
A FULLY DISTRIBUTED METHOD FOR ACOUSTIC LOCALIZATION WITH 

SENSOR NETWORKS 

By 

Stephen Michael Williams 

 

Thesis 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

MASTER OF SCIENCE 

in 

Mechanical Engineering 

August, 2005 

Nashville, Tennessee 

Approved: 

Kenneth Frampton 

Nilanjan Sarkar 

 

 

 

 

 



ACKNOWLEDGMENTS 

 

 This material is based upon work supported by the National Science Foundation 

CAREER Program under Grant No. 0134224. 

 

I would like to thank members of my Thesis Committee, Professor Nilanjan 

Sarkar and Professor Eric Barth for their time spent reviewing this paper.  For their 

contribution to this work I would also like to thank Ph.D. candidates Isaac Amundson and 

Peter Schmidt.  Finally, I would like to thank Professor Ken Frampton, the chairman of 

my Thesis Committee, for his professional guidance and support throughout my career at 

Vanderbilt. 

ii 



TABLE OF CONTENTS 

 

Page 

ACKNOWLEDGMENTS .................................................................................................. ii 

LIST OF FIGURES ........................................................................................................... iv 

Chapter 

I.   INTRODUCTION..........................................................................................................1 

  Acoustic Source Localization ..................................................................................2 
  Acoustic Self-Localization.......................................................................................4 
  Objective of This Work ...........................................................................................6 
 
II.  SOURCE LOCALIZATION..........................................................................................8 

  TDOA Formulation................................................................................................11 
  Experimental Platform...........................................................................................16 
   Hardware..........................................................................................................16 
   Software ...........................................................................................................17 
   Time Synchronization......................................................................................18 
   Grouping ..........................................................................................................19 
   Experimental Procedure...................................................................................20 
   Measurement Error ..........................................................................................21 
  Results....................................................................................................................22 
  Conclusions............................................................................................................25 
 
III. SELF-LOCALIZATION .............................................................................................27 

  Theory ....................................................................................................................28 
  Experimental Procedure.........................................................................................31 
  Results....................................................................................................................31 
  Conclusions............................................................................................................33 
 
REFERENCES ..................................................................................................................35 

iii 



LIST OF FIGURES 

 

Figure Page 

1.     Node and source locations for one random array ......................................................21 
 
2.     The (a) average and (b) standard deviation of the RMS error in source position 
        estimate as a function of group size.  This includes all sources inside of the array 
        area for the three arrays considered ...........................................................................23 
 
3.     Distribution of the error in source position estimate found by LS for group sizes of 
        (a) four, (b) five, (c) six, (d) seven, (e) eight, and (f) nine.  [Note: Axes possess 
        different scales]..........................................................................................................24 
 
4.     Distribution of the error in source position estimate found by RI for group sizes of 
        (a) four, (b) five, (c) six, (d) seven, (e) eight, and (f) nine.  [Note: Axes possess 
        different scales]..........................................................................................................24 
 
5.     The (a) average and (b) standard deviation of the RMS error in far-field source 
        position estimate as a function of group size.  This includes all sources outside of 
        the array area for the three arrays considered ............................................................25 
 
6.     The (a) average and (b) standard deviation of the RMS error in node position 
        estimate as a function of group size...........................................................................32 
 
7.     The (a) average and (b) standard deviation of the RMS error in node position 
        estimate as a function of the number of sources ........................................................32 

iv 



CHAPTER I 

 

INTRODUCTION 

 

The past two decades have seen a great deal of research in the area of distributed 

sensor networks.  Aided by the availability of small, inexpensive microsensors, 

researchers have been investigating the usefulness of distributed sensor networks for a 

variety of applications.  These applications include military surveillance, habitat 

monitoring, distributed robotics, air traffic control, and building security. 

Distributed systems consisting of numerous "nodes", each possessing a 

microprocessor, power supply, wired or wireless communication capability, sensors and 

signal conditioning circuitry, face a number of technical challenges.  Among these are 

energy and bandwidth constraints, ad hoc networking, collaborative information 

processing, message routing, and security.  Performing collaborative information 

processing over a network is related to distributed data fusion and introduces additional 

technical challenges to the development of distributed sensor networks.  The degree of 

information sharing among network nodes and the manner in which nodes fuse 

information from other nodes effects performance of the sensor network.  Including 

information from more sensors typically results in better system performance, however, 

this also increases communication demands on the system.  Communication requires 

energy, so high communication volume reduces the lifetime of sensor networks with 

finite energy resources.  Therefore, researchers must consider the tradeoff between 
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system performance and energy demands when designing a distributed sensor network [1, 

2]. 

Decentralized algorithms, also called localized algorithms, may be used in place 

of centralized algorithms to reduce energy demands on the system that are introduced by 

high communication requirements.  These decentralized algorithms are performed by 

nodes throughout the network, and incorporate information from nodes near those 

performing the computations.  When nodes are added to a centralized system, 

communication requirements increase dramatically as all information must be relayed to 

a central controller.  A system utilizing a decentralized algorithm will not see this 

dramatic increase in communications cost as nodes are introduced, and is therefore more 

scalable than its centralized counterpart.  Additionally, localized algorithms are attractive 

because they are robust to network changes and node failures [1]-[3]. 

 

Acoustic Source Localization 

Identifying and locating targets of interest are important tasks in military 

surveillance, habitat monitoring, and building security.  Some targets (e.g. a vehicle, 

sniper, or other intruder) may possess an acoustic signature that can be used to identify 

the target.  Once a target is identified, observation of acoustic events generated by the 

target may be used to locate its position.  The process of determining the location of an 

acoustic source relative to some reference frame is known as acoustic source localization. 

A distributed sensor network consisting of hundreds or thousands of nodes can be 

used to passively monitor the acoustical phenomena occurring within a large area.  

Sources in the near-field (geographical area encompassed by the network) can be 
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localized with knowledge of the time-differences-of-arrival (TDOA) of the acoustic 

source at multiple nodes, and the speed of sound in the medium in which the acoustic 

source is present.  Localizing sources in the far-field must be accomplished by methods 

other than those based on TDOA, such as, beamforming, direction-of-arrival (DOA), and 

energy based methods [4]-[9]. 

Communication costs in the large-scale sensor network described above will be 

astronomical if localization algorithms are implemented in a centralized fashion.  It is 

therefore desirable to split the network into smaller groups consisting of a few nodes 

spaced closely together.  Each group will have a leader who collects data from group 

members and then uses the information to estimate source positions.  Performing source 

localization in this decentralized manner will lengthen the life-expectancy of the sensor 

network, and remove the need for a powerful central controller.  Implementing a fully 

distributed algorithm will also mean that additional nodes may be seamlessly integrated 

into the system, and that the system will be resilient to node failures. 

Others have developed distributed sensor networks for the purpose of acoustic 

localization.  Lendeczi et al. developed a distributed system for battlefield surveillance 

using 56 Mica2 Motes manufactured by Crossbow Technology Inc. [8].  The system 

performs a grid search to find the location from which a rifle was fired using time-of-

arrival (TOA) information of the muzzle blast and shock wave generated by the projectile 

fired from the rifle.  TOA information is relayed to a base station where the location of 

the source is determined. 

Chen et al. present a distributed sensor network capable of locating continuous 

near and far-field sources using approximated maximum likelihood and TOA methods in 
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[5].  This system relays information of the acoustic signal to a laptop where the source 

location is estimated. 

Brooks, Ramanathan, and Sayeed discuss the challenges of implementing a 

distributed sensor network capable of tracking an acoustic source through a sensor field 

using a decentralized localization algorithm.  They present solutions to provide efficient 

network techniques and collaborative signal processing in [7]. 

 

Acoustic Self-Localization 

Many applications of distributed systems require nodes in the network to have 

knowledge of both their geographical position, and the positions of other nodes in the 

network.  The task of determining node locations is an important aspect of distributed 

systems which has not previously been discussed, and is referred to as self-localization.  

In planned networks, the topology of the distributed network is usually known a priori, 

and this information is passed to nodes prior to system use [2].  For some applications, 

such as battlefield surveillance, nodes may be distributed randomly and a priori 

information of node locations is not available.  Self-localization by GPS may be too 

expensive or not feasible (e.g. indoors) for a given network and other methods of self-

localization must be employed. 

"The most accurate methods for self-localization are based on either acoustic or 

RF wave propagation and time-of-flight measurements.  While RF based localization is 

promising, there are several reasons why acoustic techniques may be more desirable. 

First of all the relatively low acoustic wave speed results in less expensive hardware as 

compared to high-bandwidth RF hardware. The lower wave speed also means that the 
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system will be less sensitive to errors in time-of-flight measurements, node clock 

synchronization and other timing errors. However acoustic techniques also have two 

distinct disadvantages over RF techniques. First, acoustic waves are sensitive to 

environmental factors such as temperature, humidity and pressure resulting in non-

uniform wave speeds over the area of interest. Second, acoustic waves suffer far greater 

attenuations through walls and other physical objects rendering it nearly ineffective when 

such obstacles exist." [10] 

Researchers have successfully used acoustic wave propagation to perform self-

localization in distributed sensor networks.  Chen et al. [5], and Girod and Estrin [11] 

perform self-localization from time-of-flight measurements between nodes.  Network 

nodes produce an acoustic chirp and simultaneously send a network message containing 

the time at which the chirp was produced to other nodes in the network.  Nodes detect the 

TOA of the chirp with a matched filter and use this information and the time at which the 

chirp was produced to calculate the time-of-flight of the acoustic wave.  The distance 

between nodes can then be found directly with knowledge of the speed of sound.  By 

progressing through all nodes the range between each node and every other node were 

calculated and an optimization algorithm was used to calculate absolute coordinates.  The 

system produced by Girod and Estrin was successful in self-localizing nodes to within 

about 11cm [11].  In this approach, although the source locations where not known, they 

were constrained to be the same as the node locations. 

"Although the approach taken by Girod and Estrin, in which each node emits an 

acoustic signal to determine ranging, is very accurate there will be applications in which 

this approach would be undesirable. An example would be the case where the user does 
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not want the sensor node locations to be revealed to observers in the area. If the nodes 

themselves are chirping then the security of the nodes would be compromised. 

Furthermore, acoustic emission is a power-hungry process if the signal must propagate 

very large distances. If the nodes themselves must be responsible for delivering this 

power their life expectancy will be significantly limited." [10] 

Dosso et al. found the position of hydrophone array elements by solving 

linearized TOA equations with an iterative regularized inversion technique [12].  

Acoustic sources (imploding light bulbs) were not attached to array elements for Dosso's 

work, and the time at which the source was produced was unknown.  Instead, the 

locations of the sources were known.  This method can be adapted to land-based sensor 

networks such as that consisting of hundreds of nodes distributed around an area of 

interest.  A GPS equipped acoustic source could be moved throughout the sensor network, 

simultaneously emitting a sound and communicating its position to nodes in the network.  

Nodes would use the arrival time of the acoustic source and the location from which it 

was emitted to perform self-localization. 

System benefits, such as lowered power consumption and scalability, achieved by 

implementing source localization algorithms in a decentralized manner may also be 

realized when performing self-localization. 

 

Objective of This Work 

The objective of this work is to produce a distributed sensor network from 

commercial off-the-shelf (COTS) products that is capable of self-localization and source 

localization via decentralized localization algorithms.  Chapter II is a paper submitted to 
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be published by The Journal of Applied Acoustics which reviews the importance of 

source localization; presents the theory behind the TDOA method for source localization; 

introduces an experimental distributed platform created for this work; and presents 

experimental analysis of the methods of source localization considered.  Chapter III 

discusses the theory behind the TDOA method of self-localization, and presents 

experimental analysis of the methods considered. 
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CHAPTER II 

 

SOURCE LOCALIZATION 

 

 The availability of miniature, low-power sensing devices has inspired the 

development of distributed sensor networks for a variety of applications [1, 2].  Among 

these are acoustic source localization and tracking, two integral tasks in surveillance, and 

habitat monitoring.  Of interest here are systems that can effectively monitor a large area.  

This is a task naturally suited to a distributed sensor network made up of numerous 

"nodes" each possessing a microprocessor, power supply, wired or wireless 

communication capability, sensors and signal conditioning circuitry. 

 Distributed sensor networks face a number of technical challenges such as energy 

and bandwidth constraints, ad hoc networking, collaborative information processing, 

message routing, and security.  The degree of information sharing among network nodes 

and the manner in which nodes fuse information from other nodes effects performance of 

the sensor network.  Including information from more sensors typically results in better 

system performance, however; this also increases communication demands on the system, 

effectively reducing the lifetime of sensor networks with finite energy resources.  

Therefore, researchers must consider the tradeoff between system performance and 

energy demands when designing a distributed sensor network 

 The scenario that motivates the current work involves numerous (10s, 100s, or 

1000s) of inexpensive nodes distributed around an area of interest with the objective of 

locating acoustical phenomena in that area.  These nodes may be placed by hand; 
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dropped by UAV or UGV; or distributed by some other means, and the positions of nodes 

in the network are determined prior to system use.  To effectively monitor the area, the 

sensor network must sense and identify acoustic sources, determine their position, and 

then relay information to appropriate locations. 

 Traditional sensor networks employ a centralized controller which directs all 

network activity and performs any computation.  Using a centralized localization 

algorithm for the large-scale sensor network described above would place significant 

communication demands on the system as all source information would have to be 

relayed to the central controller.  Decentralized algorithms, also called localized 

algorithms, may be used in place of centralized algorithms to reduce energy demands on 

the system which are introduced by high communication requirements.  These 

decentralized algorithms are performed by nodes throughout the network, and incorporate 

information from nodes near those performing the computations.  When nodes are added 

to a centralized system communication requirements increase dramatically as all 

information must be sent to a central controller.  A system utilizing a decentralized 

algorithm will not see this dramatic increase in communication cost as nodes are 

introduced, and is therefore more scalable than its centralized counterpart.  Additionally, 

localized algorithms are attractive because they are robust to network changes and node 

failures [1]-[3]. 

 Source localization using sensor arrays has been studied for many years and 

currently sees application in radar, sonar, and wireless communication [4].  Recently, a 

number of distributed source localization systems have been proposed to estimate the 

position and/or the direction of arrival (DOA) of an acoustic source from phase and time-
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of-arrival (TOA) information measured by multiple receivers [5]-[9].  These systems vary 

in their method of localization (beamforming, DOA, TOA), as well as the nature of the 

sensor network that they employ (centralized, distributed), and there is generally a 

tradeoff between accuracy and computational demands.  Lendeczi et al. present a 

centralized system for battlefield surveillance consisting of 56 Mica2 Motes 

manufactured by Crossbow Technology Inc. [8].  The system performs a grid search to 

find the location from which a rifle was fired using TOA information of the muzzle blast 

and shock wave generated by the projectile fired from the rifle.  Chen et al. present a 

distributed sensor network capable of locating continuous near and far-field sources using 

approximated maximum likelihood and TOA methods in [5].  These systems relay 

information of the acoustic signal to a base station or laptop where the source location is 

estimated. 

 Estimating source position from a set of measured TOA data represents a 

nonlinear inverse problem in which the accuracy of the solution is dependent upon the 

solution method.  The general least squares (LS) solution to the inverse problem seeks to 

minimize misfit to the measured data but may result in significant error when the problem 

is ill-posed.  Dosso et al. present an iterative solution technique to localize elements of a 

horizontal line array which avoids the ill-posed nature of the problem [12].  The method 

is formulated to achieve misfit to the measured data consistent with estimated 

uncertainties of the data, while including independent information about the solution, 

known as a priori information, to the inversion. Node positions are treated as known 

parameters when solving the inversion process using LS, however; error in node position 

measurements may introduce significant error to the solution.  This error may be reduced 
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by treating both node and source positions as unknown parameters in the inversion, and 

then including node position estimates as a priori information in the iterative solution 

process. 

A distributed sensor network utilizing a decentralized localization algorithm will 

maintain advantages in scalability, fault tolerance, and communication requirements over 

a comparable centralized system.  Accordingly, the objective of this work is to produce a 

scalable distributed sensor network from commercial off-the-shelf (COTS) products that 

can localize a single source.  Solutions of TDOA equations by LS and regularized 

inversion (RI) are presented in the Section II of this paper.  A distributed system 

consisting of PC/104 modules is then introduced in Section III.  The system is used to 

localize sources in the near and far-fields by both LS and RI methods, and results of these 

experiments are presented in Section IV.  Conclusions based on these results are provided 

in Section V. 

 

TDOA Formulation 

 Estimating the source location from measured TOAs represents an ill-posed, 

nonunique, nonlinear inverse problem.  This paper will consider two methods for solving 

this inverse problem, and discuss the effectiveness of each method. 

 The first solution technique that will be considered is that formulated by Mahajan 

and Walworth in [13]. The formulation is based on differences in time-of-flight from a 

single source to multiple sensors.  If we define the TOA of the acoustic source at the ith 

node as Ti, the time-difference-of-arrival (TDOA) between a reference node and any 

other node is 
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where T1 is the absolute arrival time of the acoustic source at the reference node.  We can 

write the two-dimensional set of nonlinear equations representing the distances between 
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 This formulation (speed of sound is considered constant) can be solved when four 

nodes hear the acoustic source, and the system is overdetermined when more than four 

nodes are present.  The above analysis can easily be extended to the three-dimensional 

case, requiring a fifth receiver to hear the source [13]. The estimate of the source location 

from (3) is then found by the method of least squares (LS). The system matrix in (3) may 

be ill-conditioned when relative time delays are approximately equal, resulting in 

significant error in the source position estimate.  This is more likely to occur when the 

system is exactly determined, thus it is desirable to include more than four nodes in the 

problem formulation [6]. 
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 The second method used in this work to estimate source position was adapted 

from a technique formulated by Dosso et al., to localize horizontal line array elements 

[12].  Using the regularization method, an iterative linearized inversion is developed 

below which results in a stable solution to the ill-posed inverse problem. 

 Writing two-dimensional equations for the TOA of a single source at each node 

results in the following: 
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where γ is the source instant.  Note that this formulation may be extended to three-

dimensions by including a third spatial coordinate in (4).  Node locations were considered 

to be known in the previous formulation but will instead be treated as unknown, but well 

estimated, here.  The system in (4) is a set of N nonlinear equations in M unknowns 

where M is equal to 2N + 3 (two spatial unknowns per node in addition to the source 

location and source instant).  This set of equations written in general vector form is 

  T = F(m) (5) 

where T represents the vector of arrival times at each node, F is the forward mapping 

matrix of the equations presented in (4), and m is the vector of model parameters [x1, 

y1, …, xN, yN, u, v, γ].  A local linearization of the system is obtained by performing the 

Taylor series expansion of T = F(mo + δm) about an arbitrary starting model mo.  

Disregarding higher order terms, the linearized system can be written as 

  T = F(mo) + Jδm (6) 
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where δm is the model perturbation, and J is the Jacobian matrix consisting of elements 

Jkl = ∂ Fk(mo)/ m∂ l.  Defining the residual δT = T - F(mo), (6) can be written as 

  Jδm = δT (7) 

which is a set of linear equations that can be solved for the model perturbation δm .  The 

model perturbation may be written as δm = m – mo so that (7) can be rewritten in terms 

of the actual model, m, as 

  Jm = δT + Jmo (8) 

 This linearized inverse problem can be solved for m, however; m may not 

adequately reproduce the measured data because nonlinear terms were neglected.  If the 

model m does not reproduce the measured data, the starting model mo is updated 

(mo←m), and the process repeated iteratively until an acceptable solution is found or the 

iterations converge. 

 The LS solution of the overdetermined system of linear equations given in (8) is 

found by minimizing the χ2 misfit defined by 

  χ2 = |G(Jm-(δT + Jmo))|2 (9) 

where G is a diagonal weighting matrix, G = diag[1/σ1, …, 1/σN].  Note that (9) is the 

misfit of the model to the linearized inverse problem, and σi is the standard deviation of 

the TOA measurements at each node assuming that the error in TOA measurement can be 

represented as an independent Guassian-distributed random variable with mean of zero.  

The objective of this regularization is to formulate a unique, stable inversion by 

specifically including a priori information about the solution.  This may be accomplished 

by minimizing an objective function Φ which combines the χ2 term representing the data 
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misfit, and a regularizing term that imposes the condition that the solution m resemble a 

prior estimate m' that includes a priori information. 

  Φ = |G(Jm-(δT + Jmo))|2 + µ|H(m-m')|2 (10) 

The weighting matrix H in (10) is referred to as the regularization matrix.  The parameter 

µ is a Lagrange multiplier which controls the relative importance of the data misfit and 

the a priori information.  Estimates of the node positions were available during 

experimentation and were included in m'.  The regularization matrix was then held to be 

H = diag[1/σx1, 1/σy1, …, 1/σxN, 1/σyN, 0, 0, 0], where σxi and σyi are the standard 

deviations of node coordinates (again assuming that the error in node position could be 

represented as an independent, Gaussian-distributed random variable with a mean of 

zero).  No information was available for the source position or source instant, therefore, 

their weights in the regularization matrix were held to be zero.  Minimizing Φ in (10) 

with respect to m results in the regularized solution [12] 

  m = [JTGTGJ + µHTH]-1[JTGTG(δT + Jm') + µHTHm'] (11) 

 The parameter µ is generally chosen so that the χ2 misfit achieves the expected 

value of χ2 = M, for M data.  Although it is possible to compute an optimum µ at each 

iteration of the solution process, µ was held to be constant for this work.  Prior to 

experimentation, simulations revealed that a constant value of µ = 100 would produce 

sufficient χ2 misfit and that the final model m would resemble the starting model m' that 

included the a priori estimates of node locations. 

 The χ2 misfit of the linear inverse problem (9) was used to derive (11), however, 

convergence of the iterative process must be determined by the misfit to the nonlinear 

problem 
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  χ2 = |G(F(m) – T)|2 (12) 

 For this work, an iterative solution process was used to find source locations from 

the RI technique presented above.  Convergence of the iteration process was determined 

by one of two criteria:  1) the change in the nonlinear χ2 statistic between iterations was 

less than 0.5 percent, or 2) the change in source location between iterations was less than 

0.001 m. 

 

Experimental Platform 

 

Hardware 

 One objective of this work is to produce a system that consists of readily available, 

commercial off-the-shelf (COTS) products.  Accordingly, each of the system's nodes 

consists of a PC/104 module, a battery pack, and a microphone circuit.  The PC/104 

module used was a Diamond System's Prometheus that includes data acquisition circuitry, 

a 100 MHz CPU, 100 Mbps 10/100BaseT Fast Ethernet port, 32 MB of RAM and 128 

MB flash disk storage. 

 Each node's microphone (Panasonic-ECG WM-34BY omni-directional) signal is 

amplified and fed through a 10 kHz low-pass filter.  The resulting signal is then 

compared to a reference voltage by an electronic comparator whose output is sent to an 

external interrupt pin on the Prometheus.  The external interrupt triggers a subroutine 

which records the TOA of the acoustic source.  After recording the arrival time of the 

source, group leaders collect arrival time information from all group members and use 
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this data to estimate the position of the source.  Both LS and RI position estimates are 

found within seconds of the source arrival. 

 A starter pistol is used to generate impulsive acoustic sources that can be heard by 

all nodes in the network.  Measuring the TOA of the source as the point at which the 

microphone output exceeded the voltage threshold proves to be a robust means of 

detection for this work because of the impulsive nature of the acoustic wave front.  

Additionally, the time delay introduced by signal conditioning circuitry is equal for all 

nodes (within a few microseconds), and therefore is subtracted out in the TDOA 

calculation.  Miniature low-powered ICs have recently been proposed for bearing 

estimation [14, 15].  With these dedicated hardware components it is possible to measure 

the TOA to within a few microseconds. 

 It should be noted that determining the TOA of the source by threshold detection 

is only effective for environments in which a single acoustic source louder than the 

ambient noise is present.  For environments in which multiple sources are present, a 

sliding correlator [11], matched filter, or frequency domain method may be used to 

identify sources of interest, and determine their TOA. 

 Network nodes communicate via Ethernet ports and a 3Com router.  A more 

practical sensor network would communicate wirelessly, but as it is not necessary for this 

work, wired communication is used. 

 

 Software 

 Nodes in the distributed system are directed by identical application programs 

written in C++ that run atop an embedded Linux OS.  Network communication is 
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facilitated with use of the Adaptive Communication Environment (ACE), and The ACE 

ORB (TAO) [16]-[18].  ACE is an open source framework developed for high-

performance communication services, and TAO is an open source extension to ACE that 

arranges the client/server communication in an object-oriented fashion.  Using ACE and 

TAO introduces slight performance reduction to the system, but the benefits of 

establishing a pattern-oriented structure of program design, while ensuring scalability, 

robustness and portability outweighs this loss. 

 

Time Synchronization 

 A distributed acoustic localization system will be accurate only when fine-grained 

time synchronization between node clocks is available.  This is because TOA 

measurements are made relative to each node's local clock, not a global network 

reference.  Reference Broadcast Synchronization (RBS) [19] provides time 

synchronization in the sensor network developed for this work.  In RBS, an arbitrary 

node in the sensor network sends a general broadcast packet which is received by other 

nodes in the network.  Receiving nodes mark the arrival time of the broadcast packet on 

their local clock.  The general broadcast arrives at each of the receivers at approximately 

the same time and can be used as a reference for nodes to compare their clocks.  Each 

node uses this information to setup a table of values representing the difference between 

their clock and the clocks of other nodes in the network. 

 Immediately after the reference broadcast is sent, and time synchronization is 

established, node clocks are synchronized to within a few microseconds.  In time 

however, values of the time difference between node clocks will become inaccurate as 
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the clocks tick at slightly different rates.  The average clock drift between any two 

PC/104 modules was found to be 12 microseconds per second.  RBS is performed 

between five to eight seconds before the source instant during experimentation, resulting 

in 60-100 microseconds of error in time synchronization (average).  A more practical 

clock skew correction is described in [19] which estimates both the phase offset and the 

clock skew between nodes. 

 

Grouping 

 In keeping with the scalable decentralized design objective, the sensor network is 

divided into subarrays, or sub-groups, of predetermined sizes.  The TDOA method of 

source localization to be solved by LS requires a minimum of four nodes to hear the 

acoustic source.  Thus, a group size of four is the smallest considered for this work.  Also 

considered are group sizes of five, six, seven, eight and nine nodes. 

 Grouping in this system is performed dynamically and based upon the spacing 

between nodes.  Each node in the system is designated a group leader upon initialization.  

Leaders then select the n - 1 nodes furthest from themselves to be group members, where 

n is the group size.  Grouping nodes in this manner ensures that groups maintain 

maximum inter-node spacing, effectively reducing each group's sensitivity to TOA 

measurement error.  This grouping technique is sufficient for the small-scale sensor 

network developed.  For a sensor network containing many nodes monitoring a large area, 

tradeoffs must be made between inter-node spacing and practical aspects of distributed 

systems, such as power requirements of wireless communication. 
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 For the scenario in which numerous nodes are spread over a large area, grouping 

could be accomplished by having nodes choose the n - 1 nodes furthest from themselves 

within some limit.  The limit could be in terms of distance (e.g. 20m) or in terms of the 

number of hops required for two nodes to communicate (e.g. 3 hops).  If the network is 

sparsely distributed, nodes could choose the n - 1 nodes nearest to themselves without 

concern for inter-node spacing. 

 

Experimental Procedure 

 Three randomly generated arrays consisting of nine nodes and covering a 2.5 by 

2.5 meter indoor area were considered in this work.  Two of the arrays were used to 

localize ten near-field sources positioned at random locations within the array area, and 

five far-field sources positioned outside of the array area.  The third array was used to 

localize five near-field sources.  Group sizes of four, five, six, seven, eight, and nine 

nodes were considered for each of the three random arrays.  Group leaders estimated all 

source positions using both the LS and RI solution techniques previously discussed.  The 

result was 225 near-field and 90 far-field source position estimates for each group 

size/solution technique pair.  One of the three random arrays is plotted in Figure 1 with a 

set of near-field and far-field source locations.  Nodes and sources were placed to within 

1 and 4cm of their expected position, respectively.  The additional uncertainty in source 

position was due to the difficulty in holding the starter pistol steady while firing. 

 

20 



-1 0 1 2 3 4
-1

0

1

2

3

4

5

x-coordinate, m

y-c
oo
rd
in
at
e
, m

Nodes
Sources

Near-Field 

Far-Field 

 
Figure 1.  Node and source locations for one random array. 

 

 

Measurement Error 

 The ability of the experimental platform to localize sources is limited by TOA 

measurement error.  This error is introduced by clock skew as well as delay in the 

microphone circuit, threshold detection, and software interrupt.  Time synchronization 

error between nodes at the time of firing was 60-100 microseconds, representing 2-3cm 

in TOA measurement error.  Time delay in the microphone circuit, threshold detection, 

and software interrupt are approximately the same for each node.  Therefore, this delay is 

subtracted out in the TDOA calculation so that the measurement error introduced by time 

delay is on the order of a few microseconds. 
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 Experimental results are also limited by node and source placement error which 

was 1 and 4cm, respectively.  Considering both TOA measurement error, and the error in 

experimental procedure, localization accuracy of 6-7cm is as good as can be expected. 

 

Results 

 The distributed platform developed for this work was successful in locating 

sources placed in the near-field using both LS and RI decentralized algorithms.  Seen in 

Figure 2 is the average root-mean-square (RMS) error in source position estimate as a 

function of group size.  This plot shows that the accuracy in source position estimate 

improves dramatically as the group size is increased, especially for the case of LS.  When 

the system in (3) is exactly determined (4 nodes in each group), the average error in LS 

position estimate is 32cm.  By adding two nodes to each group, the average error in 

source position estimate is reduced by 20cm. 

 The RI method of localization found accurate source positions for both small and 

large group sizes, and generally outperformed LS.  The average RMS error in RI source 

position estimate for a group size of four is 12cm, a significant improvement over the LS 

method.  Increasing the group size improved source position estimates found by RI until 

a minimum average error of 6cm was reached for a group size of nine nodes.  These 

results are similar to those found in the literature.  Chen reported an RMS localization 

error of about 7 cm for sources in the near field [5]. 
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Figure 2.  The (a) average and (b) standard deviation of the RMS error in source position 
estimate as a function of group size.  This includes all sources inside of the array area for 

the three arrays considered. 
 
 

 Error distribution for the LS and RI solution methods can be seen in Figures 3 and 

4.  It is important to note that the large majority of position estimates found by RI and LS 

(group size of six or more) are accurate to within 15cm.  For example, 96% of position 

estimates found by RI for a group size of seven are accurate to within 15cm.  This is a 

desirable result when considering the decentralized nature of the localization algorithm, 

because estimated source positions do not have to be validated by other groups in the 

network, removing additional communication demands from the system.  Outliers seen in 

Figure 3a (exactly determined LS) occur when the system matrix in (3) is ill-conditioned. 
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Figure 3.  Distribution of the error in source position estimate found by LS for group 
sizes of (a) four, (b) five, (c) six, (d) seven, (e) eight, and (f) nine [Note: Axes possess 

different scales]. 
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Figure 4.  Distribution of the error in source position estimate found by RI for group sizes 
of (a) four, (b) five, (c) six, (d) seven, (e) eight, and (f) nine [Note: Axes possess different 

scales]. 
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 The distributed platform was not successful in locating sources in the far field.  

Figure 5 shows the average RMS error in far-field source estimates as a function of group 

size.  The far-field source estimates improve slightly as the group size is increased, but do 

not reach the accuracy level of the near-field source estimates.  Sources in the far-field 

may be better localized using other methods, e.g. beamforming, and DOA. [5, 6, 8]. 
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Figure 5.  The (a) average and (b) standard deviation of the RMS error in far-field source 
position estimate as a function of group size.  This includes all sources outside of the 

array area for the three arrays considered. 
 
 

Conclusions 

 A distributed sensor network capable of locating near-field sources via 

decentralized localization algorithms has been presented.  Nodes may be added to the 
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network without increasing the complexity of the system, or the computational workload 

of a central controller.  Experimental results confirm that the LS method of localization 

performs poorly when the system is determined or slightly overdetermined.  Increasing 

the group size of the subarrays improves the performance of the LS method by reducing 

the likelihood that the system matrix in (3) is ill-conditioned.  The RI technique for 

localization was formulated with use of the regularization method and does not fall 

victim to the ill-posed nature of the inverse problem as LS does.  Accordingly, the RI 

method provided accurate source position estimates for small group sizes. 

 Future work includes tracking a moving source in the near-field.  The 

experimental setup is also being used to study the effectiveness of decentralized self-

localization. 
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CHAPTER III 

 

SELF-LOCALIZATION 

 

 Many applications of distributed sensor networks require network nodes to have a 

good understanding of their location and the location of other nodes in the network.  With 

knowledge of node locations the network can conserve power by allowing nodes to 

communicate only with nodes near themselves.  The network may also use node locations 

to determine the geographical location of events, and to track targets moving through the 

sensor field.  Node locations may be known prior to system use in planned networks, but 

for networks that are deployed in an ad-hoc fashion, self-localization may be the only 

method available for determining network topology. 

 In chapter II a distributed sensor network capable of localizing acoustic sources to 

within 10cm was presented.  Nodes in the network were placed and measured by hand 

prior to experimentation, and the average error in node placement was about 1cm.  The 

ability of this system to localize sources will deteriorate when node locations are known 

with less certainty.  It is therefore necessary that node positions determined by self-

localization be accurate to within a few centimeters (to achieve similar performance). 

 The following section presents two methods for self-localization.  Each is based 

on TDOA and is implemented in the sensor network in a fully distributed manner.  

Experimental results are then presented which consider the effectiveness of each method. 
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Theory 

 Determining node locations from TOA measurements will again represent an ill-

posed, nonunique, nonlinear inverse problem. Both LS and RI solution techniques are 

considered here.  In the previous formulations for source localization, source coordinates 

(u,v) were determined from knowledge of node locations, the speed of sound, and TOA 

measurements of the acoustic source at each node.  For the process of self-localization, 

node coordinates (x,y) will be determined from knowledge of the speed of sound, the 

TOAs of multiple sources at each node, and the locations of the acoustic sources. 

 The TDOA method presented in [13] is again used to formulate the self-

localization problem.  If we define the TOA of the jth acoustic source at the ith node as Tij, 

the time-difference-of-arrival (TDOA) between a reference node and any other node is 

  jijij TTT 11 −=  (13) 

where T1j is the absolute arrival time of the jth acoustic source at node 1.  The locations of 

reference nodes may be found prior to self-localization by GPS or some other method.  

The two-dimensional set of nonlinear equations representing the distances between S 

sources and N nodes can be written as 

   2
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where dj represents the distance from the reference node to the jth source (uj, vj), (xi, yi) is 

the position of the ith node, and c is the speed of sound.  Expanding these equations and 
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then substituting equations for dj
2 into the remaining equations results in the following 

linearized system of S(N-1) equations in the form 

  Ax = b (15) 
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   22
iii yxR +=

  111 22 yvxuRB jjj −−=  (19) 

 This system of equations contains 3(N-1) unknowns and may be solved by LS 

when three or more sources are present. 

 In chapter II, an iterative linearized inversion technique was presented for source 

localization.  This technique was adapted from Dosso's formulation for self-localizing 
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horizontal line array elements [12].  Equations for the TOAs of a single source at N nodes 

were presented in (4) and may be written for the TOAs of S sources at N nodes.  This set 

of SN nonlinear equations can be linearized and solved using the same iterative solution 

process presented in chapter II.  The model vector m from (5) will be m = [x1, y1, …, xN, 

yN, u1, v1, …, uS, vS, γ1, …, γS] for this formulation.  Source locations and the location of 

the reference node will be included as a priori information here.  The regularization 

matrix in (10) is H = diag[1/σx1, 1/σy1, 0, 0, …, 1/σu1, 1/σv1, …, 1/σuS, 1/σvS, 0, 0, …, 0, 0].  

Where σx1, and σy1 are the standard deviations of the x and y-coordinates of the reference 

node, and σuj, σvj are the standard deviations of the x and y-coordinates of the sources 

(again assuming that variables are Gaussian-distributed with mean of zero).  H-matrix 

weighting of unknown node locations and source instants are held to be zero because no 

a priori information is available for them. 

 Node locations are found from the iterative solution process presented in Chapter 

II with the adjustments presented above.  Convergence of the iterative process is decided 

by one of two criteria:  1) the change in the nonlinear χ2 statistic between iterations is less 

than 0.5 percent, or 2) the changes in node locations between iterations are less than 

0.001 m. 

 The iterative solution process will at times converge to a solution which does not 

accurately reproduce the network topology.  When this occurs, the nonlinear χ2 statistic 

does not achieve the expected value of χ2 = M for M data.  Inaccurate solutions to the 

iterative process can be thrown out when the nonlinear χ2 statistic does not achieve its 

expected value. 
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Experimental Procedure 

 The experimental platform described in Chapter 2 is again used to explore the 

effectiveness of LS and RI self-localization techniques.  LS and RI algorithms are 

implemented using the decentralized grouping approach described previously.  Trials 

were conducted for three randomly distributed arrays of nine nodes placed over a 2.5 by 

2.5 meter indoor area.  Group sizes of four, five, six, seven, eight, and nine nodes were 

considered for each of the three random arrays.  Self-localization was performed for each 

group size after groups collected data from five, six, seven, eight, nine, and ten acoustic 

sources.  Approximately 10 % of RI solutions were thrown out based on the χ2 statistic. 

 

Results 

 The average RMS error in node location as a function of group size can be seen in 

Figure 6 for both LS and RI self-localization.  The RI algorithm performed slightly better 

than the LS, but both found node locations to within 6cm (average).  Increasing the group 

size from four to nine nodes reduced the average error in node position by about one 

centimeter for the RI case. 

 The average RMS error in node location as a function of number of sources is 

seen in Figure 7.  Node location estimates improve slightly as sources were added for 

both LS and RI methods.  It should be noted that self-localization can be performed when 

only three or four sources are present.  For these cases, the system of equations in (3) is 

determined, or slightly overdetermined, and the likelihood of the system being ill-

conditioned is greater than when five or more sources are present.  Although it is not 
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experimentally validated, LS performance will likely suffer when fewer than five sources 

are present. 
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Figure 6.  The (a) average and (b) standard deviation of the RMS error in node position 

estimate as a function of group size. 
 

 The self-localization approach taken by Estrin and Girod, in which each node 

emits an acoustic signal to determine ranging, resulted in error of about 11cm [11].  This 

is comparable to the 6cm error found in this work.  It is therefore feasible to use TOA 

information of acoustic signals emitted by sources unattached to the network when 

performing self-localization. 
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Figure 7.  The (a) average and (b) standard deviation of the RMS error in node position 

estimate as a function of the number of sources 
 

Conclusions 

 A distributed sensor network consisting of COTS products has been presented in 

which nodes may be added to the network without increasing the complexity of the 

system, or the computational workload of a central controller.  Experimental results 

support the use of decentralized algorithms for source and self-localization. 

 When implementing a decentralized algorithm for source and self-localization 

engineers must consider tradeoffs between system performance and practical aspects of 

distributed networks.  Localization results may be improved by solving TDOA equations 

by RI at the cost of higher computational demands.  Engineers should therefore select a 

solution method which provides adequate accuracy without placing significant 
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computational burden on the network.  The size of a system's subarrays, or groups, is also 

an important parameter to consider when performing source localization.  An optimum 

group size should be chosen to minimize communication without sacrificing significant 

performance. 
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