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CHAPTER I 

 

INTRODUCTION 

 

Introduction to Carbamyl Phosphate Synthetase I 

The Urea Cycle.  The urea cycle is the primary mechanism for the body to 

clear nitrogen produced by protein metabolism (Figure 1.1).  This pathway is 

comprised of five biochemical steps catalyzed by five primary enzymes, as well 

as a co-factor and several transporters.  The first two enzymes of the pathway, 

carbamyl phosphate synthetase I (CPSI) and ornithine transcarbamylase (OTC) 

are liver-specific and are localized to the inner mitochondria.  Argininosuccinate 

synthetase, argininosuccinate lyase, and arginase exhibit ubiquitous expression 

and play roles in arginine homeostasis and nitric oxide synthesis [1].  N-acetyl 

glutamate synthetase (NAGS) produces NAG, the allosteric co-activator for CPSI 

(reviewed in [2]).  In addition, the ORNT1 ornithine/citrulline transporter [3] and 

the aspartate carrier, citrin [4], are necessary transporters due to partial 

localization of the urea cycle in the mitochondria. 

 Though the primary function of this pathway is nitrogen clearance, the 

urea cycle is responsible for generating adequate amounts of intermediate 

products for other metabolic functions.  Most notably, the urea cycle intermediate 

arginine is the precursor for nitric oxide (NO).  This biomolecule is important for a 

variety of biological functions including neurotransmission, vasodilatation for the 

regulation of blood pressure, and tumoricidal activities (reviewed in [5]).  Altered 
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levels of NO have been implicated in various medical complications and impaired 

production has been linked to inadequate urea cycle function [6].  Components of 

the urea cycle also mediate arginine synthesis.  This semi-essential amino acid is 

not only a precursor to NO and urea, but also several peptides with numerous 

intra-cellular roles including many proteins, creatine, polyamines, proline, 

glutamine, and agmatine.  Additionally, arginine availability can selectively affect 

the expression of specific genes (reviewed in [7]).  Therefore, urea synthesis is 

not the only function of enzymes in the urea cycle, but the enzymes are essential 

catalysts for other important biological processes as well. 

 

 

Figure 1.1.  The hepatic urea cycle. 
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CPSI.  CPSI is the enzyme that catalyzes the first and rate-determining 

step of the hepatic urea cycle.  CPSI is a 165 kDa protein prior to cleavage of the 

amino terminus leader peptide sequence.  This 38-residue peptide directs 

localization of the enzyme to the inner mitochondrial membrane and includes 

eight basic residues and one acidic residue as well as a Pro-Gly sequence four 

residues before the start of the mature peptide, consistent with other sequences 

that signal mitochondrial import [8].  Following cleavage of this leader peptide, 

the mature protein is 160 kDa.  For proper activation, CPSI requires the presence 

of NAG, an allosteric co-activator.  NAG is thought to be required for a 

conformational change in CPSI that exposes the two ATP-binding domains [9].  

Activated CPSI converts ammonia and bicarbonate to carbamyl phosphate (CP) 

with the expenditure of 2 ATP molecules (Figure 1.2) [10-11]. 

 
 

 
 

Figure 1.2.  The creation of carbamyl phosphate catalyzed by CPSI. 
 
 
 CPSI exhibits high homology between mammalian species.  Human CPSI 

shares 98% amino acid homology with the rat [12].  Sequence conservation 

between human and yeast or bacteria is lower and demonstrates the probable 

evolutionary origin of this enzyme.  There is substantial evidence that 

mammalian CPSI arose from the fusion of two separate bacterial subunits, one 
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that metabolized glutamine and the other responsible for carbamyl phosphate 

synthesis [8].  Whereas bacteria and yeast have two separate subunits, all 

chordates studied have the 160 kDa single protein unit, suggesting an early 

evolutionary fusion of the glutamine processing and CP synthesis subunits.  

However, the mammalian enzyme is not able to process glutamine due to the 

loss of a critical residue [13].  Internal sequence homology and the presence of 2 

ATP binding domains in the large, prokaryotic CP synthesis subunit suggests an 

ancient intra-gene duplication event, and this evidence extends into eukaryotic 

CPSI as well [8,14].  Strong conservation in certain portions of the enzyme 

between all species studied suggests the location of important functional 

domains and helped identify the ATP binding sites in rat CPSI [8,15]. 

 CPSI is functionally similar to the other eukaryotic CPS enzymes, though 

there are notable distinctions.  Whereas CPSII can utilize ammonia or glutamine 

as a nitrogen donor, ammonia is the only nitrogen donor compatible with CPSI.  

The CP produced from CPSI is used primarily for urea biosynthesis while CPSII 

provides the CP substrate primarily for pyrimidine nucleotide biosynthesis.  

Furthermore, CPSII is ubiquitously expressed, functions in the cytoplasm, and 

does not require NAG for activation [16 and references within].  CPSIII has only 

been detected in several fish and invertebrate species and catalyzes the 

formation of urea for osmoregulation and ammonia detoxification [17]. 

The human CPSI gene is located on chromosome 2q35 [18].  It spans 

approximately 120 kb of genomic DNA and is composed of 38 exons [12].  The 

cDNA is approximately 5700 bp (GenBank accession number AF154830).  Gene 
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expression is restricted to high amounts in the liver and lower levels in the 

intestine.  Within the hepatic tissue, CPSI is localized in the parenchymal cells 

surrounding the terminal portal venules [19].   

In conjunction with the definition of CPSI genomic structure, several 

polymorphisms were identified [12].  Polymorphisms are differences in DNA 

sequence, found in both coding and non-coding regions, which are distributed 

throughout the general population regardless of functional consequences.  Some 

of these polymorphisms likely play minor roles in the proficiency of the urea cycle 

and may contribute to clinical phenotypes.  Specifically, the T1405N 

polymorphism has been correlated with vascular smooth muscle reactivity [20], 

the presence of pulmonary hypertension due to decreased arginine and NO 

production in infants [6], the presence of pulmonary hypertension following 

congenital heart surgery [21], and the development of hepatic veno-occlusive 

disease following bone marrow transplant [22].  In the above studies, the patients 

homozygous for the asparagine (N) genotype of T1405N demonstrated either a 

decreased incidence of hypertension or a higher production of arginine (and 

subsequently NO), indicating a functional difference in CPSI with clinical 

correlations (reviewed in [22]). 

In addition to these common variants, the analysis of patients with 

defective CPSI activity has resulted in the identification of numerous rare 

variants, or pathogenic mutations in the gene.  These genetic changes 

functionally alter the CPSI enzyme, eliciting a disease phenotype.  Though a 

number of pathogenic mutations have been published previously [23-29], the 
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majority of mutations found by the Summar lab have not yet been published.  

These unpublished results include approximately 160 total and 115 unique 

mutations in the 105 patients diagnosed with CPSI Deficiency screened to date 

(Marshall Summar, unpublished data). 

CPSI Deficiency.  CPSI Deficiency (CPSID) is an inborn error of 

metabolism due to mutations in the CPSI gene which is inherited in an autosomal 

recessive manner.  The prevalence of disease is estimated to be about one in 

800,000, but the true prevalence is difficult to detect due to rare diagnosis 

confirmation [30].  CPSID can present clinically in the neonatal period (within 72 

hours of life) or as late-onset following an acute trauma.  The symptoms of 

CPSID include impaired mental and physical development and protein 

intolerance with the hallmark symptom of hyperammonemia, or elevated blood 

ammonia levels.  Normal levels are approximately 35 μM/L in adults and 100 

uM/L for infants [31], whereas a CPSID patient can have levels exceeding 3,000 

uM/L.  These elevated levels cause cerebral edema and may result in irreversible 

brain damage.  MRI documentation illustrates the extreme cerebral sensitivity to 

hyperammonemia [32].  Rapid reduction of ammonia levels requires invasive 

measures yet must be performed to avoid long-term cognitive impairment.  

Treatments include, but are not limited to, the use of nitrogen scavenging drugs 

(such as sodium benozoate, sodium phenylacetate, and sodium phenylbutyrate), 

dialysis, and dietary limits on protein intake.  Cases of partial CPSI Deficiency 

have been recorded where the disorder was able to be controlled by drug 

administration and dietary supplementation [33].   However, the only effective 
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long-term treatment is a liver transplant, which has rarely been performed given 

the rapid onset and deterioration of patients with the more severe phenotypes. 

 The severity of the patient phenotype depends on the specific genetic 

defect and sometimes environmental factors as well.  While there are severe 

enzyme defects in the neonatal form, partial deficiencies are present in the late-

onset form, as determined by measurements of CPSI enzyme activity [23, 33-

35].  In the late-onset form, the disease may go undetected until an acute insult 

such as physical body trauma, sickness, or a rapid change in diet exposes the 

enzymatic deficiency, usually due to a need for increased nitrogen clearance 

[36]. Taken together, this demonstrates that under normal physiological 

conditions, CPSI is not saturated by its substrates and environmental stimuli can 

be pivotal for disease onset. 

 The presence of the functional T1405N polymorphism and the variability in 

CPSID phenotype (particularly the late-onset form) demonstrates that even in 

single-gene Mendelian disorders, environmental factors affect molecular 

mechanisms.  The most severe genetic defects, such as those resulting in null 

enzyme activity and neonatal CPSID, cause a disease phenotype irrespective of 

environmental influences.  However, genetic changes such as polymorphisms or 

those resulting in partial enzyme deficiencies require a certain environmental 

context to unmask the genetic defect.  This trend is embodied in the EDGE, or 

Environmentally Determined Gene Expression concept developed by the 

Summar laboratory [22].  The EDGE concept describes a process whereby the 

effects of a spectrum of genetic variations may, depending on their severity, be 
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affected by non-genetic factors.  The position of CPSI as the rate-limiting step in 

the first committed step of ureagenesis makes enzyme function particularly 

sensitive to both genetic and environmental factors.     

Taken together, the availability of a large database of CPSID patient 

mutations (both neonatal and late-onset), the heterogeneity of the rare genetic 

variations found, the presence of at least one functional polymorphism, and its 

position as the first and rate-determining enzyme of an important biochemical 

pathway make CPSI an ideal research subject. 

 

Introduction to RNA processing 
 
 The process of gene expression, beginning with DNA transcription, is a 

complex set of reactions resulting in an RNA copy of a gene which must then be 

properly translated into a specific protein product.  Alterations in genomic DNA 

can therefore carry into the amino acid sequence of the protein and have minor 

or profound phenotypic effects.  However, sequence variation can also impact 

the process of gene expression due to the requirement for cis-acting sequences 

in proper RNA processing.  Such genomic changes may also have phenotypic 

consequences. 

Though there are several types of RNA involved in gene expression, it is 

the messenger RNA (mRNA) that is the intermediate step between a gene and 

its protein product that must contain the appropriate sequence and be properly 

processed for correct protein production.  An mRNA transcript does not exist in 

vivo as a free molecule, but rather is always in a dynamic complex with other 



 9

ribonucleic acids and proteins in a structure referred to as an hnRNP, or 

heterogeneous nuclear ribonucleoprotein.  These accessory components of 

mRNA prevent the formation of secondary structure and participate in mRNA 

processing.   

Following transcription, pre-mRNA must undergo several modifications 

before transport out of the nucleus for translation of the mature mRNA.  Each of 

these processing events is necessary for proper gene expression.  These events 

include capping, polyadenylation, splicing, and nuclear export.  A mature mRNA 

product is produced by splicing such that non-coding sequences (introns) are 

removed as the coding sequences (exons) are ligated together.  All RNA 

processing events are thought to be tightly coupled and are all important 

determinants of RNA stability [37-41].   

Capping.  As mRNAs are transcribed, a 7-methyl guanosine “cap” is 

added to the 5’ end of the transcript [42].  Important functions of the cap include 

protection from nucleases, increase in translation efficiency, transport to the 

cytoplasm, and proper splicing.  Capping begins after approximately 30 

nucleotides have been synthesized during transcription when the 7-methyl 

guanosine residue binds to the first nucleoside of the growing transcript via a 5’-

5’ triphosphate bridge.  This modification is functionally conserved in all 

eukaryotic organisms examined and occurs in three enzymatic steps that begin 

when phosphorylated RNA polymerase II recruits RNA triphosphatase.  This 

enzyme removes the terminal (γ) phosphate from the pre-mRNA, creating a 

diphosphate terminus.  Next, RNA guanylyl transferase adds the capping GMP to 
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the terminus.  RNA methyl transferase then methylates the N7 in the guanosine 

residue to complete the cap structure (reviewed in [43]).  In part, the cap 

performs its functions by serving as a binding site for multiple proteins.  Notably, 

the cap binding 80/20 complex is bound to the 5’ cap while the mRNA is in the 

nucleus.  However, once transported to the cytoplasm, this complex is replaced 

by the eukaryotic initiation factor eIF4E, which allows transcript recognition for 

translation.  This process is graphically represented in Figure 1.3. 

 

 
Figure 1.3.  Capping and polyadenylation.  Capping occurs on the 5’ end and 
cleavage/polyadenylation occurs on the 3’ end of mRNA transcripts via several 
protein components.  Capping enzymes are represented in red shades and 
polyadenylation enzymes are represented in blue shades.  CPSF is cleavage 
and polyadenylation stimulation factor, CF is cleavage factor, CSF is cleavage 
stimulation factor, PAP is poly(A) polymerase, PABP is poly(A) binding protein.
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 Polyadenylation.  Polyadenylation, the addition of a tail of adenosine 

residues to the mRNA transcript, occurs following 3’ end mRNA cleavage.  

Cleavage and polyadenylation occur in a tightly coupled set of reactions 

immediately following pre-mRNA transcription (reviewed in [44]).  The cleavage 

position, also the position of poly(A) addition, is specified by the presence of a 

tightly conserved AAUAAA sequence positioned approximately 24 nucleotides 

upstream in the 3’ UTR.  Mammalian transcripts most often also have a loosely 

conserved GU-rich sequence immediately upstream of the cleavage position.  

Cleavage is catalyzed by multiple proteins including cleavage and p(A) specificity 

factor (CPSF) which recognizes the AAUAAA sequence, cleavage stimulation 

factor (CSF) which binds downstream in the GU-rich sequence, and cleavage 

factors I and II (CF I and CF 2) that help stabilize the overall complex (Figure 

1.3).   Following cleavage, up to 250 adenosine residues are added in a two-step 

polyadenylation reaction catalyzed by the poly(A) polymerase (PAP) that first 

slowly adds at least 12 adenosine residues before switching to a more 

processive synthesis for the addition of ~200 adenosine residues stimulated by 

the poly(A) binding protein (PABP2) [38,45,46].  While in the nucleus, PAPB2 

binds to the poly(A) tail.  Once the mRNA relocates to the cytoplasm, PAPB1 

replaces PAPB2.  The poly(A) tail undergoes constant breakdown in the 

cytoplasm balanced by consistent rebuilding of the tail.  The equilibrium of this 

dynamic is towards the loss of the poly(A) tail so that it is eventually lost, a signal 

for mRNA destruction. 
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Similar to capping, polyadenylation and the associated proteins provide 

protection to the transcript as well as increasing translation efficiency.  

Interactions between the 5’ cap and 3’ poly(A) tail via translation initiation factors 

(such as eIF4E) that can bind both structures create a closed loop which 

mediates stability and translation of the mRNA.  This closed loop structure has 

been re-created with recombinant proteins and visualized by atomic force 

microscopy [47].  PABP association with a transcript was specifically implicated 

in recruiting these bridging translation initiation factors [46].  Therefore, the cap 

and poly(A) tail structures are both necessary mediators of downstream mRNA 

processing and stability that function, at least partially, in a synergistic manner. 

Splicing.  Splicing is the process of intron removal and exon fusion that 

occurs via two transesterification reactions as pre-mRNA undergoes processing 

to become mature mRNA, shown graphically in Figure 1.4.  In the first step, the 

2’ hydroxyl group of the branch point “A” nucleotide within the intron attacks the 

phosphodiester bond between the 3’ end of the first exon and the 5’ end of the 

intron.  This reaction frees the first exon and creates a lariat-shaped intron 

intermediate still attached to the downstream exon.  In the second step, the free 

3’ hydroxyl group on exon 1 attacks the phosphodiester bond between the 3’ end 

of the intron and the 5’ end of the next exon.  This creates a spliced exon/exon 

product and releases the intron, retaining the lariat structure.  Splicing requires a 

myriad of both cis and trans elements for proper splice site recognition and to 

catalyze the breakage and reformation of phosphodiester bonds. 
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Figure 1.4.  The splicing pathway.  The conserved sequences necessary for 
proper splicing are illustrated along with several spliceosome components that 
recognize these cis elements which aid exon ligation and intron removal.
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Cis elements include the consensus sequences surrounding the intronic 

branch point and at the 5’ and 3’ end of exons and introns.  The branch point is 

most often found within 40 bp upstream of the 3’ splice site, almost always the 

first AG dinucleotide downstream of the branch point [48,49].  The consensus 

sequences for proper intron and exon definition are ag|GTAAGT for the 5’ splice 

site and (Y)nNYAG|g for the 3’ splice site, where exonic nucleotides are in lower 

case, intronic nucleotides are capitalized, Y represents a pyrimidine (C or U), and 

n is approximately 8 [50].  These conserved sequences are each recognized by 

multiple splicing components.  A minor intron class represents an exception to 

the consensus cited above.  This minor class, referred to as AT-AC introns, 

requires a distinct minor spliceosome with components that are functionally 

analogous to the well-characterized major spliceosome (see below) [51].  For 

example, disruption of the AT-AC consensus in the tumor suppressor gene, 

LKB21, is one mutation responsible for Peutz-Jeghers syndrome [52].   

Because degeneracy is sometimes observed in these consensus 

sequences and because the splicing motifs may occur at a higher frequency than 

the number of splicing events, other cis elements are often present.  These 

sequences act either as splicing enhancers or silencers and are located in both 

introns and exons.  These intronic and exonic splicing enhancers (ISEs and 

ESEs) and intronic and exonic silencers (ISSs and ESSs) recruit a number of 

different SR (serine/arginine) proteins involved in splicing [53,54].  These semi-

conserved sequences may be present in any location on a transcript and work in 

a synergistic manner to increase exon definition and promote the proper exon 
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splicing order by recruiting certain splicing proteins or repressors [55].  Though 

consensus sequences are defined for four SR proteins, the degenerate nature of 

these sequences makes detection difficult [56].  This recognition motif 

degeneracy may allow binding overlap among the SR proteins, which could be 

important for eliciting combinatorial effects for specificity that depend on SR 

protein levels, binding affinities and specific interactions with other proteins 

(reviewed in [57,58]).  This degeneracy may be also be necessary due to the 

evolutionary selection pressures for genomic variants to maintain both proper 

splicing sequences and tri-nucleotide codons for proper protein structure [59].   

 Trans factors required for proper splicing make up the spliceosome, a 

multi-component complex that is responsible for recognition of the intron/exon 

boundaries and catalyzes bond breakage and reformation. This dynamic 

complex includes small nuclear RNAs (snRNAs) as well as multiple proteins.  

The spliceosome forms in a largely stepwise pathway based on multiple RNA 

and protein interactions mediated by the conserved RNA sequences and, in most 

steps, an ATP-dependence.  The snRNAs, U1, U2, U4, U5, and U6, together 

with their associated proteins (snRNPs), specifically bind to distinct positions in 

the pre-mRNA to mediate recognition and positioning of the 5’ and 3’ splice sites 

while also recruiting numerous proteins [60,61].  It is thought that the snRNAs 

themselves mediate catalysis during splicing (reviewed in [61]).  A second group 

of snRNAs, U11, U12, U4atac and U6atac, mediate splicing in the minor AT-AC 

intron class in the same manner as the major spliceosome [51].  
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  Serine/arginine rich (SR) proteins are also integral trans components of 

the splicing reaction.  These proteins perform numerous functions including 

binding to RNA (at ESEs for example) as a signal for splicing commitment, 

recruitment of other splicing components, bridging the 5’ and 3’ ends of introns, 

and assisting in exon and intron definition.  This protein family is characterized by 

the presence of one or more RNA recognition motifs (RRMs) and a trans-

activation domain containing serine/arginine dipeptides (RS domain), responsible 

for protein/protein interactions.  Their activation and subcellular localization is 

dependent on their phosphorylation levels [53,58]. 

 Estimates indicate that approximately 30% of disease-causing mutations 

in humans affect splicing [53,54].  It has also been hypothesized that splicing 

mutations are the most frequent cause of hereditary disease [62].  While many 

pathogenic splicing mutations disrupt intronic splicing motifs, others are located 

in the coding region where they can be frameshift, nonsense, missense, or silent 

mutations.  The inclusion of silent and missense mutations in the category of 

mutations that affect splicing is not intuitive.  However, while point and silent 

mutations are canonically thought to have little or no effect on protein activity, 

they can have severe effects if located in exon enhancer elements, subsequently 

affecting RNA integrity [63].  Indeed, several examples of silent and missense 

mutations that cause splicing errors have been reviewed [53].  Computational 

approaches support that almost every gene, whether it contains alternative or 

constitutive exons, contains multiple enhancer and silencer elements [64]. 
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Nuclear export.  It is essential that only mature mRNAs serve as the 

template for polypeptide synthesis during translation.  This process occurs in the 

cytoplasm via ribosomes.  Because RNA processing occurs in the nucleus, an 

important last step before translation is the selective export of only mature mRNA 

from the nucleus through the nuclear pore complex.  Several mechanisms are 

necessary to prevent pre-mRNAs from reaching the cytoplasm, including the 

presence of snRNPs that prevent the passage of immature transcripts through 

the nuclear pore and the association of proteins with a nuclear export signal 

specifically on fully processed transcripts.  These proteins containing a nuclear 

export signal are components of the EJC.   Beyond relocation, nuclear export 

aids processing of the mRNA transcript.  Though some protein constituents 

remain stably associated with the transcript, other components are strictly 

cytoplasmic (eIF4E, PABP1) or nuclear (CBP 80/20, PABP2) and it is during or 

immediately following nuclear export that these dynamic rearrangements take 

place which are important for translation. 

As pre-mRNA is transcribed, capped, polyadenylated, spliced, and 

exported to the cytoplasm for translation, multiple cis and trans elements are 

required.  Though the presence and proper function of trans elements is 

essential, it is notable that the sequence of the mRNA itself may have the most 

profound effects on its own processing.  If a genetic change is present or if an 

improper mRNA sequence is produced, the interactions between additional trans 

components may be able to recognize the transcript as aberrant and elicit 

degradation through the nonsense-mediated decay pathway.     
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RNA quality control: nonsense-mediated decay 
 

The nonsense-mediated decay (NMD) pathway is a quality control 

mechanism that makes mRNA transcripts with premature termination codons 

(PTCs) sensitive to degradation and thereby prevent them from undergoing 

translation, which could produce C-terminal truncated proteins with harmful gain-

of-function or dominant negative effects.  A PTC is a stop codon that resides at 

least 50 bp upstream of the last exon/exon junction [65] and can result from 

frameshifts, splicing changes, and nonsense mutations.  Genetic mutations that 

introduce PTCs and therefore result in NMD are implicated as a common cause 

of disease [66-68], highlighting the importance of this pathway for mediating gene 

expression and RNA stability. 

The evolutionary conservation of this pathway, extensively studied in 

yeast, nematode, and human cells, suggests its biological importance.  Given the 

conservation seen among NMD components and the complex interplay between 

other steps of RNA processing, it is likely that the NMD pathway not only 

functions to degrade aberrant transcripts from genetic mutations, but plays a 

more central role in gene expression.  NMD is also involved in the degradation of 

transcripts as a means of posttranscriptional control [69], those with naturally 

occurring PTCs through alternate splicing [70], and unproductive products of VDJ 

arrangement [71].  The components of this pathway have also been shown to 

influence translation initiation and termination [72], regulate pseudogenes 

[73,74], amino acid biosynthesis [75], and are closely associated with splicing 

[76]. 
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 NMD requirements.  The currently accepted mechanism for this pathway 

involves the interactions of multiple proteins (discussed below) as well as active 

cellular translation and a transcript that, as a pre-mRNA, contained introns.  

Suppressor tRNAs and various antibiotics such as anisomycin, cyclohexamide, 

and puromycin inhibit translation by different mechanisms, and treating cells with 

these compounds in turn allows the stabilization of PTC-containing transcripts 

(see examples [77-79]).  A transcript must have undergone splicing to be NMD-

sensitive, as naturally intronless genes and those with the introns removed (such 

as cDNA constructs) are immune to NMD [80-82].  During splicing, the multi-

protein exon junction complex (EJC) is deposited approximately 22 bp upstream 

of the newly-formed exon/exon junction.  One function of this dynamic protein 

complex is to provide positional information for distinguishing between a PTC, 

which would be located 5’ of the EJC, and the wild type termination codon, which 

is almost always 3’ of the EJC in the terminal exon. 

 Exon junction complex.  The EJC is a dynamic complex of proteins made 

up of core components as well as auxiliary proteins.  An EJC provides essential 

positional information for distinguishing between legitimate and premature 

termination codons and recruits the surveillance proteins, which are other 

obligate protein participants in NMD.  Other roles for the EJC include RNA 

nuclear export and upregulation of mRNA translation, either directly or by 

recruitment of auxiliary proteins [83-85].  The EJC is approximately 335 kDa and, 

when bound to RNA, protects 8-10 nucleotides suggesting that most components 

do not contact the nucleic acid itself but rely on protein-protein interactions [86].   
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The core components of the EJC are necessary for protein recruitment 

and anchor onto the RNA in a sequence independent manner.  The EJC core 

remains stably associated with the mRNA, regardless of the overall evolution of 

EJC composition, to serve as a platform for the multiple post-splicing processing 

events.  Using purified recombinant proteins and synthetic RNA, the necessary 

and sufficient EJC subunits were recently defined by Ballut et al. as MLN51, 

MAGOH, Y14, and eIF4AIII+ATP [87].  eIF4AIII was previously identified as a 

member of the EJC and shown to be required for NMD using siRNA-mediated 

protein knockdown [88-90].  It is an RNA helicase that binds RNA in a sequence-

independent manner, and along with the nucleocytoplasmic shuttling protein, 

MLN51, comprises the EJC anchor on RNA [87,91].   Stable RNA association is 

maintained by the Y14/MAGOH heterodimer that inhibits eIF4AIII ATPase 

activity, an interaction that is in turn stabilized by MLN51 [87].  Prior to the Ballut 

study, Y14 and MAGOH were defined as core components because their 

association with the mRNA was not transient; rather they could only be removed 

by translation [92].  In addition, Y14/MAGOH shuttle and recruit UPFs and other 

EJC components such as UPF3 and SMG-1 (see “Surveillance proteins” below) 

[93-95]. 

Other identified members of the EJC include RNPS1, SRm160, DEK, 

REF, UAP56, and pinin [86].  RNPS1, an RNA binding protein, co-activates 

splicing and has been confirmed to have a direct role in NMD as well [96].  

SRm160, a serine/arginine-related protein is also a splicing co-activator that is 

closely associated with DEK, originally identified as an oncoprotein, but shows 
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specific association with spliced RNAs [97].  REF (also referred to as ALY) 

interacts with TAP/p15 for mRNA nuclear export (reviewed in [98]).  UAP56 is a 

U2 snRNP auxiliary factor.  Pinin, identified by yeast two-hybrid and pull-down 

assays to interact with RNPS1, is localized in nuclear speckles and participates 

in splicing [99].  Y14 has been shown to interact specifically with REF, RNPS1, 

TAP, and MAGOH on spliced RNA [100]. 

 Surveillance proteins.  Three conserved proteins make up the core 

complex of the NMD machinery in all organisms studied.  When these 

surveillance proteins are deleted or silenced, the NMD pathway cannot be 

activated.  The human surveillance proteins, known as up-frameshift proteins, 

are distinguished as hUPF1, hUPF2, and hUPF3 (has multiple isoforms) 

[96,101].  Each performs distinct functions in the commitment of a transcript for 

degradation.   

Multiple isoforms of UPF3 encoded by two separate genes were identified 

based on homology to Saccharomyces cerevisiae Upf3 [102].  These isoforms, 

designated UPF3a and UPF3b, are nucleocytoplasmic shuttling proteins that 

both contain an RRM-like domain but differ in length by 6 amino acids and were 

therefore hypothesized to have separable roles in NMD [96].  Indeed, distinct 

complexes have been identified during NMD that contain the different UPF3 

isoforms [103].  Recently, tethering experiments demonstrated that UPF3a is less 

efficient than UPF3b for inducing NMD [101].  UPF3b is most likely the first 

surveillance factor to associate with the mRNA [96].  This association occurs 

during or following splicing, as it specifically interacts with spliced RNAs [93,96].  
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Protein-protein interactions have been demonstrated between UPF3b and the 

Y14/MAGOH heterodimer in the EJC [93,104].  In addition, UPF3 plays a role in 

translation [101] and is at least partially responsible for the recruitment of the 

second surveillance factor, UPF2, to the mRNA [105].   

UPF2 is an anchor protein that interacts with both UPF3 and UPF1.  It was 

identified and characterized based on homology with the Saccharomyces 

cerevisiae UPF2 [96,102,106]. Recent studies suggest that it is a phosphoprotein 

regulated by various phosphorylation states [107].  Though UPF2 contains 

nuclear localization signals, a GFP fusion protein revealed its presence in the 

cytoplasm [106].  Polyclonal antibody staining further refined the location of 

UPF2 as perinuclear, corroborating evidence that it most likely associates with 

the mRNA during or immediately following nuclear export [96].  It is recruited to 

mRNA by UPF3 via a direct protein-protein interaction, as illustrated by the 

crystal structure of the resulting protein complex [105].  In turn, UPF2 interacts 

with UPF1 as demonstrated by mutation studies where removing the UPF2 

residues analogous to the yeast UPF1-interacting domain prevents NMD [96].  In 

addition, immunopreciptation assays showed interactions between UPF1 and 2, 

demonstrating that UPF2 interacts with UPF1 in mammalian cells [102].   

UPF1 is the final surveillance protein to interact with an mRNA.  It is a 

shuttling protein with a primarily cytoplasmic localization.  It functions as an RNA-

dependent ATPase and 5’ to 3’ helicase and its alternate phosphorylation states 

are most likely the “triggers” for RNA decay via complex remodeling [103].  

Incomplete removal of UPF2, UPF3, and the EJC during translation recruits 
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UPF1 allowing the assembly of a complete trimeric UPF1, 2, and 3 surveillance 

complex.  UPF1 is recruited to nuclear mRNA as a member of the SURF 

complex (SMG-1, UPF1, eRF1, and eRF3), most likely just after termination 

codon recognition [95].  The likely signal that a termination codon is premature is 

if the SURF complex at the termination codon can interact with a downstream 

EJC-UPF2-UPF3 complex.  This interaction is thought to cause UPF1 

phosphorylation by SMG-1, a phosphatidylinositol 3-kinase-related protein kinase 

[95,108,109].  Phosphorylated UPF1 then induces remodeling of the surveillance 

complex [95].  Subsequent UPF1 dephosphorylation by protein phosphatase 2A 

(PP2A), when associated with the human SMG5/7a complex, is also necessary 

for NMD [103,110].  Tethering experiments suggest that the presence of SMG-7 

on a transcript, irrespective of the presence of a PTC or the C-terminal protein 

interaction domain, targets it for degradation, illustrating a role for 

dephosphorylation as an NMD trigger [111].  Therefore NMD likely is triggered 

first by UPF1 phosphorylation to induce remodeling and recruit SMG-7 (in a 

complex with SMG-5 and PP2A), which then triggers RNA decay and UPF1 

dephosphorylation via SMG-5 and PP2A [111].  These observations underscore 

the importance of UPF1, mediated by its phosphorylation state, in eliciting NMD. 

NMD location.  The processes of RNA splicing, nuclear export, translation, 

and NMD surveillance are mechanistically linked in part due to the multiple 

functions of proteins associated with mRNPs and the numerous steps of mRNP 

remodeling.  However, each of these processes, except NMD, shows distinct 

sub-cellular localization.  The sub-cellular localization of NMD is unclear, but 



 24

thought to be “nucleus-associated” in part because some EJC components and 

the surveillance proteins show nuclear localization (DEK, SRm160), while others 

are primarily cytoplasmic (UPF1) [83].  Whereas the translational machinery 

necessary for termination codon recognition is located in the cytoplasm, most 

evidence suggests that in eukaryotic cells, RNA degradation occurs while 

associated with the nucleus [80,112].  For example, NMD degradation occurs 

specifically on transcripts associated with the CBP 80/20 complex which is only 

bound to nuclear transcripts.  Once the nuclear the translation initiation factor 

eIF4E replaces CPB 80/20 on the mRNA transcript, it is not sensitive to 

degradation [113].  In support of this observation, an anti-CBP80 antibody, but 

not an anti-eIF4E antibody, co-immunopurifies with the EJC components RNPS1, 

Y14, SRm160, REF/Aly, and TAP in both nuclear and cytoplasmic fractions 

[114].  In mRNP complexes containing UPF2 and UPF3b, CBP80 but not eIF4E 

is detected by immunopurification suggesting NMD occurs while the transcript is 

bound by CPB80/20 and that eIF4E binds at the same time as or after transcript 

surveillance and EJC removal [113,114].  In addition, translation has been 

observed while transcripts are bound to CPB80/20, consistent with the 

requirement of translation for NMD [113].   

A current model to explain these observations is that transcripts go 

through a nucleus-associated “pioneer round of translation” (reviewed in [98]).  In 

this model, the RNA undergoes a preliminary scan by the translation machinery 

while still associated with the surveillance proteins, the EJC, and the nuclear 5’ 

and 3’ proteins.  If no PTCs are located, the RNA is remodeled to the steady-
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state translation initiation complex.  If a PTC is located, the transcript submits to 

degradation [98].  In an effort to illustrate distinctions between these two 

translation events, Chiu et al demonstrated that the pioneer and steady-state 

translation initiation complexes involve distinct mRNP substrates, despite overlap 

in their requirement for several translation initiation factors [115].  This nuclear 

association, along with major components of this pathway, is illustrated in Figure 

1.5.  

Once NMD is triggered, decapping and deadenylation occur succeeded by 

3’ to 5’ and 5’ to 3’ exonuclease degradation [116,117].  Though there are two 

distinct decapping complexes, Dcp1/Dcp2 and DcpS, only the first has been 

studied in conjunction with NMD-mediated degradation.  Whereas Dcp1 is non-

catalytic, its presence is necessary for the stimulation of the catalytic Dcp2 

enzyme (rev in [43]).  When Dcp2, as well as a deadenylase (PARN; poly(A) 

ribonuclease), and a component of the 3’ to 5’ exosome (PM/Scl100) were each 

individually inhibited by siRNA, NMD-containing transcripts were stabilized 

suggesting the involvement of each in NMD [117].  In addition, UPF1, UPF2, and 

UPF3 coimmunopurify with each of those proteins as well as other 5′→3′ 

exonucleases (Rat1 and Xrn1), and other components of the exosome (Rrp4 and 

Rrp41), suggesting that the surveillance complex is responsible for recruiting 

decay factors during NMD [117,118].  The relative efficiencies for decapping and 

deadenylation, however, remain unknown.
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Figure 1.5.  Nonsense-mediated decay.  This graphical overview of NMD 
illustrates the link between splicing, nuclear export, and the pioneer round of 
translation.  NMD surveillance occurs on transcripts bound by the CPB complex.  
The spatial interactions between SURF/UPF1 and the EJC/UPF2/UPF3 
complexes identify termination codons and in the presence of a PTC, the 
complex is degraded following decapping and deadenylation.  If no PTC is 
recognized, the transcript is remodeled to a steady-state complex.  
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 NMD in disease.  It has been estimated that up to 30% of disease-

associated variants create PTCs through nonsense or frameshift mutations [67].  

The presence of NMD has been shown to alter the phenotypic consequences of 

genetic mutations.  Specifically, a mutation that would produce a protein with a 

dominant negative effect if translated could be changed by NMD to cause a loss 

of function or haploinsufficiency phenotype.   

One physiological example of the phenotypic effects of NMD is the 

spectrum of disease-causing variants found in the Sox10 transcription factor.  

Most disease-associated mutations in this gene result in PTC formation.  Patients 

with PTCs that occur upstream of the terminal exon/exon junction have a less 

severe phenotype because of NMD degradation whereas those with PTCs 

occurring downstream of the terminal exon/exon junction produce a dominant 

negative Sox10 protein [119].  A severe phenotype is therefore present because 

though the protein retains the DNA binding domain, it lacks the protein domain 

necessary for interaction with other transcription elements and disrupts 

transcription of target genes. 

NMD also shows particular consequences in proteins that bind as 

multimers, such as the protein components of hemoglobin.  Prior to 

characterization and appreciation of the NMD pathway, phenotypic differences 

had been described in patients with β-thalassemia.  Patients with nonsense 

codon mutations in non-terminal exons had a less severe phenotype, while 

nonsense codon mutations in the terminal exon correlated with the most severe 

phenotype [120].  In addition, mRNA levels were decreased only in patients with 
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nonsense codons in the non-terminal exons [120].  These results can be 

explained by the multimeric protein complex that makes up hemoglobin: 2 α- and 

2 β- complexes create a tetramer.  When incomplete β-globin protein subunits 

are translated, they are able to aggregate with wild type α- or β-globin proteins.  

However, the presence of truncated subunits prevents proper function of the 

holoenzyme.  Therefore, the mutant subunits can exert dominant-negative effects 

by impairing the holoenzyme despite the presence of wild-type subunits.  NMD 

that prevented formation of these truncated subunits would also prevent the 

formation of these non-functional aggregations.  In this manner, NMD can protect 

heterozygous carriers of genes with a PTC from manifesting a more severe 

disease phenotype that would result from the expression of truncated proteins. 

 On the contrary, the activation of NMD may prevent otherwise functional 

proteins from translation.  If the truncated protein does not dimerize with other 

proteins and active sites for binding substrates are not disrupted, the translation 

of this truncated transcript could then prevent a disease phenotype.  Strategies to 

inhibit NMD could therefore be useful for diseases such as cystic fibrosis, 

Duchene’s muscular dystrophy, Hurler Syndrome, and X-linked diabetes.  These 

diseases are all associated with PTC forming mutations which would produce at 

least a partially active protein if translated [68]. 

Many lines of evidence point to the conclusion that there are many 

genomic mutations that alter the processing of the RNA transcript rather than the 

structure and/or function of a protein product.  It is becoming increasingly clear 

that nonsense-mediated decay is a common phenomenon that can change 
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clinical phenotypes and will greatly impact the interpretation of mutation 

mechanisms.  Disruption of RNA processing and quality control pathways is likely 

to be highly relevant in the study of severe genetic diseases such as CPSID that 

are caused by mutations that most often result in severe metabolic defects, 

suggesting they result in little or no detectable enzyme activity. 
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Thesis Overview 

 

Hypothesis 

The underlying molecular mechanisms causing disease in a substantial fraction 
of CPSID patients are defects in RNA processing such as splicing mutations and 
nonsense mediated decay and these mutations can be studied via a novel model 
using a BAC clone. 
 

Specific Aims 

I. Identify and quantify potential RNA instability mutations in patients with 
 CPSID 
 

A. Mine patient database for patients with an RNA source and 
complete their cDNA screening 

 
B. Characterize and quantify the percentage of mutations with 

evidence for RNA instability  
 
C. Choose 4-6 mutations to study in detail 
 

II. Devise a model system that can be used to test RNA instability mutations 
 in CPSI 
 
 A. Modify a BAC with the CPSI gene to contain E-GFP, Hygromycin  
  resistance, EBNA-1 (pEHG vector) 
 
 B. Place a viral promoter 5’ of CPSI on BAC to drive expression in  
  non-hepatic cells 
 

C.  Test model system for CPSI expression 
 

III. Test putative RNA instability mutations to determine the RNA processing 
 defect 
 
 A. Create patient mutations in BAC model system 
 
 B. Examine mutations to determine RNA processing defect using  
  quantitative RT/PCR, agarose RT/PCR, sequencing, and Northern  
  blots 
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CHAPTER II 

 

ESTIMATING THE PREVALENCE OF RNA INSTABILITY MUTATIONS IN 
CPSID 

 

Introduction 

 A primary objective in understanding CPSI Deficiency is to classify 

identified mutations according to how each causes the resulting enzyme 

deficiency because even single-gene, classical Mendelian disorders exhibit 

alterations in disease severity based on the specific genetic mutation [121,122].  

Accordingly, the heterogeneous set of mutations found in CPSID patients likely 

includes mutations that affect the final protein structure as well as mutations that 

disrupt normal processing of the RNA transcript.  This Chapter describes the 

quantification of mutations that are likely RNA processing defects and provides 

evidence for this classification.  The data was collected from the CPSID database 

maintained in the Summar laboratory detailing thorough examination of patient 

gDNA as well as RNA, when possible.  This is the largest known database of 

CPSID patients, representing almost every known case in the United States and 

abroad collected over the previous 15 years.   

Before the CPSI genomic structure was determined, laboratory efforts to 

identify patient mutations focused on the amplification of RNA from hepatic tissue 

or established patient fibroblast or lymphoblastoid cell lines.  Due to the rare 

nature of CPSID, the expectation was to find consanguinity and homozygosity as 

a common cause of disease.  However, in a majority of families with no obvious 
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consanguinity, only one allele could be detected in cDNA screens.  Following 

determination of the gene structure, gDNA mutation detection revealed that these 

same non-consanguineous patients were actually heterozygous for two 

mutations.  This puzzling “missing allele” observation suggested that some 

mutations were causing unstable RNA and were therefore not detected in the 

cDNA sequence.   The characterization of the nonsense-mediated decay 

pathway (NMD) provides a reasonable explanation for the “missing allele” 

observations.   

In addition to observations made through the study of CPSID, there is a 

growing body of evidence to show that many genetic mutations do not affect the 

protein product but rather the processing of the transcript, meaning that mature 

proteins are not always produced [75,123].  As detailed in Chapter I, NMD can 

change the phenotypic consequences of nonsense mutations by preventing the 

formation of dominant negative proteins that could result from partial transcripts 

and therefore may be a significant factor in the mutation pathology and 

observations of haploinsufficiency for a number of diseases [66].  Multiple 

publications estimate that up to 30% of genetic disorders and cancers could be 

the result of PTC-containing transcripts [66,67].  In agreement with these 

estimates, the CPSID “missing allele” observation suggests that a large number 

of mutations in the laboratory database affect the RNA transcript. 

 To understand more about RNA processing, it is beneficial to look for 

physiological examples of probable RNA processing mutations, as are present in 

CPSID patients.  The study of mutations known to cause a disease phenotype 
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should be an effective way to identify important elements in the CPSI gene as 

well as to contribute to the overall understanding of RNA processing.  In this 

Chapter, CPSID is used as a model for understanding and predicting the 

prevalence of PTC-forming mutations responsible for genetic disease.  For the 

patients in the CPISD database for which both an archived RNA and DNA source 

were available, a significant number of suspected RNA processing mutations 

were identified.  This evidence suggests the importance of accounting for PTC-

containing transcripts in all disease mutation screening strategies. 

 

Materials and Methods 

Patient selection.  For this study, only patients with an available gDNA and 

RNA source were included.  These patients were determined to have CPSID by 

analysis of hepatic tissue enzyme activity (less than 5% of control), and/or a 

strong family history of CPSID with convincing clinical and laboratory symptoms 

of this disease [124].  If no liver sample was available for gDNA and RNA 

archiving, patient tissue was used to establish lymphoblastoid or fibroblast cell 

lines.  In the instance where patient tissue was unavailable, parent samples were 

collected for analysis (patient 1 and 18 in Table 1 are CPSID carriers).  All 

patients tested for this study were of the same ethnocultural background and 

over 100 control chromosomes were examined for each identified genetic variant 

using a PCR-based strategy.  Institutional Review Board approval was obtained. 

SSCP.  Single strand conformation polymorphism (SSCP) analysis was 

used as a high throughput method to detect mutations in each exon due to the 
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sequence-specific folding conformations of single-stranded DNA.  PCR was used 

to amplify all exons and at least 50 bp of the flanking intron sequences in CPSID 

patients to detect mutations.   These reactions were carried out using Platinum 

SuperMix (Invitrogen) and primer pairs previously published by the laboratory 

[12].  PCR reactions were then denatured by heating at 95°C for 2 min and 

quickly transferred to ice for formation of sequence-specific complexes.  The 

complexes were run for 8 to 14 h at 15 w in a non-denaturing MDE (mutation 

detection enhancement, Cambrex Bio Sciences) gel at 4°C.  Gels were silver 

stained and examined for any conformation shifts compared to wild-type controls.  

Multiple control samples containing established polymorphisms were used to aid 

determination of whether variants constitute polymorphisms or mutations specific 

to CPSID patients.  All samples creating conformational shifts were sequenced to 

determine the exact mutation.   

RT/PCR analysis of Patient RNA.  For every available patient RNA 

source, reverse transcription and amplification of the resulting cDNA was 

performed in four overlapping PCR reactions.  Patient RNA was obtained by 

standard cesium chloride gradient separation or Trizol Reagent (Invitrogen).  

RNA isolations were from hepatic tissue, if available, or lymphoblastoid or 

fibroblast cell lines established from the patient.  Though these cell types do not 

express detectable amounts of the CPSI enzyme, sufficient transcription occurs 

to amplify intact CPSI transcripts [25].   Reverse transcription was carried out 

using 1 μg of total RNA and either an oligo-dT primer or L2894 

(5’GTGAGCCCAAGGCATTT3’), an antisense primer from the midpoint of the 
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CPSI message.  Using the RT product as template, PCR reactions were 

performed with four different primer sets creating four large overlapping 

fragments spanning the 4600 base coding region (U122 –

5’AAATGACGAGGATTTTGACA3’ and L829 --

5’CTAGCAGGCGGATTACATTG3’ amplify exons 1-8; U811 --

5’AATGTAATCCGCCTGCTAGT3’ and L2335 – 

5’CAATGAATGCCAATGGGTAG3’ amplify exons 8-18; U2229 – 

5’CCTTCATCCTACCTCAATGG3’ and L3723 – 

5’ACCTGCATCTTCAACATGTT3’ amplify exons 18-30; U3182 – 

5’TGAGCACAGACTTTCATGAG3’ and L4674 -- 

5’ACATGTGGCTCAGGTTGATT3’ amplify exons 25-38.  See Figure 2.1.   

The products amplified in the PCR reaction were then sequenced and mutations 

located based on comparisons with the known CPSI cDNA sequence as well as 

comparisons with mutations found in the corresponding patient gDNA.  

Amplification was repeated in all cases to avoid PCR-induced errors. 
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Figure 2.1.  Location of RT/PCR primer sets.  Primer pairs are denoted by 
matching arrowheads.  Primers used for PCR following RT with L2894 are 
denoted by a solid tail.  Primers used for PCR following RT with oligo LdT are 
denoted by a dashed tail. 
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 Sequencing and Densitometry.  Samples exhibiting shifts in SSCP as well 

as all RT/PCR products were subjected to dideoxy-sequencing using radio-

labeled terminators (Amersham Biosciences).  For gDNA, sequencing was 

always performed in parallel with wild-type controls.  The cDNA sequence was 

routinely examined for the presence of each identified gDNA mutation, intron 

inclusions, and exon exclusions.  To determine the relative representation of 

each allele in cDNA sequence, densitometry was performed using the 

QuantityOne platform (BioRad) on high-resolution autoradiograph images. 

 Northern Blotting.  Northern blotting was performed on two patient hepatic 

samples that had been flash frozen immediately upon extraction (at the time of 

transplantation or death).  Total RNA was obtained through cesium chloride 

gradient isolation and poly-A enriched RNA was obtained through a subsequent 

oligo-dT cellulose extraction.  A quantity of 10 μg total RNA and 5 μg poly-A RNA 

was used for gel electrophoresis in a 1.1% agarose/2.2 M formaldehyde gel.  The 

gel was stained with ethidium bromide for photodocumentation and then 

subsequently transferred to a Hybond N+ membrane (Schleicher and Schuell).  

CPSI probes were either a 2400 bp fragment from the 3' translated region of the 

CPSI message or a 700 bp fragment from the 5' translated region, each labeled 

by nick-translation with α32P dCTP.  After probe hybridizations, the membrane 

was washed in 2X SSC/0.1% SDS at room temperature and in 

0.1xSSC/0.1%SDS at 42ºC and 50ºC prior to autoradiography.  To control for 

RNA quality, the same blot was sequentially stripped and re-probed with radio-

labeled cDNA probes for α-1-antitrypsin and the intronless HSP-70 gene. 
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Results 

Mutation Detection.  In a collection of approximately 100 patients, both 

DNA and RNA were available for mutation screening from 26 patients, most with 

the neo-natal onset form of disease (Table 2.1).  In these patients, 44 mutations 

were identified (Table 2.1).  Allele heterozygosity for every patient was confirmed 

in gDNA; in most cases two disease alleles were identified and in cases where a 

second mutation was not found, the patient was heterozygous at several 

identified polymorphisms. 

RT/PCR.   For all patients, RT/PCR was performed and the products were 

sequenced to determine if identified gDNA changes were also present in the 

RNA transcript.  RT/PCR sequencing revealed that many mutations, though 

heterozygous and equally represented in gDNA sequence, were missing or 

unequally represented in patient cDNA sequence (Table 2.1).  Allele 

representation in cDNA sequence was categorized as “homozygous” if there was 

no visible representation of one of the genomically heterozygous disease alleles 

in cDNA, “heterozygous” if there was no difference in cDNA expression of both 

alleles, or “unequally heterozygous” if there was an appreciable difference in 

intensity between the two alleles, yet both were visible on the sequence (Fig. 

2.2).  Mutations not present or unequally represented in cDNA suggested a 

negative effect on the RNA transcript stability. 

 In 21/26 patients the cDNA was given either an “unequal heterozygous” or 

“homozygous” score, representing 40% of the total alleles screened in this study.  

These alleles, listed in the dark gray shaded portion of Table 2.1, were all placed 
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in the “Allele B” category for the purpose of comparison.  To quantify the allele 

representation on each RT/PCR sequence, densitometry was used to calculate 

the percent expression of each Allele B mutation when compared to Allele A (set 

at 100% expression).  The genomic alleles not represented or weakly 

represented in cDNA sequence were primarily nonsense, frameshift, or splicing 

mutations that cause the formation of a downstream PTC whereas the allele 

visible on cDNA was typically a missense change.  In very few instances, the 

non-represented sample was a missense or silent mutation (patients 5, 10, and 

13).  Only in patient 16 were both mutations putative RNA processing defects, 

confounding the ability to accurately assess the percentage of each allele 

representation (Table 2.1). 

 The intronic mutations, each located at the 3’ end of the intron, were 

identified specifically in CPSID cases (patients 2, 6, and 9).  In patient 2, the 

presence of a faint allele on the cDNA sequence containing a dinucleotide AG 

insertion at the first two bases of exon 6 confirmed a splicing change.  For the 

other intronic mutations, no specific splicing change was detectable in the cDNA 

though the patient was homozygous for the alternate allele.  A splicing defect 

was likely for patient 6 because the mutation, located at the last base of the 

intron, disrupts the conserved 3’ splice site AG dinucleotide.  Pathogenicity of the 

intronic mutations was therefore substantiated by the absence of the mutation in 

non-CPSID samples, the inability to detect another mutation on that allele, and 

the disruption of the conserved 3’ splice site sequence. 
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Table 2.1.  CPSID patient mutations. 

NN = neonatal, LO = late-onset, F = fibroblast, H = hepatic, L = lymphoblastoid, ND = not determined, Gray shading = RNA instability mutation, * denotes child’s disease onset 

Pt Dz 
Onset 

Cell 
Type Allele A Mutation type Allele B Mutation 

Type 
Densitometry:  
B  as % of A 

cDNA 
Classification PTC 

Position 
PTC Exon 
Location 

1 NN* L Carrier --- c.543 C>A Nonsense 62.6 Unequal Hetero Y139X 4 

2 NN F c.2996 T>C Missense c.652-3 T>G Intronic Sub 38.2 Unequal Hetero +70 bp 6 

3 NN H c.2271T>A Missense c.854 del T Frameshift 30.9 Homozygous L243X 8 

4 LO L N.D. --- c.854 del T Frameshift 38.7 Unequal Hetero L243X 8 

5 NN F c.2855G>T Missense c.1025G>A Missense 32.7 Unequal Hetero N.D. N.D. 

6 NN H c.2271T>A Missense c.1210-1G>T Intronic Sub 0 Homozygous N.D. N.D. 

7 LO L N.D. --- c.1318_1319 del AA Frameshift 21.9 Unequal Hetero +65 bp 12 

8 LO H c.4355C>T Missense c.1555 C>T Nonsense 43.2 Unequal Hetero Q477X 14 

9 NN H c.3389G>T Missense c.1960-8A>G Intronic Sub 0 Homozygous N.D. N.D. 

10 NN L c.5455T>C Missense c.2388C>A Silent 12.8 Unequal Hetero N.D. N.D. 

11 NN F c.2271T>A Missense c.2461 del C Frameshift 0 Homozygous +37 bp 19 

12 NN F N.D. --- c.3006_3018 del 13 Frameshift 0 Homozygous +14 bp 24 

13 NN F c.434 ins GAATGG Insertion c.3116C>T Missense 55.8 Unequal Hetero N.D. N.D. 

14 NN L c.3730T>C Missense c.3167 ins G Frameshift 46.1 Unequal Hetero +7 bp 25 

15 NN L c.4255G>A Missense c.3308 del A Frameshift 52.7 Unequal Hetero + 111 bp 26 

16 NN F See row below --- c.3481_3483 del AA Frameshift 71.8 Unequal Hetero +74 bp 28 

     c.3907 C>T Nonsense 17.1 Unequal Hetero R1261X 32 

17 NN L c.4450A>G Missense c.3907 C>T Nonsense 52.9 Unequal Hetero R1261X 32 

18 NN* L Carrier --- c.3927_3931 ins 4 Frameshift 48.5 Unequal Hetero +15 bp 32 

19 LO F c.4114T>C Missense c.4092_4093 ins CC Frameshift 40.9 Homozygous +4 bp 33 

20 NN L c.2536T>C Missense N.D. N.D. 0 Homozygous N.D. N.D. 

21 NN F c.1292T>G Missense N.D. N.D. 0 Homozygous N.D. N.D. 

22 NN F c.2041G>T Missense c.4520 ins T Frameshift 99.2 Heterozygous +25 bp 38 (terminal) 

23 NN L c.1189A>G Missense c.1289A>G Missense 95.8 Heterozygous --- --- 

24 NN F c.2271T>A Missense c.2552A>G Missense 99.9 Heterozygous --- --- 

25 NN H c.1888G>A Missense c.3736G>A Missense 96.9 Heterozygous --- --- 

26 NN F c.3067G>A Missense N.D. --- 83.0 Heterozygous --- --- 
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Figure 2.2.  Patient gDNA and cDNA sequence depicting differences in cDNA appearance.  The top panels show 
heterozygous genomic DNA sequence with patient DNA (pt) loaded alongside a control DNA sample (+).  Arrows identify 
the mutations.  The bottom panels are cDNA sequence showing patient cDNA with arrows identifying the mutation 
location.  A difference in intensity between two visible alleles scores as “unequal heterozygosity.”  A “heterozygous” score 
illustrates that there is no difference in cDNA expression of both alleles.  When no visible representation of the disease 
allele is detected, the cDNA is categorized as “homozygous.” 
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 In addition to the 19 patients included in the dark gray portion of Table 2.1, 

there were three patients with disparate gDNA/cDNA appearances.  Patients 20 

and 21 were confirmed to have heterozygous gDNA based on the identification of 

one disease allele as well as the presence of alternate alleles for previously-

described polymorphisms [12].  Each also was classified as homozygous for the 

identified disease allele following the cDNA screen, indicating that there is a 

second, undetermined disease mutation in the allele not represented by cDNA 

(Table 1, light gray shading).  Patient 22 was classified as heterozygous in both 

the gDNA and the cDNA screen though one disease allele was a frameshift 

mutation (c.4520 ins T).  This frameshift created an aberrant stop codon in the 

terminal exon, consistent with the inability of aberrant stop codons to elicit NMD 

when located downstream of the last exon/exon junction.  Patients 23-26 were 

heterozygous for two alleles in both gDNA and cDNA sequences, none of their 

mutations were frameshifts, nonsense mutations, or apparent splicing defects 

and would not therefore be expected to affect RNA stability.  

 There was no observable clustering of mutations towards the beginning or 

end of the transcript; rather, they extend throughout the entire 4600 bp coding 

region.  There was also no correlation between the cDNA appearance and the 

tissue type screened, which could have otherwise confounded our conclusions 

by indicating the possibility that these observations were linked to expression 

differences between liver, fibroblast, and lymphoblastoid cells.  There was also 

no obvious correlation between the cDNA appearance and the distance of the 

PTC from the end of the transcript, excluding the last exon. 
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 Northern Blot.  Using hepatic RNA obtained from patients 6 and 13, 

Northern blot analysis was performed to examine CPSI transcripts (Figure 2.3).  

Patient 6 demonstrated heterozygosity for both the c.2271T>A missense 

mutation and the c.1210-1G>T intronic substitution mutation in genomic 

sequence.  However, the allele containing the intronic mutation was absent in the 

patient cDNA sequence.  Patient 13 also had heterozygous gDNA but 

demonstrated unequal heterozygosity in cDNA, as the c.3116C>T missense 

mutation was underrepresented when compared with c.434ins6 (see Table 2.1).  

In Figure 2.3A, both the gel stained with ethidium bromide before membrane 

transfer and then separate hybridizations of HSP-70 and α-1-antitrypsin control 

probes following transfer demonstrate RNA integrity and equal loading of all 

samples.  This same membrane was then hybridized with a CPSI probe which 

demonstrated variability among the samples tested.  For patient 13 (lane 2), 

there was a minimal amount of CPSI transcript detected when compared to 

control livers from a newborn (lane 4) or fetus (lane 1) although equal amounts of 

RNA were loaded.  For patient 6 (lane 3), there was a very small amount of the 

expected 5.2 kb CPSI transcript and a large continuous smear of smaller RNA 

fragments.  A separate blot, containing an aliquot of the same RNA tested above, 

was probed with a larger CPSI cDNA fragment that demonstrated degradation 

from both total and poly-A enriched RNA (Fig. 2.3B).  Taken together, these 

observations indicate evidence of CPSI-specific RNA degradation in both CPSID 

patients.
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Figure 2.3.  Northern Blot of hepatic RNA from patients 6 and 13.  A.  RNA visualized first by ethidium bromide 
staining that was then transferred and sequentially probed with HSP70, alpha-1-antitrypsin, and a 5’ 700 bp CPSI probe.  
B.  HepG2 and patient RNA enriched for polyadenylation from the same preparation as in (A) but on a separate blot was 
hybridized with a CPSI probe complementary to the 3’ end of the transcript. 
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Discussion 

CPSI Deficiency, characterized by a heterogeneous set of mutations, is 

not only a model for understanding the prevalence of disease-causing mutations 

that create PTCs, but also an illustration of how the understanding of RNA 

processing has changed the way mutation pathology should be analyzed.  When 

the Summar laboratory first began the identification of disease causing mutations 

in CPSID, the absence of the gene structure made it necessary to use patient 

cDNA, a step that is frequently overlooked in current mutation detection 

schemes.   Though the “missing allele” observation was at first a challenging 

puzzle, the characterization of the NMD pathway provided clarifications.  

Following the definition of the CPSI gene structure, the gDNA sequence was 

examined alongside the cDNA sequence.  Screening both not only allowed 

insight into more precise mutation mechanisms, but also led to an analysis of the 

considerable number of RNA processing defects found in CPSID patients. 

21/26 patients with heterozygous gDNA and a testable RNA source had at 

least one presumptive RNA processing defect.  Factors substantiating this 

conclusion include the disparities in allelic signal between gDNA and cDNA 

sequence (Table 2.1) and the CPSI-specific RNA changes seen in patient RNA 

analyzed by Northern blot (Figure 2.3).  There is a direct correlation between 

mutations resulting in very little or no RT/PCR product and mutations that 

introduce a PTC (either directly or a point mutation or from a frameshift resulting 

from an insertion, deletion, or splicing defect).  This correlation challenges the 

possibility of other causes of allelic dropout.   Additionally, the identification of 
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one silent and two missense mutations that were unequally represented in cDNA 

suggests that they may affect splicing through disruption of an exon splicing 

enhancer, as described for other genes [123].  Further support for an NMD 

mechanism was provided by patient 21 because the c.4520 insT mutation, 

creating a stop codon in the terminal exon, had heterozygous cDNA.   This is 

consistent with previous observations that aberrant stop codons only elicit NMD 

when located at least 50 bp 5’ of the terminal exon/exon junction [65].  

Though important in mutation pathology determination, there are a few 

limitations to studying patient RNA.  It is often difficult to obtain patient RNA 

sources, as evidenced by the laboratory’s collection of CPSID patients where 

only 25% of cases have an archived RNA source.  Though this investigation and 

others have successfully used low-copy transcripts from diagnostically available 

tissue sources, limitations to this approach have been suggested.  Haberle et al 

[125] showed that patient fibroblast cultures can be manipulated with 

cyclohexamide to detect NMD on low-level transcripts of NAGS (another hepatic-

specific urea cycle gene; see Chapter 1) whereas Bateman et al [126] suggested 

that relying on collagen X mRNA analysis from a tissue source where collagen X 

is not expressed possibly results in erroneous conclusions.  Such limitations 

underscore the importance of developing a laboratory model system to allow 

determination of various disease-causing mutation mechanisms on a uniform 

background. 

The progression of understanding the molecular pathology of CPSID is a 

chronicle that mirrors the growing understanding of mutation mechanisms in 
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general.  As genetic tools and scientific knowledge have increased over the 

years, coupled with the description of the CPSI genomic structure, clues towards 

understanding the molecular mechanisms of this disease have progressed.  An 

explanation for the “missing alleles” is that they are an indication of RNA 

instability, likely the result of degradation through the NMD quality control 

pathway to ensure that aberrant transcripts are not translated.  Mutation 

discovery using both cDNA and gDNA not only provides a better mutation 

detection rate, but also affords insight into the molecular mechanism of those 

mutations.  In a screen of 26 CPSID patients, 21 had at least one RNA instability 

mutation.  Out of 52 total alleles, 21 or 40% of the alleles responsible for this 

disease affect the RNA transcript.  As ways become available to test mutations 

from patients without a RNA source, more mutations of this type will surely be 

found.  Examining RNA instability and NMD in a growing number of diseases, 

including inborn errors of metabolism, provides evidence that this is a common 

mechanism leading to genetic deficiencies and highlights the importance of RNA 

processing defects in molecular pathology.   

 

This Chapter is derived from an article that is also published in Molecular 

Genetics and Metabolism [127]. 
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CHAPTER III 

 

BUILDING THE BECC VECTOR MODEL SYSTEM 

 

Introduction 

Examining the functional mechanisms of identified pathogenic alleles in 

CPSI (as well as many other diseases), is often difficult.  Frequently, patient 

tissue is not available for RNA analysis or is not amenable to manipulations 

necessary for detecting mutation pathology.  In addition, many identified CPSI 

mutations are intronic and therefore cannot be tested in cDNA constructs.  

Because CPSI contains 37 introns and spans over 120 kb of genomic sequence, 

the use of conventional “minigene” plasmid constructs is also not efficient for 

screening these intronic mutations.  Bacterial artificial chromosomes (BACs) 

have fewer size constraints than plasmids and allow large genomic inserts, 

permitting the inclusion of the whole CPSI gene on a single construct.  Therefore, 

the goal was to create a unique BAC-based model system that would allow 

comprehensive, yet efficient, testing of any mutation in CPSI, irrespective of type 

or location.  This system should be widely applicable to many experiments 

geared towards examining both coding and non-coding sequences, and by 

studying these genetic variants within their wider sequence context, a more 

accurate determination of the mechanistic effect should be possible.  Though it 

was designed for the study of CPSI mutations, its application extends to studies 
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of other genes, demonstrating its versatility as a platform that decreases the 

dependence on patient tissue sources.   

To create this new expression vector, a BAC clone containing the full 

CPSI gene was modified by two recombineering steps.  First, the addition of the 

pEHG plasmid (see Results) provided elements necessary for stable expression 

and selection in eukaryotic cells.  Second, insertion of a CMV promoter upstream 

of CPSI allowed ubiquitous expression of this hepatic-specific gene.  This 

completed vector, named BECC (Bac+pEHG+CMV+CPSI), was then tested for 

expression in eukaryotic cells.  It was necessary to determine conditions that 

would allow efficient transfection into eukaryotic cells, stable cell line generation, 

and exogenous gene expression.  This Chapter details these BAC manipulations 

and experiments performed to ensure proper integrity and function of this novel 

BAC-based model system for studying genetic mutations.   

  

Materials and Methods 

BAC recombineering.  The pEHG plasmid (see Results) was inserted into 

the backbone of BAC RP11-349G4 using Cre/loxP recombination, as performed 

previously for other BAC constructs [128].  This method takes advantage of the 

single loxP sequence in the backbone of all BAC vectors and the single loxP 

sequence in the pEHG plasmid.  To prokaryotic cells containing the BAC and 

induced to express the Cre recombinase, the pEHG plasmid was electroporated 

and recombinant colonies were selected based on both chloramphenicol (gene 
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located on the BAC) and ampicilin resistance (gene located on the pEHG 

plasmid).  

CMV vector construction and homologous recombination.  To insert the 

human CMV immediate-early promoter (Towne strain) upstream of CPSI on the 

BAC+pEHG vector, the pCMV/Bsd plasmid (Invitrogen) was first modified.  A 

KpnI restriction enzyme site was engineered at position 1937 by site-directed 

mutagenesis (Stratagene QuickChange Kit).  Then, KpnI and XhoI were used to 

create a complementary insertion site for DNA fragment containing the 

tetracycline resistance gene flanked by FRT sites from plasmid pTet/Frt [129].   A 

5’ homology arm was then synthesized (Invitrogen) containing 50 bp of 

homologous sequence to the BAC backbone as well as NotI and NheI overhangs 

to direct insertion directly 5’ of the Tet/FRT sequence.  A 3’ homology arm was 

synthesized (Invitrogen) to contain 50 bp of homologous sequence to the CPSI 

gene beginning with the transcription start site of CPSI (AF154830) as well as 

RsrII and XmaI overhangs to direct insertion downstream of the CMV promoter.   

Sequencing of the newly created pCMV/Bsd+Tet+HomArm construct was 

performed to ensure its integrity.   All restriction enzymes used in this protocol 

were purchased from New England Biolabs.  Homologous recombination 

between the BAC+pEHG construct and the newly created 

pCMV/Bsd+Tet+HomArm construct was possible because the BAC+pEHG 

construct had previously been electroporated into the E. coli EL250 strain which 

can be induced for high levels of recombination [130].   A monoclonal colony 

containing BAC+pEHG was induced for recombination by a temperature shift 
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from 32ºC to 42ºC followed by electroporation of the constructed 

pCMV/Bsd+Tet+HomArm vector.  Recombinants were selected by growth on 

LB+tetracycline and confirmed to have undergone homologous recombination by 

direct sequencing.  A monoclonal colony was then treated with arabinose for 

induction of the Flp recombinase, which will cause removal of the tetracycline 

resistance gene.  Following arabinose induction, colonies were grown on LB-

tetracycline plates and replica plated onto LB+tetracycline plates.  Colonies 

growing only on the –tet plates were selected for direct sequencing to confirm 

removal of the tetracycline cassette.  The newly created 

BAC+pEHG+CMV+CPSI construct (BECC) was purified using the NucleoBond 

BAC Maxi AX500 kit (BDBiosciences).  

Pulse field gel electrophoresis (PFGE).   PFGE was performed following a 

3 h digestion of BAC DNA at 37°C with NotI (New England Biolabs) in a 1% 

agarose 0.5% TAE gel run at 6 v for 16 h with an initial switching time of 0.2 s 

ramped to a final switching time of 22 s.  Gels were stained with ethidium 

bromide following electrophoresis. 

Fingerprinting.  This quality control assay was performed by digesting 

BAC DNA with a BamH1 restriction enzyme (New England Biolabs) for 3 h, then 

running the products on a 1% agarose 1% TBE gel for 16 h at 35 v.  Because the 

BAC construct contains many BamHI recognition sites, multiple, smaller bands 

will be present on this gel when compared with a PFGE, creating a unique 

“fingerprint.”  Both PFGE and fingerprinting provide verification that no unwanted 

global deletions or rearrangements occurred during BAC recombineering.   
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SSCP.  Because PFGE and fingerprinting have a low sensitivity in 

detecting smaller deletions or nucleotide substitutions, single strand conformation 

polymorphism (SSCP) analysis was used to detect the presence of small 

mutations in the coding region of CSPI on the BAC construct.  For this method, 

all exons as well as the surrounding intronic sequence were amplified in multiple 

PCR reactions for both the BECC+WtCPSI construct and a wild-type CPSI gDNA 

control.  These PCR products were then denatured by incubation at 95°C for 3 

min and then quickly shifted to 4°C to induce the formation of single stranded 

globular molecules that fold based on their specific nucleotide sequence.  Any 

change in sequence causes a change in the globular structure that is detectable 

as a band shift following electrophoresis in a non-denaturing MDE gel run at 15 w 

for 10 h.  Gels were silver stained to visualize the DNA products.  For the 

BECC+WtCPSI construct, all exons were screened as well as the 5’ and 3’ 

untranslated regions in a total of 42 PCR reactions.  Direct sequencing was 

performed instead of SSCP for 12/42 PCR reactions to increase mutation 

detection rates.  In addition, changes between the wtCPSI vector and the control 

gDNA sample detected by SSCP were analyzed by direct sequencing and all 

changes were shown to be different alleles of previously reported polymorphisms 

[12]. 

Transfections and stable cell line generation.  The BECC+WtCPSI 

construct was transfected into the MRC-5V2 human lung fibroblast immortalized 

cell line [131] using the LID (Lipofectin, Integrin, DNA) transfection technique 

[132].  The transfection reaction was set up using 8 μl Lipofectin (Invitrogen), 8 
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μg Peptide 6, and 4 μg of the BECC constructs in a 2L:2I:1D ratio.  Lipofectin 

was diluted in 400 μl Optimem (Gibco) and incubated 45 min before addition of 

peptide 6 and DNA, also diluted in 400 μl Optimem.  Reactions were incubated 

10 min during which time all cells were washed with 3 ml Optimem (no serum).  

All transfection reactions were increased to a 4 ml total volume with Optimem 

before drop-wise placement on 5 cm dishes containing MRC-5V2 cells at 60% 

confluence.  Following a 16 h incubation, the transfection media was replaced 

with DMEM+10%FBS for 72 h.  After 72 h, hygromycin selection was added at a 

concentration of 125 μg/ml.  After 2 weeks under hygromycin selection, cells 

were flow-sorted for GFP expression.  All GFP+ cells were cultured under 

hygromycin selection as a polyclonal cell line. 

Sequencing.  Fluorescent sequencing was performed by GenHunter 

Corporation and the Vanderbilt University Medical Center Core Facility using 

BigDye chemistry from Applied Biosystems.  Radioactive di-deoxy sequencing 

was performed using the Thermo Sequenase Radiolabeled Terminator Cycle 

Sequencing Kit (USB) according to the manufacturer protocol with 200 ng DNA. 

RNA isolation and non-quantitative RT/PCR.  To isolate RNA, the RNeasy 

Midi Kit including the optional RNase free DNase set was used following the 

manufacturer’s protocol (Qiagen).  Reverse transcriptions were carried out using 

1 μg of total RNA, the CPSI-specific lower primer L2894 

(5’GTGAGCCCAAGGCATTT3’), and the AMV-RT enzyme (Promega).  The 

amplification thermoprofile was an initial denaturation of 65°C for 5 min, then a 

primer-annealing phase at 27°C for 10 min, and an extension phase at 42°C for 
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45 min.  A region of CPSI was amplified using these cDNA templates for 

confirmation that CPSI transcription was occurring from the BAC construct.  PCR 

primers used were U122 (5’AAATGACGAGGATTTTGACA3’) and L829 

(5’CTAGCAGGCGGATTACATTG3’).  Products were visualized on a 2% agarose 

gel.  PCR primers spanned multiple exons to eliminate gDNA contamination.  

Western Blotting.  Cells were lysed by sonication in a 50mM Hepes Buffer 

with 0.01% Triton X-100.   Cell lysates were quantified using the BCA Protein 

Estimation Kit (Pierce).  Following a 5 min denaturation step at 95ºC in SDS 

sample buffer (375 mM Tris; 4% SDS; 20% glycerol; 10% 2-mercaptoethanol), 

equal μg quantities of cell lysates were electrophoresed in a 6% PAGE 

(polyacrylamide) gel for 45 min at 200 v.  Proteins were transferred to a 

nitrocellulose membrane using an electrical tank transfer system at 4ºC for 90 

min at 100 v.  The membrane was then incubated in blocking buffer (5% nonfat 

dried milk in 0.01M Tris; 0.5M NaCl; 0.05% Triton X-100; 0.2% Tween; pH 7.4) 

for 30 min at room temperature.  The anti-CPSI (Santa Cruz, sc-10516) primary 

antibody was added to the blocking buffer for overnight incubation at 4°C at a 

final dilution of 1:50.  The membrane was washed 3 times for 10 min each in 

blocking buffer before incubation for 1 h in blocking buffer with the bovine anti-

goat IgG-AP (Santa Cruz, sc-2351) secondary antibody (1:2000 dilution).   The 

membrane was again washed 2 times in blocking buffer for 10 min each, then 2 

times in AP buffer (alkaline phosphatase, 0.1M Tris; 0.1M NaCl; 0.005M MgCl2; 

pH 9.5) for 10 min each.  These steps were all performed at room temperature.  

The results were visualized through alkaline phosphatase staining.  The washed 
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membrane was incubated in a 1:1 mixture of the Alkaline Phosphatase 

Conjugate Substrate Kit (Bio-Rad) for 10 min for colorimetric band development. 

 

Results 

BECC vector engineering.  To create the BECC (Bac+pEHG+CMV+CPSI) 

vector, two modifications were necessary.  First, cre/loxP recombination was 

used to retrofit BAC RP11-349G4 with vector pEHG (Figure 3.1) [133].  This 

vector contains the episomal retention elements (oriP and Nuclear Antigen I or 

EBNA-1) from Epstein-Barr virus, the hygromycin resistance antibiotic selectable 

marker, and the visual marker enhancer green fluorescent protein (E-GFP).  

Figure 3.1B is a pulse-field gel electrophoresis illustrating the insert of one copy 

of the 11k kb pEHG plasmid following retrofitting.  Second, a homologous 

recombination strategy was utilized to insert the CMV promoter directly upstream 

of CPSI to allow for ubiquitous expression of this hepatic-specific gene.  The 

CMV promoter was targeted for specific insertion using homologous 

recombination with a Tet-CMV targeting construct flanked by BAC homology 

segments in recombination-induced EL250 cells (Figure 3.2) [130].  Direct 

sequencing verified proper insertion of the CMV promoter onto the BAC 

construct.  Following these modifications, the completed BECC construct (Figure 

3.3) was 170 kb in size where 150 kb was gDNA from chromosome 2 containing 

the complete CPSI gene, 11 kb was from the pEHG plasmid, and 9 kb was from 

the BAC vector backbone.
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Figure 3.1.  Addition of pEHG to the BAC containing CPSI.  A.  A schematic 
representation of the pEHG addition to the RPCI11-349G4 BAC construct.  Using 
the loxP sites on the pEHG vector and the BAC allowed sequence-specific 
integration of these two vectors.  B.  A pulse-field gel electrophoresis of NotI 
digested constructs before (-) and after (+) the addition of a single copy of pEHG 
following cre/loxP recombineering in the BAC.  The (*) indicates the 11 kb size 
change in the BAC library vector corresponding to pEHG. 
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Figure 3.2.  Addition of the CMV promoter to the BAC containing CPSI.  The 
homologous recombination vector was used to simultaneously insert the CMV 
promoter upstream of CPSI and delete the genomic sequence upstream of CPSI.  
The tetracycline resistance gene flanked by FRT sites was used for positive 
selection of the recombination event, but was then removed from the final BAC 
construct. 
 
 
 
 
 

 

Figure 3.3.  The BECC vector. 
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Numerous quality control assays ensured that the BAC construct did not 

undergo any unwanted or global rearrangements during the retrofitting and 

homologous recombination steps.  PFGE provided the most general picture of 

the general integrity of BECC following the addition of the CMV promoter (Figure 

3.4A).  A fingerprint gel provided confirmation that only expected differences in 

the construct before and after CMV promoter insertion were present (Figure 

3.4B).  Direct sequencing of the bases surrounding the CMV promoter provided 

the most specific verification that the correct modifications were made (Figure 

3.4C). 

BECC vector expression.  Following verification of the integrity of the new 

BECC+WtCPSI vector, the next step was to examine its behavior in cultured 

eukaryotic cells.  It was transfected into MRC-5V2 cells, an immortalized human 

lung fibroblast line without measurable CPSI activity [131] using LID transfection 

(see Materials and Methods) [132].  The wtBECC construct demonstrated stable 

transfection with an initial efficiency of 20% as determined by visual inspection of 

GFP expressing cells.  Stable transfectants were selected by culturing for two 

weeks under hygromycin selection (125 μg/ml) followed by GFP+ selection 

through flow-sorting.  During a 1.5 year period, this MRC+WtCPSI polyclonal cell 

line was passaged 85+ times under hygromycin selection with no measurable 

loss of GFP expression by repeated visual inspections (Figure 3.5).  

Multiple assays were performed next to determine the presence of 

exogenous CPSI transcript and mature protein in the MRC+WtCPSI cell line.  A 

reverse transcription/PCR using RNA extracted from both GFP+ and non-
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transfected MRC-5V2 cell lines revealed the presence of CPSI transcript only in 

the MRC+WtCPSI cell line and the hepatic-derived HepG2 cell line (Figure 3.6A).  

CPSI transcript was undetectable in the non-hepatic Cos7 or non-transfected 

MRC5-V2 cell lines.  A Western blot reveals the presence of exogenous CPSI 

protein specifically in the MRC+WtCPSI GFP+ cell line (Figure 3.6B).  Taken 

together, these results indicate that following transfection, the BECC+WtCPSI 

construct creates stable transformants that not only express GFP and are 

resistant to hygromycin, but also produce CPSI transcript driven by the CMV 

promoter and translated into a mature protein. 
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Figure 3.4.  Verification of BECC recombineering.  A.  A PFGE showing the 
non-modified BAC 349-G4 clone and the BAC following both recombineering 
steps.  The size difference in the upper band (*) is due to the deletion of the 
sequence upstream of CPSI and the size difference in the lower band (**) is due 
to the addition of pEHG.  B.  A fingerprinting analysis following BamHI digestion 
of BAC+pEHG and then following the simultaneous deletion of the sequence 
upstream of CPSI and addition of CMV.  C.  Direct sequencing verifies the proper 
insertion of the entire CMV promoter sequence. 

CMV promoter 

C. 
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Figure 3.5.  GFP expression in transfected MRC5-V2 cells.  Following 
transfection of the wtCPSI BECC construct and 2 weeks under hygromycin 
selection, colonies of 100% GFP expression were visible.  The inset is a high 
magnification of one such colony. 
 
 
 

 

Figure 3.6.  Exogenous CPSI transcript and protein expression.  A.  RT/PCR 
products generated with CPSI-specific primers visualized on a 2% agarose gel 
reveal that only the liver-derived HepG2 and transfected MRC5-V2 cells contain 
CPSI transcript.  B.  Western blotting shows the presence of CPSI protein only in 
the transfected MRC cell line.  The 200 kDa band detected by the CPSI antibody, 
provisionally identified as CPSII due to its size and high homology of CPSII to the 
CPSI antibody recognition sequence, serves as a loading control. 
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Discussion 

As more genes are identified in association with clinical phenotypes, 

understanding the effects of diverse types of genetic changes has become a 

difficult, yet vital, undertaking.  The complexity of dissecting phenotypes is 

underscored by the observations that even mutations responsible for rare single-

gene disorders such as CPSI Deficiency can result in the same disease 

phenotype through different mechanisms.  To aid CPSID studies and delineate 

the molecular function of identified genetic variants, the BECC vector was 

created using a BAC clone and a modular insert.  This vector was further 

modified to allow CPSI to exhibit ubiquitous expression under the control of the 

CMV promoter.  This second modification was necessary due to the few 

available alternatives for cell lines that express CPSI using its native regulatory 

elements and because hepatic cell lines have the confounding factor of 

expressing endogenous CPSI.  

In developing this model, the goal was to overcome limitations in classical 

methods for assessing mutation function.  It was important to find a system that 

would allow the presence of the complete CPSI gene on a single construct.  

Because CPSI contains 38 exons and spans 160 kb of gDNA, it was necessary 

to create a system with a greater efficiency than conventional methods that have 

significant size restrictions and prevent the mutation from being tested in its 

complete physiological context.  Plasmids containing cDNA sequence are not 

feasible for assessing mutations that may affect RNA processing.  Because 

introns have been shown to influence multiple mRNA processing steps, the 
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importance of their inclusion extends beyond testing intronic mutations [134].  

Exclusion of introns from a construct prevents the detection of those mutations 

that may affect splicing or elicit NMD, which has been shown to rely on the 

presence of introns in mammalian cells [80-82].  “Minigene” construction, though 

allowing intron inclusion, is not feasible for large genes such as CPSI that contain 

mutations in almost every exon and most introns. 

Several BAC characteristics were important in developing this model.  

BAC constructs can be shuttled between prokaryotic cells for manipulation and 

eukaryotic cells for expression.  In a single modification, a library BAC clone can 

be retrofitted with pEHG, an 11 kb vector containing all the necessary elements 

for long-term retention, selection, and tracking of the construct in mammalian 

culture cells.  The resulting modified BAC contains the EBV (Epstein-Barr virus) 

elements OriP and EBNA-1, which allow for stable transfectants and episomal 

maintenance of the transfected vector.  The EBNA-1 protein has previously been 

shown to be the only trans element necessary for the replication of constructs 

containing the OriP DNA sequence, to which the protein binds (reviewed in 

[135]).  These two elements have been successfully exploited in the construction 

of other episomally replicating eukaryotic vectors and gene therapy experiments 

[136-138]. 

Other means for transferring and expressing large segments of 

exogenous DNA in eukaryotic cells have previously been developed, many with 

an emphasis on gene therapy.  These methods include the delivery of BACs 

using viral [139,140] and bacterial transfer [141], as well as the use of YACs 
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(yeast artificial chromosomes) [142], and HACs (human artificial chromosomes) 

[143].  In contrast to generating a HAC vector from a BAC, which requires the 

addition of ~70 kb of alphoid DNA, creation of the BECC vector only required the 

addition of the 11 kb pEHG vector.  Such gene therapy systems focus on efficient 

gene packaging and intact delivery rather than the facilitation of functional 

mutation studies that must be amenable to site-directed mutagenesis.  Therefore, 

the goal was to create a simple non-viral BAC-based expression system that can 

be manipulated by precise methods of homologous recombination and will allow 

expression of wild-type and mutant genes from genomic DNA inserts in cultured 

cells. 

The possibilities of using a BAC-based model system like BECC are only 

limited by the identification of a BAC clone containing the complete gene of 

interest and an appropriate cell line for vector introduction and expression.  

However, given the recent improvements in BAC engineering, it is feasible to 

modify a BAC clone to meet size specifications or join gene segments from 

multiple BACs together [144].  Furthermore, there are a variety of transfection 

methods that can be used to introduce large constructs into a spectrum of cell 

types [132,145,146].  As shown here, promoter swapping permits gene 

expression in an otherwise non-expressing cell type. 

 This Chapter outlines the recombineering methods used to create the 

BECC vector.  Selection of constructs with successful cre/loxP and homologous 

recombination events was aided by the presence of selectable markers and 

numerous quality control assays.  Following construction of the BECC vector, this 
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Chapter outlines the transfection method used to introduce the construct into 

eukaryotic cells for the creation of a polyclonal, stable cell line, again aided by 

selectable markers.   Because this polyclonal stable cell line produced detectable 

exogenous CPSI transcript and protein, the next goal was to utilize this system to 

test multiple rare variants identified in the CPSI gene of CPSID patients to 

determine the mechanistic effect of these mutations. 
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CHAPTER IV 

 

THE STUDY OF CPSID MUTATIONS IN THE BECC VECTOR 

 

Introduction 

 In conjunction with the development of the BECC CPSI expression vector, 

it was essential to determine if CPSI mutations could be efficiently engineered 

into BECC and subsequently ascertained for changes in CPSI expression.  To 

this end, four putative RNA instability patient mutations were identified with the 

goals to first determine if the BECC platform could recapitulate the RNA defect 

originally seen in the patient and second, to determine if it could help elucidate 

the molecular pathology of mutations without an available patient RNA source.  

Each chosen mutation was a single base substitution and candidate RNA 

processing mutation.  Two were exonic mutations: c.1893T>G creates a stop 

codon in place of a tyrosine codon in exon 16 and c.2388C>A was a 

synonymous change in exon 19 unique to the patient with disease.  The other 

two mutations were intronic and located at the 3’ splice acceptor site: c.652-

3T>G in intron 5 and c.1210-1G>T in intron 10.  It was important to study these 

mutations not only to ascertain their molecular pathology, but also to validate the 

BECC vector model system (see Chapter III).   
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Materials and Methods 

Site-directed mutagenesis.  To individually introduce each point mutation 

into the BECC construct,a two-step homologous recombination procedure with 

positive and negative galK selection was used [147].  See Appendix A for a 

diagram of this two-step recombination procedure and the primer pairs used.  

The PCR thermoprofile used to amplify galK was an initial denaturation step of 

94ºC for 3 min, then 30 cycles of 94ºC for 15 s, 60ºC for 30 s and 70ºC for 1 min, 

followed by a final extension time of 10 min at 72ºC.  To create double-stranded 

oligos with the desired mutation for homologous recombination with the BAC 

construct, 20 ug of each single-stranded oligo was added to a final 1x 

concentration of annealing buffer (0.1M NaCl, 1 mM EDTA pH 8.0, 10 mM Tris 

pH 7.5) and heated at 95ºC for 5 min, then cooled to room temperature and gel 

purified.  Following the galK mutagenesis procedure, BAC purifications were 

performed using the NucleoBond BAC Maxi AX500 kit (BDBiosciences). 

Verification of BAC engineering.  See Chapter III for an explanation of 

PFGE, fingerprinting, sequencing and transfections.  Each of these protocols was 

performed in conjunction with developing the original BECC vector as well as 

following the galK site-directed mutagenesis to ensure vector quality. 

Plasmid construction.  To create a “minigene” for the study of c.1210-

1G>T, CPSI exon 10, intron 10, and exon 11 were amplified in a PCR reaction 

using primers that contained restriction sites for HindIII (5’) and EcoRI (3’) as well 

as an ATG start codon immediately upstream of exon 10 and a TAA stop codon 

immediately downstream of exon 11 (underlined in primer sequence).  UIntron10:  



 

 68

5’CCCGGGAAGCTTATGAGAGGGCAGAATCAGCCTGTTTTG3’ and LIntron10: 

5’GGGCCTTAAGAATGAGTCACAGATAACCGGGGC3’.  The PCR reaction was 

performed with 100 ng of gDNA in EasyStart 50 ul pre-aliquoted PCR reaction 

tubes (Molecular Bioproducts).  The amplification thermoprofile was an initial 

denaturation at 94ºC for 4 min, then 28 cycles of 94ºC for 1 min, 62ºC for 1 min, 

72ºC for 1 min 15 s, and a final extension time of 10 min at 72ºC.  Gel purified 

PCR products (Wizard SV40 PCR Cleanup Kit from Promega) and the 

pcDNA3.1(+) plasmid (Invitrogen) were digested with HindIII and EcoRI (NEB) 

according to the manufacturer’s protocol for 2 h at 37°C.  Ligations were carried 

out using the Quick Ligation Kit (NEB) according to the manufacturer’s 

recommendations at 3-fold molar ratio of insert to vector determined to be 30 ng 

insert : 50 ng vector.  Electrocompetent transformation of DH10B cells with 1 μl 

of the ligation product was performed prior to plating the cells onto LB+Ampicilin 

(60 ug/ml) for overnight growth at 37°C.  Colonies were screened for the proper 

plasmid insert by overnight growth in 2 ml LB with Ampicilin selection, then 

plasmids were isolated using a MiniPrep isolation kit (Qiagen) and subsequently 

screened by a diagnostic restriction digest with AflII or SalI using the same 

restriction digest protocol as above.  Direct sequencing provided verification of 

proper cloning.  Site-directed mutagenesis was then performed using the 

QuickChange Site-Directed Mutagenesis Kit (Stratagene) according the 

published protocol to introduce the G>T point mutation at c.1210 which was 

verified by direct sequencing.  Oligos were UGIntron10T-SDM:  

5’CTTCCTGTTTCTTATTCCTTTATGGGATTATGCATGAGAGC3’ and 
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LGIntron10T-SDM:  

5’CGAAGAAGGGTTTGCTCTCATGCATAATCCCATAAAGGAATA3’. 

gDNA isolations and PCR.  The Wizard Genomic DNA Purification Kit 

(Promega) was used to isolate gDNA from all cell lines.  To determine the 

presence of BAC DNA in transfected cell lines, PCR was performed using a 

forward primer complementary to the CMV promoter, UCMV 

(5’CCATCCACGCTGTTTTGACCTC3’) and a reverse primer complementary to 

sequence in the first exon of CPSI, L173 (5’CCAGTCTTCAGTGTCCTCA3’).  

The amplification thermoprofile was an initial denaturation step of 4 min at 95ºC, 

40 cycles of 30s at 95ºC, 30s at 67ºC, and 30s at 72ºC, and a final hold at 72ºC 

for 10 min.  

RNA isolation and Reverse Transcription.  The RNeasy Midi Kit including 

the optional RNase free DNase set was used for RNA isolations from generated 

cell lines following the manufacturer’s protocol (Qiagen).  Reverse transcriptions 

were carried out as described in Chapter III using 2 μg of total RNA for 

determination of any splicing changes.  For quantitative PCR assays, reverse 

transcription was carried out with 5 μg of total RNA and the TaqMan Reverse 

Transcription Reagents Kit (Applied Biosystems).  The amplification thermoprofile 

was an initial denaturation of 65°C for 5 min, then a primer-annealing phase at 

27°C for 10 min, an extension phase at 42°C for 45 min, and an enzyme 

denaturation step of 95°C for 5 min.  

Non-quantitative PCR.  To determine the presence of cryptic splice sites 

resulting from the intronic mutations, PCR to amplify the desired regions of CPSI 
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was performed using the cDNA templates generated from 2 μg of RNA.  

Following visualization on a 2% agarose gel and prior to sequencing, visible 

bands were purified using the Wizard PCR Cleanup Kit (Invitrogen).  PCR 

primers were designed at least one exon away from the mutation in question to 

eliminate gDNA contamination.  Amplifications were carried out with the following 

primer pairs: UBacT344A (5’CTGCTCAGAATCATGACC3’)/ L1361 

(5’GGCTTCGGTAAGACTGATGT3’) for c.1210-1G>T (BECC+c.1210-1G>T-

transfected cells), U1119 and LpcDNA3.1 

(5’GCAACTAGAAGGCACAGTCGAGGC3’) for c.1210-1G>T (minigene-

transfected cells), and U393 (5’AGGACAGATTCTCACAATGG3’) / L829 

(5’CTAGCAGGCGGATTACATTG3’) for BECC+c.652-3T>G transfected cells.  

RT/PCR subcloning.  The RT/PCR products from the BECC+c.1210-1G>T 

transfected cell line were isolated from the agarose gel using the Wizard SV gel 

and PCR Clean-up Kit (Promega) according to the manufacturer’s protocol and 

subsequently subcloned into the pPCR-Script Amp SK+ cloning vector for blunt 

ligation according to the manufacturer’s protocol, performing the additional PCR 

polishing step (Stratagene).  This plasmid was then sequenced using a T7 

promoter to determine the sequence of the RT/PCR products.  Subcloning was 

performed in order to isolate different splice products of similar size, should they 

be present. 

Quantitative PCR.  Relative RNA expression levels were calculated using 

quantitative PCR on cDNA templates synthesized from the TaqMan Reverse 

Transcription Kit (Applied Biosystems).  These PCR reactions were performed 
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using TaqMan technology on an automated platform with the ABI PRISM 

Detection System (Applied Biosystems).  To measure CPSI expression, the 

Hs00919484_m1 assay which spans the exon 3-exon 4 junction and the 

Hs00919480_m1 assay which spans the exon 34-exon 35 junction were 

purchased (Applied Biosystems).  E-GFP served as the endogenous control 

(Applied Biosystems part # 4331348, Custom Taqman(R) Gene Expression 

Assay Service).  Each probe was subjected to multiple control assays to ensure 

proper activity (Appendix B).  All experiments were performed in triplicate.  “No 

RT” samples were used as a PCR control to correct for gDNA contamination.  To 

perform the ΔΔCt analysis, a calculation for describing relative RNA expression 

levels, the difference between the Ct of each target CPSI and the Ct of the 

corresponding endogenous control GFP at the 0.200 fluorescence threshold was 

first calculated.  These calculations were then expressed in relation to the 

“calibrator” (see Appendix C for details). 

Northern Blotting.  10 μg of total RNA was used for Northern blotting in a 

1.2% agarose formaldehyde gel that was run for 2.5 hours at 3 v/cm.  RNA was 

transferred to a Hybond N+ membrane using the Turboblotter apparatus (both 

from Schleicher and Schuell) and UV-crosslinked.  The membrane was 

prehybridized in Church buffer (0.25 M Na2HPO4, 7% SDS, 50 μg/ml sheared 

salmon sperm DNA) at 65ºC for 1 h and hybridization occurred overnight at 65ºC 

with either a CPSI or Cyclophilin probe previously radio-labeled with the Prime-It 

RmT Random Primer Labeling Kit (Stratagene) and diluted to 1 million counts per 

min in Church buffer. 
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Nonsense-mediated decay inhibition.  To block nonsense-mediated 

decay, siRNA-mediated knockdown of UPF2 was performed based on a previous 

publication [148].  Briefly, cells were 75% confluent in a 10 cm dish.  SiQuest 

transfection reagent (Mirus) was used according to the manufacturer’s protocol at 

a final concentration of 5 μl per ml of DMEM.  The UPF2 siRNA (5’-

AAGGCTTTTGTCCCAGCCATCTT-3’) was used at a final concentration of 70 

nM (Dharmacon).  In addition, the commercially available siCONTROL RISC-

Free kit (RNA induced silencing complex; Dharmacon), was used to show 

knockdown was specific for UPF2.  Cells were treated with siRNA constructs or 

vehicle alone for 3 consecutive days, as it was determined experimentally to 

provide the best knock down (Figure 4.1). 
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Figure 4.1.  Optimal knockdown of UPF2 by 3 consecutive days of siRNA 
treatment.  To determine the maximum knock down of UPF2 possible, cells 
were treated with transfection reagent only (vehicle) or 1, 2, or 3 consecutive 
days of siRNA transfections.  Equal quantities from the same lysed cell pellet 
were loaded onto either a 6% or 9% PAGE gel.  UPF2 expression was 
determined based on densitometry calculations compared to the α-tubulin 
loading control. 
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Western Blotting.  Cells were lysed by sonication in a 50 mM Hepes Buffer 

with 0.01% TritonX-100.   Cell lysates were quantified using the BCA Protein 

Estimation Kit (Pierce).  Following a 5 min denaturation step at 95ºC in SDS 

sample buffer (375 mM Tris, 4% SDS, 20% glycerol, and 10% 2-

mercaptoethanol), equal μg quantities of cell lysates were electrophoresed in a 

9% PAGE gel for 45 min at 200 v.  Proteins were transferred to a nitrocellulose 

membrane using the electrical tank transfer system at 4ºC for 90 min at 100 v.  

The membrane was blocked in blocking buffer (5% nonfat dried milk in 0.01M 

Tris; 0.5M NaCl; 0.05% Triton X-100; 0.2% Tween; pH 7.4) for 30 min at room 

temperature.  The anti-hUPF2 primary antibody (gift from J. Steitz and J. Patton; 

1:2500 dilution) and anti-α-tubulin (Abcam #15246; 1:5000 dilution) primary 

antibody were added to the blocking buffer for overnight incubation at 4°C with 

gentle agitation.  The membrane was washed 3 times for 10 min each in blocking 

buffer before incubation for 1 h in blocking buffer with ECL rabbit IgG (Amersham 

NA934) secondary antibody (1:3000 dilution).   The membrane was again 

washed 3 times in blocking buffer for 10 min.  These steps were all performed at 

room temperature with gentle agitation.  The results were visualized through 

chemiluminescence.  The washed membrane was incubated in a 1:1 mixture of 

the Western Lightning Chemiluminescence Reagent Plus (Perkin Elmer) for 1 

min and then subjected to various x-ray film exposures. 
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Results 

Site-directed mutagenesis.  Site-directed mutagenesis enabled the 

introduction of putative RNA-instability mutations identified in CPSID patients into 

the BECC vector.  These point mutations (c.652-3T>G, c.1210-1G>T, 

c.1893T>G, and c.2388C>A) were made using a recently described and highly 

efficient two-step homologous recombination strategy with positive and negative 

galK selection [147].  Because this method required both a directed insertion of 

galK and a subsequent removal, multiple assays were performed for selection of 

proper recombinant colonies after each homologous recombination.  Figure 4.2 is 

an example of these assays where both PCR and fingerprinting revealed a 1 kb 

change in BECC following galK insertion and restoration to wild-type after 

removal.  Following selection of colonies that were determined to have 

undergone galK removal, NotI digestion and pulse-field gel electrophoresis 

showed that no unwanted global rearrangements occurred (Figure 4.3A).  Direct 

sequencing of the region surrounding the desired mutation showed that, in all 

cases, only the desired point mutations were incorporated (Figure 4.3B).  The 

same transfection and selection procedures used to create the wild-type cell line 

were used to create stable polyclonal cell lines for each site-directed mutant (see 

Chapter III).  All cell lines demonstrated 100% GFP expression by visual 

inspection and maintained hygromycin resistance through antibiotic selection. 
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Figure 4.2.  PCR and BamHI fingerprints reveal galK insertion and 
subsequent removal.  These assays were performed for each mutation, but 
only the assays for c.1893T>G are shown here.  A.  A PCR using primers that 
flank the desired position of galK insertion indicates the 1 kb shift in product size 
following the first recombination step and the subsequent removal of galK at this 
position in multiple clones following the second recombination step.  B.  A 
fingerprint analysis reveals only a single band shift, consistent with the presence 
of galK, following the first recombination step and the subsequent removal 
following the second recombination.  The band shift, approximately 1 kb, is 
indicated by the red arrow and bracket. 
 



 

 77

 

Figure 4.3.  PFGE and direct sequencing reveal proper site-directed 
mutagenesis.  All site-directed mutants are identical to BECC+WtCPSI but are 
~35 kb shorter than the BAC+pEHG vector before CMV promoter 
insertion/upstream sequence deletion.  Each mutation (circled) is verified by 
direct sequencing.  U or L denotes whether an upper (forward) or lower (reverse) 
primer was used for sequencing. 
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To illustrate the presence of BAC-derived CPSI DNA in each cell line, 

PCR was performed to specifically amplify the exogenous CPSI from DNA 

extracted for each cell line.  A forward primer was designed from the BAC-

specific CMV promoter sequence and the reverse primer from exon 1 of the 

CPSI gene (Figure 4.4A).  PCR revealed the presence of exogenous CPSI gDNA 

specifically in the transfected cell lines (Figure 4.4B). 

RT/PCR and sequencing of splicing mutations.  To determine if the 

intronic mutations affected splicing and to also identify possible cryptic splice 

sites, Reverse transcription/PCR was performed on RNA extracts from both the 

c.652-3T>G and c.1210-1G>T transfected cell lines.  Because the reverse 

transcription protocol used was previously shown to be sensitive enough to pick 

up very low-level CPSI transcripts from a non-hepatic cell line, it was important to 

distinguish between BAC-derived and endogenous MRC-5V2 CPSI transcripts 

[25].   
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Figure 4.4.  PCR of BAC-derived CPSI in all transfected cell lines.  A. 
Representation of primer locations for identifying the presence of exogenous 
CPSI DNA.  The forward primer is homologous to the CMV promoter and is 
specific for BAC-derived CPSI.  B. 2% Agarose gel of PCR demonstrating the 
presence of exogenous CPSI gDNA only in the MRC cell lines transfected with 
the indicated BAC construct. 
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 c.1210-1G>T.  To distinguish between low-level exogenous and 

endogenous transcripts for the study of c.1210-1G>T, it was possible to exploit 

the presence of a nearby 3-bp polymorphism with alternate alleles present in 

MRC-5V2-derived (endogenous) and BAC-derived (exogenous) CPSI.  The 

previously identified polymorphism, T344A, corresponds to either a nucleic acid 

sequence of ACC or GCT at position c.1136-1138 [12].  The forward primer used 

in these PCR reactions (UBacT344A: 5’CTGCTCAGAATCATGACC3’) contains 

homology specifically to the BAC allele at the 3’ end (underlined) preventing 

amplification of any endogenous CPSI transcripts.  Comparison of RT/PCR 

products from the MRC+WtCPSI and MRC+c.1210-1G>T cell lines showed a 

difference in product size (Figure 4.5A).  The c.1210-1 G>T cell line produced a 

band which was larger than the expected wild-type PCR product, indicating a 

splicing change in the mutant.  Subsequent sub-cloning and sequencing multiple 

colonies containing the RT/PCR product insert revealed an aberrant splice 

product that includes 32 bp of intron 10 (Figure 4.5B). 
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Figure 4.5.  RT/PCR products from c.1210-1G>T.  A. RT/PCR products from 
the polyclonal BECC+WtCPSI and BECC+c.1210-1G>T polyclonal cell line on a 
2% agarose gel.  The size difference between the wild-type and mutant products 
indicates activation of a cryptic splice site in the mutant cell line. B. Fluorescent 
sequence of the RT/PCR products shown in (A) reveals the insertion of 32-bp of 
intron 10 into the spliced message specifically in the mutant cell line.  The box 
highlights the location of the c.1210-1G>T mutation. 
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This splicing change identified from the BECC+ c.1210-1G>T construct 

was also identified in a minigene construct with the same mutation.  Minigenes 

with this mutation and the wild-type sequence were built prior to completion of 

the BECC construct (Figure 4.6A).  These minigenes were transiently transfected 

into both Cos7 and MRC5-V2 cells and subsequent RT/PCR analysis using a  

CPSI-specific and a minigene-specific LpcDNA3.1 primer revealed an identical 

splicing change in the mutant minigene (Figure 4.6B), identified by direct 

sequencing as the same 32 bp insertion of intron 10.  

c.652-3T>G.  The c.652-3G>T mutation was used to test the BECC 

system for the ability to recapitulate splicing changes originally identified from 

patient DNA.  Whereas the patient genomic DNA shows a heterozygous mutation 

at the -3 position of intron 5 (Figure 4.7A), patient cDNA (from a patient-derived 

fibroblast cell line) shows a heterozygous 2-bp frameshift beginning in exon 6, 

indicating the mutation activates an aberrant splice site (Figure 4.7B).  RT/PCR 

on the stable cell lines created with the BECC+WtCPSI and BECC+c.652-3T>G 

constructs verified that the BECC platform reproduces what is observable in the 

patient data.  Because a size change in the c.652-3T>G mutation band was not 

detectable on an agarose gel (Figure 4.7C) and polymorphic variations could not 

be exploited to separate endogenous and exogenous transcripts, the RT/PCR 

product was excised and sequenced radioactively in order to visualize the 

presence of aberrant transcript.  The sequence from the MRC+c.652-3T>G cell 

line mimics the patient data by revealing the same 2-bp AG dinucleotide 

insertion, again indicating a splicing alteration in intron 5 (Figure 4.7D). 
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Figure 4.6.  Minigene transfections reveal splicing defect from the c.1210-
1G>T mutation.  A.  Schematic representation of the minigene constructed with 
either a G (wt) or T (mut) at base c.1210.  B.  RT/PCR products on a 2% agarose 
gel following transient transfections of minigene constructs into Cos7 or MRC5-
V2 cells.  The brackets highlight the shift seen from the mutant construct that is 
indicative of a splicing change.  Non-transfected cells (Ǿ) show that the RT/PCR 
products are specific to the minigene constructs. 
 
 

Intron 10Exon 10 Exon 11 

C. 
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Figure 4.7. RT/PCR products from c.652-3T>G.  A. Patient gDNA sequence 
revealing G>T point mutation in intron 5 (arrow).  B. Patient cDNA revealing a 2-
bp insertion (starts at large arrow, small arrows point out other residues in the 
frameshift) in exon 6 from one allele.  C. RT/PCRs from the BECC platform.  Cell 
lines tested are a polyclonal wtCPSI, monoclonal wtCPSI, and c.652-3T>G 
polyclonal cell line on a 2% agarose gel.  D. Dideoxy-radionucleotide sequence 
of the RT/PCR products shown in (C) reveals the presence of a 2 bp frameshift 
specifically in the mutant cell line (starts at large arrow, small arrows point out 
other residues in the frameshift) that mimics the original patient data. 
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Quantitative RT/PCR.  Because mutations that cause formation of 

premature termination codons most often elicit NMD and cause degradation of 

the RNA message, ΔΔCt analysis from quantitative real time RT/PCR reactions 

was used to determine the relative expression levels of CPSI transcript in each 

transfected cell line.  These ΔΔCt calculations describe CPSI transcript levels 

that were first standardized to GFP transcript levels and then were expressed in 

relation to the wild-type “calibrator” sample.  Because CPSI and GFP are present 

in a 1:1 ratio and both driven by a CMV promoter, GFP provided an ideal 

endogenous control for standardizing the CPSI data and controlling for 

differences in BAC copy number in each cell.  Three TaqMan probes were used 

to specifically measure either CPSI or GFP transcripts in each cell line.  One 

CPSI probe annealed to the transcript at the exon 3-exon 4 junction, upstream of 

all tested mutations.  The other annealed to the exon 34-exon 35 junction, 

downstream of all tested mutations.  All probes were tested extensively to ensure 

proper function (Appendix B).  ΔΔCt analysis revealed that the each mutation 

resulted in lower expression levels than wild-type, except for c.652-3T>G 

measured by the exon 3-exon 4 probe (Figure 4.8A).  While there was variability 

in the relative expression differences between each mutant and wild-type sample 

using the CPSI exon3-exon4 probe, all mutants showed a fairly equal drop off in 

expression when compared to wild-type using the CPSI exon 34-exon 35 probe.  

A Northern blot corroborates this data by showing that exogenous CPSI is visible 

only in the polyclonal and a monoclonal cell line harboring the wild-type 

construct, but none of the site-directed mutants (Figure 4.8B). 
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Figure 4.8.  ΔΔCt analysis showing relative CPSI RNA expression levels 
following quantitative RT/PCR.  A. Expression levels of CPSI RNA in each 
mutant cell line relative to Wt, arbitrarily set at 100% expression. Black bars 
indicate relative CPSI RNA levels measured from the exon 3-exon 4 TaqMan 
probe and white bars indicate relative CPSI RNA levels measured from the exon 
34-exon 35 TaqMan probe.  Error bars represent standard error.  B. A Northern 
blot of RNA from each transfected cell line.  This Northern shows the same 
decrease in RNA levels in each mutant cell line as in (A).  Only the wtCPSI cell 
lines have a visible band of exogenous, BAC-derived CPSI (between the # 
signs).  Only the HepG2 hepatic cell line shows endogenous CPSI expression 
(*).  An arrow indicates a non-specific band detected by the CPSI probe.  A 
cyclophilin probe was used as a loading control.  The BAC-derived CPSI 
transcript has an expected difference in size from MRC5-V2-derived CPSI 
(shown in the liver-derived HepG2 lane) due to CMV promoter swapping which 
altered the size of the 5’ untranslated region by approximately 100 bp. 
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Inhibition of nonsense-mediated decay.  To determine if the decreased 

levels of CPSI expression seen in the qRT/PCR experiments were due to 

degradation via the nonsense-mediated decay pathway, this pathway was 

inhibited using siRNA-mediated UPF2 knockdown, previously identified as a 

required component of the NMD pathway [96,106,148].   First, the specific 

knockdown of UPF2 was verified in the MRC+wtCPSI cell line (Figure 4.9A).  

Using the same conditions, UPF2 was next knocked down in each transfected 

polyclonal cell line containing the CPSI mutations.  In all cases, there was a 

much lower UPF2/α-Tubulin ratio in the siRNA-treated cells than in untreated 

cells or those treated with vehicle alone or a non-specific siRNA control, again 

demonstrating specific knockdown of UPF2 (Figure 4.9B).
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Figure 4.9.  siRNA-mediated knockdown of UPF2 in all cell lines.  A. A 
representative Western blot of UPF2 and the loading control, α-tubulin, for the 
MRC+wtCPSI cell line following each treatment condition: UPF2 siRNA, vehicle 
alone, non-specific (NS) siRNA, or no treatment.  B. Average Western blot 
densitometry quantifications performed in triplicate showing relative levels of 
UPF2 knockdown when compared with the control treatments, all expressed as 
UPF2/α-tubulin ratios.  The error bars represent standard error. 
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Quantitative RT/PCR showed that when UPF2 was knocked down in 

these cell lines, levels of CPSI transcript increase when compared to transcript 

levels from vehicle-only and untreated controls (Figure 4.10).  All data was again 

expressed as a ΔΔCt value, this time representing the fold increase in expression 

when compared to the calibrator (untreated) sample arbitrarily set at an 

expression value of 1.  These results indicate that the CPSI mutations cause 

RNA instability, at least partially through eliciting the nonsense-mediated decay 

pathway as knockdown of UPF2 increases the relative expression levels of each 

mutant CPSI transcript when compared with untreated cells.  Following UPF2 

siRNA treatment, the CPSI fold increase observed in every mutant cell line is 

greater (6- to 230-fold) than the CPSI fold increase in the wild-type cell line (3-

fold).  Although the amount of the relative increase varied depending on the cell 

line and probe used (possibly due to varying degrees of siRNA-mediated NMD 

inhibition, or to unique properties of each mutation, or both), these results 

strongly indicate a role for NMD in degradation of CPSI mutant transcripts. 

The above data is in contrast to experiments where puromycin was 

instead used to inhibit NMD.  Puromycin inhibits translation and has therefore 

been previously used to inhibit NMD in other cell lines (example: [78]).  However, 

following multiple concentrations (50, 200, 400, 600, and 800 ug/ml) and multiple 

time courses for treatment (8 or 14 h), the cells either died, or did not exhibit any 

change in RNA levels for any transcript tested.  This data suggests the use of 

caution when using harsh treatments that induce widespread cellular changes 

when only a specific effect is examined or desired. 
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Figure 4.10.  ΔΔCt analysis of quantitative RT/PCR data following siRNA-
mediated knockdown of UPF2.  Each panel graphs relative expression levels 
(calculated as the delta delta Ct) of CPSI transcripts following UPF2 siRNA or 
vehicle only treatments in the respective cell line as compared to untreated cells 
(arbitrarily set at a value of 1).  Gray bars indicate relative levels measured from 
the exon 3-exon 4 TaqMan probe and black bars indicate relative levels 
measured from the exon 34-exon 35 TaqMan probe.  Error bars represent 
standard error. 
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 ESEfinder.  To investigate the properties of the sequence around the two 

exonic mutations, c.1893T>G and c.2388C>A, exons 16 and 19 were searched 

to identify putative exon splicing enhancers.  Inputting both the wild-type and 

mutant sequence into ESEfinder revealed changes in ESE consensus sequence 

scores at both mutations [56].  The c.1893T>G mutation disrupts a SC35 

consensus sequence and changes the threshold score (measure of conformity to 

the consensus sequence) from 2.387 to 0.0671 (Figure 4.11).  The c.2388C>A 

mutation not only disrupts a putative SC35 site by changing the score from 2.242 

to 0.9657 but also creates a consensus SRp40 site by changing the threshold 

from 1.27 to 3.01 (Figure 4.12). 
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Figure 4.11.  ESEfinder results for wild-type and c.1893T>G.  The putative 
SC35 binding site identified on the wild-type construct (top panel) is destroyed by 
the mutation (bottom panel).  Purple circles denote the wild-type and mutant 
base pair examined. 
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Figure 4.12. ESEfinder results for wild-type and c.2388C>A.  The putative 
SC35 binding site identified on the wild-type construct (top panel) is destroyed by 
the mutation but a new putative SRp40 site is detected (bottom panel).  Purple 
circles denote the wild-type and mutant base pair examined. 
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Discussion 

This Chapter outlines data generated from the study of four putative RNA 

instability CPSI mutations (c.652-3T>G, c.1210-1G>T, c.1893T>G, and 

c.2388C>A) in conjunction with the development of the BECC platform.  Re-

creating each of the above mutations in the BECC platform had several 

advantages in addition to validation of the model system.  First, as patient 

samples are usually obtained from individuals who are heterozygous for different 

mutations, this experimental system enabled isolation of the mutation in question.  

Second, each mutation could be maintained in a system without the limited shelf-

life typically seen for patient tissue samples, which are also often difficult to 

obtain.  Third, this platform enables performing manipulations that are not always 

possible or reliable in diagnostically available hepatic samples or established 

patient cell lines with low-level gene transcription. 

Beyond supporting the validity of the BECC platform as a novel gene 

expression system sensitive to experimental manipulations, data presented in 

this Chapter provides confirmation of the mechanistic effect of each mutation.  

This data demonstrates that the observed RNA instability for each mutation is at 

least in part due to transcript degradation through the NMD pathway, as 

confirmed by knockdown of UPF2 (Figure 4.10).  Additionally, splice variants 

resulting from the two intronic mutations were identified (Figures 4.6 and 4.7).   

Quantitative RT/PCR.  Following introduction of each mutation into BECC 

by site-directed mutagenesis, these constructs were transfected into MRC5-V2 

cells and the activity of each construct was assayed through quantitative 
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RT/PCR.  The TaqMan probe specific for the 3’ end of the transcript shows 

relatively equal large decreases in detectable CPSI message in all mutant cell 

lines when compared to wild-type.  In all cases, the 5’ CPSI probe detects higher 

levels of CPSI transcript, but these levels are all less than wild-type except c.652-

3T>G.  The observation that in each case, more mutant transcript was detected 

with the CPSI exon3-exon 4 probe, which lies upstream of all tested mutations, 

may indicate degradation primarily from the 3’ end.  It is also possible that the 

measurement of CPSI in the c.652-3T>G mutant with the exon 3-exon 4 probe is 

a result of the close proximity of the probe to the location of this mutation rather 

than an accurate measure of mature transcript.  Therefore, an important 

consideration for quantitative PCR is to measure transcripts with multiple probes 

being mindful of the distance between the probe and mutation location since the 

probes only anneal to a small portion of the much larger transcript and could 

possibly detect this fragmented RNA.  This quantitative RT/PCR data, coupled 

with the analysis in Chapter II, supports that a significant number of pathogenic 

CPSID mutations result in RNA processing defects.   

c.1210-1G>T.  While both intronic mutations demonstrate the importance 

of the AG sequence in proper 3’ intron definition, only the c.1210-1G>T mutation 

disrupts the endogenous AG within the consensus (Y)nNYAG|G sequence 

necessary for proper intron definition [50].  This disruption causes the activation 

of a cryptic splice site, recognizing an improper AG 32 bp upstream as the 3’ 

splice site (Figure 4.5).  This same splice site change was identified from 

minigene constructs with the wild-type and mutant sequence at this location 
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(Figure 4.6).  That the cryptic splice site is upstream of the wild-type AG was 

slightly unexpected.  The competitive scanning model suggests that the first AG 

downstream of the branch point sequence is the 3’ end of the intron with a few 

exceptions [48,149].  The data shown here may indicate that the wild-type AG is 

not the first such dinucleotide downstream of the branch point sequence in intron 

10.  It is possible that there is a more proximal AG that is less favorable due to a 

location too close to the branch point sequence or because it upstream of the 

polypyrimidine tract and is therefore not used in the transesterification reaction 

[149,150].  Though the branch point sequence and downstream polypyrimidine 

tract are both necessary for proper intron definition [151], the non-canonical 

positioning of an AG upstream of the polypyrimidine tract does not prevent 

splicing [149].  Another possible explanation is that alternate branch points or 

polypyrimidine tracts are recognized in this intron, but this seems less likely given 

the data that shows the branch point sequence and the polypyrimidine tract are 

at least sometimes specified independent of 3’ splice site definition [48].  

However, other data suggests that in some transcripts with weaker 

polypyrimidine tracts, AG recognition is required for the first step of splicing, 

making the AG important for polypyrimidine and branch point sequence 

recognition [152,153].  Figure 4.13 shows the 3’ sequence of intron 10 with both 

the wild-type and cryptic splice sites highlighted alongside the consensus 

sequence for intron definition.  The strongest polypyrimidine tract is highlighted 

as well as potential branch point sequences, illustrating the complexity of 

interpreting the observed alternate splice site activation. 
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Figure 4.13.  Sequence of the 3’ end of intron 10 highlighting possible 
branch point sequences and polypyrimidine tracts.  The consensus 
sequence for 3’ intron definition is depicted at the top, and the bottom sequence 
is intron 10 (in caps) and exon 11 (lower case) with the corresponding consensus 
elements highlighted.  The branch point sequence is depicted in red and two 
possible sites (A and B) are illustrated for intron 10.  In addition, the 3’ end of 
intron 10 is underlined for both the wild-type and cryptic splice sites, both 
matching the consensus sequence.  YN highlights the most likely polypyrimidine 
tract. 
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c.652-3T>G.  The c.652-3T>G mutation creates a premature AG 

dinucleotide sequence and disrupts the pyrimidine conservation immediately 

upstream of the wild-type AG.  Sequencing of RT/PCR products from wild-type 

and mutant cell lines revealed transcripts only in the mutant cell line that 

contained a dinucleotide insertion into exon 6.  This insertion resulted from 

improper recognition of the premature AG as the 3’ end of the intron in both 

patient-derived cells and the BECC-transfected cells (Figure 4.7).  This new AG 

dinucleotide was recognized as the 3’ end of intron 5, even though a G residue is 

directly 5’ of the new AG, which has been shown to be the weakest consensus 

nucleotide for preceding a terminal AG [149].  This intronic mutation again 

illustrates the importance of the sequential presence of a branch point, 

polypyrimidine tract and AG dinucleotide in proper 3’ intron definition, as the 

premature AG formed became the first such sequence downstream of the branch 

point sequence and therefore altered the recognition of the 3’ end of intron 5 

(Figure 4.14). 
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Figure 4.14.  Sequence of the 3’ end of intron 5 highlighting the probable 
branch point sequence and polypyrimidine tract.  The c.652-3 mutation is 
shown in green with both the wild-type and cryptic splice sites depicted.  The (*) 
indicates the G residue that does not conform to the consensus for 3’ intron 
definition. 
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 c.1893T>G.  The c.1893T>G mutation creates a TAG stop codon in place 

of tyrosine at amino acid position 590.  This mutation provides the most direct 

measure of the ability of NMD to degrade an exogenously expressed gene 

because the stop codon is formed independent of any cryptic splicing events.  

When NMD was inhibited through siRNA-mediated knockdown of UPF2, the 

transfected cell line containing this mutant construct had the largest fold increase 

in CPSI transcript.  A possible explanation for this observation is that there are 

separable mechanisms for eliciting NMD based on the type of mutation, as no 

frameshift occurred to create the PTC.  The possibility also exists that there are 

various cryptic splice sites recognized in transcripts with the intronic mutations 

which, though undetectable by RT/PCR, alter not only the number of transcripts 

containing PTCs but also alter the position of the PTC, which may have an effect 

on recognition by the NMD pathway. 

It is possible that the stop codon also alters splicing, should this mutation 

be located in a cis-acting sequence necessary for proper exon definition.  To 

address this possibility, exon 16 was searched using ESEfinder and disruption of 

an SC35 consensus sequence containing nucleotide position c.1893 was 

identified (Figure 4.11).  SC35 has previously been shown to increase splicing of 

exons [154,155].  Therefore, this mutation might not only cause RNA degradation 

from the presence of the stop codon, but also may negatively affect transcript 

splicing due to loss of an SC35 binding site.  This has previously been shown to 

occur, as a point mutation resulting in a stop codon (R187X) caused exon 

skipping due to disruption of an ASF/SF2 consensus site in the mouse modifier 
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gene, Scnm1 [156] and a nonsense mutation in the NDUFS4 gene causes 

alternative splicing products [157]. 

 c.2388C>A.  The BECC platform was particularly useful for determining 

the mechanistic effect of the c.2388C>A mutation.  This synonymous change 

(S755S) in exon 19 was not originally thought to cause loss of enzyme function.  

However, following a thorough genotyping of CPSI in this patient, no other 

genomic changes could be found on the second allele.  Coupled with the 

knowledge that many missense and silent mutations are pathogenic at the RNA 

processing level if they reside in an exonic splicing enhancer, RNA instability was 

the proposed mechanistic effect [53,123].  The data presented here supports that 

hypothesis by showing that transcripts with this silent mutation are increased 

following the inhibition of NMD (Figure 4.10).  This data adds to the increasing 

evidence that many mutations including silent and missense mutations, while 

they do not alter protein structure, can still negatively affect the processing of the 

transcript so that mature proteins are not always produced [53,123].   

Additionally, ESEfinder identified that the c.2388C>A mutation alters 

putative ESE recognition sites.  The mutation not only disrupts the consensus 

sequence for SC35, but also creates a consensus sequence for SRp40.  

Because it is most likely that multiple, seemingly redundant splicing signals and 

enhancers must act in a synergistic manner for proper splicing, this change in 

ESE consensus sequences is an important consideration in determining the 

mechanism of c.2388C>A.  There is evidence that in many exons, antagonism 

between splicing activators and repressors exists and sequence variations may 
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disrupt this equilibrium [158].  Previous studies have specifically indicated the 

antagonism of SRp40 to SC35 function and the activation of splicing due to SC35 

[154,155,159-161].  In addition, the creation of SRp40 consensus sites by a 

single substitution has previously been indicated as the mutation mechanism in 

other genetic diseases [162,163].  It is also possible that this mutation affects the 

recognition site for another component of the spliceosome without a defined 

consensus sequence.     

The data in this Chapter verifies the creation of a novel model system that 

is useful in determining the mechanism of mutations in CPSID.  This system is of 

particular utility for assaying mutations that affect RNA processing because of the 

size capabilities that usually allow for the inclusion of a complete gene on one 

construct.  By studying mutations within their wider sequence context, a more 

accurate determination of the mechanistic effect should be possible.  

Furthermore, the BECC platform is particularly useful in situations where patient 

RNA, cells or tissues are not available.  It additionally permits experimental 

manipulations that cannot be done in patient tissue and therefore provides an 

efficient and reasonable alternative.  For example, the data shows that 

nonsense-mediated decay is a mechanism for the CPSID disease phenotype 

and corroborates evidence that NMD can be triggered from an exogenously 

produced transcript, as was shown previously using UPF2-silenced HeLa cells 

[69].  Therefore, this system is proposed as a relevant eukaryotic cell model for 

efficiently and effectively studying the role of genetic variations.  
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The data outlined in the preceding Chapters tested the hypothesis that the 

underlying molecular mechanisms causing disease in a substantial fraction of 

CPSID patients are defects in RNA processing that can be studied following 

construction of a BAC-based model system.  RNA transcripts undergo a series of 

processing steps involving essential cis elements, and transcripts are subject to 

surveillance and subsequent degradation if premature termination codons are 

identified.  There is increasing evidence that such RNA processing defects 

comprise a significant portion of disease-causing mutations [66-68], such as is 

described here for CPSI Deficiency where 40% of disease-causing alleles 

studied were found to result in RNA instability [127].  The data supports that 

when studying the relationship between genetic mutations and disease 

phenotypes, efforts should be taken to detect splicing changes and allelic 

dropout from nonsense-mediate decay.  To this end, a BAC-based platform was 

developed to accommodate molecular studies on mutations in the large CPSI 

gene.  Using this BECC vector overcomes the difficulties associated with study of 

patient tissue sources that are difficult to obtain and manipulate.  Mutational 

analysis of four CPSID genetic variants (c.652-3T>G, c.1210-1G>T, c.1893T>G, 

and c.2388C>A) in this novel system showed that two caused splicing errors and 
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each elicited the nonsense-mediated decay pathway due to the introduction of a 

PTC. 

A primary objective in understanding CPSI Deficiency was to classify the 

heterogeneous set of identified mutations according to the mechanism conferring 

the enzyme deficiency.  Chapter II describes the quantification of CPSI mutations 

that are likely RNA processing defects and provides evidence for this 

classification through data collected from the CPSID database.  In this Chapter, 

CPSID was a model for understanding and predicting the prevalence of PTC-

forming mutations responsible for genetic disease but only included the study of 

patients with both an archived RNA and DNA source and therefore focused on 

RNA processing mutations.  With the development of the BECC platform for 

testing mutations, now all mutations in the database could be tested to determine 

a functional mutation classification, irrespective of patient RNA availability, 

allowing a more detailed analysis and understanding of all pathogenic CPSI 

genetic variants. 

 Chapter III details the construction of the BECC vector and its utility as a 

model system for studying CPSI gene expression.  Construction included 

combining a library BAC clone with the modular pEHG insert and then further 

modifying the construct to allow CPSI to exhibit more ubiquitous expression 

under the control of the CMV promoter.  Following transfections into an 

immortalized human cell line and creation of stable polyclonal cell lines, 

exogenous CPSI transcript and protein expression was confirmed.  The next goal 
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was to utilize this system to test multiple rare variants identified in the CPSI gene 

of CPSID patients. 

Using site-directed mutagenesis, four mutations were introduced into the 

BECC vector and subsequent analysis verified each affected the stability of the 

RNA transcript.  The galK-mediated two-step recombination method proved very 

efficient for generating point mutations [147].  Future uses include introducing 

additional mutations into the CPSI BECC vector, which is also versatile enough 

for creating even larger insertions and deletions.  There are several multiple 

base-pair insertions and deletions associated with CPSID; however none was 

included in the present study.  It would be beneficial to test insertions and 

deletions not created by splicing mutations in the same manner as was 

performed in Chapter IV to determine if, and to what extent, NMD is involved in 

their pathogenesis and compare these results to the mutations already studied.  

The mutations already studied in BECC each provided details on the specific 

molecular defect, but possibilities exist for further detailed studies to gain more 

insights into molecular pathology and RNA processing in general. 

Both intronic mutations, c.652-3T>G and c.1210-1G>T, disrupted 

recognition of the AG dinucleotide required for proper intron 3’ end definition.  An 

alternate 3’ splice site was identified for each from direct sequencing of a major 

RT/PCR product.  The possibility also exists that there are other, more minor 

transcripts produced which were visibly undetectable in the RT/PCR reactions 

visualized on agarose gel (Figures 4.5 and 4.6).   
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The presence of multiple alternate splice products is especially possible 

from the c.1210-1G>T mutation, as the AG recognized as the 3’ end of the intron 

was 32 bp upstream of the mutation, not downstream.  Because the first AG 

downstream of the branch point usually serves this purpose, the original 

expectation was to find a splicing change that excluded part of the downstream 

exon or included the entire intron.  This observed splicing change, coupled with 

the substantial degradation visible from the Northern blot of the patient’s hepatic 

RNA (Figure 2.3), suggests that minor splice products may be present and future 

studies could be directed towards identifying the presence of other misspliced 

transcripts.   

The study of mutation c.652-3T>G provided a unique strength due to 

detection of the misspliced product in both the patient RNA and through the 

BECC model system.  Not only did study of this mutation provide verification that 

this model system works and corroborated the observed splicing change, but its 

study in BECC also provided an environment for manipulating the NMD pathway 

to verify at least partial participation in the observed RNA instability of c.652-

3T>G. 

A mutation not suspected to result in any splicing changes was 

c.1893T>G.  This nonsense mutation created a premature stop codon without 

altering splicing.  The possibility existed, however, that the point mutation 

occurred in a cis element necessary for proper splicing, such as an exon splicing 

enhancer.  Because this possibility has not been directly excluded, it may be 

beneficial to study this option given that a putative SC35 site was destroyed by 
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the mutation.  However, the increase in relative transcript expression following 

NMD inhibition suggests a direct effect of the nonsense mutation.  To address 

this, changing the mutation at that position from one that directly creates a 

nonsense codon to a mutation that still disrupts the observed ESE consensus 

site would provide insight into the possible presence of alternate splicing 

products. 

The c.2388C>A mutation provided a unique challenge.  To determine if 

this silent mutation was pathogenic, or if it was more likely that this patient 

harbored an as-yet undetermined mutation, it was important to recapitulate this 

mutation in a platform that could be manipulated.  Indeed, stable cell lines 

created with the BECC vector containing this mutation showed very low CPSI 

expression when compared to wild-type (Figure 4.8) except under conditions of 

UPF2-mediated NMD silencing where transcript levels increased 20 to 35-fold 

over the non-treated cells, implicating degradation via NMD (Figure 4.10).  The 

pathogenicity of this silent mutation indicates its location in an important 

sequence element for RNA stability.  ESEfinder shows the creation of a 

consensus recognition site for SRp40 and a disruption of a consensus 

recognition site for SC35, either or both possibly affect the splicing efficiency of 

this transcript [56].  Therefore, future BAC manipulation studies will prove useful 

in further characterizing this region of the CPSI gene and its role in RNA stability.   

Creating the consensus site for SRp40 by nucleotide substitutions at positions 

within the putative site other than at c.2388 would allow experimental 

determination of whether it is the creation of this SR protein recognition 
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sequence that elicits the RNA instability.  Also, depleting the SC35 site without 

creating an SRp40 binding site could provide evidence for the role of SC35 in 

exon 19 definition.  An additional experiment to address the relative functions of 

each putative SR protein binding site would be to deplete SC35 or SRp40 (either 

in vitro or through siRNA) and look for splicing changes, though these 

experiments would be likely to cause widespread effects on other genes as well.  

Further efforts to identify mRNA transcripts with activated cryptic splice sites may 

also help identify the precise RNA defect caused by this mutation. 

A future direction for the BAC-based model system developed here is to 

show that the same construction can be applied to BACs containing other genes, 

as one of the advantages to constructing the BECC platform was that it could be 

applicable to various questions pertaining to the function of genetic changes.  It 

will also be used in other gene expression studies for CPSI.  The BECC vector 

will be used to examine effects of other mutations in this gene as well as to 

determine possible functional effects of polymorphisms identified in this gene, 

such as the functional polymorphism, T1405N, which has already been 

incorporated into the vector [6,12].  Also, it is a goal to begin enzyme expression 

studies and look beyond function of genetic variants at the RNA level. 

The study of nonsense-mediated decay is likely to continue at a very rapid 

pace.  A topic warranting further investigation is whether there are separable 

mechanisms leading to degradation, such as differences based on how the PTC 

was created (by a mutation directly, or due to a frameshift mutation that may or 

may not have been induced by a splicing error).  One piece of evidence that 
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alternative NMD pathways may exist in the cell to recognize and destroy 

transcripts with PTCs is that there are some transcripts that do not require UPF2 

for degradation [164].  This evidence is somewhat supported by previous data 

from another lab that showed UPF3 was able to coimmunoprecipitate UPF1 

independent of UPF2 binding [103].  Using the constructs harboring the four 

CPSI mutations studied may provide helpful evidence concerning the alternate 

NMD pathways, especially since the PTCs resulting from these mutations are 

created by various mechanisms. 

There are many genomic mutations that alter the processing of an RNA 

transcript rather than the structure and/or function of its protein product, and even 

mutations in the same gene that result in similar disease phenotypes through 

different mechanisms.  Understanding the function of such diverse sets of 

genetic changes is an often difficult, yet vital, undertaking.  Study of RNA 

processing mutations is effective not only for identifying important elements in the 

CPSI gene, but also contributes to the overall understanding of RNA processing.  

The data presented in the preceding Chapters supports the evidence that NMD is 

a common phenomenon that can alter disease phenotypes and stresses the 

importance of accounting for PTC-containing transcripts in all disease mutation 

interpretations and screening strategies. 

 There were three main goals for this project.  The first was to perform a 

survey of all mutations identified in CPSID patients and quantify those that likely 

elicit RNA instability.  The second goal was to create a model system that would 

allow testing of any identified mutation, in part to determine its effect on RNA 
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processing.  Last, it was important to use this model system to test putative RNA 

processing mutations to not only verify the system worked, but provide detail on 

the mechanistic effect of each mutation.  The innovation of this platform is that it 

allows comprehensive yet efficient testing of any mutation in CPSI, irrespective of 

type or location.  Though this system was designed for the study of CPSI 

mutations, its versatility will allow it to be applied to other genes and other 

scientific endeavors.  Each of these goals was fulfilled to the extent that it 

supported the overall hypothesis of this project, that the underlying molecular 

mechanisms causing disease in a substantial fraction of CPSID patients are 

defects in RNA processing that can be studied using a novel BAC-based model 

system. 
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APPENDIX A 
 
 

GalK mutagenesis protocol. 
The following is a schematic representation of the GalK site-directed 
mutagenesis protocol performed, as published in [147]. 
 

(1) SW102 cells containing BECC+WtCPSI are first grown at 42°C to 
induce high levels of recombination.  Then, a PCR-generated 1.3 kb 
oligo containing the galK gene in the exact location of the desired 
mutation and 50 bp of homology on either side (from custom primer 
synthesis, see next section) is purified and electroporated into the 
SW102 cells.  These cells are then spread onto minimal media plates 
with galactose as the only carbon source, permitting the specific 
growth of cells that have incorporated galK.  GalK should be located in 
the position of the desired mutation. 
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(2) Double-stranded custom oligos containing the desired mutation and 50 
bp of homology to the CPSI gene directly flanking the desired mutation 
are electroporated into SW102 cells selected from the previous 
homologous recombination step, also induced for high recombination.  
The cells are grown on minimal media with 2-DOG as the only carbon 
source, which is toxic in the presence of galK (due to phosphorylation 
that creates a non-metabolized compound).  Only cells that have had 
galK replaced by the desired mutation are viable. 
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GalK mutagenesis primer sequences used. 
The oligos ordered from Invitrogen are listed below.  For each site-directed 
mutagenesis, four oligos were designed.  Forward and reverse primers were 
designed for the PCR reaction used in the first homologous recombination step.  
At the 5’ end, the forward primer contained 50 bp of homologous sequence to 
CPSI directly upstream of the desired mutation and the 3’ end contained 
homology for amplification of the galK sequence (in bold).  At the 5’ end, the 
reverse primer contained 50 bp of homologous sequence to CPSI directly 
downstream of the desired mutation while the 3’ end again contained homology 
for amplification of the galK sequence.  Complementary oligos, each 100 bp, 
were designed for the second homologous recombination step.  Each contained 
the desired mutation (underlined) in the middle and 50 bp on either side were 
homologous to CPSI at the region surrounding the desired point mutation.     
 

(1) c.652-3T>G 
 
Forward PCR: 
5’-CAACACCTTTATCGTTGCTTCCTTTTAACTGTCTAATTTTTTTAATTTGA 
CCTGTTGACAATTAATCATCGGCA-3’ 
 
Reverse PCR: 
5’-AAAATCCACAGGCTGACCTTCAAATTCAATCTTCCCAAGCATGGTACCCT 
TCAGCACTGTCCTGCTCCTT-3’ 
 

 Homology Arm (sense): 
 5’-CAACACCTTTATCGTTGCTTCCTTTTAACTGTCTAATTTTTTTAATTTGAG 
 AGGGTACCATGCTTGGGAAGATTGAATTTGAAGGTCAGCCTGTGGATTT-3’ 
 
 Homology Arm (rev. comp.): 
 5’-AAATCCACAGGCTGACCTTCAAATTCAATCTTCCCAAGCATGGTACCCTC 
 TCAAATTAAAAAAATTAGACAGTTAAAAGGAAGCAACGATAAAGGTGTTG-3’ 

 
 
(2) c.1210-1G>T 

  
 Forward PCR: 
 5’-TTGACATTCATTGTTACAGAAGGAATTTCTTCCTGTTTCTTATTCCTTTA 
 CCTGTTGACAATTAATCATCGGCA-3’ 

 
Reverse PCR: 
5’-TCTGGGTGGAACTGCACAGCGAAGAAGGGTTTGCTCTCATGCATAATCCC 
TCAGCACTGTCCTGCTCCTT-3’ 
 

 Homology Arm (sense): 
5’-GACATTCATTGTTACAGAAGGAATTTCTTCCTGTTTCTTATTCCTTTAT 
GGGATTATGCATGAGAGCAAACCCTTCTTCGCTGTGCAGTTCCACCCAG-3’ 
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 Homology Arm (rev. comp.): 
5’-CTGGGTGGAACTGCACAGCGAAGAAGGGTTTGCTCTCATGCATAATCCCA 
TAAAGGAATAAGAAACAGGAAGAAATTCCTTCTGTAACAATGAATGTC-3’ 

 
 

(3) c.1893T>G 
 
 Forward PCR: 
 5’-CTGAAGGCAGCAGACACCATTGGCTACCCAGTGATGATCCGTTCCGCCTA 
 CCTGTTGACAATTAATCATCGGCA-3’ 
 
 Reverse PCR: 
 5’-ATCAAAGTCTCTCTGTTGGGACAGATGCCTGAGCCTAACCCACCCAGTGC 
 TCAGCACTGTCCTGCTCCTT-3’ 
 
 Homology Arm (sense): 
 5’-CTGAAGGCAGCAGACACCATTGGCTACCCAGTGATGATCCGTTCCGCCTAG 
 GCACTGGGTGGGTTAGGCTCAGGCATCTGTCCCAACAGAGAGACTTTGA-3’ 
 
 Homology Arm (rev. comp.): 
 5’-TCAAAGTCTCTCTGTTGGGACAGATGCCTGAGCCTAACCCACCCAGTGCC 
 TAGGCGGAACGGATCATCACTGGGTAGCCAATGGTGTCTGCTGCCTTCAG-3’ 
 
 

(4) c.2388C>A 
 
Forward PCR: 

 5’-GCAAAGATTGCCCTAGGAATCCCACTTCCAGAAATTAAGAACGTCGTATC 
 CCTGTTGACAATTAATCATCGGCA-3’ 

 
Reverse PCR: 
5’-TTGGTGACCATGTAATCCAGGCTAGGTTCAAAACAGGCTGATGTCTTCCC 
TCAGCACTGTCCTGCTCCTT-3’ 
 

 Homology Arm (sense): 
 5’-GCAAAGATTGCCCTAGGAATCCCACTTCCAGAAATTAAGAACGTCGTATCA 
 GGGAAGACATCAGCCTGTTTTGAACCTAGCCTGGATTACATGGTCACCA-3’ 

 
 Homology Arm (rev. comp.): 
 5’-TGGTGACCATGTAATCCAGGCTAGGTTCAAAACAGGCTGATGTCTTCCCT 
 GATACGACGTTCTTAATTTCTGGAAGTGGGATTCCTAGGGCAATCTTTGC-3’ 
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APPENDIX B 
 
 

Quantitative RT/PCR assay quality control and methods. 
The following images are raw data outputs from the Applied Biosystems PRISM 
Detection System (automated platform) during the real time RT/PCR reactions 
performed for Figure 4.7.  Because this was the first set of real time RT/PCR 
experiments performed with the indicated probes, various quality control 
measures were taken.  These controls are outlined below along with a general 
conception of the experimental protocol and calculations. 
 

(1) A 10x dilution of the reverse transcription product (the PCR template) 
will yield a 3.3 cycle difference (X axis) if the indicated reaction is 
working at the proper efficiency: 

 
 
 

 
 
 
 
 
 
 
 
 

E-GFP custom part # 4331348 
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CPSI Exon 3-Exon 4 : Hs00919484_m1 

CPSI Exon 34-Exon 35 : Hs00919480_m1 
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(2) The slope generated by each probe must be the same (indicated by 
equally sized arrows) for accurate calculations.  Because data 
generated by both CPSI probes were standardized to E-GFP, the 
slopes generated by each probe were compared. 
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(3) The null hypothesis and necessary calculations are depicted 
graphically.  The difference in Ct (ΔCt) between GFP and either CPSI 
probe is first calculated to standardize the data.  If there is no 
difference in expression between the wild-type and each mutant cell 
line, each ΔCt will be equal (null hypothesis). 
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(4) Typical results are as depicted below using each polyclonal cell line 

cDNA generated with random hexamer primers as the template. 
 
 
 

 
     

    
 
 

c.1210-1G>T 

c.652-3T>G 
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c.1893T>G 

c.2388C>A 
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APPENDIX C 
 
 

Quantitative RT/PCR formulas and values. 
The following pages are the spreadsheet containing the formulas used to perform 
the quantitative RT/PCR ΔΔCt calculations following siRNA inhibition of UPF2 
(see Chapter IV).  Following the values calculated are the formula codes for each 
step.  This data is included as a reference and example, as all qRT/PCR 
experiments were calculated in this manner. 
 
Sample: The name of the sample being measured, each mutation is denoted 
  by a 2 letter abbreviation, M = mock (or vehicle), no RT = control for 
  gDNA  contamination, si = samples transfected with siRNA 
Detector: The TaqMan probe used 
Ct:  The cycle time calculated when the fluorescence crossed the  
  threshold 
Average Ct: The average of multiple Cts measured for each sample 
No RT CF: No reverse transcription correction factor, measures gDNA   
  contamination 
CT+CF: The adjustment made to each Ct depending on the correction factor 
Delta Ct: The difference between the CPSI and GFP Ct for each sample 
Linear conv: Calculation made to convert exponential Ct to a linear value 
Calibrator avg: The average linear conversion of the calibrator (no treatment  
  sample) that all other samples will be expressed in relation to 
ddCt:  Delta Delta Ct value, where each sample is expressed in relation to 
  the calibrator 
ddCt avg: The average of each ddCt value for each sample   

 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

A B C D E F G H I J K
Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
CA M CPSI 3-4 28.25783 29.02028 6.187317 13.72245736 4.961795397 4.960416
CA M CPSI 3-4 28.25957 29.02201 6.189054 13.70594551 4.955825007
CA M CPSI 3-4 28.2573 29.01974 6.186784 13.72752802 4.963628858
CA M CPSI 34-35 27.04044 27.04044 4.207483 54.127929 11.01428839 11.1014
CA M CPSI 34-35 26.99159 26.99159 4.158633 55.99209612 11.39362073
CA M CPSI 34-35 27.05598 27.05598 4.223024 53.54798137 10.89627703
CA M GFP 16.13833 16.1782073 22.83296
CA M GFP 16.19029
CA M GFP 16.206
CA M no RT CPSI 3-4 40 39.2375567 0.7624433
CA M no RT CPSI 3-4 40
CA M no RT CPSI 3-4 37.71267
CA M no RT CPSI 34-35 40 40 0
CA M no RT CPSI 34-35 40
CA M no RT CPSI 34-35 40
CA M no RT GFP 33.71517 33.3452483 6.6547517
CA M no RT GFP 33.46709
CA M no RT GFP 32.85349
CA no si CPSI 3-4 26.95557 26.95557 8.413432 2.93294961 2.765623381
CA no si CPSI 3-4 27.1321 27.1321 8.589964 2.595154238
CA no si CPSI 3-4 27.03868 27.03868 8.496541 2.768766296
CA no si CPSI 34-35 25.5936 26.20422 7.66208 4.937238317 4.914337367
CA no si CPSI 34-35 25.56835 26.17897 7.636834 5.024396381
CA no si CPSI 34-35 25.63987 26.25049 7.708358 4.781377403
CA no si GFP 16.09406 16.141911 18.54214
CA no si GFP 16.19801
CA no si GFP 16.13367
CA no si no RT CPSI 3-4 40 40 0
CA no si no RT CPSI 3-4 40
CA no si no RT CPSI 3-4 40
CA no si no RT CPSI 34-35 38.16814 39.38938 0.61062
CA no si no RT CPSI 34-35 40
CA no si no RT CPSI 34-35 40
CA no si no RT GFP 40 37.599775 2.400225
CA no si no RT GFP 36.88326
CA no si no RT GFP 35.91607
CA si CPSI 3-4 28.93731 29.1526 4.163743 55.79413682 20.17416298 19.19937
CA si CPSI 3-4 29.10841 29.32369 4.334842 49.55444676 17.91800254
CA si CPSI 3-4 28.98591 29.20119 4.212339 53.94605731 19.50593045
CA si CPSI 34-35 27.48784 27.48784 2.498982 176.9014363 35.99700694 34.85002
CA si CPSI 34-35 27.59935 27.59935 2.610499 163.7424925 33.31934304
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A B C D E F G H I J K

Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

CA si CPSI 34-35 27.51876 27.51876 2.529902 173.1504049 35.2337237
CA si GFP 15.54712 15.568475 24.98885
CA si GFP 15.57975
CA si GFP 15.57855
CA si no RT CPSI 3-4 40 39.7847177 0.2152823
CA si no RT CPSI 3-4 40
CA si no RT CPSI 3-4 39.35415
CA si no RT CPSI 34-35 40 40 0
CA si no RT CPSI 34-35 40
CA si no RT CPSI 34-35 40
CA si no RT GFP 30.12634 30.5796223 9.4203777
CA si no RT GFP 30.75076
CA si no RT GFP 30.86177
I10 M CPSI 3-4 27.39708 27.39708 6.732346 9.405069586 1.702099468 1.634618
I10 M CPSI 3-4 27.4601 27.4601 6.795361 9.00311107 1.629354299
I10 M CPSI 3-4 27.51143 27.51143 6.846692 8.688412611 1.572401177
I10 M CPSI 34-35 26.30863 26.30863 5.643891 19.99952205 2.440450669 2.337627
I10 M CPSI 34-35 26.45565 26.45565 5.790913 18.06182313 2.204002086
I10 M CPSI 34-35 26.35185 26.35185 5.687108 19.40930585 2.368429272
I10 M GFP 17.65021 17.7114343 20.66474
I10 M GFP 17.76632
I10 M GFP 17.71778
I10 M no RT CPSI 3-4 40 40 0
I10 M no RT CPSI 3-4 40
I10 M no RT CPSI 3-4 40
I10 M no RT CPSI 34-35 40 40 0
I10 M no RT CPSI 34-35 40
I10 M no RT CPSI 34-35 40
I10 M no RT GFP 36.26555 37.046697 2.953303
I10 M no RT GFP 40
I10 M no RT GFP 34.87455
I10 no si CPSI 3-4 26.30497 26.30497 7.470569 5.638124301 5.525569899
I10 no si CPSI 3-4 26.49024 26.49024 7.655847 4.958615239
I10 no si CPSI 3-4 26.22004 26.22004 7.385646 5.979970157
I10 no si CPSI 34-35 25.87254 25.87254 7.038143 7.60865414 8.19501181
I10 no si CPSI 34-35 25.74898 25.74898 6.914583 8.289018511
I10 no si CPSI 34-35 25.68126 25.68126 6.846866 8.687362778
I10 no si GFP 18.86411 18.834397 18.8344
I10 no si GFP 18.82237
I10 no si GFP 18.81672
I10 no si no RT CPSI 3-4 40 40 0
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A B C D E F G H I J K

Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

I10 no si no RT CPSI 3-4 40
I10 no si no RT CPSI 3-4 40
I10 no si no RT CPSI 34-35 40 40 0
I10 no si no RT CPSI 34-35 40
I10 no si no RT CPSI 34-35 40
I10 no si no RT GFP 40 40 0
I10 no si no RT GFP 40
I10 no si no RT GFP 40
I10 si CPSI 3-4 27.14868 31.2575 4.842857 34.84614812 6.30634464 6.253101
I10 si CPSI 3-4 27.24123 31.35005 4.935405 32.68097873 5.914499196
I10 si CPSI 3-4 27.09654 31.20535 4.79071 36.12872118 6.538460619
I10 si CPSI 34-35 26.88474 27.66325 1.248605 420.8548553 51.35500291 56.52395
I10 si CPSI 34-35 26.83411 27.61261 1.19797 435.888083 53.18943927
I10 si CPSI 34-35 26.5442 27.3227 0.908062 532.900343 65.0274039
I10 si GFP 17.05324 17.0013433 26.41464
I10 si GFP 17.03269
I10 si GFP 16.9181
I10 si no RT CPSI 3-4 35.75824 35.891186 4.108814
I10 si no RT CPSI 3-4 35.32469
I10 si no RT CPSI 3-4 36.59063
I10 si no RT CPSI 34-35 37.66449 39.2214967 0.7785033
I10 si no RT CPSI 34-35 40
I10 si no RT CPSI 34-35 40
I10 si no RT GFP 30.4953 30.5867023 9.4132977
I10 si no RT GFP 30.63245
I10 si no RT GFP 30.63236
I5 M CPSI 3-4 26.45797 27.77712 6.329867 12.43140354 0.369304579 0.360955
I5 M CPSI 3-4 26.538 27.85714 6.409893 11.76061243 0.349377124
I5 M CPSI 3-4 26.47812 27.79727 6.350016 12.25899057 0.364182639
I5 M CPSI 34-35 26.88652 26.88652 5.439266 23.04717925 0.835995154 0.797085
I5 M CPSI 34-35 26.99311 26.99311 5.545864 21.40565809 0.776451913
I5 M CPSI 34-35 26.98874 26.98874 5.541494 21.47059526 0.778807393
I5 M GFP 18.16435 18.156284 21.44725
I5 M GFP 18.22585
I5 M GFP 18.07866
I5 M no RT CPSI 3-4 39.53389 38.680854 1.319146
I5 M no RT CPSI 3-4 37.72616
I5 M no RT CPSI 3-4 38.78252
I5 M no RT CPSI 34-35 40 40 0
I5 M no RT CPSI 34-35 40
I5 M no RT CPSI 34-35 40
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A B C D E F G H I J K

Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

I5 M no RT GFP 34.73657 36.709035 3.290965
I5 M no RT GFP 35.39053
I5 M no RT GFP 40
I5 no si CPSI 3-4 25.24652 25.80662 4.858525 34.46976643 33.6616556
I5 no si CPSI 3-4 25.35049 25.91059 4.962491 32.07313824
I5 no si CPSI 3-4 25.24768 25.80778 4.859685 34.44206213
I5 no si CPSI 34-35 25.31529 26.04539 5.097291 29.21207534 27.56855604
I5 no si CPSI 34-35 25.34956 26.07966 5.131568 28.52620552
I5 no si CPSI 34-35 25.54181 26.27191 5.323811 24.96738725
I5 no si GFP 18.44052 18.45936 20.9481
I5 no si GFP 18.51992
I5 no si GFP 18.41764
I5 no si no RT CPSI 3-4 40 39.439902 0.560098
I5 no si no RT CPSI 3-4 40
I5 no si no RT CPSI 3-4 38.31971
I5 no si no RT CPSI 34-35 37.80969 39.2698973 0.7301027
I5 no si no RT CPSI 34-35 40
I5 no si no RT CPSI 34-35 40
I5 no si no RT GFP 40 37.5112637 2.4887363
I5 no si no RT GFP 35.79591
I5 no si no RT GFP 36.73789
I5 si CPSI 3-4 25.87928 25.87928 1.62773 323.5970438 9.613224246 10.18705
I5 si CPSI 3-4 25.78269 25.78269 1.531142 346.0034512 10.27886018
I5 si CPSI 3-4 25.72894 25.72894 1.477389 359.1382781 10.66906163
I5 si CPSI 34-35 26.80668 26.80668 2.555132 170.1487353 6.171840668 5.482677
I5 si CPSI 34-35 26.97735 26.97735 2.725796 151.165868 5.483271153
I5 si CPSI 34-35 27.17148 27.17148 2.919928 132.1338798 4.792919861
I5 si GFP 17.86009 17.80434 24.25155
I5 si GFP 17.76037
I5 si GFP 17.79256
I5 si no RT CPSI 3-4 40 40 0
I5 si no RT CPSI 3-4 40
I5 si no RT CPSI 3-4 40
I5 si no RT CPSI 34-35 40 40 0
I5 si no RT CPSI 34-35 40
I5 si no RT CPSI 34-35 40
I5 si no RT GFP 33.63929 33.5527877 6.4472123
I5 si no RT GFP 33.55373
I5 si no RT GFP 33.46534
TG M CPSI 3-4 25.21843 25.21843 3.479893 89.62886059 30.91708731 30.9069
TG M CPSI 3-4 25.17748 25.17748 3.438941 92.20949761 31.80726687
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Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

TG M CPSI 3-4 25.26205 25.26205 3.523511 86.95960315 29.99633851
TG M CPSI 34-35 24.85817 24.85817 3.119633 115.0527336 46.76145642 46.80311
TG M CPSI 34-35 24.82698 24.82698 3.088437 117.5676598 47.78361041
TG M CPSI 34-35 24.88612 24.88612 3.147582 112.8452945 45.86427595
TG M GFP 15.02686 14.9857895 21.73854
TG M GFP 14.95589
TG M GFP 14.97462
TG M no RT CPSI 3-4 40 40 0
TG M no RT CPSI 3-4 40
TG M no RT CPSI 3-4 40
TG M no RT CPSI 34-35 40 40 0
TG M no RT CPSI 34-35 40
TG M no RT CPSI 34-35 40
TG M no RT GFP 33.01587 33.2472513 6.7527487
TG M no RT GFP 33.29786
TG M no RT GFP 33.42802
TG no si CPSI 3-4 23.98472 23.98472 8.327513 3.112926006 2.899007261
TG no si CPSI 3-4 24.21031 24.21031 8.553099 2.662322393
TG no si CPSI 3-4 24.07615 24.07615 8.41894 2.921773382
TG no si CPSI 34-35 24.28881 24.28881 8.6316 2.521328828 2.460418096
TG no si CPSI 34-35 24.43029 24.43029 8.773076 2.285814429
TG no si CPSI 34-35 24.25892 24.25892 8.60171 2.574111033
TG no si GFP 15.66562 15.657209 15.65721
TG no si GFP 15.70701
TG no si GFP 15.59899
TG no si no RT CPSI 3-4 40 40 0
TG no si no RT CPSI 3-4 40
TG no si no RT CPSI 3-4 40
TG no si no RT CPSI 34-35 40 40 0
TG no si no RT CPSI 34-35 40
TG no si no RT CPSI 34-35 40
TG no si no RT GFP 40 40 0
TG no si no RT GFP 40
TG no si no RT GFP 40
TG si CPSI 3-4 26.04842 26.04842 0.897158 536.943304 185.2162674 184.1025
TG si CPSI 3-4 26.16829 26.16829 1.017023 494.1348338 170.449671
TG si CPSI 3-4 25.96206 25.96206 0.810801 570.0651319 196.6414985
TG si CPSI 34-35 25.77958 25.77958 0.628318 646.9300652 262.9350134 227.4306
TG si CPSI 34-35 26.16316 26.16316 1.0119 495.8926223 201.5481121
TG si CPSI 34-35 26.05122 26.05122 0.899962 535.9007227 217.8088039
TG si GFP 14.95936 15.0001357 25.15126
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Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
207
208
209
210
211
212
213
214
215
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218
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221
222
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234
235
236
237
238
239
240
241
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243
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247

TG si GFP 14.95555
TG si GFP 15.0855
TG si no RT CPSI 3-4 40 40 0
TG si no RT CPSI 3-4 40
TG si no RT CPSI 3-4 40
TG si no RT CPSI 34-35 40 40 0
TG si no RT CPSI 34-35 40
TG si no RT CPSI 34-35 40
TG si no RT GFP 29.8265 29.848874 10.151126
TG si no RT GFP 29.84279
TG si no RT GFP 29.87734
Wt M CPSI 3-4 23.60367 24.20676 0.682951 622.8898634 2.251422629 2.139149
Wt M CPSI 3-4 23.77016 24.37324 0.849434 555.0024326 2.006044904
Wt M CPSI 3-4 23.66349 24.26658 0.742771 597.5904509 2.159978422
Wt M CPSI 34-35 22.1642 22.82597 0.697838 616.4955275 1.024613522 1.106754
Wt M CPSI 34-35 22.12168 22.78345 0.740359 598.5905189 0.994855457
Wt M CPSI 34-35 22.50851 23.17028 0.353527 782.6685251 1.300792493
Wt M GFP 16.88582 16.805665 23.52381
Wt M GFP 16.71724
Wt M GFP 16.81394
Wt M no RT CPSI 3-4 38.19074 39.396914 0.603086
Wt M no RT CPSI 3-4 40
Wt M no RT CPSI 3-4 40
Wt M no RT CPSI 34-35 38.01468 39.3382267 0.6617733
Wt M no RT CPSI 34-35 40
Wt M no RT CPSI 34-35 40
Wt M no RT GFP 32.41799 33.281856 6.718144
Wt M no RT GFP 34.0372
Wt M no RT GFP 33.39038
Wt no si CPSI 3-4 22.79945 22.79945 1.765695 294.0850464 276.6650097
Wt no si CPSI 3-4 22.96254 22.96254 1.928785 262.6503357
Wt no si CPSI 3-4 22.90541 22.90541 1.871656 273.2596469
Wt no si CPSI 34-35 20.27426 20.27426 0.75949 590.7049746 601.685918
Wt no si CPSI 34-35 20.53467 20.53467 0.499083 707.5562089
Wt no si CPSI 34-35 20.05323 20.05323 0.980521 506.7965704
Wt no si GFP 16.87989 16.898732 21.03375
Wt no si GFP 16.93645
Wt no si GFP 16.87986
Wt no si no RT CPSI 3-4 40 40 0
Wt no si no RT CPSI 3-4 40
Wt no si no RT CPSI 3-4 40
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Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

Wt no si no RT CPSI 34-35 40 40 0
Wt no si no RT CPSI 34-35 40
Wt no si no RT CPSI 34-35 40
Wt no si no RT GFP 35.8525 35.8649807 4.1350193
Wt no si no RT GFP 36.90489
Wt no si no RT GFP 34.83756
Wt si CPSI 3-4 22.91344 23.29782 0.186539 878.7112075 3.176083628 3.09636
Wt si CPSI 3-4 23.05441 23.43879 0.327509 796.9112671 2.880419422
Wt si CPSI 3-4 22.888 23.27238 0.161103 894.3410488 3.232577368
Wt si CPSI 34-35 21.72753 21.72753 1.383752 383.2208602 0.636911799 0.628733
Wt si CPSI 34-35 21.69313 21.69313 1.418155 374.1905423 0.62190344
Wt si CPSI 34-35 21.70578 21.70578 1.4055 377.4872966 0.627382635
Wt si GFP 16.31765 16.3284933 23.11128
Wt si GFP 16.32774
Wt si GFP 16.34009
Wt si no RT CPSI 3-4 38.84685 39.615616 0.384384
Wt si no RT CPSI 3-4 40
Wt si no RT CPSI 3-4 40
Wt si no RT CPSI 34-35 40 40 0
Wt si no RT CPSI 34-35 40
Wt si no RT CPSI 34-35 40
Wt si no RT GFP 33.46902 33.2172133 6.7827867
Wt si no RT GFP 33.28962
Wt si no RT GFP 32.893
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

A B C D E F G H I J K
Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
CA M CPSI 3-4 28.257833 =C2+E11 =ABS(F2-F8) =(2^-G2)*1000 =H2/I20 =AVERAGE(J2:J4)
CA M CPSI 3-4 28.25957 =C3+E11 =ABS(F3-F8) =(2^-G3)*1000 =H3/I20
CA M CPSI 3-4 28.2573 =C4+E11 =ABS(F4-F8) =(2^-G4)*1000 =H4/I20
CA M CPSI 34-35 27.040442 =C5+E14 =ABS(F5-F8) =(2^-G5)*1000 =H5/I23 =AVERAGE(J5:J7)
CA M CPSI 34-35 26.991592 =C6+E14 =ABS(F6-F8) =(2^-G6)*1000 =H6/I23
CA M CPSI 34-35 27.055983 =C7+E14 =ABS(F7-F8) =(2^-G7)*1000 =H7/I23
CA M GFP 16.138329 =AVERAGE(C8:C10) =D8+E17
CA M GFP 16.19029
CA M GFP 16.206003
CA M no RT CPSI 3-4 40 =AVERAGE(C11:C13) =40-D11
CA M no RT CPSI 3-4 40
CA M no RT CPSI 3-4 37.71267
CA M no RT CPSI 34-35 40 =AVERAGE(C14:C16) =40-D14
CA M no RT CPSI 34-35 40
CA M no RT CPSI 34-35 40
CA M no RT GFP 33.71517 =AVERAGE(C17:C19) =40-D17
CA M no RT GFP 33.46709
CA M no RT GFP 32.853485
CA no si CPSI 3-4 26.955568 =C20+E29 =ABS(F20-F26) =(2^-G20)*1000 =AVERAGE(H20:H22)
CA no si CPSI 3-4 27.1321 =C21+E29 =ABS(F21-F26) =(2^-G21)*1000
CA no si CPSI 3-4 27.038677 =C22+E29 =ABS(F22-F26) =(2^-G22)*1000
CA no si CPSI 34-35 25.593596 =C23+E32 =ABS(F23-F26) =(2^-G23)*1000 =AVERAGE(H23:H25)
CA no si CPSI 34-35 25.56835 =C24+E32 =ABS(F24-F26) =(2^-G24)*1000
CA no si CPSI 34-35 25.639874 =C25+E32 =ABS(F25-F26) =(2^-G25)*1000
CA no si GFP 16.094057 =AVERAGE(C26:C28) =D26+E35
CA no si GFP 16.198006
CA no si GFP 16.13367
CA no si no RT CPSI 3-4 40 =AVERAGE(C29:C31) =40-D29
CA no si no RT CPSI 3-4 40
CA no si no RT CPSI 3-4 40
CA no si no RT CPSI 34-35 38.16814 =AVERAGE(C32:C34) =40-D32
CA no si no RT CPSI 34-35 40
CA no si no RT CPSI 34-35 40
CA no si no RT GFP 40 =AVERAGE(C35:C37) =40-D35
CA no si no RT GFP 36.88326
CA no si no RT GFP 35.916065
CA si CPSI 3-4 28.937313 =C38+E47 =ABS(F38-F44) =(2^-G38)*1000 =H38/I20 =AVERAGE(J38:J40)
CA si CPSI 3-4 29.108412 =C39+E47 =ABS(F39-F44) =(2^-G39)*1000 =H39/I20
CA si CPSI 3-4 28.985909 =C40+E47 =ABS(F40-F44) =(2^-G40)*1000 =H40/I20
CA si CPSI 34-35 27.487835 =C41+E50 =ABS(F41-F44) =(2^-G41)*1000 =H41/I23 =AVERAGE(J41:J43)
CA si CPSI 34-35 27.599352 =C42+E50 =ABS(F42-F44) =(2^-G42)*1000 =H42/I23
CA si CPSI 34-35 27.518755 =C43+E50 =ABS(F43-F44) =(2^-G43)*1000 =H43/I23
CA si GFP 15.547122 =AVERAGE(C44:C46) =D44+E53
CA si GFP 15.57975
CA si GFP 15.578553
CA si no RT CPSI 3-4 40 =AVERAGE(C47:C49) =40-D47
CA si no RT CPSI 3-4 40
CA si no RT CPSI 3-4 39.354153
CA si no RT CPSI 34-35 40 =AVERAGE(C50:C52) =40-D50
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Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

CA si no RT CPSI 34-35 40
CA si no RT CPSI 34-35 40
CA si no RT GFP 30.126337 =AVERAGE(C53:C55) =40-D53
CA si no RT GFP 30.750761
CA si no RT GFP 30.861769
I10 M CPSI 3-4 27.397083 =C56+E65 =ABS(F56-F62) =(2^-G56)*1000 =H56/I74 =AVERAGE(J56:J58)
I10 M CPSI 3-4 27.460098 =C57+E65 =ABS(F57-F62) =(2^-G57)*1000 =H57/I74
I10 M CPSI 3-4 27.511429 =C58+E65 =ABS(F58-F62) =(2^-G58)*1000 =H58/I74
I10 M CPSI 34-35 26.308628 =C59+E68 =ABS(F59-F62) =(2^-G59)*1000 =H59/I77 =AVERAGE(J59:J61)
I10 M CPSI 34-35 26.45565 =C60+E68 =ABS(F60-F62) =(2^-G60)*1000 =H60/I77
I10 M CPSI 34-35 26.351845 =C61+E68 =ABS(F61-F62) =(2^-G61)*1000 =H61/I77
I10 M GFP 17.650208 =AVERAGE(C62:C64) =D62+E71
I10 M GFP 17.766315
I10 M GFP 17.71778
I10 M no RT CPSI 3-4 40 =AVERAGE(C65:C67) =40-D65
I10 M no RT CPSI 3-4 40
I10 M no RT CPSI 3-4 40
I10 M no RT CPSI 34-35 40 =AVERAGE(C68:C70) =40-D68
I10 M no RT CPSI 34-35 40
I10 M no RT CPSI 34-35 40
I10 M no RT GFP 36.265545 =AVERAGE(C71:C73) =40-D71
I10 M no RT GFP 40
I10 M no RT GFP 34.874546
I10 no si CPSI 3-4 26.304966 =C74+E83 =ABS(F74-F80) =(2^-G74)*1000 =AVERAGE(H74:H76)
I10 no si CPSI 3-4 26.490244 =C75+E83 =ABS(F75-F80) =(2^-G75)*1000
I10 no si CPSI 3-4 26.220043 =C76+E83 =ABS(F76-F80) =(2^-G76)*1000
I10 no si CPSI 34-35 25.87254 =C77+E86 =ABS(F77-F80) =(2^-G77)*1000 =AVERAGE(H77:H79)
I10 no si CPSI 34-35 25.74898 =C78+E86 =ABS(F78-F80) =(2^-G78)*1000
I10 no si CPSI 34-35 25.681263 =C79+E86 =ABS(F79-F80) =(2^-G79)*1000
I10 no si GFP 18.864105 =AVERAGE(C80:C82) =D80+E89
I10 no si GFP 18.822365
I10 no si GFP 18.816721
I10 no si no RT CPSI 3-4 40 =AVERAGE(C83:C85) =40-D83
I10 no si no RT CPSI 3-4 40
I10 no si no RT CPSI 3-4 40
I10 no si no RT CPSI 34-35 40 =AVERAGE(C86:C88) =40-D86
I10 no si no RT CPSI 34-35 40
I10 no si no RT CPSI 34-35 40
I10 no si no RT GFP 40 =AVERAGE(C89:C91) =40-D89
I10 no si no RT GFP 40
I10 no si no RT GFP 40
I10 si CPSI 3-4 27.148684 =C92+E101 =ABS(F92-F98) =(2^-G92)*1000 =H92/I74 =AVERAGE(J92:J94)
I10 si CPSI 3-4 27.241232 =C93+E101 =ABS(F93-F98) =(2^-G93)*1000 =H93/I74
I10 si CPSI 3-4 27.096537 =C94+E101 =ABS(F94-F98) =(2^-G94)*1000 =H94/I74
I10 si CPSI 34-35 26.884743 =C95+E104 =ABS(F95-F98) =(2^-G95)*1000 =H95/I77 =AVERAGE(J95:J97)
I10 si CPSI 34-35 26.834108 =C96+E104 =ABS(F96-F98) =(2^-G96)*1000 =H96/I77
I10 si CPSI 34-35 26.5442 =C97+E104 =ABS(F97-F98) =(2^-G97)*1000 =H97/I77
I10 si GFP 17.053242 =AVERAGE(C98:C100) =D98+E107
I10 si GFP 17.03269
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Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

I10 si GFP 16.918098
I10 si no RT CPSI 3-4 35.75824 =AVERAGE(C101:C103) =40-D101
I10 si no RT CPSI 3-4 35.324688
I10 si no RT CPSI 3-4 36.59063
I10 si no RT CPSI 34-35 37.66449 =AVERAGE(C104:C106) =40-D104
I10 si no RT CPSI 34-35 40
I10 si no RT CPSI 34-35 40
I10 si no RT GFP 30.4953 =AVERAGE(C107:C109) =40-D107
I10 si no RT GFP 30.632448
I10 si no RT GFP 30.632359
I5 M CPSI 3-4 26.45797 =C110+E119 =ABS(F110-F116) =(2^-G110)*1000 =H110/I128 =AVERAGE(J110:J112)
I5 M CPSI 3-4 26.537996 =C111+E119 =ABS(F111-F116) =(2^-G111)*1000 =H111/I128
I5 M CPSI 3-4 26.478119 =C112+E119 =ABS(F112-F116) =(2^-G112)*1000 =H112/I128
I5 M CPSI 34-35 26.886515 =C113+E122 =ABS(F113-F116) =(2^-G113)*1000 =H113/I131 =AVERAGE(J113:J115)
I5 M CPSI 34-35 26.993113 =C114+E122 =ABS(F114-F116) =(2^-G114)*1000 =H114/I131
I5 M CPSI 34-35 26.988743 =C115+E122 =ABS(F115-F116) =(2^-G115)*1000 =H115/I131
I5 M GFP 18.16435 =AVERAGE(C116:C118) =D116+E125
I5 M GFP 18.225847
I5 M GFP 18.078655
I5 M no RT CPSI 3-4 39.533886 =AVERAGE(C119:C121) =40-D119
I5 M no RT CPSI 3-4 37.72616
I5 M no RT CPSI 3-4 38.782516
I5 M no RT CPSI 34-35 40 =AVERAGE(C122:C124) =40-D122
I5 M no RT CPSI 34-35 40
I5 M no RT CPSI 34-35 40
I5 M no RT GFP 34.736572 =AVERAGE(C125:C127) =40-D125
I5 M no RT GFP 35.390533
I5 M no RT GFP 40
I5 no si CPSI 3-4 25.246523 =C128+E137 =ABS(F128-F134) =(2^-G128)*1000 =AVERAGE(H128:H130)
I5 no si CPSI 3-4 25.350489 =C129+E137 =ABS(F129-F134) =(2^-G129)*1000
I5 no si CPSI 3-4 25.247683 =C130+E137 =ABS(F130-F134) =(2^-G130)*1000
I5 no si CPSI 34-35 25.315285 =C131+E140 =ABS(F131-F134) =(2^-G131)*1000 =AVERAGE(H131:H133)
I5 no si CPSI 34-35 25.349562 =C132+E140 =ABS(F132-F134) =(2^-G132)*1000
I5 no si CPSI 34-35 25.541805 =C133+E140 =ABS(F133-F134) =(2^-G133)*1000
I5 no si GFP 18.44052 =AVERAGE(C134:C136) =D134+E143
I5 no si GFP 18.519917
I5 no si GFP 18.417643
I5 no si no RT CPSI 3-4 40 =AVERAGE(C137:C139) =40-D137
I5 no si no RT CPSI 3-4 40
I5 no si no RT CPSI 3-4 38.319706
I5 no si no RT CPSI 34-35 37.809692 =AVERAGE(C140:C142) =40-D140
I5 no si no RT CPSI 34-35 40
I5 no si no RT CPSI 34-35 40
I5 no si no RT GFP 40 =AVERAGE(C143:C145) =40-D143
I5 no si no RT GFP 35.795906
I5 no si no RT GFP 36.737885
I5 si CPSI 3-4 25.879282 =C146+E155 =ABS(F146-F152) =(2^-G146)*1000 =H146/I128 =AVERAGE(J146:J148)
I5 si CPSI 3-4 25.782694 =C147+E155 =ABS(F147-F152) =(2^-G147)*1000 =H147/I128
I5 si CPSI 3-4 25.728941 =C148+E155 =ABS(F148-F152) =(2^-G148)*1000 =H148/I128
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149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

I5 si CPSI 34-35 26.806684 =C149+E158 =ABS(F149-F152) =(2^-G149)*1000 =H149/I131 =AVERAGE(J149:J151)
I5 si CPSI 34-35 26.977348 =C150+E158 =ABS(F150-F152) =(2^-G150)*1000 =H150/I131
I5 si CPSI 34-35 27.17148 =C151+E158 =ABS(F151-F152) =(2^-G151)*1000 =H151/I131
I5 si GFP 17.86009 =AVERAGE(C152:C154) =D152+E161
I5 si GFP 17.76037
I5 si GFP 17.79256
I5 si no RT CPSI 3-4 40 =AVERAGE(C155:C157) =40-D155
I5 si no RT CPSI 3-4 40
I5 si no RT CPSI 3-4 40
I5 si no RT CPSI 34-35 40 =AVERAGE(C158:C160) =40-D158
I5 si no RT CPSI 34-35 40
I5 si no RT CPSI 34-35 40
I5 si no RT GFP 33.63929 =AVERAGE(C161:C163) =40-D161
I5 si no RT GFP 33.55373
I5 si no RT GFP 33.465343
TG M CPSI 3-4 25.218431 =C164+E173 =ABS(F164-F170) =(2^-G164)*1000 =H164/I182 =AVERAGE(J164:J166)
TG M CPSI 3-4 25.177479 =C165+E173 =ABS(F165-F170) =(2^-G165)*1000 =H165/I182
TG M CPSI 3-4 25.262049 =C166+E173 =ABS(F166-F170) =(2^-G166)*1000 =H166/I182
TG M CPSI 34-35 24.858171 =C167+E176 =ABS(F167-F170) =(2^-G167)*1000 =H167/I185 =AVERAGE(J167:J169)
TG M CPSI 34-35 24.826975 =C168+E176 =ABS(F168-F170) =(2^-G168)*1000 =H168/I185
TG M CPSI 34-35 24.88612 =C169+E176 =ABS(F169-F170) =(2^-G169)*1000 =H169/I185
TG M GFP 15.026857 =AVERAGE(C170:C172) =D170+E179
TG M GFP 14.9558935
TG M GFP 14.974618
TG M no RT CPSI 3-4 40 =AVERAGE(C173:C175) =40-D173
TG M no RT CPSI 3-4 40
TG M no RT CPSI 3-4 40
TG M no RT CPSI 34-35 40 =AVERAGE(C176:C178) =40-D176
TG M no RT CPSI 34-35 40
TG M no RT CPSI 34-35 40
TG M no RT GFP 33.01587 =AVERAGE(C179:C181) =40-D179
TG M no RT GFP 33.29786
TG M no RT GFP 33.428024
TG no si CPSI 3-4 23.984722 =C182+E191 =ABS(F182-F188) =(2^-G182)*1000 =AVERAGE(H182:H184)
TG no si CPSI 3-4 24.210308 =C183+E191 =ABS(F183-F188) =(2^-G183)*1000
TG no si CPSI 3-4 24.076149 =C184+E191 =ABS(F184-F188) =(2^-G184)*1000
TG no si CPSI 34-35 24.288809 =C185+E194 =ABS(F185-F188) =(2^-G185)*1000 =AVERAGE(H185:H187)
TG no si CPSI 34-35 24.430285 =C186+E194 =ABS(F186-F188) =(2^-G186)*1000
TG no si CPSI 34-35 24.258919 =C187+E194 =ABS(F187-F188) =(2^-G187)*1000
TG no si GFP 15.665624 =AVERAGE(C188:C190) =D188+E197
TG no si GFP 15.70701
TG no si GFP 15.598993
TG no si no RT CPSI 3-4 40 =AVERAGE(C191:C193) =40-D191
TG no si no RT CPSI 3-4 40
TG no si no RT CPSI 3-4 40
TG no si no RT CPSI 34-35 40 =AVERAGE(C194:C196) =40-D194
TG no si no RT CPSI 34-35 40
TG no si no RT CPSI 34-35 40
TG no si no RT GFP 40 =AVERAGE(C197:C199) =40-D197
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198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
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223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

TG no si no RT GFP 40
TG no si no RT GFP 40
TG si CPSI 3-4 26.04842 =C200+E209 =ABS(F200-F206) =(2^-G200)*1000 =H200/I182 =AVERAGE(J200:J202)
TG si CPSI 3-4 26.168285 =C201+E209 =ABS(F201-F206) =(2^-G201)*1000 =H201/I182
TG si CPSI 3-4 25.962063 =C202+E209 =ABS(F202-F206) =(2^-G202)*1000 =H202/I182
TG si CPSI 34-35 25.77958 =C203+E212 =ABS(F203-F206) =(2^-G203)*1000 =H203/I185 =AVERAGE(J203:J205)
TG si CPSI 34-35 26.163162 =C204+E212 =ABS(F204-F206) =(2^-G204)*1000 =H204/I185
TG si CPSI 34-35 26.051224 =C205+E212 =ABS(F205-F206) =(2^-G205)*1000 =H205/I185
TG si GFP 14.959359 =AVERAGE(C206:C208) =D206+E215
TG si GFP 14.955553
TG si GFP 15.085495
TG si no RT CPSI 3-4 40 =AVERAGE(C209:C211) =40-D209
TG si no RT CPSI 3-4 40
TG si no RT CPSI 3-4 40
TG si no RT CPSI 34-35 40 =AVERAGE(C212:C214) =40-D212
TG si no RT CPSI 34-35 40
TG si no RT CPSI 34-35 40
TG si no RT GFP 29.826496 =AVERAGE(C215:C217) =40-D215
TG si no RT GFP 29.842789
TG si no RT GFP 29.877337
Wt M CPSI 3-4 23.603674 =C218+E227 =ABS(F218-F224) =(2^-G218)*1000 =H218/I236 =AVERAGE(J218:J220)
Wt M CPSI 3-4 23.770157 =C219+E227 =ABS(F219-F224) =(2^-G219)*1000 =H219/I236
Wt M CPSI 3-4 23.663494 =C220+E227 =ABS(F220-F224) =(2^-G220)*1000 =H220/I236
Wt M CPSI 34-35 22.164198 =C221+E230 =ABS(F221-F224) =(2^-G221)*1000 =H221/I239 =AVERAGE(J221:J223)
Wt M CPSI 34-35 22.121677 =C222+E230 =ABS(F222-F224) =(2^-G222)*1000 =H222/I239
Wt M CPSI 34-35 22.508509 =C223+E230 =ABS(F223-F224) =(2^-G223)*1000 =H223/I239
Wt M GFP 16.885818 =AVERAGE(C224:C226) =D224+E233
Wt M GFP 16.717237
Wt M GFP 16.81394
Wt M no RT CPSI 3-4 38.190742 =AVERAGE(C227:C229) =40-D227
Wt M no RT CPSI 3-4 40
Wt M no RT CPSI 3-4 40
Wt M no RT CPSI 34-35 38.01468 =AVERAGE(C230:C232) =40-D230
Wt M no RT CPSI 34-35 40
Wt M no RT CPSI 34-35 40
Wt M no RT GFP 32.417988 =AVERAGE(C233:C235) =40-D233
Wt M no RT GFP 34.0372
Wt M no RT GFP 33.39038
Wt no si CPSI 3-4 22.799446 =C236+E245 =ABS(F236-F242) =(2^-G236)*1000 =AVERAGE(H236:H238)
Wt no si CPSI 3-4 22.962536 =C237+E245 =ABS(F237-F242) =(2^-G237)*1000
Wt no si CPSI 3-4 22.905407 =C238+E245 =ABS(F238-F242) =(2^-G238)*1000
Wt no si CPSI 34-35 20.274261 =C239+E248 =ABS(F239-F242) =(2^-G239)*1000 =AVERAGE(H239:H241)
Wt no si CPSI 34-35 20.534668 =C240+E248 =ABS(F240-F242) =(2^-G240)*1000
Wt no si CPSI 34-35 20.05323 =C241+E248 =ABS(F241-F242) =(2^-G241)*1000
Wt no si GFP 16.879885 =AVERAGE(C242:C244) =D242+E251
Wt no si GFP 16.936453
Wt no si GFP 16.879858
Wt no si no RT CPSI 3-4 40 =AVERAGE(C245:C247) =40-D245
Wt no si no RT CPSI 3-4 40
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A B C D E F G H I J K

Sample Detector Ct Average Ct No RT CF CT + CF Delta Ct Linear Conversion Calibrator Avg ddCt ddCt Avg
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

Wt no si no RT CPSI 3-4 40
Wt no si no RT CPSI 34-35 40 =AVERAGE(C248:C250) =40-D248
Wt no si no RT CPSI 34-35 40
Wt no si no RT CPSI 34-35 40
Wt no si no RT GFP 35.852497 =AVERAGE(C251:C253) =40-D251
Wt no si no RT GFP 36.90489
Wt no si no RT GFP 34.837555
Wt si CPSI 3-4 22.913435 =C254+E263 =ABS(F254-F260) =(2^-G254)*1000 =H254/I236 =AVERAGE(J254:J256)
Wt si CPSI 3-4 23.054405 =C255+E263 =ABS(F255-F260) =(2^-G255)*1000 =H255/I236
Wt si CPSI 3-4 22.887999 =C256+E263 =ABS(F256-F260) =(2^-G256)*1000 =H256/I236
Wt si CPSI 34-35 21.727528 =C257+E266 =ABS(F257-F260) =(2^-G257)*1000 =H257/I239 =AVERAGE(J257:J259)
Wt si CPSI 34-35 21.693125 =C258+E266 =ABS(F258-F260) =(2^-G258)*1000 =H258/I239
Wt si CPSI 34-35 21.70578 =C259+E266 =ABS(F259-F260) =(2^-G259)*1000 =H259/I239
Wt si GFP 16.317648 =AVERAGE(C260:C262) =D260+E269
Wt si GFP 16.32774
Wt si GFP 16.340092
Wt si no RT CPSI 3-4 38.846848 =AVERAGE(C263:C265) =40-D263
Wt si no RT CPSI 3-4 40
Wt si no RT CPSI 3-4 40
Wt si no RT CPSI 34-35 40 =AVERAGE(C266:C268) =40-D266
Wt si no RT CPSI 34-35 40
Wt si no RT CPSI 34-35 40
Wt si no RT GFP 33.46902 =AVERAGE(C269:C271) =40-D269
Wt si no RT GFP 33.28962
Wt si no RT GFP 32.893
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