients.	
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6.4:	Clinical	Limitations	and	Future	Directions	

The	 visualizations	 generated	 from	 our	 abstractions	 have	 not	 yet	 been	 formally	

evaluated	 to	 assess	 their	 usefulness	 to	 various	 stakeholders	 in	 healthcare.	 	 Treatment	 path	

visualizations	 could	 be	 beneficial	 in	 a	 variety	 of	 contexts	 including	 quality	 measurement	 and	

clinical	 research,	 healthcare	 provider	 feedback,	 and	 patient	 education.	 	 Qualitative,	

observational	analysis	will	be	required	to	understand	the	needs	of	these	stakeholders	and	their	

current	workflows.		Additionally,	it	will	be	important	to	design	and	build	web-based	applications	

based	on	our	abstraction	framework	 in	an	 iterative	fashion	while	receiving	feedback	from	end	

users	 in	 the	 context	 of	 the	 intended	 use-case(Isenberg,	 Zuk,	 Collins,	 &	 Carpendale,	 2008;	

Plaisant,	2004).	

The	 pathway	 exploration	 platform	 could	 be	 delivered	 to	 cancer	 registries	 around	 the	

country.	 	 State	 cancer	 registries	 as	well	 as	 hospitals	 report	 their	 data	 according	 to	 the	North	

American	Association	for	Central	Cancer	Registries	(NAACCR)	standard	which	is	also	used	by	the	

NCDB.	 	 As	 a	 result	 of	 this	 standard,	 a	 pathway	 exploration	 platform	 could	 be	 delivered	 as	 a	

service	to	various	reporting	institutions	with	little	additional	overhead.		This	service	would	give	

cancer	 centers	 more	 transparency	 into	 the	 care	 they	 provide	 on	 an	 ongoing	 basis	 (as	 the	

institutional	 cancer	 registry	 teams	 typically	operate	6	months	behind).	 	Additionally,	we	could	

provide	institution-specific	data-driven	decision	aids	for	their	patient	population.	

We	plan	to	evaluate	our	data-driven	decision	as	part	of	a	pilot	program	at	the	Vanderbilt	

breast	center.		The	decision	aid	will	be	provided	to	new	breast	cancer	patients	prior	to	their	first	

visit	 with	 their	 breast	 surgeon.	 	 Patients	 will	 have	 the	 opportunity	 to	 review	 the	material	 in	

order	to	be	better	informed	before	their	meeting.		We	will	uses	a	series	of	surveys	to	evaluate	
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the	patient’s	opinion	prior	to	viewing	the	tool,	after	viewing	the	tool,	after	the	decision	is	made,	

and	 after	 the	 treatment	 is	 complete.	 	 Patients	will	 be	 asked	 about	 their	 surgical	 preferences,	

their	 decision	 making	 process	 (make	 decision	 by	 self,	 let	 doctor	 make	 decision,	 or	 shared	

decision	making),	the	usability	of	the	tool,	and	satisfaction	with	the	decision	and	treatment.		We	

plan	to	extend	our	evaluation	to	assess	the	usability	of	the	pathway	exploration	tool.		This	tool	

could	 allow	 the	 surgeon	 to	 personalize	 the	 filters	 to	match	 their	 patient	 and	 show	what	 the	

potential	treatment	options	are	in	their	case.	

Users	 can	 also	 use	 a	 comparison	 tool	 where	 the	 user	 is	 shown	 two	 independently	

filterable	patient	populations	and	Sankey	diagrams	on	the	right	and	left	of	the	screen.		The	user	

can	 then	 filter	 to	 select	 two	 separate	 patient	 populations	 and	 care	 paths.	 	 The	 number	 of	

patients-per-year	in	each	of	the	two	patient	populations	can	then	be	compared	either	directly	or	

as	 a	 numerator	 and	 denominator.	 	 A	 direct	 comparison	 can	 help	 users	 assess	 two	 separate	

populations	that	otherwise	cannot	be	assessed	in	the	same	Sankey	diagram.		For	example,	this	

side-by-side	view	can	help	compare	populations	with	different	patient	or	hospital	characteristics	

as	well	as	significantly	different	care	paths.		Two	patient	populations	can	also	be	represented	as	

a	numerator	and	denominator	to	calculate	the	numerator	populations’	relative	assess	a	specific	

quality	measure.			
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