
Investigating the Genetic Influences of the Germline and Somatic Genomes in Three Subtypes of 

Lung Cancer 

 

By 

 

Timothy Daniel O’Brien 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Human Genetics 

May 31, 2017 

Nashville, Tennessee 

 

Approved: 

Zhongming Zhao, Ph.D. 

Melinda Aldrich, Ph.D. 

Tony Capra, Ph.D. 

Jirong Long, Ph.D. 

Nancy Cox, Ph.D. 

David Samuels, Ph.D. 

 

 

 

 



 

ii 
 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2017 by Timothy Daniel O’Brien 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, Dan and Bernie, for their unending support and who have always encouraged me 

to follow my dreams 

and 

To my wife, Barbara, who has always supported me in everything I do. 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

ACKNOWLEDGMENTS 

 

The work in this dissertation would not have been possible without the support from the 

Human Genetics Training Grant provided by the National Institute of General Medical Sciences 

Training Grant (T32GM080178) and the National Institutes of Health grant (R01LM011177). 

Additionally, support was provided by the LUNGevity Foundation and Upstate Lung Cancer for 

the work done in Chapter IV. I would also like to acknowledge my outside collaborators for their 

contributions to this dissertation. William Pao and Hailing Jin from Vanderbilt and Uma Saxena, 

Martin J. Aryee, Mari Mino-Kenudson, Jeffrey A. Engelman, Long P. Le, A. John Iafrate, and 

Rebecca S. Heist from Massachusetts General Hospital for their work on Chapter IV. Also, my 

collaborator Maria T. Landi from the National Cancer Institute for her support on Chapter II. 

Finally, Pierre Massion from Vanderbilt for his support on Chapter III. Also, many members of 

the Zhao lab for all of their contributions to this dissertation. 

I would also like to thank members of my dissertation committee: David Samuels (chair), 

Melinda Aldrich, Tony Capra, Jirong Long, Nancy Cox, and Zhongming Zhao. I have really been 

inspired by this group of great scientists. My thesis project, and my scientific thinking in general, 

have been greatly improved from each meeting. I thank David Samuels for being a great 

dissertation chair and always having an open door when I needed any help. Special thanks for 

Tony Capra and his lab for welcoming me over the last year. I really appreciate the friendship and 

support from the entire lab. Also, Melinda Aldrich, her lab, and members of the TREAT group at 

Vanderbilt for their feedback on my work and giving me the opportunity to see lung cancer from 

a different perspective. 



 

v 
 

Additional thanks to members of the Zhao lab past and present. Their help in technical 

skills and scientific thinking have helped me in my entire graduate career. Especially lab members: 

Junfeng Xia, Huy Vuong, Pora Kim, Qingguo Wang, Feixiong Cheng, Junfei Zhao, Ramkrishna 

(Santu) Mitra, Quan Wang, Mingyu Shao, and Peilin Jia for all their help with analyses in the lab. 

I especially would like to thank Peilin Jia. From the first day of my rotation she has helped me in 

many ways. From teaching me how to be a computational scientist to thinking critically and 

scientifically, she has greatly helped me as a scientist and has been a great mentor. I would also 

like to especially thank my mentor Zhongming Zhao. He has really helped me grow as a scientist 

and has been a great mentor. He has taught me about scientific writing, critical thinking, and many 

other skills required of a scientist. He has always had the time to help with any problems and was 

always available for discussion. 

I would like to thank members of the CHGR/VGI and the students of the HGEN program. 

The student group has been a great resource of friendship and scientific support. Also, Roz Johnson 

and Dana Campbell for their help with everything related to the HGEN program. 

I also thank David Miller and members of the Miller lab past and present. Cody Smith for 

all of the help and support for my early years in the lab. The work I did and friendships I made 

really inspired me to attend graduate school. Also, David Miller for his guidance and mentoring. 

Additional thanks to my friends and family back in Washington and in Tennessee. I 

appreciate all the support and guidance over these past years. Finally, I would like to thank my 

wife and fellow grad student Barbara O’Brien. From the first day of graduate school, she has 

helped me in so many ways from qualifying exam prep to listening to way too many practice talks. 

At this point I think she knows as much about my project as I do. I really appreciate all of your 

support. 



 

vi 
 

TABLE OF CONTENTS 

 

    Page 

ACKNOWLEDGMENTS ............................................................................................................. iv 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ..................................................................................................................... xiii 
 

Chapter 

 

I.  Introduction ................................................................................................................................ 1 

 

Overview and epidemiology of lung cancer ............................................................................... 3 

Risk factors associated with lung cancer..................................................................................... 4 

Histological classifications of lung cancer .................................................................................. 6 

Germline influence on lung cancer ............................................................................................. 7 

Familial lung cancer ................................................................................................................ 7 

Candidate gene studies ............................................................................................................ 8 

Genome-wide association studies ............................................................................................ 9 

Functional elements................................................................................................................... 14 

Lung cancer from a somatic perspective ................................................................................... 15 

Candidate somatic studies ..................................................................................................... 15 

LUAD ................................................................................................................................ 16 

LUSC ................................................................................................................................. 16 

SCLC.................................................................................................................................. 16 

Genome-wide somatic studies ............................................................................................... 17 

LUAD ................................................................................................................................ 17 

LUSC ................................................................................................................................. 18 

SCLC.................................................................................................................................. 19 

Overlap of genetic features in lung cancer subtypes .................................................................... 20 

Summary and overview of dissertation ......................................................................................... 22 
 



 

vii 
 

II.  Exploration of the Germline Genome Identifies Weak Sharing of Genetic Association Signals 

in Three Lung Cancer Subtypes: Evidence at the SNP, Gene, Regulation, and                    

Pathway Levels ............................................................................................................................. 24 

 

Introduction ............................................................................................................................... 24 

Methods ..................................................................................................................................... 26 

GWAS dataset ....................................................................................................................... 26 

Genomic annotation of GWAS SNPs .................................................................................... 26 

Converting hg18 SNPs to hg19 SNPs ................................................................................... 27 

Identification of SNPs in LD with the genotyped SNPs ....................................................... 27 

GTEx eQTLs ......................................................................................................................... 28 

Lung tissue eQTLs from Hao et al. study ............................................................................. 29 

FANTOM5 transcribed enhancers ......................................................................................... 29 

IM-PET predicted enhancers ................................................................................................. 30 

Locus level analysis ............................................................................................................... 30 

Pathway enrichment analysis................................................................................................. 31 

GWAS Catalog SNPs ............................................................................................................ 31 

Results ....................................................................................................................................... 33 

Description of data and SNP expansion ................................................................................ 33 

Lung tissue eQTLs................................................................................................................. 40 

Finding transcribed enhancers and their target genes ............................................................ 44 

Finding epigenetically defined enhancers and their predicted target genes .......................... 44 

Final set of germline-regulated genes and comparison to the original study ........................ 46 

Pathway enrichment analysis of germline-regulated genes ................................................... 51 

Discussion ................................................................................................................................. 62 

 

III.  Exploration of Somatic Mutation and Gene Expression Features in Three Lung Cancer   

Subtypes ........................................................................................................................................ 69 

 

Introduction ............................................................................................................................... 69 

Methods ..................................................................................................................................... 71 

Summary of somatic mutations ............................................................................................. 71 

Extracting mutational information ......................................................................................... 71 



 

viii 
 

Generating the final set of somatic mutated genes ................................................................ 72 

Extracting mRNA-Seq raw count values for LUAD and LUSC ........................................... 76 

Differential expression analysis using DESeq2..................................................................... 77 

Identification of TSGs and oncogenes ................................................................................... 77 

Pathway enrichment analysis................................................................................................. 77 

Results ....................................................................................................................................... 78 

RNA-Seq data used for DEG analysis ................................................................................... 78 

Differentially expressed genes for three lung cancer subtypes ............................................. 78 

Tumor suppressor genes ........................................................................................................ 83 

Oncogenes ............................................................................................................................. 83 

Pathway enrichment of DEGs ............................................................................................... 84 

Somatic mutations in three lung cancer subtypes .................................................................. 86 

Discussion ................................................................................................................................. 94 

RNA level analyses ............................................................................................................... 94 

DNA level analyses ............................................................................................................... 95 

Study limitations and summary ............................................................................................. 96 

 

IV.  Investigation into the Challenges of Identifying Somatic Mutations in Lung Cancer using     

RNA Sequencing versus Whole Exome Sequencing .................................................................... 98 

 

Introduction ............................................................................................................................... 98 

Methods ................................................................................................................................... 101 

Samples and sequencing ...................................................................................................... 101 

WES data analysis ............................................................................................................... 102 

RNA-Seq data analysis ........................................................................................................ 103 

Read counting for the RNA-Seq SNVs covered by the WES capture kit ........................... 103 

Mutation pattern categorization for all SNVs ...................................................................... 103 

Results ..................................................................................................................................... 105 

Poor concordance for SNVs called in WES and RNA-Seq data ......................................... 107 

Feature analysis of RNA-Seq unique SNVs ........................................................................ 115 

Discussion ............................................................................................................................... 119 

 



 

ix 
 

V.  Application of the GWAS-Based Regulatory Pipeline and Approach to other                

diesease types. ............................................................................................................................. 123 
 

Introduction ............................................................................................................................. 123 

Methods ................................................................................................................................... 125 

Datasets ................................................................................................................................ 125 

COPD GWAS dataset ...................................................................................................... 125 

Lung cancer in never smoking women GWAS dataset ................................................... 126 

GWAS datasets for gastric cancer and esophageal cancer .............................................. 126 

Methods to obtain final germline-regulated genes .............................................................. 127 

Remapping SNPs between genome builds and updating SNP rs ID numbers ................ 127 

Generation of SNPs in LD for all diseases ...................................................................... 128 

GTEx eQTLs .................................................................................................................... 128 

Hao et al. lung eQTLs ...................................................................................................... 129 

FANTOM5 transcribed enhancers ................................................................................... 129 

IM-PET predicted enhancer target genes ......................................................................... 130 

Results ..................................................................................................................................... 130 

Description of data ............................................................................................................... 130 

Remapping SNPs to an updated genome and LD expansion .............................................. 132 

Regulatory variants for all disease types ............................................................................. 133 

GTEx single tissue eQTLs ............................................................................................... 133 

FANTOM transcribed enhancers and their target genes.................................................. 133 

Regulatory variants for lung diseases .................................................................................. 135 

GTEx multi-tissue eQTLs ................................................................................................ 135 

Hao et al. lung tissue eQTLs............................................................................................ 135 

Epigenetically defined enhancers and their predicted target genes ................................. 136 

Little overlap between the different histological cancer types ............................................ 138 

Generation of final germline regulated genes for each disease ........................................... 140 

Discussion ............................................................................................................................... 142 

 

VI.  Conclusion ........................................................................................................................... 145 

 

Filling in the knowledge gap for GWAS variants ................................................................... 147 



 

x 
 

The weak overlap between all three subtypes at the germline and somatic genomes ............ 148 

Linking acetylcholine receptors from the germline to somatic genomes ................................ 149 

Shared pathways across germline and somatic genomes ........................................................ 150 

Future directions ...................................................................................................................... 153 

Concluding remarks ................................................................................................................ 154 

 

APPENDIX ................................................................................................................................. 155 
 

Appendix A. ............................................................................................................................ 155 

Appendix B. ............................................................................................................................ 159 

Appendix C. ............................................................................................................................ 160 

Appendix D. ............................................................................................................................ 171 

 

REFERENCES ........................................................................................................................... 178 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 
 

LIST OF TABLES 

 

Table                 Page 

1.1 Summary of GWA studies for lung cancer ..............................................................................11 

1.2. Summary of mutated driver genes in three lung cancer subtypes ..........................................21 

2.1. Summary of data used from GWAS for lung cancer ..............................................................33 

2.2: Summary of SNP results from lung cancer GWAS ................................................................34 

2.3: Sample results and LD expansion ...........................................................................................38 

2.4. KEGG pathway enrichment results of germline-regulated genes for LUAD .........................52 

2.5. KEGG pathway enrichment results of germline-regulated genes for LUSC ..........................54 

2.6. KEGG pathway enrichment results of germline-regulated genes for SCLC ..........................61 

3.1. Summary of RNA-Seq data ....................................................................................................78 

3.2. Summary of TSGs found in down-regulated DEG sets ..........................................................83 

3.3. Summary of oncogenes found in up-regulated DEG sets .......................................................84 

3.4. Enriched KEGG pathways from overlapping DEGs ..............................................................85 

3.5. Summary of mutational signatures .........................................................................................91 

3.6. Summary of filtered somatic mutated genes ...........................................................................92 

4.1. Tools used for comparing WES versus RNA-Seq data ........................................................104 

4.2. Summary of all SNVs detected in RNA-Seq and WES by MuTect .....................................109 

4.3. Summary of FPKM levels from RNA-Seq for SNVs detected by WES ..............................113 

4.4. Summary of WES coverage for RNA-Seq SNVs that are covered by the  

       WES capture kit ....................................................................................................................117 

4.5. Summary of factors that may lead to inconsistencies in detecting SNVs in 

       WES versus RNA-Seq ..........................................................................................................119 

5.1. Summary of GWAS for COPD.............................................................................................131 

5.2. Summary of GWAS for never smoking women in Asia ......................................................131 

5.3. Summary of GWAS for GC and ESCC in ethnic Chinese ...................................................131 



 

xii 
 

5.4. Summary of LD SNP expansion for all SNPs ......................................................................132 

5.5. Summary of final germline-regulated genes .........................................................................140 

6.1. Final overlap in enriched KEGG biological pathways shared in the germline  

       and somatic genomes ............................................................................................................152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 
 

LIST OF FIGURES 

 

Figure                 Page 

2.1. Pipeline to identify a set of germline genes for SNPs that were moderately associated  

       with three subtypes of lung cancer from the genome-wide association studies (GWAS) ......32 

2.2. Manhattan plot of GWAS results for LUAD ..........................................................................35 

2.3. Manhattan plot of GWAS results for LUSC ...........................................................................36 

2.4. Manhattan plot of GWAS results for SCLC ...........................................................................37 

2.5. Comparison of SNPs from GWAS for lung cancer ................................................................39 

2.6. Lung tissue eQTLs in three lung cancer subtypes ..................................................................42 

2.7. Determination of significance for GTEx multi-tissue eQTLs ................................................43 

2.8. Comparison of the SNPs located within the enhancer regions and their target genes  

       among three lung cancer subtypes ..........................................................................................45 

2.9. Comparison of the germline genes and their enriched biological pathways by subtype ........47 

2.10. Comparison of the final germline-regulated genes discovered in each subtype  

         separated by the different data sources .................................................................................48 

2.11 Comparison of germline-regulated genes to original study and the GWAS Catalog ............50 

3.1. Pipeline to obtain somatic mutated genes for three lung cancer subtypes ..............................74 

3.2. Histogram of somatic mutated genes across multiple samples ...............................................75 

3.3. MA plots for DEGs .................................................................................................................80 

3.4. DEGs found in three lung cancer subtypes .............................................................................81 

3.5. Overlap of DEGs for each subtype at multiple differential expression thresholds .................82 

3.6. KEGG pathways that overlap between all three subtypes ......................................................86 

3.7. Summary of Ti/Tv ratios and mutational signatures for LUAD .............................................88 

3.8. Summary of Ti/Tv ratios and mutational signatures for LUSC ..............................................89 

3.9. Summary of Ti/Tv ratios and mutational signatures for SCLC ..............................................90 

3.10. Final somatic mutated genes .................................................................................................93 



 

xiv 
 

4.1. Comparison between WES data and RNA-Seq data ............................................................106 

4.2. Work flow for the overall analysis........................................................................................108 

4.3. VarScan2 read count values determine why WES unique SNVs are not called by  

        RNA-Seq ..............................................................................................................................111 

4.4. Cufflinks analysis to determine gene expression levels of WES unique SNVs in  

        RNA-Seq ..............................................................................................................................114 

4.5. RNA-Seq unique SNVs not covered by the WES kit and coverage levels ..........................116 

4.6. Mutation pattern for all SNVs...............................................................................................118 

5.1. Regulatory elements discovered in all diseases ....................................................................134 

5.2. Total number of regulatory elements for lung related diseases ............................................137 

5.3. Overlap between lung-related diseases for multi-tissue eQTLs and predicted  

       enhancer targets ....................................................................................................................139 

5.4. There is little overlap between all germline-regulated genes for each disease .....................141 

 

 

 



 

1 
 

CHAPTER I 

 

INTRODUCTION 

 

 Cancer is a disease of uncontrolled cellular growth. In the late stage, cancer cells may break 

the normal boundaries of their given cell type and invade surrounding tissue in a process called 

metastasis. Cancer can be classified into more than 100 distinct diseases that can affect nearly 

every cell and tissue in the human body and is ultimately a disease of genomic abnormalities (1). 

In 1982, strong evidence of the genetic component of cancer was discovered – Reddy et al. and 

Tabin et al. found a single mutation in the HRAS oncogene leading to cancer, as reported in two 

papers (2, 3). Since this breakthrough, hundreds of oncogenes and tumor suppressor genes have 

been discovered that may lead to cancer when their normal cellular mechanisms are disrupted 

through processes such as somatic mutations (4, 5). Although somatic mutations are important in 

cancer, the germline genome may also influence risk of cancer. 

The germline genome is the genome of the germ cells and is inherited. This DNA is the 

same in every cell in the human body (with the exception of de novo mutations). The somatic 

genomes consist of the genomes of every cell in the body with mutations that have been acquired 

during the lifetime of the individual. While the germline genome is passed on to offspring for the 

next generation, somatic mutations do not pass on. Both of these genomes have been found to be 

important in the process leading to cancer. However, many cancer researchers focus on one or the 

other genome and rarely study them in combination. It is important to study both because variants 
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in the germline genome could act in combination with variants in the somatic genome to cause 

cancer in a process known as Knudson’s two-hit hypothesis (6). 

Most cancers arise from somatic mutations to a given cell type. Although there are some 

cancers attributable to germline genetic abnormalities, all of these disruptions to the germline 

genome confer a greater risk for cancer rather than causal tissue-specific somatic mutations that 

directly lead to disease. Somatic mutations in cancer cells can be classified into two main types: 

driver mutations and passenger mutations. Driver mutations typically refer to those somatic 

mutations that confer uncontrolled growth to the cell or allow the cell to survive in conditions 

where apoptosis should normally occur. These are the typical cancer genes that are known and are 

often implicated in more than one cancer type (1). There are now over 600 driver genes that have 

been discovered in cancer (7), and more novel mutations, including those with regulatory roles in 

noncoding sequences, have been reported with potential driving roles recently (8, 9). Passenger 

mutations are somatic mutations in the cancer cell that are not specific to uncontrolled growth. The 

majority of somatic mutations are passenger mutations in cancer cells (1). Many of these mutations 

are benign and were in the cell prior to the driver mutation event (1). However, the determination 

of passenger versus driver genes is still an active area of research (10, 11). Overall, cancer is a 

genetic disease where mutations in one of hundreds, or thousands, of different genes may lead to 

abnormal cellular growth and disease state from the germline, somatic, or both genomes. This 

dissertation uses genetic data from the germline and somatic genomes to investigate three subtypes 

of lung cancer. 

Below, I give a brief overview of the history of lung cancer, environmental exposures 

associated with lung cancer, and genetic heritability. I also highlight the differences in lung cancer 

subtypes from a histological perspective. Finally, I summarize the genetic abnormalities in three 
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lung cancer subtypes using numerous examples from candidate gene studies, as well as genome-

wide studies, from the germline and somatic genomes. 

 

Overview and epidemiology of lung cancer 

 In 2012, there were ~8.2 million estimated deaths around the world attributable to cancer 

(12). The cancer types that were responsible for the most number of deaths were lung cancer in 

men and breast cancer in women. However, this trend is related to the income and status of the 

country – in developed countries, lung cancer is the leading cause of cancer related deaths for both 

sexes (13). Historically, this extremely high incidence of lung cancer around the world was not 

always true. Initially, lung cancer was a very rare cancer type with some institutions reporting it 

as comprising only ~1% of all tumors discovered (14). However, around the end of World War I 

(~1918), lung cancer cases began to skyrocket. Originally, there were several suspected links to 

lung cancer such as poison gas used in the trenches and the increase in pollution from the 

widespread use of the newly introduced automobiles (14). However, in Germany in the early 

1940s, the first suspected links between cigarette smoke and lung cancer were reported. As 

reviewed in (14, 15), Müller’s work (16), published in German, was one of the first studies to 

report a link between cigarette smoke and lung cancer. Additional studies in the UK and the US 

validated these claims in the 1950’s (15). A preliminary report, by Doll and Hill, in 1950 

demonstrated a link between smoking and lung cancer (17) while a much larger study (18) 

confirmed these findings in addition to the role of cigarette smoking in many other diseases. There 

are strong correlations with the prevalence of smoking and lung cancer for both sexes (19). 

Additionally, with an increase in cigarette smoking in developed nations, lung cancer has now 



 

4 
 

increased to become the number one diagnosed cancer type for men and the third most diagnosed 

cancer type for women around the world (13).  

 These worldwide trends are also prevalent in the United States (US). In the US, lung cancer 

is estimated to be the second leading cancer diagnosis for men (after prostate) and women (after 

breast) in 2017 (20). Although lung cancer is not estimated to be the number one diagnosed cancer 

type, it is predicted to be the leading cause of cancer related deaths in 2017 for both men and 

women. Current estimates place the total number of estimated deaths from lung cancer at ~85,000 

for men and ~71,000 for women in the US for 2017 (20). One explanation for such a high mortality 

rate for lung cancer in comparison to other cancer types is due to its late-stage diagnosis. Over 

50% of lung cancer diagnoses are made at the distant (metastasized to other organs) stage, while 

only ~15% of cases are discovered at a localized (constrained to the lung) level (20). There is a 

strong correlation between survival time and the stage at lung cancer diagnosis. At diagnosis, the 

5 year survival rate for localized stage lung cancer is ~55%, but if diagnosed at a distant stage, the 

5 year survival rate is <5% (21). In an attempt to increase the survival time of lung cancer sufferers, 

the US has rolled out an early screening program for lung cancer (22). Early results suggest that 

through the use of low-dose helical computed tomography (CT) scans, the mortality from lung 

cancer can be reduced (23). This program focuses on heavy smokers, but cigarette smoking is not 

the only known environmental agent associated with lung cancer. 

 

Risk factors associated with lung cancer 

 Cigarette smoking is the number one cause of lung cancer and worldwide is estimated to 

be the cause of 85% of lung cancer cases in men and 47% of lung cancer cases in women (24). 
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However, many other environmental risks pose a threat. For example, smoking tobacco in non-

cigarette forms such as pipes or cigars also increases a person’s risk for lung cancer (25). 

Additionally, indoor and outdoor pollution poses a risk for lung cancer (25), like using specific 

cooking pots in many Asian countries (26). Many other occupational exposures exist such as 

arsenic and asbestos, as well as many heavy metals such as nickel and chromium. In addition, 

naturally occurring radon gas and radiation all have been associated with lung cancer risk (25). 

Although environmental hazards play a large role in lung cancer risk, there is also a genetic risk 

for lung cancer. 

 In 2001, Hemminki et al. (27) used the Swedish Family-Cancer Database to estimate the 

genetic heritability for colorectal cancer, melanoma, and lung cancer. This database was the largest 

that was used at the time of publication and contained over 6 million people and ~550,000 cancers 

(28). They estimated liability for cancer using genotype, shared environment, childhood 

environment and non-shared environments among family members. The genotype variable used 

corresponded to overall relationships. For example, the coefficient of relatedness for first-degree 

relatives is 0.5, such as siblings and parent-offspring, while half-siblings is 0.25. The results of 

this study concluded that the heritability for lung cancer was estimated to be approximately 14% 

in this registry. A follow-up study, published in 2002 (29), used the updated version of the same 

database and found that genetic effects accounted for approximately 8% of susceptibility of lung 

cancer. Recently, heritability estimates for lung cancer have been determined through genome-

wide association studies (GWAS) (30). Sampson et al. (30) found that the heritability estimate for 

lung cancer is 0.206 in Europeans and 0.121 in Asians. Though these studies identified the percent 

of a genetic effect from lung cancer, earlier studies as far back as 1963 (31, 32) found familial 

aggregation of lung cancer. After 1963, many other studies have investigated the association 
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between family history and lung cancer including strong differences between ethnicity and lung 

cancer risk (33). For details about these studies, see the review this year by Musolf et al. (34). 

Importantly, these studies looked at the general category of lung cancer, and they did not separate 

lung cancer into its main subtypes.  

 

Histological classifications of lung cancer 

 There are two main histological types of lung cancer: small cell lung cancer (SCLC) and 

non-small cell lung cancer (NSCLC) (35). As its name implies, SCLC (or sometimes referred to 

as small cell carcinoma or its archaic name oat cell carcinoma) is defined by the World Health 

Organization (WHO) by the small size of the tumor cells that they define as smaller than the size 

of 3 small resting lymphocytes (24). SCLC cases comprise only ~13% of total number of new lung 

cancer cases worldwide (36). Additionally, SCLCs are neuroendocrine tumors unlike other tumors 

of the lung that are epithelial (bronchial or alveolar) or squamous in origin. Although SCLC can 

be further differentiated into a number of rare subtypes, most common classifications put SCLC 

into one main type (24). SCLC is very aggressive, has strong potential for early metastasis, and is 

difficult to treat (37). 

Several classes of histologically different subtypes are classified under the larger lung 

cancer group NSCLC (24). Although NSCLC comprises many subtypes, the three most prevalent 

types are lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC) and large cell 

carcinoma (LCC). LCC comprises only ~15% of all lung cancer cases and most lung cancer cases 

are either LUAD (40%) or LUSC (30%) (19, 38). Additionally, LUAD and LUSC are the most 
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widely studied lung cancer subtypes and will be the NSCLC subtypes that are studied in this 

dissertation.  

LUAD arises from epithelial cells and is most likely to occur on the periphery of the lung. 

The tumor cells range in size and usually resemble one of six macroscopic patterns. LUAD itself 

is comprised of many smaller subtypes, but like SCLC, it is often studied as a mixture of these 

histology types. LUAD is also the lung cancer subtype most likely to occur in never smokers and 

among women (24). 

LUSC arises from cells in the bronchial epithelium, and although several histological 

variations of LUSC exist, they are usually grouped into one subtype. The tumor cells usually 

exhibit irregular nuclei and are of an abnormal shape. Additionally, the tumors are often a very 

large size (24). Among lung cancer subtypes, LUSC usually has the strongest association with 

smoking, although it is second to SCLC in some studies (24, 39). 

 

Germline influence on lung cancer 

 

Familial lung cancer 

 Linkage studies have been performed to identify regions of the genome that are linked to 

lung cancer in families. For example, the Genetic Epidemiology of Lung Cancer Consortium 

(GELCC) performed a genome-wide linkage analysis and identified a region of the genome at 

6q23-25 associated with lung cancer (40). A follow-up study by You et al. (41) used 

microsatellites to fine-map this region to identify the gene responsible for the 6p23-25 peak from 
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the previous study. Their study concluded that the gene responsible for lung cancer in the linkage 

study was RGS17. An updated linkage analysis was performed by the GELCC in 2010. This new 

study replicated the earlier results on 6q using a larger number of families. Also, this study 

identified other regions on 6p, 1q, 8q, and 9p that may also be associated with lung cancer (42). In 

addition to the regions identified by linkage associated with lung cancer, there are a few cases of 

familial lung cancers discovered through gene-specific sequencing described below. 

 In 2005, Bell et al. (43) reported a potential inherited risk mutation for lung cancer in a 

European family. This study found that the T790M mutation in the Epidermal Growth Factor 

Receptor gene (EGFR) was mutated in multiple family members with lung cancer. This specific 

mutation has also been found in other families with lung cancer (44). Interestingly, this is a 

commonly observed mutation at the somatic level in lung tumor tissue that confers resistance to 

targeted EGFR inhibitors (45). Additionally, germline mutations in strong tumor suppressor genes 

such as p53 lead to an increased lung cancer risk (usually at a younger age) (46), along with many 

other cancer types.  

 

Candidate gene studies 

 While there are many genetic variants that have been reported for an association with lung 

cancer, few have been replicated in large studies according to a review by Brennan et al. (47). 

However, two notable genes that contain germline variants have been replicated in more than one 

large study or meta-analysis. Variants within the glutathione S transferase M1 (GSTM1) gene have 

been implicated in risk for lung cancer. In a meta-analysis in 2008 that analyzed over 19,000 lung 

cancer cases and over 25,000 controls, the authors found an increased risk for lung cancer in 
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European and Asian individuals with germline variants in GSTM1 (48). Another gene with 

germline variants associated with lung cancer is CHEK2 (47). The missense mutation I157T, 

among other mutations, in CHEK2 were found to lead to an increased risk of many cancer types 

in a Polish population (49). However, intriguingly, it was found that rare alleles of CHEK2 

decreased risk for lung cancer, while they increased risk of many other cancer types in a Polish 

population (50). However, one possibility for this observation is that the subjects died from the 

other cancers before they developed lung cancer and is therefore possible that risk for lung cancer 

may not have changed in this population. Many germline variants in lung cancer are thought to be 

of higher frequency in the population but of lower risk, so an ideal study design to discover these 

variants is through genome-wide association studies (GWAS). 

 

Genome-wide association studies 

The first successful GWAS was performed for age-related macular degeneration (AMD) 

in 2005 (51). Since then, this technique has been applied to an array of complex diseases or traits. 

As of February 13, 2017, the GWAS Catalog lists 31,394 unique SNP-trait associations for 2,000 

traits across 2,742 studies (52). This large number of identified variants in peer-reviewed articles 

suggests strong interest in using this approach for many disease types, including lung cancer.  

In 2008, there were four major GWA studies for lung cancer reported that identified several 

variants associated with lung cancer in European populations (53-56). Interestingly, all of the 

studies found strong genome-wide significant associated SNPs located in region 15q25. This 

region harbors a set of nicotinic cholinergic receptor (CHRNA) genes. This class of genes had 

previously been implicated in nicotine dependence (57). However, this region is associated with 
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lung cancer independent of smoking addiction (54). Additionally, other regions were found with 

associations in a subset of the studies such as 5p15 (55, 56) and 6p21 (56). Since 2008, there have 

been many more GWA studies (or meta-analyses) for lung cancer with larger samples sizes (58, 

59) and in other racial/ethnic populations (60-62). A summary of these findings is shown in Table 

1.1. Although large sample sizes and diverse populations provided additional regions of the 

genome to interrogate, there are several limitations to these studies. First, many of these studies 

did not analyze or stratify their results based upon all three major subtypes of lung cancer 

mentioned above. This made it difficult to investigate the level of association or similarity among 

the different subtypes. Secondly, since these are association studies, it is difficult to infer the 

correct causal SNP. It is also possible that the causal SNP may not have been genotyped and instead 

is detected through linkage disequilibrium (LD) (63). Finally, many of these detected variants are 

located in non-coding regions of the genome. This makes it difficult to infer a relationship between 

the non-coding SNP and its target gene(s). Therefore, many of the studies reported results with a 

set of “most likely” genes that are usually the closest ones in spatial proximity to the SNP based 

upon distance. Work has now demonstrated that the gene closest to the variant may not be its actual 

target (64). This lack of understanding for how non-coding variants are acting in lung cancer will 

be addressed in Chapter II where I will use two functional elements to identify regulatory SNPs 

and their target genes in three lung cancer subtypes: expression quantitative trait loci (eQTLs) and 

enhancers. 
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Table 1.1. Summary of GWA studies for lung cancer. 

Lead 
author 

Publication, 
year 

Population/study 
characteristics 

Initial discovery 
sample size 

GWAS platform Locus (or 
gene) 
reported 

Genes reported Outcome studied 

Spinola Cancer Letters, 
2007 

European 338 cases  
335 controls 

Affymetrix 100K  KLF6 KLF6  Risk of LUAD in 
discovery set and 
mixed NSCLC in 
replication set. 

Amos Nature 
Genetics, 2008 

European 1,154 cases  
1,137 controls 

Illumina 
HumanHap300 v1.1 

15q25.1 PSMA4 and 
CHRNA  

Risk of NSCLC. 

Hung Nature, 2008 European 1,989 cases 
2,625 controls 

Illumina Sentrix 
HumanHap 300 

15q25 CHRNA5, 
CHRNA3, CHRNB4 

Overall risk of lung 
cancer. 

Liu JNCI, 2008 Small family 
study GWAS 

194 cases 
219 controls 

Affymetrix 500K 
Affymetrix SNP 6.0 

15q24-25.1 CHRNA3, 
CHRNA5, 
CHRNB4, PSMA4 

Risk of familial lung 
cancer. 

Wang Nature 
Genetics, 2008 

European 1,952 cases 
1,438 controls 

Illumina 
HumanHap550 

15q25.1, 
6p21.33, 
5p15.33 

BAT3, MSH5, 
CLPTM1L 

Overall risk of lung 
cancer in initial 
analysis, replication, 
and meta-analysis. 
Also identified 
subtype specific risk 
for top SNPs.  

McKay Nature 
Genetics, 2008 

European 3,259 cases 
4,159 controls 

Illumina Sentrix 
HumanHap300 

5p15.33 TERT and 
CLPTM1L 

Overall risk of lung 
cancer.  

Broderick Cancer 
Research, 2009 

European 1,952 cases 
1,438 controls 

Illumina 
HumanHap550 

15q25.1, 
5p15.33, 
6p21.33 

CHNRA3, IREB2, 
PSMA4, TERT, 
CLPTM1L, BAT3, 
TNXB 

Overall risk of lung 
cancer in initial 
analysis and meta-
analysis. The three 
most significant loci 
were analyzed by their 
histologies. 
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Landi AJHG, 2009 European 5,739 cases 
5,848 controls 

Illumina HumanHap: 
317K+240S, 550K, 
610QUAD, 1M 

15q25, 
6p21,  
5p15.33 
(LUAD) 

CHRNA region, 
CLPTM1L and 
TERT (LUAD) 

Risk of lung cancer in 
LUAD, LUSC, and SCLC 
subtypes for initial 
analysis. Performed 
meta-analysis for all 
three subtypes in 
second study.  

Li  The Lancet 
Oncology, 2010 

Never smoking 
study. Mostly 
European 

754 cases  
377 controls 

Illumina  
HumanHap: 370K, 
610K 

13q31.3 GPC5  Overall risk of lung 
cancer in never 
smokers. 

Yoon Human 
Molecular 
Genetics, 2010 

Korean 621 cases  
1,541 controls 

Affymetrix 5.0 3q29, 5p15 C3orf21, TERT, 
SLPTM1L 

Risk of NSCLC. 

Hu  Nature 
Genetics, 2011 

Han Chinese 2,383 cases  
3,160 controls 

Affymetrix 6.0 3q28, 
5p15.33, 
12q12.12, 
22q12.2 

TP63, TERT, 
CLPTM1L, MIPEP, 
TNFRSF19, 
MTMR3, 
HORMAD2, LIF 

Overall risk of lung 
cancer. Stratified their 
six most significant 
SNPs by histology. 

Ahn Human 
Genetics, 2012 

Korean never 
smokers 

446 cases 
 and 497 controls 

Affymetrix 6.0 18p11.22  APCDD1, NAPG, 
FAM38B 

Risk of NSCLC in never 
smokers. 

Timofeeva Human 
Molecular 
Genetics, 2012 

European and 
Chinese meta-
analysis 

14,900 cases 
29,485 controls 

Illumina: 317K, 317K 
+ 240S, 370Duo, 
550K, 610QUAD, 
1.2M 

5p15, 6p21, 
15q25, 
12p13, 
9p21 

Several for each 
region  

Meta-analysis for risk 
of lung cancer in 
LUAD, LUSC, SCLC, and 
large-cell lung cancer 
(LCLC). 

Lan Q Nature 
Genetics, 2012 

Asian women 
never smokers 

5,510 cases 
4,544 controls 

Illumina: 370K, 
610Q, 660W 

10q25.2, 
6q22.2, 
6p21.32, 
5p15.33, 
3q28, 
17q24.3 

VTI1A, ROS1, 
DCBLD1, HLA 
class II region, 
among other 
potential genes 

Risk of lung cancer in 
never smoking women 
in initial study. 
Performed replication 
for 13 most significant 
SNPs in LUAD. 

Dong PLoS Genetics, 
2013 

Han Chinese 833 cases 
3,094 controls 

Affymetrix Genome-
wide Human SNP 
Array 6.0 

12q23.1 SLC17A8, NR1H4  Risk of LUSC. 
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Wang Y Nature 
Genetics, 2014 

European meta-
analysis 

11,348 cases 
15,861 controls 

Illumina: 317, 317 + 
240S, 370Duo, 550, 
610 1M 

3q28 
(LUAD) 

BRCA2, CHEK2 
rare variants for 
LUSC and TP63 
for LUAD 

Meta-analysis for risk 
of NSCLC. Stratified 
analysis by LUAD and 
LUSC. 

Zanetti Lung Cancer, 
2016 

African-American 1,737 cases 
3,602 controls 

Illumina HumanHap 
1M Duo 

5p15,15q25 CHRNA5 and 
TERT 

Risk of NSCLC. 
Stratified analysis by 
LUAD and LUSC. 

These studies were located using the GWAS Catalog (52). 
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Functional elements  

 Non-coding functional variants can be classified into many categories, including 

transcription binding sites (TFBS), splice sites, methylation related CpG islands, eQTLs and 

enhancers. Among these non-coding variants, some are associated with a specific trait such as 

eQTLs and GWAS significant SNPs, while others, such as TFBS, are predicted to be functional 

based upon genomic context. Among these functional elements, eQTLs and enhancers have gained 

much attention due to their strong roles in gene regulation and disease association and the recent 

release of many high-quality data sets.  

 eQTLs are genetic variants in the genome that are correlated with variations in gene 

expression. These regulatory elements may be tissue specific, so it is necessary to use the correct 

disease related tissue for eQTL significance (65). Large collaborations such as the Genotype-

Tissue Expression (GTEx) project (66) have generated sets of eQTLs in over 40 different human 

tissue types. Additionally, GTEx also generated sets of multi-tissue eQTLs that act in multiple 

tissues (67). Past work has also demonstrated that GWAS hits are enriched in eQTLs (68) and 

other regulatory regions (69) of the genome. 

Enhancers are DNA sequences in the genome that can enhance the transcription of a gene 

or genes. They are mostly located in non-coding regions of the genome and can influence 

transcription of up-stream or down-stream genes. Additionally, enhancers may act on genes that 

are not their closest neighbors (70). Although identifying or predicting enhancers based on DNA 

sequence alone is difficult, many epigenetic marks associate with enhancers and their activity (70). 

This feature allows one to identify enhancers using experimental techniques such as Chip-Seq 

(70). Many methods are now available to predict enhancers in many different tissue types 
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integrating many different data types (71, 72). In addition to the epigenetic marks associated with 

enhancers, it was discovered that enhancers can also be transcribed into enhancer RNAs (eRNAs). 

The Functional ANnoTation of the Mammalian genome (FANTOM) project (73) used these 

eRNAs to identify enhancer regions across multiple tissue and cell-lines using the Cap Analysis 

of Gene Expression (CAGE) method (74). Recent work (75) has found that GWAS variants located 

in enhancers are important for many cancer types such as prostate cancer, breast cancer, and 

colorectal cancer. 

 

Lung cancer from a somatic perspective 

 Although germline studies of lung cancer can provide insight into risks involved with lung 

cancer, studying somatic mutations in lung tumor tissue can help identify the genomic aberrations 

driving the tumor growth (1). Therefore, there has been much effort involved in the determination 

of the genetic aberrations in lung tumor tissue. These studies can be separated into smaller 

candidate gene studies and larger genome-wide tests to identify any locations in the genome that 

may be linked with lung cancer.  

 

Candidate somatic studies 

 One approach to identify genetic alterations associated with lung cancer is to study gene 

sets that may have previous evidence for their involvement in cancer or cellular proliferation. 

Below, I summarize a single multi-gene study that has progressed the lung cancer research field 

for each lung cancer subtype.  
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LUAD  

 One of the first major multi-gene investigations to identify mutated genes associated with 

LUAD using sequencing was performed in 2008. Ding et al. (76) sequenced 623 known cancer 

related genes to identify novel mutations in lung cancer. In addition to replicating known gene 

associations with lung cancer such as TP53, CDKN2A, STK11, KRAS, EGFR and NRAS, this work 

also identified novel mutations in lung cancer including tumor suppressor genes (TSGs) ATM, and 

RB1, and the proto-oncogene tyrosine kinase ERBB4.  

 

LUSC   

In 2011, Hammerman et al. (77) sequenced 201 genes including all known kinase genes at 

that time to identify somatic mutations in LUSC using 20 samples. They found mutations in 25 

genes (including p53) in this initial sample set. They performed a second screen with six kinase 

genes (DDR2, FGFR2, NTKRK2, JAK2, FLT3, and CDK8) that were mutated in the first phase. 

They identified many mutations in the DDR2 gene and replicated it in an additional five samples 

from a validation cohort of 222 samples, confirming its role in LUSC.  

 

SCLC 

 There are no large candidate-based sequencing studies for SCLC comparable to the studies 

mentioned above for LUAD and LUSC. However, smaller single gene studies have identified 

many genes with mutations that may be involved in the disease process such as p53, PTEN, 

PIK3CA, and RB (78). 



 

17 
 

Genome-wide somatic studies 

 In contrast to candidate gene studies, genome-wide studies for cancer interrogate the entire 

genome to identify genes that may influence lung cancer. Below, I highlight some of the most 

expansive genome-wide somatic studies for lung cancer in each subtype. 

 

LUAD 

 Since the introduction of genome-wide genetic technologies, there have been several 

efforts to search for driver mutations in lung cancer. In 2007, Weir et al. (79) used SNP arrays to 

determine a set of copy number alterations across the genome for 371 LUAD tumor samples. This 

analysis found over 50 copy number changes across the genome for the LUAD samples. This 

genome-wide analysis was able to identify CNVs in LUAD, but was not able to obtain the level 

of mutational data generated using DNA sequencing. In 2012, one of the first efforts to use NGS 

to interrogate lung cancer on multiple samples was done. Govindan et al. (80) performed whole 

genome sequencing (WGS) and transcriptome sequencing (RNA-Seq) on 17 patients with 

NSCLC. Intriguingly, this study identified many chromatin modification genes that were 

significantly mutated. They also discovered novel fusion genes through their RNA-Seq analysis. 

In that same year, Imilinski et al. (81) performed a combination of WGS and WES on over 180 

LUAD samples. Their work discovered several somatic mutations and insertions/deletions (indels) 

in LUAD. A few years later, The Cancer Genome Atlas (TCGA) working group published their 

results on LUAD (82). The TCGA group generated germline SNP data, somatic mutation data, 

mRNA sequencing data, microRNA sequencing data, methylation data, copy number alterations 

data, and protein expression levels using 230 LUAD tumor and matched normal samples. This 
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unprecedented level of data and methodological approaches discovered many new genomic 

alterations associated with LUAD (82). Work in Chapter III uses some of these results from 

somatic mutation calling and mRNA sequencing for the somatic analysis performed in that 

chapter. 

 

LUSC 

 In 2009, Bass et al. (83) used SNP arrays to investigate the copy number alterations 

associated with LUSC and esophageal squamous cell carcinoma (ESCC) in 40 ESCC samples and 

47 LUSC samples. This study identified amplifications and deletions in both cancer types. 

Interestingly, they found that genomic region 7p11.2 was amplified in both cancer types with 

EGFR as the target gene. EGFR is mutated in many NSCLC subtypes, but most are found in LUAD 

(35). Another region that was amplified in both cancer types was 8p12 that includes the candidate 

genes FGFR1 and WHSC1L1. Their study also discovered SOX2 as an amplified oncogene in both 

cancer types. The following year, Weiss et al. (84) used a much larger set of LUSC tumor samples 

(n = 155) to identify copy number alterations using a SNP array. Their study identified over 50 

amplifications and deletions and confirmed the previous year’s finding of FGFR1 and SOX2. 

Interestingly, they looked at previously published results from LUAD (85) and observed that 8p12, 

which contains FGFR1, is not amplified in LUAD. In 2012, TCGA published their initial analyses 

on LUSC (86). For their analyses, they generated genome-wide data for mRNA sequencing, 

microRNA sequencing, copy number alterations, somatic mutations, and methylation levels. Their 

results indicated many genomic alterations in LUSC that were previously unknown. Intriguingly, 

they found somatic mutations in the HLA-A for the first time in lung cancer that suggests an 

immune role in this cancer subtype. 
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SCLC 

 In 1995, Levin et al. (87) examined copy number alterations in SCLC using comparative 

genomic hybridization (CGH) for ten SCLC samples. Their results indicated many regions of the 

genome that were increased (gain, or amplification) or decreased (loss) in copy number. Of note, 

they found copy number gains in regions that contained MYC, a known oncogene overexpressed 

in multiple cancer types (75). They also found decreased copy numbers in many genomic regions 

that harbor well-known TSGs p53 and RB. In 2012, two large SCLC studies were published in the 

same issue of Nature Genetics (88, 89). Peifer et al. (88) generated WES and copy number 

alterations for ~30 samples, and they performed WGS on two of the samples and RNA-Seq on 15 

of the samples. Their study found amplifications in 8p12, which contains the FGFR1 gene, and a 

single sample with amplification of the MYC region. Their work also identified a set of 

significantly mutated genes in addition to sets of fusion genes. Rudin et al. (89) generated WES, 

RNA-Seq, and copy number alteration data on over 50 SCLC samples. Their analysis identified 

thousands of somatic mutations and many copy number alterations. They replicated the MYC 

amplification from the previous study and also found amplifications in the SOX2 gene. They found 

many gene fusions, including four gene fusions involving kinase genes. Most recently, in 2015, 

George et al. (90) published the genomic profiles of WGS for 110 SCLC samples, RNA-Seq for 

71 of these samples, and SNP copy number arrays for 103 of the samples. This study revealed 

several new genomic alterations in SCLC in genes such as TP73 and many NOTCH signaling 

genes.  
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Overlap of genetic features in lung cancer subtypes 

 Results from the publication of the two large SCLC studies in 2012 (88, 89) highlighted 

above gave an indication of somatically mutated cancer driver genes, and oncogenic gene fusions, 

that are shared between LUAD, LUSC, and SCLC. These new results, in combination with 

previously discovered genomic alterations, reveled shared gene sets between subtypes (91). It was 

revealed that all three subtypes shared these somatic mutated driver genes: TP53, CDKN2A, 

PIK3CA, and PTEN. Only one gene, KEAP1, was uniquely shared between LUSC and LUAD, 

while two genes, FGFR1, and SOX2, were both driver genes shared between only LUSC and 

SCLC. This also revealed that many driver genes are unique to each subtype. These mutated driver 

genes and their comparison to each other are listed in Table 1.2. 

A recent study (92) performed a deep comparison of genomic features in LUAD and 

LUSC. Campbell et al. (92) used WES and copy number profiles to identify CNVs and somatic 

mutations in over 1,000 tumor-normal matched pairs. Interestingly, they found that only six 

mutated genes (TP53, RB1, ARID1A, CDKN2A, PIK3CA, and NF1) were shared between the two 

subtypes. Three of these genes (TP53, CDKN2A, and PIK3CA) were previously found in all three 

lung cancer subtypes, RB1 was previously only found in SCLC, and ARID1A and NF1 were not 

previously found to be driver genes in lung cancer. This dissertation will be the first effort as a 

comprehensive comparison of LUAD, LUSC, and SCLC across the germline and somatic 

genomes.  
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Table 1.2. Summary of mutated driver genes in three lung cancer subtypes. 

LUAD only LUSC only SCLC only LUAD-LUSC 

shared 

LUAD-SCLC shared LUSC-SCLC 

shared 

Shared by three 

EGFR NFE2L2 RB1 KEAP1 Nothing uniquely shared FGFR1 TP53 

KRAS TP63 RLF-MYCL1   SOX2 CDKN2A 

ERBB2 NOTCH1 MYCL1    PIK3CA 

BRAF  MYCN    PTEN 

ALK fusions  MYC     

ROS1 fusions       

RET1 fusions       

STK11       

Table is based off genes reported in Figure 1 in Pietanza and Ladanyi, Nature Genetics, 2012 (91). 
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Summary and overview of dissertation 

 Although cigarette use has strong correlations with lung cancer risk, genetic factors also 

play major roles. Lung cancer consists of several subtypes; the most common of these are LUAD, 

LUSC, and SCLC. Previous work has identified potential genetic risk for these subtypes from the 

germline level using small candidate-gene approaches and also GWA studies. Additionally, 

somatic studies have identified genes that have major roles in lung cancer tumor formation and 

growth. However, there is a lack of information on how genetically similar these three subtypes 

are across both genomes. This dissertation aims to perform a detailed interrogation of these three 

subtypes for the germline and somatic genomes.  

 In Chapter II, I investigate these three major subtypes from the germline perspective. I use 

common genetic variants discovered in a GWAS for LUAD, LUSC, and SCLC to investigate the 

common and distinct biology behind these three subtypes of lung cancer. Most GWA studies for 

lung cancer are not analyzed by each subtype separately, and most identified variants do not have 

a well-identified biological role or associated gene. Therefore, I identify a set of regulatory variants 

for each subtype. I also link these regulatory variants to their target genes using functional 

genomics data to provide insight into the biology behind each disease. Finally, I determine 

enriched biological pathways that contain these target genes. 

In Chapter III, I use biological data from the somatic perspective to investigate these 

subtypes. I utilize gene expression levels identified from RNA sequencing (RNA-Seq) and DNA 

mutations identified from whole exome sequencing (WES) to interrogate the disease processes 

underlying each subtype. I generate a set of genes that are differentially expressed in the tumor 

versus normal tissue using the RNA-Seq expression data and use these genes to identify perturbed 
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biological pathways for each subtype. I also identify somatic mutational signatures for each 

subtype. These signatures can be used to help identify similarities behind specific cancer types by 

utilizing their unique pattern of somatic mutational processes. I use filtering and expression 

methods to obtain a set of potential driver genes for each subtype and investigate their overlap 

among the subtypes.  

In Chapter IV, I explore the possibility of identifying somatic mutations using RNA-Seq 

in place of WES in lung cancer by performing a systematic comparison of variants identified in 

WES versus RNA-Seq. Specifically, I discover somatic mutations from lung cancer samples that 

have undergone WES and RNA-Seq and compare several technical and biological features of the 

mutations identified by each method.  

In Chapter V, I apply the approach to identify GWAS regulatory variants and their target 

genes from Chapter II to other disease types. I utilize other lung diseases, population types, and 

cancer types to expand the usefulness of this approach. This chapter demonstrates the approaches 

from Chapter II can be expanded beyond lung cancer. 

In Chapter VI, I summarize the major findings from Chapters II-IV. The main focus of the 

summary consists of ways that the germline findings from Chapter II and the somatic findings 

from Chapter III can be investigated together to identify unique new biological insights behind 

LUAD, LUSC, and SCLC. I finish with future directions that can be undertaken with these results 

to gain a clearer picture into the genetics and biology behind LUAD, LUSC, and SCLC. 
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CHAPTER II 

 

EXPLORTATION OF THE GERMLINE GENOME IDENTIFIES WEAK 

SHARING OF GENETIC ASSOCIATION SIGNALS IN THREE LUNG 

CANCER SUBTYPES: EVIDENCE AT THE SNP, GENE, REGUALTION, 

AND PATHWAY LEVELS. 

 

Introduction 

 

Out of the three major subtypes of lung cancer, the non-small cell lung cancer (NSCLC) 

subtypes LUAD, and LUSC comprise ~60% of newly reported lung cancer cases, while SCLC 

comprises only a small subset (~15%) (93). One commonly used approach to identify variants 

associated with these lung cancer subtypes is to perform a GWAS. In 2007, Spinola et al. (94) 

performed a small GWAS in a European population of ~ 300 cases and ~ 300 controls and 

identified a variant near the KLF6 gene associated with lung cancer. The following year in 2008, 

four GWA studies were published (53-56) with all of the studies identifying variants in the 15q25 

region that showed associations with lung cancer. Since 2008, several GWA studies and meta-

analyses, (26, 58-62, 95-99) have discovered several common variants associated with lung cancer 

risk. However, only about half of these studies (54, 58-60, 95, 96) had data for all three lung cancer 

subtypes.  

Additionally, most of these GWAS findings did not reach the stringent genome-wide 

significance in a single GWA study (p < 5 x 10-8), and most of the genome-level significant single 

nucleotide polymorphisms (SNPs) were located within non-coding regions of the genome, making 

it difficult to infer the underlying mechanism of the significant variants that could contribute to 
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disease. Since genome-wide significance level has been thought too stringent (i.e., by Bonferroni 

correction), those common SNPs with moderate association signals (e.g., p < 1 x 10-3) have been 

found informative in exploring the association evidence (100, 101). Moreover, recent studies have 

demonstrated that these marginally significant SNPs found from GWAS within non-coding 

regions of the genome may function in regulatory roles (68, 69). Therefore, one can use these 

results to obtain a set of regulated genes to investigate and compare the similarity of the three lung 

cancer subtypes at the germline gene level and at the regulation level.  

In this study, we first identified a set of SNPs with moderate association signals (p < 1 x 

10-3) from a prior GWAS (96) that covered three lung cancer subtypes, LUAD, LUSC, and SCLC. 

Then, we identified and compared regulatory variants associated with the three subtypes of lung 

cancer as well as their target genes. We used these results to investigate the similarity of the 

subtypes at the SNP, gene, regulatory, and pathway levels. We first remapped these SNPs to an 

updated genome reference (hg19) and expanded them using linkage disequilibrium (LD) patterns 

from a European population. We used this final set of SNPs to examine several lung tissue 

expression quantitative trait loci (eQTL) and enhancer datasets for evidence of regulatory function 

of each SNP and identified their target genes. When we compared the target genes of these 

regulatory SNPs, we observed that only five genes overlapped all three subtypes. Through this 

analysis, we have identified many genes that might have an important association with lung cancer 

for each specific subtype.  
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Methods 

 

GWAS dataset 

We used data from a previously performed multi-site GWAS for lung cancer in a European 

population that analyzed each sample by lung cancer subtype for the NCI GWAS for lung cancer 

(96). Briefly, this GWAS for lung cancer used cases and controls from four different studies, 

EAGLE, ATBC, PLCO, and CPS-II. After quality control (QC) of the genotyping results, there 

remained 5,739 cases and 5,848 controls of European ancestry and 515,922 SNPs. The analysis 

was stratified by lung cancer subtype with 1,730 LUAD cases, 1,400 LUSC cases, 678 SCLC 

cases, 5,848 shared controls, and was analyzed using unconditional logistic regression. We used 

the full set of significant lung cancer GWAS SNPs (p <1 x 10-3) separated by subtype for this 

analysis.  

 

Genomic annotation of GWAS SNPs 

The online web tool SNP Nexus (102, 103) (http://snp-nexus.org/) was used to annotate 

the genomic location of the significant SNPs by lung cancer subtype using the NCBI36/hg18 

genome assembly. We used the University of California Santa Cruz (UCSC) hg18 gene definitions 

for the genomic annotation of each region. 

 

http://snp-nexus.org/
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Converting hg18 SNPs to hg19 SNPs 

The results from the lung cancer GWAS were originally generated using coordinates from 

the hg18 reference of the human genome. We converted these SNPs to hg19 coordinates using the 

online tool Remap from the National Center for Biotechnology Information (NCBI) with default 

settings (http://www.ncbi.nlm.nih.gov/genome/tools/remap). This conversion allowed us to map 

the SNPs to the regulatory annotation information, which are based on hg19 coordination.  

We used these updated hg19 coordinates for the SNPs to obtain the updated SNP rsID 

numbers using dbSNP data for build 142 from the NCBI to account for any SNPs that may have 

been merged between assemblies. All the chromosomes with updated SNP IDs and coordinates 

for GRCh37.p13 (hg19) dbSNP b142 were downloaded from the NCBI ftp site 

(ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b142_GRCh37p13/chr_rpts/) on 

February 18, 2015 and matched with SNP results from Remap. 

 

Identification of SNPs in LD with the genotyped SNPs 

For each GWAS SNP, we retrieved all other SNPs in a 1Mb region both upstream and 

downstream from the SNP site using Tabix (104) (version 0.2.5). We obtained the SNP data from 

the European super population group from the 1000 Genomes Phase III data (v5.20120502). 

Vcftools (105) (version 0.1.12b) was used to convert the Tabix vcf files to the plink-tped file 

format. Then, we used the 1000 Genomes data for each GWAS SNP and applied PLINK (106) 

(version 1.07) to identify the final set of SNPs that were in LD with the tagging SNPs using an r2 

> 0.8 within the entire region 1Mb upstream and downstream of the SNP. The LD results from 

PLINK were combined for every SNP and any SNPs in LD that were duplicated across all SNP 

http://www.ncbi.nlm.nih.gov/genome/tools/remap)
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b142_GRCh37p13/chr_rpts/
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sets were removed. These are the final set of LD SNPs for the analysis. Pipeline containing work 

flow is illustrated in Figure 2.1. 

 

GTEx eQTLs 

The full set of significant human lung tissue-specific eQTLs version 6 (V6) was 

downloaded from the GTEx website (https://www.gtexportal.org) on February 22, 2016. The 

eQTLs were identified using linear regression with the tool Matrix eQTL (107) with a +/- 1Mb 

region around the transcription start site in each individual tissue that had >70 samples. The 

significance of the eQTLs was determined by empirical p-values using permutations followed by 

a Storey false discovery rate (FDR). The eQTLs with a q-value ≤ 5% were considered significant.  

We also downloaded the full set of all multi-tissue eQTLs for nine different tissue types 

from the pilot phase of the GTEx Project on June 11, 2015. This file contained eQTLs discovered 

using two different methods, the University of Chicago (UC) model (108) and the University of 

North Carolina at Chapel Hill (UNC) model (109). We used the results that contained the average 

between both methods including calculated posterior probabilities for every gene-snp pair titled 

“res_final_amean_com_genes_com_snps_all.txt.” The whole SNP set (including LD SNPs) was 

used to detect eQTLs in this dataset. We plotted the distribution of posterior probabilities of all the 

eQTLs found using the SNPs and defined an eQTL as “significant” if its posterior probability was 

>80%. We removed all duplicated genes in each subtype to obtain the final GTEx set of genes. 

 

https://www.gtexportal.org/
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Lung tissue eQTLs from Hao et al. study 

Hao et al. (110) investigated how genetic variation affects gene expression levels in human 

lung tissues. The authors used lung tissue and blood from more than 1,000 patients across three 

cohorts to identify a set of eQTLs in lung tissue and used their results to interrogate SNPs 

associated with asthma. We downloaded the entire set of cis-eQTLs in lung tissue identified from 

this study with FDR at 10%. We removed the target genes without annotated gene names in order 

to combine the genes with the results from our other analyses. If more than one SNP-gene pair 

were identified as eQTLs, but differed in their probes used, we considered them distinct eQTLs. 

We removed duplicated genes in each subtype to define the final Hao et al. set of genes.  

 

FANTOM5 transcribed enhancers 

The FANTOM consortium aims to identify and assign regulatory function to the 

mammalian genome. Part of this comprehensive project is to identify all transcribed enhancers and 

promoters in multiple human cell lines and tissue types. The entire set of permissive enhancers 

found in the FANTOM5 data was downloaded from 

http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed on August 26, 2015. The gene-report 

function was used in PLINK v1.07 to search for any SNPs that were located within permissive 

enhancer regions defined by FANTOM. To identify the possible target genes of these enhancers, 

these enhancer regions were then matched with the set of FANTOM5 enhancer transcription start 

site’s significant associations downloaded from 

http://enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed on August 25, 2015. 

 

http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed
http://enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed
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IM-PET predicted enhancers 

He et al. (72) developed a novel approach to identify the targets of histone-derived 

enhancers using a random forest classifier. The authors used this approach to define a set of 

enhancer target genes for 12 different cell types. We used the results for two lung cell types, IMR90 

and NHLF, from the supplemental tables of their publication (72) for our analysis. We used 

Bedtools (111) version 2.17.0 to identify lung cancer GWAS SNPs located within the enhancer 

regions that had an associated target gene. To remove non-expressed genes, we filtered the results 

to remove target genes with Reads Per Kilobase per Million mapped reads (RPKM) = 0. The 

enhancer targets were originally formatted as Ensembl defined transcripts, so we converted them 

to gene symbols using the BioMart tool from Ensembl using the archived site pertaining to genome 

assembly CRCh37.p13 (112).  

 

Locus level analysis 

 biomaRt (113) was used to annotate the genomic locations for the germline-regulated genes 

discovered from each dataset for each subtype using gene start and stop coordinates from Ensembl 

gene definitions using genome build GChR37.3. Genomic locations that were not defined from 

Ensembl, were manually annotated using NCBI’s Gene online web resource 

https://www.ncbi.nlm.nih.gov/gene. The function “cluster” from Bedtools (111) was used to 

cluster the genes into independent 1Mb regions. 

 

https://www.ncbi.nlm.nih.gov/gene
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Pathway enrichment analysis 

The final set of germline-regulated genes was uploaded to the WebGestalt online resource 

(114). The hypergeometric test was used for enrichment with specific pathways followed by 

Benjamini & Hochberg multiple test correction (115). 

 

GWAS Catalog SNPs 

We downloaded all SNPs from the GWAS Catalog using the search term “lung cancer” on 

January 13, 2016. We removed the SNPs where the initial or replication population was other than 

European. We also removed the SNPs that were reported in Landi’s original lung cancer GWAS 

report (96) because we used them for our analyses, so we could not use them for any replication 

purposes.  

 

 

 

 

 

 

 

 

 



 

 32 

 

Figure 2.1. Pipeline to identify a set of germline genes for SNPs that were moderately associated 

with three subtypes of lung cancer from the genome-wide association studies (GWAS) (96). SNPs 

were run through the pipeline separately for each lung cancer subtype: lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC) and small cell lung cancer (SCLC). After LD 

expansion, two eQTL and two enhancer datasets were used to identify expanded or original SNPs 

that were within regulatory regions with an identified, or predicted, target gene. 
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Results 

 

Description of data and SNP expansion 

We obtained SNPs (p < 1 x 10-3) for three lung cancer subtypes, LUAD, LUSC, and SCLC, 

from a National Cancer Institute (NCI) GWAS for lung cancer (96). This GWAS utilized cases 

and controls from four smaller studies: Environment and Genetics in Lung Cancer Etiology 

(EAGLE), Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC), Prostate, Lung, Colon, 

Ovary (PLCO) screening trial, and the Cancer Prevention Study II (CPS-II) nutrition cohort. 

Subjects from these four smaller studies were genotyped at two institutions. The EAGLE samples 

and part of the PLCO samples were genotyped at the Center for Inherited Disease Research 

(CIDR). The ATBC, CSP-II, and part of the PLCO samples were genotyped at the Core 

Genotyping Facility (GCF) at the NCI. Table 2.1 shows the characteristics of these samples and 

their study origin.  

 

 

Table 2.1. Summary of data used from GWAS for lung cancer. 

Study Cases  Controls Population Illumina HumanHap platform 

EAGLE* 1917 1978 European ancestry 550K, 610QUAD 

ATBC** 1732 1270 European ancestry 550K, 610QUAD 

PLCO*/** 1355 1896 European ancestry 317K, 240S, 550K, 610QUAD  

CSP-II** 695 674 European ancestry 550K, 610QUAD, 1M 

Total 5699  5818     

Number of cases for the three subtypes: lung adenocarcinoma (LUAD) = 1730, lung   

squamous cell carcinoma (LUSC) = 1400, small cell lung cancer (SCLC) = 678.  

* Genotyped at the Center for Inherited Disease Research (CIDR). 

** Genotyped at the Core Genotyping Facility (GCF). 
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Figures 2.2-2.4 are Manhattan plots for each lung cancer subtype. These plots illustrate the 

significance and location of variants we used for our analysis. This stratified GWAS by subtype 

confirmed previous lung cancer associations at the 15q25 locus (53, 54) for each subtype. Table 

2.2 shows the total number of cases genotyped for each subtype, the total number of SNPs 

discovered by selection criterion (p < 10-3), and distribution of their locations within the genome. 

Interestingly, only 10 SNPs (<1%) overlapped all three subtypes (Figure 2.5A). We found that, 

similar to many GWA studies for various disease types, only 2-3% of variants were located within 

coding regions of the genome.  

 

 

Table 2.2: Summary of SNP results from lung cancer GWAS. 

Subtype Sample size 
 SNPs (p < 1x10

-3
) 

Total SNPs Coding Intron UTR Intergenic 

LUAD 1730 544 13 228 7 296 

LUSC 1400 598 18 299 16 265 

SCLC 678 558 14 247 10 287 

LUAD: lung adenocarcinoma. LUSC: lung squamous cell carcinoma. SCLC: small cell lung 

cancer. 
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Figure 2.2. Manhattan plot of GWAS results for LUAD. Red line represents genome-wide significance for GWAS (p < 5 x 10-8). Blue 

line represents significance level of the SNPs (p < 1 x 10-3) used in this study. 



 

 36 

 

 

Figure 2.3. Manhattan plot of GWAS results for LUSC. Red line represents genome-wide significance for a GWAS (p < 5 x 10-8). Blue 

line represents significance level of the SNPs (p < 1 x 10-3) used in this study. 
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Figure 2.4. Manhattan plot of GWAS results for SCLC. Red line represents genome-wide significance for a GWAS (p < 5 x 10-8). 

Blue line represents significance of the SNPs (p < 1 x 10-3) used in this study. 
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We generated a set of SNPs in LD with these genotyped SNPs for each subtype (see 

Methods), and summarize the LD expansion in Table 2.3. After we removed duplicated SNPs 

within each subtype, we found 8295 SNPs associated with LUAD, 8734 with LUSC, and 8361 

with SCLC (Figure 2.5B). As illustrated in Figure 2.5C, we found very little correlation (Pearson 

Correlation Coefficient (PCC) < 0.03) between the p-values of the subtypes.  

 

 Table 2.3. Sample results and LD expansion. 

 LUAD LUSC SCLC 

SNPs (GWAS, p < 10-3) 544 598 558 

SNPs (LD, r2 > 0.8, within 1Mb) 14312 16021 13104 

duplicated SNPs 6561 7885 5301 

Final SNPs 8295 8734 8361 

The details of SNP data processes are provided in main text. LD: linkage disequilibrium. 

LUAD: lung adenocarcinoma. LUSC: lung squamous cell carcinoma. SCLC: small cell lung 

cancer. 
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Figure 2.5. Comparison of SNPs from GWAS for lung cancer. Venn diagrams show overlap of 

SNPs found in GWAS (p < 10-3) for lung cancer by subtype (A) and after LD expansion (B). (C) 

Plots show the top 100 variants for each subtype plotted against each subtype. All evidence shows 

very little overlap or correlation between GWAS significant SNPs per subtype.  

 

 

 



 

 40 

Lung tissue eQTLs 

We first utilized three sets of lung eQTLs to annotate the SNPs. The first lung eQTL dataset 

was retrieved from the Genotype-Tissue Expression (GTEx) project (67). Using this dataset, we 

found 1,297 SNPs for LUAD, 1,429 for LUSC, and 1,171 for SCLC (Figure 2.6A) that acted as 

eQTLs using a set of pre-compiled significant lung tissue-specific eQTLs in GTEx. To explore all 

eQTLs for lung, including non-tissue-specific eQTLs, we used a second set of eQTLs identified 

using a multi-tissue model from GTEx. These eQTL results were generated using a statistical 

model different from the single tissue eQTLs (see Methods). We gauged significance based upon 

the distribution of multi-tissue eQTLs in each subtype (Figure 2.7). We combined the single and 

multi-tissue eQTLs represented by the SNPs to form the final set of GTEx eQTLs. Many of these 

eQTL SNPs were within strong LD of each other and controlled the expression of the same target 

gene, so we collapsed all eQTLs to the specific genes they control. As illustrated in Figure 2.6B, 

we found a total of 71 genes for LUAD, 108 for LUSC, and 67 for SCLC. Three genes overlapped 

from one unique signal in all three subtypes (CHRNA5, PSMA4, and RP11-650L12.2). CHRNA5 

is in the nicotinic acetylcholine region that has well-known associations with lung cancer (53, 54, 

116), while PSMA4 has also been reported to be associated with lung cancer (117). 

We examined a third set of lung tissue eQTLs generated from a meta-analysis that used 

lung tissue samples from three different recruitment sites (not including GTEx data) (110). We 

refer to this set of eQTLs as the Hao et al. eQTLs. We found 25 SNPs for LUAD, 34 for LUSC, 

and 16 for SCLC that acted as eQTLs (Figure 2.6C). We reduced the number of eQTLs to unique 

target genes (see Methods) and found no genes that overlapped all three subtypes, no genes that 

overlapped LUAD and SCLC, two genes that overlapped LUSC and SCLC in one genomic region 

(MYL4 and RPRML), and one gene (IREB2) that overlapped the two NSCLC subtypes (Figure 



 

 41 

2.6D). IREB2 has previous associations with both chronic obstructive pulmonary disease (COPD) 

and lung cancer, but recent work suggests that IREB2 has a stronger association for lung cancer 

than COPD (118). 
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Figure 2.6. Lung tissue eQTLs in three lung cancer subtypes. (A) Total number of significant 

eQTLs found in each lung cancer subtype using lung tissue specific data (q-value ≤ 5%) and multi-

tissue data (posterior probability > 0.8) from GTEx. (B) Venn diagram shows the overlap of genes 

discovered from the GTEx eQTLs. For each lung cancer subtype, we obtained the final gene set 

by collapsing all SNPs from (A) into genes. (C) Total number of eQTLs (false discovery rate, FDR 

< 10%) found in the lung tissue specific dataset from Hao et al. (110). (D) Venn diagram shows 

the overlap of genes based on Hao et al. eQTLs. Duplicate genes were removed from (C) for this 

comparison. 
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Figure 2.7. Determination of significance for GTEx multi-tissue eQTLs. Posterior probabilities in lung tissue for all multi-tissue eQTLs 

are plotted for each subtype. The posterior probabilities of the eQTLs for each subtype, LUAD (A), LUSC (B) and SCLC (C), resemble 

a bimodal distribution. We chose a significance threshold to capture the second distribution of values. Red line indicates the cutoff used 

of a posterior probability of 0.8. 
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Finding transcribed enhancers and their target genes 

We next examined SNPs located within enhancer regions of the genome that had associated 

target genes. We used data from The Functional ANnoTation Of the Mammalian genome 

(FANTOM) (73) collaborative project that identified transcribed enhancer regions of the genome 

known as “eRNAs” using the Cap Analysis of Gene Expression (CAGE) method (74). We used 

this permissive set of enhancers and their corresponding transcribed target genes from the 

Promoter Enhancer Slider Selector Tool (PrESSTo) website (73, 119). We found the number of 

genes that were targeted by the enhancers were 45 for LUAD, 104 for LUSC, and 43 for SCLC 

(Figure 2.8A). We removed duplicated genes in each subtype and found no overlap for these 

enhancer target genes among all three subtypes (Figure 2.8B). We also observed no overlap among 

LUAD and SCLC or SCLC and LUSC. However, we did find five target genes from two genomic 

loci that overlapped LUAD and LUSC (EPB49, LGI3, LPCAT1, NPM2 and PHYHIP). 

 

Finding epigenetically defined enhancers and their predicted target genes 

To find SNPs located within epigenetically defined enhancers, we used a dataset that 

defined enhancers using histone modifications such as H3K4me1 (120) and H3K27ac (121). 

Specifically, we used the results from a newly developed software tool, Integrated Methods for 

Predicting Enhancer Targets (IM-PET), that uses specific histone marks to identify enhancers and 

other data types to predict their targets using a sophisticated random forest classifier (72). We 

found more than 100 enhancer targets in all subtypes across two lung related cell lines (IMR90 

and NHLF) (Figure 2.8C). These enhancer targets are reported as mRNA transcripts. Therefore, 

to perform a comparison similar to the previous datasets, we collapsed all transcripts into single 
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genes (see Methods). We merged the genes found across both cell lines and removed the duplicated 

genes within subtypes. There were only two genes from one unique signal that overlapped all 

subtypes (ID3HA and TBC1D2B) (Figure 2.8D). IDH3A is an enzyme in the metabolic 

tricarboxylic acid (TCA) cycle that is frequently altered in cancer cells (122). 

 

Figure 2.8. Comparison of the SNPs located within the enhancer regions and their target genes 

among three lung cancer subtypes. (A) Total number of enhancer target genes identified by 

FANTOM5. (B) Venn diagram shows the overlap of FANTOM5 enhancer target genes by subtype. 

(C) Total number of enhancer target transcripts identified by IM-PET for two lung-related cell 

lines. (D) Venn diagram shows the overlap of the lung cancer predicted enhancer target genes for 

IMR90 and NHLF identified by IM-PET. 
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Final set of germline-regulated genes and comparison to the original study 

We collected all of the genes identified by all of the above methods, removed duplicated 

genes within subtypes, and refer to this final collection of genes as germline-regulated genes. There 

were only five genes shared by all of the subtypes: CHRNA5, IDH3A, PSMA4, RP11-650L12.2, 

and TBC1D2B (Figure 2.9A). Although we found five unique genes, these genes are all located 

together in one unique genomic region on 15q25 and probably represent only one unique signal. 

We also compared the genes found across all of the different methods per subtype. Surprisingly, 

we observed very little overlap between the different methods across all lung cancer subtypes 

(Figure 2.10). 
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Figure 2.9. Comparison of the germline genes and their enriched biological pathways by subtype. 

(A) Venn diagram shows the overlap of germline-regulated genes identified in the present study 

for the three lung cancer subtypes. (B) Venn diagram shows the overlap of the germline-regulated 

genes from (A) represented as unique genomic loci. (C) Venn diagram shows the overlap of KEGG 

pathways enriched with the germline-regulated genes. 
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Figure 2.10. Comparison of the final germline-regulated genes discovered in each subtype 

separated by the different data sources. Venn diagrams show the overlap between genes found 

from each data source for (A) lung adenocarcinoma (LUAD), (B) lung squamous cell carcinoma 

(LUSC), and (C) small cell lung cancer (SCLC). 
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A common approach used to report genes that may be associated with SNPs found from 

GWA studies is to report genes that are the closest in proximity up-stream or down-stream of the 

genotyped SNP. Therefore, we next verified that our approach to identifying target genes from 

GWAS SNPs identified a different set of genes than the genes reported using the “closest gene” 

approach in the original Landi et al. study (96). To perform this comparison, we ran the same 

pipeline described above, and used the same set of SNPs reported in Landi’s original paper’s (96) 

supplemental tables with a defined significance p < 1 x 10-4. We found that only ~25% of the 

germline-regulated genes that we found using our approach were reported in the original GWAS 

publication (Figure 2.11A). 

We further applied our approach to analyze the data from the GWAS Catalog and obtained 

a set of SNPs for matched European population type from the GWAS Catalog (52) using the search 

term “lung cancer” (see Methods). After removing the SNPs from the original study, we identified 

17 SNPs to run through our pipeline. We ran the SNPs through the pipeline and identified six 

germline-regulated genes from the GWAS Catalog SNPs: CHRNA5, CLPTM1L, PSMA4, RP11-

650L12.2, TP63 and ZSCAN29. Three of these genes, CHRNA5, PSMA4, and RP11-650L12.2 are 

located in the 15q25 locus, while the other three genes are in three independent genomic locations. 

We examined the overlap between these genes and our defined germline-regulated genes by lung 

cancer subtype. There was a strong overlap (67%) between the genes in at least one subtype from 

our analysis and the target genes associated with lung cancer from the GWAS Catalog (Figure 

2.11B).  
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Figure 2.11. Comparison of germline-regulated genes to original study by Landi et al. and the 

GWAS Catalog. In panel A, we show the proportion of germline-regulated genes we discovered 

that were reported in the original GWAS publication by Landi et al. (96). The genes originally 

reported were discovered at significance level p < 1 x 10-4 and were based upon their physical 

location to the significant SNPs. The numbers above the bars are the total number of germline-

regulated genes found in this study that were originally reported. The majority of germline-

regulated genes discovered in this chapter were initially missed in the original report because the 

authors reported them based only upon physical location. Panel B shows the overlap of germline-

regulated genes found using SNPs from the GWAS Catalog with the three lung cancer subtypes. 
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Pathway enrichment analysis of germline-regulated genes  

 To gain a deeper understanding of the biology driven by these germline-regulated genes, 

we performed biological pathway enrichment analysis of the genes in each subtype. We used the 

web-based tool, WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) (114, 123), to identify 

significantly enriched pathways with the set of germline-regulated genes for each subtype using 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database (124). We list the full 

sets of pathways enriched in each subtype for the KEGG pathways in Tables 2.4-2.6. We found 

that all three subtypes had genes enriched in the Metabolic pathways and Proteasome pathways 

(Figure 2.9B). We note that many of the pathways found for LUSC represent only one genomic 

locus (HLA region, chromosome 6p21) that contains the same sets of genes (Table 2.5).
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Table 2.4. KEGG pathway enrichment results of germline-regulated genes for LUAD.  

KEGG 

pathway name 

# enriched genes 

in pathway 

Gene symbols Unique genomic 

regions 

# genes 

in pathway Raw p 

BH 

Adjusted p 

Metabolic pathways 17 

HIBADH, NT5C2, 

PIGN, GAPDH, 

AMT, IDH3A, 

IMPDH2, MDH2, 

ACOX1, QARS, 

POLR3D, UGCG, 

UGT2B4, LPCAT1, 

COX4I2, GGPS1, 

CD38 

 

 

 

 

 

 

 

 

 

15 1130 1.49E-05 0.0006 

Tight junction 4 

MYH9, MYH4, 

CLDN23, LLGL2 

 

4 132 0.003 0.024 

Viral myocarditis 3 

MYH9, MYH4, 

CAV1 

 

3 70 0.0039 0.024 

Endocytosis 5 

NEDD4L, CAV1, 

ASAP1, CAV2, 

CHMP6 

 

 

4 201 0.0022 0.024 

Bacterial invasion  

of epithelial cells 3 

CAV1, SHC4, CAV2  

2 70 0.0039 0.024 

Insulin signaling pathway 4 

TSC1, SHC4, 

FOXO1, PRKAR1A 

 

4 138 0.0035 0.024 

Nicotinate and  

nicotinamide metabolism 2 

NT5C2, CD38  

2 24 0.0052 0.0275 

Apoptosis 3 

ENDOD1, BCL2L1, 

PRKAR1A 

 

3 87 0.0071 0.0328 

Citrate cycle (TCA cycle) 2 IDH3A, MDH2 2 30 0.008 0.0329 

Focal adhesion 4 

LAMB2, CAV1, 

SHC4, CAV2 

 

3 200 0.0127 0.047 
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Proteasome 2 PSMA4, PSMD14 2 44 0.0167 0.0492 

Lysosome 3 

GGA3, GGA1, 

CTSH 

 

3 121 0.0173 0.0492 

Aldosterone-regulated  

sodium reabsorption 2 

NEDD4L, SFN  

2 42 0.0153 0.0492 
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Table 2.5. KEGG pathway enrichment results of germline-regulated genes for LUSC. 

KEGG pathway name 

# enriched 

genes 

in pathway 

Gene symbols Unique 

genomic 

regions 

# genes in 

pathway Raw p 

BH 

Adjusted p 

Staphylococcus aureus 

infection 15 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, C4A, 

HLA-DMB, C5, CFB, 

HLA-DOA, HLA-

DOB, HLA-DPB1, 

HLA-DRB5 

 

 

 

 

 

 

 

 

 

2 55 1.44E-20 1.15E-18 

Asthma 12 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, HLA-DOA, 

HLA-DOB, HLA-

DRB5, HLA-DPB1 

 

 

 

 

 

 

 

 

1 30 4.65E-19 1.86E-17 

Type I diabetes mellitus 13 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, HLA-DOA, 

HSPD1, HLA-DOB, 

HLA-DRB5, HLA-

DPB1 

 

 

 

 

 

 

 

 

 

2 43 1.17E-18 3.12E-17 
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Antigen processing and 

presentation 15 

HLA-DRB1, HLA-

DRA, HSPA1L, HLA-

DMA, HLA-DPA1, 

HLA-DQA2, HLA-

DQA1, HLA-DQB1, 

HLA-DMB, TAP1, 

TAP2, HLA-DOA, 

HLA-DOB, HLA-

DPB1, HLA-DRB5 

 

 

 

 

 

 

 

 

 

 

1 76 3.04E-18 6.08E-17 

Allograft rejection 12 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, HLA-DOA, 

HLA-DOB, HLA-

DRB5, HLA-DPB1 

 

 

 

 

 

 

 

 

1 37 9.56E-18 1.53E-16 

Graft-versus-host disease 12 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, HLA-DOA, 

HLA-DOB, HLA-

DRB5, HLA-DPB1 

 

 

 

 

 

 

 

 

1 41 3.98E-17 5.31E-16 

Intestinal immune network for 

IgA production 12 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

 

 

 

1 48 3.37E-16 3.85E-15 
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HLA-DQB1, HLA-

DMB, HLA-DOA, 

HLA-DOB, HLA-

DRB5, HLA-DPB1 

 

 

 

 

 

Autoimmune thyroid disease 12 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, HLA-DOA, 

HLA-DOB, HLA-

DRB5, HLA-DPB1 

 

 

 

 

 

 

 

 

1 52 9.75E-16 9.75E-15 

Viral myocarditis 13 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, EIF4G3, HLA-

DOA, HLA-DOB, 

HLA-DRB5, HLA-

DPB1 

 

 

 

 

 

 

 

 

 

2 70 1.29E-15 1.15E-14 

Leishmaniasis 13 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, 

NFKBIA, HLA-DMB, 

HLA-DOA, HLA-

 

 

 

 

 

 

 

2 72 1.91E-15 1.53E-14 
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DOB, HLA-DRB5, 

HLA-DPB1 

Rheumatoid arthritis 13 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, 

ATP6V1G2, HLA-

DMB, HLA-DOA, 

HLA-DOB, HLA-

DRB5, HLA-DPB1 

 

 

 

 

 

 

 

 

 

1 91 4.61E-14 3.35E-13 

Phagosome 15 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, 

ATP6V1G2, HLA-

DMB, TAP1, TAP2, 

HLA-DOA, HLA-

DOB, HLA-DPB1, 

HLA-DRB5 

 

 

 

 

 

 

 

 

 

 

1 153 1.50E-13 1.00E-12 

Toxoplasmosis 14 

HLA-DRB1, HLA-

DRA, HSPA1L, HLA-

DMA, HLA-DPA1, 

HLA-DQA2, HLA-

DQA1, HLA-DQB1, 

NFKBIA, HLA-DMB, 

HLA-DOA, HLA-

DOB, HLA-DRB5, 

HLA-DPB1 

 

 

 

 

 

 

 

 

2 
132 3.30E-13 2.03E-12 
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Systemic lupus erythematosus 14 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, C4A, 

HLA-DMB, C5, HLA-

DOA, HLA-DOB, 

HLA-DPB1, HLA-

DRB5 

 

 

 

 

 

 

 

 

 

2 136 5.00E-13 2.86E-12 

Cell adhesion molecules 

(CAMs) 13 

HLA-DRB1, HLA-

DRA, HLA-DMA, 

HLA-DPA1, HLA-

DQA2, HLA-DQA1, 

HLA-DQB1, HLA-

DMB, HLA-DOA, 

ALCAM, HLA-DOB, 

HLA-DRB5, HLA-

DPB1 

 

 

 

 

 

 

 

 

 

2 133 6.70E-12 3.57E-11 

Spliceosome 6 

HSPA1L, PPIL1, 

RBM25, ZMAT2, 

SF3A1, DDX39B 

 

 

5 127 0.0002 0.0009 

Metabolic pathways 19 

PPT2, EARS2, 

ALDH6A1, GNPDA1, 

IDH3A, UQCR10, 

PMM2, GAL3ST1, 

LCLAT1, PON1, 

SDHA, NT5C2, 

PON2, POLR3D, 

NDUFA2, PON3, 

 

 

 

 

 

 

 

14 
1130 0.0002 0.0009 
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ATP6V1G2, LPCAT1, 

CYP17A1 

Wnt signaling pathway 6 

TCF7, CSNK2B, 

NFATC3, PSEN1, 

BTRC, DAAM2 

 

 

6 150 0.0005 0.0022 

Aminoacyl-tRNA biosynthesis 4 

HARS2, VARS2, 

EARS2, HARS 

 

3 63 0.0008 0.0034 

Huntington's disease 6 

GNAQ, DNAL1, 

NDUFA2, SDHA, 

UQCR10, TBPL1 

 

 

6 183 0.0015 0.006 

Proteasome 3 

PSMB8, PSMB9, 

PSMA4 

 

2 44 0.0032 0.0122 

Jak-STAT signaling pathway 5 

LIF, SPRED1, PIM1, 

CBLB, OSM 

 

4 155 0.0039 0.0142 

Alzheimer's disease 5 

GNAQ, NDUFA2, 

PSEN1, SDHA, 

UQCR10 

 

 

5 167 0.0054 0.0188 

Pathways in cancer 7 

TCF7, FGF17, 

SUFU, NFKB2, 

NFKBIA, E2F3, 

CBLB 

 

 

6 

326 0.0065 0.0217 

NOD-like receptor signaling 

pathway 3 

CARD8, NFKBIA, 

NLRC4 

 

3 58 0.0069 0.0221 

Shigellosis 3 

DIAPH1, BTRC, 

NFKBIA 

 

3 61 0.0079 0.0243 

Biosynthesis of unsaturated 

fatty acids 2 

ACOT2, ACOT1  

1 21 0.0085 0.0252 

RNA degradation 3 

SKIV2L, HSPD1, 

PATL1 

 

3 71 0.0119 0.0317 

Complement and coagulation 

cascades 3 

C5, CFB, C4A  

2 69 0.0111 0.0317 
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Oxidative phosphorylation 4 

NDUFA2, 

ATP6V1G2, SDHA, 

UQCR10 

 

 

4 132 0.0119 0.0317 

Chronic myeloid leukemia 3 

NFKBIA, E2F3, 

CBLB 

 

3 73 0.0129 0.0333 

Collecting duct acid secretion 2 

SLC12A7, 

ATP6V1G2 

 

2 27 0.0139 0.0347 

Citrate cycle (TCA cycle) 2 IDH3A, SDHA 2 30 0.017 0.0412 

Hematopoietic cell lineage 3 

HLA-DRB1, HLA-

DRA, HLA-DRB5 

 

1 88 0.0211 0.0496 

Prostate cancer 3 

TCF7, NFKBIA, 

E2F3 

 

3 89 0.0218 0.0498 
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Table 2.6. KEGG pathway enrichment results of germline-regulated genes for SCLC. 

KEGG 

pathway name 

# enriched genes 

in pathway Gene symbols 

Unique genomic 

regions 

# genes 

in pathway Raw p BH adjusted p 

Metabolic pathways 13 

MGAT3, EPRS, REV3L, 
DHRS4L2, PLA2G7, 

DPM1, GNPDA1, 

IDH3A, AMD1, 

OXSM, BPNT1, 

ATP6V1E1, DHRS4 10 1130 0.0002 0.003 

Retinol metabolism 3 

DHRS4L2, DHRS4, 

CYP26A1 2 64 0.0015 0.0112 

Focal adhesion 4 

ACTN4, TNN, 

ILK, PAK4 3 200 0.0055 0.0275 

Proteasome 2 PSMD8, PSMA4 2 44 0.0105 0.0387 

N-Glycan biosynthesis 2 MGAT3, DPM1 2 49 0.0129 0.0387 
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Discussion 

 

Understanding the regulatory roles that common genetic variants play in the development 

of many disease types, including lung cancer, is an important research question because the 

majority of common variants that increase risk for a diverse set of diseases are located within non-

coding regions and most likely act as regulators of gene expression. These results can also be used 

to interrogate the differences between different subtypes of cancer. To address these questions, we 

performed a detailed analysis of common genetic variants (SNPs) associated with three subtypes 

of lung cancer (LUAD, LUSC, and SCLC).  

We used marginally significant GWAS results (p < 1 x 10-3) to search for regulatory roles 

for common variants associated with LUAD, LUSC, and SCLC. We expanded this set of results 

to include all SNPs in LD with the genotyped SNPs using data from the 1000 Genomes Phase III 

project. This expansion resulted in ~15,000 more SNPs to test per subtype that may be acting as 

the actual causal variant (63). We used a diverse set of regulatory data to identify SNPs that were 

within regulatory regions of the genome that had an identified target gene. It is important to use 

data that contain the target genes for regulatory SNPs, because most regulatory looping 

interactions influence distant genes rather than the closest gene(s) (125). We first examined lung 

tissue eQTL data from the GTEx project and the Hao et al. study. Interestingly, our results 

indicated there was little overlap in the eQTL genes identified from these separate datasets. This 

is not surprising because they were analyzed using different methods and with different sample 

sizes, but a more thorough examination into the details of this small overlap would be interesting. 

Although the methods differ, they are from the same tissue and a detailed analysis of the 
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differences may reveal further insight into the heterogeneity of whole tissue eQTL analyses. This 

issue is rarely discussed in the literature, but is important for phenotypes where the specific type 

of cell within the mix of cells in the entire tissue directly affects disease. Through the search of the 

FANTOM5 set of permissive enhancers and their target genes, we observed that several SNPs 

from each subtype were within enhancer regions of the genome. This finding may be important 

because recently one SNP (rs6983267) within a gene desert at 8q24, which harbors many SNPs 

associated with several cancers, was found to disrupt an enhancer region that controls expression 

of the oncogene MYC, an important gene involved in many cellular growth pathways. Also, MYC 

is tightly regulated due to its essential role in cell proliferation where it is implicated in the genesis 

of many cancer types (126). This regulatory mechanism highlights the importance of enhancers in 

the maintenance of cell division and growth (75). For our final data source, we used IM-PET, a 

machine classifier method that has high predictive power to detect the target genes of enhancers 

(72). Specifically, we used the results from two lung related cell lines, NHLF and IMR90. We 

found the largest number of regulatory target genes for all three subtypes using the combined 

results from both cell lines for IM-PET (LUAD = 115, LUSC = 161 and SCLC = 82). Overall, our 

results indicated very small overlap between all three subtypes at the SNP, gene, pathway, and 

regulatory levels. Of note, we found similar lack of overlap between all subtypes when we used 

SNPs with p < 1 x 10-4 (Appendix B). Importantly, the weak overlap we observed at the gene level 

between all subtypes was from five separate genes, but was only representative of one genomic 

region. Therefore, there is likely only one independent region on 15q25 that overlaps all three 

subtypes of lung cancer and is likely driven by the lead peak in the GWAS Manhattan plot. 

It is worth highlighting that three (CHRNA5, IDH3A, and PSMA4) out these five genes 

shared in all three subtypes of lung cancer have been previously reported to be associated with 
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lung cancer. CHRNA5 has strong implications in its association with lung cancer (53, 54, 116). 

CHRNA5 encodes a nicotinic acetylcholine receptor (nAChR). nAChRs are a class of ligand-gated 

ion channels that are activated by the neurotransmitter acetylcholine to allow the flow of ions 

across the cell membrane (127). There is still an ongoing debate about CHRNA5’s role in lung 

cancer risk versus its risk for lung cancer through nicotine addiction (128), but finding this gene 

in all three subtypes of lung cancer that have biological and environmental differences suggests it 

may be playing a direct role in lung cancer risk. IDH3A encodes an isocitrate dehydrogenase 

(IDH). IDHs are important enzymes in the regulation of the TCA cycle (129). Recently, IDH3A 

was shown to promote tumor growth by activating hypoxia-inducible factor 1 (HIF-1) alpha and 

promoting the stability of HIF-1 to participate in angiogenesis and was also associated with poor 

survival in lung cancer (130). Additionally, IDH3A acts in the conversion of metabolism that 

occurs with cancer fibroblasts (131). PSMA4 encodes a subunit of the proteasome. Experimental 

studies have shown that PSMA4 mRNA is increased in lung tumor versus normal samples and also 

plays a major role in cell proliferation using data from lung carcinoma cell lines (132). Another 

gene, RP11-650L12.2, has not been characterized. It warrants future experimental studies due to 

its association with all three subtypes of lung cancer. The final gene shared by all subtypes, 

TBC1D2B, is a protein coding gene that may have GTPase activity and may play a role in 

autophagy (133). 

In addition to the five overlapping genes above, our pathway enrichment analysis revealed 

two biological pathways shared by the three subtypes. Among them, all three subtypes shared 

Metabolic pathways. Metabolic pathways are frequently modified in cancer to provide the over 

proliferating cells with required nutrients (134). We also observed that the oxidative 

phosphorylation pathway was significantly enriched in LUSC (adj. p < 0.05). It is interesting to 
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find this pathway dysregulated in the germline genome, because it has strong associations in the 

transition from oxidative phosphorylation to the less efficient aerobic glycolysis, known as the 

Warburg effect, that takes place in cancer cell proliferation (135). Although the Warburg effect 

may be attributable to glycolysis inhibiting a still active oxidative phosphorylation pathway, this 

result still suggests that commonly occurring variants in LUSC may lead to some disruption in the 

oxidative phosphorylation pathway that makes this process easier to arrest or inhibit and enhance 

cell proliferation after some somatic disruption in lung tissue. We also found several cancer related 

pathways in LUSC such as Pathways in cancer, Prostate cancer and many signaling pathways 

associated with cancer. We discovered that the focal adhesion (adj. p < 0.01) pathway was 

significantly enriched with genes from SCLC. This is an intriguing finding because genes in this 

pathway are involved in the epithelial-mesenchymal transition (EMT), which is important in 

cancer metastasis (136). Although this pathway is also found in LUAD (adj. p = 0.047), it is more 

significant in SCLC (adj. p = 0.028) and may help explain the much higher rate of metastases seen 

in SCLC compared to NSCLC (137). In summary, this pathway-based evidence suggests both 

shared subtype and unique subtype associations. 

To ensure that our approach to identify target genes from GWAS SNPs was not just 

identifying genes found in the original study, or reporting the closest gene to each SNP, we ran the 

SNPs found in Landi’s original paper’s supplemental tables through our pipeline. These SNPs 

were reported at a more stringent threshold (p < 1 x 10-4) than we used in our analysis (p < 1 x 10-

3). We compared the germline-regulated genes identified using these SNPs to the genes reported 

in the original study. We found little overlap, ~25%, suggesting the reported genes (closest to the 

SNPs) may not be the correct target genes. We also looked at this overlap using the set of germline-

regulated genes that we discovered with our pipeline using SNPs at p < 1 x 10-4 and observed 
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overlap of ~15%. These findings agree with the studies that have reported that the gene closest to 

a non-coding variant is oftentimes not the target gene (125, 138). One well-known example is the 

FTO locus and obesity. A recent study (64) discovered that a SNP within an intron in FTO was 

not controlling the expression levels of the gene FTO, but instead the more distant gene IRX3. We 

observed similar findings when we investigated lung cancer genes reported from the GWAS 

Catalog. We compared the reported genes for lung cancer from the GWAS Catalog to our 

germline-regulated genes and found only CHRNA5 and PSMA4 overlapped all subtypes. In total, 

out of ~50 reported genes in the Catalog, we observed overlap of two, six, and three genes for 

LUAD, LUSC, and SCLC, respectively. To determine if this weak overlap occurred because the 

Catalog links SNPs to the closest gene, we ran the SNPs from the GWAS Catalog through our 

pipeline. The results showed a strong overlap (67%) between the germline-regulated genes 

obtained using the GWAS Catalog SNPs and our set of germline-regulated genes in any subtype. 

This finding suggests that the target gene of a non-coding regulatory SNP may not be the closest 

gene. 

In addition to the analysis reported in this chapter for SNPs (p < 1 x 10-3), we also 

performed the same analysis using a more stringent p < 1 x 10-4. Our results from that analysis 

agreed with our discoveries in this chapter that indicated very small overlap between the lung 

cancer subtypes. At p < 1 x 10-4, we only observed three genes (CHRNA5, IDH3A, and RP11-

650L12.2) that overlapped between all subtypes in comparison to five genes (CHRNA5, IDH3A, 

PSMA4, RP11-650L12.2, and TBC1D2B) that overlapped at p < 1 x 10-3. Both sets of genes are 

located within the same single genomic locus. 

There are several limitations to this study. First, we utilized a set of marginally significant 

SNPs. Although previous studies (139, 140) have shown it is a practical approach, this may have 
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resulted in some false positive SNPs in our study. Second, we did not impute the GWAS data to 

obtain a larger set of SNPs for the analysis. This would have resulted in more SNPs that could 

have been tested for significance. We will integrate such SNPs in future analyses. Third, for 

validation of our results, we were limited to a small set of SNPs reported in the GWAS Catalog 

because we only focused on SNPs specifically found in one population. Though we saw a strong 

overlap (67%), it would have been better to include a larger set of SNPs for better power of 

confirming the validity of our pipeline. Whether similar patterns are in other populations remains 

for further investigation when such data becomes available. Another limitation of our study is that 

we may have discovered several different genes that may represent only one unique signal because 

we used SNPs in LD for our analysis. For example, if we found five genes that were shared by all 

subtypes, but these genes were clustered in one genomic location, it may represent a single unique 

signal. To account for this potential bias, we separated the gene sets into unique signals to give a 

better idea of the true overlap of subtypes while still including all discovered germline-regulated 

genes. 

In summary, we used common genetic variants found in three lung cancer subtypes to 

interrogate the similarity between them at four biological levels. We found that there is very little 

overlap between the three subtypes at the SNP, gene, regulatory and pathway levels. At the most 

basic level (SNPs), we observed less than a 1% overlap between the subtypes. Similarly, we found 

only five genes (< 1%) (all five from one unique genomic locus) overlap that were discovered in 

all three subtypes, but three of the five (CHRNA5, IDH3A, and PSMA4) are well-known lung 

cancer genes. We observed the same trend at the pathway level and found only two KEGG 

pathways (~4%) overlapped all three subtypes. At the regulatory level, we found many differences 

in how the genetic variants in non-coding regions control their target genes. Not much work has 
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been done comparing all three subtypes at the somatic level, but recent work interrogating the 

differences between LUAD and LUSC concluded similar findings of little overlap between these 

two subtypes at the molecular level in somatic lung tumor tissue (92). Overall, this study provides 

some important insight into the genetic architecture of three subtypes of lung cancer. 
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CHAPTER III 

 

EXPLORATION OF SOMATIC MUTATION AND GENE EXPRESSION 

FEATURES IN THREE LUNG CANCER SUBTYPES  

 

Introduction 

 

 The interrogation of genetic variants detected in the germline genome of lung cancer 

subjects through approaches such as GWA studies may reveal risks associated with this disease. 

However, many agents used in lung cancer therapies target somatic alterations in tumor tissue. For 

example, treatments such as erlotinib (141) and gefitinib (142) target actionable somatic mutations 

in EGFR in NSCLC. These molecularly targeted therapies have better success rates than the 

traditional non-targeted platinum-based chemotherapy (143, 144). Additionally, many new driver 

genes have been discovered in somatic lung tumor tissue that are effectively targeted by 

pharmaceutical compounds (35). These studies support current efforts to identify genes at the 

somatic level that are critical for lung cancer treatment.  

 The TCGA is one of the largest collaborative consortia with its main goal to uncover the 

landscapes of the genetic alterations at the genome level in major tumor types. TCGA has 

characterized genomic alterations for both LUAD (82) and LUSC (86). In addition to TCGA, 

several other groups have studied mutations in LUAD (76, 80) and LUSC (77, 84). SCLC was not 

studied as part of TCGA, likely due to its unavailability of tumor samples. However, two recent 
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studies (88, 89) investigated this tumor type. Collectively, these two SCLC studies found several 

new driver genes and genomic alterations in SCLC. Importantly, most of the aforementioned 

studies included the investigation of genetic aberrations at both DNA and RNA levels. Studying 

gene expression at the RNA level is important because it can identify over-expressed or under-

expressed genes in tissues that may not be mutated but can still cause disease (70, 145). Combined, 

both data types may reveal a more complete genomic picture of the tumor in each lung cancer 

subtype. 

 Although recent somatic work (92) has compared the two most common NSCLC subtypes, 

LUAD and LUSC, much less is known how these subtypes compare to SCLC. Investigating all 

three subtypes together at the DNA and RNA somatic levels is important because it may lead to 

the discoveries for SCLC treatment options that currently work with NSCLC. This is vital because 

there are currently few treatments for SCLC, which is the most aggressive lung cancer subtype 

(137).  

 In this study, we used somatic data from lung tumor tissue to compare three lung cancer 

subtypes at the DNA and RNA levels. First, we identified a set of differentially expressed genes 

(DEGs) in each subtype and used these gene sets to perform a pathway enrichment analysis. We 

next examined the proportion of the substitution types, transitions and transversions, among the 

somatic non-synonymous mutations. We also generated mutational signatures for each subtype. 

We further used the somatic mutations to identify a set of potential driver genes for each subtype. 

Overall, this work suggests both shared and distinct genes that are altered among three subtypes 

of lung cancer at the somatic level. Deeper interrogation of these genes may give greater insight 

into the biology and potential therapeutic targets of each subtype.  
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Methods 

 

Summary of somatic mutations  

We downloaded the full set of somatic mutations called at the Broad Institute for LUAD 

and LUSC from tumor samples with matched normal controls from the TCGA Web Portal 

(updated link https://gdc-portal.nci.nih.gov/) on September 23, 2015. Rudin et al. (89) performed 

a study that identified genomic features in SCLC. They performed WES, RNA-Seq, and copy 

number analysis (CNA) for multiple SCLC samples. We extracted the full set of somatic mutations 

identified in this study from the publication’s Supplemental Table 3. 

 

Extracting mutational information  

 We used the R package “maftools” (146) version 1.0.40 to extract mutational information. 

We used the “titv” function to generate a list of transitions and transversions in each subtype. We 

generated a matrix of each single nucleotide variant (SNV) and its preceding and proceeding base 

using human genome reference 19 (hg19). We downloaded the hg19 file in 2bit format from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit on January 31, 2017. We 

used the TwoBitToFa script, downloaded from 

http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/, to convert the 2bit file to a FASTA file. 

We used the FASTA file for the location of the SNVs and then used non-negative matrix 

factorization (NMF) (147) to generate the mutational signatures in each subtype. We used up to 6 

signatures to search for the top 3 signatures for each subtype separately, based upon the parameters 

set up in the R package. This tool then used cosine similarity (148) to determine the closest 

https://gdc-portal.nci.nih.gov/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
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matching signature from Catalogue of Somatic Mutations in Cancer (COSMIC) to the top three 

mutational signatures generated from the NMF analysis.  

 

Generating the final set of somatic mutated genes  

We used several filtering steps to define a list of possible driver genes to compare the lung 

cancer subtypes (Figure 3.1). We first filtered our lists to exclude any genes that are not part of the 

Cancer Genome Census (CGC) list from COSMIC since these have evidence of driving tumor 

growth (149). We acknowledge that this approach may miss novel driver genes, but since lung 

cancer is overwhelmed by passenger mutations (150), this approach helps to identify the actual 

driver genes. The current build we used was downloaded on October 10, 2016, and contained 602 

cancer genes. Our primary filter only kept mutations from each cancer type that were within any 

of the 602 cancer genes. We then removed duplicated somatic mutations per gene per sample. For 

example, if one subject had 20 TP53 mutations, we only kept one of the mutations so that we could 

filter by total mutations in more than one subject. We note this may be a limitation, but for our 

purpose we only needed information if a gene had at least one mutation in a subject. We further 

filtered by genes mutated in more than one subject. We made two lists at different thresholds 

defined below that we refer to as “strict” and “lenient.” To find a suitable cutoff for these 

thresholds, we plotted the histograms (Figure 3.2) of the somatic mutations filtered by COSMIC 

per subtype and manually defined the thresholds as follows. The histograms showed one large 

peak to the left of the plot, followed by a trailing set of genes mutated in many samples. For our 

lenient threshold, we chose a cutoff that allowed most of the large bar to be represented, while for 

our strict threshold, we removed all genes from the primary bar on the histogram that represented 

the genes that were mutated in only a small number of samples. However, for SCLC, we relaxed 
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this threshold due to the much smaller set of somatic mutations so we could have a large enough 

set to use for our analysis. After obtaining a set of possible somatic driver genes for each subtype, 

we further filtered the list of genes by their expression levels. Rudin et al. (89) previously filtered 

their somatic mutation gene list using expression levels from RNA-Seq, so we only filtered the 

somatic genes from TCGA for LUAD and LUSC, which had not been previously filtered. We 

removed genes that had read counts < 10 per gene in the RNA-Seq expression data. 
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Figure 3.1. Pipeline to obtain somatic mutated genes for three lung cancer subtypes. SCLC somatic mutations were previously filtered 

by expression levels (89).  

Expressed in tumor: ≥ 10 reads 

Expressed in normal: ≥ 10 reads 

LUAD = lung adenocarcinoma, LUSC = lung squamous cell carcinoma, SCLC = small cell lung cancer 
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Figure 3.2. Histogram of somatic mutated genes across multiple samples. We show the distribution of somatic mutated genes across 

multiple samples for LUAD (A), LUSC (B), and SCLC (C). The blue line represents our cutoff for lenient, and the red line represents 

our cutoff for strict. 
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Extracting mRNA-Seq raw count values for LUAD and LUSC 

 Rahman et al. (151) reprocessed all of the RNA Sequencing data that was available in 

TCGA. Briefly, the authors obtained the raw FASTQ formatted RNA-Seq files from the NCI’s 

Cancer Genomics Hub. They also obtained all of the clinical records for the RNA-Seq files. The 

data were run through their pipeline that relied heavily on the Rsubread package (152). In addition 

to raw read counts, the authors also normalized the results using two standards in the field: 

transcripts per million (TPM) (153) and fragments per kilobase of exon per million reads mapped 

(FPKM) (154). The authors made all of the results freely available on the GEO website: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944. To extract the raw counts files 

for LUAD and LUSC, we downloaded the file GSE62944_RAW.tar that contained several data 

matrices. We unzipped the file and used two data frames for the extraction. For tumor samples, we 

used: GSM1536837_06_01_15_TCGA_24.tumor_Rsubread_FeatureCounts.txt; and for normal 

samples, we used: GSM1697009_06_01_15_TCGA_24.normal_Rsubread_FeatureCounts.txt. 

We also downloaded other files for annotation from the website: 

GSE62944_06_01_15_TCGA_24_CancerType_Samples.txt.gz for the tumor samples and 

GSE62944_06_01_15_TCGA_24_Normal_CancerType_Samples.txt.gz for the normal samples. 

We observed that many sample IDs were duplicated in the tumor sample files. We found this 

resulted from some RNA-Seq data being generated for more than one part of a tumor tissue for 

each sample. To keep one sample ID for our analysis, we removed duplicated RNA-Seq results 

from the same patient by keeping the first mention of a tumor sample and removing additional 

results from the same tumor sample but having a secondary portion or RNA-Seq run. We matched 

the LUAD tumor and normal samples and the LUSC tumor and normal samples with these sample 

names and imported them into DESeq2 (155). 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
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Differential expression analysis using DESeq2 

 All tumor and normal RNA-Seq samples above were used for differential expression 

analysis. We imported the raw read counts for all three subtypes into R version 3.2.3 and used the 

R package DESeq2 version 1.10.1 (155) for the analysis. DESeq2 uses raw non-normalized read 

count data for its estimation of differential expression. We first filtered our RNA-Seq data to 

remove low expressed genes (counts ≤ 1). The data were normalized following a negative binomial 

distribution. We then determined differential expression using a generalized linear model (GLM).  

 

Identification of TSGs and oncogenes 

 Zhao et al. (4) catalogued a set of human tumor suppressor genes (TSGs) through a 

comprehensive literature review. We downloaded the set of human TSGs from 

https://bioinfo.uth.edu/TSGene/download.cgi on January 31, 2017. 

 Liu et al. (5) completed an exhaustive literature review to obtain a high-confidence set of 

oncogenes. We downloaded the entire set of human oncogenes from http://ongene.bioinfo-

minzhao.org/download.html on January 31, 2017.  

 

Pathway enrichment analysis 

 We used the online WebGestalt resource (114) to identify pathways enriched with the 

DEGs. We separated our analyses into up-regulated and down-regulated gene sets. We used the 

KEGG pathways (124) for the analysis and filtered out pathways that contained less than five 

genes. 

https://bioinfo.uth.edu/TSGene/download.cgi
http://ongene.bioinfo-minzhao.org/download.html
http://ongene.bioinfo-minzhao.org/download.html


 

 78 

Results 

 

RNA-Seq data used for DEG analysis  

 We collected RNA-Seq raw read count tumor and normal samples for LUAD and LUSC 

from reprocessed TCGA data (151). TCGA did not study SCLC, so we obtained tumor and normal 

RNA-Seq raw read counts for SCLC from a previous study (89). We removed duplicated samples 

per subtype to generate our final set of samples. The total number of tumor samples we studied 

included 515, 501, and 54 for LUAD, LUSC, and SCLC, respectively. We had 59, 51, and 25 

matched normal samples for LUAD, LUSC, and SCLC, respectively. The numbers of samples by 

data source are summarized in Table 3.1. 

 

Table 3.1. Summary of RNA-Seq data. 

Subtype # tumor samples # normal samples Data source 

LUAD 515 59 TCGA 

LUSC 501 51 TCGA 

SCLC 54 25 Rudin et al. (89) 

Total 1,070 135  

 

 

 Differentially expressed genes for three lung cancer subtypes 

 We used DESeq2 to generate DEGs for all three subtypes (Figure 3.3). To define 

significant DEGs, we used |log2FC| > 2 and Benjamini-Hochberg (BH) adj. p < 0.05. By first using 

the adjusted p < 0.05, we found a total of 3,710, 5,623, and 3,888 DEGs for LUAD, LUSC, and 

SCLC, respectively. We further filtered the BH adjusted DEGs by log2FC > 2 and detected 1,818, 
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2,377, and 1,470 up-regulated DEGs for LUAD, LUSC, and SCLC, respectively (Figure 3.4A). 

We also generated a set of down-regulated DEGs by requiring log2FC < -2. This revealed 604, 

1,328, and 1,798 DEGs for LUAD, LUSC, and SCLC, respectively (Figure 3.4B). The SCLC 

results were originally reported using Ensembl gene ID’s. In our analysis, we removed 45 Ensembl 

Gene IDs that did not map to Gene Symbols. Accordingly, we found 554 up-regulated genes and 

325 down-regulated genes that were shared by all three subtypes (Figure 3.4C, Figure 3.4D). Our 

results indicated that the number of up-regulated DEGs shared between LUAD and LUSC was 

significantly higher than that between LUSC and SCLC (p = 2.2 x 10-16, binomial test). 

Surprisingly, we observed the opposite trend in overlap for the down-regulated genes. We found 

that more genes were shared between SCLC and LUSC than between LUAD and LUSC (p = 0.01, 

binomial test). To verify that this lack of overlap between all subtypes was not due to a single 

threshold of DEGs, we generated overlap for three separate expression thresholds (log2FC < -1, 

log2FC < -2, log2FC < -3, log2FC > 1, log2FC > 2, and log2FC > 3) and observed the same trend in 

the overlap between subtypes (Figure 3.5).  
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Figure 3.3. MA (log ratio over mean) plots for DEGs. Log fold change is plotted on the y-axis 

versus mean expression on the x-axis. LUAD, LUSC, and SCLC are plotted in A, B, and C, 

respectively. Red colored dots indicate significant DEGs at Benjamini-Hochberg (BH) adj.p < 

0.05. 
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Figure 3.4. DEGs found in three lung cancer subtypes. Panel A shows the total number of DEGs 

up-regulated in lung tumor tissue versus normal controls. Panel B shows the total number of down-

regulated DEGs in lung tumor versus normal controls. Panel C illustrates the overlap between up-

regulated DEGs per subtype. Panel D illustrates the overlap between down-regulated genes per 

subtype. LFC = log2fold change. 
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Figure 3.5. Overlap of DEGs for each subtype at multiple differential expression thresholds. Venn 

diagrams show the overlap in DEGs between subtypes. Panels A-C show up-regulated DEGs and 

D-F show down-regulated DEGs. LFC = log2fold change. 
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Tumor suppressor genes 

 We used the Tumor Suppressor Gene 2.0 (TSGene 2.0) database (156) to investigate the 

sets of down-regulated DEGs. The tumor suppressor genes (TSGs) found in all uniquely down-

regulated genes per subtype and among overlapping gene sets are summarized in Appendix C. We 

calculated the percentage of TSGs per unique subtype and overlap and found that the largest 

percentage of TSGs were in the genes that overlapped SCLC and LUAD (Table 3.2). However, 

there was no significant difference between the sets (p = 0.064, test of proportions). 

 

Table 3.2. Summary of TSGs found in down-regulated DEG sets. 

Gene set # genes in set # TSGs % overlap 

LUAD unique 67 5 7.4 

LUSC unique 393 34 8.7 

SCLC unique 981 93 9.5 

LUAD overlap LUSC 165 9 5.5 

LUAD overlap SCLC 47 8 17.0 

LUSC overlap SCLC 445 50 11.2 

All overlap 325 21 6.5 

 

 

Oncogenes 

 We used the oncogene database ONGene (5) to investigate the up-regulated DEGs found 

in all subtypes (Appendix D). We calculated the percentage of oncogenes found in each subtype 

and the overlapping gene sets. The results are listed in Table 3.3. There was a significant difference 

in the oncogenes found between all sets of genes (p = 2.802 x 10-10, test of proportions). The largest 

percentage of oncogenes were in the overlapping set of DEGs.  

 



 

 84 

Table 3.3. Summary of oncogenes found in up-regulated DEG sets. 

Gene set # genes in set # oncogenes % overlap 

LUAD unique 442 8 1.8 

LUSC unique 850 26 3.1 

SCLC unique 575 15 2.6 

LUAD overlap LUSC 727 28 3.9 

LUAD overlap SCLC 95 3 3.2 

LUSC overlap SCLC 246 11 4.5 

All overlap 554 54 9.7 

 

 

Pathway enrichment of DEGs 

 To determine the biological activity driven by these DEGs, we performed biological 

pathway enrichment of the DEGs in each set of genes. We used WebGestalt (123) for the 

enrichment analysis with KEGG (124) as the source of the pathway definitions. Table 3.4 shows 

the 20 pathways that overlapped all three subtypes for the up-regulated genes and the 35 pathways 

for the down-regulated genes. We show the overlap of these pathways for all three subtypes in 

Figure 3.6. 
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Table 3.4. Enriched KEGG pathways from overlapping DEGs. 

KEGG pathways up-regulated DEGs KEGG pathways down-regulated DEGs 

Alanine, aspartate and glutamate metabolism African trypanosomiasis 

Axon guidance* Arrhythmogenic right ventricular cardiomyopathy 

(ARVC) 

Calcium signaling pathway* Axon guidance* 

Cell cycle Bile secretion 

ECM-receptor interaction* Calcium signaling pathway* 

Gastric acid secretion Cardiac muscle contraction 

Homologous recombination Cell adhesion molecules (CAMs) 

Long-term potentiation Chemokine signaling pathway 

Maturity onset diabetes of the young Complement and coagulation cascades 

Melanoma Cytokine-cytokine receptor interaction 

Metabolic pathways Dilated cardiomyopathy 

Neuroactive ligand-receptor interaction* Drug metabolism - cytochrome P450 

Nitrogen metabolism ECM-receptor interaction* 

Oocyte meiosis Endocytosis 

p53 signaling pathway Focal adhesion 

Pathways in cancer* Hematopoietic cell lineage 

Progesterone-mediated oocyte maturation Hypertrophic cardiomyopathy (HCM) 

Protein digestion and absorption* Jak-STAT signaling pathway 

Salivary secretion* Leukocyte transendothelial migration 

Systemic lupus erythematosus Long-term depression 

 Malaria 

 MAPK signaling pathway 

 Metabolism of xenobiotics by cytochrome P450 

 Neuroactive ligand-receptor interaction* 

 Pancreatic secretion 

 Pathways in cancer* 

 Phagosome 

 PPAR signaling pathway 

 Protein digestion and absorption* 

 Regulation of actin cytoskeleton 

 Retinol metabolism 

 Salivary secretion* 

 Staphylococcus aureus infection 

 Tight junction 

 Vascular smooth muscle contraction 

* Enriched with both up-regulated and down-regulated genes. 
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Figure 3.6. KEGG pathways that overlap between all three subtypes. Panel A shows the up-

regulated DEGs shared between all three subtypes. Panel B shows the down-regulated genes 

shared by subtype. 

 

Somatic mutations in three lung cancer subtypes 

 We selected all somatic mutations for LUAD and LUSC generated from TCGA. There 

were 234,278 mutations for LUAD and 65,305 for LUSC. SCLC was not studied as part of the 

TCGA, so we obtained a set of somatic mutations for SCLC from the same study that generated 

the RNA-Seq results (89). There were 7,945 somatic mutations for SCLC. For the following 

explorations of the specific somatic mutations per subtype, we removed synonymous SNVs. First, 

we determined the transition (Ti) to transversion (Tv) (Ti/Tv) ratio per subtype. We found that all 

three subtypes shared similar ratios of Ti (~35%) to Tv (~65%) (Figures 3.7A – 3.9A) based upon 

the average values across all samples per subtype. Specifically, the mean percentages of Tv 

mutations were 61.95, 63.87, and 65.20 for LUAD, LUSC, and SCLC, respectively. The mean 
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percentages of Ti mutations were 38.05 for LUAD, 36.13 for LUSC, and 34.80 for SCLC. To 

obtain greater insight behind the mutational profiles of each subtype, we generated their mutational 

signatures. We used non-negative matrix factorization (NMF) to generate the mutational 

signatures for each subtype. The three most significant signatures are plotted in Figures 3.7B-3.9B. 

Next, we compared the mutational signatures to a compiled set of known signatures in cancer from 

COSMIC (7). The top 3 signatures for each subtype and their relationships (see Methods) to 

COSMIC signatures are listed in Table 3.5. Interestingly, all three subtypes share the 4th COSMIC 

signature in common. This signature has recently been shown to be increased in cancers derived 

from smokers versus non-smokers (157). Also, LUAD and SCLC both share the 5th signature, 

while LUAD and LUSC share the 13th signature. 
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Figure 3.7. Summary of Ti/Tv ratios and mutational signatures for LUAD. Panel A shows the Ti/Tv ratio in LUAD. Panel B shows the 

frequency of mutations in the top three mutational signatures in LUAD. 
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Figure 3.8. Summary of Ti/Tv ratios and mutational signatures for LUSC. Panel A shows the Ti/Tv ratio in LUSC. Panel B shows the 

frequency of mutations in the top three mutational signatures in LUSC. 
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Figure 3.9. Summary of Ti/Tv ratios and mutational signatures for SCLC. Panel A shows the Ti/Tv ratio in SCLC. Panel B shows the 

frequency of mutations in the top three mutational signatures in SCLC. 
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Table 3.5. Summary of mutational signatures. 

Mutational signature Closest match in COSMIC Cosine-Similarity 

LUAD sig 1 Sig 5 0.77 

LUAD sig 2 Sig 4 0.91 

LUAD sig 3 Sig 13 0.77 

LUSC sig 1 Sig 13 0.81 

LUSC sig 2 Sig 30 0.85 

LUSC sig 3 Sig 4 0.91 

SCLC sig 1 Sig 5 0.84 

SCLC sig 2 Sig 4 0.85 

SCLC sig 3 Sig 4 0.92 

 

 

The mutation rate for lung cancer is much higher than many cancer types (158), and the 

tumor genomes may harbor many passenger mutations, so we used several filtering steps to attempt 

to remove many of the genes that carried passenger mutations. (see Methods). Importantly, for our 

filtering process we did not exclude synonymous variants in LUAD or LUSC as was done in the 

previous analysis for mutational signatures (for details, see Discussion). The original number of 

genes that harbored at least one somatic mutation were 18,068, 14,789 and 5,180 for LUAD, 

LUSC, and SCLC, respectively. We applied our filtering steps to determine a list of possible lung 

cancer driver genes for each subtype at two different thresholds. The final genes are listed in Table 

3.6. We refer to these sets of genes as the lenient and strict set of somatic mutated genes. Using 

our lenient threshold, we found 382, 247, and 67 genes for LUAD, LUSC, and SCLC, respectively 

(Figure 3.10A). Using our strict threshold, we found 106, 57, and 26 genes for LUAD, LUSC, and 

SCLC, respectively (Figure 3.10B). We illustrate the overlap of the somatic mutated genes in 

Figures 3.10C-D, 
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Table 3.6. Summary of filtered somatic mutated genes. 

 LUAD LUSC SCLC 

# samples 538 178 42 

# initial mutations 234,278 65,305 7,945 

# mutations in COSMIC 10,604 3,080 364 

# genes mutated in COSMIC 560 513 193 

# lenient genes 411 260 67 

# strict genes  113 59 26 

# genes expressed in normal tissue 410 (lenient), 112 (strict) 260 (lenient), 59 (strict) N/A 

# genes expressed in tumor tissue 410 (lenient), 112 (strict) 260 (lenient), 59 (strict) N/A 

# genes > 10 counts in normal tissue 379 (lenient), 106 (strict) 245 (lenient), 57 (strict) N/A 

# genes > 10 counts in tumor tissue 377 (lenient), 104 (strict) 238 (lenient), 56 (strict) N/A 

# final genes - lenient 382 247 67 

# final genes - strict 106 57 26 

Lenient thresholds: LUAD = mutated in at least 20 different subjects, LUSC = mutated in at least 

7 different subjects, SCLC = mutated in at least 2 different subjects 

Strict thresholds: LUAD = mutated in at least 5 different subjects, LUSC = mutated in at least 3 

different subjects, SCLC = mutated in at least 2 subjects 

N/A = genes for SCLC were previously filtered for expression, so did not include filtering step 

for this subtype. 
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Figure 3.10. Final somatic mutated genes. Panel A shows the total number of lenient defined 

somatic mutated genes for each subtype. We show their overlap between subtypes in panel B. 

Panels C and D show the total number of strict defined somatic mutated genes and their overlap, 

respectively. 

 

 

 



 

94 
 

Discussion 

 

The identification of the similarities and differences in three lung cancer subtypes at the 

somatic level is an important question to help ascertain and differentiate the molecular 

characteristics of the subtypes. This level of data is crucial because previous studies (159, 160) 

have demonstrated that typical chemotherapy-based options do not perform as well as targeted 

therapies in lung cancer. In this study, we used DNA mutations and RNA expression levels to 

characterize and compare three subtypes of lung cancer. We used RNA expression levels to 

generate a set of DEGs that are dysregulated in lung tumor tissue. We then used the DEGs to 

perform a pathway enrichment analysis. Additionally, we used somatic mutations to generate a 

Ti/Tv ratio and mutational signatures between subtypes. We then filtered a set of broad somatic 

mutations to identify a set of potential driver genes for each subtype.  

 

RNA level analyses 

 We first generated a set of DEGs for all subtypes. We found that there not strong overlap 

between all of the three subtypes. We identified KEGG biological pathways that were enriched 

with the sets of DEGs. We also found that LUSC and SCLC shared many immune-related 

pathways that were not shared with LUAD, such as Antigen processing and presentation, Intestinal 

immune network for IgA production, and Antigen processing and presentation. Additionally, 

immune-related genes are affected in many cancer types such as breast cancer (161), so this 

warrants future investigation.  
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DNA level analyses 

 We generated the Ti/Tv ratio for all three subtypes. Our results showed that all subtypes 

had much higher transversions (~65%) than transitions (~35%). This finding agrees with previous 

work that suggested high transversions in NSCLC due to cigarette smoking (92). Specifically, we 

see a very high percentage of C>A transversions (~30% of mutations) in all subtypes. This pattern 

has been well-established in LUAD and LUSC (162). The observation of this same pattern in 

SCLC suggests it shares somatic mutation features with the NSCLC subtypes attributable to 

smoking. However, we would have expected to see much higher C>A mutations in this subtype 

because studies have found the strongest smoking association with SCLC (39). To expand upon 

this mutational investigation, we generated mutational signatures in each subtype. We identified 

the top three signatures and compared them to a set of COSMIC signatures. The COSMIC 

signatures are based upon a set of over 10,000 exomes and ~1,000 genomes over 40 different 

cancer types (7). Our results indicated that all subtypes shared the Signature 4 from COSMIC. This 

signature has been found in all three subtypes previously and appears to be associated with tobacco 

smoke (7). Additionally, recent work has found that this signature is more common in cancers that 

are found in smokers compared to non-smokers (157). The mutational signatures for SCLC were 

overwhelmed by smoking, and therefore, out of the three top signatures for SCLC, two of them 

matched to COSMIC signature 4. This suggests that there are not even three distinct mutational 

signatures and that a lot of the mutation pattern may be attributed to cigarette smoke in SCLC. 

This result indicates that the mutational signature for SCLC is overwhelmed by tobacco smoke 

related mutations. We also identified that COSMIC signature 5 matched signatures in LUAD and 

SCLC but not LUSC. The etiology of this signal is unknown. Overall, we found that the three 

subtypes shared most of their mutational signatures with at least one other subtype. However, one 
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signature for LUSC, signature 30 from COSMIC, was unique to LUSC. This pattern deserves 

attention because it has only been previously found in a small set of breast cancers (7). We also 

filtered a set of previously identified (82, 86, 89) somatic mutations to generate a set of possible 

driver genes in each subtype. We filtered out the majority of the mutated genes by initially 

removing genes not in the CGC list from COSMIC (7).  

 

Study limitations and summary 

 There are several limitations to this study. First, the sample size for SCLC was much 

smaller than the NSCLC sample size. More comparable sample sizes between SCLC and NSCLC 

may have revealed more significant associations, but we were limited by available data. Second, 

the somatic mutations were identified using different approaches for NSCLC versus SCLC. 

Previous work (163, 164) has compared mutation callers and found differences, so there may be 

some issues with comparing the called variants. We also included silent mutations for LUAD and 

LUSC for filtering the somatic mutations to identify potential driver genes, but we did not include 

synonymous mutations for SCLC because they were already filtered out of the results. We did not 

want to remove the silent mutations in the NSCLC subtypes because previous work (165, 166) has 

demonstrated that synonymous variants may contribute to cancer (167). For future work, we can 

also exclude all silent mutations from LUAD and LUSC to compare with our results in this study. 

Finally, if clinical data is sufficient and sample size is large enough, we will consider smoking and 

other clinical factors like drug treatment as co-variates in our future analyses. 

 In summary, we used DNA somatic mutations and RNA expression data to compare three 

lung cancer subtypes. We calculated DEGs and a set of potential driver genes. We determined 
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mutational signatures for each cancer subtype. We identified the overlap between all three 

subtypes for somatic mutations and DEGs. Overall, this study provided strong insight into the 

biological similarities and differences at the somatic level for three subtypes of lung cancer. 
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CHAPTER IV 

 

INVESTIGATION INTO THE CHALLENGES OF IDENTIFYING SOMATIC 

MUTATIONS IN LUNG CANCER USING RNA SEQUENCING VERSUS 

WHOLE EXOME SEQUENCING* 

 

Introduction 

 

 As demonstrated in Chapter III, investigations into the somatic alterations in lung cancer 

are best approached at both the DNA and RNA levels. However, unless the analyses are done in 

large consortia such as TCGA (86), it may be cost prohibitive to generate DNA sequencing to call 

somatic variants and RNA sequencing (RNA-Seq) to identify expression levels. It would be ideal 

if one could use RNA-Seq as a tool to call somatic variants in addition to its role of determining 

RNA expression levels. In order to determine the effectiveness of using RNA-Seq to call variants 

compared to traditional based DNA whole exome sequencing (WES), we performed an integrative 

analysis for both techniques on the same set of lung cancer samples. Due to the restrictions 

mentioned above, we limited our analysis to the non-small cell lung cancer (NSCLC) subtype. We 

specifically focus on RNA-Seq’s role to identify a single type of mutation, the single nucleotide 

variant (SNV). SNVs are the most abundant form of genetic variation in genome sequences and 

somatic SNVs play critical roles in disease including lung cancer (150). The discovery of many 

driver SNVs has led to new targets for therapeutic treatments and preventive measures.  

* Adapted from O’Brien et al. Methods 2015. 83:118-127 (168) 
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Examples include vemurafenib specifically targeting BRAF V600 mutations in melanoma 

(169, 170) and gefitinib, erlotonib, and afatinib for EGFR mutations in lung cancer (142). The 

recent advances in next-generation sequencing (NGS) technologies, especially WES and whole 

transcriptome sequencing (RNA-Seq), have helped investigators generate a massive amount of 

NGS data, from which genetic variants, including SNVs, are detected. Many tools are now 

available for the detection of somatic SNVs from NGS data (163). 

Both whole genome sequencing (WGS) and WES have been applied to detect SNVs in 

large scale cancer studies. While WGS can detect the full spectrum of variants, including SNVs, 

insertions/deletions (indels), copy number variations (CNVs), and structural variants (SVs), across 

the whole cancer genome, WES is more cost-effective in detecting SNVs and indels located in the 

1-2% of the genome that encodes for functional proteins (171). There is good evidence that SNVs 

within the exome are responsible for many diseases, so WES has been applied extensively in 

research and clinically (171-173). RNA-Seq is commonly used for the measurement of gene 

expression levels, detection of gene fusions, and identification of splicing events. Because RNA-

Seq is based on direct sequencing of cDNA, the product of the mRNA through reverse 

transcription, it may be feasible to detect SNVs from RNA-Seq data (174, 175). This is a unique 

feature that is different from the traditional microarray-based gene expression. RNA-Seq also has 

the ability to detect RNA editing, which is a post-transcriptional process that modifies RNA 

transcripts. One of the most common mechanisms of RNA editing is the deamination of adenosine 

to inosine by the protein Adenosine Deaminase Acting on RNA (ADAR). The inosine is 

interpreted in a similar way to guanosine and, thus, results in an adenosine to guanine (A → G) 

change (176). 
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RNA-Seq has been extensively applied to genomic and transcriptomic studies, including 

cancer. For example, a large-scale RNA-Seq study of lung adenocarcinoma identified several 

cancer driver genes (177), indicating its utility in a transcriptome analysis of cancer samples. This 

study demonstrated that in addition to identifying fusion genes and differential gene expression, 

RNA-Seq could detect well-known cancer driver genes. RNA-Seq has also been combined with 

WGS to better understand the mutational landscape of lung cancer (80, 178). These studies, in 

addition to showing the standard applications of RNA-Seq in gene expression analysis, highlight 

its usefulness as a technology platform for SNV detection, though challenges remain (179). As 

was demonstrated in the previous chapter, large consortia such as TCGA have applied both WES 

and RNA-Seq, as well as other platforms, to comprehensively catalog the cancer genome 

landscape (82, 86). The combination of WES and RNA-Seq data from the same tumor samples 

allows for large-scale examinations of somatic mutations in both the DNA and RNA. By applying 

these two types of technology together, one can improve the detection of various mutations, 

including those in the expressed genes with different splicing and expression levels, and those in 

non-transcribed regions. However, sequencing the same tumor using both platforms is rarely used 

due to cost and analysis issues.  

 A detailed comparison of SNVs called from WES and RNA-Seq data using the same lung 

cancer samples can not only reveal the technical differences of these two technologies, but also 

help us better understand the underlying biological processes that lead to the ambiguous 

observations of SNVs at the DNA and RNA levels, respectively. Such a comparison can provide 

guidance on the utility of WES and RNA-Seq in SNV detection. So far, there have been only a 

few attempts to unveil the advantages and disadvantages of WES and RNA-Seq in SNV detection. 

For example, Cirulli et al. (180) recently compared WGS with RNA-Seq in detecting SNVs using 
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peripheral blood mononuclear cells from the same subjects. They highlighted many important 

aspects for SNV detection such as expression levels and read depth, but its conclusions are yet to 

be validated due to the limited sample size. Another recent review compared WES and RNA-Seq 

(181), but it only discussed several global features without a systematic comparison of detailed 

features. 

In this study, we compared the features of SNVs from WES and RNA-Seq using a 

collection of 27 NSCLC tumor and matched normal samples from the same patients. Through our 

systematic analyses, we attempted to unveil the unique features of SNVs from each platform and 

determined why variants are missed between these platforms. Because of the high false calling 

rate of indels, we only focused on SNVs. We observed only a small overlap of SNVs between 

WES and RNA-Seq, and identified multiple technological and biological reasons leading to 

discrepancies in SNV calling.  

 

Methods 

 

Samples and sequencing  

Twenty-seven paired tumor and normal NSCLC samples from patients undergoing lung 

cancer surgery at Massachusetts General Hospital were used for this analysis. For all 27 paired 

tumor and normal lung cancer samples, we performed both WES and RNA-Seq experiments. All 

participants provided written informed consent. Tumor content was assessed with an average of 

60% across samples. The exome regions were captured using the Agilent SureSelect Human All 
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Exon kit and then sequenced on an Illumina HiSeq 2000 platform (paired end, 100 bp) in a 

Massachusetts General Hospital (MGH) core. We obtained a total of 3,677,811,274 paired-end 

reads with an average sequencing depth of 121×. For RNA-Seq, Illumina Tru-Seq v2 RNA-Seq 

kit was used for enrichment of mRNA, cDNA synthesis, and library construction. Then, RNA 

sequencing was performed on an Illumina HiSeq 2000 platform in the Vanderbilt Technologies 

for Advanced Genomics (VANTAGE) core (paired end, 100 bp). We obtained a total of 

4,778,766,598 paired end reads with an average of 88,495,678 paired end reads per sample. We 

used FASTQC to check the quality of reads of all samples 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

 

WES data analysis 

We mapped the WES reads to the human reference genome hg19 (GRCh37) using 

Burrows-Wheeler Aligner (BWA) (version 0.5.9c) (182). In order to further process the data, we 

used Picard (version 1.95) (183) to mark duplicate reads and used GATK (version 1.0.3825) to 

perform local realignment and recalibration (184, 185). After post-alignment processing of the 

data, we called SNVs with MuTect (version 1.1.4). To generate mpileup files for each tumor and 

normal sample, we used the “mpileup” function in Samtools (version 0.1.19) (186). Read count 

values were obtained from the mpileup files using VarScan2 (version 2.3.5) (187) with the 

“readcounts” function. Read count values were split up into categories of values: not covered 

(NA), single read (1), low coverage (2-7) and high coverage (≥ 8). 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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RNA-Seq data analysis 

We used TopHat2 (version 2.0.0) (188) to map RNA-Seq reads to the human reference 

transcriptome and genome (hg19). TopHat2 first attempts to map reads to the reference 

transcriptome and then for the unmapped reads, it attempts to map them to the human genome 

reference. As we did for WES data, we called SNVs using MuTect (version 1.1.4). Specifically, 

we generated mpileup files using Samtools and obtained read count values using VarScan2. We 

used Cufflinks (version 2.1.1) (189) to obtain gene-based FPKM (Fragments Per Kilobase of exon 

per Million fragments Mapped) values for all samples. FPKM values corresponding to degrees of 

expression were as follows: not covered (NA), no expression (FPKM < 1), very low expression 

(FPKM 1-5), low to moderate expression (FPKM 5-20), and high expression (FPKM > 20). 

 

Read counting for the RNA-Seq SNVs covered by the WES capture kit 

We used Bedtools (version 2.17.0) to determine whether the SNVs identified from RNA-

Seq were covered by the WES capture kit using the “-intersectBed” function. SNVs were 

categorized into four groups by read count values as was done for the aforementioned read count 

analysis: not covered (NA), single read (1), low coverage (2-7) and high coverage (≥ 8).  

 

Mutation pattern categorization for all SNVs  

We categorized SNVs into six groups according to their nucleotide changes: A:T→C:G, 

A:T→T:A, A:T→G:C, C:G→A:T, C:G→G:C, and C:G→T:A. 

The computational tools that we used for all analyses are summarized in Table 4.1. 
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Table 4.1. Tools used for comparing WES versus RNA-Seq data. 

Method/tool Purpose URL 

FASTQC Check quality of WES and RNA-Seq reads http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

BWA Map WES reads to the reference genome http://bio-bwa.sourceforge.net/ 

Picard Mark duplicate WES reads http://broadinstitute.github.io/picard/ 

GATK Perform local realignment and recalibration of WES 

reads 

https://www.broadinstitute.org/gatk/ 

MuTect Detect SNVs in WES and RNA-Seq http://www.broadinstitute.org/cancer/cga/mutect 

Samtools Generate mpileup files for WES and RNA-Seq http://samtools.sourceforge.net/ 

VarScan2 Generate read counts for WES and RNA-Seq http://varscan.sourceforge.net/ 

TopHat2 Map RNA-Seq reads to the human reference 

transcriptome and genome 

http://ccb.jhu.edu/software/tophat/index.shtml 

Cufflinks Calculate FPKM gene expression levels for RNA-Seq https://github.com/cole-trapnell-lab/cufflinks 

Bedtools Intersect RNA-Seq SNVs with WES capture kit https://github.com/arq5x/bedtools2 

R Perform the analysis for SNV comparisons http://www.r-project.org/ 

This table summarizes the computational tools used in our WES versus RNA-Seq comparative analysis. We include each tool used in 

our analysis, our use for the tool, and the URL link to the website. Further details including citations for all tools listed above are in the 

main methods section of the text
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Results 

 

Figure 4.1 illustrates the concept of our SNV comparison from WES and RNA-Seq data. 

There are several factors that may cause a difference in detecting SNVs from WES and RNA-Seq 

data, even from the same samples. First, the two sequencing technologies and their sequencing 

strategy will have variation in the enrichment of sequence regions. Second, at the biological level, 

SNVs detected from DNA-Seq (i.e., WES) may not be detectable by RNA-Seq due to low 

coverage, or tissue-specific expression and alternative splicing. In contrast, SNVs in the 

transcriptome may not be detected in WES because of low coverage, RNA editing, or their location 

outside of the WES capture regions. With these factors, we performed an in-depth comparison 

between SNVs detected by the two sequencing techniques. 
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Figure 4.1. Comparison between WES data and RNA-Seq data. This figure shows the motivation 

and the concept behind our study. WES reads are generated on the exon captured regions. RNA-

Seq reads are generated on the content of gene expression conditions. SNVs may exist in various 

locations of the genome including introns adjacent to exons in the DNA, and for locations within 

the transcriptome. SNVs for the intronic, WES and RNA-Seq shared, WES only, RNA-Seq only 

are colored with dark grey, light grey, blue and pink, respectively. SNVs not included in WES by 

the low coverage or WES kit failure or RNA editing are represented with pink dotted circles. SNVs 

not included in RNA-Seq by the low expression or coverage are represented with blue dotted 

circles. 
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Poor concordance for SNVs called in WES and RNA-Seq data 

We obtained WES and RNA-Seq data for 27 lung cancer tumor samples and their matched 

normal samples. We applied a standard pipeline to analyze the samples and detect somatic SNVs 

(Figure 4.2). We refer to the SNVs that were uniquely detected in WES but not in RNA-Seq data 

as “WES unique SNVs,” the SNVs that were uniquely detected in RNA-Seq but not in WES data 

as “RNA-Seq unique SNVs,” and those observed in both WES and RNA-Seq as “WES shared 

SNVs” or “RNA-Seq shared SNVs.” Note that although the WES shared SNVs and the RNA-Seq 

shared SNVs have the same genomic coordinates, they may have different alternative allele 

frequencies, or even different alternative alleles, in the WES data and in the RNA-Seq data. Thus, 

we referred to them separately as WES shared SNVs and RNA-Seq shared SNVs. Overall, we 

identified 15,662 SNVs from the WES data, with an average of 580 ± 517 SNVs per sample, and 

15,473 SNVs from the RNA-Seq data, with an average of 573 ± 332 SNVs per sample. 

Surprisingly, only ~14% (2,150) of these SNVs were detected by both WES and RNA-Seq (Table 

4.2).  
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Figure 4.2. Work flow for the overall analysis. The blue color scheme is for the WES work flow. 

The pink color scheme is for the RNA-Seq work flow. Typical pipelines for WES data and for 

RNA-Seq data were used. From the SNVs called using MuTect, we performed several 

comparisons. For the WES data sets, we compared SNV lists from RNA-Seq, and analyzed gene 

expression patterns. For the RNA-Seq data sets, we compared SNV lists from WES and compared 

the mutation patterns. 

 

WES data flow 

Post analysis 

- Covered by WES kit 
- Coverage in WES 

- Mutation pattern (MuTect) 

Map to hg19 genome (BWA) 

Pre-processing for SNV calls 

- Mark duplicates (Picard) 
- Local realignment (GATK) 

- Base quality recalibration (GATK) 

Map to refSeq   
Remap unmapped reads to  

hg19 genome (TopHat2) 

SNV detection (MuTect) 
- Make mpileup files (Samtools) 

- Get read counts (VarScan2) 
- Read counts (NA, 1, 2-7, ≥ 8) 

Intersect with WES kit (Bedtools) 

RNA-Seq data flow Shared flow 

Calculate expression  
(Cufflinks) 

FPKM (NA, <1, 1-5, 5-20, >20) 

Post analysis 

- Coverage in RNA-Seq 

- Expression in RNA-Seq 

- Mutation pattern (MuTect) 
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Table 4.2. Summary of all SNVs detected in RNA-Seq and WES by MuTect. 

Sample ID  RNA-Seq WES  Overlap 

Overlap with  

RNA-Seq (%) 

Overlap with  

WES (%) 

1 452 388 52 11.5 13.4 

2 1,082 1,206 263 24.3 21.8 

3 731 902 175 23.9 19.4 

4 531 62 9 1.7 14.5 

5 572 83 4 0.7 4.8 

6 640 619 92 14.4 14.9 

7 317 94 8 2.5 8.5 

8 220 85 5 2.3 5.9 

9 659 168 23 3.5 13.7 

10 524 78 8 1.5 10.3 

11 529 447 36 6.8 8.1 

12 597 773 112 18.8 14.5 

13 432 335 54 12.5 16.1 

14 533 1,360 124 23.3 9.1 

15 403 540 30 7.4 5.6 

16 768 892 143 18.6 16.0 

17 590 296 56 9.5 18.9 

18 753 172 26 3.5 15.1 

19 313 1,060 42 13.4 4.0 

20 422 1,017 125 29.6 12.3 

21 188 716 9 4.8 1.3 

22 1,425 901 158 11.1 17.5 

23 348 309 19 5.5 6.1 

24 310 227 45 14.5 19.8 

25 97 66 1 1.0 1.5 

26 508 577 58 11.4 10.1 

27 1,529 2,289 473 30.9 20.7 

Mean ± SD 573 ± 332 580 ± 517 80 ± 102 13.9 ± 9.0 13.7 ± 6.0 

Total 15,473 15,662 2,150     
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We explored the reasons why such a small portion of WES SNVs was detected in the RNA-

Seq data. One possibility is that the positions of the WES SNVs are not well covered in RNA-Seq. 

A large proportion of the WES unique SNVs (41.0%) are not covered in RNA-Seq. However, the 

majority (96.9%) of the WES shared SNVs have at least eight RNA-Seq reads mapped to their 

position (Figure 4.3). There is a small proportion of WES unique and WES shared SNVs 

moderately covered in RNA-Seq (2-7 reads), 8.8 – 24.2% and 0 – 33.3% respectively. 

Interestingly, 11.2 – 58.8% of the WES unique SNVs have a high number (≥8) of RNA-Seq reads 

aligned to their position. However, these are still undetected in RNA-Seq. Only one WES shared 

SNV was not covered (NA) in RNA-Seq, and this is likely a false positive detected from the 

MuTect analysis. We hypothesized that some of the WES unique SNVs may be located in genes 

which are not expressed, or have very low expression levels, and therefore are undetected by RNA-

Seq. 
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Figure 4.3. VarScan2 read count values determine why WES unique SNVs are not called by RNA-

Seq. (A) Stacked column graph showing read counts results in RNA-Seq for WES unique SNVs. 

(B) Bar plot showing read counts results in RNA-Seq for WES shared SNVs. Blue represents read 

counts NA (not covered), orange represents read counts 1, grey represents read counts 2-7, and 

yellow represents read counts ≥ 8. Around 50% of WES unique SNVs are not covered in RNA-

Seq. Samples ordered by decreasing NA (in A) and decreasing ≥ 8 (in B). 
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We further explored the features of WES unique SNVs regarding their gene expression 

levels. We used the software Cufflinks to generate FPKM values from RNA-Seq data for the 

chromosomal loci of WES SNVs (Table 4.3). We categorized FPKM values as not covered (NA), 

not expressed (< 1 FPKM), low expression (1-5 FPKM), low to moderate expression (5 – 20 

FPKM) and high expression (> 20 FPKM) (Figure 4.4). Many of the WES unique SNVs are 

located in genes that are not expressed (51.0%). In contrast, 77.7% of WES shared SNVs are 

located in genes with FPKM > 5, including 0 – 66.7% of WES shared SNVs located in genes with 

low to moderate expression (FPKM 5-20), and 11.1 - 100% WES shared SNVs located in genes 

with high expression levels (> 20 FPKM).  

 

 

 



 

113 
 

 

 

 

 Table 4.3. Summary of FPKMa levels from RNA-Seq for SNVs detected by WES.  

  NAb < 1  1 − 5  5 – 20 > 20 Total  

WES unique SNVsc        

     Mean ± SD 24 ± 20 255 ± 220 109 ± 106 79 ± 68 33 ± 31 500 ± 429  

     Range 2 - 90 25 - 948 9 - 449 9 - 240  3 - 114 53 - 1816   

     Range of % 2.1 - 10.1% 35.0 - 63.5% 13.7 - 30.0% 9.6 - 32.5% 2.8 - 12.1%   

WES shared SNVsd        

     Mean ± SD 2 ± 3 1 ± 2 15 ± 23 38 ± 47 24 ± 31 80 ± 102  

     Range 0 - 10 0 - 7 0 - 103 0 - 224 1 - 132 1 - 473  

     Range of % 0 - 11.5% 0 - 5.3% 0 - 27.2% 0 - 66.7% 11.1 - 100%  
  a FPKM: Fragments Per Kilobase of transcript per Million mapped reads.  

     FPKM gene expression values were generated by Cufflinks. 
  b NA: SNV positions from WES that are not covered at the gene level in RNA-Seq.   
  c WES unique SNVs: SNVs detected only in WES.                                                                                                 
  d WES shared SNVs: SNVs detected in both WES and RNA-Seq. 
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Figure 4.4. Cufflinks analysis to determine gene expression levels of WES unique SNVs in RNA-

Seq. (A) FPKM values for WES unique SNVs. (B) FPKM values for SNVs shared between WES 

and RNA-Seq. Most WES unique SNVs are located within genes which are not expressed in RNA-

Seq. FPKM NA: not covered, FPKM < 1: not detected; FPKM 1-5: not expressed; FPKM 5 -20: 

low to moderate expression; and FPKM > 20: high expression. Samples ordered by decreasing 

percentage of SNVs FPKM < 1 (in A) and decreasing percentage of FPKM > 5 (in B). 
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Feature analysis of RNA-Seq unique SNVs 

We then examined the features of RNA-Seq unique variants. We first explored RNA-Seq 

unique SNVs that may be located outside of the WES capture regions. RNA-Seq does not contain 

a specific exome capture step, so the variants detected are not constrained to the specific 1-2% of 

the genome sequenced by WES, and are only limited to the genomic regions that are being 

transcribed. We first explored the proportion of RNA-Seq unique SNVs that lie outside of the 

WES capture region. We used the “-intersectBed” command in Bedtools to identify RNA-Seq 

unique SNVs that are not covered by the WES capture region. For the 13,323 RNA-Seq unique 

SNVs, 9,513 (71.4%) are located outside of the WES capture regions (Figure 4.5). We used 

VarScan2 to identify the read count values for the positions that are covered by the WES capture 

kit. We discovered that for the RNA-Seq unique SNVs covered by the kit, an average of ~93% 

(82.2 – 98.3%) are in locations that are highly covered (≥ 8 reads) (Table 4.4). This is an interesting 

observation - it means that only approximately 7.0% of the SNVs uniquely called in RNA-Seq are 

potentially missed in WES due to low coverage of sequencing. Thus, the remaining SNVs are not 

missed due to technical issues, but due to biological issues. 
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Figure 4.5. RNA-Seq unique SNVs not covered by the WES kit and coverage levels. (A) Bar plot 

shows the percentage of RNA-Seq unique SNVs within each sample that are not covered by the 

WES capture kit. Also included are VarScan2 read count values for covered positions. Figure 4.5A 

shows that most SNVs are not covered by the WES kit. Here, ‘not covered by kit’ represents RNA-

Seq SNVs outside of the capture kit region; read counts values represented by NA, 1, 2 – 7, and ≥ 

8. (B) Bar plot containing VarScan2 read counts values for only the positions covered by the WES 

kit. Most SNVs covered by the WES kit have high coverage. Read counts values represented by 

NA, 1, 2 – 7, and ≥ 8. 
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Table 4.4. Summary of WES coverage for RNA-Seq SNVs that are covered by the WES capture 

kit. 

  NA 1 2 - 7 ≥ 8 Total in kit  

Mean 1 ± 1 1 ± 1 8 ± 5 130 ± 64 140 ± 68  

Range 0 - 3 0 - 4 0 - 22 29 - 280 34 - 299  

Range of % 0 - 5.9% 0 - 5.9% 0 - 16.4% 82.2 - 98.3%    

 

 

We hypothesized that RNA editing is another factor leading to the RNA-Seq SNVs being 

undetected in WES. Although there are known difficulties detecting RNA editing in NGS data 

(190-192), we explored this mechanism as a potential reason for inconsistencies in mutation 

calling between WES and RNA-Seq. We used the results from MuTect to analyze the base-pair 

mutation pattern across all SNVs for signatures of RNA editing. Interestingly, the most common 

mutation pattern for the RNA-Seq unique SNVs was the A:T→G:C mutation pattern, occurring in 

55.3% of SNVs (Figure 4.6). Another interesting finding was that 21.4% of the RNA-Seq unique 

SNVs that were covered by the WES capture kit (but not detected in WES) also shared this same 

mutation pattern. In comparison, only 6.7% of the total number of overlapping SNVs called in 

both WES and RNA-Seq had this mutation pattern. The A→G mutation is a common RNA-editing 

mechanism arising from A→I editing acted upon by Adenosine Deaminase Acting on RNA (176). 

We summarize the list of factors that may lead to inconsistencies in detecting SNVs in RNA-Seq 

versus WES in Table 4.5. 
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Figure 4.6. Mutation pattern for all SNVs. Mutation pattern was determined for all categories of 

SNVs and percentages plotted. Several patterns are more highly enriched than others, such as the 

A:T→G:C mutation in RNA-Seq. 
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Table 4.5. Summary of factors that may lead to inconsistencies in detecting SNVs in WES versus 

RNA-Seq. 

Factors causing 

RNA-Seq unique 

SNVs 

Observation Factors causing WES 

unique SNVs  

Observation 

SNVs outside of the 

WES capture regions 

71.4% of RNA-Seq 

unique SNVs 

Low coverage of 

SNVs in RNA-Seq  

41.0% of WES-

unique SNVs have no 

RNA-Seq coverage 

Low coverage of 

SNVs in WES 

8.0% of RNA-Seq 

unique SNVs that are 

within the WES 

regions, have low or 

no WES coverage 

SNVs located in non-

expressed genes (< 1 

FPKM) 

51.0% of WES-

unique SNVs  

RNA-editing 55.3% of RNA-Seq 

unique SNVs were 

A:T→G:C mutations 

SNVs potentially 

edited in RNA-Seq 

55.3% of RNA-Seq 

unique SNVs were 

A:T→G:C mutations  

 

 

 

Discussion 

 

Few studies have examined mutation detection from both WES and RNA-Seq data of the 

same samples. However, such information is critical in assessing the mutations at different 

biological stages as well as their effects on disease. In this study, our comparison of WES and 

RNA-Seq data from the 27 pairs of NSCLC tumor and matched normal samples revealed that on 

average only ~14% of SNVs overlap. This value is quite low considering that the samples are 

identical. Thus, we explored possible reasons that cause this small overlap. We found that many 

of the WES unique SNVs are not called in RNA-Seq because they are poorly covered in RNA-Seq 

with many SNVs mapping with less than eight reads. This information is important for using a 
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SNV-calling software tool like MuTect, where the coverage limitations allowed to call an SNV is 

at least 14 reads in the tumor and at least 8 in the normal. 

We noticed that although low coverage levels explained why most WES unique SNVs were 

not detected in RNA-Seq, many other SNVs had high read counts values but were still missed. We 

decided to interrogate gene expression levels to determine if this may explain why some SNVs are 

not detected in RNA-Seq. We used FPKM values, and found that the majority of WES unique 

SNVs are located in genes which are not expressed. In contrast, the SNVs that were shared between 

sequencing methods were found to have moderate to high expression levels. This is an important 

finding, because many studies use WES as the single method for somatic mutation detection in 

cancer, and this analysis demonstrates that it is important to measure expression levels when trying 

to determine deleterious variants. Many SNVs may be called in WES, but may not have an impact 

at the biological level because the variant is located within a non-expressed gene.  

After determining these potential causes for the WES unique SNVs not being called in 

RNA-Seq, we next focused on the reasons why RNA-Seq unique SNVs were missed by WES.  

We first thought that many of the RNA-Seq unique SNVs may be missed by WES because 

they fall outside of the WES capture regions. This is an important aspect to consider, because while 

RNA-Seq covers the whole transcriptome, WES is limited to detecting variants in the exons and 

their flanking regions. Currently, many exon capture kits are designed to have their probes 

covering well-annotated coding genes using representative gene models like Consensus CDS 

(CCDS) and RefSeq. And the capture method using target-probe hybridization has the limitation 

of GC-content bias. To compare the regions covered by the kit with the RNA-Seq, we used 

Bedtools and found that 71.4% of the RNA-Seq unique SNVs are not covered in WES. This 

suggests that many potentially important SNVs not located in exome regions would be missed if 
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WES were applied. This is becoming more important as ENCODE data has determined that many 

non-exonic regions in the genome are expressed, and that they may be playing important roles in 

gene regulation (193). It also implies that only performing WES on a tumor sample may miss 

potential variants that may be of important function.  

Another biological reason why RNA-Seq unique SNVs may be missed in WES is due to 

RNA editing. We used the output from MuTect to generate the mutation pattern for all samples. 

An interesting mutation pattern in RNA-Seq unique SNVs was A:T→G:C. This pattern is 

indicative of RNA editing occurring by deamination of the adenosine to inosine, which gets 

interpreted as a guanine, editing in RNA achieved by the Adenosine Deaminase Acting on RNA 

proteins (176). This result has two implications for tumor sequencing. First, there may be a defect 

in the RNA editing machinery that leads to over-editing occurring in loci that normally do not get 

edited. Studies have shown that increased and decreased levels of RNA-editing may occur in 

different types of cancer (194, 195). This editing may give rise to new functions, or lose functions 

of important proteins in the tissue of interest. These mutations would be completely missed if 

sequencing were only focused on the whole genome or whole exome. Second, these mutations 

edited at RNA level are not expected to be detected by WES or WGS; therefore, their potential 

causative or deleterious effects will remain hidden.  

Although we discovered many important differences between variants detected in WES 

versus RNA-Seq, there are some limitations to the interpretation of the results. Our samples were 

exclusively from tumor material, and we focused on an important category – somatic SNVs. It will 

be interesting to see if these results are similar for non-tumor tissue and germline mutations. We 

only used a total of 27 pairs of samples, and while this is large number and adequate for this 

analysis, it may miss some important conclusions. Furthermore, while the number of reads per 
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sample in our RNA-Seq is large, it is not sufficient enough for RNA splicing analysis. 

Experimental validation of RNA editing variants is also required. Finally, the SNVs called in each 

tumor type and sequencing type vary widely, so a pan-cancer study may identify additional reasons 

for the small overlap of variants detected in WES versus RNA-Seq. 

In conclusion, our systematic comparison of SNVs from WES and RNA-Seq NSCLC data 

revealed a low overlap. We pinpointed multiple reasons for the inconsistencies in SNV detection 

with RNA-Seq and WES. It was discovered that most WES SNVs were undetected by RNA-Seq 

because of low coverage or low expression levels. We found that most SNVs detected by RNA-

Seq were missed in WES because they are located outside the boundary of the WES capture 

regions. Lastly, we found that many SNVs detected by RNA-Seq had a mutational signature of 

RNA editing. This analysis has provided answers to our original posed question above about the 

feasibility to detect WES level SNVs using only RNA-Seq. Although we found that many variants 

would be missed using RNA-Seq alone, many of them may be of less importance because they are 

not expressed at high enough levels to cause damage. However, the SNVs detected by RNA-Seq 

may have potentially undergone RNA-editing and therefore would be difficult to target in DNA 

due to the converted base change at the RNA level. 
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CHAPTER V 

 

APPLICATION OF THE GWAS-BASED REGULATORY PIPELINE AND 

APPROACH TO OTHER DISEASE TYPES 

 

Introduction 

 

Chapter II illustrated that it is possible to identify a set of regulatory variants and their 

target genes in lung cancer using several tissue-specific data sources and methods. However, that 

approach can be extended to other disease types beyond lung cancer and other populations besides 

European. In this chapter, we applied the approach developed in Chapter II to another disease of 

the lung, other cancer types, and other instances of lung cancer in non-European populations using 

SNPs with p < 1 x 10-4 from three GWA studies.  

 We selected a lung related disease that sometimes co-occurs with lung cancer: chronic 

obstructive pulmonary disease (COPD). COPD was originally defined as a disease that 

encompassed emphysema and chronic bronchitis, but recent efforts have determined it is a much 

more complex disease. COPD patients usually present with shortness of breath and other 

symptoms of lung dysfunction (196). There are several known risk factors for COPD, but like lung 

cancer, the most well-known risk factor is cigarette smoking (197). COPD is currently diagnosed 

when patients have a post bronchodilator Forced Expiratory Volume in one second (FEV-1) to 

Forced Vital Capacity (FVC) ratio < 70% (198). We use this lung disease to demonstrate our 

pipeline is applicable to lung diseases other than cancer. We also illustrate the applicability of the 
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approach to lung cancer in an Asian population of never smoker women. Interestingly, ~50% of 

lung cancer cases in women occurred in never smokers worldwide (199). The risk of never 

smoking lung cancer is especially high in Asian countries where many women cook with 

traditional stoves that emit toxic fumes. Overall, there are many differences between risk factors 

and the biology for smoking versus never smoker lung cancer (200). For an extensive discussion 

of this subject, see the review from Sun et al. in Nature Reviews Genetics 2007 (200). These data 

allow us to extend our pipeline to lung cancer identified in non-European populations to identify 

regulatory mechanisms of disease. Finally, we extend our approach to two histologically different, 

but anatomically close, cancer types: gastric cancer (GC) and esophageal squamous cell carcinoma 

(ESCC). These cancer types are usually combined and categorized as upper gastrointestinal 

cancers. The highest incidence of these cancer types occur in areas of China, although rates are 

decreasing (201). Interestingly, although alcohol consumption and cigarette smoking are major 

risk factors for these cancers in the west, they have decreased influence for Chinese populations 

(202). This suggests a different mechanism of disease for these cancers between different 

populations. Additionally, the different environmental exposures between these populations may 

influence risk of these cancer types. For example, dietary factors, such as the consumption of 

moldy bread (203) that is consumed in Linxian China may be a stronger constituent of disease in 

China versus the west. 

In this study, we applied our approach from Chapter II on three different GWA studies to 

highlight the pipeline’s generalizability to other disease types. The three studies consisted of five 

different disease types. Three of the diseases are lung related: COPD, never smoking LUAD (N.S. 

LUAD) and never smoking LUSC (N.S. LUSC). The other two diseases, ESCC and GC, expand 

the usefulness of our approach to non-lung related cancer subtypes. We also looked at the overlap 
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between many of the diseases and cancer subtypes. We give a brief overview of each study below 

and our combined results. 

 

Methods 

 

Datasets 

 

COPD GWAS dataset 

 Pillai et al. (204) performed the first GWAS for COPD using subjects from a case-control 

study for the Bergen cohort in Norway. Cases and controls were required to have at least 2.5 pack-

years of smoking history. COPD cases were defined by a post-bronchodilator FEV1 of < 90% and 

FEV1/FVC < 0.7. Controls were defined by FEV1 > 80% and FEV1/FVC > 0.7. After quality 

control (QC) of the samples, 823 cases and 810 controls of European ancestry remained. The 

subjects were genotyped with Illumina’s HumanHap550 chip. After QC of the SNPs, there were 

538,030 SNPs left for the association analysis. The authors analyzed the data using a logistic 

regression model including age, sex, smoking status, pack-years, and 12 principal components. 

We used the set of significant SNPs (p < 1 x 10-4) from the discovery phase of the GWAS in 

Supplementary Table 1 of the Pillai publication for our analysis. 
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Lung cancer in never smoking women GWAS dataset 

 Lan et al. (26) performed a GWAS for never-smoking women of Asian ancestry. This 

GWAS used subjects from 14 smaller studies that were scanned at six different centers. The 

genotypes were combined using a clustering approach described in their publication (26). The 

authors performed QC of the genotyped data to remove samples and SNPs that did not reach their 

QC criteria. After QC, 5,510 cases and 4,544 controls for the discovery analysis with 512,226 

SNPs remained. The authors analyzed the data using logistic regression including age, study group, 

and eigenvectors. The authors also stratified their analysis based upon histology. We used all SNPs 

(p < 1 x 10-4) from the study’s discovery phase for LUAD and LUSC. We obtained the SNP results 

from dbGaP study ID phs000716.v.1.p1. To download the SNP results separated by subtype, we 

utilized the Analyses tab on the webpage. This tab gave results in the online browser for LUAD 

http://www.ncbi.nlm.nih.gov/projects/SNP/gViewer/gView.cgi?aid=3852&pvf=0 and for LUSC 

http://www.ncbi.nlm.nih.gov/projects/SNP/gViewer/gView.cgi?aid=3853. To download the data, 

we chose no log(P-value_filter) and clicked to download the displayed data. We did this same 

procedure for each subtype to download all SNPs associated with each subtype. We further filtered 

this list to include SNPs p < 1 x 10-4 using the statistics analysis software R (205). 

 

GWAS datasets for gastric cancer and esophageal cancer 

 Abnet et al. (206) performed a GWAS for GC and ESCC in an ethnic Chinese population. 

For the discovery phase, the authors used participants from two studies: the Shanxi Upper 

Gastrointestinal Cancer Genetics Project (Shanxi) and the Linxian Nutrition Intervention Trial 

(NIT). After QC of the genotyping and subjects, 3,523 cases and 2,100 controls for the association 

http://www.ncbi.nlm.nih.gov/projects/SNP/gViewer/gView.cgi?aid=3852&pvf=0
http://www.ncbi.nlm.nih.gov/projects/SNP/gViewer/gView.cgi?aid=3853
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analysis and 551,152 SNPs remained. The SNPs were analyzed using logistic regression including 

age, study, and sex. We obtained all significant SNPs from dbGaP study ID phs000361.v1.p1. To 

download the SNP results for both cancer types, we clicked on the Analyses tab, and under the 

Analyses folder, we chose both cancer types. The results were displayed in the online browser, 

and we downloaded all unfiltered results. We then filtered the list to include SNPs p < 1 x 10-4 

using R.  

 

Methods to obtain final germline-regulated genes 

 The same approach and datasets used in this chapter were extensively explained in the 

methods for Chapter II. Below, we briefly discussed data used and any modifications to the 

approach used in Chapter II. We do not go into depth about every method, as was done in Chapter 

II. We point the reader to the methods section of Chapter II for full details and explanation of the 

data sets used in this current chapter. 

 

Remapping SNPs between genome builds and updating SNP rs ID numbers 

 The online tool Remap from NCBI (http://www.ncbi.nlm.nih.gov/genome/tools/remap) 

was used to remap SNPs between genome builds. For COPD, we remapped SNPs from hg18 to 

hg19 using default settings. The updated SNP positions were used to extract updated SNP rsID 

values using build 142 of dbSNP from NCBI. We used dbSNP files downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b142_GRCh37p13/chr_rpts/. The SNPs 

for the other two disease types were downloaded from dbGaP (207), so we had to preprocess them 

first before we remapped. For example, data on dbGaP is structured differently than our data from 

http://www.ncbi.nlm.nih.gov/genome/tools/remap)
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b142_GRCh37p13/chr_rpts/
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dbSNP and their positions are shifted by -1 bp relative to dbSNP. For N.S. LUAD and N.S. LUSC, 

we added +1 bp to each position before we remapped. The new positions were then remapped from 

hg38 to hg19. These new positions were updated to new rsID values as explained previously. For 

GC and ESCC, we also added +1 bp to their position. However, these SNPs were already in hg19, 

so we just matched the new positions directly to the files from dbSNP. 

 

Generation of SNPs in LD for all diseases 

 We used each SNP for all disease types to obtain a set of all SNPs in a 1Mb region upstream 

and downstream from each SNP using Tabix (104) version 0.2.5. For COPD, we obtained the SNP 

data from the European Super Population Group, and for all other disease types we used the Asian 

Super Population Group. All data were obtained from the 1000 Genomes Phase III data 

v5.20120502 (208). We used Vcftools (105) version 0.1.12b to convert the Tabix vcf files to plink-

tped file format. PLINK version 1.07 (106) was used in combination with the 1000 Genomes 

population genotype data to extract all SNPs in LD using r2 > 0.8 within 1Mb of each genotyped 

SNP. We combined all SNPs in LD from PLINK for each disease type and removed any duplicated 

SNPs from the LD expansion. 

 

GTEx eQTLs 

 We used the full set of human tissue-specific eQTLs version 6 (V6) that was downloaded 

from the GTEx website (www.gtexportal.org) on February 22, 2016 (67). For full details of how 

the eQTLs were generated, see methods in Chapter II. We used lung tissue for COPD and the never 

smoking lung cancer samples. For ESCC, we combined the eQTLs found in two esophageal 

http://www.gtexportal.org/
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tissues: Esophagus Mucosa and Esophagus Muscularis. For GC, we used stomach tissue. We also 

used multi-tissue eQTLs generated by GTEx in lung tissue for COPD, N.S. LUAD, and N.S. 

LUSC. There were no appropriate tissues to use for GA or ESCC in the multi-tissue analysis. We 

plotted the distribution of posterior probabilities for lung tissue eQTLs to determine the threshold 

for significance.  

 

Hao et al. lung eQTLs (110) 

 The full set of cis-eQTLs in lung tissue with FDR at 10% identified from this study was 

used to identify eQTLs in COPD, N.S. LUAD, and N.S. LUSC.  

 

FANTOM5 transcribed enhancers 

 We used the entire set of permissive (all identified) enhancers downloaded from 

http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed on August 26, 2015. We used 

PLINK v1.07 (106) to find any SNPs within enhancer regions using the gene-report function. To 

find the target gene of the enhancer regions with SNPs, we used the FANTOM5 enhancer 

transcription start site’s associations downloaded from 

http://enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed on August 25, 2015. Enhancer 

target genes were determined for every disease studied. 

 

 

http://enhancer.binf.ku.dk/presets/permissive_enhancers.bed
http://enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed
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IM-PET predicted enhancer target genes 

 Data from a study by He et al. (72) was used to find enhancer target genes for COPD, N.S. 

LUAD, and N.S. LUSC. Two lung related cell lines, IMR90 and NHLF, were used. Target genes 

with Reads Per Kilobase per Million mapped reads (RPKM) = 0 were removed, and Ensembl 

transcript IDs were mapped to gene symbols using BioMart (112). 

 

Results 

 

Description of data 

 We obtained SNPs (p < 1 x 10-4) from the discovery phases for three GWA studies. The 

first dataset was obtained from the first GWAS for COPD (204). This GWAS for COPD was 

performed in Norway using the Bergen Cohort. All cases and controls were current or former 

smokers. This GWAS contained 823 cases and 810 controls of European ancestry. A summary of 

the participants is listed in Table 5.1. The second GWAS dataset was obtained for lung cancer 

cases in never smoking women of Asian descent (26). This GWAS was performed using data from 

14 different studies. There were 5,458 cases and 7,457 controls of Asian ancestry. A summary of 

the participants is listed in Table 5.2. The third GWAS dataset was obtained for GC and ESCC in 

an ethnic Chinese population (206). This GWAS was performed using data from two studies in 

China and contained 3,523 cases and 2,100 controls of Asian ancestry. A summary of the 

participants is listed in Table 5.3.  
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Table 5.1. Summary of GWAS for COPD. 

 # Cases # Controls 

Participants 823 810 

Post-FEV1 in liters (±SD) 

Post-FEV1 % pred (±SD) 

1.59 (±0.71) 

50.26 (±17.33) 

3.25 (±0.74) 

93.91 (±9.22)  

Post-FEV1/FVC ratio (±SD) 0.52 (±0.13) 0.79 (±0.04) 

Population European ancestry European ancestry 

Adapted from Pillai et al. PLoS Genetics 2009 (204). 

 

 

Table 5.2. Summary of GWAS for never smoking women in Asia. 

Study # LUAD samples # LUSC samples # Controls 

CAMSH 555 32 334 

FLCS 212 49 386 

GDS 535 7 123 

GEL-S 120 8 296 

GELAC 1,059 75 1,095 

HKS 226 0 666 

JLCS 407 10 549 

SKLCS 419 28 1,082 

SLCS 378 98 1,024 

CNULCS 498 51 480 

SWHS 78 9 200 

TLCS 49 32 237 

WLCS 0 14 343 

YLCS 179 330 642 

Total 4,715 743 7,457 

Adapted from Supplementary Table 1. Lan et al. Nature Genetics 2012 (26). 

 

Table 5.3. Summary of GWAS for GC and ESCC in ethnic Chinese. 

Study # GC # ESCC # controls 

Shanxi 1,368 1,399 1,650 

NIT 257 499 450 

Total 1,625 1,898 2,100 

Adapted from Supplementary Table 1. Abnet et al. Nature Genetics 2010 (206). 
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Remapping SNPs to an updated genome and LD expansion 

 We remapped the SNPs for each disease to hg19 (see Methods) and updated the SNP rs ID 

numbers in the new genome build using dbSNP b142. The datasets are from two different 

population types, so first we used these hg19 SNPs, and data from the 1000 Genomes Phase III 

European Super Population, to expand our COPD SNP list to include all SNPs in LD (r2 > 0.8) 

within 1Mb of each updated SNP. We used the 1000 Genomes Phase III Asian Super Population 

data for N.S. LUAD, N.S. LUSC, GC, and ESCC to obtain all SNPs in LD (r2 > 0.8) within 1Mb 

of each SNP. The results from the LD expansion are listed in Table 5.4. We used the same pipeline 

as in Chapter II to obtain a set of functional SNPs and their target genes for the lung related 

diseases. We modified the pipeline for the gastric related diseases by removing the SNP mapping 

steps for the Hao et al. eQTLs, IM-PET enhancers, and the GTEx multi-tissue eQTLs. 

 

Table 5.4. Summary of LD SNP expansion for all SNPs. 

SNP category COPD N.S. LUAD N.S. LUSC GA ESCC 

SNPs genotyped 538,030 512,226 512,226 551,152 551,152 

SNPs from GWAS p < 1 x 10-4 58 95 69 61 98 

SNPs in LD r2 0.8 within 1 Mb 1,341 3,195 2,278 2,084 2,594 

Duplicated SNPs 494 1,276 945 519 1,251 

Final SNPs 847 1,919 1,333 1,565 1,343 
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Regulatory variants for all disease types 

 

GTEx single tissue eQTLs 

 We first determined regulatory variants and their target genes from the data sources that 

contained tissue types other than lung and could be broadly used in the other disease types. 

Initially, we used single tissue eQTLs generated from the GTEx project (66) to identify regulatory 

SNPs. We used the lung tissue eQTL results and identified a set of SNPs that acted as eQTLs for 

COPD (n = 8), N.S. LUAD (n = 2,400), and N.S. LUSC (n = 52). There are two ESCC related 

tissues with eQTLs: esophagus mucosa (EMC) and esophagus muscularis (EMS). We used these 

two tissue types and discovered 438 eQTLs and 560 eQTLs for EMC and EMS, respectively. For 

GC, we used stomach tissue and found 129 eQTLs (Figure 5.1A). The eQTLs found above may 

be acting to control the same gene, so we collapsed all eQTLs to the genes they controlled for the 

final gene sets.  

 

FANTOM transcribed enhancers and their target genes 

 We next determined the SNPs from each disease type that were located within enhancer 

regions of the genome with associated target genes. We used the FANTOM data (73) for the 

enhancer definitions. We used the set of permissive enhancers and their correlated transcribed 

target genes from the Promoter Enhancer Slider Selector Tool (PrESSTo) website (119). We 

discovered the number of enhancers with an associated target gene for each disease type. For the 

lung diseases, we found 1, 104, and 6 enhancers with target genes, for COPD, N.S. LUAD, and 
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N.S. LUSC, respectively. For the non-lung diseases, we found 2 enhancers with target genes for 

GC and 8 enhancers with target genes for ESCC (Figure 5.1B). 

 

 

 

 

Figure 5.1. Regulatory elements discovered in all diseases. Panel A shows the total number of 

single tissue eQTLs discovered in each disease type. We combined the eQTLs for ESCC found in 

two esophageal tissues: EMC and EMS. Panel B shows the number of enhancers with target genes 

that contained SNPs from each disease type. 
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Regulatory variants for lung diseases 

 

GTEx multi-tissue eQTLs 

 Next, we determined the additional regulatory information that could be obtained using the 

lung related diseases. Although, as we demonstrated above, our approach can be used across 

different cancer types, it was designed for a lung disease, and therefore additional data can be 

applied to the lung diseases. The GTEx project identified a set of multi-tissue eQTLs in addition 

to the single tissue eQTLs (for full details see Chapter II). There are no GC or ESCC related tissues 

used in the multi-tissue analysis; therefore, we only used the lung tissue results for COPD, N.S. 

LUAD, and N.S. LUSC. The eQTLs identified in the multi-tissue approach differed from the single 

tissue approach (see Chapter II, Methods), so we plotted the distribution of each set of eQTLs to 

determine a significance threshold. Based upon the distributions, we selected posterior 

probabilities of 0.7 for COPD and N.S. LUAD and 0.8 for N.S. LUSC. As illustrated in Figure 

5.2A, we found 40, 1310, and 101 multi-tissue eQTLs for COPD, N.S. LUAD, and N.S. LUSC, 

respectively. Similar to the single tissue eQTLs, many of these eQTLs controlled the same target 

gene, so we combined all results to their unique target genes for the final gene sets.  

 

Hao et al. lung tissue eQTLs 

 We used a third source of lung eQTLs for our final eQTL dataset for the lung diseases. We 

used the lung tissue eQTLs derived in the study by Hao et al. (110) that is described in Chapter II. 

We only discovered two eQTLs for COPD and N.S. LUSC and only one eQTL for N.S. LUAD.  
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Epigenetically defined enhancers and their predicted target genes 

 We used the data generated using the software IM-PET (72) for two lung related cell lines: 

IMR90 and NHLF. We first used the IMR90 cell line data and discovered 5, 6, and 4 target 

transcripts for COPD, N.S. LUAD, and N.S. LUSC, respectively. We found a greater number of 

target transcripts using the NHLF results for each disease type. Specifically, we found 8 for COPD, 

13 for N.S. LUAD, and 8 for N.S. LUSC. We plotted these results in Figure 5.2B. 
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Figure 5.2. Total number of regulatory elements for lung related diseases. In panel A, we show the 

number of lung tissue eQTLs found from the multi-tissue analysis. For panel B, we show the 

number of enhancer target genes for each lung related disease colored by cell type. 
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Little overlap between the different histological cancer types 

 We next determined the overlap between diseases by utilizing the target genes discovered 

in the regulatory data sets. We first determined the overlap between all cancer types using the 

GTEx single tissue and FANTOM5 data. We used all four cancer types because the two non-lung 

related cancers are the same histological class as the never smoking lung cancer subtypes. 

Histologically, the GCs are adenocarcinomas like LUAD, and the ESCCs are squamous cell 

carcinomas like LUSC. Surprisingly, we discovered there were no single tissue eQTLs or 

FANTOM enhancer targets that were shared among any of the four cancers. We originally 

hypothesized we would see sets of eQTLs and enhancers shared in histologically similar cancer 

types based upon previous evidence that showed some cancers are more similar by histological 

subtype than by tissue-specific cancer type (209). Solely for the lung related diseases, we also 

examined their overlap using the multi-tissue eQTL target genes (Figure 5.3A), and the IM-PET 

combined enhancer target genes (Figure 5.3B). Using the GTEx multi-tissue eQTL target genes, 

we found only one gene that overlapped between COPD and N.S. LUAD and no other genes that 

overlapped between the lung diseases. Our results also indicated that there were no genes from 

IM-PET that overlapped between any of the lung diseases. We did not illustrate the Hao et al. 

eQTL overlap because there are only one or two genes identified for each disease and they do not 

overlap. 
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Figure 5.3. Overlap between lung-related diseases for multi-tissue eQTLs and predicted enhancer 

targets. Panel A shows the overlap between lung tissue eQTLs from GTEx that are active in 

multiple tissue types. Panel B shows the overlap between IM-PET predicted enhancer targets that 

were combined for two lung cell lines: IMR90 and NHLF. 
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Generation of final germline regulated genes for each disease 

 We combined all results from the datasets for each disease type, and removed duplicated 

genes that were discovered using more than one dataset, to obtain the final germline-regulated 

genes. The summary of the final germline-regulated genes per data source is listed in Table 5.5. 

We also determined the overlap between all diseases using these germline-regulated genes (Figure 

5.4). Overall, our final germline gene results indicated very little overlap between disease types. 

 

Table 5.5. Summary of final germline-regulated genes. 

Disease GTEx 

S.T. 

eQTLs 

GTEx 

M.T. 

eQTLs 

Hao et al. 

eQTLs 

FANTOM 

enhancer 

targets 

IM-PET 

combined 
Germline-

regulated 

genes 

COPD 1 5 2 1 5 14 

N.S. LUAD 16 19 1 29 5 48 

N.S. LUSC 4 9 2 4 6 23 

GC 8 NA NA 1 NA 9 

ESCC 28 NA NA 6 NA 34 

S.T. = single tissue. M.T = multi-tissue. 
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Figure 5.4. There is little overlap between all germline-regulated genes for each disease.  
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Discussion 

 

 In this chapter, we demonstrated that we can apply the approach developed in Chapter II 

for lung cancer to other diseases and ethnicities. Although we could not use all of the datasets on 

the non-lung related diseases, we still identified a large set of germline-regulated genes (Table 

5.5). For the lung related diseases, we discovered a set of germline-regulated genes using all of the 

datasets from Chapter II. 

 We first identified a set of target genes using the single tissue eQTL results from GTEx. 

Surprisingly, we observed no overlap between the eQTLs identified in each cancer type with any 

other cancer type. Also, we did not observe any single tissue eQTLs that overlapped between 

COPD and the two never smoking lung cancer subtypes. These results are intriguing because it 

suggests that even though these subtypes are of the same histology (GC and N.S. LUAD, ESCC 

and N.S. LUSC), or the same cancer type (N.S. LUAD and N.S. LUSC), they may not share 

common regulatory mechanisms at the single tissue eQTL level. Next, we determined the overlap 

between all cancer subtypes and their FANTOM5 defined enhancer target genes. Similar to the 

eQTL results, we did not observe any overlap between any subtypes. This lack of overlap between 

regulatory elements is surprising because in Chapter II, we observed at least some overlap between 

lung cancer subtypes. However, in Chapter II, we had many more eQTLs and target genes to 

compare. 

 Next, we focused on the lung specific diseases where we could obtain more results using 

our lung-specific regulatory datasets. First, we used the GTEx multi-tissue eQTL data to find lung 

tissue eQTLs that are active in multiple tissues. We determined the overlap between the three lung 

diseases, and we found that one gene overlapped between COPD and N.S. LUAD: LINC01137. 
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Second, we identified predicted enhancer targets from two lung related cell lines using IM-PET. 

We discovered that no target genes were shared between any of the lung diseases. This is an 

interesting result and, combined with the lack of overlap of enhancers from FANTOM, may 

indicate separate regulatory programs for each lung disease. 

 Finally, we determined the overlap between all diseases using the final sets of germline-

regulated genes. This comparison revealed some interesting overlapping genes. For example, we 

found that ESCC had two genes, from a single genomic region, HLA-DQA1 and HLA-DQB2, 

which overlapped N.S. LUAD and none that overlapped N.S. LUSC. This is surprising because 

these two subtypes are of different histologies. We hypothesized that we would see overlap 

between different cancer types of the same histology, but we did not observe that with these results. 

Intriguingly, we found one gene that overlapped between GC and ESCC: NOC3L. The original 

publication by Abnet et al. (206) reported one gene that was shared between both subtypes: 

PLCE1. This finding was reported because of SNPs within the genic region. However, our analysis 

also discovered several SNPs within PLCE1, but they are eQTLs for a more distant gene NOC3L. 

This finding suggests that the original study may have reported the wrong affected gene that was 

shared between subtypes. This is one example of how we used the approach from Chapter II to 

discover new biology that may contribute to two non-lung cancer types. 

 Although we found several germline-regulated genes using our approach, there are several 

limitations. First, we did not identify enough genes to perform any more meaningful analyses, such 

as pathway analyses, as we did in Chapter II. We hypothesize this is because we used a more 

stringent p-value here (p < 1 x 10-4) instead of the cutoff used in Chapter II (p < 1 x 10-3). In future 

studies using this approach, it is advised to use the second p-value threshold for more meaningful 

results. Second, it is difficult to obtain a set of GWAS values at the above threshold. Although 
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many times the data can be requested from repositories such as dbGaP (207), it is more difficult 

to obtain than thresholds such as p < 1 x 10-4 that may be reported in supplemental tables (96). 

Third, we relied on datasets that have their own limitations. Although GTEx uses > 70 samples 

per tissue for their eQTL analyses, more results could be obtained with greater sample sizes. 

Therefore, we may have used incomplete sets of eQTLs. Additionally, we rely on regulatory 

features that are generated for either tissue-wide data or for cell-lines. Since many different cell 

types make up each tissue, there may be noise in the datasets from this heterogeneity of cells types. 

Fourth, we are limited in the application of our approach to non-lung related disease types. 

Although we found an interesting result with the GC and ESCC subtypes, we did not have the 

same sensitivity as the lung-related diseases because of the limitation with the datasets. However, 

if GTEx expands their multi-tissue analysis to more tissue types, future work can be completed 

outside of lung tissue. 

 In conclusion, we utilized the pipeline and approach from Chapter II on non-lung cancer 

GWAS results. We demonstrated that the approach identified regulatory variants and their 

corresponding germline-regulated in non-lung cancer samples. We identified a shared germline-

regulated gene between GC and ESCC that may have been missed in the original study. We also 

discussed several limitations to our results. Overall, we discovered that our approach to the 

determination of regulatory variants from GWA studies and the identification of their target genes 

is applicable across disease types and population types, but caution remains. Approaches like this 

are needed to help unravel the unknown nature of many non-coding variants found in GWAS for 

many phenotypes, which currently is a challenging but important research topic. 
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CHAPTER VI 

 

CONCLUSION 

 

 In this dissertation, I discussed my work studying the germline and somatic genomes in 

three subtypes of lung cancer, as well as some extended work for other cancer types and lung 

diseases. Although previous studies have investigated single lung cancer subtypes on a germline 

or somatic level (see Chapter I, Introduction), it is not well understood how to integrate these 

findings. Additionally, due to different study designs and methodologies, it has been difficult to 

systematically compare the different subtypes of lung cancer amongst each other. My aims in this 

thesis work were to perform exhaustive interrogations of both genomes across lung 

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and small cell lung cancer 

(SCLC). In addition to studying each subtype alone and in one genome (somatic or germline), I 

determined overlaps that exist across genomes and subtypes. This integrative analysis approach is 

important because outside of environmental hazards, the causal factors behind the genetic basis of 

lung cancer remain largely unknown. Therefore, I used a combination of genetics and functional 

genomics to study both genomes. 

In Chapter II, I developed novel approaches to interrogate non-coding variants associated 

with lung cancer. Specifically, I used a functional genomics approach to identify regulatory 

variants in each subtype. Interestingly, I found that on a single nucleotide polymorphism (SNP) 

level, the subtypes are quite distinct from each other. Through the identification of regulatory 
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variants and their target genes, I found that this lack of overlap extended beyond the SNP level 

and this observation will be discussed below. 

In Chapter III, I used DNA sequencing (WES) and RNA-Sequencing (RNA-Seq) to 

explore the differences in the subtypes at the somatic level. This analysis also revealed an overall 

lack of overlap between subtypes, but not as severe as at the germline level. I used RNA-Seq data 

to generate a set of genes that were differentially expressed in the tumor-versus-normal tissue for 

each subtype. These differentially expressed genes showed different patterns of overlap in the 

subtypes based upon up-regulation or down-regulation. I also identified a set of mutational 

signatures in each subtype and sets of potential driver genes. 

In Chapter IV, I explored the accessibility of calling somatic variants from RNA-Seq data 

in lung cancer and identified the biological and technical reasons for inconsistencies in calling 

these variants in WES versus RNA-Seq. In this chapter, I performed a deep investigation into the 

feasibility of generating a set of somatic single nucleotide variants (SNVs) in RNA-Seq that is 

equal to SNVs called in whole exome sequencing (WES). The results in Chapter IV provided a 

greater understanding of the limitations to using this approach to call variants. I found that RNA-

Seq can be used to call variants, but many caveats exist that need to be carefully considered.  

In Chapter V, I applied the approaches from Chapter II on GWA studies for other disease 

types and populations. In this chapter, I performed the same analysis that was done in Chapter II 

in order to demonstrate the transferability of the approach. I illustrated that the same approach can 

be applied, with some small changes for non-lung related diseases, to GWAS for many different 

diseases and ethnicities. 
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Below, I highlight some intriguing discoveries found in the overall analyses and their 

contribution to the research field of lung cancer. 

 

Filling in the knowledge gap for GWAS variants 

 Many of the GWA studies introduced in Chapter I identified common variants located 

within non-coding regions of the genome. The interpretation of these variants remains challenging 

because it is not easy to identify the genes that may be affected by these variants. Additionally, 

past work (68) has demonstrated that non-coding GWAS variants are enriched for regulatory 

function. Lung cancer is one of these diseases where more significantly associated variants from 

GWA studies were in non-coding regions rather than in coding regions of the genome (52). The 

lack of insight into the biological mechanisms behind these variants has left many questions about 

the biology of lung cancer from the germline perspective unanswered. However, in Chapter II of 

this work, I used several lung-related eQTL and enhancer datasets to investigate the role of GWAS 

results for lung cancer and their LD SNPs in regulatory regions of the genome. I also determined 

the target genes for these regulatory SNPs (see Chapter II). These results indicated that some of 

these variants were acting in regulatory roles in the genome that control expression on one or 

several target genes. Specifically, I found that these variants act as SNPs in the eQTLs that control 

the gene’s expression, known as expression SNPs (eSNPs), and are also located within enhancer 

regions of the genome. Additionally, the identification of the target genes of these regulatory SNPs 

generated a set of targets that could be explored in future experimental studies. These results 

suggested that many common variants associated with all three lung cancer subtypes are in control 
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of genes with already established roles in lung cancer, such as CHRNA5, IDH3A, and PSMA4 

which were identified as target genes of regulatory variants in every subtype.  

 

The weak overlap between all three subtypes at the germline and somatic 

genomes 

 

 One discovery from this work was that across both genomes, there was a lack of overlap 

between all three lung cancer subtypes at the gene-level. Although histological analysis and cell 

type studies group these three lung cancers into distinct subtypes, they are all derived from lung 

tissue (210). Therefore, I originally hypothesized that there would be moderate overlap of the three 

subtypes. However, I discovered that across genomes and biological factors, many of the genes 

discovered in each subtype were not shared by the other two subtypes (see Chapter II and Chapter 

III). 

 I first observed the weak overlap between LUAD, LUSC, and SCLC in the germline 

genome using lung cancer GWAS results at p < 1 x 10-3. I found that only 10 SNPs (< 1%) 

overlapped all three subtypes even though each subtype had over 500 significant SNPs (see 

Chapter II). I further identified sets of germline genes that were the targets of the regulatory SNPs 

for each subtype and again found weak overall overlap and only observed one independent region 

on 15q25 that overlapped all subtypes. This region contained five germline-regulated genes that 

may be contributing risk for lung cancer independent of subtype.  

I next observed the overlap between subtypes at the somatic level. First, I identified sets of 

DEGs that were down-regulated and up-regulated in somatic lung tumor tissue compared to normal 

lung tissue in each subtype. Although 554 up-regulated DEGs overlapped all three subtypes, there 
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were still 442, 850, and 575 unique up-regulated DEGs for LUAD, LUSC, and SCLC, 

respectively. Fewer down-regulated genes overlapped all three subtypes (325), but there were also 

fewer DEGs detected overall. For both sets of DEGs, only ~ 14% of all DEGs were shared between 

all three subtypes. At the somatic mutation level, I first identified the three most significant 

mutational signatures for each subtype. Only one mutational signature (COSMIC signature 4) was 

shared between the subtypes. This mutational signature is most associated with tobacco 

mutagenesis (149). However, LUSC had Signature 13 in common with LUAD. This signature has 

been found in many cervical and bladder cancer types (7), suggesting that these subtypes may 

share functions or regulation with other cancer types. Additionally, signature 5 was shared between 

LUAD and SCLC. This signature has been found in all cancer types and exhibits T>C substitutions 

(7). I also generated a set of potential driver genes, and found that at two different thresholds, I 

found many potential driver genes unique to each subtype and only ~13% of all potential driver 

genes overlapped all three subtypes (see Chapter III). Overall, although there was a lack of strong 

overlap in the somatic genome for all three subtypes, it was not nearly as strong as the overlap 

between all three subtypes at the germline level. 

 

Linking acetylcholine receptors from the germline to somatic genomes 

 Several genomic studies (53, 116) have identified the region of 15q25 to be associated with 

multiple subtypes of lung cancer (for full discussion, see Chapter I). However, most of the variants 

were located within non-coding regions of the genome and in the vicinity of a closely related set 

of genes. These genes comprise a set of nicotinic cholinergic receptor (CHRNA) genes. Debate 

has ensued about this region’s role in lung cancer risk from a genetic versus environmental 
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perspective (128). However, using the combined results of Chapters II and III, one can gain insight 

into this region’s role in lung cancer. For example, I found several regulatory SNPs within this 

genomic region for all three subtypes. However, through my regulatory functional genomics 

approach, I identified the affected gene from these regulatory SNPs as CHRNA5. The results from 

the somatic DEG analysis further validated this finding. I discovered that CHRNA5 is up-regulated 

3.64, 3.22, and 2.52 log fold in LUAD, LUSC, and SCLC tumor tissue compared to normal lung 

tissue. This finding expands the previous knowledge about this gene’s role at the germline level 

and extends it to the somatic level. To further validate CHRNA5 as the probable target of common 

variants, I used the DEG results to investigate another CHRNA gene that has also been implicated 

at the germline level, CHRNA3. I searched the DEG results and found that although CHRNA3 is 

up-regulated in SCLC, it is not significantly up-regulated in LUSC or LUAD. In this situation, it 

was crucial to compare across the subtypes rather than just studying SCLC because identifying 

CHNRA3 only in SCLC suggests that CHRNA5 is probably the correct target. However, the 

possibility still remains that CHRNA3 is also acting solely in SCLC. Although CHRNA5 has not 

garnered much attention at the somatic level, this finding suggests it may be beneficial to explore 

the biology behind acetylcholine receptors (ACRs) in cancer in more detail. 

  

Shared pathways across germline and somatic genomes (using gene sets) 

 I combined the pathways between the germline and somatic genomes in each subtype to 

identify biological pathways perturbed in both genomes. Ignoring any overlap between other 

subtypes, I looked at the number of pathways identified in each subtype from the germline genome 

and from the somatic genome. For the germline genome, I used the germline-regulated genes in 
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each subtype, and for the somatic genome, I used the combined up-regulated and down-regulated 

DEGs. I did not filter the pathways for the germline-regulated genes because I did not have very 

large gene sets. However, for the somatic DEGs, I filtered out pathways that contained less than 

five DEGs. I found that four pathways are enriched with genes from both genomes for LUAD. For 

LUSC, I found that 18 pathways overlap the germline genome and somatic genome. Finally, for 

SCLC, I observed that three pathways overlapped both genomes. These final pathways are listed 

in Table 6.1. Interestingly, many of these pathways do not have immediate relations with cancer. 

Therefore, future studies may look to these pathways as guidance for the exploration of biological 

pathways associated with each cancer type. The evidence from both genomes gives moderate 

expectations that these pathways may be important in each cancer subtype. 
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    Table 6.1. Final overlap in enriched KEGG biological pathways shared in the germline and somatic genomes. 

LUAD LUSC SCLC 

Metabolic pathways Staphylococcus aureus infection Metabolic pathways 

Tight junction Asthma Retinol metabolism 

Endocytosis Antigen processing and presentation Focal adhesion 

Focal adhesion Graft-versus-host disease  

 Intestinal immune network for IgA production  

 Viral myocarditis  

 Leishmaniasis  

 Rheumatoid arthritis  

 Phagosome  

 Toxoplasmosis  

 Systemic lupus erythematosus  

 Cell adhesion molecules (CAMs)  

 Metabolic pathways  

 Jak-STAT signaling pathway  

 Pathways in cancer  

 NOD-like receptor signaling pathway  

 Complement and coagulation cascades  

 Hematopoietic cell lineage  
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Future directions 

 For each part of this work there are several follow up analyses that could be explored. 

However, I think that the most interesting future studies would involve the possible biological 

interactions and relationships between the germline and somatic genomes in each lung cancer 

subtype. Although this work only highlighted a few aspects of how the germline and somatic 

genomes may work together in lung cancer, there are specific follow up studies that may reveal 

closer interactions.  

One particular method that can be used is EW_dmGWAS (139). This is a network-based 

method that can be used to integrate both genomes. EW_dmGWAS uses the germline and somatic 

genomes with a protein-protein interaction (PPI) network to help identify sets of closely related 

genes from both genomes. This method uses GWAS genome-wide gene-level p-values to weigh 

each node in the network. It uses differential expression values at the somatic level to weigh the 

edges in the network. The algorithm identifies closely related modules in the network. This is one 

way that a network can be used to combine both genomes. Several iterations can be used for this 

analysis because many tools exist to generate gene-level p-values. For example, instead of using 

proximity to the SNP to generate a gene-level p-value that is done in tools such as Versatile Gene-

based Association Study (VEGAS) (211), newer approaches such as MetaXcan (212) can be used. 

MetaXcan generates a gene-level p-value based upon predicted gene expression using quantitative 

trait loci (eQTLs) derived from the GWAS SNPs. Using these values in the network may generate 

more biologically accurate results since I hypothesized, and confirmed, that many of the lung 

cancer GWAS variants are regulatory (Chapter II).  



 

154 
 

Finally, future studies can expand upon the biological pathways discovered in this work. 

The pathways I discovered were identified using a set of genes that were already filtered due to 

their potential role in disease. However, this can be expanded upon to generate pathways identified 

from all SNPs in the GWAS (213) and all genes in the somatic genome (214). This larger unbiased 

approach may identify additional genes that are closely associated, and may function together, in 

both genomes. 

 

Concluding remarks 

This dissertation’s deep interrogation into the molecular differences between three 

histologically distinct lung cancers suggested several potential shared and distinct mechanisms of 

disease. Although this dissertation focused on comparing the subtypes of lung cancer, these 

methods can easily be extended to other cancer types. This insight into biological differences 

between cancers that arise in the same organ, but of different cell types (210), will be of greater 

importance as sequencing technologies become more accessible and affordable to all patients 

(http://www.businesswire.com/news/home/20170109006363/en/), as we are entering to the era of 

the $100 per genome sequencing. New initiatives such as the Precision Medicine Initiative (PMI) 

(https://www.nih.gov/research-training/allofus-research-program) will generate large diverse 

genomic datasets that will help to unravel the mysteries and inner workings of the genome.  

 

http://www.businesswire.com/news/home/20170109006363/en/
https://www.nih.gov/research-training/allofus-research-program


 

155 
 

APPENDIX 

 

Appendix A. Locus level analyses for germline-regulated genes discovered in Chapter II. 

A.1. Independent locus level analysis for LUAD unique. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 41 14 25 

GTEx multi-tissue eQTL in lung > 0.80 43 18 28 

GTEx combined 66 18 37 

Hao single tissue lung eQTL 23 12 18 

FANTOM5 enhancer target gene 31 12 15 

IM-PET IMR90 43 12 20 

IM-PET NHLF 80 15 28 

IM-PET combined 105 16 34 

All genes 193 21 69 
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A.2. Independent locus level analysis for LUSC unique. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 47 14 23 

GTEx multi-tissue eQTL in lung > 0.80 72 18 36 

GTEx combined 95 18 42 

Hao single tissue lung eQTL 26 9 17 

FANTOM5 enhancer target gene 63 13 16 

IM-PET IMR90 59 16 27 

IM-PET NHLF 110 16 28 

IM-PET combined 150 18 37 

All genes 287 19 71 

 

 

 

 

A.3. Independent locus level analysis for SCLC unique. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 29 13 25 

GTEx multi-tissue eQTL in lung > 0.80 45 14 30 

GTEx combined 56 16 37 

Hao single tissue lung eQTL 10 6 10 

FANTOM5 enhancer target gene 30 12 15 

IM-PET IMR90 32 13 21 

IM-PET NHLF 56 13 29 

IM-PET combined 77 16 38 

All genes 154 20 69 
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A.4. Independent locus level analysis for LUAD overlap LUSC. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 0 0 0 

GTEx multi-tissue eQTL in lung > 0.80 2 2 2 

GTEx combined 2 2 2 

Hao single tissue lung eQTL 1 1 1 

FANTOM5 enhancer target gene 5 2 2 

IM-PET IMR90 2 2 2 

IM-PET NHLF 7 3 3 

IM-PET combined 7 3 3 

All genes 16 6 6 

 

 

 

 

A.5. Independent locus level analysis for LUAD overlap SCLC. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 0 0 0 

GTEx multi-tissue eQTL in lung > 0.80 0 0 0 

GTEx combined 0 0 0 

Hao single tissue lung eQTL 0 0 0 

FANTOM5 enhancer target gene 0 0 0 

IM-PET IMR90 0 0 0 

IM-PET NHLF 1 1 1 

IM-PET combined 1 1 1 

All genes 1 1 1 
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A.6. Independent locus level analysis for LUSC overlap SCLC. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 4 2 2 

GTEx multi-tissue eQTL in lung > 0.80 4 2 2 

GTEx combined 8 3 3 

Hao single tissue lung eQTL 2 1 1 

FANTOM5 enhancer target gene 0 0 0 

IM-PET IMR90 1 1 1 

IM-PET NHLF 2 1 1 

IM-PET combined 2 2 2 

All genes 12 5 5 

 

 

 

 

A.7. Independent locus level analysis for ALL OVERLAP. 

Regulatory category # unique genes # chromosomes # total unique regions 

GTEx single tissue V6 Lung eQTL 2 1 1 

GTEx multi-tissue eQTL in lung > 0.80 3 1 1 

GTEx combined 3 1 1 

Hao single tissue lung eQTL 0 0 0 

FANTOM5 enhancer target gene 0 0 0 

IM-PET IMR90 0 0 0 

IM-PET NHLF 2 1 1 

IM-PET combined 2 1 1 

All genes 5 1 1 
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Appendix B. Final germline-regulated genes and overlap at GWAS SNP p < 1 x 10-4. Below 

illustrates the set of final germline-regulated genes discovered using the more stringent p < 1 x 10-

4. The overall lack of overlap between subtypes is consistent with results at the more lenient 

threshold used in Chapter 2. 
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Appendix C. Summary of the down-regulated somatic DEGs discovered in Chapter 3 that are 

TSGs. TSGs were defined according to TSGene Database (156). 

C.1. LUAD unique TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

DACH1 dachshund family transcription 
factor 1 

protein-coding 

DCC DCC netrin 1 receptor protein-coding 

GPC3 glypican 3 protein-coding 

MME membrane metallo-
endopeptidase 

protein-coding 

PACRG PARK2 co-regulated protein-coding 
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C.2. LUSC unique TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

ADARB1 adenosine deaminase, RNA-
specific, B1 

protein-coding 

CYB5A cytochrome b5 type A 
(microsomal) 

protein-coding 

ERBB4 erb-b2 receptor tyrosine kinase 
4 

protein-coding 

FOXA2 forkhead box A2 protein-coding 

LIFR leukemia inhibitory factor 
receptor alpha 

protein-coding 

NFATC2 nuclear factor of activated T-
cells, cytoplasmic, calcineurin-
dependent 2 

protein-coding 

NTRK3 neurotrophic tyrosine kinase, 
receptor, type 3 

protein-coding 

PGR progesterone receptor protein-coding 

SEPT4 septin 4 protein-coding 

SPTBN1 spectrin, beta, non-erythrocytic 
1 

protein-coding 

LEFTY2 left-right determination factor 2 protein-coding 

SEMA3B sema domain, immunoglobulin 
domain (Ig), short basic domain, 
secreted, (semaphorin) 3B 

protein-coding 

NR0B2 nuclear receptor subfamily 0, 
group B, member 2 

protein-coding 

RECK reversion-inducing-cysteine-rich 
protein with kazal motifs 

protein-coding 

AKAP12 A kinase (PRKA) anchor protein 
12 

protein-coding 

RASSF2 Ras association (RalGDS/AF-6) 
domain family member 2 

protein-coding 

CADM1 cell adhesion molecule 1 protein-coding 

PCDH17 protocadherin 17 protein-coding 

ZMYND10 zinc finger, MYND-type 
containing 10 

protein-coding 

DCDC2 doublecortin domain containing 
2 

protein-coding 

CASC1 cancer susceptibility candidate 
1 

protein-coding 

FAT4 FAT atypical cadherin 4 protein-coding 

MFSD2A major facilitator superfamily 
domain containing 2A 

protein-coding 

CABLES1 Cdk5 and Abl enzyme substrate 
1 

protein-coding 

MIA2 melanoma inhibitory activity 2 protein-coding 
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SLC5A8 solute carrier family 5 
(sodium/monocarboxylate 
cotransporter), member 8 

protein-coding 

MIRLET7F1 microRNA let-7f-1 ncRNA 

MIR126 microRNA 126 ncRNA 

MIR135A2 microRNA 135a-2 ncRNA 

MIR142 microRNA 142 ncRNA 

MIR26A1 microRNA 26a-1 ncRNA 

MIR326 microRNA 326 ncRNA 

VTRNA2-1 vault RNA 2-1 ncRNA 

ADAMTS9-AS2 ADAMTS9 antisense RNA 2 ncRNA 
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C.3. SCLC unique TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

ADPRH ADP-ribosylarginine hydrolase protein-coding 

AHR aryl hydrocarbon receptor protein-coding 

AIF1 allograft inflammatory factor 1 protein-coding 

FAS Fas cell surface death receptor protein-coding 

ARG1 arginase 1 protein-coding 

RHOB ras homolog family member B protein-coding 

ATF3 activating transcription factor 3 protein-coding 

ZFP36L2 ZFP36 ring finger protein-like 2 protein-coding 

CASP5 caspase 5, apoptosis-related 
cysteine peptidase 

protein-coding 

CD4 CD4 molecule protein-coding 

CD44 CD44 molecule (Indian blood 
group) 

protein-coding 

CEBPD CCAAT/enhancer binding 
protein (C/EBP), delta 

protein-coding 

CNN1 calponin 1, basic, smooth 
muscle 

protein-coding 

MAP3K8 mitogen-activated protein 
kinase kinase kinase 8 

protein-coding 

CSF2 colony stimulating factor 2 
(granulocyte-macrophage) 

protein-coding 

CST6 cystatin E/M protein-coding 

CTGF connective tissue growth factor protein-coding 

DAB2 Dab, mitogen-responsive 
phosphoprotein, homolog 2 
(Drosophila) 

protein-coding 

DCN decorin protein-coding 

DPP4 dipeptidyl-peptidase 4 protein-coding 

DUSP6 dual specificity phosphatase 6 protein-coding 

EGR2 early growth response 2 protein-coding 

EPHA2 EPH receptor A2 protein-coding 

EMP1 epithelial membrane protein 1 protein-coding 

ESR1 estrogen receptor 1 protein-coding 

HIC1 hypermethylated in cancer 1 protein-coding 

IGF1 insulin-like growth factor 1 
(somatomedin C) 

protein-coding 

IGFBP4 insulin-like growth factor 
binding protein 4 

protein-coding 

IRF1 interferon regulatory factor 1 protein-coding 

IRF5 interferon regulatory factor 5 protein-coding 

ITGA5 integrin, alpha 5 (fibronectin 
receptor, alpha polypeptide) 

protein-coding 
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MSMB microseminoprotein, beta- protein-coding 

MT2A metallothionein 2A protein-coding 

PLCD1 phospholipase C, delta 1 protein-coding 

PPARG peroxisome proliferator-
activated receptor gamma 

protein-coding 

PRKCD protein kinase C, delta protein-coding 

PRODH proline dehydrogenase 
(oxidase) 1 

protein-coding 

KLK10 kallikrein-related peptidase 10 protein-coding 

PTGDR prostaglandin D2 receptor (DP) protein-coding 

PTPN13 protein tyrosine phosphatase, 
non-receptor type 13 (APO-
1/CD95 (Fas)-associated 
phosphatase) 

protein-coding 

PTPRC protein tyrosine phosphatase, 
receptor type, C 

protein-coding 

S100A11 S100 calcium binding protein 
A11 

protein-coding 

CXCL12 chemokine (C-X-C motif) ligand 
12 

protein-coding 

SOD2 superoxide dismutase 2, 
mitochondrial 

protein-coding 

SP100 SP100 nuclear antigen protein-coding 

TAGLN transgelin protein-coding 

TGFB1 transforming growth factor, 
beta 1 

protein-coding 

THBS1 thrombospondin 1 protein-coding 

TNFAIP3 tumor necrosis factor, alpha-
induced protein 3 

protein-coding 

VIM vimentin protein-coding 

ZNF185 zinc finger protein 185 (LIM 
domain) 

protein-coding 

ZYX zyxin protein-coding 

SRPX sushi-repeat containing protein, 
X-linked 

protein-coding 

TNFSF9 tumor necrosis factor (ligand) 
superfamily, member 9 

protein-coding 

TNFRSF10B tumor necrosis factor receptor 
superfamily, member 10b 

protein-coding 

IER3 immediate early response 3 protein-coding 

LIMD1 LIM domains containing 1 protein-coding 

SOCS3 suppressor of cytokine signaling 
3 

protein-coding 

DLEC1 deleted in lung and esophageal 
cancer 1 

protein-coding 
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CTDSPL CTD (carboxy-terminal domain, 
RNA polymerase II, polypeptide 
A) small phosphatase-like 

protein-coding 

SPRY2 sprouty homolog 2 (Drosophila) protein-coding 

YAP1 Yes-associated protein 1 protein-coding 

ARL6IP5 ADP-ribosylation factor-like 6 
interacting protein 5 

protein-coding 

TXNIP thioredoxin interacting protein protein-coding 

PLA2G16 phospholipase A2, group XVI protein-coding 

RASSF8 Ras association (RalGDS/AF-6) 
domain family (N-terminal) 
member 8 

protein-coding 

PHLDA3 pleckstrin homology-like 
domain, family A, member 3 

protein-coding 

LATS2 large tumor suppressor kinase 2 protein-coding 

DKK3 dickkopf WNT signaling 
pathway inhibitor 3 

protein-coding 

PYCARD PYD and CARD domain 
containing 

protein-coding 

G0S2 G0/G1 switch 2 protein-coding 

TNFRSF12A tumor necrosis factor receptor 
superfamily, member 12A 

protein-coding 

ERRFI1 ERBB receptor feedback 
inhibitor 1 

protein-coding 

HRASLS2 HRAS-like suppressor 2 protein-coding 

LXN latexin protein-coding 

ADAMTS9 ADAM metallopeptidase with 
thrombospondin type 1 motif, 9 

protein-coding 

NDRG2 NDRG family member 2 protein-coding 

MTUS1 microtubule associated tumor 
suppressor 1 

protein-coding 

ZBTB4 zinc finger and BTB domain 
containing 4 

protein-coding 

EDA2R ectodysplasin A2 receptor protein-coding 

LRRC4 leucine rich repeat containing 4 protein-coding 

BHLHE41 basic helix-loop-helix family, 
member e41 

protein-coding 

TNFAIP8L2 tumor necrosis factor, alpha-
induced protein 8-like 2 

protein-coding 

CREB3L1 cAMP responsive element 
binding protein 3-like 1 

protein-coding 

CYGB cytoglobin protein-coding 

JDP2 Jun dimerization protein 2 protein-coding 

SIK1 salt-inducible kinase 1 protein-coding 

SYNPO2 synaptopodin 2 protein-coding 
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SAMD9L sterile alpha motif domain 
containing 9-like 

protein-coding 

SGMS1 sphingomyelin synthase 1 protein-coding 

HCAR2 hydroxycarboxylic acid receptor 
2 

protein-coding 

RASL11A RAS-like, family 11, member A protein-coding 

PTPLAD2 protein tyrosine phosphatase-
like A domain containing 2 

protein-coding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

167 
 

C.4. LUAD overlap LUSC TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

CDO1 cysteine dioxygenase type 1 protein-coding 

PCDH9 protocadherin 9 protein-coding 

SFRP5 secreted frizzled-related protein 
5 

protein-coding 

SLIT2 slit homolog 2 (Drosophila) protein-coding 

CMTM5 CKLF-like MARVEL 
transmembrane domain 
containing 5 

protein-coding 

MIR223 microRNA 223 ncRNA 

MIR23A microRNA 23a ncRNA 

MIR27A microRNA 27a ncRNA 

MIR34C microRNA 34c ncRNA 

 

 

 

 

C.5. LUAD overlap SCLC TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

ALOX15 arachidonate 15-lipoxygenase protein-coding 

THBD thrombomodulin protein-coding 

WNT7A wingless-type MMTV 
integration site family, member 
7A 

protein-coding 

KLF4 Kruppel-like factor 4 (gut) protein-coding 

ABCG2 ATP-binding cassette, sub-
family G (WHITE), member 2 
(Junior blood group) 

protein-coding 

THSD1 thrombospondin, type I, domain 
containing 1 

protein-coding 

AHNAK AHNAK nucleoprotein protein-coding 

SOX7 SRY (sex determining region Y)-
box 7 

protein-coding 
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C.6. LUSC overlap SCLC TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

ALOX15B arachidonate 15-lipoxygenase, 
type B 

protein-coding 

ALPL alkaline phosphatase, 
liver/bone/kidney 

protein-coding 

BMP2 bone morphogenetic protein 2 protein-coding 

BTK Bruton agammaglobulinemia 
tyrosine kinase 

protein-coding 

CAT catalase protein-coding 

CFTR cystic fibrosis transmembrane 
conductance regulator (ATP-
binding cassette sub-family C, 
member 7) 

protein-coding 

KLF6 Kruppel-like factor 6 protein-coding 

CST5 cystatin D protein-coding 

DAPK1 death-associated protein kinase 
1 

protein-coding 

DMBT1 deleted in malignant brain 
tumors 1 

protein-coding 

DUSP1 dual specificity phosphatase 1 protein-coding 

EGR1 early growth response 1 protein-coding 

FABP3 fatty acid binding protein 3, 
muscle and heart 

protein-coding 

FBP1 fructose-1,6-bisphosphatase 1 protein-coding 

GPC5 glypican 5 protein-coding 

NR4A1 nuclear receptor subfamily 4, 
group A, member 1 

protein-coding 

HPGD hydroxyprostaglandin 
dehydrogenase 15-(NAD) 

protein-coding 

IGFALS insulin-like growth factor 
binding protein, acid labile 
subunit 

protein-coding 

GADD45B growth arrest and DNA-
damage-inducible, beta 

protein-coding 

PF4 platelet factor 4 protein-coding 

PLA2G2A phospholipase A2, group IIA 
(platelets, synovial fluid) 

protein-coding 

PRKCE protein kinase C, epsilon protein-coding 

RPS6KA2 ribosomal protein S6 kinase, 
90kDa, polypeptide 2 

protein-coding 

SPI1 Spi-1 proto-oncogene protein-coding 

TBX5 T-box 5 protein-coding 

TGFBR2 transforming growth factor, 
beta receptor II (70/80kDa) 

protein-coding 
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TIMP3 TIMP metallopeptidase inhibitor 
3 

protein-coding 

ZFP36 ZFP36 ring finger protein protein-coding 

SPARCL1 SPARC-like 1 (hevin) protein-coding 

TNFSF12 tumor necrosis factor (ligand) 
superfamily, member 12 

protein-coding 

ALDH1A2 aldehyde dehydrogenase 1 
family, member A2 

protein-coding 

SELENBP1 selenium binding protein 1 protein-coding 

DOK2 docking protein 2, 56kDa protein-coding 

GPRC5A G protein-coupled receptor, 
class C, group 5, member A 

protein-coding 

ARHGAP29 Rho GTPase activating protein 
29 

protein-coding 

TSPAN32 tetraspanin 32 protein-coding 

CITED2 Cbp/p300-interacting 
transactivator, with Glu/Asp-
rich carboxy-terminal domain, 2 

protein-coding 

RHOBTB2 Rho-related BTB domain 
containing 2 

protein-coding 

SASH1 SAM and SH3 domain 
containing 1 

protein-coding 

HSPB7 heat shock 27kDa protein 
family, member 7 
(cardiovascular) 

protein-coding 

RBMS3 RNA binding motif, single 
stranded interacting protein 3 

protein-coding 

WFDC1 WAP four-disulfide core domain 
1 

protein-coding 

SPRY4 sprouty homolog 4 (Drosophila) protein-coding 

HOPX HOP homeobox protein-coding 

SCGB3A1 secretoglobin, family 3A, 
member 1 

protein-coding 

GATA5 GATA binding protein 5 protein-coding 

SHISA3 shisa family member 3 protein-coding 

ZNF366 zinc finger protein 366 protein-coding 

GKN2 gastrokine 2 protein-coding 

BCL6B B-cell CLL/lymphoma 6, 
member B 

protein-coding 
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C.7. All overlap TSGs from somatic down-regulated DEGs. 

Gene Symbol Description Gene class 

AGTR1 angiotensin II receptor, type 1 protein-coding 

CAV1 caveolin 1, caveolae protein, 
22kDa 

protein-coding 

CDH5 cadherin 5, type 2 (vascular 
endothelium) 

protein-coding 

EDNRB endothelin receptor type B protein-coding 

EMP2 epithelial membrane protein 2 protein-coding 

EPAS1 endothelial PAS domain protein 
1 

protein-coding 

FHL1 four and a half LIM domains 1 protein-coding 

GPX3 glutathione peroxidase 3 
(plasma) 

protein-coding 

CXCR2 chemokine (C-X-C motif) 
receptor 2 

protein-coding 

MT1M metallothionein 1M protein-coding 

TGFBR3 transforming growth factor, 
beta receptor III 

protein-coding 

ZBTB16 zinc finger and BTB domain 
containing 16 

protein-coding 

NR4A3 nuclear receptor subfamily 4, 
group A, member 3 

protein-coding 

KL klotho protein-coding 

DLC1 DLC1 Rho GTPase activating 
protein 

protein-coding 

ADAMTS8 ADAM metallopeptidase with 
thrombospondin type 1 motif, 8 

protein-coding 

WIF1 WNT inhibitory factor 1 protein-coding 

DAPK2 death-associated protein kinase 
2 

protein-coding 

CSRNP1 cysteine-serine-rich nuclear 
protein 1 

protein-coding 

C2orf40 chromosome 2 open reading 
frame 40 

protein-coding 

STARD13 StAR-related lipid transfer 
(START) domain containing 13 

protein-coding 
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Appendix D. Summary of the up-regulated somatic DEGs discovered in Chapter 3 that are 

oncogenes. Oncogenes were defined based upon the ONGene database (5). 

 

D.1. LUAD unique oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

WISP1 WNT1 inducible signaling 
pathway protein 1 

protein-coding 

WNT3 wingless-type MMTV 
integration site family member 
3 

protein-coding 

MUC4 mucin 4, cell surface associated protein-coding 

MIR135B microRNA 135b ncRNA 

FHL2 four and a half LIM domains 2 protein-coding 

CDH17 cadherin 17 protein-coding 

LCN2 lipocalin 2 protein-coding 

ADAM28 ADAM metallopeptidase 
domain 28 

protein-coding 
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D.2. LUSC unique oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

SMO smoothened, frizzled class 
receptor 

protein-coding 

MOS v-mos Moloney murine sarcoma 
viral oncogene homolog 

protein-coding 

TP63 tumor protein p63 protein-coding 

WNT10A wingless-type MMTV 
integration site family member 
10A 

protein-coding 

ZNF703 zinc finger protein 703 protein-coding 

CT45A1 cancer/testis antigen family 45, 
member A1 

protein-coding 

LMX1B LIM homeobox transcription 
factor 1 beta 

protein-coding 

MAFA v-maf avian 
musculoaponeurotic 
fibrosarcoma oncogene 
homolog A 

protein-coding 

JUP junction plakoglobin protein-coding 

HOXA1 homeobox A1 protein-coding 

H19 H19, imprinted maternally 
expressed transcript (non-
protein coding) 

ncRNA 

FGF4 fibroblast growth factor 4 protein-coding 

CKS1B CDC28 protein kinase regulatory 
subunit 1B 

protein-coding 

PTTG2 pituitary tumor-transforming 2 protein-coding 

WNT10B wingless-type MMTV 
integration site family member 
10B 

protein-coding 

WNT5A wingless-type MMTV 
integration site family member 
5A 

protein-coding 

TSPY1 testis specific protein, Y-linked 1 protein-coding 

MIR663A microRNA 663a ncRNA 

BMP7 bone morphogenetic protein 7 protein-coding 

S100A8 S100 calcium binding protein A8 protein-coding 

BCL11A B-cell CLL/lymphoma 11A protein-coding 

CENPW centromere protein W protein-coding 

HSPB1 heat shock protein family B 
(small) member 1 

protein-coding 

GRM1 glutamate receptor, 
metabotropic 1 

protein-coding 
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FGF8 fibroblast growth factor 8 protein-coding 

TGM3 transglutaminase 3 protein-coding 

 

 

 

 

D.3. SCLC unique oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

BCL2 B-cell CLL/lymphoma 2 protein-coding 

ALK anaplastic lymphoma receptor 
tyrosine kinase 

protein-coding 

MYB MYB proto-oncogene, 
transcription factor 

protein-coding 

HOXA9 homeobox A9 protein-coding 

WHSC1 Wolf-Hirschhorn syndrome 
candidate 1 

protein-coding 

TAL2 T-cell acute lymphocytic 
leukemia 2 

protein-coding 

RFC3 replication factor C subunit 3 protein-coding 

MYCL v-myc avian myelocytomatosis 
viral oncogene lung carcinoma 
derived homolog 

protein-coding 

HOXD9 homeobox D9 protein-coding 

E2F1 E2F transcription factor 1 protein-coding 

DUSP26 dual specificity phosphatase 26 
(putative) 

protein-coding 

SOX4 SRY-box 4 protein-coding 

PRDM8 PR domain 8 protein-coding 

FEV FEV, ETS transcription factor protein-coding 

E2F3 E2F transcription factor 3 protein-coding 
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D.4. LUAD overlap LUSC oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

MYCN v-myc avian myelocytomatosis 
viral oncogene neuroblastoma 
derived homolog 

protein-coding 

MCF2 MCF.2 cell line derived 
transforming sequence 

protein-coding 

TNS4 tensin 4 protein-coding 

S100A7 S100 calcium binding protein A7 protein-coding 

PVT1 Pvt1 oncogene (non-protein 
coding) 

ncRNA 

STYK1 serine/threonine/tyrosine 
kinase 1 

protein-coding 

NME1 NME/NM23 nucleoside 
diphosphate kinase 1 

protein-coding 

MMP12 matrix metallopeptidase 12 protein-coding 

MAGEA11 MAGE family member A11 protein-coding 

MIR196A1 microRNA 196a-1 ncRNA 

LHX1 LIM homeobox 1 protein-coding 

SBSN suprabasin protein-coding 

UHRF1 ubiquitin like with PHD and ring 
finger domains 1 

protein-coding 

FGF3 fibroblast growth factor 3 protein-coding 

DSG3 desmoglein 3 protein-coding 

CYP24A1 cytochrome P450 family 24 
subfamily A member 1 

protein-coding 

DPPA2 developmental pluripotency 
associated 2 

protein-coding 

CDX2 caudal type homeobox 2 protein-coding 

KIAA0101 KIAA0101 protein-coding 

UCA1 urothelial cancer associated 1 
(non-protein coding) 

ncRNA 

PRDM9 PR domain 9 protein-coding 

MIR130B microRNA 130b ncRNA 

BCAR4 breast cancer anti-estrogen 
resistance 4 (non-protein 
coding) 

ncRNA 

TCL6 T-cell leukemia/lymphoma 6 
(non-protein coding) 

ncRNA 

ETV4 ETS variant 4 protein-coding 

HOTTIP HOXA distal transcript antisense 
RNA 

ncRNA 

HOTAIR HOX transcript antisense RNA ncRNA 

GREM1 gremlin 1, DAN family BMP 
antagonist 

protein-coding 
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D.5. LUAD overlap SCLC oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

RET ret proto-oncogene protein-coding 

PAX4 paired box 4 protein-coding 

LIN28A lin-28 homolog A protein-coding 

 

 

 

 

 

D.6. LUSC overlap SCLC oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

TP73 tumor protein p73 protein-coding 

SOX2 SRY-box 2 protein-coding 

SKP2 S-phase kinase-associated 
protein 2, E3 ubiquitin protein 
ligase 

protein-coding 

KIAA1524 KIAA1524 protein-coding 

GMNN geminin, DNA replication 
inhibitor 

protein-coding 

PAX2 paired box 2 protein-coding 

LMO1 LIM domain only 1 protein-coding 

GALR2 galanin receptor 2 protein-coding 

CNTN2 contactin 2 protein-coding 

SYT1 synaptotagmin 1 protein-coding 

PAK7 p21 protein (Cdc42/Rac)-
activated kinase 7 

protein-coding 
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D.7. All overlap oncogenes from somatic up-regulated DEGs. 

Gene symbol Full name Gene type 

PTTG1 pituitary tumor-transforming 1 protein-coding 

HMGA2 high mobility group AT-hook 2 protein-coding 

AURKA aurora kinase A protein-coding 

EZH2 enhancer of zeste 2 polycomb 
repressive complex 2 subunit 

protein-coding 

CDC6 cell division cycle 6 protein-coding 

PIWIL1 piwi-like RNA-mediated gene 
silencing 1 

protein-coding 

CCNB2 cyclin B2 protein-coding 

CCNE1 cyclin E1 protein-coding 

FAM83D family with sequence similarity 
83 member D 

protein-coding 

TYMS thymidylate synthetase protein-coding 

TWIST1 twist family bHLH transcription 
factor 1 

protein-coding 

SSX1 synovial sarcoma, X breakpoint 
1 

protein-coding 

STIL SCL/TAL1 interrupting locus protein-coding 

STRA6 stimulated by retinoic acid 6 protein-coding 

SALL4 spalt-like transcription factor 4 protein-coding 

HES6 hes family bHLH transcription 
factor 6 

protein-coding 

PAX3 paired box 3 protein-coding 

LIN28B lin-28 homolog B protein-coding 

HOXD13 homeobox D13 protein-coding 

TLX1 T-cell leukemia homeobox 1 protein-coding 

HMGA1 high mobility group AT-hook 1 protein-coding 

FGF5 fibroblast growth factor 5 protein-coding 

EEF1A2 eukaryotic translation 
elongation factor 1 alpha 2 

protein-coding 

ECT2 epithelial cell transforming 2 protein-coding 

DLX5 distal-less homeobox 5 protein-coding 

UBE2C ubiquitin conjugating enzyme 
E2C 

protein-coding 

MLLT11 myeloid/lymphoid or mixed-
lineage leukemia; translocated 
to, 11 

protein-coding 

IGF2BP1 insulin like growth factor 2 
mRNA binding protein 1 

protein-coding 

CDKN3 cyclin-dependent kinase 
inhibitor 3 

protein-coding 

CDC25C cell division cycle 25C protein-coding 

CDC25A cell division cycle 25A protein-coding 
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KIF14 kinesin family member 14 protein-coding 

CDK1 cyclin-dependent kinase 1 protein-coding 

ESPL1 extra spindle pole bodies like 1, 
separase 

protein-coding 

CDK5R2 cyclin-dependent kinase 5, 
regulatory subunit 2 (p39) 

protein-coding 

CCNB1 cyclin B1 protein-coding 

ZIC2 Zic family member 2 protein-coding 

UCHL1 ubiquitin C-terminal hydrolase 
L1 

protein-coding 

FAM72A family with sequence similarity 
72 member A 

protein-coding 

SIX1 SIX homeobox 1 protein-coding 

PRDM13 PR domain 13 protein-coding 

PRDM12 PR domain 12 protein-coding 

PBK PDZ binding kinase protein-coding 

PLK1 polo like kinase 1 protein-coding 

PITX2 paired like homeodomain 2 protein-coding 

OTX2 orthodenticle homeobox 2 protein-coding 

MSI1 musashi RNA binding protein 1 protein-coding 

ASCL1 achaete-scute family bHLH 
transcription factor 1 

protein-coding 

FEZF1 FEZ family zinc finger 1 protein-coding 

PRAME preferentially expressed antigen 
in melanoma 

protein-coding 

FOXM1 forkhead box M1 protein-coding 

FOXG1 forkhead box G1 protein-coding 

EN2 engrailed homeobox 2 protein-coding 

BIRC5 baculoviral IAP repeat 
containing 5 

protein-coding 
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