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CHAPTER 1

INTRODUCTION

The central focus of this dissertation is the development of an analytic setting and rigorous

results for the axisymmetric surface diffusion flow (ASD) with periodic boundary conditions. In

particular, we establish well-posedness of ASD and we investigate geometric properties of solutions,

including characterizing equilibria and investigating their stability, instability and bifurcation be-

havior. We begin with a motivation and derivation of the general surface diffusion flow, of which

ASD is a special case, and we introduce the main features of the manuscript.

The mathematical equations modeling surface diffusion go back to a paper by Mullins [59] from

the 1950s, who was in turned motivated by earlier work of Herring [44]. Both of these authors

investigate phenomena witnessed in sintering processes, a method by which objects are created

by heating powdered material to a high temperature, while remaining below the boiling point of

the particular substance. When the applied temperature reaches a critical point, the atoms on

the surfaces of individual particles will diffuse across to other particles, fusing the powder together

into one solid object. In response to gradients of the chemical potential along the surface of this

newly formed object, the surface atoms may undergo diffusive mass transport on the surface of the

object, attempting to reduce the surface free energy. Given the right conditions – temperature,

pressure, grain size, sample size, etc. – the mass flux due to this chemical potential will dominate

the dynamics on the surface, and it is the resulting morphological evolution of the surface which

the surface diffusion flow aims to model.1 We also note that the surface diffusion flow has been

used to model the motion of surfaces in other physical processes (e.g. growth of crystals and nano-

structures), though the dynamics of the model are typically restricted to small-scale problems,

where the chemical potential is the dominant force governing the dynamics of the surface mass flux

and other forces, such as surface tension, are negligible.

Research into surface diffusion phenomena continues from both physical and mathematical

perspectives with many contributions from a wide range of researchers. The models were studied

1The description provided for sintering phenomena is meant only for intuitive instruction. The study of powder
metallurgy is an active and complex science of which the author claims only a passing understanding.
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from a more general viewpoint, both mathematically and physically, by Dav̀ı and Gurtin [23] and

Cahn and Taylor [16]. In fact, the article [16] contains the formulation of the model which we

present in the following section, which is set in a more general framework than the original model

developed by Mullins. Moreover, surface diffusion was shown, by Cahn, Elliot, and Novick–Cohen

[15], to have a certain connection to solutions of the Cahn-Hilliard equation with concentration–

dependent mobility. Meanwhile, various formulations of the model in two–dimensions, where the

model tracks the evolution of curves via the aptly named curve–diffusion flow, have been studied

by several authors, e.g. [13, 31, 33, 41, 62, 71], and have produced a wide range of analytic

and numerical results. Most notably, the literature on the curve–diffusion flow contains a variety of

analytic well-posedness and regularity results in addition to abundant numerical and analytic results

regarding the general dynamic picture of the model, e.g. development of curvature singularities,

self-intersection of initially embedded curves, loss of convexity of curves, etc. In contrast, the first

results regarding well-posedness of the general surface diffusion flow (in arbitrary space dimensions,

in fact) were given by Escher, Mayer and Simonett [36] and the first adequate framework for using

numerical techniques to track solutions of the three–dimensional surface diffusion flow, without

assuming additional symmetries of the problem, was developed by Mayer [56, 57] in the early

2000s. Meanwhile, analytic results regarding the general dynamic picture of the surface diffusion

flow in three (or higher) dimensions are still lacking from the literature.

The techniques and results of this dissertation may be a first step in the process of filling that

gap. This paper provides a rigorous analytic setting for studying general dynamic properties of

ASD. In particular, we develop a theory with which we can establish and take full advantage of

maximal regularity for the problem. Most notably, with maximal regularity we gain access to the

implicit function theorem, a very powerful tool in dynamical systems theory. The work contained

herein, which we will summarize in more detail below, demonstrates only a small portion of the

analytic results that one can hope to prove with help from maximal regularity and the implicit

function theorem, among other tools from dynamical systems theory and nonlinear functional

analysis. With these results, the door has been opened for a wide range of analytic results to

follow.
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1.1 The Surface Diffusion Flow

From a mathematical perspective, the governing equation for motion via surface diffusion can be

expressed for hypersurfaces in arbitrary space dimensions. In particular, let Γ ⊂ Rn be a closed,

compact, immersed, oriented Riemmanian manifold with codimension 1. Then we denote by H =

H(Γ) the (normalized) mean curvature on Γ, which is simply the sum of the principle curvatures on

the hypersurface, and ∆Γ denotes the Laplace–Beltrami operator, or surface Laplacian, on Γ. These

quantities are defined in terms of the Riemannian metric and the second fundamental form of Γ,

c.f. [28], however, for the purpose of this dissertation, we will be interested in these quantities only

for axisymmetric surfaces embedded in R3, for which we will express them explicitly in Section 1.2

below. The motion of the surface Γ by surface diffusion is then governed by the equation

V = ∆ΓH,

where V denotes the velocity of Γ in the normal direction to the surface. Notice that the motion

of the surface is determined by the geometric properties of the surface itself, hence the surface

diffusion flow is an example of a geometric evolution law. Moreover, we note that this equation

leads to a nonlinear, fourth–order equation of parabolic type for which many of the techniques

traditionally applied to second–order geometric evolution laws fail. Most notably, there does not

appear to be a suitable maximum principle for the surface diffusion flow, an invaluable tool in the

analysis of many second–order equations.

A solution to the surface diffusion problem on the interval J ⊂ R+, with 0 ∈ J , is a family

{Γ(t) : t ∈ J} of closed, compact immersed hypersurfaces in Rn which satisfy the equation


V (Γ(t)) = ∆Γ(t)H(Γ(t)), t ∈ J̇ := J \ {0},

Γ(0) = Γ0,

(1.1)

for a given initial hypersurface Γ0. It can be shown that solutions to (1.1) are volume–preserving,

in the sense that the signed volume of the region Ω enclosed by the surface Γ is preserved along

solutions. Additionally, (1.1) is surface–area–reducing, a feature that the surface diffusion flow

shares with the mean curvature flow (a second–order, nonlinear geometric evolution law) among
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other well–known geometric evolution laws. In fact, many of the interesting questions that remain

unanswered for the surface diffusion flow can be motivated by analogous questions which have

been answered for the mean curvature flow and/or the volume–constrained mean curvature flow,

a volume–preserving version of the mean curvature flow, c.f. [29, 45]. For instance, the existence

of solutions to the mean curvature flow which develop finite–time pinch–off has been established

analytically by Angenent in [7], see also [10]. Analogously, researchers on the surface diffusion flow

have seen numerical evidence to justify the fact that some solutions will pinch–off in finite time, c.f.

[18, 20, 14, 57]. However, no analytic methods have yet been developed to confirm these numerical

results.

More broadly, as mentioned above, a general picture of the dynamic nature of solutions to

the surface diffusion problem is still an open question. Analytic well–posedness was established

by Escher, Mayer and Simonett in [36], where it was also shown that the (n − 1)–dimensional

spheres are asymptotically stable equilibria. Meanwhile, Mayer and Simonett [58] demonstrate

the existence of initially embedded hypersurfaces which are driven to self–intersection under the

surface diffusion flow. However, beyond these initial results, the literature lacks general analytic

results regarding the behavior of solutions, e.g. occurrence of singularities and conditions under

which solutions breakdown in finite time. An important feature of the surface diffusion flow that

Escher, Mayer and Simonett exploit in order to obtain well-posedness results is the fact that the

equation has a quasilinear structure and the linear part of the equation exhibits maximal regularity

properties on appropriately chosen function spaces. These features will also play an important role

in our analysis of ASD, for which we establish a robust theory for local and global well-posedness.

1.2 Axisymmetric Surface Diffusion (ASD)

For the remainder of the paper, we will focus our attention on a special case of the surface diffusion

flow. Namely, we consider the case of Γ ⊂ R3 an embedded surface which is symmetric about an

axis of rotation (which we take to be the x–axis, without loss of generality) and satisfies prescribed

periodic boundary conditions on some interval L of periodicity (we take L = [−π, π] and enforce

2π periodicity, without significant loss of generality). In particular, the axisymmetric surface Γ is
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characterized by the parametrization

Γ =
{

(x, r(x) cos(θ), r(x) sin(θ)) : x ∈ R, θ ∈ [−π, π]
}
,

where the function r : R → (0,∞) is the profile function for the surface Γ. Conversely, a profile

function r : R→ (0,∞) generates an axisymmetric surface Γ = Γ(r) via the parametrization given

above. We will also enforce periodicity on the profile functions up to the regularity of r, which will

be made more precise in Section 2.1

Utilizing the explicit parametrization for axisymmetric surfaces, we can recast the surface dif-

fusion problem as an evolution equation for the profile functions r = r(t). In particular, one can

see that the surface Γ(r) inherits the Riemannian metric

g = (1 + r2
x) dx ∧ dx+ r2 dθ ∧ dθ,

from the embedding Γ ↪→ R3, with respect to the surface coordinates (x, θ); where the subscript

fxi := ∂xif indicates the derivative of f = f(x1, . . . , xm) with respect to the variable xi. It follows

that the (normalized) mean curvature of the surface is H(r) = κ1 + κ2, where

κ1 =
1

r
√

1 + r2
x

and κ2 =
−rxx

(1 + r2
x)3/2

are the azimuthal and axial principle curvatures, respectively, on Γ(r). Meanwhile, the Laplace–

Beltrami operator on Γ and the normal velocity of Γ = Γ(t) are

∆Γ(r) =
1

r
√

1 + r2
x

(
∂x

[
r√

1 + r2
x

∂x

]
+ ∂θ

[√
1 + r2

x

r
∂θ

])
,

V (t) =
rt√

1 + r2
x

.
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Finally, plugging these terms into the equation (1.1) and simplifying, we arrive at the expression



rt =
1

r
∂x

[
r√

1 + r2
x

∂x

(
1

r
√

1 + r2
x

− rxx

(1 + r2
x)

3
2

)]
, t > 0, x ∈ R,

r(t, x+ 2π) = r(t, x), t ≥ 0, x ∈ R,

r(0, x) = r0(x), x ∈ R,

(1.2)

for the periodic axisymmetric surface diffusion problem.

The first investigations of evolution of an axisymmetric surface via surface diffusion can be traced

back to the work of Nichols and Mullins [60, 61] in 1965, where one can already see some of the

benefits of this special case of the surface diffusion problem. In particular, Mullins and Nichols are

able to take advantage of the symmetry of the problem in order to develop an adequate scheme for

numerical techniques. Recall that for the full surface diffusion problem this was not achieved until

the work of Mayer [57] in 2001. Moreover, Mullins and Nichols are already predicting the finite–time

pinch–off of tube like surfaces via surface diffusion flow, a feature similar to the mean curvature flow

and a natural phenomenon to study in exactly this axisymmetric setting. Following this seminal

work by Nichols and Mullins, there is a plethora of publications investigating ASD. Many researchers

continued to study pinch–off behavior using numerical methods, c.f. [14, 18, 19, 20, 24, 52, 53],

developing schemes for the continuation of solutions after the change of topology that occurs at the

moment of pinch–off. Meanwhile, there has also been a lot of focus on the numerical investigation

of the stability/instability and bifurcation behavior of cylinders, which are natural equilibria of

ASD, under perturbations of various types, c.f. [14, 18, 20]. Though we again note that these

investigations still lack a rigorous analytic development. The paper [14] by Bernoff, Bertozzi, and

Witelski has served as a motivation for the breadth of results that have been shown via numerical

techniques for ASD which we can hope to establish in a rigorous analytic framework.

In Chapter 3, we prove existence of solutions to (1.2), which, to the best of the author’s knowl-

edge, is the first analytic well–posedness result in the literature for the axisymmetric surface diffu-

sion flow with periodic boundary conditions. In particular, we establish existence and uniqueness

of maximal solutions which are analytic in time and space for positive time, with a prescribed

singularity at time t = 0, for initial conditions which are (2 +α)–little–Hölder continuous in space.
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Additionally, we establish conditions for global existence (solutions existing for all time) and regu-

larity of the semiflow induced by (1.2). With these well–posedness results established, all of which

depend heavily upon the theory developed in Chapter 2 and the well–posedness results for quasi-

linear equations with maximal regularity proved by Clément and Simonett [17], we then go on to

investigate more general dynamic properties of solutions. First, we characterize the equilibria of

ASD using a result of Delaunay [26] and Kenmotsu [47], which describes all of the constant mean

curvature surfaces in the axisymmetric setting. We prove that all cylinders with radius r? > 1 are

asymptotically, exponentially stable under a large class of nonlinear perturbations, which maintain

the same axis of symmetry and satisfy the prescribed periodic boundary conditions. To prove this

stability result, we linearize the equation for ASD and see that the spectrum of the linearized opera-

tor is contained in the left half of the complex plane, although the spectrum will always contain zero

as an eigenvalue. Hence, we reduce the equation, by essentially eliminating non-volume-preserving

perturbations, in order to eliminate the zero eigenvalue. Then we use results regarding maximal

regularity on exponentially weighted function spaces to generate the desired exponential stability

for the reduced equation, which is then transferred back to the (full) ASD problem via a lifting

operator.

We also go on in Chapter 3 to establish results regarding the instability of cylinders with radius

0 < r? < 1 and the existence of branches of bifurcating equilibria which intersect the family of

cylinders at radii r? = 1/`, for every ` ∈ N := {1, 2, . . .}. The instability result makes use of a

contradiction technique reminiscent of results from the theory of ordinary differential equations, c.f.

Prüss and Wilke [68]. More precisely, by isolating the linearization of the governing equation, one

takes advantage of a spectral gap and associated spectral projections in order to derive necessary

conditions for stable initial data, which in turn lead to a contradiction. We also refer to Prüss,

Simonett and Zacher [67] and Prüss, Simonett and Wilke [64] for related results. Finally, for the

bifurcation result we apply classic results of Crandall and Rabinowitz [21] regarding bifurcation

from simple eigenvalues. However, even in the reduced setting mentioned above, developed while

proving stability results, we find that the eigenvalues associated with the problem are not simple.

We restrict our attention to surfaces which are even (symmetric about the surface x = 0) and

satisfy prescribed regularity and periodicity, similar to a method used by Escher and Matioc [35].

In this setting, the problem does have simple eigenvalues, so we are able to derive bifurcation results

7



and apply them back to the full ASD problem via a posteriori symmetries of equilibria. We note

that, rather than using the restriction to even functions in order to apply the results of Crandall

and Rabinowitz [21], we could also have chosen to apply more general bifurcation techniques, such

as the methods contained in the manuscript of Kielhöfer [48, Section I.19], in order to generate

(more general) bifurcation results. In fact, we do plan to make use of the results and methods of

[48] in future research endeavors in order to further classify the type of bifurcations that arise and

investigate the global and secondary bifurcation behavior of equilibria to ASD.

In Chapter 2, the contents of which are also contained in the publication [50], we develop

an abstract theory and rigorous framework in order to generate maximal regularity results for a

large class of abstract inhomogeneous equations with prescribed periodic boundary conditions. The

results and framework developed in Chapter 2 are invaluable for the geometric analysis performed

in Chapter 3, and will also be applicable to a large class of elliptic, inhomogeneous and quasilinear

equations. In particular, we prove that every even–order differential operator with (little–Hölder

regular and periodic) variable coefficients which satisfies certain uniform ellipticity conditions will

satisfy (continuous) maximal regularity conditions in the setting of periodic little-Hölder spaces.

Utilizing this result, as we demonstrate in Chapter 3, one gains access to the well–posedness results

of Clément and Simonett [17] for quasilinear parabolic problems, and the results of Chapter 2 allow

one to apply various techniques from nonlinear functional analysis, including the implicit function

theorem, which opens the door to the analysis of a wide variety of dynamic properties of solutions.

1.3 Conventions and Notation

Throughout the paper, E and F will denote arbitrary Banach spaces over the field K, which will

either be R or C, depending upon the context. The space L(E,F ) consists of all bounded linear

operators mapping E into F . We say that E is continuously embedded in F , denoted E ↪→ F , if

there exists an injective operator i ∈ L(E,F ). Moreover, we say that E is densely embedded in F ,

denoted E
d
↪→ F , if i(E) ⊂ F is dense.

For U ⊂ E an open set, we denote by Cω(U,F ) the collection of real analytic mappings f :

U → F . In particular, for every x0 ∈ U there exists a positive constant r(x0) > 0 and a sequence

(Tk)
∞
k=0 with Tk ∈ L(Ek, F ), i.e. Tk is a continuous, symmetric k-linear operator from E × . . .×E

8



to F , such that f admits the representation

f(x) = f(x0) +
∞∑
k=0

Tk(x− x0)k, (convergence in F )

for every x ∈ BE(x0, r(x0)) := {x ∈ E : ‖x− x0‖E < r(x0)}.

9



CHAPTER 2

ELLIPTIC OPERATORS AND MAXIMAL REGULARITY

In this chapter we consider the following abstract periodic inhomogeneous equation


∂tu(t, x) +A(x,D)u(t, x) = f(t, x), t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R,
(2.1)

where A(·, D) :=
∑2m

k=0 bk(·)Dk is a differential operator of order 2m, with variable coefficients

bk : R → C. Further, we enforce periodic boundary conditions on the problem by assuming the

given functions u0, bk, f(t, ·), for t ≥ 0, k = 0, . . . , 2m, are all 2π-periodic in x ∈ R. Hence, we

will be looking for solutions u(t, ·) which also exhibit 2π-periodicity on R, for t > 0. We will

also consider the more general setting of vector-valued functions u0, f(t, ·), u(t, ·) : R → E, and

operator-valued coefficients bk : R → L(E), for an arbitrary Banach space E over C. This more

general setting is discussed in Section 2.6.

Understanding the nature of solutions (i.e. existence, uniqueness and regularity) to inhomo-

geneous equations of this form is integral to the study of abstract quasilinear equations. In the

quasilinear setting, we see that (2.1) takes the form

∂tu+ A(u,D)u = F(u),

where the coefficients bk = bk(u, u
′, . . . , u(2m−1)), and subsequently the differential operator A, may

depend upon the solution u and its lower order derivatives u(j), j ≤ 2m − 1. Meanwhile, the

inhomogeneity takes the form F(u) = F(u, u′, . . . , u(2m−1)), for some nonlinear mapping F. Several

authors have studied abstract quasilinear equations, including [1, 8, 17, 49, 51, 63]. Among the

techniques employed to study quasilinear problems, the notion of maximal regularity has proven

to be a valuable tool in establishing both qualitative and quantitative results, c.f. [5, 8, 17, 36, 49,

51, 63, 65, 70]. The axisymmetric surface diffusion problem is one example of a problem to which

one can apply the results of this chapter. Indeed, we utilize the results of this chapter to establish
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well-posedness of (1.2) and investigate dynamic properties of solutions in Chapter 3.

Given an elliptic differential operator with periodic coefficients, it is our goal in this chapter

to show that one can establish (continuous) maximal regularity results in the setting of periodic

little-Hölder spaces. Moreover, we assume only minimal regularity conditions on the coefficients bk,

lending our results to applications in periodic quasilinear problems. In order to establish maximal

regularity, we make use of a result originally proved by DaPrato and Grisvard [22], which gives a

construction of pairs of function spaces with the property of continuous maximal regularity for a

given operator, under the assumption that the operator generates a strongly continuous analytic

semigroup. Hence, we focus first on showing generation of an analytic semigroup.

In fact, we will show that elliptic operators with periodic coefficients generate analytic semi-

groups in the periodic Hölder and little-Hölder settings. However, we focus on the results in the

little-Hölder setting, because we get strong continuity of the semigroups generated, due to density

of embeddings in the little-Hölder scale, a necessary condition for applying the results of DaPrato

and Grisvard. To the best of the author’s awareness, the work contained herein constitutes the

first systematic treatment of semigroup generation in the case of variable coefficients for elliptic

operators with periodic boundary conditions. A related result for constant coefficients in the peri-

odic setting was proved by Escher and Matioc [34], see also [55], where they considered a specific

abstract operator of third order, in the periodic little-Hölder setting.

In the process of establishing semigroup generation results, we consider the parameter-dependent

elliptic equation

(λ−A(·, D))u = f, λ ∈ C,

for which we show invertibility in the periodic Hölder and little-Hölder settings, provided Reλ is

sufficiently large. Additionally, we establish parameter-dependent estimates on the resolvent of an

elliptic operator under minimal regularity assumptions on the cefficients. With invertibility and

resolvent estimates, semigroup generation follows from a standard result in semigroup theory, [2]

and [40]. One will note that semigroup generation results are sufficient to derive well-posedness for

the inhomogeneous problem (2.1) by classic semigroup techniques. However, as stated, we focus on

establishing maximal regularity results, for which the little-Hölder setting is desirable.

The chapter is organized as follows. In the first section, we express regularity conditions for
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periodic functions on R, exploiting a connection with functions defined over the one-dimensional

torus T, and establish necessary results regarding these spaces. In the second section we state and

prove a Marcinkiewicz-type Fourier multiplier result, which is a slight generalization of a result in

[11]. In the third section we prove that a simplified operator −Ab, with highest-order terms and

constant coefficients, generates a (strongly continuous) analytic semigroup on periodic little-Hölder

spaces. In the fourth section, we extend this result to the principal part −Ap, with highest-order

terms and variable coefficients, using a partition technique as seen in [4, 6]. In the fifth section, we

present a generation result for the full operator, discuss maximal regularity and solutions to the

linear problem (2.1). We conclude the paper by discussing the case of vector-valued functions and

necessary modifications to our methods for results to carry over to this setting.

2.1 Periodic Functions Over R

Given a 2π-periodic function f̃ : R→ C with some known regularity, we can restrict f̃ to an interval

of periodicity (the interval [−π, π], for instance) and the full function can still be recovered, i.e.

the restricted function f := f̃ |[−π,π] can be extended periodically to all of R and this extension will

coincide exactly with f̃ . Reversing this process, we want to start with a function f : [−π, π] → C

and prescribe minimal conditions on f so that the periodic extension exhibits desired regularity on

R. In this section, we characterize several regularity classes for periodic functions with respect to

their properties on the interval [−π, π].

Let T := [−π, π], where the points π and −π are identified; we denote this point by {π,−π}.

Endow T with the metric topology τ generated by the metric

dT : T× T→ R dT(x, y) := |x− y| ∧ (2π − |x− y|), where a ∧ b := min{a, b}.

(For computational purposes, we follow the convention {π,−π} = π so that {π,−π} ≥ x for all

x ∈ T and dT(x, {π,−π}) = |x−π|∧ (2π−|x−π|).) Notice that (T, τ) is a topological group which

is isomorphic to the quotient group R/2πZ endowed with the quotient topology. We see, moreover,

that T is a complete, compact, metric space and we denote open balls of T by

BT(x, ε) := {y ∈ T : dT(x, y) < ε} ε > 0, x ∈ T.
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We will demonstrate how using this metric gives intrinsic regularity conditions for functions defined

on T, which can be naturally extended periodically to R.

2.1.1 Regularity on T

Given a function f : T→ C, we define its periodic extension

f̃(x) := f(x− 2πk) for x ∈ [π(2k − 1), π(2k + 1)], k ∈ Z.

Denote by φ the periodic extension operator taking f defined on T to f̃ defined on R. One can

immediately see that φ is bijective from CT to
(
CR)

per
, the space of 2π-periodic functions on R.

Now, we define spaces of regular periodic functions over R into which we want φ to map.

Denote by Cper(R) and Ckper(R) the spaces of 2π-periodic functions over R which are continuous

and k-times continuously differentiable, respectively, for k ∈ N0 := N ∪ {0}; we take C0
per(R) =

Cper(R) by convention. Each is a closed subspace of the corresponding non-periodic spaces and are

Banach spaces when equipped with the following norms

‖f‖C(R) := sup
x∈R
|f(x)|, ‖f‖Ck(R) :=

k∑
j=0

‖f (j)‖C(R). (2.2)

Moreover, for α ∈ (0, 1) and k ∈ N0, we define the space of Hölder continuous functions Ck+α
per (R)

to be those functions f ∈ Ckper(R) such that

[
f (k)

]
α,R

:= sup
x,y∈R
x 6=y

|f (k)(x)− f (k)(y)|
|x− y|α

<∞.

We call [·]α,R the α-Hölder seminorm over R and one can see that Ck+α
per (R) is a Banach space with

the norm

‖f‖Ck+α(R) := ‖f‖Ck(R) +
[
f (k)

]
α,R. (2.3)

For simplicity of notation, given θ ∈ R+, we define Cθper(R) := C
bθc+{θ}
per (R), where bθc denotes the

largest integer not exceeding θ and {θ} := θ − bθc.

With the periodic spaces over R established we define the spaces over T as follows. For θ ∈ R+
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let

Cθ(T) :=
{
f ∈ CT : φ(f) ∈ Cθper(R)

}
with ‖f‖Cθ(T) := ‖φ(f)‖Cθ(R). (2.4)

It follows immediately that Cθ(T) is a Banach space and φ is a linear isometric isomorphism

from Cθ(T) to Cθper(R). Further, if θ ≥ 1 and f ∈ Cθ(T), we define the derivative f ′ ∈ CT by

f ′ := φ−1(φ(f)′) =
(
d
dx f̃
) ∣∣

T .

It is interesting to note that continuity, differentiability and Hölder continuity can all be defined

intrinsically on T, making use of an ordered adaptation of the metric dT, such that φ remains a

linear isomorphism. Intrinsic definitions of regularity provide a different perspective for functions

over the periodic domain T and setting for regularity independent of periodic extensions. Although

the connection between functions over T and periodic functions over R has been used widely in the

literature, c.f. [12, 34, 69], little attention has been paid to the local conditions and geometry on

T, which are important to the partition argument that we use in Section 2.4. We will state some

of the results regarding this intrinsic viewpoint that will be of use later in the paper, in particular

we state equivalent definitions for (Hölder) continuity over T and an application of the Mean Value

theorem. For simplicity of notation, we denote by dαT(·, ·) the quantity dT(·, ·)α.

Proposition 2.1.1. Let f ∈ CT, then

a) f ∈ C(T) if and only if f is continuous in the metric topology τ .

b) for α ∈ (0, 1), f ∈ Cα(T) if and only if [f ]α,T := sup
x,y∈T
x 6=y

|f(x)− f(y)|
dαT(x, y)

<∞.

Moreover, [f ]α,T = [f̃ ]α,R in this case.

c) if f ∈ C1(T) and x, y ∈ T, then |f(x)− f(y)| ≤ ‖f ′‖C(T)dT(x, y).

Proof. a) Follows from direct computation.

b) First, assume f ∈ Cα(T) and let x, y ∈ T such that x 6= y, without loss of generality assume

x < y (recalling the convention that {π,−π} ≥ x for all x ∈ T). By definition of the metric dT, we

see that dT(x, y) is either equal to |x− y| or |(x+ 2π)− y|. Now, we examine both cases

• if dT(x, y) = |x− y|, then
|f(x)− f(y)|
dαT(x, y)

=
|f̃(x)− f̃(y)|
|x− y|α

≤ [f̃ ]α,R,
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• if dT(x, y) = |(x+ 2π)− y|, then, by periodicity of f̃ ,

|f(x)− f(y)|
dαT(x, y)

=
|f̃(x)− f̃(y)|
|(x+ 2π)− y|α

=
|f̃(x+ 2π)− f̃(y)|
|(x+ 2π)− y|α

≤ [f̃ ]α,R.

Hence, [f ]α,T ≤ [f̃ ]α,R < ∞. Conversely, assume that [f ]α,T < ∞ and consider x, y ∈ R, x < y.

Here we consider the following three cases

• if |x − y| ≤ π and there exists k ∈ Z so that x, y ∈ [π(2k − 1), π(2k + 1)]. Then we have

(x− 2πk), (y − 2πk) ∈ T, |x− y| = dT((x− 2πk), (y − 2πk)) and

|f̃(x)− f̃(y)|
|x− y|α

=
|f(x− 2πk)− f(y − 2πk)|
dαT((x− 2πk), (y − 2πk))

≤ [f ]α,T.

• if |x−y| ≤ π and there exists k ∈ Z so that x ∈ [π(2k−1), π(2k+1)] and y ∈ (π(2k+1), π(2k+

3)]. Then we have that (x−2πk), (y−2π(k+1)) ∈ T, |x−y| = dT((x−2πk), (y−2π(k+1)))

and

|f̃(x)− f̃(y)|
|x− y|α

=
|f(x− 2πk)− f(y − 2π(k + 1))|
dαT((x− 2πk), (y − 2π(k + 1)))

≤ [f ]α,T.

• if |x − y| > π, then we can find l ∈ Z so that |(x + 2πl) − y| ≤ π. Then we have, taking

advantage of the periodicity of f̃ and the fact that |x− y| ≥ |(x+ 2πl)− y|, that

|f̃(x)− f̃(y)|
|x− y|α

≤ |f̃(x+ 2πl)− f̃(y)|
|(x+ 2πl)− y|α

≤ [f ]α,T,

where the last inequality follows from the previous two cases.

Therefore, we can see that [f̃ ]α,R ≤ [f ]α,T <∞, so f ∈ Cα(T) and the claim follows. Moreover, we

see that [f ]α,T = [f̃ ]α,R.

c) Fix f ∈ C1(T), x, y ∈ T and assume, without loss of generality, that x ≤ y. As before, it

follows that dT(x, y) equals either |x− y| or |(x+ 2π)− y|. We consider these two cases separately

and see that the claim holds;

• if dT(x, y) = |x− y|, then

|f(x)− f(y)| = |f̃(y)− f̃(x)| =
∣∣∣∣∫ y

x
f̃ ′(t)dt

∣∣∣∣ ≤ ‖f̃ ′‖C(R)|y − x| = ‖f ′‖C(T)dT(x, y).
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• if dT(x, y) = |(x+ 2π)− y|, then

|f(x)−f(y)| = |f̃(x+2π)−f̃(y)| =
∣∣∣∣∫ x+2π

y
f̃ ′(t)dt

∣∣∣∣ ≤ ‖f̃ ′‖C(R)|(x+2π)−y| = ‖f ′‖C(T)dT(x, y).

Finally, we define the so-called little-Hölder spaces over R and T. We discuss equivalent char-

acterizations and results on little-Hölder spaces, important for maximal regularity and generation

of analytic semigroups. For θ ∈ R+ \ Z define the periodic little-Hölder spaces over R as

hθper(R) :=

f ∈ Cθper(R) : lim
δ→0

sup
x,y∈R

0<|x−y|<δ

|f bθc(x)− f bθc(y)|
|x− y|{θ}

= 0

 .

Then, hθper(R) is a closed subspace of Cθper(R) and likewise a Banach space with the inherited norm

‖ · ‖Cθ(R), defined by (2.3). Moreover, it follows that the little-Hölder spaces are, in fact, Banach

algebras, in both the periodic and non-periodic settings. Now, we define hθ(T) := {f ∈ CT :

φ(f) ∈ hθper(R)}, for θ ∈ R+ \ Z. Following Proposition 2.1.1, one easily verifies that an equivalent

definition is

hθ(T) :=

f ∈ Cθ(T) : lim
δ→0

sup
x,y∈T

0<dT(x,y)<δ

|f bθc(x)− f bθc(y)|
d
{θ}
T (x, y)

= 0

 . (2.5)

Little-Hölder spaces have been studied by several authors in context with analytic semigroups

and maximal regularity, c.f. [17, 34, 36, 51]. The proposition that follows demonstrates two

properties of little-Hölder spaces which make them a natural choice for maximal regularity results;

it is the periodic analog of well-known results on little-Hölder spaces over R, c.f. [51]. Here we

let (·, ·)η := (·, ·)0
η,∞ denote the continuous interpolation functor of Da Prato and Grisvard, with

exponent η ∈ (0, 1), see [2, 51] for reference.

Proposition 2.1.2.

a) For θ ∈ R+ \ Z and σ ∈ (θ,∞], hθ(T) is the closure of Cσ(T) in (Cθ(T), ‖ · ‖Cθ(T)). Hence,

hσ(T)
d
↪→ hθ(T) for σ ∈ (θ,∞) \ Z.

b) For θ1, θ2 ∈ R+ \ Z with θ2 ≥ θ1, it follows that (hθ1(T), hθ2(T))η = hηθ2+(1−η)θ1(T), provided

(ηθ2 + (1− η)θ1) /∈ Z.
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Remarks on Proof: a) The proof of this statement is identical to the non-periodic case and can

be found in Lunardi, [51, Proposition 0.2.1]. We remark that the approximating functions from

C∞(R) established in Lunardi’s proof, which are convolutions with smooth approximations of the

identity, are in C∞per(R) in the periodic case. This fact follows from a property of convolutions

involving periodic functions. Namely, given a function ϕ and a 2π-periodic function f such that

the convolution f ∗ ϕ is well-defined, then the convolution is periodic, as

(f ∗ ϕ)(x+ 2π) =

∫
R
f((x+ 2π)− y)ϕ(y)dy =

∫
R
f(x− y)ϕ(y)dy = (f ∗ ϕ)(x).

b) The proof of this statement is identical to the non-periodic case, as demonstrated in [51,

Theorem 1.2.17]. Again, this method applies to the periodic case because we consider convolutions

of smoothing kernels ϕt with periodic functions f over R. Hence, the resulting convolutions are

contained in C∞per(R).

2.1.2 Periodic Besov Spaces

In order to state the Fourier multiplier theorem upon which our generation results heavily rely, we

must first introduce the scale of Sobolev and Besov spaces. We present here a definition of periodic

Besov spaces with respect to dyadic-type decompositions, similar to the development in [12], for

more details on these spaces, and equivalent definitions, see Triebel and Schmeisser [69, Section

3.5].

Following the notation of Arendt and Bu [12], let D(T) denote the space C∞(T) equipped

with the locally convex topology generated by the family of semi-norms ‖f‖k := ‖f (k)‖C(T), for

k ∈ N0. We define the space of periodic distributions D′(T) := (D(T))∗, the set of all bounded

linear functionals on D(T), and we equip D′(T) with the weak-star topology over D(T). Now we

will investigate how the Fourier transform interacts with these spaces.

Denote by ek the function [x 7→ eikx] : T → C, then ek ∈ D(T) for k ∈ Z. For T ∈ D′(T), we

define the Fourier coefficients T̂ (k) := 〈T, e−k〉, where 〈·, ·〉 : D′(T)×D(T)→ C denotes the duality

pairing. Notice that every test function ϕ ∈ D(T) can be identified with the induced distribution

Tϕ ∈ D′(T) defined by 〈Tϕ, ψ〉 := 1√
2π

∫ π
−π ϕ(x)ψ(x)dx, ψ ∈ D(T). Then the Fourier coefficients of
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Tϕ coincide with the usual Fourier coefficients for ϕ ∈ D(T), namely

T̂ϕ(k) = ϕ̂(k) =
1√
2π

∫ π

−π
ϕ(x)e−ikxdx.

When no confusion is likely, we will denote by ϕ both the function and its induced distribution.

Moreover, by [30, Theorem 12.5.3], we have the Fourier series representation

f =
∑
k∈Z

f̂(k)ek for f ∈ D′(T) (convergence in D′(T)).

To define Besov spaces over T, let S(R) be the Schwartz space on R and S ′(R) the space of

tempered distributions on R. Further, let Φ(R) denote the collection of all systems (ϕj)j∈N ⊂ S(R)

satisfying the properties:

• suppϕ0 ⊂ [−2, 2], suppϕj ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1], j ≥ 1,

•
∑
j∈N0

ϕj(x) = 1, x ∈ R,

• ∀ l ∈ N0, ∃Cl > 0 so that sup
j∈N0

2lj‖ϕ(l)
j ‖C(R) ≤ Cl.

Now, let 1 ≤ p, q ≤ ∞, s ∈ R be fixed parameters and ϕ = (ϕj) ∈ Φ(R). For f ∈ D′(T),

j ∈ N0, the series
∑

k∈Z ϕj(k)f̂(k)ek has only finitely many nonzero terms, by compactness of the

support of ϕj (we refer to finite series of this form as trigonometric polynomials), and it follows

that
∑

k∈Z ϕj(k)f̂(k)ek ∈ Lp(T). The norm on Lp(T) is given by

‖g‖p :=


(

1

2π

∫
T
|g(x)|pdx

)1/p

1 ≤ p <∞,

ess sup
x∈T

|g(x)| p =∞.

Now we define the periodic Besov space

Bs,ϕ
p,q (T) :=

f ∈ D′(T) :

2sj

∥∥∥∥∥∑
k∈Z

ϕj(k)f̂(k)ek

∥∥∥∥∥
p


j∈N0

∈ `q(N0)

 . (2.6)
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Then Bs,ϕ
p,q (T) is a Banach space when equipped with the norm

‖f‖Bs,ϕp,q :=



∑
j∈N0

2sjq

∥∥∥∥∥∑
k∈Z

ϕj(k)f̂(k)ek

∥∥∥∥∥
q

p

1/q

for q <∞,

sup
j∈N0

2sj

∥∥∥∥∥∑
k∈Z

ϕj(k)f̂(k)ek

∥∥∥∥∥
p

for q =∞.

(2.7)

Although the definition of a periodic Besov space depends explicitly upon the choice of system

ϕ ∈ Φ(R), it can be shown that (Bs,ϕ
p,q (T), ‖·‖Bs,ϕp,q ) is equivalent to (Bs,ψ

p,q (T), ‖·‖
Bs,ψp,q

), for two systems

ϕ,ψ ∈ Φ(R), c.f. [69, Theorem 3.5.1(i)]. Hence, we drop reference to particular systems ϕ ∈ Φ(R)

and simply refer to Besov spaces parametrized by 1 ≤ p, q ≤ ∞ and s ∈ R. See [3, 4, 12, 69] for

more information on Besov spaces and their properties. We mention one property that comes up

in the sequel, c.f. [12, Theorem 3.1 (ii)] or [69, Theorem 3.5.4 (i)].

Proposition 2.1.3. For s ∈ R+ \ Z, it holds that Bs
∞,∞(T) = Cs(T).

2.2 A Fourier Multiplier Theorem

The Fourier multiplier result that we will need is a slight modification of the result [12, Theorem 4.5

(ii)], which gives sufficient conditions on the symbol of a Fourier multiplier so that the associated

operator is continuous from Bs
p,q(T) to itself. We modify the result to get sufficient conditions for

continuity from Bs
p,q(T) to Br

p,q(T) for distinct values of r and s. The modification we apply is the

same technique used by B.V. Matioc [55] in altering the result [12, Theorem 4.5 (i)].

For 1 ≤ p ≤ ∞, we define the Sobolev space

W 1
p (T) := {f ∈ Lp(T) : f is weakly differentiable and f ′ ∈ Lp(T)}

with the norm ‖f‖W 1
p

:= ‖f‖p + ‖f ′‖p.

Theorem 2.2.1. Let r, s ∈ R+ and 1 ≤ p, q ≤ ∞. Suppose that (Mk)k∈Z ⊂ C is a sequence such

that

s1 := sup
k∈Z\{0}

|k|r−s|Mk| <∞, and s2 := sup
k∈Z\{0}

|k|r−s+1|Mk+1 −Mk| <∞. (2.8)

Then the Fourier multiplier with symbol (Mk)k∈Z is a continuous mapping from Bs
p,q(T) to Br

p,q(T),
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namely

T :

[∑
k∈Z

f̂(k)ek 7−→
∑
k∈Z

Mkf̂(k)ek

]
∈ L

(
Bs
p,q(T), Br

p,q(T)
)
.

Moreover, the operator norm of T as a mapping from Bs
p,q(T) to Br

p,q(T) can be bounded with respect

to s1 and s2.

The proof of this result relies upon the following Lemma, which is a simple version of [12,

Lemma 4.4]. Here we only consider C-valued functions over R, so that the spaces involved are of

Fourier type 2 and the statement is simplified as follows.

Lemma 2.2.2. Let 1 ≤ p ≤ ∞ and let m ∈ Cc(R,C) ∩ FL1(R,C). Then

∥∥∥∥∥∑
k∈Z

m(k)f̂(k)ek

∥∥∥∥∥
p

≤ Cpη2(m)‖
∑
k∈Z

f̂(k)ek‖p (2.9)

holds whenever f ∈ Lp(T) is a trigonometric polynomial, where Cp is a constant depending only on

p, and η2(m) := inf{‖m(a·)‖W 1
2

: a > 0}.

Proof of Theorem 2.2.1: We provide the proof here for the reader’s convenience and reference [12,

Theorem 4.5(ii)] and [55, Theorem 2.2.1]. Fix (Mk)k∈Z ⊂ C satisfying (2.8) and parameters s, r ∈ R,

1 ≤ p, q ≤ ∞ and ϕ := {ϕj}j≥0 ∈ Φ(R). We follow the same method as Arendt and Bu, with

modifications to account for the (possibly nonzero) difference |r − s|, which is zero in the case

considered in [12]. To see that T is a bounded operator from Bs
p,q(T) to Br

p,q(T) as stated, it will

suffice to show that there exists some constant C > 0 such that the bound

∥∥∥∥∥∑
k∈Z

(
2(r−s)jMk

)
ϕj(k)f̂(k)ek

∥∥∥∥∥
p

≤ C

∥∥∥∥∥∑
k∈Z

ϕj(k)f̂(k)ek

∥∥∥∥∥
p

,

holds uniformly for f ∈ Bs
p,q(T) and j ≥ 0. To demonstrate this bound, we define an appropriate

sequence of compactly supported continuous functions and take advantage of Lemma 2.2.2.

For j ≥ 1, define mj : R → C by mj(x) = 0 if |x| ≥ 2j+2 or |x| ≤ 2j−2, mj(k) = 2(r−s)jMk

for k ∈ Z with 2j−1 ≤ |k| ≤ 2j+1, and mj is affine on [k, k + 1] for all k ∈ Z. We define m0 in a

similar manner, where m0(x) = 0 if |x| ≥ 2, m0(k) = Mk for −1 ≤ k ≤ 1, and m0 is affine on every

interval [k, k + 1], k ∈ Z.
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One can see that mj ∈ Cc(R) ∩ FL1(R) and, by compactness of suppϕj ,
∑

k∈Z ϕj(k)f̂(k)ek is

a trigonometric polynomial, for j ≥ 0. Hence, we can apply Lemma 2.2.2 to see that, for j ≥ 1,

the following bounds hold.

∥∥∥∥∥∑
k∈Z

(
2(r−s)jMk

)
ϕj(k)f̂(k)ek

∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑

2j−1≤|k|≤2j+1

mj(k)ϕj(k)f̂(k)ek

∥∥∥∥∥∥
p

≤ Cp η2(mj)

∥∥∥∥∥∑
k∈Z

ϕj(k)f̂(k)ek

∥∥∥∥∥
p

≤ Cp ‖mj(2
j ·)‖W 1

2

∥∥∥∥∥∑
k∈Z

ϕj(k)f̂(k)ek

∥∥∥∥∥
p

.

Hence, it suffices to show that {‖mj(2
j ·)‖W 1

2
}j≥1 is uniformly bounded. From direct computation,

one can see that this bound follows from the property suppmj ⊂ [1
4 , 4] and it holds that

sup
x∈R
|mj(2

jx)| ≤ sup
2j−1≤|k|≤2j+1

2(r−s)j |Mk| ≤ sup
2j−1≤|k|≤2j+1

(
2(r−s)j

|k|r−s

)
s1 ≤ 2|r−s|s1,

and

sup
2j−1≤|p|≤2j+1

2(r−s+1)j |Mp+1 −Mp| ≤ sup
2j−1≤|p|≤2j+1

(
2(r−s+1)j

|p|(r−s+1)

)
s2 ≤ 2|r−s+1|s2.

Then, the W 1
2 (T) norms can be bounded explicitly, for all j ≥ 0, and it follows that the operator

norm of T can be bounded with respect to the constants s1 and s2 alone.

2.3 Ellipticity and Generation of Analytic Semigroups

Having established a setting within which we will look for solutions to the inhomogeneous Cauchy

problem (2.1) in Section 2.1, we turn our attention back to the differential operator A = A(·, D).

First, we define ellipticity conditions on a differential operator of order 2m and then we demonstrate

our first result regarding generation of analytic semigroups on periodic little-Hölder spaces.

Denote by D := i ddx the elementary differential operator over T and let m ∈ N be an arbitrary

positive integer. Now, fix a collection {bk : k = 0, . . . , 2m} ⊂ hα(T) of coefficient functions and

consider the differential operator A, acting on u ∈ h2m+α(T), defined by

Au(x) := A(x,D)u(x) :=
2m∑
k=0

bk(x) (Dku)(x) =
2m∑
k=0

ik bk(x)u(k)(x), x ∈ T.
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By the embedding property Proposition 2.1.2(a) and the fact that hα(T) is a Banach algebra, it

follows immediately that A maps h2m+α(T) into hα(T). Now, denote by σA : T × R → C the

principal symbol of A, defined by σA(x, ξ) := b2m(x)ξ2m. Then we say that A is a uniformly elliptic

operator on T if there exists a constant c1 > 0 such that

Re
(
σA(x, ξ)

)
≥ c1 for all x ∈ T, |ξ| = 1. (2.10)

In case b2m is simply a R-valued function, we see that uniform ellipticity is equivalent to the

condition b2m(x) ≥ c1 for all x ∈ T. Meanwhile, when b2m takes values in C\R, uniform ellipticity is

equivalent to the more general condition b2m(T) ⊂ {z ∈ C : Re z ≥ c1}. Also notice, by assumption

we have b2m continuous on T, so that there always exists some constant c2 > 0 for which b2m(T) ⊂

{z ∈ C : |z| ≤ c2}. Indeed, we can always take c2 = ‖b2m‖C(T).

Definition 2.3.1. Following the notation of Amann [2], given Banach spaces E0 and E1 with

E1
d
↪→ E0, we denote by H(E1, E0) the collection of A ∈ L(E1, E0) such that −A is the infinitesimal

generator of an analytic semigroup on E0, with domain D(A) = E1. Moreover, given parameters

κ ≥ 1, ω > 0, we denote by H(E1, E0, κ, ω) the set of linear operators A : E1 → E0, closed in E0,

such that ω +A ∈ Lisom(E1, E0) and

κ−1 ≤ ‖(λ+A)x‖0
|λ|‖x‖0 + ‖x‖1

≤ κ, x ∈ E1 \ {0}, Reλ ≥ ω. (2.11)

Then, it follows, c.f. [2, Theorem 1.2.2], that H(E1, E0) =
⋃
κ≥1
ω>0

H(E1, E0, κ, ω).

Theorem 2.3.2. Let m ∈ N, α ∈ R+ \ Z and consider the differential operator Ab := bD2m with

constant coefficient b ∈ C. If Ab is uniformly elliptic, with constant c1 > 0, and c2 ≥ c1 > 0 is

chosen so that |b| ≤ c2, then −Ab generates a (strongly continuous) analytic semigroup on hα(T)

with domain h2m+α(T). Moreover, for any ω > 0, there exists κ = κ(ω, c1, c2,m) such that

Ab ∈ H
(
h2m+α, hα, κ(ω, c1, c2,m), ω

)
.

The method for proving this theorem is inspired by an argument presented by Escher and Matioc

in [34], where they demonstrated that a particular third order operator, associated with Stokesian
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Hele-Shaw flow, generates an analytic semigroup on periodic little-Hölder spaces. Before we present

the proof, we need to state a result which helps establish a connection between little-Hölder spaces

and Fourier multiplier results, stated earlier in the scale of Besov spaces. In particular, notice if we

can apply Theorem 2.2.1 for the case p = q =∞, then the identification in Proposition 2.1.3 gives

results in Cs(T) which we then need to connect with the little-Hölder spaces hs(T). The following

Lemma provides this necessary connection.

Lemma 2.3.3. Suppose T ∈ L(Ck+α(T), C l+α(T)) such that T (Ck+r(T)) ⊂ C l+r(T), for k, l ∈

N0, α ∈ R+ \ Z and r > α. Then T ∈ L(hk+α(T), hl+α(T)).

Proof. This result is a straight forward consequence of the dense embedding C l+r(T)
d
↪→ hl+α(T),

c.f. Proposition 2.1.2(a), we present the proof here for the readers convenience. First, notice that

for T ∈ L(Ck+α(T), C l+α(T)), it follows that T ∈ L(hk+α(T), C l+α(T)). Hence, it suffices to show

that T (hk+α(T)) ⊂ hl+α(T). Let f ∈ hk+α(T) and we can find (fj)j ⊂ Ck+r(T) such that fj → f in

‖ · ‖Ck+α . Then Tfj → Tf in ‖ · ‖Cl+α , by T ∈ L(Ck+α(T), C l+α(T)), and Tfj ∈ C l+r(T) for j ∈ N,

by assumption. Therefore, we have Tf ∈ C l+r(T)
‖·‖

Cl+α = hl+α(T) and the lemma is proved.

Proof of Theorem 2.3.2. Fix α ∈ R+ \ Z, ω > 0 and b ∈ C as indicated, in particular we assume

that b ∈ Σ (c1, c2) := {z ∈ C : Re z ≥ c1} ∩ {z ∈ C : |z| ≤ c2}. First, we realize the operator −Ab

as a Fourier multiplier. Since

Ab

(∑
k∈Z

akek

)
=
∑
k∈Z

b(i)2mak(ik)2mek =
∑
k∈Z

bk2makek,

we see that −Ab is associated with the multiplier symbol (Mk)k := (−bk2m)k.

Claim 1: (λ + Ab) ∈ Lisom(h2m+α(T), hα(T)) for Reλ ≥ ω, i.e. ρ(−Ab) ⊃ {λ ∈ C : Reλ ≥ ω}.

Moreover, the set {‖(λ + Ab)−1‖L(hα,h2m+α) : Reλ ≥ ω} is uniformly bounded by some M1 =

M1(ω, c1, c2,m) <∞.

First notice that (λ + Ab) ∈ L(C2m+σ(T), Cσ(T)) is a natural consequence of the embedding

C2m+σ(T) ↪→ Cσ(T), for arbitrary σ ∈ R+. In particular, we see that

‖(λ+Ab)f‖Cσ ≤ |λ|‖f‖Cσ + |b| ‖f (2m)‖Cσ ≤ (c(σ) |λ|+ c2)‖f‖C2m+σ ,
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where c(σ) > 0 is the embedding constant, i.e. ‖f‖Cσ ≤ c(σ) ‖f‖C2m+σ for all f ∈ C2m+σ(T).

Now, we focus on showing continuous invertibility of the operator (λ +Ab). We will demonstrate

invertibility in the classic Hölder spaces, then apply Lemma 2.3.3 to get the stated result.

We use Theorem 2.2.1 and the identification Bσ
∞,∞(T) = Cσ(T), for σ ∈ R+ \ Z. In particular,

let Reλ ≥ ω and consider the symbol
(
M̃k(λ)

)
k

:=
(

1
λ+bk2m

)
k
, which we will show satisfies (2.8),

with r = 2m+ σ and s = σ. Then r − s = 2m and we have,

|k|2m|M̃k(λ)| = k2m

|λ+ bk2m|
≤ k2m

Re b k2m
≤ 1

Re b
for k ∈ Z \ {0}

=⇒ s1 := sup
k∈Z\{0}

|k|r−s|M̃k(λ)| ≤ 1

c1
<∞,

and

|k|2m+1|M̃k+1(λ)− M̃k(λ)| = |k|2m+1

∣∣∣∣ 1

λ+ b(k + 1)2m
− 1

λ+ bk2m

∣∣∣∣
=

|k|2m

|λ+ b(k + 1)2m|
|k|2m

|λ+ bk2m|
|b||(k + 1)2m − k2m|

|k|2m−1

≤ |k|2m

|λ+ b(k + 1)2m|
|b|

Re b

|(k + 1)2m − k2m|
|k|2m−1

If k = −1, then this last term is equal 1/|λ|, which is majorized by 1/ω. For all other k ∈ Z \ {0},

we eliminate dependence on λ, as in the bound for s1, so that we have

s2 := sup
k∈Z\{0}

|k|r−s+1
∣∣∣M̃k+1(λ)− M̃k(λ)

∣∣∣
≤
(

1

ω
∨ c2

(c1)2

)
sup

k∈Z\{−1}

(
|k|2m

|k + 1|2m
2m−1∑
j=0

(
2m

j

)
|k|j−2m+1

)
<∞.

Hence, by Theorem 2.2.1 we have R(λ) ∈ L(Br
p,q(T), Br+2m

p,q (T)) for any 1 ≤ p, q ≤ ∞ and r ∈ R+,

where R(λ) is the operator associated with the symbol
(
M̃k(λ)

)
k
. Taking p = q = ∞ and r = σ,

we see R(λ) ∈ L(Cσ(T), C2m+σ(T)). Meanwhile, it holds that

R(λ)(λ+Ab)f = f and (λ+Ab)R(λ)g = g, for f ∈ C2m+σ(T), g ∈ Cσ(T),
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which demonstrates that R(λ) = (λ+Ab)−1 and

(λ+Ab) ∈ Lisom(C2m+σ(T), Cσ(T)) for Reλ ≥ ω, σ ∈ R+ \ Z. (2.12)

Now, it is clear that Claim 1 follows from Lemma 2.3.3.

Meanwhile, for any Reλ ≥ ω, notice that s1, s2 and so, by Theorem 2.2.1, the operator norm

‖(λ+Ab)−1‖L(hα,h2m+α) can be bounded by terms depending only on the constants ω, c1, c2 and m.

In particular, there exists some M1 = M1(ω, c1, c2,m) <∞ such that ‖(λ+Ab)−1‖L(hα,h2m+α) ≤M1

for all Reλ ≥ ω and for all b ∈ Σ (c1, c2).

Claim 2: λ(λ + Ab)−1 ∈ L(hα(T)) for Reλ ≥ ω. Moreover, there is an upper bound M2 =

M2(ω, c1, c2,m) <∞ for the set
{
|λ|‖(λ+Ab)−1‖L(hα(T)) : Reλ ≥ ω

}
.

Fix Reλ ≥ ω and notice that the operator λ(λ + Ab)−1 has the associated multiplier symbol(
λ

λ+bk2m

)
k
. We established in Claim 1 that (λ +Ab)−1 is a well-defined operator mapping hα(T)

into h2m+α(T). Now, by the embedding property, Theorem 2.1.2(a), we can also consider the

mapping properties of (λ + Ab)−1 as an operator from hα(T) into itself. Again, we make use of

Lemma 2.3.3 and Theorem 2.2.1, where now we are taking r = s = σ and p = q = ∞. Moreover,

we show that s1 and s2 can be bounded independent of Reλ ≥ ω.

Notice that we can find ϑ = ϑ(c1, c2) ∈ (0, π2 ) such that Σ (c1, c2) := {z ∈ C : Re z ≥ c1} ∩ {z ∈

C : |z| ≤ c2} ⊂ Sϑ := {z ∈ C : |arg z| < ϑ}. Moreover, there exists a constant C(ϑ) such that

|λ+ z| ≥ |λ|/C(ϑ) for all z ∈ Sϑ ∪ {0}, Reλ > 0, since ϑ < π
2 . In particular, we have

s1 = sup
k∈Z\{0}

|λ|
|λ+ b k2m|

≤ C(ϑ) for all Reλ ≥ ω.

Now, considering s2, we have the bound

|k|
∣∣∣∣ |λ|
λ+ b(k + 1)2m

− |λ|
λ+ bk2m

∣∣∣∣ =
|λ|

|λ+ b(k + 1)2m|
k2m

|λ+ bk2m|
|b||(k + 1)2m − k2m|

|k|2m−1

≤ C(ϑ)
k2m

Re b k2m

|b|((k + 1)2m − k2m)

|k|2m−1
≤ C(ϑ)

c2

c1

(k + 1)2m − k2m

|k|2m−1
,
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for k ∈ Z \ {0}. Hence,

s2 ≤
(
C(ϑ)

c2

c1

)
sup
k∈N

2m−1∑
j=0

(
2m

j

)
kj−2m+1

 <∞,

again uniformly in Reλ ≥ ω. Now we see that λ(λ + Ab)−1 ∈ L(Cσ(T), C2m+σ(T)) holds by

application of Theorem 2.2.1, for λ ≥ ω, σ ∈ R+ \ Z. Hence, the claim holds by Lemma 2.3.3

and we fix a constant M2 = M2(ω, c1, c2,m) < ∞ such that ‖(λ + Ab)−1‖L(hα) ≤ M2/|λ| holds

uniformly for Reλ ≥ ω and b ∈Σ (c1, c2).

By Claims 1 and 2, we see that −Ab satisfies the conditions necessary to generate an analytic

semigroup, c.f. Amann [2, Theorem 1.2.2]. Moreover, if we choose

κ = κ(c1, c2, ω) ≥ 2
(
M1 ∨M2

)
∨
(
1 ∨ c2

)
,

it holds that

κ−1 ≤
‖(λ+Ab)f‖hα(T)

|λ|‖f‖hα(T) + ‖f‖h2m+α(T)
≤ κ, f ∈ h2m+α(T) \ {0}, Reλ ≥ ω.

Hence, we see that Ab ∈ H(hα(T), h2m+α(T), κ, ω), as claimed.

2.4 Partition and Generation Result

Now that we have a generation result for the operator with constant coefficients, we can extend

the result to variable coefficients through the following partition and perturbation argument. Here

we consider the operator

Ap := Ap(·, D) := b(·)D2m, for b ∈ CT, (2.13)

and we assume thatAp satisfies the conditions of uniform ellipticity (2.10). We will show that, under

minimal regularity assumptions on the coefficient function b, Ap generates an analytic semigroup

on hα(T) with domain h2m+α(T).

For the following localization argument, we make use of the fact that T is isomorphic to the
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(additive) quotient group R/2πZ. In particular, for x ∈ T, we consider the associated coset [x] ∈

R/2πZ, [x] := {x + 2πk : k ∈ Z}. Note that the element x ∈ T is the unique member of the coset

[x] contained in the interval [−π, π]; except in the notable case x = {π,−π}, where the points

π and −π are both members of the coset [π] and they are identified in T. Moreover, for x ∈ T

we see that the inverse element −[x] ∈ R/2πZ corresponds to −x ∈ T. Then, for z ∈ T, define

the translation operator Tz(y) := y − z, where y − z ∈ T is the unique element in T associated

with the coset [y − z] ∈ R/2πZ. Note that the metric dT is invariant under translations on T, i.e.

dT(Tz(x), Tz(y)) = dT(x, y) for any x, y, z ∈ T.

2.4.1 Localized Coefficient

We begin by localizing the function b to open sets of the form BT(z, ε), for z ∈ T and ε ∈ (0, 1/2).

We define cut-off functions and ‘local retractions’ which work together to accomplish this goal. For

the cut-off functions, choose X ∈ C1(T) such that

suppX ⊂ (−1, 1) and X|[− 1
2
, 1
2

] ≡ 1.

Then, define Xz := X ◦ Tz (the cut-off function centered at z ∈ T) and notice that Xz ∈ C1(T)

with supp(Xz) ⊂ BT(z, 1) for every z ∈ T.

For our ‘local retractions’ we define rε : [−1, 1]→ [−ε, ε], for ε ∈ (0, 1/2), as

rε(x) :=


x if x ∈ [−ε, ε],

ε if x ∈ (ε, 1],

−ε if x ∈ [−1,−ε).

(2.14)

Then, for z ∈ T arbitrary, we define rz,ε := T−z ◦ rε ◦ Tz, the local retraction centered at z, which

maps the closed neighborhood BT(z, 1) to BT(z, ε).

Proposition 2.4.1. For ε ∈ (0, 1/2), rε is Lipschitz continuous from [−1, 1] to [−ε, ε], with Lip-

schitz constant 1. Consequently, rz,ε is Lipschitz continuous (with respect to the metric dT) from

BT(z, 1) to BT(z, ε) for all z ∈ T, ε ∈ (0, 1/2).

Proof. By considering cases for points x, y ∈ T, the first claim is easily verified. Furthermore, notice
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that dT(x, y) = |x − y| for x, y ∈ [−1, 1], so that rε is Lipschitz in the metric dT on [−1, 1]. Then

the second claim follows from invariance of the metric dT under translations Tz.

Now, given a function b ∈ CT, we combine these ‘local retractions’ and cut-off functions to

define the parameter-dependent functions

bz,ε(x) :=


Xz(x) [b ◦ rz,ε(x)− b(z)] if x ∈ BT(z, 1),

0 otherwise,

z ∈ T, ε ∈ (0, 1/2),

which essentially compare the local behavior of b against a fixed value b(z). Before we make use of

these ‘localized coefficients’, we establish the following results regarding their regularity.

Lemma 2.4.2. Let b ∈ hα(T) for α ∈ (0, 1). Then the following results hold:

a) bz,ε ∈ hα(T) for ε ∈ (0, 1/2), z ∈ T,

b) lim
ε→0+

sup
z∈T
‖bz,ε‖hα = 0.

Proof. First notice, since b ∈ hα(T), it follows from the intrinsic characterization of little-Hölder

spaces (2.5) that for ε ∈ (0, 1/2), there exists C(ε) > 0 such that

sup
z∈T

[b ]α,B(z,ε) = C(ε) −→ 0 as ε→ 0+. (2.15)

Now, let z ∈ T be a fixed sample point and ε ∈ (0, 1/2). To see that bz,ε has the necessary regularity,

we make use of Proposition 2.1.1(c) and Proposition 2.4.1. In particular, let x, y ∈ T and consider

the following cases:

• x, y ∈ BT(z, 1): Then rz,ε(x), rz,ε(y) ∈ BT(z, ε) and

|bz,ε(x)− bz,ε(y)| =
∣∣Xz(x)

(
b(rz,ε(x))− b(z)

)
−Xz(y)

(
b(rz,ε(y))− b(z)

)∣∣
≤ |Xz(x)||b(rz,ε(x))− b(rz,ε(y))|+ |Xz(x)−Xz(y)||b(rz,ε(y))− b(z)|

≤
(
‖Xz‖C(T)d

α
T(rz,ε(x), rz,ε(y)) + ‖X ′z‖C(T) dT(x, y) dαT(rz,ε(y), z)

)
[b ]α,B(z,ε)

≤
(
‖Xz‖C(T) + ‖X ′z‖C(T) d

1−α
T (x, y) εα

)
[b ]α,B(z,ε)d

α
T(x, y) (2.16)
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• x ∈ BT(z, 1), y ∈ T \ BT(z, 1): Then Xz(y) = 0 and

|bz,ε(x)− bz,ε(y)| = |bz,ε(x)| = |Xz(x)
(
b(rz,ε(x))− b(z)

)
|

≤ |Xz(x)−Xz(y)| dαT(rz,ε(x), z) [b ]α,B(z,ε)

≤ ‖X ′z‖C(T) dT(x, y) εα [b ]α,B(z,ε)

≤
(
‖X ′z‖C(T) d

1−α
T (x, y) εα

)
[b ]α,B(z,ε) d

α
T(x, y) (2.17)

Together with the trivial case x, y ∈ T \ BT(z, 1) – where Xz(x) = Xz(y) = 0 – this is enough to

see that bz,ε ∈ Cα(T) with the α-Hölder norm of bz,ε bounded as

[bz,ε]α,T ≤
(
‖Xz‖C(T) + εα π1−α ‖X ′z‖C(T)

)
[b ]α,B(z,ε).

Furthermore, we can see that ‖bz,ε‖C(T) ≤ εα ‖Xz‖C(T) [b ]α,B(z,ε) so that the Cα-norm of bz,ε is

bounded as

‖bz,ε‖Cα ≤
(

(1 + εα) ‖Xz‖C(T) + εα π1−α ‖X ′z‖C(T)

)
[b]α,B(z,ε). (2.18)

Hence, by the property (2.15) and the inequalities (2.16) and (2.17), we see that

lim
δ→0+

sup
x,y∈T

0<dT(x,y)<δ

|bz,ε(x)− bz,ε(y)|
dαT(x, y)

= 0,

which demonstrates bz,ε ∈ hα(T) as claimed in (a). Now the second claim follows from (2.15) and

(2.18).

2.4.2 Partition and Generation Result

For ε ∈ (0, 1/2), let n(ε) :=
⌈

2π
ε

⌉
, where dae denotes the smallest integer n such that n ≥ a, a ∈ R.

Now, let {xε,j : j = 1, . . . , n(ε)} ⊂ T be a collection of sample points from T so that xε,1 = −π and

xε,j = xε,(j−1) + ε, j = 2, . . . , n(ε). Further, define Ωε := {BT(xε,j , ε) : j = 1, . . . , n(ε)}, which is a

finite open cover for T, and let Πε := {π2
ε,j} ⊂ C∞(T) be a resolution of unity subordinate to Ωε.
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In particular, Πε is a collection of infinitely differentiable functions such that

supp(πε,j) ⊂ BT(xε,j , ε), j = 1, . . . , n(ε), and

n(ε)∑
j=1

π2
ε,j(x) = 1, x ∈ T.

Now we are prepared to prove the following result, which is a generalization of Theorem 2.3.2 to

the case of non-constant coefficients. The method of the proof is motivated by results in [4, 6].

Lemma 2.4.3. Let m ∈ N, α ∈ R+ \ Z and consider the differential operator Ap := Ap(·, D) :=

b(·)D2m with coefficient b ∈ hα(T). If Ap is uniformly elliptic, then −Ap generates a (strongly

continuous) analytic semigroup on hα(T) with domain h2m+α(T). i.e. Ap ∈ H(h2m+α(T), hα(T)).

Proof. Fix ω > 0 and b ∈ hα(T). By assumption, there exist constants c1 and c2, with c2 ≥ c1 > 0

such that b(T) ⊂ {z ∈ C : Re z ≥ c1} ∩ {z ∈ C : |z| ≤ c2}.

(i) First we demonstrate that it suffices to prove the result for α ∈ (0, 1). Suppose that

the claim holds for α ∈ (0, 1) and let β := α + 1. In particular, we assume b ∈ hβ(T) and

Ap = b(·)D2m ∈ H(h2m+α(T), hα(T)). It follows that (λ + Ap) : h2m+α(T) → hα(T) is invertible

for Reλ ≥ ω and we have the resolvent estimates

‖(λ+Ap)−1‖L(hα,h2m+α) ≤ κ, |λ|‖(λ+Ap)−1‖L(hα) ≤ κ, (2.19)

for Reλ ≥ ω, for some ω > 0 and κ ≥ 1. Now, fix λ ∈ C with Reλ ≥ ω and consider f ∈ hβ(T).

Then f ∈ hα(T), by Proposition 2.1.2(a), and we define u := (λ + Ap)−1f ∈ h2m+α(T). Then u

satisfies the equation (λ+Ap)u = f and, differentiating this equation, we see that

(λ+Ap)u′ = f ′ − b′ u(2m),

where, a priori, we know that u′ ∈ h2m−1+α(T). However, notice that

f ′, b′, u(2m) ∈ hα(T) and b′ u(2m) ∈ hα(T), since hα(T) is a Banach algebra, so that
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u′ = (λ+Ap)−1
(
f ′ − b′ u(2m)

)
∈ h2m+α(T). Hence, we see that u ∈ h2m+β(T) and

‖u‖h2m+β(T) =
2m+1∑
k=0

‖u(k)‖C(T) + [u(2m+1) ]α,T = ‖u′‖h2m+α(T) + ‖u‖C(T)

≤ κ
(
‖f ′ − b′ u(2m)‖hα(T) + ‖u‖C(T)

)
≤ κ

(
‖f ′‖hα(T) + (1 ∨ ‖b′‖hα(T))‖u‖h2m+α(T)

)
≤ κ

(
‖f ′‖hα(T) + κ(1 ∨ ‖b′‖hα(T))‖f‖hα(T)

)
≤ K(κ, b)

(
‖f ′‖C(T) + [f ′ ]α,T + ‖f‖C(T) + [f ]α,T

)
≤ K(κ, b)

(
(1 + π1−α)‖f ′‖C(T) + ‖f‖C(T) + [f ′ ]α,T

)
≤ K̃‖f‖hβ(T).

Then ‖(λ+Ap)−1‖L(hβ ,h2m+β) ≤ K̃ for Reλ ≥ ω. Meanwhile, in a similar fashion, we see that

|λ|‖u‖hβ(T) = |λ|
(
‖u‖C(T) + ‖u′‖C(T) + [u′ ]α,T

)
≤ K̃‖f‖hβ(T),

holds for Reλ ≥ ω. Hence, it follows that |λ|‖(λ+Ap)−1‖L(hβ) ≤ K̃ for Reλ ≥ ω and so the claim

holds for β = α+ 1. Then, we extend the result to any β > 1, β /∈ Z, by induction on α.

(ii) Now we demonstrate the claim for α ∈ (0, 1). By uniform ellipticity of Ap, it follows from

Theorem 2.3.2 that there exists some constant κ = κ(ω, c1, c2) ≥ 1 such that

Ap(x0) := b(x0)D2m ∈ H(h2m+α(T), hα(T), κ, ω)

for any fixed x0 ∈ T. Fix η so that 0 < η < 1/κ. By Lemma 2.4.2(b), there exists ε0 > 0 with

associated sampling set {xj} := {xε0,j} and partition Ω := Ωε0 = {BT(xj , ε0)}, j = 1, . . . , n :=

n(ε0), such that

sup
j=1,...,n

‖bj‖hα < η, where bj := bxj ,ε0 . (2.20)

Moreover, by Lemma 2.4.2(a) and the fact that hα(T) is a Banach Algebra, the operator bj(·)D2m

is in L(h2m+α(T), hα(T)) with ‖bj(·)D2m‖L(h2m+α,hα) ≤ ‖bj‖hα , for j = 1, . . . , n. Hence, by [2,

Theorem 1.3.1(i)] and (2.20) we can see that perturbations of Ap(xj) remain in the class H, namely

Aj := [b(xj) + bj(·)]D2m ∈ H
(
h2m+α(T), hα(T),

κ

1− κη
, ω

)
, j = 1, . . . , n.
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In particular, this implies that {λ ∈ C : Reλ ≥ ω} ⊂ ρ(−Aj) and the resolvent estimates

|λ|‖(λ+Aj)−1‖L(hα) ≤
κ

1− κη
and ‖(λ+Aj)−1‖L(hα,h2m+α) ≤

κ

1− κη
, (2.21)

hold uniformly for Reλ ≥ ω and j = 1, . . . , n.

Let Π := Πε0 = {π2
j } be a resolution of unity subordinate to Ω, where we also insist that

‖πj‖hα , ‖πj‖h2m+α ≤ M uniformly in j, for some M = M(ε0) ≥ 1. Now define the composite

little-Hölder spaces

(hσ(T))n := {(fj)j∈N ∈ `∞ (hσ(T)) : fj = 0 for j ≥ n+ 1} , σ ∈ R+ \ Z.

Then, it is easy to see that (hσ(T))n is a Banach space, with the norm topology inherited from

`∞ (hσ(T)). Moreover, we have the following retraction and coretraction

R : (hσ(T))n → hσ(T) where R ((fj)j) :=
n∑
j=1

πjfj (2.22)

RC : hσ(T)→ (hσ(T))n where RC (u) := (πju)j . (2.23)

With finiteness of the partition Ω and the properties of the resolution of unity Π, we easily see that

R ∈ L ((hσ(T))n, hσ(T)) and RC ∈ L (hσ(T), (hσ(T))n) with R ◦RC = idhσ(T) and

‖R‖L((hσ(T))n,hσ(T)) ≤ nM, ‖RC‖L(hσ(T),(hσ(T))n) ≤M, σ ∈ {α, 2m+ α}. (2.24)

We will make use of R and RC together with the spaces (hσ(T))n to construct a left and right

inverse for (λ+Ap), for Reλ ≥ ω0 ≥ ω sufficiently large. Toward this goal, we define the following

operators:

• Λ :
(
h2m+α(T)

)n → (hα(T))n defined by Λ(fj)j := (Ajfj)j . Then

Λ ∈ L
((
h2m+α(T)

)n
, (hα(T))n

)
with ‖Λ‖ ≤ sup

j=1,...,n
‖Aj‖L(h2m+α,hα).

• Bj := πjAj − Ajπj = [πj ,Ap] the commutator of πj and Ap, j = 1, . . . , n. The second

expression for Bj follows from the fact that supp(πj) ⊂ BT(xj , ε0) and bj(x) = b(x) − b(xj)

for x ∈ BT(xj , ε0), so that Ap and Aj coincide on supp(πj). Moreover, the highest order
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terms are eliminated in Bj so that we have Bj ∈ L
(
h(2m−1)+α(T), hα(T)

)
with

‖Bj‖ ≤ C(m)‖πj‖h2m+α ≤ C(m)M .

• B : h(2m−1)+α(T)→ (hα(T))n defined by Bf := (Bjf)j . Then B ∈ L
(
h(2m−1)+α(T), (hα(T))n

)
with ‖B‖ ≤ sup

j=1,...,n
‖Bj‖L(h(2m−1)+α,hα) ≤ C(m)M .

• D : (h(2m−1)+α(T))n → hα(T) defined by D(fj)j :=
n∑
j=1

Bjfj . Then

D ∈ L((h(2m−1)+α(T))n, hα(T)) with ‖D‖ ≤ nC(m)M .

• Cj,k(λ) := Bj ◦πk ◦ (λ+Ak)−1, j, k = 1, . . . , n, Reλ ≥ ω. We easily see that Cj,k ∈ L(hα(T)).

Moreover, since Bj maps h(2m−1)+α(T) to hα(T) we can consider the mapping (λ + Ak)−1

from hα(T) to h(2m−1)+α(T). In this way, we take advantage of the interpolation result for

little-Hölder spaces, Proposition 2.1.2(b), in conjunction with the resolvent estimates (2.21)

on Ak, to see that

‖(λ+Ak)−1‖L(hα,h(2m−1)+α) ≤ ‖(λ+Ak)−1‖1−1/2m
L(hα,h2m+α)

‖(λ+Ak)−1‖1/2mL(hα)

≤
(

κ

1− κη

)1−1/2m( κ

1− κη

)1/2m

|λ|−1/2m

≤
(

κ

1− κη

)
|λ|−1/2m = c̃|λ|−1/2m. (2.25)

Here, we take advantage of the fact that the continuous interpolation method used in Pro-

postion 2.1.2(b) is exact. Hence, the Cj,k operator norms are bounded as

‖Cj,k‖L(hα(T)) ≤ c̃ C(m)M2|λ|−1/2m j, k = 1, . . . , n, Reλ ≥ ω. (2.26)

• C(λ) : (hα(T))n → (hα(T))n defined C(fj)j :=

(
Bj

n∑
k=1

πk(λ+Ak)−1fk

)
j

, for Reλ ≥ ω.

Notice that suppπk ⊂ BT(xk, ε0) and suppBj ⊂ BT(xj , ε0) for j, k = 1, . . . , n, so Cj,k(λ) = 0

for 1 < |j − k| < n− 1. Hence, by (2.26), we can choose ω1 > 0 large enough to ensure that

‖C(λ)‖L((hα(T))n) ≤ 1/2 for Reλ ≥ ω1.

Claim 1: For Reλ ≥ ω1, (λ+ Λ + BR) :
(
h2m+α(T)

)n → (hα(T))n is invertible and

L(λ) := R (λ+ Λ + BR)−1RC is a left inverse for (λ+Ap).
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From the definition and discussion of C(λ) above, we can choose ω1 ≥ ω large enough so that

‖C(λ)‖L((hα(T))n) ≤ 1/2 for Reλ ≥ ω1. Hence, by the Neumann series, we see that
(
id(hα(T))n + C(λ)

)
is invertible on (hα(T))n for Reλ ≥ ω1 and ‖(id(hα(T))n + C(λ))−1‖L((hα(T))n) ≤ 2. For any

(fj)j ∈
(
h2m+α(T)

)n
and Reλ ≥ ω1, we have

BR(fj)j = B
( n∑
k=1

πkfk

)
=
(
Bj

n∑
k=1

πkfk

)
j

=

(
Bj

n∑
k=1

πk(λ+Ak)−1(λ+Ak)fk
)
j

= C(λ)
(

(λ+Aj)fj
)
j

=⇒ (λ+ Λ+BR)(fj)j = (λ+ Λ)(fj)j + C(λ)
(

(λ+Aj)fj
)
j

=
(
id(hα(T))n + C(λ)

)
(λ+ Λ)(fj)j .

Hence, invertibility of (λ+ Λ +BR) follows from invertibility of (id(hα(T))n +C(λ)) and invertibility

of (λ + Λ), both of which hold if Reλ ≥ ω1 ≥ ω. Furthermore, we see that (λ + Λ + BR)−1 =

(λ+ Λ)−1(id(hα(T))n + C(λ))−1, Reλ ≥ ω1.

Now, we apply (2.21) to see that

‖(λ+ Λ)−1‖L((hα(T))n) ≤
(

κ

1− κη

)
|λ|−1,

and so, with (2.24), we get the bound

‖L(λ)‖L(hα) = ‖R(λ+ Λ + BR)−1RC‖ ≤
(

2κ

1− κη

)
nM2|λ|−1. (2.27)

Finally, to see that L(λ) is indeed a left inverse for (λ+Ap), when Reλ ≥ ω1. Let u ∈ h2m+α(T)

and πj ∈ Π, then we see that

πj(λ+Ap)u = (λ+Aj)πju+Bju = (λ+Aj)πju+BjRR
Cu.

Hence, it follows, by exhibiting all components for j = 1, . . . , n, that

RC(λ+Ap)u = (λ+ Λ + BR)RCu and so L(λ)(λ+Ap) = idh2m+α(T).
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Claim 2:
(
λ+ Λ−RCD

)
:
(
h2m+α(T)

)n → (hα(T))n is invertible for Reλ ≥ ω2 ≥ ω with ω2

sufficiently large. Moreover, R(λ) := R
(
λ+ Λ−RCD

)−1
RC is a right inverse for (λ + Ap) and

L(λ) = R(λ) = (λ+Ap)−1.

We make use of the same observations that led to the invertibility of (λ+Λ+BR) in the previous

claim. Notice that

(λ+ Λ−RCD) = (id(hα(T))n −RCD(λ+ Λ)−1)(λ+ Λ), Reλ ≥ ω,

so it suffices to show that (id(hα(T))n + RCD(λ + Λ)−1) is invertible in L((hα(T))n), for Reλ suf-

ficiently large. However, this follows by the Neumann series, taking into account the fact that

D ∈ L((h(2m−1)+α(T))n, hα(T)), so that (2.25) implies

‖RCD(λ+ Λ)−1‖L((hα(T))n) ≤ c̃ nC(m)M2|λ|−1/2m.

Hence, we can choose ω2 ≥ ω large enough that ‖RCD(λ + Λ)−1‖L((hα(T))n) ≤ 1/2 for Reλ ≥ ω2,

which implies invertibility of (λ + Λ − RCD). Furthermore, to see that R(λ) is a right inverse for

(λ+Ap), let (fj)j ∈ (h2m+α(T))n and notice that

(λ+Ap)R(fj)j =
n∑
j=1

(λ+Ap)πjfj =
n∑
j=1

(πj(λ+Aj)fj −Bjfj)

=

n∑
j=1

πj(λ+Aj)fj −
n∑
j=1

Bjfj = R(λ+ Λ)(fj)j −D(fj)j

= R(λ+ Λ)(fj)j −RRCD(fj)j = R(λ+ Λ−RCD)(fj)j .

Hence, (λ+Ap)R(λ) = idhα(T) and R(λ) is a right inverse for (λ+Ap).

Finally, let ω0 = ω1 ∨ ω2, so that L(λ) and R(λ) are both defined for Reλ ≥ ω0. Then

L(λ)f = L(λ)
[
(λ+Ap)R(λ)

]
f =

[
L(λ)(λ+Ap)

]
R(λ)f = R(λ)f, for f ∈ hα(T). Hence, (λ+Ap) is

invertible for Reλ ≥ ω0 and Ap ∈ H(h2m+α(T), hα(T)) follows from the resolvent estimate (2.27).

With this generation result for the principal operator Ap established, we return to the full

elliptic operator A. Making use of perturbation results for generators of analytic semigroups, we
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prove that -A generates an analytic semigroup in the scale of little-Hölder spaces.

Theorem 2.4.4. Let m ∈ N, α ∈ R+ \ Z, bk ∈ hα(T), for k = 0, . . . , 2m, and suppose the operator

A := A(·, D) :=
∑2m

k=0 bk(·)Dk is uniformly elliptic. Then A ∈ H(h2m+α(T), hα(T)).

Proof. By Lemma 2.4.3 and [2, Theorem I.1.2.2] we can find ω > 0 and κ ≥ 1 such that Ap :=

Ap(·, D) := b 2m(·)D2m ∈ H(h2m+α(T), hα(T), κ, ω). Fix η so that 0 < η < 1/κ and consider the

operator B1 := B1(·, D) := b 2m−1(·)D2m−1. For any f ∈ h2m+a(T), we make use of the interpolation

inequality, c.f. [2, Proposition I.2.2.1], and Young’s inequality to see that

‖B1 f‖hα(T) ≤ ‖b 2m−1‖hα(T) ‖f2m−1‖hα(T) ≤ ‖b 2m−1‖hα(T) ‖f‖h2m−1+α(T)

≤ c‖b 2m−1‖hα(T)

(
‖f‖

1
2m

hα(T) ‖f‖
2m−1
2m

h2m+α(T)

)
≤ c‖b 2m−1‖hα(T)

(
ε ‖f‖h2m+α(T) + c̃ ε1−2m ‖f‖hα(T)

)
,

which holds for arbitrary ε > 0. If we choose ε > 0 such that ε̃ := cε‖b 2m−1‖hα(T) < η, it follows

from [2, Theorem 1.3.1(ii)] that

Ap +B1 ∈ H

(
h2m+α(T), hα(T),

κ

1− κε̃
, ω ∨

cc̃ ε1−2m ‖b 2m−1‖hα(T)

ε̃

)
.

Now the theorem follows by repeating this argument for the remaining lower-order terms of the

operator A.

Remarks 2.4.5. Notice that the results of Theorem 2.4.4 also hold in the setting of classic Hölder

spaces Cσ(T), though one must still take coefficients from the little-Hölder spaces to preserve

smallness of localized coefficients, c.f. Lemma 2.4.2(b). One notable difference when considering

these analogous results in the classic Hölder setting is that the semigroups generated are no longer

strongly continuous, due to a lack of dense embeddings in this setting. For the methods leading to

maximal regularity that follow, strong continuity of semigroups is necessary, so the results in the

little-Hölder setting are required for our purposes.
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2.5 Maximal Regularity and The Inhomogeneous Problem

We return to the task of finding solutions to the inhomogeneous problem


∂tu(t, x) +A(x,D)u(t, x) = f(t, x), t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R,
(2.28)

Given an interval J := [0, T ] and J̇ := J \ {0}, we say that u : [t 7→ u(t, ·)] is a classical solution to

(2.28) if

u ∈ C1(J̇ , C(T)) ∩ C(J̇ , C2m(T)) ∩ C(J,C(T)),

and u satisfies (2.28). Following results of DaPrato, Grisvard and Angenent, we will show how

the analytic semigroup generation result of Theorem 2.4.4 leads to existence and uniqueness of

solutions to (2.28), with maximal regularity of solutions. We begin by defining function spaces

which define the temporal regularity of solutions (i.e. mapping the interval J into the little-Hölder

spaces), then we define a class of maximal regularity and use properties of maximal regularity to

acquire existence and uniqueness of solutions.

2.5.1 Function Spaces and Maximal Regularity

Addressing temporal regularity of solutions, let µ ∈ (0, 1], J := [0, T ], for some T > 0, and let E be

a Banach space. Following the notation of [17], we define spaces of functions defined on J̇ := J \{0}

with prescribed singularity at 0. Namely, for µ ∈ (0, 1), define

BUC1−µ(J,E) :=

{
u ∈ C(J̇ , E) : [t 7→ t1−µu(t)] ∈ BUC(J̇ , E) and lim

t→0+
t1−µ‖u(t)‖E = 0

}
‖u‖C1−µ := sup

t∈J
t1−µ‖u(t)‖E ,

(2.29)

where BUC denotes the space consisting of bounded, uniformly continuous functions. It is easy to

verify that BUC1−µ(J,E) is a Banach space when equipped with the norm ‖ · ‖C1−µ . Moreover, we

define the subspace

BUC1
1−µ(J,E) :=

{
u ∈ C1(J̇ , E) : u, u̇ ∈ BUC1−µ(J,E)

}
, µ ∈ (0, 1)
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and we set

BUC0(J,E) := BUC(J,E) BUC1
0 (J,E) := BUC1(J,E).

Now, fix µ ∈ (0, 1] and consider the spaces

E0(J) := BUC1−µ(J, hα(T)), α ∈ R+ \ Z

E1(J) := BUC1
1−µ(J, hα(T)) ∩BUC1−µ(J, h2m+α(T)),

where E1(J) is a Banach space with the norm

‖u‖E1(J) := sup
t∈J̇

t1−µ
(
‖u̇(t)‖hα + ‖u(t)‖h2m+α

)
.

It follows that the trace operator γ : E1(J)→ hα(T), defined by γv := v(0), is well-defined and we

denote by γE1 the image of γ in hα(T), which is a Banach space when equipped with the norm

‖f‖γE1 := inf
{
‖v‖E1(J) : v ∈ E1(J) and γv = f

}
.

By [2, Theorem III.2.3.1] and Proposition 2.1.2(b) we see that

γE1 = (hα(T), h2m+α(T))µ = h2mµ+α(T), µ ∈ (0, 1)

γE1 := h2m+α(T) µ = 1,

where (·, ·)η denotes the continuous interpolation functor of DaPrato and Grisvard, c.f. [2, 51], and

the interpolation space characterization holds (up to equivalent norms) when 2mµ+ α /∈ Z.

For B ∈ L(h2m+α(T), hα(T)), closed on hα(T), we say that
(
E0(J),E1(J)

)
is a pair of (contin-

uous) maximal regularity for B, and write B ∈Mµ(h2m+α(T), hα(T)), if

(
d

dt
+B, γ

)
∈ Lisom(E1(J),E0(J)× γE1),

µ ∈ (0, 1], α ∈ R+ \ Z and J = [0, T ] for some T > 0. In particular, we see that
(
E0(J),E1(J)

)
is a pair of maximal regularity for B if and only if for every (f, u0) ∈ E0(J) × γE1, there exists a

unique solution u ∈ E1(J) to the inhomogeneous Cauchy problem with operator B.
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2.5.2 Maximal Regularity and Generation of Analytic Semigroups

Our goal is to show that
(
E0(J),E1(J)

)
is a pair of maximal regularity for A for arbitrary α ∈ R+\Z

and J = [0, T ], given minimal regularity assumptions on the coefficients bk. In particular, fix m ∈ N

and coefficients bk ∈ hα(T), k = 0, . . . , 2m such that A := A(·, D) :=
∑

k≤2m bk(·)Dk satisfies the

uniform ellipticity conditions (2.10). The tool we are going to use to prove this maximal regularity

result is the following theorem of DaPrato, Grisvard and Angenent, which was originally proved by

DaPrato and Grisvard [22] in the case µ = 1 and then generalized to µ ∈ (0, 1) by Angenent [8].

Theorem 2.5.1 (DaPrato-Grisvard-Angenent). Fix η ∈ (0, 1), µ ∈ (0, 1] and J := [0, T ] for

T > 0. Suppose that (E0, E1) is a pair of densely embedded Banach spaces and consider an operator

A ∈ H(E1, E0). Now, set

E2 := E2(A) := (D(A2), ‖ · ‖2) equipped with the norm ‖ · ‖2 := ‖A · ‖1 + ‖ · ‖1,

Eη := (E0, E1)η, E1+η := E1+η(A) := (E1, E2(A))η,

Aη := the maximal Eη-realization of A.

It follows that

(
Eη(J),E1+η(J)

)
:=
(
BUC1−µ(J,Eη), BUC

1
1−µ(J,Eη) ∩BUC1−µ(J,E1+η)

)
,

is a pair of maximal regularity for Aη.

It is also a well-known result that Aη ∈ H(E1+η, Eη), c.f. [2, Section III.3.2].

Due to the continuous interpolation spaces constructed in the theorem, we see that we cannot di-

rectly derive maximal regularity results for A in hα(T). In particular, when applying Theorem 2.5.1,

the derived maximal regularity results are necessarily in a little-Hölder space with slightly larger

exponent than where we assume analytic semigroup generation results. Moreover, it is in general

quite difficult to characterize the operator-dependent space E2(A), which is in turn dependent upon

the regularity conditions imposed on the coefficients bk. However, we are able to take advantage

of flexibility in Theorem 2.4.4, with respect to the regularity exponents, in order to work around

these difficulties and prove the following result.
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Theorem 2.5.2. Fix α ∈ R+ \ Z, m ∈ N, µ ∈ (0, 1] and J = [0, T ], for T > 0 arbitrary. Suppose

the operator A := A(·, D) =
∑

k≤2m bk(·)Dk, with coefficients bk ∈ hα(T) is uniformly elliptic, as

in (2.10). Then (
d

dt
+A, γ

)
∈ Lisom(E1(J),E0(J)× γE1).

In particular, given any pair (f, u0) ∈ BUC1−µ(J, hα(T)) × γE1, there exists a unique solution

u ∈ BUC1
1−µ(J, hα(T)) ∩BUC1−µ(J, h2m+α(T)) to the inhomogeneous Cauchy problem (2.28).

Proof. Fix β ∈ R+ \Z such that β < α < 2m+ β and fix η := α−β
2m , then we see that η ∈ (0, 1) and

2mη+β = α. A is trivially realized as an operator from h2m+β(T) to hβ(T) by Proposition 2.1.2(a),

so that, by Theorem 2.4.4, we know A ∈ H(h2m+β(T), hβ(T)). Now we construct the spaces E2, Eη

and E1+η as in Theorem 2.5.1, and we apply Proposition 2.1.2(b) when possible. Namely, we set

E2 :=
{
f ∈ hβ(T) : Af ∈ h2m+β(T)

}
,

equipped with the graph norm ‖ · ‖2 := ‖A · ‖h2m+β + ‖ · ‖h2m+β ,

Eη := (hβ(T), h2m+β(T))η = hα(T) and E1+η := (h2m+β(T), E2)η;

notice that, a priori, we cannot conclude E1+η coincides with a little-Hölder space without a proper

characterization of E2. However, by uniform ellipticity of A, with coefficients bk in hα(T), we

know that A ∈ H(h2m+α(T), hα(T)), by Theorem 2.4.4 again. Meanwhile, by the remark following

Theorem 2.5.1, we see that A ∈ H(E1+η, h
α(T)). Hence, we can find ω > 0 sufficiently large so

that

(ω +A) ∈ Lisom(h2m+α(T), hα(T)) ∩ Lisom(E1+η, h
α(T)).

However, it follows that (ω + A)−1 ◦ (ω + A) : h2m+α(T) → E1+η is an isometric isomorphism,

by commutativity. So, h2m+α(T) and E1+η coincide (up to equivalent norms) and it follows that(
E0(J),E1(J)

)
is a pair of (continuous) maximal regularity for A, by Theorem 2.5.1.
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2.6 Vector-Valued Setting

For the remainder of this chapter, let E = (E, | · |) denote an arbitrary (non-trivial) Banach space

over C. Again, consider the inhomogeneous problem (2.1) with periodicity enforced. However,

suppose that one is given vector-valued functions, u0, f(t, ·) : T → E, and operator-valued coeffi-

cients, bk : T→ L(E). It turns out that, with only minor modifications and appropriate alterations

to definitions, the preceding results continue to hold in this more general setting. In this section,

we highlight the necessary changes to the preceding theory and state results in this vector-valued

setting.

2.6.1 Vector-Valued Function Spaces

Following common conventions, we denote by C(T, E), Cθ(T, E), and hθ(T, E), the classes of regular

E-valued functions analogous to the scalar-valued cases defined in Section 2.1.1, the definitions of

which remain essentially unchanged. Moreover, one will note that Proposition 2.1.2 is a simplified

version of [51, Proposition 0.2.1 and Theorem 1.2.17], which were already stated in the vector-

valued setting, so there is no trouble in getting these same results for E-valued functions. In order

to give an adequate definition of E-valued Besov spaces, however, one will need the concept of

vector-valued distributions.

Taking D(T) to be the smooth C-valued functions over T, as before, we define the space of

E-valued distributions D′(T, E) := L(D(T), E) and we equip D′(T, E) with the weak-star topology

over D(T). One can see that the same definitions of Fourier coefficients and results on Fourier series

representations continue to hold, c.f. [12]. In particular, for every f ∈ D′(T, E), it holds that

f =
∑
k∈Z

ek ⊗ f̂(k) (convergence in D′(T, E)),

where ek ∈ D(T) has the same definition as before and ek ⊗ y denotes the function [x 7→ eikxy] :

T→ E for y ∈ E given. Then, we define the E-valued periodic Besov spaces Bs
p,q(T, E) as before,

by making use of collections of dyadic decompositions Φ(R), and we derive analogous results to

those discussed in the scalar setting.
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2.6.2 Operator-Valued Fourier Multipliers

Now, with vector-valued Besov spaces established, we consider Fourier multiplier results in this

setting. As discussed in [12], the Fourier type of the underlying Banach space E will affect the

statement of the Fourier multiplier result. To be clear regarding Fourier multipliers in this setting,

we are given a sequence (Mk)k ⊂ L(E) and consider the associated (formal) operator

T :
∑
k∈Z

ek ⊗ f̂(k) 7−→
∑
k∈Z

ek ⊗Mkf̂(k).

The following multiplier theorem will work for the general case where E is a Banach space with

arbitrary Fourier type. We note that the analogue to Lemma 2.2.2 does not hold in this general

case.

Theorem 2.6.1. Let r, s ∈ R+ and 1 ≤ p, q ≤ ∞. Suppose that (Mk)k∈Z ⊂ L(E) is a sequence

such that

s1 := sup
k∈Z\{0}

|k|r−s‖Mk‖ <∞, s2 := sup
k∈Z\{0}

|k|r−s+1‖Mk+1 −Mk‖ <∞,

s3 := sup
k∈Z\{0}

|k|r−s+2‖Mk+1 − 2Mk +Mk−1‖ <∞.
(2.30)

Then the Fourier multiplier with symbol (Mk)k∈Z is a continuous mapping from Bs
p,q(T, E) to

Br
p,q(T, E), namely

T :

[∑
k∈Z

ek ⊗ f̂(k) 7−→
∑
k∈Z

ek ⊗Mkf̂(k)

]
∈ L

(
Bs
p,q(T, E), Br

p,q(T, E)
)
.

A proof of Theorem 2.6.1 follows from [55, Theorem 2.2.1], by restating the proof in the E-

valued setting. On the other hand, if we find that the Fourier type of E is in the interval (1, 2], then

Lemma 2.2.2 is known to hold and we have the analogous statement to Theorem 2.2.1, without the

necessity of checking the term s3. Note that this sharper case includes the situation E a Hilbert

space, where the Fourier type is exactly 2.
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2.6.3 Ellipticity With Operator-Valued Coefficients

Now, fix a collection {bk : k = 0, . . . , 2m} ⊂ hα(T,L(E)) of operator-valued coefficient functions

and consider the differential operator A, acting on h2m+α(T, E), defined by

Au(x) := A(x,D)u(x) :=

2m∑
k=0

bk(x) (Dku)(x) =

2m∑
k=0

ik bk(x)u(k)(x), x ∈ T.

By the embedding property Proposition 2.1.2(a) and the regularity assumptions on bk and u, it

follows immediately that A maps h2m+α(T) into hα(T). Now, denote by σA : T × R → L(E)

the principal symbol of A, defined by σA(x, ξ) := ξ2mb2m(x). We say that A is a normally elliptic

operator on T if there exist constants c1 ≥ 1 and θ ∈ (π/2, π) so that the properties

ρ(−σA(x, ξ)) ⊃ Σθ := {z ∈ C : | arg z| ≤ θ} ∪ {0}

(1 + |λ|)‖(λ+ σA(x, ξ))−1‖ ≤ c1, λ ∈ Σθ,

(2.31)

hold for all x ∈ T and |ξ| = 1. This definition coincides with the definition of normally elliptic

operators presented in [4, Section 3] and one will note that this definition generalizes the notion

of uniform ellipticity, as in (2.10). Moreover, as mentioned by Amann in [4], in the case that E

is finite-dimensional, this definition of normal ellipticity is equivalent to the condition that there

exist 0 < r < R such that

σ(σA(x, ξ)) ⊂ {z ∈ C : Re z ≥ r} ∩ {z ∈ C : |z| ≤ R}, for x ∈ T, |ξ| = 1.

Theorem 2.6.2. Let E be a Banach space, m ∈ N, α ∈ R+ \ Z and consider the differential

operator Ab := bD2m with constant coefficient b ∈ L(E). If Ab is normally elliptic, with constant

c1 > 0, and c2 ≥ c1 > 0 is chosen so that ‖b‖ ≤ c2, then −Ab generates a (strongly continuous)

analytic semigroup on hα(T, E) with domain h2m+α(T, E). Moreover, for any ω > 0, there exists

κ = κ(ω, c1, c2,m) such that

Ab ∈ H
(
h2m+α, hα, κ(ω, c1, c2,m), ω

)
.

Proof. The proof of this result follows the same method used to prove Theorem 2.3.2, however, in
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this vector-valued setting, we must derive bounds for the term s3 before applying our Fourier mul-

tiplier result, Theorem 2.6.1 in this case. Fix α ∈ R+ \Z, ω > 0 and b ∈ L(E) as indicated. Notice

that−Ab is now associated with the operator-valued multiplier symbol (Mk)k :=
(
−k2mb

)
k
⊂ L(E).

Now, we can make formally identical claims to those stated in the scalar-valued setting.

Claim 1: (λ + Ab) ∈ Lisom(h2m+α(T, E), hα(T, E)) for Reλ ≥ ω, i.e. ρ(−Ab) ⊃ {λ ∈ C :

Reλ ≥ ω}. Moreover, the set {‖(λ +Ab)−1‖L(hα,h2m+α) : Reλ ≥ ω} is uniformly bounded by some

M1 = M1(ω, c1, c2,m) <∞.

Let λ be fixed with Reλ ≥ ω. The fact that Ab ∈ L(C2m+σ(T), Cσ(T)) follows in the same

way as the scalar case with ‖λ + Ab‖ ≤ (c(σ)|λ| + c2). Consider the symbol
(
M̃k(λ)

)
k

:=
(

(λ +

k2mb)−1
)
k
, where the condition of normal ellipticity guarantees that Reλ ≥ 0 is sufficient to see

that λ ∈ ρ(σAb(x, ξ)). Moreover, in the constant coefficient case, it follows that σAb(x, ξ) ≡ b for

|ξ| = 1. Now, the second condition of normal ellipticity, (2.31), gives adequate flexibility to see

that λ/k2m ∈ ρ(b) and we conclude that M̃k(λ) ∈ L(E) is well-defined, for k ∈ Z. Further, notice

that

M̃k(λ) :=
(
λ+ k2mb

)−1
= k−2m

(
λ

k2m
+ b

)−1

k 6= 0,

which we make use of for verifying the conditions of the Fourier multiplier theorem.

Using the resolvent bounds given in the normal ellipticity definition, we see that, concerning

the symbol
(
M̃k(λ)

)
k
, we have

s1 ≤ c1 <∞, s2 ≤
(c1c2

ω
∨ c2

)
sup

k∈Z\{−1}

(
|k||(k + 1)2m − k2m|

|k + 1|2m

)
<∞.
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Meanwhile, notice that, for k 6= ±1,

|k|2m+2
∥∥(λ+ (k + 1)2mb)−1 − 2(λ+ k2mb)−1 + (λ+ (k − 1)−1b)−1

∥∥
≤

∥∥∥∥∥
(

λ

(k + 1)2m
+ b

)−1
∥∥∥∥∥
∥∥∥∥∥
(

λ

k2m
+ b

)−1
∥∥∥∥∥
∥∥∥∥∥
(

λ

(k − 1)2m
+ b

)−1
∥∥∥∥∥(

|k|2

|k + 1|2m|k − 1|2m

)[∥∥−λ ((k + 1)2m − 2k2m + (k − 1)2m
)
b
∥∥

+
∥∥((k + 1)2m(k2m − (k − 1)2m) + (k − 1)2m((k + 1)2m − k2m)

)
b2
∥∥ ]

≤ c3
1c2

(1 + |λ|)3

(
|λ|+ c2

)
K1(k) ≤ c3

1c2(1 + c2)K1(k),

where K1 is a bounded function in k. Similarly, in case k = ±1, we see that

∥∥(λ)−1 − 2(λ+ b)−1 + (λ+ 22mb)−1
∥∥ ≤ 22mc2

1c2(1 + c2).

Hence, it follows that s3 < ∞, and bounded by terms which only depend upon ω,m, c1, and c2.

Hence, we can apply Theorem 2.6.1 to prove the claim. We again see that the operator R(λ)

associated with the symbol
(
M̃k(λ)

)
k

coincides with the inverse of (λ+Ab).

Claim 2: λ(λ + Ab)−1 ∈ L(hα(T, E)) for Reλ ≥ ω, and there is an upper bound M2 =

M2(ω, c1, c2,m) <∞ for the set
{
|λ|‖(λ+Ab)−1‖L(hα) : Reλ ≥ ω

}
.

This claim is verified by applying the same techniques as above to the symbol
(
λ(λ+ k2mb)−1

)
k
.

Working through the details, one verifies that the si terms, i = 1, 2, 3, are bounded exactly the

same as in Claim 1 above. Hence, the desired result holds, and the proof of the theorem proceeds

exactly as in the scalar-valued setting.

2.6.4 Semigroup Generation and Maximal Regularity

We conclude this chapter with statements of the main results in the setting of vector-valued func-

tions. Their proofs are obtained by direct application of the methods employed in the scalar-valued

setting, with only minor changes of notation and definitions, which have already been addressed in

the preceding parts of this section.
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Theorem 2.6.3. Let E be a Banach space, m ∈ N, α ∈ R+\Z, bk ∈ hα(T,L(E)), for k = 0, . . . , 2m,

and suppose the operator A := A(·, D) :=
∑2m

k=0 bk(·)Dk is normally elliptic. Then

A ∈ H(h2m+α(T, E), hα(T, E)).

Fix µ ∈ (0, 1] and define the spaces

E0(J) := BUC1−µ(J, hα(T, E)), α ∈ R+ \ Z

E1(J) := BUC1
1−µ(J, hα(T, E)) ∩BUC1−µ(J, h2m+α(T, E)).

Then we get the maximal regularity result.

Theorem 2.6.4. Fix a Banach space E, α ∈ R+ \ Z, m ∈ N, µ ∈ (0, 1] and J = [0, T ], for T > 0

arbitrary. Suppose the operator A := A(·, D) =
∑

k≤2m bk(·)Dk, with coefficients bk ∈ hα(T,L(E))

is normally elliptic, as in (2.31). Then

(
d

dt
+A, γ

)
∈ Lisom(E1(J),E0(J)× γE1).

In particular, given any pair (f, u0) ∈ BUC1−µ(J, hα(T, E)) × γE1, there exists a unique solution

u ∈ BUC1
1−µ(J, hα(T, E)) ∩ BUC1−µ(J, h2m+α(T, E)) to the inhomogeneous Cauchy problem (2.1)

on J .

46



CHAPTER 3

WELL POSEDNESS AND GEOMETRIC PROPERTIES OF SOLUTIONS

3.1 Well-Posedness of ASD

Recall the expression for the axisymmetric surface diffusion problem



rt =
1

r
∂x

[
r√

1 + r2
x

∂x

(
1

r
√

1 + r2
x

− rxx

(1 + r2
x)

3
2

)]
, t > 0, x ∈ R,

r(t, x+ 2π) = r(t, x), t ≥ 0, x ∈ R,

r(0, x) = r0(x), x ∈ R.

(3.1)

To simplify notation, we define the operator

G(r) :=
1

r
∂x

[
r√

1 + r2
x

∂xH(r)

]
, (3.2)

which is formally equivalent to the right hand side of the governing equation for (3.1).

In this chapter, we will establish well-posedness and dynamic properties of solutions to (3.1)

in the setting of periodic little–Hölder spaces. Shifting slightly from the setting considered in the

previous chapter, we will only be considering R–valued functions over T which satisfy the regularity

conditions defined in Section 2.1.1. Although this setting differs slightly, we will demonstrate that

only minor difficulties arise in applying the results of Chapter 2 to the setting considered here.

In order to make explicit the quasilinear structure of (3.1), we reformulate the problem. By

expanding the governing equation we arrive at the formally equivalent problem


∂tr(t, x) +A(r(t, x))r(t, x) = f(r(t, x)), t > 0, x ∈ T,

r(0, x) = r0(x), x ∈ T,
(3.3)

where, for appropriately chosen functions ρ,

A(ρ) :=
1

(1 + ρ2
x)2

∂4
x +

2ρx
(
1 + ρ2

x − 3ρρxx
)

ρ
(
1 + ρ2

x

)3 ∂3
x (3.4)
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is a fourth-order differential operator with variable coefficients over T and

f(ρ) :=
ρ2
x − 1

ρ2(1 + ρ2
x)2

ρxx +
6ρ2

x − 1

ρ(1 + ρ2
x)3

ρ2
xx +

3− 15ρ2
x

(1 + ρ2
x)4

ρ3
xx +

ρ2
x

ρ3(1 + ρ2
x)

(3.5)

is a R-valued function over T. Here we use the notation A(r(t, x)) to denote the evaluation of the

function A(r(t)) at the value x ∈ T. Looking at these formal expressions, one can deduce several

properties that the functions ρ must satisfy in order to get good mapping properties for f and

A. In particular, we want to choose ρ such that ρ(x) 6= 0 for all x ∈ T, also we want that the

spacial derivatives ρx and ρxx make sense and the products ρ2, ρ3, ρρ2
x, etc. have desired regularity

properties. With these conditions in mind, we proceed with our well-posedness result.

3.1.1 Existence and Uniqueness of Solutions

Fix α ∈ (0, 1) and define the spaces of R-valued little–Hölder continuous functions

E0 := hα(T,R), E1 := h4+α(T,R), and Eµ := (E0, E1)0
µ,∞, µ ∈ (0, 1), (3.6)

where (·, ·)0
µ,∞ denotes the continuous interpolation functor of Da Prato and Grisvard, c.f. [22] or [2].

Recall from Theorem 2.1.2 that the little-Hölder spaces are stable under this interpolation method,

in particular we know that Eµ = h4µ+α(T,R) whenever 4µ+α /∈ Z (up to equivalent norms). Also

recall from Section 2.5 that MRµ(E1, E0) denotes the space of all operators B ∈ L(E1, E0) such

that (
BUC1−µ(J,E0), BUC1

1−µ(J,E0) ∩BUC1−µ(J,E1)
)

is a pair of maximal regularity for B, for some interval J := [0, T ]. Further, let V be the set of

functions r : T → R such that r(x) > 0 for all x ∈ T and define Vµ := V ∩ Eµ for µ ∈ [0, 1]. We

note that Vµ is an open subset of Eµ for all µ ∈ [0, 1].

Lemma 3.1.1. Let µ ∈ [1/2, 1] such that 4µ+ α /∈ Z. Then

(A, f) ∈ Cω
(
Vµ, MRν(E1, E0)× E0

)
, for ν ∈ (0, 1],

where Cω denotes the space of real analytic mappings between Banach spaces, as discussed in
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Section 1.3.

Proof. Fix µ ∈ [1/2, 1] as indicated. This result relies on the fact that the little-Hölder spaces

hσ(T) are Banach algebras with pointwise multiplication of functions.

CLAIM 1: A(ρ) ∈ MRν(E1, E0) for ρ ∈ Vµ , ν ∈ (0, 1]. This claim will follow from Theo-

rem 2.5.2, though the current setting differs slightly from the statement of the theorem and warrants

some discussion. First, for ρ ∈ Vµ define the coefficients

b4(ρ) :=
1

(1 + ρ2
x)2

and b3(ρ) :=
2ρx
(
1 + ρ2

x − 3ρρxx
)

ρ
(
1 + ρ2

x

)3 ,

so that A(ρ) = b4(ρ) ∂4
x + b3(ρ) ∂3

x. By our choice of µ, it follows that Vµ ⊂ h2+α(T,R), so that

b4, b3 ∈ E0 and A(ρ) is a uniformly elliptic differential operator. By Theorem 2.5.2 we conclude

that

A(ρ) ∈MRν
(
h4+α(T,C), hα(T,C)

)
, ν ∈ (0, 1],

where we utilize the notation hk+α(T,C) to be clear that the space consists of C–valued functions

over T, and does not coincide with the spaces Eµ defined in this chapter. However, hk+α(T,C) does

coincide with the complexification of hk+α(T,R) (up to equivalent norms) and it is a straightforward

exercise to see that the property of maximal regularity continues to hold under restriction to the

subspaces hσ(T,R).

CLAIM 2: The operation of inversion is real analytic from V0 into E0, i.e.

Ti : [r 7→ 1/r] ∈ Cω(V0, E0).

Fix r0 ∈ V0 and choose a > 0 so that r0(x) > a for all x ∈ T. If r ∈ E0 is chosen so that

‖r − r0‖C(T) < a, then the representation

1

r(x)
=

1

r0(x)
(

1 + r(x)−r0(x)
r0(x)

) =
1

r0(x)

∞∑
n=0

(
r0(x)− r(x)

r0(x)

)n
,

holds for x ∈ T arbitrary, where the last equality follows by an elementary geometric series argu-

ment. Hence, the given power series represents the function 1/r point-wise for x ∈ T. Moreover, it
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follows from the algebraic structure of E0 that

Sk :=
k∑

n=0

(r0 − r)n

rn+1
0

∈ E0, for k ∈ N.

Finally, if ‖r0 − r‖E0 ≤ a/2, then

∞∑
n=0

∥∥∥∥(r0 − r)n

rn+1
0

∥∥∥∥
E0

≤
∞∑
n=0

‖r0 − r‖nE0

‖r0‖n+1
E0

≤
∞∑
n=0

(a/2)n

an+1
= 2/a,

which demonstrates the power series converges absolutely in the topology of E0 and the claim

follows.

CLAIM 3: The operations of differentiation and multiplication are real analytic in the setting

of little-Hölder spaces, i.e.

∂x : [r 7→ rx] ∈ Cω(hσ+1(T), hσ(T)), σ ∈ R+ \ Z,

Tm : [(r, s) 7→ rs] ∈ Cω(E0 × E0, E0).

This claim follows since ∂x and Tm are bounded, linear and bilinear (respectively) on the indicated

spaces.

The remainder of the lemma follows from the fact that A : Vµ → L(E1, E0) inherits the

regularity of the coefficients b1, b2 : Vµ → E0 and the fact that MRµ(E1, E0) is an open subset of

L(E0, E1), c.f. [17, Lemma 2.5(a)].

It follows from Lemma 3.1.1 that we can take full advantage of the well-posedness results for

quasilinear parabolic equations presented in the article [17] of Clément and Simonett. In particular,

we conclude results regarding local existence and uniqueness of solutions with continuous depen-

dence on initial data, as well as maximal solutions and conditions for global existence. However,

we give only a limited presentation, focusing on those results which will be of most direct use to

us in the sequel, and we refer the interested reader to [17] for further details on well-posedness of

(3.3).

Before we can properly state a result on maximal solutions, we need to introduce one more

space of functions from an interval J ⊂ R+ to a Banach space E, with prescribed singularity at
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zero. Namely, if J = [0, a) for a > 0, i.e. J is a right-open interval containing 0, then we set

C1−µ(J,E) := {u ∈ C(J̇ , E) : u ∈ BUC1−µ([0, T ], E), T < sup J},

C1
1−µ(J,E) := {u ∈ C1(J̇ , E) : u, u̇ ∈ C1−µ(J,E)}, µ ∈ (0, 1]

and equip these spaces with the natural Fréchet topologies induced by BUC1−µ([0, T ], E) and

BUC1
1−µ([0, T ], E), respectively.

Theorem 3.1.1 (Existence and Uniqueness). Fix α ∈ (0, 1) and take µ ∈ [1/2, 1] so that 4µ+α /∈ Z.

For each initial value r0 ∈ Vµ, there exists a unique maximal solution

r(·, r0) ∈ C1
1−µ(J(r0), E0) ∩ C1−µ(J(r0), E1),

where J(r0) = [0, t+(r0)) ⊆ R+ denotes the maximal interval of existence for initial data r0.

Further, it follows that

D :=
⋃

r0∈Vµ

J(r0)× {r0}

is open in R+×Vµ and ϕ : [(t, r0) 7→ r(t, r0)] is an analytic semiflow on Vµ, i.e. using the notation

ϕt(r0) := ϕ(t, r0), the mapping ϕ satisfies the conditions

• ϕ ∈ C
(
D, Vµ

)
• ϕ0 = idVµ

• ϕs+t(r0) = ϕt ◦ ϕs(r0) for 0 ≤ s < t+(r0) and 0 ≤ t < t+(ϕs(r0))

• ϕ(t, ·) ∈ Cω(Dt, Vµ) for t ∈ R+ with Dt := {r ∈ Vµ : (t, r) ∈ D} 6= ∅.

(3.7)

Proof. In case µ ∈ [1/2, 1), the result follows from Lemma 3.1.1 and [17, Theorems 4.1, 5.1 and

6.1]. When µ = 1 we note that the existence and uniqueness of a maximal solution

r(·, r0) ∈ C1(J(r0), E0) ∩ C(J(r0), E1)

follows from [17, Theorem 4.1(b)]. However, for the semiflow properties, we will consider (3.1) as

a fully nonlinear equation, and apply results of Angenent [8]. In particular, for r ∈ V1 we use the
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representation G(r) = −A(r)r+f(r) and (3.4)–(3.5) to see that the Fréchet derivative DG has the

structure

DG(r) = − 1

(1 + r2
x)2

∂4
x +

3∑
k=0

Bk(r) ∂
k
x ,

where the coefficients Bk(r) ∈ E0 for every r ∈ V1, k = 0, . . . , 3. From this computation it follows

that DG(r) is a uniformly elliptic operator from E1 to E0 and so, using the results of [50] as in

Claim 1 of Lemma 3.1.1 above, we see that DG(r) ∈ MR1(E1, E0) for all r ∈ V1. Now the fact

that (3.1) generates an analytic semiflow on V1 follows from [8, Corollary 2.9].

The results contained in [17] also give the following conditions for global solutions. We have

separated this result from the previous existence result because breakdown of solutions to (3.3),

in particular an analytic investigation of pinch-off behavior of certain solutions, is an open and

interesting topic.

Theorem 3.1.2 (Global Solutions). Let r0 ∈ Vµ for µ ∈ (1/2, 1] and suppose there exist ε > 0 and

0 < M <∞ so that, for all t ∈ J(r0)

• r(t, r0)(x) ≥ ε, ∀x ∈ T, and

• ‖r(t, r0)‖Eµ ≤M,

then it must hold that t+(r0) = ∞, so that r(·, r0) is a global solution. Conversely, if r0 ∈ Vµ and

t+(r0) <∞, i.e. the solution breaks down in finite–time, then one, or both, of the conditions stated

must fail to hold.

We can also state the following result regarding analyticity of the maximal solutions r(·, r0) in

both space and time.

Theorem 3.1.3 (Regularity of Solutions). Under the same assumptions as in Theorem 3.1.1, it

follows that

r(·, r0) ∈ Cω((0, t+(r0))× T) for all r0 ∈ Vµ, µ ∈ [1/2, 1]. (3.8)

Proof. Here we rely on an idea that goes back to Masuda [54] and Angenent [8, 9] to introduce

parameters and use the implicit function theorem to obtain regularity results for solutions, see also

[38, 39, 37].
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First, for a ∈ R let Ta : T → T be the translation operator, where Ta(x) denotes the unique

element in T that is in the coset [x + a] ∈ R/2πZ of (x + a). Ta naturally acts on functions

u ∈ C(T,R) by virtue of (Tau)(x) := u(Ta(x)). As in [38] one shows that, for a ∈ R, the family of

translations {Tta : t ∈ R} induces a strongly continuous group of contractions on any of the spaces

Eµ, with infinitesimal generator Aa given by

D(Aa) = h1+4µ+α(T,R), Aa = a∂x.

Let r0 ∈ Vµ be fixed, and let

r = r(·, r0) ∈ C1
1−µ(J(r0), E0) ∩ C1−µ(J(r0), E1)

be the unique solution to (3.3) on the maximal interval of existence J(r0) = [0, t+(r0)). Let

t1 ∈ (0, t+(r0)) be fixed and set I := [0, t1]. Then there exists δ > 0 such that (1 + λ)t ∈ J(r0) for

all (t, λ) ∈ I × (−δ, δ). Finally, for (λ, a) ∈W := (−δ, δ)2 we set

rλ,a(t) := Ttar((1 + λ)t), t ∈ I;

i.e. rλ,a(t, x) = r((1 + λ)t, x+ ta) for (t, x) ∈ I × T. One verifies that

rλ,a ∈ E1(I) := BUC1
1−µ(I, E0) ∩BUC1−µ(I, E1).

Moreover, since the nonlinear mapping [r 7→ G(r)] is equivariant with respect to translations, i.e.

TbG(r) = G(Tb r) for any b ∈ R, we obtain that rλ,a is a solution of the parameter-dependent

equation 
∂tv = (1 + λ)G(v) + a∂xv, t > 0

v(0) = r0,

(3.9)

on the time interval I.

Now, for U(I) := E1(I) ∩ C(I, V ) we define

Φ : U(I)×W → E0(I)× Eµ, Φ(v, (λ, a)) =
(
∂tv − (1 + λ)G(v)− a∂xv, γv − r0

)
,
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where E0(I) := BUC1−µ(I, E0), and we note that Φ(rλ,a, (λ, a)) = (0, 0). Moreover,

Φ ∈ Cω
(
U(I)×W,E0(I)× Eµ

)
, D1Φ(r, (0, 0)) =

(
d

dt
−DG(r), γ

)
,

where we use the same notation for r = r(·, r0) and its restriction to the time interval I. Exactly

as in the proof of [17, Theorem 6.1] one shows that

D1Φ(r, (0, 0)) ∈ Lisom(E1(I),E0(I)× Eµ).

Finally, according to the implicit function theorem, c.f. [25, Theorem 15.3] or [27, (10.2.1)], there

exist a neighborhood of r in E1(I) and a neighborhood of (0, 0) in R2, which we will again denote

by U(I) and W , respectively, and a mapping g ∈ Cω(W,E1(I)) such that

Φ(v, (λ, a)) = (0, 0) if and only if v = g(λ, a)

whenever (v, (λ, a)) ∈ U(I)×W . We conclude that g(λ, a) = rλ,a and

[(λ, a) 7→ rλ,a] ∈ Cω(W,U(I)). (3.10)

For t0 ∈ (0, t1) and x0 ∈ T fixed, we see that

[(λ, a) 7→ r((1 + λ)t0, x0 + t0a)] ∈ Cω(W,R), (3.11)

and the assertion follows since (t0, x0) can be chosen arbitrarily.

3.2 Characterizing The Equilibria of ASD

With well-posedness of (3.1) established, we move on to investigate geometric properties of solu-

tions. We begin our analysis of the long-time behavior of solutions by characterizing and describing

the equilibria of (3.1). For this characterization, we make use of a well-known, strict Lyapunov

functional for the surface diffusion flow, namely the surface area functional, and a characterization

of surfaces of revolution with prescribed mean curvature, as presented by Kenmotsu [47].

54



Recalling the operator G, as expressed by (3.2) and taking it to be defined on V1 ⊂ h4+α(T),

one will see that the set of equilibria of (3.1) coincides with the null set of G. Although, from

the well-posedness results of the previous section, we know that we can consider (3.1) with initial

conditions in h2+α(T), upon which the operator G is not defined, one immediately sees that all

equilibria must be in h4+α(T) (in fact, by Theorem 3.1.3, we can even conclude that equilibria are

in C∞(T)). More specifically, if we define equilibria to be those elements r̄ ∈ V1/2 = V ∩ h2+α(T),

such that the maximal solution r(·, r̄) satisfies

r(t, r̄) = r̄, t > 0,

then it follows immediately that r̄ ∈ h4+α(T) and G(r̄) = 0. Now, we proceed by characterizing

the elements of the null set of G.

Consider the functional

S(r) :=

∫
T
r(x)

√
1 + r2

x(x)dx,

which corresponds to the surface area of the generated surface Γ(r) and is a strict Lyapunov

functional for (3.14). Indeed, if r = r(·, r0) is a solution to (3.1) on the interval J(r0), then

(suppressing the variable of integration)

∂tS(r(t)) =

∫
T

[√
1 + r2

x(t) +
r(t)rx(t)√
1 + r2

x(t)
∂x

]
G(r(t)) dx

=

∫
T
∂x

(
r(t)√

1 + r2
x(t)

∂xH(r(t))

)
H(r(t)) dx

= −
∫
T

r(t)√
1 + r2

x(t)
(∂xH(r(t)))2 dx, t ∈ J(r0) \ {0},

where we use integration by parts twice and eliminate boundary terms because of periodicity. Notice

that the expression is non-positive for all times t ∈ J(r0) \ {0}. Moreover, if r̄ is an equilibrium

of (3.1) it follows that ∂xH(r̄) is identically zero on T. Meanwhile, notice by the definition of

the operator G that G(r̄) = 0 whenever ∂xH(r̄) = 0. Hence, we conclude that S(r) is a strict

Lyapunov functional for (3.1), as claimed, and we also see that the equilibria of (3.1) are exactly

those functions r̄ ∈ h4+α(T) for which the mean curvature function H(r̄) is constant on T.

The axisymmetric surfaces with constant mean curvature have been characterized explicitly by
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Kenmotsu in [47]. In particular, we see that all equilibria of (3.1) are so-called undulary curves,

and the unduloid surfaces, which are generated by the undulary curves by revolution about the

axis of symmetry, are stationary solutions of the original surface diffusion problem (1.1).

Theorem 3.2.1 (Delaunay [26] and Kenmotsu [47]). Any complete surface of revolution with

constant mean curvature H is either a sphere, a catenoid, or a surface whose profile curve is given

by the parametric expression, parametrized by the arc-length parameter s ∈ R,

R(s;H, B) :=

(∫ s

0

1 +B sin(Ht)√
1 +B2 + 2B sin(Ht)

dt ,

√
1 +B2 + 2B sin(Hs)

|H|

)
. (3.12)

Remarks 3.2.1. We can immediately draw several conclusions from Theorem 3.2.1 and characterize

the equilibria of (3.1). We use the notation R(H, B) to denote the graph in R2 of the parametric

expression R(· ;H, B).

a) Although the curves R(H, B) are well-defined for arbitrary values B ∈ R and H 6= 0, it is not

difficult to see that, without loss of generality, we may restrict our attention to values H > 0

and B ≥ 0, c.f. [47, Section 2]

b) When B = 1, R(H, 1) is a family of spheres controlled by the parameter H. The spheres are

a well-known family of stable equilibria for the surface diffusion flow, c.f. [36], however they

are outside of our current setting because they fail to be continuously differentiable functions

on all of T. Moreover, we should note that the spheres represented by R(H, 1) are in fact

a connected family of spheres, or a chain of pearls, for which even general techniques for

(1.1) break down, as the mean curvature is not well-defined at the points of intersection, c.f.

Figure 3.11. These families of connected spheres may be interesting objects to investigate in

a weaker formulation of ASD, but they fall outside of the current setting.

c) Catenoids, or more precisely the generating catenary curves (which are essentially just the

hyperbolic cosine, up to scaling), do not fall into the current setting because they fail to

satisfy the periodic boundary conditions, c.f. Figure 3.1.

1All of the figures contained herein were generated with the program GNU Octave, version 3.4.3, copyright 2011
John W. Eaton, and GNUPLOT, version 4.4 patchlevel 3, copyright 2010 Thomas Williams, Colin Kelley
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d) In case B > 1, the curve R(H, B) is called a nodary, which cannot be realized as the graph

of a function over the x-axis and hence falls outside the current setting, c.f. Figure 3.22.

e) For values 0 ≤ B < 1, R(H, B) is a family of undulary curves, which generate the unduloid

surfaces. The undulary curves are representable as graphs of functions over the x-axis, which

are strictly positive for B in the given range, c.f. Figure 3.3. In fact, the case B = 0

corresponds to the cylinder of radius 1/H. Hence, by Theorem 3.2.1 above, we conclude that

all equilibria of (3.1) fall into the family of undulary curves.

f) Notice that the curve R(H, B) is always periodic in both the parameter s and the spacial

variable x. In order to ensure that the curve satisfies the 2π-periodic boundary conditions

enforced in (3.1) (which we emphasize is a condition regarding periodicity over the variable

x and not the arc-length parameter s), we must impose further conditions on the parameters

H > 0 and B > 0; here we avoid B = 0 because the curve R(H, 0) already satisfies periodic

boundary conditions. One will see that if H and B satisfy the relationship

2πH
k

=

∫ 2π

0

1 +B sin t√
1 +B2 + 2B sin t

dt , (3.13)

then the curve R(H, B) is 2π/k periodic in the x variable, for k ∈ N.

0

0.5

1

1.5

2

2.5

3

3.5

4

-Pi -Pi/2 0 Pi/2 Pi

0

2

4

6

8

10

12

-Pi -Pi/2 0 Pi/2 Pi

Figure 3.1: Profile curves for a family of spheres and a catenoid, respectively.

2The profile functions displayed are actually shifted versions of the curves generated by R(H, B), where the curve
has been shifted along the x–axis to achieve an even representation of the profile curve, c.f. Proposition 3.5.1 below.
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Figure 3.2: Shifted π periodic nodary curves with B = 1.03 and B = 1.1, respectively.
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Figure 3.3: Shifted families of 2π and π periodic undulary curves with selected parameter values
from B = 0 to B = 0.99, as indicated.

3.3 Stability Of Cylinders With Large Radius

As seen above, the constant function r(x) ≡ r?, for r? > 0, is an equilibrium of (3.3). Moreover, the

constant function r(x) ≡ r? is associated to the cylinder Γ(r?) with radius r?, which is a stationary

solution of the original surface diffusion problem (1.1). In this section, we establish tools for and

carry out the investigation of nonlinear stability for these equilibria.

3.3.1 Preliminary Analysis and Definitions

Throughout this analysis, we consider an arbitrary r? > 0 and σ ∈ R+ \Z, unless otherwise stated.

Focusing on the properties of solutions near r?, we shift our equations, including the shifted operator

G?(ρ) := G(ρ+ r?) =
1

ρ+ r?
∂x

[
ρ+ r?√
1 + ρ2

x

∂xH(ρ+ r?)

]
,

which maps ρ ∈ E1 ∩ U? to E0, where we consider ρ = r − r?, and is in the regularity class Cω by

Lemma 3.1.1; here we take U? := V − r? := {ρ− r? : ρ ∈ V }. Now we consider the surface diffusion
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problem shifted by r?, 
ρt(t, x) = G?(ρ(t, x)), x ∈ T, t > 0,

ρ(0, x) = ρ0(x), x ∈ T,
(3.14)

where ρ0 := r0 − r?. We say that

ρ = ρ(·, ρ0) ∈ C1(J̇ , E0) ∩ C(J̇ , E1) ∩ C(J,Eµ ∩ U?)

is a solution to (3.14), with initial data ρ0 ∈ Eµ ∩ U?, on the interval J ⊂ R+ if ρ satisfies (3.14)

pointwise, for t > 0, and ρ(0) = ρ0. We will investigate the mapping properties of G? around 0 in

order to gain information about the stability of r? in (3.1).

Define the functional

F?(ρ) = F?(ρ; r?) :=

∫
T

(
ρ(x) + r?

)2
dx,

which corresponds to the volume enclosed by the surface Γ(ρ + r?). Considering the regularity of

F?, it follows from the analyticity of multiplication and integration on little-Hölder spaces that F?

is of class Cω from hσ(T) to R, σ ∈ R+ \ Z. The Fréchet derivative of F? is

DF?(ρ) :

[
h 7−→ 2

∫
T

(
ρ(x) + r?

)
h(x)dx

]
∈ L (hσ(T),R) , ρ ∈ hσ(T,R). (3.15)

Moreover, it holds that F?(ρ) is conserved along solutions to (3.14). Indeed, if ρ = ρ(·, ρ0) is a

solution to (3.14), then

∂tF?(ρ(t)) = 2

∫
T

(
ρ(t, x) + r?

)
ρt(t, x)dx = 2

∫
T
∂x

[ (
ρ(t, x) + r?

)√
1 + ρ2

x(t, x)
∂xH(ρ(t, x) + r?)

]
dx = 0,

for t ∈ J(ρ0) \ {0}, where the last equality holds by periodicity. Thus, conservation of F? along the

solution ρ follows by continuity of F? and convergence of ρ to the initial data ρ0 in Eµ. From these

properties, it follows that

Mσ
η :=

{
ρ ∈ hσ(T) : F?(ρ) = F?(η)

}
, η ∈ R, σ ∈ R+ \ Z (3.16)

is a family of invariant level sets for (3.14).
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Now we introduce the mapping

P0ρ := ρ− 1

2π

∫
T
ρ(x)dx,

which defines a projection on hσ(T). We denote by hσ0 (T) the image P0

(
hσ(T)

)
, which exactly coin-

cides with the zero-mean functions on T in the regularity class hσ(T), and we have the topological

decomposition

hσ(T) = hσ0 (T)⊕ (1− P0)
(
hσ(T)

) ∼= hσ0 (T)⊕ R .

In what follows, we equate the constant function [η(x) ≡ η] ∈ (1−P0)
(
hσ(T)

)
with the value η ∈ R,

and we denote each simply as η.

Consider the operator

Φ(ρ, ρ̃, η) :=
(
P0ρ− ρ̃, F?(ρ)− F?(η)

)
,

which maps hσ(T)× hσ0 (T)× R to hσ0 (T)× R and is of class Cω, by regularity of the mappings F?

and P0. Notice that Φ(0, 0, 0) = (0, 0) and, using (3.15),

D1Φ(0, 0, 0) =
(
P0, 4πr?(1− P0)

)
∈ Lisom(hσ(T), hσ0 (T)× R), (3.17)

i.e. the Fréchet derivative of Φ with respect to the first variable, at the origin, is a linear iso-

morphism. Hence, it follows from the implicit function theorem that there exist neighborhoods

(0, 0) ∈ U = U0 × U1 ⊂ hσ0 (T) × R and 0 ∈ U2 ⊂ hσ(T) and a Cω function ψ : U → U2 such that,

for all (ρ, ρ̃, η) ∈ U2 × U ,

Φ(ρ, ρ̃, η) = (0, 0) if and only if ρ = ψ(ρ̃, η).

Remarks 3.3.1. We can immediately state the following properties of ψ, which follow directly from

its definition and elucidate the relationship between P0 and ψ.

a) P0ψ(ρ̃, η) = ρ̃ for all (ρ̃, η) ∈ U .

b) Given ρ ∈ ψ(U) ∩Mσ
η , it follows that ψ(P0ρ, η) = ρ .
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c) ψ(0, η) = η, for η ∈ U1. This and the preceding remark follow from the fact that F?(η) is

injective when restricted to η ∈ (−r?,∞) ⊂ R.

d) It follows from the identity Φ(ψ(ρ̃, η), ρ̃, η) = (0, 0) and differentiating with respect to ρ̃

that D1Φ(ψ(0, η), 0, η)D1ψ(0, η)h − (h, 0) = (0, 0). From this observation, and the fact that

D1Φ(η, 0, η) = (P0, 4π(r? + η)(1− P0)), it follows that

D1ψ(0, η)h = h, h ∈ hσ0 (T), η ∈ U1.

e) ψ(U0, η) ⊂ Mσ
η for η ∈ U1. Hence, ψ(·, η) can be taken as a (local) parametrization of Mσ

η .

Moreover, from the preceding remark and the bijectivity of ψ(·, η) from U0 to Mσ
η ∩ U2, we

can see that Mσ
η ∩ U2 is a Banach manifold over hσ0 (T) anchored at the point η ∈ R .

f) For (ρ̃, η) ∈ U , we have the representation

ψ(ρ̃, η) =
(
P0 + (1− P0)

)
ψ(ρ̃, η) = ρ̃+

1

2π

∫
T
ψ(ρ̃, η)(x)dx,

and so we can see thatMσ
η ∩U2 can be realized (locally) as the graph of a R-valued analytic

function over the zero-mean functions ρ̃ ∈ hσ0 (T).

g) Although ψ(·, η) depends upon the parameter σ, a priori, it follows easily from the preceding

representation that

ψ(·, η) : U0 ∩ hσ̃0 (T)→ hσ̃(T), σ̃ ∈ R+ \ Z,

so that ψ preserves the spacial regularity of functions regardless of the regularity parameter

σ with which ψ was constructed. However, notice that the neighborhood U0 will remain

intrinsically linked with the parameter which was used to construct ψ.

With the established invariance and local structure of the setsMσ
η , it follows that the dynamics

governing solutions to (3.1) manifest in the tangent space to the manifold Mσ
η ∩ U2. Hence, if we

reduce (3.1) to a local system on these manifolds, then we will have captured all of the dynamics

of the problem. Remarks 3.3.1(d) is the first observation toward this reduced formulation. In fact,

one can make use of the properties established in Remarks 3.3.1 to prove the following, even more
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general, result regarding the properties of the the tangent vectors to Mσ
η . Although we use other

tools to connect the reduced problem (3.18) below with the full problem (3.1), this remark provides

good intuition into the nature of these manifolds.

Remark 3.3.2. Given (ρ̃, η) ∈ U it follows that D1ψ(ρ̃, η) ◦ P0 = idTψ(ρ̃,η)Mσ
η
, where TρMσ

η denotes

the tangent space to the manifold Mσ
η at the point ρ.

3.3.2 The Reduced Problem

Fix α ∈ (0, 1) and we denote the spaces

F0 := hα0 (T), F1 := h4+α
0 (T), and Fµ := (F0, F1)0

µ,∞, µ ∈ (0, 1),

so that Fµ = P0Eµ for µ ∈ [0, 1]. Define the operator

G?(ρ̃, η) = G?(ρ̃, η; r?) := P0G
(
ψ(ρ̃, η) + r?

)
,

which is defined for all (ρ̃, η) ∈ U ⊂ F0 × R with ρ̃ ∈ U0 ∩ F1.

Now we consider the reduced problem for the zero-mean functions


ρ̃t(t, x) = G?(ρ̃(t, x), η), t > 0, x ∈ T,

ρ̃(0, x) = ρ̃0(x), x ∈ T,
(3.18)

where ρ̃0 := P0r0 = P0(r0 − r?). One will note that we should insist on ψ(ρ̃, η)(x) > −r? for all

x ∈ T in order to guarantee that G(ψ(ρ̃, η) + r?) is well-defined. However, we can assume, without

loss of generality, that the neighborhood U is chosen small enough to ensure this property holds

for all (ρ̃, η) ∈ U .

Remark 3.3.3. Throughout most of the analysis that follows, we will treat the parameter η as a

free parameter, although it has a very specific interpretation in relation to (3.3). If one is given

initial data r0 close to r?, then the parameter η is chosen so that

F?(η) = F?(r0) .
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a) Essentially, this parameter allows for the possibility that the volume enclosed by the surface

Γ(r0) differs from that of the cylinder Γ(r?), thereby allowing us to handle non-volume-

preserving perturbations r0 of the cylinder r?.

b) From a more general viewpoint, one can see that the family {Mσ
η ∩ ψ(U) : η ∈ U1} forms

a dimension 1 foliation of a neighborhood of the positive real axis R+ ⊂ hσ(T) and the

parameter η separates the leaves of the foliation.

For µ ∈ (0, 1] and closed intervals J ⊆ R+ with 0 ∈ J , define the spaces

E0(J) := BUC1−µ(J,E0),

E1(J) := BUC1
1−µ(J,E0) ∩BUC1−µ(J,E1),

and

F0(J) := BUC1−µ(J, F0),

F1(J) := BUC1
1−µ(J, F0) ∩BUC1−µ(J, F1),

within which we will discuss solutions to the shifted problem (3.14) and the reduced problem (3.18),

respectively.

In order to connect these two problems, we will make use of the lifting map ψ, defined in the

previous section. To ensure that ψ is well-defined on F1, we must restrict our attention to functions

which map into an appropriate neighborhood U0 ⊂ F0 of 0. In particular, we assume that U0 is

given so that

ψ(·, η) : U0 ⊂ F0 → E0, η ∈ U1,

is in the regularity class Cω and, without loss of generality, we assume that U0 is given sufficiently

small so that ψ and the derivative D1ψ are bounded on U = U0 ×U1. More precisely, U0 is chosen

sufficiently small so that there exists a constant N > 0 for which

‖ψ(ρ̃, η)‖E0 ≤ N and ‖D1ψ(ρ̃, η)‖L(F0,E0) ≤ N, (3.19)
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for all (ρ̃, η) ∈ U = U0 × U1.

Lemma 3.3.4. Fix η ∈ U1 and J := [0, T ] for T > 0. Then

ψ(·, η) : F1(J) ∩ C(J, U0) −→ E1(J), with ψ(ρ̃, η)(t) := ψ(ρ̃(t), η).

Moreover, if ρ̃0 ∈ Fµ and ρ̃ = ρ̃(·, ρ̃0) ∈ F1(J) ∩ C(J, U0) is a solution to (3.18), for some µ ∈

[1/2, 1], then ρ := ψ(ρ̃, η) is the unique solution on the interval J to (3.14), with initial data

ρ0 := ψ(ρ̃0, η) ∈ Eµ.

Proof. First notice that the embeddings

F1(J) ↪→ BUC(J, Fµ) ↪→ BUC(J, F0), µ ∈ [1/2, 1], (3.20)

follow from [2, Theorem III.2.3.3] and the continuous embedding of little-Hölder spaces, respectively.

To see that the mapping property for ψ(·, η) holds, let ρ̃ ∈ F1(J)∩C(J, U0). Uniform continuity

and differentiability of the function ψ(ρ̃(·), η) follows from the regularity of ψ and ρ̃, and compact-

ness of the interval J . Hence we focus on demonstrating that ψ(ρ̃(·), η) satisfies the boundedness

conditions for E1(J). In the case µ ∈ [1/2, 1), it follows from Remarks 3.3.1(f) and (3.19) that, for

t ∈ J̇ ,

t1−µ‖ψ(ρ̃(t), η)‖E1 ≤ t1−µ‖ρ̃(t)‖F1 +
t1−µ

2π

∫
T
|ψ(ρ̃(t), η)(x)|dx

≤ ‖ρ̃‖F1(J) + t1−µ‖ψ(ρ̃(t), η)‖C(T)

≤ ‖ρ̃‖F1(J) + T 1−µN,

and lim
t→0

t1−µ‖ψ(ρ̃(t), η)‖E1 = 0.

(3.21)

From (3.21) we conclude that ψ(ρ̃, η) ∈ BUC1−µ(J,E1). Meanwhile, looking at the time derivative

of ψ(ρ̃, η), we note that ∂tψ(ρ̃(t), η) = D1ψ(ρ̃(t), η)∂tρ̃(t) and so we again make use of (3.19) to see
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that

t1−µ‖∂tψ(ρ̃(t), η)‖E0 ≤ ‖D1ψ(ρ̃(t), η)‖L(F0,E0)t
1−µ‖∂tρ̃(t)‖F0

≤ N‖ρ̃‖F1(J) <∞,

and lim
t→0

t1−µ‖∂tψ(ρ̃(t), η)‖E0 = 0.

Hence, making use of the embedding F1 ↪→ F0, we see that ψ(ρ̃, η) ∈ E1(J), as desired. Meanwhile,

when µ = 1 we again get continuity and differentiability from the regularity of the mappings ρ̃ and

ψ.

To see that the second part of the lemma holds, observe by (3.20) that ρ0 := ψ(ρ̃0, η) ∈ Eµ∩U?.

Hence, by Theorem 3.1.1, there exists a unique maximal solution

r(·, ρ0) ∈ C1
1−µ(J(ρ0), E0) ∩ C1−µ(J(ρ0), E1)

to (3.14) on some maximal interval of existence J(ρ0) = [0, t+(ρ0)). It suffices to show that

ρt(t) = G?(ρ(t)) for t ∈ J̇ := (0, T ], since this will imply that ρ(t) = r(t, ρ0) by uniqueness and

maximality of the solution r(·, ρ0). In order to conclude this, let t ∈ J̇ and consider the auxiliary

problem 
γ̇(τ) = G?(γ(τ)), for τ ∈ [0, ε],

γ(0) = ρ(t),

which has a unique solution γ ∈ C1([0, ε], E0)∩C([0, ε], E1) by Theorem 3.1.1, provided we choose

ε > 0 sufficiently small for the particular value ρ(t) ∈ E1. Note that, by the regularity of γ we have

γ̇(0) = G?(γ(0)) = G?(ρ(t)).

Further, note that ρ(t) ∈M4+α
η , from which we conclude that γ(τ) ∈M4+α

η and by Remarks 3.3.1
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we have the representation γ(τ) = ψ(P0γ(τ), η), τ ∈ [0, ε]. Finally, we see that

G?(ρ(t)) = γ̇(0) = ∂τ (ψ(P0γ(τ), η))
∣∣∣
τ=0

= D1ψ(P0γ(0), η)P0γ̇(0)

= D1ψ(P0ρ(t), η)P0G?(ρ(t)) = D1ψ(ρ̃(t), η)G?(ρ̃(t), η)

= ∂t (ψ(P0ρ(t), η)) = ρt(t),

which concludes the proof.

3.3.3 Mapping Properties of D1G?(0, η)

Notice that the points (0, η) ∈ U are equilibria of (3.18), and they correspond to the cylinders

Γ(r? + η). We are interested in the spectral properties of the linearization of G? about these

equilibria. In particular, we compute the Fréchet derivative

D1G?(0, η)h = P0DG?(ψ(0, η))D1ψ(0, η)h = P0DG?(η)D1ψ(0, η)h ,

for h ∈ F1 . Hence, by Remarks 3.3.1(d) we derive the formula

D1G?(0, η) = P0DG(η)
∣∣
F1

= DG?(η)
∣∣
F1
, (3.22)

where the last equality is verified by applying the divergence theorem to the linearization

DG?(η) = −∂2
x

(
1

(r? + η)2
+ ∂2

x

)
. (3.23)

Utilizing the Fourier series representation of functions in hσ(T), c.f. Section 2.1.2, we find the

eigenvalues of this linearized operator. In particular, for h ∈ E1,

(λ−DG?(η)) h =

(
λ+ ∂2

x

(
1

(r? + η)2
+ ∂2

x

))∑
k∈Z

ĥ(k)ek

=
∑
k∈Z

(
λ− k2

(
1

(r? + η)2
− k2

))
ĥ(k)ek

=⇒ σp(DG?(η)) =

{
k2

(
1

(r? + η)2
− k2

)
: k ∈ Z

}
.
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Noting that the embedding E1 ↪→ E0 is compact, it follows that the resolvent R(λ) := (λ −

DG?(η))−1 is a compact operator, λ in the resolvent set ρ(DG?(η)), c.f. [32, Proposition II.5.8].

It follows from classic theory of linear operators that the spectrum σ(DG?(η)) consists entirely

of isolated eigenvalues of finite multiplicity, see Kato [46, Theorem III.6.29] for instance. Hence,

σp(DG?(η)) = σ(DG?(η))

Remark 3.3.5. If r? + η > 1, then σ(DG?(η)) ⊂ (−∞, 0], however the spectrum will always contain

0. The presence of this 0 eigenvalue can be seen as a consequence of the fact that the equilibria

r?+η are not isolated in the space E1. Hence, by passing to the operator G?, which acts on an open

subset of the zero-mean functions F1, we eliminate the nontrivial equilibria (since the only constant

function in F1 is the zero function) and thereby eliminate the zero eigenvalue. In particular, one

easily computes that

σ(D1G?(0, η)) =

{
k2

(
1

(r? + η)2
− k2

)
: k ∈ Z \ {0}

}
, η ∈ U1. (3.24)

Before we return to the problem (3.1), we state the following maximal regularity result for the

linearization D1G?(0, η). For this result, we define the exponentially weighted maximal regularity

spaces

Fj(R+, ω) :=
{
f : (0,∞)→ F0 s.t. [t 7→ eωtf(t)] ∈ Fj(R+)}, ω ∈ R, j = 0, 1,

which are Banach spaces when equipped with the norms ‖u‖Fj(R+,ω) := ‖eωtu‖Fj(R+), j = 0, 1.

Theorem 3.3.1. Suppose r? > 1 and µ ∈ (0, 1]. There exist nonzero positive constants δ = δ(r?)

and ω = ω(r?, δ) such that (
F0(R+, ω),F1(R+, ω)

)
is a pair of maximal regularity for −D1G?(0, η), given any η ∈ (−δ, δ). I.e. the property

(∂t −D1G?(0, η), γ) ∈ Lisom
(
F1(R+, ω),F0(R+, ω)× h4µ+α

0 (T)
)
,

holds uniformly for η ∈ (−δ, δ).

Proof. Fix δ > 0 so that (−δ, δ) ⊂ U1 ∩ (1 − r?,∞). Following the notation and definitions of
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Chapter 2, it is clear from the representation (3.23) that −DG?(η) is a uniformly elliptic operator

from which we see, by Theorem 2.4.4, that DG?(η) generates an analytic semigroup on hα(T,C)

with domain h4+α(T,C). Since hα0 (T,C) inherits the topology of hα(T,C) and the projection P0

commutes with DG?, the analogous resolvent estimates hold for D1G?(0, η) and so we conclude

that D1G?(0, η) generates an analytic semigroup on hα0 (T,C) with domain h4+α
0 (T,C). Moreover,

from (3.24) we see that type(D1G?(0, η)) < 0 for all η ∈ (−δ, δ), where type(B) denotes the spectral

type of the semigroup generator B. In particular, it follows that

type(D1G?(0, η)) <
1− (r? − δ)2

(r? − δ)2
< 0, η ∈ (−δ, δ).

Now, choose ω ∈
(

0, (r?−δ)2−1
(r?−δ)2

)
and the remainder of the result follows from [2, Theorem III.3.4.1

and Remarks 3.4.2(b)] and the restriction of maximal regularity to the subspaces hσ0 (T). Notice, the

characterization γF1(ω) = h4µ+α
0 (T) follows from stability of little-Hölder spaces under continuous

interpolation.

3.3.4 Exponential Stability of Cylinders With Radius r? > 1

Our main result regarding stability of cylinders in the axisymmetric surface diffusion flow (3.1) es-

tablishes asymptotic stability under perturbations which maintain the prescribed periodic boundary

conditions and symmetry about the same axis of rotation (which we are taking to be the x-axis in

our setting). One feature of our result that we point out is the fact that it establishes a form of

stability which allows for perturbations which are not volume-preserving. In particular, we refer to

asymptotic stability of the cylinder Γ(r?) by which we mean that small perturbations of Γ(r?) will

have global solutions to (3.1) which converge to a cylinder Γ(r? + η), where r? 6= r? + η in general.

Theorem 3.3.2 (Exponential Stability). Fix α ∈ (0, 1), µ ∈ [1/2, 1], so that 4µ + α /∈ Z, and

r? > 1. There exist nonzero positive constants ε = ε(r?), δ = δ(r?) and ω = ω(r?, δ), such that

problem (3.3) with initial data r0 ∈ BEµ(r?, ε) has a unique global solution

r(·, r0) ∈ C1
1−µ(R+, E0) ∩ C1−µ(R+, E1),
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and there exists η = η(r0) ∈ (−δ, δ) and M = M(α) > 0 for which the bound

t1−µ‖r(t, r0)− (r? + η)‖E1 + ‖r(t, r0)− (r? + η)‖Eµ ≤ e−ωtM‖r0 − r?‖Eµ

holds uniformly for t > 0.

Proof. (i) Let δ, ω > 0 be the constants given by Theorem 3.3.1 and consider the operator

K(ρ̃, ρ̃0, η) :=
(
∂tρ̃− G?(ρ̃, η), γρ̃− ρ̃0

)
,

acting on U :=
(
F1(R+, ω) ∩ C(R+, U0)

)
×
(
U0 ∩ Fµ

)
× U1 which is open in the Banach space

F1(R+, ω)× Fµ × R.

Considering the space into which K maps, first notice that

γ : F1(R+, ω)→ (F0, F1)0
µ,∞

follows from [17, Lemma 2.2(a)]. Hence, γρ̃ ∈ Fµ and ∂t maps F1(R+, ω) into F0(R+, ω) by definition

of the spaces BUC1
1−µ(J,E). To see that G?(·, η) maps U into F0(R+, ω), choose ρ̃ ∈ U and notice

that ρ̃(t) ∈ U0 ∩ h2+α
0 (T), for t > 0, from the embeddings (3.20). Utilizing the explicit quasilinear

representation of the operator G, as given by (3.4)–(3.5), whereby

G?(ρ̃(t), η) = P0

(
−A

(
ψ(ρ̃(t), η) + r?

)
(ψ(ρ̃(t), η) + r?) + f

(
ψ(ρ̃(t), η) + r?

))
,

one will easily conclude the desired mapping property for the operator G?. For instance, we have

seen that A(ρ)ρ = b1(ρ)∂4
xρ+b2(ρ)∂3

xρ, where the functions bi only depend on ρ, ρx and ρxx, i = 1, 2.

Hence, it follows that

eωtt1−µ
∥∥∥A(ψ(ρ̃(t), η) + r?

)
(ψ(ρ̃(t), η) + r?)

∥∥∥
E0

≤ eωtt1−µ
∥∥∂4

xψ(ρ̃(t), η)
∥∥
E0

∥∥b1(ψ(ρ̃(t), η) + r?
)∥∥
E0

+ eωtt1−µ
∥∥∂3

xψ(ρ̃(t), η)
∥∥
E0

∥∥b2(ψ(ρ̃(t), η) + r?
)∥∥
E0
,

for t > 0. From here, we take advantage of the boundedness of ψ(ρ̃(t), η) in the topology of F1/2,

69



in conjunction with the explicit formulas for bi, in order to bound the terms ‖bi(ψ(ρ̃(t), η)+ r?)‖E0 ,

uniformly in t. Meanwhile, the representation given by Remarks 3.3.1(d) and the fact that ρ̃ ∈

F1(R+, ω) yield the bounds

eωtt1−µ‖∂kxψ(ρ̃(t), η)‖E0 = eωtt1−µ‖∂kx ρ̃(t)‖F0 ≤ ‖eωtρ̃‖F1(R+), k = 1, . . . , 4.

Analogous methods work for the remaining terms of the function G?
(
ψ(ρ̃(t), η)

)
, since we can always

isolate an element of the form ∂kxψ(ρ̃(t), η), and bound the remaining elements using boundedness

in F1/2. We conclude the result by noting that the linear projection P0 adds no complexity to

acquiring the necessary bounds.

With the establishment of the spaces into which the operator K maps, we move on with our

analysis. Regarding the regularity of K, it can be shown that G? is Cω via substitution operators

and the derivative ∂t and the trace operator γ are linear. Hence, it follows that

K ∈ Cω
(
U,F0(R+, ω)× Fµ

)
.

Meanwhile, notice that K(0, 0, 0) = (0, 0) and

D1K(0, 0, 0) =
(
∂t −D1G?(0, 0), γ

)
∈ Lisom

(
F1(R+, ω),F0(R+, ω)× Fµ

)
,

by Theorem 3.3.1. Hence, we conclude from the implicit function theorem that there exists an open

neighborhood 0 ∈ Ũ ⊂ Fµ × R and a Cω mapping κ : Ũ → F1(R+, ω) such that

K(κ(ρ̃0, η), ρ̃0, η) = (0, 0) for all (ρ̃0, η) ∈ Ũ .

In particular, κ(ρ̃0, η) is a global solution to (3.18) with parameter η and initial data ρ̃0 ∈ Fµ,

where we assume, without loss of generality, that Ũ ⊆ U .

(ii) Choose ε > 0 so that for every r0 ∈ BFµ(r?, ε), there exists η ∈ (−r?,∞) for which

(P0r0, η) ∈ Ũ and F?(r0 − r?; r?) = F?(η; r?).
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The existence of such a constant ε is guaranteed by the continuity of P0 and F?, injectivity of

F?(η; r?) for η ∈ (−r?,∞) and the fact that P0r? = 0.

Let r0 ∈ BFµ(r?, ε) and fix η = η(r0) as mentioned so that F?(r0 − r?; r?) = F?(η; r?). Define

the function

r := ψ(κ(P0r0, η), η) + r?, (3.25)

where ψ(κ(P0r0, η), η)(t) := ψ(κ(P0r0, η)(t), η), and we will demonstrate that r satisfies the desired

properties claimed in the theorem.

To see that r is the unique global solution to (3.3) with initial data r0, first fix T > 0 and

consider the interval J := [0, T ]. By the choice of ε > 0 we know that (P0r0, η) ∈ Ũ and so it

follows from part (i) above that κ(P0r0, η) ∈ F1(R+, ω). From this we see that κ(P0r0, η) ∈ F1(J)

is a solution to (3.18) with initial data P0r0 ∈ Fµ. Thus it follows, by Lemma 3.3.4, that r ∈ E1(J)

is the solution on J to the problem (3.3) with initial data

ψ(P0r0, η) + r? = ψ(P0(r0 − r?), η) + r? = r0,

where we use Remarks 3.3.1(b) and the fact that r0 − r? ∈ M4µ+α
η . The claim now follows by the

fact that T > 0 was arbitrary and by definition of the Fréchet spaces C1−µ(R+, E).

Now, to see that r satisfies the exponential bounds in the second part of the claim, first notice

that κ(0, η) ≡ 0 for η ∈ U1. Then, by definition of r, Remarks 3.3.1, and application of the mean

value theorem, we see that the expression

r(t)−(r? + η) = ψ(κ(P0r0, η)(t), η)− η = ψ(κ(P0r0, η)(t), η)− ψ(κ(0, η)(t), η)

=
(
P0 + (1− P0)

)(
ψ(κ(P0r0, η)(t), η)− ψ(κ(0, η)(t), η)

)
= κ(P0r0, η)(t) +

1

2π

∫
T

(
ψ(κ(P0r0, η)(t, x), η)− ψ(κ(0, η)(t, x), η)

)
dx

= κ(P0r0, η)(t) +
1

2π

∫
T

∫ 1

0
D1ψ

(
τκ(P0r0, η)(t), η

)
κ(P0r0, η)(t, x)dτdx,

holds for all t > 0. Notice that

eωtt1−µ‖κ(P0r0, η)(t)‖F1 ≤ ‖κ(P0r0, η)‖F1(R+,ω)
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and

sup
t∈R+

‖eωtκ(P0r0, η)(t)‖Fµ

are finite quantities by the fact that κ(P0r0, η) ∈ F1(R+, ω) and the embedding (3.20). We note

that the reference for (3.20) does not explicitly include the unbounded interval J = R+, however the

methods of the proof extend to this unbounded case with little trouble. Meanwhile, the remaining

term in r(t)−(r?+η) above is scalar-valued, so we bound D1ψ(τκ(P0r0, η)(t), η)κ(P0r0, η)(t) in the

C(T)-topology, which are then bounded in the hσ(T)-topology, for any σ ∈ R+ \ Z. In particular,

observe that, by (3.19),

sup
ρ̃∈U0

‖D1ψ(ρ̃, η)κ(P0r0, η)(t)‖hα ≤ N‖κ(P0r0, η)(t)‖hα0 , t > 0,

and we conclude that the bounds

eωtt1−µ‖r(t)− (r? + η)‖E1 ≤
(

1 + c1N
)
‖κ(P0r0, η)‖F1(R+,ω) (3.26)

and

eωt‖r(t)− (r? + η)‖Eµ ≤
(
c2 + c3N

)
‖κ(P0r0, η)‖F1(R+,ω), (3.27)

hold uniformly for t > 0. Here the constant c1 comes from the embedding F1 ↪→ F0, and the

constants c2 and c3 come from the embeddings (3.20). Finally, by the regularity of κ, we may

assume that Ũ was chosen sufficiently small to ensure that D1κ is uniformly bounded from Ũ into

F1(R+, ω). Recalling that κ(0, η) = 0, it follows that

‖κ(P0r0, η)‖F1(R+,ω) ≤
∫ 1

0
‖D1κ(τP0r0, η)P0r0‖F1(R+,ω) dτ

≤ M̃‖P0r0‖Fµ ≤M‖r0 − r?‖Eµ ,
(3.28)

where M := ‖P0‖ sup(ρ̃,η)∈Ũ ‖D1κ(ρ̃, η)‖L(Fµ,F1(R+,ω)). The claim now follows from (3.28) and the

inequalities (3.26)–(3.27).
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3.4 Instability of Cylinders With Radius 0 < r? < 1

In this section we turn our attention to the stability of cylinders with small radius. Again, taking

advantage of the reduced problem (3.18) and the connection we have established between it and the

original problem (3.1), we proceed with the following result regarding instability of cylinders with

radius 0 < r? < 1, in the setting of Fµ. Because of the nature of the instability result, differences in

volume between the initial data r0 and the cylinder r? are not a factor in the following argument.

In light of this, we will assume that the parameter η, associated with the reduced problem (3.18),

is simply taken to be zero for this section.

Theorem 3.4.1 (Instability). Let r? ∈ (0, 1) and µ ∈ [1/2, 1] be fixed with 4µ + α /∈ Z. Then the

equilibrium 0 of (3.18) is unstable in the topology of Fµ for initial values in Fµ.

Proof. (i) Let r? ∈ (0, 1) be fixed, and let L := D1G?(0, 0) be the linearization of G? at ρ̃ = 0. We

can restate the evolution equation (3.18) in the following equivalent form


ρ̃t − Lρ̃ = g(ρ̃), t > 0

ρ̃(0) = ρ̃0,

(3.29)

where g(ρ̃) := G?(ρ̃, 0) − Lρ̃. Using the quasilinear structure of [ρ̃ 7→ G?(ρ̃, 0)] it is not difficult to

see that for every β > 0 there exists a number ε0 = ε0(β) > 0 such that

‖g(ρ̃)‖F0 ≤ β‖ρ̃‖F1 , ρ̃ ∈ BFµ(0, ε0) ∩ F1, (3.30)

where we will be assuming throughout that ρ̃ ∈ U0, to guarantee that G?(ρ̃, 0), and subsequently

g(ρ̃), is defined. It follows from (3.24) that

σ(L) ∩ [Re z > 0] 6= ∅,

and we may choose numbers ω, γ > 0 such that

[ω − γ ≤ Re z ≤ ω + γ] ∩ σ(L) = ∅ and σ+ := [Re z > ω + γ] ∩ σ(L) 6= ∅ ,
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i.e. the strip [ω− γ ≤ Re z ≤ ω+ γ] does not intersect σ(L) and there is at least one point of σ(L)

to the right of the line [Re z = ω + γ].

We define P+ to be the spectral projection, in F0, with respect to the spectral set σ+, and let

P− := 1− P+. Then P+(F0) is finite dimensional and the topological decomposition

F0 = P+(F0)⊕ P−(F0)

reduces L, so that L = L+⊕L−, where L± is the part of L in P±(F0), respectively, with the domains

D(L±) = P±(F1). Moreover, P± decomposes F1 by the embedding F1 ↪→ F0, and, without loss of

generality, we can take the norm on F1 so that

‖v‖F1 = ‖P+v‖F1 + ‖P−v‖F1 .

We note that

σ(L−) ⊂ [Re z < ω − γ], σ(L+) = σ+ ⊂ [Re z > ω + γ].

This implies that there is a constant M0 ≥ 1 such that

‖eL−tP−‖L(F0) ≤M0e
(ω−γ)t,

‖e−L+tP+‖L(F0) ≤M0e
−(ω+γ)t, t ≥ 0,

(3.31)

where {eL−t : t ≥ 0} is the analytic semigroup in P−(F0) generated by L− and {eL+t : t ∈ R} is

the group in P+(F0) generated by the bounded operator L+.

From (3.22)–(3.23) and Chapter 2 one sees that
(
F0(J),F1(J)

)
is a pair of maximal regularity

for −L and it is easy to see that −L− inherits the property of maximal regularity. In particular, the

pair
(
P−(F0(J)), P−(F1(J))

)
is a pair of maximal regularity for −L−. In fact, since type(−ω+L−) <

−γ < 0 we see that
(
P−(F0(R+)), P−(F1(R+))

)
is a pair of maximal regularity for (ω−L−). This,

in turn, implies the a priori estimate

‖e−ωtw‖F1(JT ) ≤M1

(
‖w0‖Fµ + ‖e−ωtf‖F0(JT )

)
(3.32)

for JT := [0, T ], any T ∈ (0,∞) (or JT = R+ for T =∞), with a universal constant M1 > 0, where
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w is a solution of the linear Cauchy problem


ẇ − L−w = f,

w(0) = w0,

with (f, w0) ∈
(
C
(
(0, T ), P−F0

)
, P−U0

)
.

(ii) By way of contradiction, suppose that the equilibrium 0 is stable for (3.18). Then for every

ε > 0 there exists a number δ > 0 such that (3.29) admits for each ρ̃0 ∈ BFµ(0, δ) a global solution

ρ̃ = ρ̃(·, ρ̃0) ∈ C1
1−µ(R+, F0) ∩ C1−µ(R+, F1) ∩ C(R+, U0),

which satisfies

‖ρ̃(t)‖Fµ < ε, t ≥ 0. (3.33)

We can assume without loss of generality that β and ε are chosen such that

2C0(M0 +M1γ)β ≤ γ and ε ≤ ε0(β), (3.34)

where C0 := max{‖P−‖L(F0), ‖P+‖L(F0)}. As P+(F0) is finite dimensional, we may also assume

that

‖P+v‖Fν = ‖P+v‖F0 , v ∈ F0, ν ∈ {µ, 1},

where we also use the fact that P+F0 ⊂ D(Ln) for every n ∈ N, c.f. [51, Proposition A.1.2].

CLAIM 1: For any initial value ρ̃0 ∈ BFµ(0, δ), P+ρ̃ admits the representation

P+ρ̃(t) = −
∫ ∞
t

eL+(t−s)P+g(ρ̃(s)) ds t ≥ 0. (3.35)

For this we first establish that, for ρ̃0 ∈ BFµ(0, δ),

e−ωtρ̃ ∈ BC1−µ(R+, F1) :=

{
u ∈ C((0,∞), F1) : sup

t∈R+

t1−µ‖u(t)‖F1 <∞

}
.
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First notice that the mapping property

g : F1(JT ) ∩ C(JT , U0)→ F0(JT ), 0 < T <∞,

which follows in the same way as the mapping property derived for G? in the proof of Theorem 3.3.2

above, together with the inequalities (3.30) and (3.32) yield

‖e−ωtP−ρ̃‖C1−µ(JT ,F1)

≤M1

(
‖P−ρ̃0‖Fµ + C0β‖e−ωtP+ρ̃‖C1−µ(JT ,F1) + C0β‖e−ωtP−ρ̃‖C1−µ(JT ,F1)

) (3.36)

for any 0 < T <∞. Due to (3.34), we have M1C0β ≤ 1/2 and can further conclude

‖e−ωtP−ρ̃‖C1−µ(JT ,F1) ≤ 2M1

(
‖P−ρ̃0‖Fµ + C0β‖e−ωtP+ρ̃‖C1−µ(JT ,F1)

)
. (3.37)

It follows from (3.33) that

t1−µ‖e−ωtP+ρ̃(t)‖F1 ≤ t1−µe−ωtC0‖ρ̃(t)‖Fµ ≤ C0C1ε

where C1 := sup{t1−µe−ωt : t ≥ 0} <∞. Inserting this result into (3.37) yields

‖e−ωtρ̃‖C1−µ(JT ,F1) ≤ 2M1‖P−ρ̃0‖Fµ + (2M1C0β + 1)C0C1ε ≤ C2 (3.38)

for any 0 < T <∞. However, since T is arbitrary and (3.38) is independent of T we conclude that

e−ωtρ̃ ∈ BC1−µ(R+, F1), for any initial value ρ̃0 ∈ BFµ(0, δ). Next we note that, for s ≥ t, by (3.31)

‖eL+(t−s)P+g(ρ̃(s))‖F0 ≤M0C0βe
(ω+γ)(t−s)‖ρ̃(s)‖F1

≤M0C0βe
ωteγ(t−s)sµ−1‖e−ωsρ̃‖C1−µ(R+,F1),

(3.39)

which shows that the integral in (3.35) exists for any t ≥ 0, with convergence in F1. Moreover,

∥∥∥∥∫ ∞
t

eL+(t−s)P+g(ρ̃(s)) ds

∥∥∥∥
F0

≤ eωtM0C0C3β‖e−ωtρ̃‖C1−µ(R+,F1), (3.40)
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where C3 := sup
{ ∫∞

t eγ(t−s)sµ−1 ds : t ≥ 0
}
< ∞. Noting that w = P+ρ̃ solves the Cauchy

problem 
ẇ − L+w = P+g(ρ̃),

w(0) = P+ρ̃0,

it follows from the variation of parameters formula that, for t ≥ 0 and τ > 0,

P+ρ̃(t) = eL+(t−τ)P+ρ̃(τ) +

∫ t

τ
eL+(t−s)P+g(ρ̃(s)) ds.

Since this representation holds for any τ > 0, the claim follows from (3.31) and (3.33) by sending

τ to ∞.

CLAIM 2: If ρ̃0 ∈ BFµ(0, δ) and ‖ρ̃(t, ρ̃0)‖Fµ < ε for all t ≥ 0, then it must hold that

‖P+ρ̃0‖Fµ ≤ 2M0M1C3‖P−ρ̃0‖Fµ .

From (3.35) and (3.39) follows

‖e−ωtP+ρ̃‖C1−µ(R+,F0)

≤ M0C0β

γ

(
‖e−ωtP+ρ̃‖C1−µ(R+,F1) + ‖e−ωtP−ρ̃‖C1−µ(R+,F1)

) (3.41)

where we have used the fact that supt≥0

{
t1−µ

∫∞
t eγ(t−s)sµ−1 ds

}
≤ 1/γ. Adding the estimates in

(3.36) and (3.41) and employing (3.34) yields

‖e−ωtρ̃‖C1−µ(R+,F1) ≤ 2M1‖P−ρ̃0‖Fµ . (3.42)

The representation (3.35) in conjunction with (3.40) and (3.42) then implies

‖P+ρ̃0‖Fµ ≤M0C0C3β‖e−ωtρ̃‖C1−µ(R+,F1) ≤M0C3‖P−ρ̃0‖Fµ , (3.43)

where the last inequality follows from the fact that 2C0M1β ≤ 1. We have thus demonstrated the

claim.

Notice that the preceding claim contradicts the stability assumption. In particular, if ρ̃0 ∈
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BFµ(0, δ) is chosen such that P−ρ̃0 = 0, then it must hold that P+ρ̃0 = 0, and hence ρ̃0 = 0, which

contradicts the assumption of stability for arbitrary ρ̃0 ∈ BFµ(0, δ).

We can immediately state the following corollary, which establishes instability of small cylinders

for the original problem (3.1). The corollary is easily proved by use of the projection P0, which serves

as a connection between the problems (3.1) and (3.18), and application of the result established in

the theorem above. In fact, the same techniques used to prove Theorem 3.4.1 can also be employed

to prove the corollary directly.

Corollary 3.4.1. Let r? ∈ (0, 1) and µ ∈ [1/2, 1] be fixed with 4µ + α /∈ Z. Then the equilibrium

r? of (3.1) is unstable in the topology of Eµ for initial values in Eµ.

3.5 Bifurcation Results

In this section we turn our attention back to the general equilibria of (3.1). In particular, we are

interested in the interactions between the family of cylinders and the family of unduloids. We have

already seen that the radius r? = 1 plays a critical role in the dynamics of the cylinders. The change

of stability for cylinders above and below this critical radius suggests that there is a bifurcation at

r? = 1. Indeed, we will confirm this bifurcation, using results of Crandall and Rabinowitz [21] and

go on to investigate further bifurcation behavior for cylinders. Herein we will take the parameter

λ := 1/r? as our bifurcation parameter, r? > 0.

With the tools and reductions developed in Section 3.3, we see that it suffices to study bifurcation

of the equation

Ḡ(ρ̃, λ) := G?(ρ̃, 0) = P0G(ψ(ρ̃, 0) + r?) = 0, λ = 1/r?, (3.44)

in the setting of (ρ̃, λ) ∈ F1 × (0,∞). However, recalling the explicit characterization (3.24), we

note that the eigenvalues of D1G?(0, 0) all have multiplicity two in the setting of F1, regardless

of the value of the parameter r?. From this observation we see that the techniques of [21], where

the authors derive results for operators with simple eigenvalues, are not directly applicable in this

setting. We may choose at this point to employ more general bifurcation results for high dimensional

kernels, such as the results contained in Kielhöfer [48, Section I.19], or we can simplify the setting

in which we are working in order to make the results of Crandall and Rabinowitz accessible to us.
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Whether we choose to simplify our current setting or access the more general techniques of

Kielhöfer, we can make good use of the following observation. Due to the periodicity enforced in

the problem, the set of equilibria of (3.1) is invariant under shifts along the axis of rotation. More

precisely, recalling the translation operators Ta as discussed in the proof of Theorem 3.1.3, one can

easily verify that G(Tar̄) = 0 if and only if G(r̄) = 0, a ∈ R. Obviously, this invariance carries over

to the reduced problem (3.18) and subsequently to the bifurcation equation (3.44).

One can take advantage of this shift invariance of equilibria in the context of bifurcation with

high dimensional kernels by constructing a two dimensional bifurcation parameter λ̃ = (1/r?, a)

and eventually observe two dimensional bifurcating surfaces of equilibria, c.f. [48, Theorem I.19.2,

Remarks I.19.3]. On the other hand, we will make use of this invariance to simplify the setting in

which we are looking for equilibria and make accessible the methods of Crandall and Rabinowitz

for operators with simple eigenvalues. The specific simplification that we apply to our setting is

supported by the following observation which allows us to consider functions in the class

F1,e := h4+α
0,e (T)

of functions which are even, i.e. symmetric about the y–axis, and h4+α
0 regular.

Proposition 3.5.1. For every equilibrium ρ̄ of (3.18), there exists x0 = x0(ρ̄) ∈ T for which the

translation Tx0 ρ̄ is in the space F1,e := h4+α
0,e (T) of even functions on T in the class F1. I.e. up to

translations on T, all equilibria of (3.18) are even functions.

Proof. By Theorem 3.2.1 and Remarks 3.2.1(e), we can see that any equilibrium ρ̄ can be realized

as the projection of an undulary curve. More precisely, recalling the formula (3.12), we have

ρ̄ = P0R(· ;H, B), for some H > 0, B ≥ 0,

with H and B related according to the relationship (3.13). Now, taking s0 := π/2H, one readily

verifies that y(s) and x′(s) are symmetric about s = s0. It follows that x0 := −x(s0) satisfies the

properties claimed.

From this proposition, we see that there is no loss of generality if we focus our bifurcation

analysis on the setting of ρ̃ ∈ F1,e. One benefit of working in this setting is that we have the

79



Fourier series representation

ρ̃(x) =
∑
k≥1

ak cos(kx), {ak} ⊂ R for all ρ̃ ∈ F1,e.

Theorem 3.5.1. For every ` ∈ N, (0, `) ∈ F1,e × (0,∞) is a bifurcation point for the equation

(3.5.1). In particular, there exists a positive constant δ = δ(`) > 0 and a nontrivial analytic curve

{(ρ̃(s), λ(s)) : s ∈ (−δ, δ), (ρ̃(0), λ(0)) = (0, `)} , (3.45)

such that

Ḡ(ρ̃(s), λ(s)) = 0 for all s ∈ (−δ, δ),

and all solutions of (3.44) in a neighborhood of (0, `) are either a trivial solution (0, λ) or an

element of the nontrivial curve (3.45). Moreover, if λ ∈ (0,∞) \N, then (0, λ) is not a bifurcation

point for (3.44).

Proof. We first note that bifurcation can only occur at points (0, λ) for which D1Ḡ(0, λ) is not

bijective. We can see from (3.22)-(3.23) that

D1Ḡ(0, λ) = −∂2
x

(
λ2 + ∂2

x

) ∣∣∣
F1,e

, (3.46)

and so it follows that bifurcation can only occur at points of the form (0, `), ` ∈ N. Now we proceed

to verify that (0, `) is indeed a bifurcation point for every value ` ∈ N.

Utilizing the expression (3.2) we compute the Fréchet derivative of the shifted operator G? :=

G(·+ r?) with respect to the shifted value r?. It follows that

Dr?G(ρ+ r?) =
−1

ρ+ r?

[
G(ρ+ r?)− ∂x

(
1√

1 + ρ2
x

∂xH(ρ+ r?)

− ρ+ r?√
1 + ρ2

x

∂x

[
1

(ρ+ r?)2
√

1 + ρ2
x

])]
,

for all (ρ, r?) ∈ E1×(0,∞). Because the derivative is acting on R, we equate the operator Dr?G(ρ+

r?), mapping R into E0, with its evaluation at the identity in R, namely Dr?G(ρ+r?)1 in E0. Now,

80



we see that

D2Ḡ(ρ̃, λ) = P0Dr?G(ψ(ρ̃, 0) + r?)
∣∣∣
F1,e

, λ = 1/r?, (3.47)

and, after some computation and simplifications, we have the mixed derivatives

D12Ḡ(0, `) = 2P0(`3∂2
x − `∂4

x)
∣∣∣
F1,e

, ` ∈ N. (3.48)

By compactness of the resolvent operators R(λ) := (λ−DG?(0))−1, λ ∈ ρ(DG?(0)), it follows

that D1Ḡ(0, `) is a Fredholm operator of index zero for every ` ∈ N. Further, we see that

N` := N(D1Ḡ(0, `) = span{cos(`x)}, ` ∈ N,

R` := R(D1Ḡ(0, `)) = span {cos(kx) : k ≥ 1, k 6= `} ,

where N(B) and R(B) denote the kernel and the range, respectively, of the operator B. Since

hσ(T) ↪→ L2(T), we can borrow the L2-inner product to realize N` as a topological complement to

R` as subspaces of F1,e, ` ∈ N. Finally, take v̂0 := cos(` ·) ∈ N` and it is straight forward to see

that

D12Ḡ(0, `)v̂0 = −4`5 cos(` ·) /∈ R` , ` ∈ N.

Hence, the claim follows by [21, Theorem 1.7], or [48, Theorem I.5.1].

Remarks 3.5.2. Beyond simply establishing the existence of bifurcation points (0, `), we can imme-

diately state several conclusions regarding the bifurcating equilibria. Namely:

a) It follows from the characterization of equilibria developed in Section 3.2 that the bifurcating

branches of equilibria have to be the non-trivial unduloids, i.e. the even versions of the

functions R(· ;H, B), as defined by (3.12) and the Proposition 3.5.1, with 0 ≤ B < 1.

b) For every ` ∈ N we note that the bifurcation point (ρ̃(0), λ(0)) = (0, `) corresponds to

the cylinder of radius r? = 1/`, which also coincides with R(· ;H, 0). Hence, it follows

from Remarks 3.2.1 that the equilibria which bifurcate from (0, `) are precisely the family of

unduloids which satisfy the relation H = ` when B = 0. From this relation, one can conclude

that all of the bifurcating equilibria ρ̃(s) have fundamental periodicity 2π/`, s ∈ (−δ(`), δ(`)).
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