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PREFACE

Over the past decade we have witnessed the evolution of wireless sensor networks, with advancements

in hardware design, communication protocols, resource efficiency, and other aspects. Recently, there

has been much focus on mobile sensor networks, and we have even seen the development of small-

profile sensing devices that are able to control their own movement. Although it has been shown

that mobility alleviates several issues relating to sensor network coverage and connectivity, many

challenges remain. Among these, the need for position estimation is perhaps the most important. Not

only is localization required to understand sensor data in a spatial context, but also for navigation,

a key feature of mobile sensors.

In this dissertation we develop techniques for the synchronization, localization and navigation

of resource-constrained mobile sensors. Resource constraints prevent us from using traditional co-

ordination methods, because these typically require bulky, expensive, and sophisticated sensors,

substantial memory and processor allocation, and a generous power supply. The global positioning

system is able to provide synchronization and localization information, however in many situations

it cannot be relied on, and alternative methods are required. We focus on techniques that rely

primarily on the sensor radio, since all wireless sensor nodes are equipped with them, thus requiring

no additional hardware support. Specifically, we have developed a time synchronization protocol

for heterogeneous sensor networks, localization techniques in which sensor nodes measure the phase

and Doppler-shift in frequency of an RF interference signal, and waypoint navigation, in which the

localization results are used to derive motion vectors for the mobile sensors.
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CHAPTER I

INTRODUCTION

Wireless Sensor Networks

As the future of computing moves toward pervasive and ubiquitous platforms, we find ourselves in

need of hardware, software, protocols and methodologies that promote their practical use. Wireless

sensor networks (WSNs) are a perfect example of this developing technology. WSNs consist of

large numbers of cooperating sensor nodes that can be deployed in practically any environment,

and have already demonstrated their utility in a wide range of applications including environmental

monitoring [1], transportation [2], and health care [3]. As WSNs and other embedded computing

technologies continue to evolve, it is imperative that we stay abreast of the challenges that arise in

order to enable a seamless transfer to general public utilization.

The greatest challenge we face when working with WSNs is their resource limitations [4], [5].

Memory, processor, communication range, power supply, and hardware quality have all been min-

imized in order to develop inexpensive, general-use sensor nodes with small form factors. The

advantage of this approach is that hundreds of these devices can be deployed over a wide (possibly

remote) area, at little cost, and handle tasks for which PC-class devices would not be well suited.

Due to the distributed nature of WSNs, we often encounter situations in which it is advantageous

to network several different types of sensor platforms together. Such heterogeneous sensor networks

(HSNs) are a promising direction for developing a diverse set of applications [6], [7], [8], [9]. The

challenge with heterogeneity is that differences in hardware specification, OS design, and commu-

nication protocol add significant complexity to application development, and can hinder the overall

performance of the sensor network deployment. Services are beginning to emerge that address these

issues [10], [11], but because there can never be a single protocol that will function correctly for all

possible present and future devices and operating systems, heterogeneity remains high on the list of

sensor network challenges.

Mobile wireless sensor networks (MWSNs) are a particular class of WSN in which mobility plays

a key role in the execution of the application. In recent years, mobility has become an important

area of research for the WSN community [12], [13], [14]. Although WSN deployments were never

envisioned to be fully static, mobility was initially regarded as having several challenges that needed

to be overcome, including connectivity, coverage, and energy consumption, among others. However,
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recent studies have been showing mobility in a more favorable light [15]. Rather than complicating

these issues, it has been demonstrated that the introduction of mobile entities can resolve some

of these problems [12]. In addition, mobility enables sensor nodes to target and track moving

phenomena such as chemical clouds, vehicles, and packages [16].

Mobility in WSNs requires fine-grained coordination and navigation capability. These challenges

must be addressed for the development of a versatile mobile sensor platform:

• Localization. One of the most significant challenges for MWSNs is the need for localization.

In order to understand sensor data in a spatial context, or for proper navigation throughout

a sensing region, sensor position must be known. Because sensor nodes may be deployed

dynamically (i.e., dropped from an aircraft), or may change position during run-time (i.e.,

when attached to a shipping container), there may be no way of knowing the location of each

node at any given time. For static WSNs, this is not as much of a problem because once node

positions have been determined, they are unlikely to change. On the other hand, mobile sensors

must frequently estimate their position, which takes time and energy, and consumes other

resources needed by the sensing application. Furthermore, localization schemes that provide

high-accuracy positioning information in WSNs cannot be employed by mobile sensors, because

they typically require centralized processing, take too long to run, or make assumptions about

the environment or network topology that do not apply to dynamic networks.

• Navigation. In MWSNs, position updates are often required for navigation through the

sensing region. Robot navigation has been studied extensively, however, many of the published

techniques are inappropriate for small-footprint mobile sensors because they are either too

energy intensive, computationally expensive, or cost prohibitive.

• Time Synchronization. Not only do sensor networks require coordination in space, but

coordination in time as well. Time synchronization is a critical component in many sensor

network applications, including localization. Although several synchronization protocols have

been developed, they tend to break down when implemented on networks of heterogeneous

devices. This is because different synchronization protocols interact and behave differently

when employed on devices with diverse hardware components, operating systems, and com-

munication modalities. A methodology that provides accurate synchronization in one part of

the network may perform undesirably in another part.
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Contributions

The contributions described in this dissertation comprise methods for mobile sensor coordination

including localization, navigation, and time synchronization.

Time Synchronization in Heterogeneous Sensor Networks. We have developed a protocol for

achieving microsecond-accuracy synchronization in heterogeneous sensor networks [11], [17]. HSN

synchronization becomes necessary when a diverse group of sensor nodes must coordinate with

each other. We consider a multi-hop network consisting of Berkeley motes and mobile robots with

embedded Linux PCs (the mote-PC connection is a dominant configuration for HSN applications).

Time synchronization in both mote and PC networks have been studied independently, however, a

sub-millisecond software synchronization method combining these two networks has not previously

been developed.

Navigation based on RF Doppler Shifts. In addition to coordinating sensors in time, we have

developed several techniques for spatial coordination in sensor networks. The first is a navigation

method called dNav that measures RF Doppler shifts for control feedback [18], [19]. We show that a

mobile sensor transmitting an RF sinusoidal signal is capable of navigating via waypoints based on

the Doppler-shift in frequency observed at several stationary receiver nodes. This work demonstrates

the feasibility of RF-based mobile sensor navigation, and highlights the challenges involved, as well

as provides a direction for the evolution of RF-based navigation systems.

Determining Angular Separation in MWSNs. An extension to Doppler-based control has also

been developed for determining angular separation between two landmarks [20]. Angular separation

estimation only requires the sensor radio and wheel encoders, both of which are common to robotic

wireless sensors, and hence no additional hardware is required. Our method uses the Doppler shift

in radio frequency and the instantaneous velocity of a mobile node transmitting a sinusoidal signal

to derive the angular separation between infrastructure nodes. The method does not require the

positions of the infrastructure nodes, or the initial position of the mobile node, to be known. Knowl-

edge of angular separation between pairs of beacons can be used for localization via triangulation,

or for navigation without localization, using angle-based navigation techniques.

Rapid Distributed Localization from Radio Interferometric Measurements. We develop a

localization method that utilizes the phase of the RF signal, rather than frequency [21]. The system,

called TripLoc, determines angle-of-arrival by making radio interferometric measurements using the

same technique as the Radio Interferometric Positioning System (RIPS) [22]. However, unlike RIPS,

TripLoc is feasible for mobile sensor navigation. We bundle two radio-interferometric transmitter
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nodes and a receiver node into a three-antenna array. The close proximity of the two transmitter

nodes enables us to avoid the phase ambiguity problem that RIPS experiences. Another drawback

with RIPS for navigation systems is that a single localization step can take several minutes, a latency

that cannot sustain node mobility. Our method reduces this latency to approximately one second.

In addition, RIPS requires PC processing for the localization algorithm, whereas the triangulation

method we present can be implemented entirely on resource-constrained motes, in a distributed

manner.

Using TripLoc for Mobile Sensor Navigation. We design TripNav, a waypoint navigation

method for mobile wireless sensor networks, in which a mobile sensor traverses a series of waypoints

using TripLoc to determine its current position. The development of TripNav is important, because

it demonstrates that TripLoc is indeed suitable (sufficiently rapid and accurate) for mobile sensor

navigation, one of the few RF-based distributed localization techniques that meet these criteria.

Dissertation Organization

In Chapter II, we provide a survey of mobile wireless sensor networks. The survey includes various

coordination schemes relating to localization, navigation, and time synchronization. In Chapter III,

we present a time synchronization protocol for heterogeneous sensor networks. Chapters IV and V

describe localization and navigation techniques that measure the Doppler shift of an RF interference

signal to determine spatial relationships. In Chapter VI, the phase of the interference signal is

measured to determine either bearing or position, and in Chapter VII, we use this system for mobile

sensor navigation. Finally, in Chapter VIII, we conclude.
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CHAPTER II

BACKGROUND

One of the most significant challenges for WSNs is spatio-temporal awareness [23], [24]. Such

network-wide coordination in both time and space is critical for the proper analysis of sensor data

that is collected. Sensor nodes must have a common notion of time when detecting the occurrence

of events, and without accurate location information, event detection will rarely be of any practical

use. When the network only contains stationary nodes, localization is a one-time operation that

can take place during network deployment. However, the localization problem becomes more com-

plicated when mobile entities exist within the network. Instead of localizing only once at startup,

mobile nodes require continuous localization for navigation throughout the sensing region.

At present, the most widely used method for spatio-temporal coordination is the NAVSTAR

Global Positioning System (GPS) [25]. The system consists of approximately 24 satellites that orbit

the planet, of which four are required to obtain location information (3 to determine 3D position,

and 1 to resolve local clock uncertainty). The satellites continuously transmit messages that contain

ephemeris data, transmission time, and vital statistics. Mobile receivers are then able to compute

their location using lateration based on signal time of flight and orbital position data. Commercial-

use GPS is accurate to within 10 meters (position) and 1 microsecond (time synchronization), is free

to use anywhere on the planet and, for many mobile applications, is an ideal localization technology

that should be taken advantage of. However, there are also several situations in which it will not

work reliably. Because GPS requires line of sight to multiple satellites, mobile sensor networks that

are deployed in urban environments, indoors, underground, or off-planet will not be able to use it.

Furthermore, although GPS receivers are available for mote-scale devices, they are still relatively

expensive, and therefore undesirable for many deployments. Therefore, this dissertation is presented

from a GPS-less perspective (i.e., one that does not rely solely on GPS technology).

Mobile Wireless Sensor Networks

In this section, we provide a taxonomy of MWSNs, including the differences between MWSNs and

WSNs, and the advantages of adding mobility.
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MWSN Architectures

Mobile sensor networks can be categorized by flat, 2-tier, or 3-tier hierarchical architectures [12], as

illustrated in Figure 1, and described below.

(a) (b) (c)(a) (b) (c)

Figure 1: (a) Flat, (b) 2-Tier, and (c) 3-Tier MWSN architectures.

A flat, or planar, network architecture comprises a set of heterogeneous devices that communicate

in an ad hoc manner. The devices can be mobile or stationary, but all communicate over the same

network. Basic navigation systems such as [18] have a flat architecture, as pictured in Figure 1a.

The two-tier architecture consists of a set of stationary nodes, and a set of mobile nodes. The

mobile nodes form an overlay network or act as data mules (see below) to help move data through

the network. The overlay network can include mobile devices that have greater processing capability,

longer communication range, and higher bandwidth. Furthermore, the overlay network density may

be such that all nodes are always connected, or the network can become disjoint. When the latter

is the case, mobile entities can position themselves in order to re-establish connectivity, ensuring

network packets reach their intended destination. The NavMote system [26] takes this approach.

The 2-tier architecture is pictured in Figure 1b.

In the three-tier architecture, a set of stationary sensor nodes pass data to a set of mobile devices,

which then forward that data to a set of access points. This heterogeneous network is designed to

cover wide areas and be compatible with several applications simultaneously. For example, consider a

sensor network application that monitors a parking garage for parking space availability. The sensor

network (first tier) broadcasts availability updates to compatible mobile devices (second tier), such

as cell phones or PDAs, that are passing by. In turn, the cell phones forward this availability data

to access points (third tier), such as cell towers, and the data are uploaded to a centralized database

server. Users wishing to locate an available parking space can then access the database. The 3-tier

architecture is pictured in Figure 1c.
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At the node level, mobile wireless sensors can be categorized based on their role within the

network:

Mobile Embedded Sensor. Mobile embedded nodes do not control their own movement;

rather, their motion is directed by some external force, such as when tethered to an animal [27] or

attached to a shipping container [28]. Typical embedded sensors include the MicaZ [29], XSM [30],

Telos [31], and Mica2 [32] motes (Figure 2a).

Mobile Actuated Sensor. Sensor nodes can also have locomotion capability (for example,

Robomote [33], Ragobot [34], Cotsbot [35], Millibot [36], and Micabot [37]), which enables them

to move throughout a sensing region [18]. With this type of controlled mobility, the deployment

specification can be more exact, coverage can be maximized, and specific phenomena can be targeted

and followed. Figure 2b is a picture of such a mobile sensor.

(a) (b)(a) (b)

Figure 2: (a) The Mica2 sensor node. (b) The USC Robomote mobile actuated sensor.

Data Mule. Oftentimes, the sensors need not be mobile, but they may require a mobile device

to collect their data and deliver it to a base station. These types of mobile entities are referred

to as data mules [38]. It is generally assumed that data mules can recharge their power source

automatically.

Access Point. In sparse networks, or when a node drops off the network, mobile nodes can

position themselves to maintain network connectivity [38], [39]. In this case, they behave as network

access points.

Advantages of Adding Mobility

Sensor network deployments are often determined by the application. Nodes can be placed in a

grid, randomly, surrounding an object of interest, or in countless other arrangements. In many

situations, an optimal deployment is unknown until the sensor nodes start collecting and processing
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data. For deployments in remote or wide areas, rearranging node positions is generally infeasible.

However, when nodes are mobile, redeployment is possible. In fact, it has been shown that the

integration of mobile entities into WSNs improves coverage, and hence, utility of the sensor network

deployment [39], [40]. Mobility enables more versatile sensing applications as well [15]. For example,

Figure 3 illustrates a mobile sensor network that monitors wildfires. The mobile sensors are able

to maintain a safe distance from the fire perimeter, as well as provide updates to fire fighters that

indicate where that perimeter is currently located.

Figure 3: A MWSN that monitors wildfires. As the fire spreads, the mobile sensors can track it, as
well as stay out of its way.

In networks that are sparse or disjoint, or when stationary nodes die, mobile nodes can maneuver

to connect the lost or weak communication pathways. This is not possible with static WSNs, in

which the data from dead or disconnected nodes would simply be lost. Similarly, when network sinks

are stationary, nodes closer to the base station will die sooner, because they must forward more data

messages than those nodes further away. By using mobile base stations, this problem is eliminated,

and the lifetime of the network is extended [41].

Mobility also enables greater channel capacity and maintains data integrity by creating multiple

communication pathways and reducing the number of hops messages must travel before reaching

their destination [42].

Differences Between WSNs and MWSNs

In order to focus on the mobility aspect of wireless sensor networks, it is important to first understand

how the common assumptions regarding statically-deployed WSNs change when mobile entities are

introduced.

8



Localization. In statically deployed networks, node position can be determined once during

initialization. However, those nodes that are mobile must continuously obtain their position as

they traverse the sensing region. Localization requires additional time and energy, as well as the

availability of a rapid localization service.

Dynamic Network Topology. Traditional WSN routing protocols [43], which describe how to

pass messages through the network so they will most likely reach their destination, typically rely on

routing tables or recent route histories. In dynamic topologies, table data become outdated quickly,

and route discovery must repeatedly be performed at a substantial cost in terms of power, time, and

bandwidth. Fortunately, there is an active area of research dedicated to routing in mobile ad hoc

networks (MANETs), and MWSNs can borrow from this work [44].

Power Consumption. Power consumption models [45] differ greatly between WSNs and

MWSNs. For both types of networks, wireless communication incurs a significant energy cost and

must be used efficiently. However, mobile entities require additional power for mobility, and are

often equipped with a much larger energy reserve, or have self-charging capability that enables them

to plug into the power grid to recharge their batteries.

Network Sink. In centralized WSN applications, sensor data is forwarded to a base station,

where it can be processed using resource-intensive methods. Data routing and aggregation can incur

significant overhead. Some MWSNs use mobile base stations [41], which traverse the sensing region

to collect data, or position themselves so that the number of transmission hops is minimized for the

sensor nodes.

Localization in MWSNs

In this section, we provide a taxonomy of localization methods for MWSNs, as well as survey selected

works representative of common MWSN localization. An extensive library of WSN localization

research has been published within the past decade [46], [47], and many of these techniques can

be applied to MWSNs. The localization techniques use diverse hardware, algorithms and signal

modalities, which can be categorized along several different dimensions. We start by describing the

three phases typically used in localization [48], [49], [50]: (1) coordination, (2) measurement, and

(3) position estimation. We then focus on other aspects of MWSN-based localization, such as the

effects of mobility, centralized versus distributed processing, and the environment.

MWSN localization is typically performed as illustrated in Figure 4. A group of nodes coordinate

to initiate localization and synchronize their clocks, if necessary. One or more nodes then emit a
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signal, and some property of the signal (e.g., arrival time, phase, signal strength, etc.) is observed

by one or more receivers. Node position is then determined by transforming signal measurements

into position estimates by means of a localization algorithm. In order to determine position, it

is often necessary to enlist the help of cooperating sensor nodes that have been deployed into the

environment at known positions a priori. These devices are referred to as anchor, infrastructure, or

seed nodes. For example, in GPS, the infrastructure nodes are the satellites that orbit the planet.

The position estimate may be relative to a set of stationary anchor nodes at known positions in

a local coordinate system, or absolute coordinates may be obtained if the positions of the anchor

nodes are known with respect to some global coordinate system (i.e., using GPS).

(a) (b) (c)(a) (b) (c)

Figure 4: Localization phases: (a) coordination, (b) measurement, and (c) position estimation.

Coordination Phase

Prior to signal transmission, nodes participating in the localization typically coordinate with one

another. Such coordination includes notification that the localization process is about to begin, as

well as clock synchronization, which enables received signal data to be analyzed within a common

timeframe.

Coordination using synchronization techniques such as RBS [51] and ETA [52] (see Time Synchro-

nization, below) can encapsulate both notification and clock synchronization into a single message.

These methods have microsecond accuracy and require transmission of only a single message. For

example, the SyncEvent, one of the ETA primitives, declares a time in the future to begin the

localization process. Encoded in the message is the timestamp of the message sender (typically

the localization coordinator), which is inserted into the message immediately before transmission,

thus reducing the amount of non-deterministic latency involved in the synchronization. All nodes

within broadcast range will receive the message at approximately the same time instant, and as-

suming a negligible transit time of the radio signal through air, will be able to transform the sender
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timestamp into their local timescale. This technique is used in several localization schemes, includ-

ing [22], [53], [28], and [18].

Measurement Phase

The measurement phase typically involves the transmission of a signal by at least one node, followed

by signal processing on the other participating nodes.

Signal Modalities. The choice of signal modality used by sensor nodes is important for accurate

localization, and depends on node hardware, the environment, and the application. Because WSNs

are developed to provide inexpensive wide-area observation capability, it is generally undesirable

to add additional hardware to the sensor board, because this increases cost, weight, and resource

utilization. Localization techniques will also perform differently in different environments. In humid

environments, for example, radio signals perform worse than acoustic signals because moisture in

the air absorbs and reflects the high frequency radio waves but does little to affect the vibrational

sound waves. Finally, the application itself places some constraints on signal modality. A military

application, for example, in which nodes must localize under stealth conditions, would be much better

off using a silent modality such as radio frequency, rather than an audible one such as acoustic.

The acoustic modality typically employs either ultrasound or audible wave propagation. Several

techniques have been published for each. Two early and commonly cited ultrasound localization

techniques are Active Bats [54] and Cricket [55]. A more recent ultrasound approach can be found

in [56], which also includes a survey on ultrasonic positioning systems and challenges. In the audible

acoustic band, several novel localization systems have been developed, including beamforming [57],

a sniper detection system [58], and generalized sound source localization [59].

Infrared (IR) signal attenuation is relatively high, requiring close proximity between transmitter

and receiver. This is acceptable for most indoor localization techniques, however, outdoor localiza-

tion becomes difficult, not only due to proximity issues, but also because the IR signal is difficult

to read in the presence of sunlight. One of the earliest mobile localization systems is the Active

Badge system [60], whereby a small electronic device (badge), carried by a user, emits a periodic IR

identification signal. The signal is received by infrastructure nodes and centrally processed, allowing

position information to be accessed by authorized users. Other IR localization methods can be found

in [61] and [62].

Because all wireless sensor nodes have onboard radio hardware, radio frequency (RF) propagation

has become a popular signal modality for localization. Signal properties such as strength, phase, or
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frequency are analyzed to derive range or bearing data for position estimation. One benefit of using

RF is that it has been shown to achieve localization accuracy on the order of centimeters, even in

sparse networks [63]. On the other hand, because typical sensor node radios transmit at frequencies

between 400 MHz to 2.4 GHz, sampling the raw signal for phase or frequency cannot be done with

resource-constrained hardware. Instead, methods such as radio interferometry [22] must be used to

generate a low frequency beat signal, as shown in Figure 5. The frequency and phase of the beat

signal can then be measured by continuously observing the received signal strength indicator on the

radio chip.

Figure 5: Radio interferometry. Two nodes transmit a sinusoidal signal at slightly different fre-
quencies, which interfere to create a low-frequency beat signal that can be measured using resource-
constrained sensor nodes.

The Lighthouse [64] and Spotlight [65] localization techniques use a light beacon to determine

node position. Although both methods claim high accuracy, they require line of sight, a powerful

light source that will perform well in lighted areas, and customized hardware for the light source.

Measurement Techniques. Several techniques exist for obtaining bearing, range, or proximity

information based on signal measurement.

The angle-of-arrival (AOA) method [66], [67], [68], [57] involves determining the angular separa-

tion between two beacons, or a single beacon and a fixed axis. By determining the AOA at a certain

number of sensor nodes, position can be determined by angulation methods, as outlined in the next

section.

Localization by time-of-arrival (TOA) [69], [70], [71] measures the time a signal takes to arrive

at some number of sensors. This requires knowing the time the signal was transmitted, and assumes

tight time synchronization between sender and receiver. The signal will have known propagation

properties, such as speed through air at sea level. The main drawback of this approach is that it is

difficult to precisely record the arrival time of radio signals, since they travel close to the speed of
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light. Therefore, it works best with an acoustic source. In addition, after transmitting the signal,

the source must also make its transmit time known, incurring additional communication overhead.

This can be avoided by employing a round-trip TOA method [72], whereby Node A transmits a

signal to Node B. Upon signal reception, Node B transmits a signal back, and Node A observes the

round-trip time, accounting for deterministic delay during the communication process.

Time-difference-of-arrival (TDOA) localization [53], [59] improves upon the TOA approach by

eliminating the need to know when the signal was transmitted. Several time-synchronized nodes

receive a signal, and look at the difference in arrival times (or difference in signal phase) at a specific

time instant. Because the signal travels at a constant speed, the source position can easily be

determined if there are a sufficient number of participating nodes.

Another localization method examines the received signal strength (RSS) of a message broadcast

from a known location [73], [74]. Since the free-space signal strength model is governed by the

inverse-square law, accurate localization is possible. Furthermore, measuring RSS typically does not

involve any hardware modifications because most chips (e.g., RF, IR, etc.) provide software access

to the amplitude of the received signal. Another use for RSS is profiling [75], [76], in which a map

of RSS values is constructed during an initial training phase. Sensors then estimate their position

by matching observed RSS values with the training data.

Recently, there have been several published techniques that determine the position of a node

based on the observed frequency of arrival (FOA) of a signal [28], [18], [77], [78]. Signal frequency

will undergo Doppler-shift when the transmitter and receiver are moving relative to one another.

The observed Doppler-shift at multiple infrastructure nodes can be used to derive the position and

velocity of the mobile node.

The above techniques provide the most accurate position estimates; however, it is oftentimes

sufficient to only localize to a region. Such a region might be a room in a house, a floor in an office

building, or a city block. This type of localization can be proximity-based, such as a node is located

in Region A if an anchor in Region A is able to detect it. Another technique is to localize using hop

count [79]. Because the approximate transmission range of the node radio is known, observing the

number of message hops to a set of anchor nodes will constrain the target node to a specific region.

Localization Phase

The signal data obtained during the measurement phase can be used to determine the approximate

position of the target node. Common localization techniques for MWSNs are based on ranging,
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whereby distance or angle approximations are obtained. Because range data are often corrupted by

noisy signal measurements, optimization methods are employed to filter the noise and arrive at a

more accurate position estimate.

Lateration. When ranges between landmarks and the mobile node can be determined, lateration

is used to estimate position [80], [81], [82]. Figure 6a illustrates the method. For two-dimensional

localization, three range measurements from known positions are required. Each range can be repre-

sented as the radius of a circle, with the anchor node situated at the center. Without measurement

noise, the three circles would intersect at exactly one point, the location of the target node. How-

ever, in the presence of noise, the three circles will overlap, and the target node will likely (but not

necessarily) be contained within that region.

Angulation. When anchor bearings or angular separation between anchors and the mobile node

can be obtained, angulation can be used to determine the position of the mobile node [83], [84],

[67], [85]. This is pictured in Figure 6b. For tri -angulation, when two anchors are used, the target

position will be identified as the third point in a triangle of two known angles (the bearings from

each anchor), and the length of one side (the distance between anchor nodes). Often more than two

anchor bearings are used, and target position is determined by the intersection of all bearings, as

illustrated in the figure. In the presence of measurement noise, the bearings will not all intersect at

the exact same point, but will instead define a region where the target node is likely to be.

(a) (b)
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T T

Figure 6: The position of a target node (T ) is estimated based on the known positions of beacons
(Bi) using (a) lateration or (b) angulation.
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Cellular Proximity. An alternative approach is the range-free method [60], [86], [79], whereby

a node is localized to the region in which it is detected. This method generally provides a more

course-grained position estimate, and depends on the density of infrastructure nodes.

Dead Reckoning. A widely used localization technique for mobile robots is dead reckoning [16],

[87], [88], [26]. Robots obtain their current velocity from wheel encoders or other means, and use

this information in conjunction with the amount of time that has elapsed since the last update to

derive current position and heading. The major drawback of this approach is that the position

estimation accrues error over time, primarily because of noisy encoder data due to uneven surfaces,

wheel slippage, dust, and other factors.

Estimation Methods. When measurement data is noisy, or the system is underdefined, state

estimation methods can be used. There exist a number of estimation methods, but the two main

approaches are: (1) maximum likelihood estimation (MLE) [89], which estimates the values of the

state based on measured data only, and no prior information about the state is used, and (2)

sequential Bayesian estimation (SBE) [90], which estimates state values based on measurements, as

well as prior information.

MLE methods such as [91] and [92] find the estimates for the system state by maximizing the

likelihood of the measured data. In other words, MLE picks the values of the system parameters

that make the observed data “more likely” than any other values for the parameters. The data

likelihood is computed using a measurement model that relates the measured data to the system

state.

In SBE, the system state is iteratively estimated using the recursive Bayes rule, which states

that the posterior is proportional to the product of the data likelihood and the predicted prior.

Such methods are used in [76], [74], and [93]. Like MLE, the data likelihood is computed using a

measurement model. The solution to SBE is generally intractable and cannot be determined ana-

lytically. Optimal solutions do exist in a restrictive set of cases, such as the Kalman Filter (KF) [94]

and grid-based filters. More general suboptimal solutions exist, such as the Extended Kalman Filter

(EKF) [95] and Particle Filter (PF) that approximate the optimal Bayesian estimation. The sequen-

tial Monte Carlo (SMC) [87] method is a PF that provides a suboptimal solution by approximating

the posterior density by a set of random samples (also called particles) with associated weights. As

the number of particles becomes very large, the particle filter approaches an optimal solution.

Table 1 summarizes common position estimation algorithms.
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Algorithm Signal modality Measurement Localization Accuracy
technique technique

Active Badge [60] Infrared Proximity N/A Room regions
Active Bat [54] Ultrasound TOA Lateration Centimeters
Cricket [55] Ultrasound Proximity Lateration Meter regions
RADAR [75] Radio frequency RSS Angulation Meters
RIPS [22] Radio frequency Phase Genetic algorithm Centimeters
dTrack [28] Radio frequency FOA EKF Meters
GPS [25] Radio frequency TDOA Lateration Meters

Table 1: Comparison of common position estimation algorithms.

The Radio Interferometric Positioning System

The radio interferometric positioning system (RIPS) [22] is an RF-based localization method upon

which our work is based. We therefore provide a detailed overview of RIPS here.

The Radio Interferometric Positioning System was developed as a means for accurately deter-

mining relative position of a set of sensor nodes over a wide area by only using the onboard radio

hardware. The randomness in the initial phases of the local oscillators on the transmitter and re-

ceiver nodes prohibits using the phase of the RF carrier directly for distance measurements. Instead,

RIPS employs transmitter pairs at close frequencies for generating an interference signal. The enve-

lope phase of the interference signal is independent of the phase of the receivers. The ambiguity in

the phase at the transmitter side is eliminated by using a pair of receivers for measuring the phase

offset between the receiver pairs.

RIPS was originally implemented on the COTS Mica2 mote platform [32]. These resource-

constrained devices have a 7.4 MHz processor, 128 kB program memory (ROM), 4 kB RAM, ADC

with 9 kSPS sampling rate, and a CC1000 tunable radio transceiver [96] that operates in the 433

MHz ISM band. Although the radio hardware is quite versatile for its size and cost, 433 MHz is

too high to analyze the received signal directly. However, the phase and frequency of the envelope

signal can be measured by making successive reads of the received signal strength indicator (RSSI).

The phase of this low-frequency signal can be estimated with adequate accuracy, less than 5% error,

using limited processing power and currently available time-synchronization methods (< 5µs) [97].

Figure 7 illustrates the approach. Two nodes, A and B, transmit pure sinusoids at respective

frequencies fA and fB , such that fB < fA. The two signals interfere, resulting in a beat signal

with frequency |fA − fB |. The phase offset between receiver pairs is measured, which is a linear

combination of the distances between the four participating nodes:

∆ϕ =
2π

λ
(dAD − dBD + dBC − dAC) (mod 2π) (1)
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Figure 7: The radio interferometric positioning system.

Due to bandwidth limitations, the raw RSSI signal cannot be transmitted to the base station,

and therefore must be processed on the mote. However, signal analysis on the resource-constrained

mote hardware is non-trivial, involving both online and post-processing steps. During the online

processing step, the RSSI signal is placed into a 256-byte buffer, one sample at a time upon each

A/D converter interrupt. The clock speed and sampling rate limit the processing to approximately

820 CPU cycles per sample. Upon each interrupt the raw sample is incorporated into a moving

average in order to filter out signal noise. Amplitude is determined by collecting the minimum and

maximum peak values from the first 10% of the buffered samples, enough to cover at least one

period. The amplitude is used as a signal quality indicator, as well as for determining a threshold

for peak detection. The peaks are indexed, and are used to determine the frequency and phase of

the signal in the post-processing step.

Post-processing is run after the buffer is full. The indexed peaks are used to determine the signal

period, and outlying peaks are discarded. Signal frequency is determined by taking the reciprocal of

the average period length. Similarly, signal phase is estimated by averaging the phases of the filtered

peaks. Upon completion of the post processing step, the computed signal amplitude, frequency and

phase are sent to the base station where the localization algorithm is run. The post-processing

frequency and phase estimation of the RIPS algorithm takes less than 10,000 cycles per measurement

and has an associated phase measurement error of 0.09 radian (approximately 5 degrees).
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The distance measurement (dAD−dBD+dBC−dAC) is referred to as a quad-range. Because phase

wraps to 0 at 2π, an ambiguity exists where an observed signal phase difference could correspond

to several different quad-ranges. To resolve this, RIPS samples at multiple frequencies separated by

5 MHz, and searches for a unique quad-range that satisfies Equation (1) for each measured phase

difference and corresponding wavelength.

A single quad-range is not sufficient to determine the positions of the four nodes involved in the

radio interferometric measurement. Instead, a genetic optimization algorithm is used that takes into

consideration all participating nodes in the sensing region. The algorithm is able to simultaneously

remove bad measurements while accurately estimating the position of the sensors. The quad-ranges

between a sufficient number of participating nodes constrain each node to a unique position in the

sensing region. RIPS was shown to have an accuracy of 3 cm and a range of up to 160 meters. RIPS

is likely the most accurate localization technique that can be performed on wireless sensor networks

without additional sensor hardware support.

The Effect of Mobility on Localization

Typically, localization of mobile sensors is performed in order to track them, or for navigational

purposes. However, when sensors are mobile, we encounter additional challenges and must develop

methods to address them.

One of these challenges is localization latency. If the time to perform the localization takes too

long, the sensor will have significantly changed its position since the measurement took place. For

example, robot navigation requires periodic position estimates in order to derive the proper control

outputs for wheel angular velocity. If the robot is traveling at 1 m/s and the localization algorithm

takes 5 seconds to complete from the time the ranging measurements were taken, the robot might

be 5 meters off from its estimated position.

Mobility may also impact the localization signal itself. For example, the frequency of the signal

may undergo a Doppler shift, introducing error into the measurement. Doppler shifts occur when

the transmitter of a signal is moving relative to the receiver, as illustrated in Figure 8. The resulting

shift in frequency is related to the positions and relative speed of the two nodes. mTrack [53] takes

this Doppler effect into account and uses it to refine its position estimate. Other approaches use the

Doppler effect to directly solve for position and velocity [28], [18].
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Figure 8: (a) The frequency of a signal does not change when the transmitter and receiver are
moving at the same velocity. (b) However, when the transmitter and receiver are moving relative to
one another, the signal will undergo a Doppler shift.

If the localization technique requires line of sight (LOS), there is the possibility that the mobile

sensor will move from a position with good LOS, to a position with poor LOS. When this is the case,

a dense network of nodes is required to ensure there is always LOS to the mobile node, wherever it

may move.

Centralized vs. Distributed Algorithms

The resource constraints inherent in WSNs pose a challenge when it comes to executing certain

localization algorithms, because they require extensive memory and processor bandwidth, especially

when dealing with a large number of sensors, or when using complex statistical methods to esti-

mate range or position [47]. A centralized localization algorithm runs on a base station, and all

participating nodes must forward their measurement data to the base station. The advantage of the

centralized approach is an algorithm can be designed that has more accuracy, precision, and can pro-

cess greater amounts of data. On the other hand, base station processing suffers from the common

pitfalls of centralization, such as poor scalability, single point of failure, data routing complexity,

and greater power consumption (especially for nodes closer to the base station).

When nodes are mobile, the decision to use centralized or distributed processing becomes even

more important. Mobility requires continuous and rapid localization. Although centralized local-

ization techniques exist for mobile sensors [53], [28], they are usually not fast enough for certain

applications, such as navigation. For example, mTrack [53] reports a latency of approximately 5

seconds. dNav [18], on the other hand, is distributed, and takes less than 1 second on average to

return position and velocity estimates.
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The Impact of Environment on Localization

The environment plays a significant role in the effectiveness of a localization method. As a result,

there is no one localization method that will be accurate for all situations. Different environmental

factors are listed below, as well as the effect they have on the aforementioned localization methods.

Ambient temperature, pressure, and humidity can affect localization accuracy, because these

environmental factors directly impact the crystal oscillator in the transceiver. Furthermore, it has

been well established that radio wave propagation is affected by precipitation, including moisture

in the air, therefore localization techniques that use RF measurements can be impaired under these

conditions [98]. One of the biggest problems with GPS is that it does not work reliably under water,

indoors, or even when it is cloudy. This is because the GPS receiver requires line of sight to up to

four satellites orbiting the planet [25].

At present there is a major effort underway to develop accurate localization methods in indoor

environments. Indoor applications that require node position estimation are challenging because

most propagation methods and measurement techniques suffer from multipath effects [99], where

obstacles (e.g., walls, furniture, people, etc.) cause signal reflections that interfere with each other.

In addition, many of the existing localization techniques that provide good accuracy outdoors, will

not work indoors.

MWSN Applications with Localization Requirements

Although MWSNs are still in their infancy, several types of applications have already been devel-

oped in which localization plays an integral part. The applications fall under four main categories,

(a) commercial, (b) environmental, (c) civil, and (d) military, however, most span more than just

one of these domains.

Commercial. As MWSNs grow in popularity, we expect to see a burst of applications in the

commercial sector that require some kind of positioning data.

• Service Industry. One such area is the service industry. Companies such as Skilligent [100]

are developing software protocols for service robots that perform tasks such as basic patient

care in nursing homes, maintenance and security in office buildings, and food and concierge

service in restaurants and hotels. All of these applications require a mechanism for position

estimation. Skilligent uses a visual localization system based on pattern matching. Objects
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are used as landmarks, and are loaded into the system a priori, or dynamically at runtime.

The robot learns its position by matching video images with landmark information.

• Housekeeping. The iRobot Roomba [101] is an automated vacuum cleaning robot for domes-

tic use. The Roomba creates a map of the room as it moves by using feedback from a variety

of bumper and optical sensors. Wheel encoders provide run-time position information that en-

able it to cover the entire room. The Roomba also uses a self-docking station to automatically

recharge its batteries.

Environmental. MWSNs have become a valuable asset for environmental monitoring, thanks in

part to their ability to be deployed in remote areas and for their ability to gather data over wide

areas of interest.

• Wildlife Tracking. ZebraNet [27] is an early MWSN, in which mote-scale wireless devices

were fitted to zebras for the purpose of tracking their movement. Due to the remote region,

there was no cellphone coverage, so data was routed through the peer-to-peer network to

mobile base stations. The zebras were not constrained to certain areas, and other than the

small devices attached to their bodies, left undisturbed. To accomplish this level of tracking

without the use of MWSNs would not be possible.

• Pollution Monitoring. A mobile air quality monitoring system is presented in [102]. Sensor

nodes that measure specific pollutants in the air are mounted on vehicles. As the vehicles

move along the roadways, the sensors sample the air, and record the concentration of various

pollutants along with location and time. When the sensors are in the proximity of access

points, the data are uploaded to a server and published on the web.

Civil. One of the areas that has great potential for MWSN utility is that of civil services. This

includes those non-military municipal applications that keep society running efficiently and safely.

• Pothole Detection. In [103], a system is developed to detect potholes on city streets. De-

ployed on taxi cabs, the sensor nodes contain an accelerometer, and can communicate using

either opportunistic WiFi or cellular networks.

• Wireless E-911. In North America, the Enhanced 911 emergency telecommunications ser-

vice, or E911 [104], was established to connect callers with emergency services in a manner

that would associate a physical location with the phone number of the caller. Wireless E-911
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is the second phase of the E911 service mandated by the FCC, which requires wireless cellular

devices to automatically provide user location when the service is invoked. Wireless E-911 is an

important requirement; however, its implementation is non-trivial and different carriers choose

to use different methods including embedded GPS chips, multilateration and multiangulation

based on the known locations of cell towers.

Military / Aerospace. One of the biggest promoters, as well as one of the biggest funders, of

wireless sensor technology is the military. There is a clear interest in localization services, tracking

friendly and hostile entities, and navigation of autonomous robots, and intensive research is carried

out in this area.

• Shooter Detection / Weapon Classification. In [105], a soldier-wearable sensor system is

developed that identifies the location of an enemy sniper and also identifies the weapon being

fired. Each sensor consists of an array of microphones mounted on the helmet of a soldier.

The sensor observes both the shock wave of the projectile, as well as the muzzle blast from the

weapon, and based on TDOA, as well as properties of the acoustic signal, is able to triangulate

the enemy position and classify the weapon type.

• Autonomous Deployment. In [106], an unattended aerial vehicle is used for sensor network

deployment and repair. Such deployments aid the military in battlefield surveillance and

command and control field operations.

Mobile Sensor Navigation

Navigation systems have been around for centuries, and have traditionally relied on celestial ob-

servation, such as measuring the angle between the horizon and the sun, or the relative positions

of certain luminous stars [107]. More recently, navigation has been adapted to autonomous mobile

robots, whereby the robot is responsible for traveling from region A to region B. Navigation is de-

fined as “the process of determining and maintaining a course or trajectory to a goal location” [108].

In this definition, a goal location does not necessarily refer to the final destination of the mobile

entity, because there may not be one (i.e., the mobile entity follows a circular route). Instead, the

goal location describes a bounded region to where the mobile entity must proceed next.

Navigation methods have come a long way compared with their historical nautical counterparts.

Although many new methods have been developed, especially during the past century, the chal-

lenges they address are not new. These challenges involve answering the following three questions:
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(a) “Where am I?”, (b) “Where are other places with respect to me?”, and (c) “How do I get to

other places from here?” Although it may not be necessary to answer all of these questions to

accurately navigate through a region, modern navigation systems must be able to answer at least

one [109]. Furthermore, in addition to determining a path between the current and goal positions,

it may also be necessary to employ additional navigational tools, such as obstacle avoidance and

search algorithms. These all require some form of sensory input that can ultimately be transformed

into a motion vector to drive the mobile entity toward its goal position.

Typical sensors used for robot navigation include cameras, laser rangefinders, and sonar, to name

a few. Figure 9 shows a robot equipped with these devices. They can be extremely accurate, how-

ever, they are bulky, consume a significant amount of energy, and can have substantial processing

requirements. Consequently, they are inappropriate for resource-constrained mobile sensors. How-

ever, sensors do exist that fit on mote-scale devices. Such sensors include accelerometers, digital

compasses, gyroscopes, and wheel encoders. Many navigation techniques have been developed that

use data obtained from these types of sensors, as described below.
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Figure 9: A mobile robot equipped with camera, laser rangefinder, sonar panels, GPS, and optical
encoders.

Navigation Taxonomy

Navigational behavior falls into two categories, local and way-finding (also referred to as waypoint

navigation) [108]. Each represents a strategy for reaching a goal location. The local strategy enables

the mobile entity to reach the goal position by use of sensor input and, possibly, knowledge of the

area. All sensor input needed to reach the goal position is available within the current sensor field of

view [110]. On the other hand, way-finding requires the sequential observation of several landmarks

in order to reach the goal [111]. Once the mobile entity is near the goal, it may switch to local

navigation techniques to arrive at an exact position and orientation.
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Local navigation includes the following four behaviors [110], [108]. These behaviors form a

hierarchy in order of increasing complexity. It is assumed that if a mobile entity has the ability to

perform one of these behaviors, it has the ability to perform those behaviors that precede it in the

hierarchy.

• Searching. This is the most basic local navigation behavior, only requiring the capability for

recognizing the goal. The mobile entity moves randomly, or based on some motion pattern

(such as a grid search), but will only find the goal by chance. An example of this behavior is

a search and rescue operation.

• Direction-following. In many situations, the goal can be found by following a path. The

path could be a magnetic field, compass point, or celestial cue. An example would be a ship

traveling to the New World from Europe by heading west. This requires the mobile entity to

align itself along a given axis. Although the mobile entity may not have the goal in its field of

view at all times, by following the path, the goal will be reached.

• Aiming. In the direction-following approach, the mobile entity follows a path to the goal

position. In contrast, the aiming behavior requires the mobile entity to keep the goal in front

of it at all times. The mobile entity reaches the goal by recognizing it from a distance, (for

example, the goal may be emitting a beacon,) and moving toward it. An example of navigation

by homing in on a lit airstrip at night.

• Guidance. Oftentimes the goal position may not be visible to the mobile entity, and it must be

guided there based on a combination of sensory input and a known spatial relationship between

the current position, the goal position, and the surrounding environment. An example of a

guidance-based local behavior is directing a ship into port based on the known locations of

buoys and the dock.

Way-finding navigation includes the following three behaviors [108]. Like local navigation, these

behaviors fit into a hierarchy based on their complexity.

• Recognition-triggered Response. This behavior assigns a local navigation strategy to

connect two locations. The local strategy is selected based on either a start or goal position

and a known route between the two. The responses to the current or goal position are fixed,

that is, the same local strategy will always be used for navigating between the two positions.
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• Topological. The topological behavior overcomes the restriction of the recognition-triggered

response. For example, if a route involves passing from one room to another, and the passage

is blocked by a closed door, a mobile entity navigating by recognition-triggered response would

be stuck at the door. The topological behavior enables the mobile entity to reach the goal

position by using a complimentary strategy that may enable it to sidestep the blocked doorway

and take an alternate route into the room.

• Survey Navigation. The above two way-finding strategies are restricted to traveling on

known routes to reach the goal position. Survey navigation takes all known information about

the environment into consideration, enabling additional uncharted routes to be taken, when

necessary.

These navigation behaviors are summarized in Table 2.

Behavior Characteristics

Search Goal is reached by chance;
Mobile entity must be able to recognize goal

Direction-following Mobile entity reaches goal
by following a path or direction

Aiming Mobile entity orients toward goal
by following an emitted signal

Guidance Mobile entity is guided toward goal
by features in the environment

Recognition-triggered Mobile entity follows a fixed route between endpoints,
response determined by location and local search method
Topological Mobile entity can select a route between endpoints,

based on combinations of known routes
Survey Mobile entity can create new routes between endpoints,

based on knowledge of the environment

Table 2: Local (top) and way-finding (bottom) navigation behaviors.

Navigation Approaches

There are two main approaches for using mobile sensors for navigation [112]. The first is dead reck-

oning, which was introduced earlier in this chapter. The second is reference-based, which typically

requires an infrastructure that can be observed by the mobile entity in order to learn its orienta-

tion and position. We emphasize a particular class of reference-based navigation called angle-based

navigation, which is used extensively in our work.

Dead reckoning uses onboard sensors to determine the distance traveled over a designated time

interval. Distance can be obtained using odometry via encoders, or by inertial navigation techniques
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such as accelerometers and gyroscopes. The main benefit of using dead reckoning systems is that

no external infrastructure is required. Position can be inferred by integrating velocity, or doubly

integrating acceleration, with respect to time; however, error will accrue unbounded unless the mobile

entity can periodically adjust the error by using known reference positions. Navigation techniques

that employ dead reckoning include [16], [87], [88], [113], and [26].

In reference-based systems, mobile entities use landmarks in the region for correct positioning

and orientation. Landmarks can be active beacons, such as sensor nodes, satellites, and lighthouses,

or structures in the environment, such as trees and buildings. A common use for reference-based

systems is model-matching, also referred to as mapping. Mapping requires the ability to detect

landmarks in the environment, and match them to a representation of the environment that was

obtained a priori and stored in the memory of the mobile entity. For mobile robots, landmarks

are typically detected using cameras. However, the landmarks do not need to be structural. RSS

profiling [75], [76] is a type of model-matching technique. Simultaneous localization and mapping

(SLAM) [114], [101] is also a type of mapping, in which the mobile entity builds a map of the

environment at the same time as it determines its position. Similarly, simultaneous localization and

tracking (SLAT) [115] is a technique to localize a mobile entity while keeping track of the path it

has taken to arrive at its present position.

Time Synchronization

Time synchronization is a critical component in many wireless sensor network applications, most

notably, localization and navigation. However, accurately synchronizing the clocks of all sensor

nodes within the network is not a trivial task. This is especially true in sensor networks that contain

mobile nodes, which may join and leave the network sporadically.

Synchronization Protocols

Synchronization protocols can be classified as sender-receiver, in which one node synchronizes with

another, or receiver-receiver, in which multiple nodes synchronize to a common event. Both have

their advantages, and each can provide synchronization accuracy on the order of microseconds using

certain configurations. An in-depth survey on time synchronization in WSNs can be found in [116].

Several sender-receiver synchronization protocols have been developed for the Berkeley motes and

similar small-scale devices that provide microsecond accuracy. Elapsed Time on Arrival (ETA) [52]

provides a set of application programming interfaces for an abstract time synchronization service.
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In ETA, sender-side synchronization error is essentially eliminated by taking the timestamp and

inserting it into the message after the message has already begun transmission. On the receiver side,

a timestamp is taken upon message reception, and the difference between these two timestamps is

an estimate of the clock offset between the two nodes. The routing-integrated time synchronization

protocol (RITS) [117] is an extension of ETA over multiple hops. RITS incorporates a set of routing

services to efficiently pass sensor data to a network sink node for data fusion.

In the Flooding Time Synchronization Protocol (FTSP) [97], a single root node is selected to

maintain a global timescale. The root floods the network with a timestamp representing its local

time. At each hop, the timestamp is converted into the timescale of the local node, then forwarded

to neighbors until the entire network is synchronized.

The Timing-sync Protocol for Sensor Networks (TPSN) [118] uses the round-trip latency of

a message to estimate the time a message takes along the communication pathway from sender

to receiver. This time is then added to the sender timestamp and transmitted to the receiver to

determine the clock offset between the two nodes.

In [119], mote-PC synchronization was achieved by connecting the GPIO ports of a mote and a

PDA. The PDA timestamped the output of a signal, which was captured and timestamped by the

mote. The mote then sent the timestamp back to the PC, which was able to calculate the clock offset

between the two. Although using this technique can achieve microsecond-accurate synchronization,

it was implemented as a hardware modification rather than in software.

Reference broadcast synchronization (RBS) [51] is a receiver-receiver protocol that minimizes

error by taking advantage of the broadcast channel found in most networks. Messages broadcast

at the physical layer will arrive at a set of receivers within a tight time bound due to the almost

negligible propagation time of sending an electromagnetic signal through air. Nodes then synchronize

their clocks to the arrival time of the broadcast message.

Table 3 provides a comparison of some common synchronization protocols.

Protocol Type Accuracy Global clock

ETA [52] Sender-receiver Microseconds No
RITS [117] Sender-receiver Microseconds / hop No
FTSP [97] Sender-receiver Microseconds / hop Yes
GPS [25] Sender-receiver Hundreds of nanoseconds Yes
TPSN [118] Sender-receiver Tens of microseconds No
RBS [51] Receiver-receiver Microseconds No
TSS [120] Sender-receiver Hundreds of microseconds No

Table 3: Comparison of common time synchronization protocols.
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CHAPTER III

TIME SYNCHRONIZATION IN HETEROGENEOUS SENSOR NETWORKS

Introduction

A common class of WSN applications detect physical phenomena through periodic sampling of the

environment. In order to make sense of the individually collected samples, nodes pass their sensor

data through the network to a centralized sensor-fusion node where it can be combined and analyzed.

This process is referred to as reactive data fusion.

One important aspect of reactive data fusion is the need for a common notion of time among

participating nodes. For example, acoustic localization requires the cooperation of several nodes in

estimating the position of the sound source based on time-of-arrival data of the wave front [59], [58].

This may require up to 100-microsecond accurate synchronization across the network. Another

example is acoustic emissions (AE), the stress waves produced by the sudden internal stress redis-

tribution of materials caused by crack initiation and growth [121]. As the speed of sound is typically

an order of magnitude higher in metals than in the air, the synchronization accuracy required for

AE source localization can be in the tens of microseconds.

Existing WSN time synchronization protocols (e.g. [120], [51], [118], [97], [117]) perform well

on the devices for which they were designed. However, these protocols tend to break down when

applied to a network of heterogeneous devices. For example, RITS [117] was designed to run on

the Berkeley motes, and assumes the operating system is tightly integrated with the radio stack.

Attempting to run RITS on an 802.11 network can introduce an unacceptable amount of synchro-

nization error because it requires low-level interaction with the hardware, which is difficult to attain

in PCs. RBS [51], although portable when it comes to operating system and computing platform,

is accurate only when all nodes have access to a common network medium. A combined network

of Berkeley motes and PDAs with 802.11b wireless network cards, for example, would be difficult

to synchronize using RBS alone because they communicate over different wireless channels. In ad-

dition, the communication pathway between a mote and PC is realized using a serial connection.

Synchronization across this interface is essential when attempting to combine time-dependent sensor

data from each device. Furthermore, it may be desirable to have several mote-PC gateways, since

often it is not always possible to extract data fast enough through a single base station. In large

networks, multiple gateways also enable data packets to reach a base station in a fewer number
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of hops, thus minimizing delay and conserving energy. Although time synchronization across this

interface has previously been explored [119], it has not been implemented in software.

The work presented in this chapter focuses on achieving microsecond-accuracy synchronization

in heterogeneous sensor networks [11], [17]. HSNs are a promising direction for developing large

sensor networks for a diverse set of applications [7], [8], [9]. We consider a multi-hop network

consisting of Berkeley motes and Linux PCs, a dominant configuration in HSNs. Mote networks

consist of resource-constrained devices capable of monitoring environmental phenomena. PCs can

support higher-bandwidth sensors such as cameras, and can run additional processing algorithms

on the collected data. In this sense, we model both motes and PCs as sensor nodes. We envision a

scenario in which resource-constrained mobile sensors must coordinate in time and space with high-

bandwidth devices. Such a scenario would be useful in multi-modal sensor fusion applications [6]

that monitor traffic in urban areas, for example. Time synchronization in mote and PC networks

have been studied independently, however, a sub-millisecond software method to synchronize these

two networks has not yet been developed to the best of our knowledge.

The contributions of this work are as follows [11], [17]:

1. We develop a methodology for HSN time synchronization that utilizes a combination of existing

synchronization protocols. The methodology incurs little overhead of network resources and

has synchronization error on the order of microseconds.

2. We implement a time synchronization service for reactive data fusion applications, which

allows the application developer to focus on aspects of sensor fusion and not the underlying

synchronization and aggregation mechanisms.

3. To achieve accurate cross-platform synchronization, we develop a technique for synchronization

between a mote and PC that is implemented completely in software, and remains effective when

multiple mote-PC connections exist within the network.

4. We perform an analysis of various clock synchronization and clock skew compensation tech-

niques on real-world hardware platforms.

5. Our HSN time synchronization service has been effectively demonstrated in multi-modal sensor

fusion target tracking applications [6], [122], [123], [124].
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Problem Statement

Each sensor node in the network is a computing device that maintains its own local clock. Internally,

the clock is a piece of circuitry that counts oscillations of a quartz crystal, energized at a specific

frequency. When a certain number of these oscillations occur, a clock-tick counter is incremented.

This counter is accessible from the operating system and its accuracy (with respect to atomic time)

depends on the quality of the crystal, as well as various operating conditions such as temperature,

pressure, humidity, and supply voltage. When a sensor node registers an event of interest, it will

access the clock-tick counter and record a timestamp reflecting the time at which the event occurred.

Some protocols synchronize nodes to a global clock, often referred to as real-time or Coordinated

Universal Time (UTC). Irrespective of whether a given protocol synchronizes to UTC, it is often

convenient to represent the occurrence of an event (such as a coordination request or the detection

of some physical phenomenon) according to some universal time standard. We use the notation t

to represent an arbitrary UTC time, and the notation te to represent the UTC time at which an

arbitrary event e occurred. Because each node records a timestamp according to its own clock, we

specify the local time on node Ni at which event e was detected by the timestamp Ni(te).

Although the two timestamps Ni(te) and Nj(te) correspond to the same real-time instant te,

this does not imply that Ni(te) = Nj(te); the clock-tick counter on node Ni may be offset from

Nj . Therefore, from the perspective of node Ni, we define the clock offset with Nj at real-time t

as φij(t) = Ni(t)−Nj(t). It may be the case that the offset changes over time. In other words, the

clock rate of node Ni,
dNi(t)
dt , may not equal the ideal rate (dNi(t)

dt = 1). We define the ratio of clock

rates of two nodes as the relative rate, rrij = dNi(t)
dNj(t)

. The relative rate is a quantity directly related

to the clock skew, defined as the difference between clock rates, and is typically used by clock skew

compensation methods. We refer to clock offset and clock rate characteristics as a node’s timescale.

Practically all synchronization protocols can be implemented using timescale transformation.

Rather than setting one clock to another, clocks advance uninhibited, and instead a reference table

is maintained that keeps track of the clock offsets and clock drift between a node and its neighbors.

The reference table is used to transform a clock value from one timescale to another, providing each

node with a common notion of time. Clock adjustment is disadvantageous in WSNs because it leads

to increased overhead and the possible loss of monotonicity [125].
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Sources of Synchronization Error

Synchronization often requires passing timestamped messages between nodes. However, this com-

munication has associated message delay, which has both deterministic and nondeterministic compo-

nents that introduce error into the timescale transformation. We call the sequence of steps involved

in communication between a pair of nodes the critical path. Figure 10 illustrates the critical path in a

wireless connection. The critical path is not identical for all configurations, however, it can typically

be characterized by the steps outlined in the figure (for more details, see for example [51], [118], [97]).

Table 4 lists the main types of message delay.

Send Access Transmission

Reception Receive

Propagation

Receiver:

Sender:

Figure 10: Critical path

Pathway component Confidence Delay

Send / Receive Mostly nondeterministic Hundreds of milliseconds
Access Highly nondeterministic Seconds
Transmission / Reception Mostly deterministic Tens of milliseconds
Propagation Highly deterministic Less than one microsecond

Table 4: Types of message delay incurred on the critical path for wireless communication.

In both mote and PC networks, the Send and Receive times are the delays incurred as the message

is passed between the application and the MAC layer. These segments are mostly nondeterministic

due to system call overhead and kernel processing. The Access time is the least deterministic

segment in the critical path, and is the delay that occurs in the MAC layer while waiting for access

to the communication channel. The Transmission and Reception times are the delays incurred

from transmitting and receiving a message over the physical layer, bit by bit. They are mostly

deterministic and depend on bit rate and message length. The Propagation time is the time the

message takes to travel through physical space between the sender and receiver. Propagation delay

is highly deterministic.

In heterogeneous sensor networks consisting of resource-constrained motes and resource-rich PCs,

communication between the two is realized via serial connection. When this is the case, the Send

and Receive times are similar to wireless communication, however, the Access time is nonexistent.

Because the mote-PC connection does not have flow control, pending messages are immediately
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transmitted without having to wait for an available channel. The Transmission time starts when

the data on the sender is moved in 16-byte chunks to the buffer on the UART, and ends after the

data is transmitted bit-by-bit across the serial port to the receiver. Similar to wireless networks,

the Propagation time is minimal. The UART on the receiver places the received bits into its own

16-byte buffer. When the buffer is almost full, or a timeout occurs, it sends an interrupt to the CPU,

which notifies the serial driver, and the data is transferred to main memory where it is packaged

and forwarded to the user-space application.

In addition to the error from message delay nondeterminism, synchronization accuracy is also

affected by clock skew when a pair of nodes operate for extended periods of time without updating

their clock offset. For example, suppose at UTC time t, nodes N1 and N2 exchange their current

clock values at local times N1(t) and N2(t), respectively. At some later time, an event e occurs that

is detected and timestamped by N1, which sends its timestamp N1(te) to N2. If the clock rates on

each node were equal, N2 would simply be able to take the previously calculated offset and use it

to transform the event timestamp N1(te) to the corresponding local time N2(te) = N1(te) + φ12(t).

However, if the relative rate rr12(t) is not equal to 1, but 1 + 20 ppm1, for example, an attempt to

convert N1(te) to the local timescale would result in an error of 20 ∗ 10−6 ∗ (N2(te) − N2(t))µs. If

the interval between the last synchronization and the event was one minute, the resulting error due

to clock skew alone would amount to 1.2 milliseconds!

For accurate synchronization, it is therefore necessary to minimize the nondeterministic sources

of error in the critical path, and account for the deterministic sources by appropriately adjusting

the timescale transformation. Clock skew compensation is necessary for minimizing synchronization

error when nodes run for long periods of time without updating their offset. With an estimation

of clock offset and relative rate, a complete timescale transformation, which converts an event

timestamp Nj(te) from the timescale of node Nj to the timescale of Ni, can be defined as

Ni(te) = Ni(ts) + rrij(ts)[Nj(te)−Nj(ts)]

where Ni(ts) and Nj(ts) are the respective local times at which nodes Ni and Nj exchanged their

most recent synchronization message, s.

1Parts per million (10−6). A relative rate of 1 ppm means that one clock ticks 1µs/s faster than the other.
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Clock Skew Compensation

Independent of synchronization protocol, there are several options for clock skew compensation.

The simplest is to do nothing. In some applications, event detection and synchronization always

occur so close together in time that clock skew compensation is unnecessary. However, when it does

become necessary, nodes must exchange timestamps periodically to ensure their clocks do not drift

too far apart. In resource-constrained WSNs, frequently exchanging timestamps may be undesirable

because it can result in high message overhead. To keep message overhead to a minimum, nodes can

exchange synchronization messages less frequently and instead maintain a history of their neighbors’

timestamps. Techniques such as linear regression, exponential averaging, and phase-locked loops can

then be used to produce an accurate estimate of clock offset at any time instant.

A linear regression fits a line to a set of data points such that the square of the error between the

line and each data point is minimized overall. By maintaining a history of n local-remote timestamp

pairs, node Ni can derive a linear relation Ni(t) = α + βNj(t) and solve for the coefficients α and

β. Here, β represents the estimation of rrij(t). A problem arises when attempting to improve the

quality of the regression by increasing the number of data points. This can result in high memory

overhead, especially in dense networks. However, it has been shown that sub-microsecond clock

skew error can be achieved with as few as six timestamps in mote networks [97].

Exponential averaging solves the problem of high memory overhead by keeping track of only the

current relative rate and the most recent neighbor-local synchronization timestamp pair. When a

new timestamp pair is available, the relative rate is adjusted by

rrij(tk) = α

(
Ni(tk)−Ni(tk−1)

Nj(tk)−Nj(tk−1)

)
+ (1− α)(rrij(tk−1)),

where α is a small weight constant that gives higher significance to the accumulated average. Be-

cause the relative rate estimate is partially derived from its previous value, there will be a longer

convergence time before an accurate estimate is reached. This convergence time can be reduced by

providing the algorithm with an initial relative rate, determined experimentally.

The phase-locked loop (PLL) is a mechanism for clock skew compensation used in the Network

Time Protocol (NTP) [126], [127]. The PLL compares the ratio of a current local-remote timestamp

pair with the current estimate of the relative rate. The PLL then adjusts the estimate by the sum

of a value proportional to the difference and a value proportional to the integral of the difference.

PLLs generally have a longer convergence time than linear regression and exponential averaging,

but have low memory overhead. A diagram of a PLL implementation is illustrated in Figure 11.
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The Phase Detector calculates the relative rate between two nodes and compares this with the

output of the PLL, which is the previous estimate of the relative rate. The difference between these

two values is the phase error, which is passed to the second-order Digital Loop Filter. Because we

expect there to be some amount of phase error, we choose a filter with an integrator, which allows

the PLL to eliminate steady-state phase error. To implement this behavior in software, a digital

accumulator is used, and is represented by y(t) = (K1 +K2)u(t)− 10K2K1u(t− 1) + 10K2y(t− 1).

The resulting static phase error is passed to the Digitally Controlled Oscillator (DCO). The DCO

sums the previous phase error with the previous output, which produces the current estimate of

relative clock rate, and is fed back into the PLL. Techniques for selecting gains K1 and K2 are

presented in [126].

Digitally Controlled 
Oscillator

Delay

++

+
+

Digital Loop Filter

Phase Detector

K1

K2

Figure 11: Phase-locked loop

Synchronization Methodology

The accuracy of a receiver-receiver synchronization protocol (such as RBS) is comparable to sender-

receiver synchronization (such as RITS) in mote networks. However, receiver-receiver synchroniza-

tion has greater associated communication overhead, which can shorten the lifetime of the network.

Therefore, we selected RITS to synchronize the mote network in our HSN.

Synchronization of PC networks has been studied extensively over the past four decades, however,

popular sender-receiver protocols such as NTP only provide millisecond accuracy. This is acceptable

because PC users typically do not require greater synchronization precision for their applications. For

microsecond-level synchronization accuracy in PC networks, a receiver-receiver protocol such as RBS

outperforms sender-receiver protocols because it has less associated message delay nondeterminism.

We therefore use RBS to synchronize our PC network.

To synchronize a mote with a PC in software, we adopted the underlying methodology of ETA

and applied it to serial communication. On the mote, a timestamp is taken upon transfer of a
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synchronization byte and inserted into the outgoing message. On the PC, a timestamp is taken

immediately after the UART issues the interrupt, and the PC regards the difference between these

two timestamps as the PC-mote clock offset. Serial communication bit rate between the mote and

PC is 57600 baud, which approximately amounts to a transfer time of 139 microseconds per byte.

However, the UART will not issue an interrupt to the CPU until its 16-byte buffer nears capacity

(when the 14th byte is received) or a timeout occurs. Because the synchronization message is six

bytes, reception time in this case will consist of the transfer time of the entire message in addition

to the timeout time and the time it takes to transfer the data from the UART buffer into main

memory by the CPU. This time is compensated for by the receiver, and the clock offset between

the two devices is determined as the difference between the PC receive time and the mote transmit

time.

Architecture

We have developed a PC-based time synchronization service for reactive data fusion applications in

HSNs. Figure 12 illustrates the interaction of each component within the service. The service collects

sensor data from applications that run on the local PC, as well as from other service instances running

on remote PCs. It accepts event messages on a specific port, converts the embedded timestamps

to the local timescale, and forwards the messages toward the sensor-fusion node. To maintain

synchronization with the rest of the PC network, the service uses RBS. The arrival times of the

reference broadcasts are stored in a reference table and accessed for timescale transformation. In

addition, the service accepts mote-based event messages, and converts the embedded timestamps

using the ETA serial timestamp synchronization method outlined above. The messages are then

forwarded toward a sensor-fusion node. The service instance that resides on the sensor-fusion node

transforms incoming timestamps into its local timescale before passing the event messages up to the

sensor-fusion application.

Kernel modifications in the serial and wireless drivers were required in order to take accurate

timestamps. Upon receipt of a designated synchronization byte, the time is recorded and passed up

to the synchronization service in the user-space. The mote implementation uses the TimeStamping

interface, provided with the TinyOS distribution [128]. A modification was made to the UART

interface to insert a transmission timestamp into the event message as it is being transmitted between

the mote and PC. The timestamp is taken immediately before a synchronization byte is transmitted,

then inserted at the end of the message.
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Figure 12: PC-based time synchronization service.

Experimental Evaluation

Our HSN testbed consists of seven Crossbow Mica2 motes and four MobileRobots Pioneer 3DX

robots [129] with embedded Redhat Linux 2.4 PCs, as illustrated in Figure 13. In addition we

employ a Linux PC to transmit RBS beacons. We chose this testbed because the challenges that

arise are representative of practical HSN configurations such as hierarchical clustering and mote

networks with multiple sinks. In addition, routing sensor data from a mote network to a PC base

station is a dominant communication pathway in sensor network architectures.

Wireless
Serial

Motes PCs

Event Beacon
RBS Beacon

Sensor-fusion Node

Figure 13: Our sensor network testbed. Arrows indicate communication flow.

The reference broadcast node transmits a reference beacon containing a sequence number once

every ten seconds. The arrival of these messages are timestamped in the kernel and stored in a

reference table. Simultaneously, a designated mote broadcasts event beacons, once every 4000 ± ε
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milliseconds, where ε is a random number in the range (0,1000). Six hundred event beacons are

broadcast per experiment. The two outlying motes timestamp the arrival of the event beacon, and

place the timestamp into a message. The message is routed over three hops in the mote network

to the mote-PC gateways, using RITS to convert the timestamp to the local timescale with each

hop. The message is next transferred from the mote network to the PC network over the mote-PC

serial connections, and the event timestamp is converted to the timescale of the gateway PCs. The

gateway PCs forward the message two additional hops to the sensor-fusion node. The experiment

was repeated using the different clock skew compensation techniques in the PC network, as described

in Chapter II. Because RITS synchronizes a single sender with a single receiver at the time of data

transfer, and because event data is forwarded to the base station immediately after the event is

detected or a data message is received, clock skew compensation in the mote network provides

negligible improvement.

Sub-network Synchronization

We first performed a series of experiments to quantify synchronization error on the individual critical

paths in the network. The results allow us to justify our selection of synchronization protocols for

the entire HSN. Note that no clock skew compensation was performed for these initial tests. To

determine synchronization error, we used the pairwise difference evaluation method. Two nodes, N1

and N2, simultaneously timestamp the occurrence of an event, such as a reference beacon. These

timestamps are then transformed to the timescale of node N3, and the absolute value of their

difference represents the error in the timescale transformation.

Experimental results in the literature (e.g., [117], [52]) indicate that RITS works well for syn-

chronizing the mote network. We confirmed this on a 3-hop network of Mica2 [32] motes. A beacon

message was broadcast to two outlying motes, which timestamped its arrival and forwarded the

timestamp to a network sink node 3 hops away. At each intermediate node, the timestamps were

converted to the local timescale. Synchronization error was calculated as timestamps arrived at the

network sink node and, over 100 synchronizations, the average error was 7.27µs, with a maximum

of 37µs.

Based on the implementation described in [51], we synchronized our PC network using RBS. We

used a separate transmitter to broadcast a reference beacon every ten seconds (slightly randomized)

for 100 runs. Two PCs received reference broadcast r at local times PC1(tr) and PC2(tr), respec-

tively. Synchronization error was 8.10µs on average, and 43µs maximum. Results are displayed in

Figure 14a.
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Figure 14b plots the synchronization error between two PCs using RITS. Every two seconds,

PC1 sent two synchronization messages to PC2. Immediately before the command to send the

first message was issued to the network interface controller on the sender, a transmission timestamp

PC1(ttx) was taken in the kernel. This was found to be the latest possible time for the sender to take

the timestamp. However, by the time the timestamp had been acquired, the message had already

been transmitted, so a second message was needed to deliver the timestamp to the receiver. PC2

recorded the timestamp PC2(trx) in the kernel interrupt function upon receipt of the first message,

and obtained the sender timestamp in the second message shortly after. The results show that we

cannot expect consistent synchronization accuracy using RITS with the 802.11 networked Linux

PCs. This is partly due to sender-side message delay error in RITS, which is nonexistent in RBS. In

addition, the PC-based operating system is not tightly integrated with the network interface, and

therefore the timestamping precision of the transmission and reception of synchronization bytes is

degraded.

To synchronize the mote with the PC, we used the synchronization methodology described above.

To evaluate synchronization accuracy, GPIO pins on the mote and PC were connected to an oscillo-

scope, and set high upon timestamping. The resulting output signals were captured and measured.

The test was performed over 100 synchronizations, and the resulting error was 7.32µs on average.

The results are displayed in Figure 15. The majority of the error is due to nondeterministic message

delay resulting from jitter, both in the UART and the CPU. A technique to compensate for such

jitter on the motes is presented in [97], however, we did not attempt it on the PCs.
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Figure 14: (a) RBS and (b) RITS synchronization error between two PCs.

HSN Synchronization Results

Figure 16 summarizes the synchronization error for each type of clock skew compensation technique

under normal operating conditions, high network congestion, and high I/O load. To simulate a high
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Figure 15: Mote-PC error using ETA.

network load, an extra mote and PC (not pictured in Figure 13) were introduced, each broadcasting

messages of random size every 100 milliseconds. We first examined synchronization without clock

skew compensation. The sensor-fusion node reported the average difference between the source

timestamps as 12.05µs, with a maximum of 270µs. Next, we synchronized the PC network using

linear regression as our clock skew compensation technique. As expected, there was a notable

improvement in synchronization accuracy, with an average of 7.62µs error, and a maximum of 84µs.

Repeating the experiment using exponential averaging gives errors similar to linear regression. The

average error recorded was 8.82µs, with a maximum of 112µs. The average synchronization error

using phase-locked loops was 7.85µs, with a maximum of 196µs. For the digital loop filter, we used

gains of K1 = 0.1 and K2 = 0.09, determined experimentally.

Memory overhead is minimal for each clock skew compensation technique. Nodes require 8 bytes

for the current relative rate estimate for each neighbor within single-hop range. In the case of linear

regression, a small history buffer for each neighbor is also required. Our implementation has no

message overhead (except for the beacons transmitted by the RBS server). In fact, the only modifi-

cation to the data message is the addition of a four-byte timestamp. Because these synchronization

timestamps piggyback on data messages, no additional messages are required. Our methodology

is therefore energy efficient, because message overhead directly impacts energy consumption. Con-

vergence time depends on input parameters to the clock skew compensation algorithm. We found

that, on average, it took the network 80 seconds to synchronize with linear regression, 200 seconds

with exponential averaging, and 1300 seconds with phase-locked loops. Note that these convergence

times reflect an inter-beacon delay of four seconds.

These results show that we are able to achieve microsecond-accurate synchronization in the

HSN. Because error accrues with each timescale transformation, achieving this level of synchroniza-

tion accuracy over a 6-hop network of heterogeneous devices is significant. Although the maximum
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Figure 16: HSN synchronization error with different types of clock skew compensation under normal
operating conditions (Normal), high network congestion (Network), and high I/O load (I/O).

synchronization error extends to tens of microseconds, it was principally caused by a small number

of synchronization attempts in which prolonged operating system interrupt operations occurred.

Although these prolonged interrupts were difficult to avoid, they did not occur frequently, and the

worst-case synchronization error for each type of clock skew compensation technique was accept-

able for most kinds of HSN data fusion applications. Furthermore, time synchronization was not

affected by the most common types of nondeterministic behavior, such as network congestion and

I/O operations.

The accuracy of the mote-PC synchronization is quite good. Although we did see error in

the tens of microseconds, the maximum did not exceed 50µs, and the average was below 10µs.

These results are significant, because they demonstrate that software-based, microsecond-accuracy

synchronization can be achieved between mote and PC networks, enabling the development of HSN

applications that require precision time synchronization. In addition, because this technique uses

UART communication, it can easily be adapted for synchronization with other UART-supported

peripheral sensing devices.

Conclusion

Time synchronization is an important and necessary component in most wireless sensor network

applications. However, as we describe in this chapter, its implementation is non-trivial, especially

when high-precision synchronization is required. In networks of heterogeneous devices, the problem is

compounded by issues of system integration, and therefore alternative techniques must be employed

to reduce synchronization error. We have shown that with certain configurations, microsecond

accuracy can be achieved with careful selection of hardware, software, and network components.

Our methodology is generally portable to other platforms, provided mechanisms exist within the

target configuration that permit low-level timestamping.
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CHAPTER IV

MOBILE SENSOR LOCALIZATION AND NAVIGATION USING RF DOPPLER
SHIFTS

Introduction

In this chapter we address the problem of mobile sensor localization and navigation by describing

a technique that uses RF Doppler shifts [28] for determining position and velocity. We design a

system using inexpensive and commercially available sensor nodes, which eliminates the need for

additional sensor hardware because only the sensor radio is used. The basic idea is that a mobile

sensor transmits a sinusoidal signal at a specific frequency. Because the mobile sensor is moving,

the observed signal frequency will be shifted due to the Doppler effect, and the shift is related to

the relative speed and position of the transmitter and receivers. By using a sufficient number of

stationary observers, the position and velocity of the mobile sensor can therefore be estimated.

Navigation is a challenging problem for resource-constrained mobile sensors. Typically, mobile

robots utilize optical encoders, sonar arrays, laser range-finders, and GPS. These sensors enable the

robots to determine their current location, as well as the correct motion vector to reach their destina-

tion. However, these types of devices can be large, heavy, expensive, power-intensive, and generate

large amounts of data. As mobile sensors decrease in size and cost, these types of positioning sensors

become difficult to implement. Furthermore, uneven terrain, motor degradation, and wheel slippage

will often cause mobile entities to deviate from their intended trajectories. Motion controllers enable

mobile entities to maintain a desired trajectory by minimizing position and velocity error in a stable

manner.

We present the design of a motion control loop that uses observed Doppler shifts as feedback. An

extended Kalman filter is used to determine the position and velocity of a mobile sensor in the pres-

ence of measurement noise. The position and velocity estimate is used by the controller to determine

updated angular velocities for each wheel of the two-wheeled mobile sensor with differential steering.

Our experimental results demonstrate the accuracy of this system with respect to maintaining the

proper trajectory, as well as performing waypoint navigation.

The contributions of this work are as follows [18], [19]:

1. We develop an algorithm that estimates the position and velocity of a mobile node from

RF Doppler-shifted frequency measurements. The position and velocity obtained from the
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algorithm are used as control feedback, which keeps the mobile node from deviating from its

target trajectory.

2. We implement the algorithm on a real-world resource-constrained WSN platform. All process-

ing runs on two robot-mounted motes within the control loop, and requires no additional PC

processing.

3. We perform several experiments using the implementation in order to demonstrate the viability

and accuracy of the navigation algorithm.

System Overview

For our navigation system, which we refer to as dNav, the mobile sensor is mounted to a 2-wheeled

mobile platform with differential steering. Similar to dTrack [28], the mobile node transmits a

sinusoidal signal, which becomes Doppler shifted based on the relative speed between the transmitter

and receiver. Receiver nodes send their observed Doppler-shifted frequencies back to the mobile node,

which uses this data to compute the current estimate of its position, speed, and heading. These

values are then used to calculate the trajectory error, which enables the mobile node to stay on

course.

Although we apply the same underlying methodology, there are significant fundamental differ-

ences between dTrack and dNav. Unlike dTrack, for dNav we utilize the Doppler-shifted frequency

information as feedback to control the mobile node. This approach requires the navigation algorithm

to be implemented on the mobile sensor node, within the control loop. One benefit of dNav over

dTrack is that the mobile node is aware of the angular velocity commands it sends to each wheel.

This information can be used to arrive at a better position and velocity estimate, especially when

sudden maneuvers take place.

In dNav, a typical sensing region consists of a set of anchored receiver nodes at known positions,

as well as a stationary assistant transmitter node. The mobile node, also referred to as the master

transmitter, moves around the sensing region, as in Figure 17. Periodically, the master synchronizes

with the assistant and receiver nodes via a SyncEvent message [52]. In addition to serving as a

synchronization point, the message provides a time in the near future for the master and assistant

to transmit a signal, and for the receivers to listen for the transmission. The master and assistant

transmit pure sine waves at frequencies that differ slightly, which generate a low-frequency beat

signal upon arrival at the receiver antennas [22]. The observed beat frequency will be Doppler-
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shifted, and the amount of Doppler-shift will be determined by the velocity of the mobile node and

the relative positions of the stationary receivers.

Receiver 1 Receiver 3 Receiver 5

Receiver 2 Receiver 4Assistant

Master

Figure 17: Sensing region for localization and navigation. Dotted curves represent radio wave
propagation. The arrow on the master node indicates direction of travel.

The receiver nodes send the observed signal frequencies back to the master, and the observations

are passed through an EKF in order to arrive at an estimated node trajectory in the presence of

measurement noise. The output of the filter is the current estimate of the mobile node’s position,

speed, and heading, which are then used to calculate the trajectory error, based on reference speed

and heading setpoints. The error is passed to the controller, which outputs updated left and right

wheel angular velocities. Figure 18 illustrates the navigation system running on the mobile sensor.

Each component of the architecture is presented in detail below.

Reference 
Speed and 
Heading

Controller

Radio
Interferometry

Doppler-
shifted 

frequencies

Angular 
velocities

Mobile 
Sensor 
velocity

EKF

Speed and 
Heading 
estimate

Mobile Sensor

Figure 18: The dNav mobile sensor navigation system.
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Mobile Sensor Kinematics

We use the following equations to describe the kinematic model of our two-wheeled mobile sensor

with differential steering:

ẋ =
r(ωr + ωl)

2
cosφ (2)

ẏ =
r(ωr + ωl)

2
sinφ (3)

φ̇ =
r(ωr − ωl)

2b
(4)

where x and y constitute the mobile node’s position, φ is the heading, r is the wheel radius, b is the

distance between the hub center of the driving wheel and mobile platform axis of symmetry, and ωr

and ωl are the right and left wheel angular velocities, respectively. The speed of the mobile node is

the magnitude of the velocity, and in terms of angular velocity is represented as |v| = r(ωr+ωl)
2 . For

simplicity, this model does not take into account the effect of acceleration. For mobile entities with

sufficiently low mass, acceleration does not have a major impact on the forward kinematics of the

system.

Controller

To arrive at the angular velocities that will keep the mobile sensor on the reference trajectory, we

use a controller that takes as input the speed and heading errors, e|v| and eφ, respectively. Because

φ wraps to 0 at 2π, we shift the heading error to fall between −π and π:

eφ =


eφ − 2π if eφ > π

eφ + 2π if eφ < −π

eφ otherwise

The controller contains two PI equations, one for each error component:

|v| = Kpe|v| +Ki

∫
e|v|dt (5)

φ̇ = Kpeφ +Ki

∫
eφdt (6)
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The PI equations give us the updated speed and angular velocity, however, the mobile platform

is commanded by specifying an angular velocity for each wheel. Consequently, we convert |v| and φ̇

into individual wheel angular velocities, ωl and ωr, as follows:

ωl =
|v| − bφ̇

r
(7)

ωr =
|v|+ bφ̇

r
(8)

These angular velocities constitute the drive input, u.

The effect of the above transformation is that both wheels will be set with an equal base velocity

to compensate for the translational speed error. If heading error exists, the mobile node will minimize

it by turning one wheel faster than the base velocity, and the other wheel slower, which will result

in the node turning in the correct direction as it moves forward.

Doppler Tracking

A mobile node, T , moves through a sensing region with velocity −→v while transmitting a pure sine

wave with frequency ft and wavelength λt = c/ft, where c is the speed of light. Simultaneously,

a stationary node transmits a pure sine wave at a slightly lower frequency, fa. A receiver node,

Ri, observes the interference signal, with frequency fi, which is Doppler-shifted. The amount of

frequency shift is dependent on the relative speed of T and Ri, and is defined by

fi = f̂ − vi/λt (9)

where f̂ = ft − fa is the beat frequency, and vi is the relative speed of T with respect to Ri.

The relative speed is the projection of the mobile node velocity onto the unit position vector,
−−→
RiT ,

pointing from Ri to T , and can be expressed in the form given by

vi = vxcos(αi) + vysin(αi) (10)

where αi is the angle of Ri from the viewpoint of T with respect to the x axis, vx = |v|cosφ, and

vy = |v|sinφ (see Figure 19).

Equation (9) allows us to compute the relative speed of the mobile node T and the node Ri

if the difference between the two transmitted frequencies, f̂ , is known. In practice, we find that

the reported Doppler-shifted frequencies differ from the expected frequencies. Because of low-cost
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Figure 19: Mobile node T having velocity v transmits a signal. Sensor Ri measures the Doppler
shift of the signal, which depends on vi, the relative speed of T and Ri.

hardware, we are unable to know the exact transmission frequency, which has a tuning resolution of

65 Hz. We must therefore treat f̂ as an unknown variable. The noisy measurement data is therefore

passed through an extended Kalman filter in order to arrive at an accurate mobile node position

and velocity.

Extended Kalman Filter

The Kalman filter is a widely used technique for estimating the state of a dynamic system based on

noisy measurement data. We use the extended Kalman filter [95] because we are dealing with the

nonlinear mobile node dynamics (Equations (2) - (4)) and the nonlinear relationship between the

measured frequency and the relative velocity (from Equation (10)).

The parameters that need to be estimated are the location (x, y), the speed, |v|, and heading φ

of the mobile sensor. In addition, we must either estimate the frequency of the beat signal, or use

a method to solve for these parameters that does not require it. We have developed two EKFs for

each of these scenarios. The first, which we refer to as the 5-state EKF, contains five state variables,

including the unknown beat frequency parameter f̂ . The second, which we refer to as the 4-state

EKF, does not include f̂ .

EKF with Beat Frequency Estimation

We define our parameter vector X for the 5-state EKF as

X =

[
x y |v| φ f̂

]T
.
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The parameter vector X is related to an observation vector z. We formalize this relation through

a function H such that

z = H(X),

where the observation zi is the signal measurement fi, and the observation vector z is defined as

z =

[
z1 z2 . . . zn

]T
.

The relative speed vi of the nodes T and Ri is simply the projection of −→v onto
−−→
RiT , which can

be calculated using the velocity components |v| and φ and coordinates (x, y) of the mobile node, and

known quantities λt and the (xi, yi) and (xi+1, yi+1) coordinates of nodes Ri and Ri+1, respectively.

We define our measurement function (for i = 1, . . . , n− 1) as

Hi(X) = f̂ − 1

λt

|v|((xi − x)cosφ+ (yi − y)sinφ)√
(xi − x)2 + (yi − y)2

(11)

The EKF linearizes the estimation about the current mobile node state by applying the partial

derivatives of the process and measurement functions. These functions take the form

Xk = F (Xk−1, uk−1) + wk−1 (12)

zk = H(Xk) + ζk (13)

where X is the system state, z is the measurement vector, u is the process input, w is the process

noise with covariance Q, ζ is the measurement noise with covariance R, and k is the current timestep.

Both the process noise w and the measurement noise ζ are assumed to have “white noise” properties

with zero mean, and their covariance matrices are determined experimentally. The state transition

function F that governs the dynamics of the mobile node is a vector function and is given by

F =



xk−1 + ∆t r(ωr+ωl)
2 cos(φk−1)

yk−1 + ∆t r(ωr+ωl)
2 sin(φk−1)

r(ωr+ωl)
2

φk−1 + ∆t r(ωr−ωl)
2b

f̂k−1


(14)

where ∆t is the time elapsed since the last time step. Recall that ωl and ωr comprise the process

input u.
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The EKF recursively estimates the system state in two phases. The first phase predicts the state

at the current time step based on the state at the previous time step and the current process input.

The second phase adjusts the prediction with actual measurement data obtained during the current

time step. In addition, an error covariance matrix, P , is maintained, which is a measure of the

accuracy of the estimated state, and is used to update the Kalman gain. Formally, these two phases

are represented as

1. Prediction Phase

X̂−k = F (X̂k−1, uk)

P−k = Ak−1Pk−1A
T
k−1 +Q (15)

where X̂−k and P−k are the a priori state and covariance estimates for the current time step k,

and Ak−1 is the Jacobian of F with respect to Xk−1.

2. Update Phase

Kk = P−k J
T
k (JkP

−
k J

T
k +R)−1

X̂k = X̂−k +Kk(zk −H(X̂−k ))

Pk = (I −KkJk)P−k (16)

where K is the Kalman gain, J is the Jacobian of H with respect to X, R is the covariance of

the measurement noise, and I is the identity matrix.

The Jacobian matrices of F and H with respect to X are given below in Equations (17) and

(18). Note that for J[i,j] =
∂H[i]

∂X[j]
, we only need to calculate the partial derivative of H once for

each column, because successive rows correspond to a different receiver node and can be calculated

analogously.

Ak =



1 0 0 ∆t−r(ωr+ωl)
2 sin(φk)

0 1 0 ∆t r(ωr+ωl)
2 cos(φk)

0 0 0 0

0 0 0 1


(17)
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∂Hi

∂xk
= − 1

λ
|v|k(yi−yk)((xi−xk)sinφk−(yi−yk)cosφk)

((xi−xk)2+(yi−yk)2)3/2
,

∂Hi

∂yk
= − 1

λ
|v|k(xi−xk)((yi−yk)cosφk−(xi−xk)sinφk)

((xi−xk)2+(yi−yk)2)3/2
,

∂Hi

∂|v|k = − 1
λ

(xi−xk)cosφk+(yi−yk)sinφk√
(xi−xk)2+(yi−yk)2

,

∂Hi

∂φk
= − 1

λ
|v|k(−(xi−xk)sinφk+(yi−yk)cosφk)√

(xi−xk)2+(yi−yk)2
,

∂Hi

∂f̂k
= 1

(18)

In [28], which used the 5-state EKF, it was observed that the filter did not respond well to sudden

maneuvers of the mobile node, and so it was combined with a constrained nonlinear least squares

algorithm. We are able to avoid this step because the mobile node is aware of any maneuvers that

it makes, and provides this as input (u) to the EKF.

Extended Kalman Filter without Beat Frequency Estimation

Rather than treating the beat frequency f̂ as an unknown parameter in our localization algorithm,

we can take the pairwise difference of frequency measurements, such that f̂ is subtracted out. Doing

this provides an additional benefit of reducing the run-time complexity of the algorithm. Hence, we

use the pairwise difference of frequency measurements as our observation.

From Equation (9), we see that fi is a function of f̂ , which is an unknown value. We would

therefore like to solve X without having to deal with f̂ . We can do this by taking the pairwise

difference of the frequency measurements. Assuming n infrastructure nodes measure the Doppler-

shifted radio signal, this yields (n2 ) pairwise differences. However, we only require n − 1 pairwise

differences, since no additional information can be acquired by using more. Therefore, we use n− 1

observations zi. We formally define the observation as

zi = fi+1 − fi =

(
f̂ − vi+1

λt

)
−
(
f̂ − vi

λt

)
=
vi − vi+1

λt

and the observation vector z as

z =

[
z1 z2 . . . zn−1

]T
.

The relative speed vi of the nodes T and Ri is the projection of −→v onto
−−→
RiT . Taking the difference

of two such relative speeds, we get

λ(fi+1 − fi) = vi − vi+1 = −→v · (−→ui −−−→ui+1).
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Finally, −→v · (
−−→
RiT −

−−−−→
Ri+1T ) can be calculated using the velocity components |v| and φ and

coordinates (x, y) of the mobile node, and known quantities λt and the (xi, yi) and (xi+1, yi+1)

coordinates of nodes Ri and Ri+1, respectively. Our measurement function (for i = 1, . . . , n− 1) is

Hi(X) = |v|cosφ
(
cos

(
tan−1

(
yi − y
xi − x

))
− cos

(
tan−1

(
yi+1 − y
xi+1 − x

)))
− |v|sinφ

(
sin

(
tan−1

(
yi − y
xi − x

))
− sin

(
tan−1

(
yi+1 − y
xi+1 − x

)))
.

Experimental Evaluation

Figure 20 shows the sensor devices we use in our experiments. The mobile platform is a MobileRobots

Pioneer 3DX [129]. Note that although the Pioneer is equipped with an onboard Linux PC, it was

not powered on for these experiments, and all control operations were performed by a connected

mote. In addition, the robot has optical encoders on each wheel, however, the measurement data

were not made available to the controller at runtime.

Crossbow ExScal motes (XSMs) [30] were used to control the mobile platform, as well as for

the dTrack implementation. Six motes were placed in a 20 by 30 meter sensing region (see Figure

21), elevated 1.5 meters from the ground. Five of these were receivers, and one was the assistant

transmitter. The position of the assistant is not important, as long as it is stationary and the signal it

transmits can be received by the participating receiver nodes. Another mote, the master transmitter,

was fixed to the mobile platform, and communicated directly to the platform’s microcontroller via

a serial connection.

One additional mote was used to host the Kalman filter. Ideally, EKF functionality would be

implemented on the same node as the controller. However, due to memory limitations, we made the

design decision to use two nodes. We argue that this does not affect the scalability of the system,

and with code optimizations it would be possible to implement the EKF on the controller node. The

EKF mote was mounted to the mobile platform body and communicated with the controller node

over the wireless radio interface. Tuning of the EKF was done experimentally, based on simulation

and offline tests.

To obtain ground truth, we used measurements from the onboard optical encoders. In addition,

the sensor field was recorded by video. We ran four sets of experiments. The first three experiments

used the 5-state EKF, and the fourth used the 4-state EKF.
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Receiver node

EKF mote

Master node / 
controller

Robot

Figure 20: Sensor hardware used in our experiments.

EKF with Beat Frequency Estimation

In Experiment 1, we disabled receiver node feedback, and instructed the mobile sensor to drive

in a 30-meter straight line without making corrections for motor inaccuracies or wheel slippage. In

Experiment 2, the mobile sensor attempted to control its speed and heading along the same straight-

line trajectory based on feedback from the dTrack system. For Experiment 3, we introduced a 90◦

mid-course maneuver to the mobile sensor trajectory.

Receiver 1

(0.0, 0.0)

Receiver 3

(15.54, 0.0)

Receiver 5

(31.09, 0.0)

Receiver 2

(9.75, 18.28)

Receiver 4

(19.5, 18.28)

Assistant

x

y

Master

(0.0, 8.0)

Figure 21: Experimental sensing region. Dashed arrows denote reference trajectories.

Figure 22 illustrates the desired and actual trajectories of the mobile sensor for both the open-

loop and closed-loop sets of straight-line experiments, as well as for the 90◦ mid-course maneuver.
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With each feedback cycle, we recorded the current position, speed, and heading, and compared these

with the desired values. The average errors are listed in Table 5.

For the open-loop case, the average speed is very close to the desired value, because the transla-

tional velocity is set once at the beginning of the run, and the wheel motors are able to maintain a

constant angular velocity fairly well. However, wheel slippage and uneven terrain caused the mobile

platform to gradually veer off course, which contributed to the large position and heading error.

The closed-loop case has much lower position and heading error than the open-loop, however its

average speed error is higher. This is because the robot places a higher priority on correcting its

heading than it does speed. For the maneuver, rather than having the robot come to a stop, rotate,

then resume moving in the new direction at the desired speed, we instructed the robot to maintain

its target speed while performing the turn. This resulted in a 1.23 meter overshoot of the desired

turning point.

30 m

20 m

x

y

Desired

Closed loop

Open loop

Anchor node

Figure 22: Robot trajectory under both closed-loop and open-loop experiments.

Experiment Position error (m) Speed error (m/s) Heading error (rad)

1 (Open loop) 5.32 0.05 0.167
2 (Closed loop) 1.68 1.31 0.13
3 (Closed loop) 1.93 3.91 0.21

Table 5: Average position, speed, and heading error over 66 measurements for open-loop and closed-
loop experiments.
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EKF without Beat Frequency Estimation

Our goal for Experiment 4 is for the robot to navigate between a series of waypoints in the sensing

region. Because of error in the EKF position estimate, we cannot rely on the robot reaching the

exact waypoint coordinates. Therefore we selected an appropriate waypoint proximity region, in

which the robot would consider the waypoint reached. An interesting situation arises in which the

robot passes through the waypoint region between EKF updates, and is unaware it has done so. To

prevent this, we had to make the waypoint region sufficiently large so that at the desired reference

speed the robot would not pass over it. For these experiments, if the robot came within 2 meters of

the waypoint, it would turn and proceed to the next waypoint.

Figure 23 illustrates the desired and actual paths of the robot during waypoint navigation. With

each feedback cycle, we recorded the current position, speed, and heading, and compared these with

the desired values. The average position, speed, and heading error was 1.89 m, 0.19 m/s, and 12.05◦,

respectively.
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Anchor node
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Figure 23: Desired and actual paths of the mobile sensor.

Discussion

By placing radio interferometry and the extended Kalman filter within the control loop, we are

able to navigate between waypoints in a sensing region with a maximum position error of 2.51

meters. Factors that contribute to this error include measurement noise, model noise, placement

of the assistant transmitter node, and execution time of the control loop. Model noise is primarily

due to our approximation of the robot kinematic model, as well as inaccuracies in the process and
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measurement error covariances provided to the EKF. In theory, the assistant transmitter can be

placed anywhere in the sensing region, as long as its signal is received at all participating nodes.

However, in practice, we find that its placement relative to the mobile transmitter does in fact alter

the measurement results, because the power of the assistant signal can overwhelm or be overwhelmed

by the mobile transmission, which will lead to distorted signal measurements at the receiver.

The benefit of using the 4-state versus the 5-state solution is apparent when considering the

memory and latency constraints of the mobile sensor implementation. Table 6 shows the memory

requirements and latency of each solution implemented in nesC. Although we did not perform

waypoint navigation for our earlier version, and therefore cannot compare our localization results

with a 5-state evaluation, we realize a significant memory savings of 208 bytes by only using 4 states.

In addition, the latency of the system decreases by 49 ms. This is important, because in order to

ensure an accurate controller response, our implementation is required to iteratively run within a

small bounded timeframe. Table 7 displays the average and maximum execution times observed

over 100 feedback cycles. From these execution times, we see that we can provide feedback to the

robot controller at a rate of approximately 1 Hz.

4-State 5-State

EKF Memory Usage 899 bytes 1107 bytes
EKF Latency 216 ms 265 ms

Table 6: Memory requirements and latency for the nesC implementation of the EKF algorithm.

Component Average (ms) Maximum (ms)

Radio interferometry 360 361
Frequency calculation 61 116
Routing 266 580
EKF 216 224
PI update 1.3 1.4
Robot control 56 133
Total 960.3 1415.4

Table 7: Execution time of each component.

Conclusion

We have developed a novel localization and navigation algorithm for mobile wireless sensor networks

that utilizes Doppler shifts of the radio signal transmitted by a mobile node. We assume that a

number of stationary infrastructure nodes are deployed around the mobile node and that the mobile

node cooperates with the localization system. We showed that Doppler shifts can be measured
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accurately using radio interferometry, enabling the infrastructure nodes to accurately determine the

relative speed of the mobile node using low-cost hardware.

In implementing dNav, we have made two significant contributions. First, we show that this

system can be implemented on mote hardware and that it does not require any PC processing. This

is not a trivial task due to the limited memory and processing power available on the motes, as well as

the intricacies of the system integration between the mote and the mobile platform. Second, we show

that our system is capable of rapid localization, which enables a mobile node to accurately navigate

through a sensing region. Accurate navigation requires the latency between feedback measurements

to be small, which in turn requires tight synchronization between all components within the control

loop.
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CHAPTER V

DETERMINING ANGULAR SEPARATION IN MOBILE WIRELESS SENSOR
NETWORKS

Introduction

In this chapter, we present a method for determining angular separation that only requires the

sensor radio and wheel encoders, both of which are common to wireless mobile actuated sensors,

and hence no additional hardware is required. Our method uses the Doppler shift in radio frequency

and the instantaneous velocity of a mobile node transmitting a pure sinusoidal signal to derive the

angular separation between infrastructure nodes surrounding the sensing region. Our method does

not require the positions of the infrastructure nodes, or the initial position of the mobile node, to

be known.

Arguably one of the biggest challenges for mobile sensors is navigation, where the mobile node

must reach point B from point A. For the most basic mobile entities, navigation is typically solved

using odometry, whereby the mobile device monitors the angular velocity of each wheel to approxi-

mate the distance traveled over a given time period. The angular velocity is often determined from

feedback from optical encoders mounted on each wheel. The advantage of optical encoders is that

they are small and can be mounted on almost any type of mobile platform. Most other sensors used

for navigation (e.g., GPS, laser rangefinders, sonar, etc.) are either too large, heavy, expensive, or

require too much power to operate over extended periods of time. When operating on a clean, level

surface, optical encoders can be quite accurate. However, most environments contain dust that can

interfere with the encoder readings. Additionally, odometry rapidly accrues error on uneven terrain

due to wheel slippage and low tire pressure.

Recent work has shown that navigation is possible without knowing the current position of the

mobile sensor [130]. In fact, all points in a plane are reachable if the angular separation between two

pairs of beacons can be determined [66]. In many situations, navigating without having to determine

position is advantageous because most localization methods require extensive PC processing, have

high localization latency, and require the positions of infrastructure nodes to be known. In dNav (see

Chapter IV), we used the Doppler shift in radio transmission frequency as control feedback to

drive a mobile sensor. Although the mobile sensor was able to accurately navigate the sensing

region, the localization algorithm relied on the use of an extended Kalman filter for noisy frequency
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measurements. The EKF was run in realtime on the mobile platform, but its large size required

execution on a separate mote, which communicated with the mobile node over a wireless interface.

By eliminating the EKF, we will have a more compact and less time-consuming localization /

navigation algorithm. The solution we present here is to only determine the angular separation

between pairs of beacons, rather than the position and velocity of the mobile node. Knowledge of

the angular separation between pairs of anchor nodes provides a means for angle-based navigation

without localization [66], [130]. We show using real-world experimental results and in simulation

that this method is accurate with an average angular separation error of 0.28 radian.

The contributions of this work are as follows [20]:

1. We develop a method for determining angular separation that only requires the sensor radio

and wheel encoders, both of which are common to wireless mobile actuated sensors, and

hence no additional hardware is required. Our method does not require the positions of the

infrastructure nodes or the initial position of the mobile node to be known.

2. Because this method is intended for use with resource-constrained mobile sensors, it is rapid

and can be implemented on mote-class devices.

3. We show using real-world experimental results and in simulation that this method is accurate

with a moderate angular separation error.

System Overview

Consider a sensing region that contains multiple infrastructure nodes, as well as a mobile sensor

that needs to travel from point A to point B. This scenario is illustrated in Figure 24.

1 2

34

α23

α34

B

A

1 2

34

α23

α34

B

A

Figure 24: A mobile sensor moves through the sensing region. The node navigates based on angular
separation of beacons (numbered 1 through 4).

In order to navigate toward point B, we need to know which direction to drive in, and for that we

need to have some idea of the spatial relationship between the current position of the mobile node
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(A) and the goal position (B). Determining angular separation between pairs of beacon nodes will

provide us with such a spatial relationship. Often, angle information is determined using cameras,

microphone arrays, or light pulses, all of which are not ideal for lightweight mobile sensors. We

would like to estimate angular separation using only hardware that is widely available on sensor

nodes. Specifically, we obtain this angle information using the sensor node radio and the optical

encoders on the wheels.

The system works as follows. A mobile node, T , moving through the sensing region with velocity

v, collects angular velocity data from its wheel encoders. For mobile platforms with 2-wheel dif-

ferential steering, the relationship between the translational speed and the wheel angular velocities

is

|v| = r(ωr + ωl)

2
(19)

where the speed |v| is the magnitude of the velocity v, r is the wheel radius, and ωr and ωl are the

right and left wheel angular velocities, respectively.

As the mobile node moves, it transmits an RF sinusoidal signal, which is observed by the receiver

nodes. Because the mobile node is moving with respect to the stationary receivers, the RF signal

will be Doppler-shifted. The amount of Doppler shift depends on the relative speed of the mobile

and anchor nodes, as well as the wavelength and carrier frequency of the signal. This relationship

is formalized as

fi = fcarrier −
vi
λ

(20)

where fi is the observed Doppler-shifted frequency at receiver Ri, fcarrier is the transmission fre-

quency of the carrier signal with wavelength λ, and vi is the relative speed of mobile node T with

respect to receiver Ri.

Figure 25 illustrates the geometry of a simplified setup. For now we will only consider two

receiver nodes, Ri and Rj . The problem is to estimate the angular separation αij between the two

receiver nodes based on the measured values of ωr, ωl, fi, and fj , and known values fcarrier and λ.
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Figure 25: Geometry of simplified setup for determining angular separation between two receivers.

The relative speed, vi, between the mobile node and receiver Ri is the scalar value resulting from

the projection of v onto the position vector
−−→
TRi, as

vi = |v|cosβi (21)

where the speed of the mobile node, |v|, has a negative sign if T is moving toward Ri and positive

sign otherwise, and βi is the angle between the velocity vector v and the position vector
−−→
TRi.

The relative speed is related to the received Doppler-shifted signal. By rearranging Equation

(20), we have

vi = λ(fcarrier − fi). (22)

Combining Equations (21) and (22), and rearranging, we can calculate βi by

βi = cos−1
(
λ(fcarrier − fi)

|v|

)
. (23)

Angular separation between two receiver nodes Ri and Rj can then be computed by subtracting

one bearing from the other, as

αij = βj − βi. (24)
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Frequency Estimation using Resource Constrained Hardware

Typical low-cost sensor hardware supports radios that transmit in the 400 MHz — 2.4 GHz range.

These radios have a received signal strength indicator (RSSI) pin that can be accessed from software;

however, we cannot sample the RSSI fast enough to determine the carrier frequency of the signal.

Again, we use radio interferometry, in which a second node transmits a signal at a slightly lower

frequency such that the two transmitted signals interfere, creating a low-frequency beat signal. The

assistant transmitter can be positioned anywhere in or near the sensing region, as long as it is

stationary, and its signal can reach all receiver nodes. The beat signal, which can be as low as a few

hundred Hertz (350 Hz in our case), is sampled by making successive reads of the RSSI.

Another issue with the inexpensive radio chip is that the transmission frequency can differ from

the nominal frequency by up to 65 Hz due to the tuning precision of the radio chip [96]. For this

reason, we treat the transmission frequency as a random variable, which results in the beat frequency

being a random variable as well. This poses a challenge, because we require knowledge of the beat

frequency to compute the receiver bearings. Therefore, in order to determine receiver bearing, we

use maximum likelihood (ML) estimation [89].

For ML estimation, we rewrite Equation (23) as

fi = F (βi, fbeat) + εi

= fbeat −
|v|
λ

cosβi + εi

where εi ∼ N (0, σf ) is the Gaussian noise in the observed Doppler-shifted frequency. The negative

log-likelihood for fi is given by

`i(fbeat, βi) = − ln p(fi|fbeat, βi) =
‖ fi − F (βi, fbeat) ‖2

σ2
f

.

60



Assuming N receivers, the combined negative log-likelihood for fi, i = 1, · · · , N is given by

`(fbeat, β1, · · · , βN ) = − ln p(f1, · · · , fN |fbeat, β1, · · · , βN )

= − ln

N∏
i=1

p(fi|fbeat, βi)

=

N∑
i=1

`i(fbeat, βi)

=

N∑
i=1

‖ fi − F (βi, fbeat) ‖2

σ2
f

.

The ML estimate can be obtained by minimizing the negative log-likelihood using the following

∂`(fbeat, β1, · · · , βN )

∂fbeat
= 0.

The partial derivative leads to the following result for the ML estimate for the beat frequency

f̂beat =
1

N

N∑
i=1

fi +
|v|
λN

N∑
i=1

cosβi.

Note that the ML estimate, f̂beat, is in terms of βi, i = 1, · · · , N . To solve for the angles, we

iteratively compute the ML estimate and the angles. The two iterative steps are given below.

1. Computing the angles:

βi,k = cos−1

(
λ(f̂beatk−1

− fi)
|v|

)

2. Computing the ML estimate for the beat frequency:

f̂beatk =
1

N

N∑
i=1

fi +
|v|
λN

N∑
i=1

cosβi,k

where k = 1, · · · , 10 is the iteration index, and the ML estimate is initialized with the average of

the observed Doppler-shifted frequencies, f̂beat0 = 1
N

∑N
i=1 fi.

We show the convergence results for the beat frequency in Figure 26. We observed that the beat

frequency estimate converges within a small number of iterations, hence we conservatively chose

10 iterations for the iterative algorithm. A theoretical analysis of convergence of the algorithm is

beyond the scope of this work.

One obvious drawback with such a system is that it requires knowledge of the current speed of

the mobile node. We argue that such information can easily be obtained by using optical encoders.
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Figure 26: Convergence results for beat frequency estimate with the maximum likelihood estimation
algorithm.

Such sensors are not always adequate on their own for dead reckoning because they accrue error

over time. However, encoders are inexpensive, and provide good approximations of instantaneous

velocity, which make them suitable for this type of system.

Implementation

Our mobile wireless sensor platform consists of ExScal motes (XSMs) [30] and a Mobile-Robots

Pioneer 3DX [129] robot. All code was written in nesC [131] for the TinyOS operating system [128].

The XSMs use the Texas Instruments CC1000 radio chip [96], and transmit in the 433 MHz band.

Note that although the Pioneer comes equipped with an onboard embedded PC, as well as a wide

variety of sensors, only the instantaneous velocity, obtained from encoder data, is used, and all

computation is performed on the attached mote.

Implementation Benchmarking

Mobile sensors require a rapid positioning algorithm, otherwise by the time the algorithm completes,

the mobile node may be in a completely different location. We therefore provide a timing analysis

of our algorithm implementation to demonstrate that its latency is acceptable for mobile sensor

navigation. Our method for determining angular separation involves three major steps: (1) signal

transmission/reception, (2) sending observed frequencies from the infrastructure nodes to the mo-

bile node, and (3) running the angular separation estimation algorithm. We list the average and

maximum latencies for these steps in Table 8. The most unpredictable of these steps is the time it

takes the infrastructure nodes to send their observed frequencies to the mobile node. This latency
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can grow relatively large because the nodes are all attempting to send messages at roughly the same

time, resulting in back-off delays. However, even with this unpredictability, we can, on average,

obtain angular separation information at a rate of 1.46 Hz, which is sufficient for mobile sensor

navigation.

Step Average (ms) Maximum (ms)

Signal transmission 415 417
Routing 242 561
Angular separation algorithm 28 46
Total 685 1024

Table 8: Execution time for each step.

Because we are using resource-constrained sensor nodes, we are interested in minimizing the

memory required to run the algorithm. dNav [18] required the use of two motes on the mobile

platform, one hosting the controller, and the other hosting the EKF, leaving little space for the user

application. Our current approach requires significantly less memory, using 2.9 kB of RAM and 49.6

kB of program memory (ROM).

Experimental Evaluation

Experimental Setup

Our setup consists of six XSM nodes, four of which act as stationary receivers and surround the

sensing region. Another stationary node is designated the assistant transmitter, and is placed just

outside the sensing region. The final mote is attached to the mobile platform. The mobile node

moves around an uneven paved surface in an outdoor environment, mostly free of trees, buildings,

and other obstacles. Figure 27 illustrates the experimental setup.

We direct the mobile node to move through the sensing region while transmitting a pure sinusoidal

signal. The infrastructure nodes measure the frequency of the signal and report their observations

back to the mobile node. At the beginning of each measurement round, the mobile node records its

instantaneous velocity, obtained from the wheel encoders. This information is then used to derive

the angular separation of the infrastructure nodes. Ground truth is manually measured at each

timestep (the time at the beginning of each measurement).
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Figure 27: Experimental setup. Four infrastructure nodes (R1 . . . R4) and the assistant transmitter
(A) surround the sensing region. Triangles show the direction of travel of the mobile node at each
timestep.

Experimental Results

Figure 28 shows the estimated versus ground truth angular separations for all pairs of adjacent

beacons over the entire course. At present, this technique results in a moderately large error of 0.28

radian. We investigate the main sources of this error next.

Error Analysis

We have identified five main sources of error in this system. In order to understand the effect each

source of error has on the performance of the system, we use a simulated experimental setup that

consists of a single mobile sensor and single anchor node. Because the relationship between observed

frequency and bearing is dependent on relative speed between the two nodes (see Equation (23)), we

perform repeated simulations, rotating the anchor node around the mobile node at 1◦ increments.

The mobile node is considered to be moving at a speed of 1 m/s with an orientation of zero degrees,

and the distance between the mobile node and anchor is 10 meters. Figure 29 illustrates this setup.
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Figure 28: Ground truth versus estimated angular separation between receiver nodes (a) 1 and 2,
(b) 2 and 3, (c) 3 and 4, and (d) 4 and 1, for each measurement as the mobile node traverses the
sensing region.

Nonlinearity of the Bearing Estimation Equation

The relationship between bearing and observed frequency is

βi = cos−1
(
λ(fbeat − fi)

|v|

)
(25)

where βi is the bearing to the mobile node from anchor node i, fbeat is the frequency of the beat

signal, fi is the Doppler-shifted frequency observed at anchor node i, and |v| is the speed of the

mobile node.

However, the error in computing the bearing β will vary due to the nonlinearity of Equation (25).

Figure 30a shows the structure of the inverse cosine function (y = cos−1(x)), and its derivative is

pictured in Figure 30b. We can see that in general a small error in x will result in a large error

in cos−1(x). This is especially true at the limits (−0.8 ≥ x ≥ 0.8). To avoid this problem, we can

examine the argument to the inverse cosine, and if too large or small, discard the sensor data for

the current measurement round. In practice, we found this gives us a marginal error reduction of

approximately 11%, or 2◦.
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Figure 29: Simulation setup. Anchor nodes are placed at 1◦ increments (some nodes not pictured
for clarity).
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Figure 30: (a) The inverse cosine function and (b) its derivative.

Figure 31 is a polar plot of the expected arccosine argument under ideal conditions. We can

see that the arccosine argument will exceed the bounds illustrated in Figure 30 when the anchor

node is located between 325◦ and 35◦ and 145◦ and 215◦. In light of this, for the remainder of this

error analysis, we will discard all samples that fall within these ranges. Under non-ideal conditions

(when there is noise in the system), the range of unusable anchor node measurements will increase.

Therefore, we must deploy a redundant number of anchor nodes around the sensing region to ensure

a sufficient amount of acceptable measurements at bearings that do not fall within these undesirable

ranges.
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Figure 31: Expected arccosine argument under ideal conditions.

Measurement Noise

It was reported in [28] that the standard deviation of measured frequency is 0.21 Hz. Using this

metric, we generate a dataset of 1000 samples for each anchor position. The dataset has a mean of

the expected frequency and standard deviation of 0.21 Hz. For each anchor position, we would like

to know the average error due to measurement noise we expect to see in the system. On average,

the bearing error due to measurement noise is 6.9◦. Figure 32 plots the error.

Noisy Encoder Data

Typical optical encoders have an instantaneous velocity error distribution with a standard deviation

of approximately 1% of the speed. We examine how encoder error affects the bearing estimate. The

results are displayed in Figure 33. On average, the bearing error due to encoder noise is 1.32◦.

Unknown Beat Frequency

Because we are using low-cost hardware, one problem we encounter is that we are unable to know

the exact beat frequency, fbeat. Although we instruct the nodes to transmit at specific frequencies,

the actual transmission can differ from the nominal value by as much as 2 kHz. Because ultimately

it is the beat frequency that is important, we can tune the transmitters to transmit at frequencies

such that the interference signal (as measured by a participating receiver node) will have a beat

envelope at the desired frequency. However, the radio hardware has a tuning resolution of 65 Hz,
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Figure 32: Bearing error due to measurement
noise.
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Figure 33: Bearing error due to wheel encoder
noise.

so the actual beat frequency may differ from the desired frequency by up to 65 Hz. In addition,

the transmission frequencies will drift from their tuned frequencies over time due to environmental

causes such as temperature, humidity, and supply voltage, as well as imprecision in the radio crystal.

We see the effects of a variable fbeat in Figure 34, in which we plot the beat frequency observed by a

stationary receiver node over 100 successive measurements, 10 seconds apart. The figure illustrates

the degree to which we are unable to estimate the beat frequency.

Because we do not know the beat frequency, we must solve Equation (25) using maximum

likelihood estimation, where fbeat is the unknown parameter. The ML estimation introduces error

into the bearing estimate. Because ML estimation approximates the unknown beat frequency by

considering measurements made at all participating receivers, we cannot determine ML estimation

error by simply rotating a single anchor receiver around the mobile node. Therefore, we must fix

the positions of several receivers. We do this based on the error analysis we have performed so far.

From the above analysis, we can see the best place to take measurements is by receivers on the

periphery of the mobile node. We therefore select four anchor nodes at random, two on each side of

the mobile node. We repeat this process 1000 times and determine the average bearing error. For

each iteration, we generate a random beat frequency between 300 and 400 Hz. The error distribution

is shown in Figure 35. The average error is 4.85◦.
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Figure 34: Frequency variation over 100 successive
transmissions 10 seconds apart.
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Figure 35: Bearing error due to maximum likeli-
hood estimation.

System Latency

Mobile sensors require a rapid positioning algorithm, otherwise by the time the algorithm completes,

the mobile node may be in a completely different location. We therefore provide a timing analysis

of our algorithm implementation to demonstrate that its latency is acceptable for mobile sensor

navigation. Our method for determining angular separation involves three major steps: (1) signal

transmission/reception, (2) sending observed frequencies from the infrastructure nodes to the mobile

node, and (3) running the angular separation estimation algorithm. We list the average latencies

for these steps in Table 9.

Step Average (ms)

Signal transmission 415
Routing 242
Angular separation algorithm 28
Total 685

Table 9: Average execution time for each step.

Based on the fixed speed of the robot at 1 m/s, we can determine the bearing error caused by

algorithm latency. In 685 ms, the position of the mobile node will have changed by 0.685 m. The

bearing error caused by this position change is 1.98◦ and is plotted in Figure 36.
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Figure 36: Bearing error due to system latency.

Conclusion

In this chapter we presented a method for determining angular separation using RF Doppler shifts

and wheel encoder data in mobile sensor networks. Angular separation between multiple pairs of

beacons can be used for navigation, without the need for localization.

Several implementation challenges were encountered while designing this system. Measuring

Doppler-shifted frequencies required the use of radio interferometry. Radio hardware limitations

caused the actual transmission frequency to be unknown. Because knowledge of the beat frequency

was necessary for our algorithm, we used maximum likelihood estimation. Experimental results

obtained using our method had an average error of 0.28 radian, which will provide course-grained

navigation. However, in situations where such navigation is acceptable, our approach is fast, and

requires less memory than other RF-based methods (e.g., [28], [53], [18]). This is because our

algorithm is distributed, and therefore we expend no time routing data to a base station for analysis.

In addition, determining angular separation from Doppler shifts and instantaneous velocity does not

require complex statistical tools, such as a Kalman filter, reducing the overall memory footprint of

the application.
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CHAPTER VI

TRIPLOC: A RAPID DISTRIBUTED LOCALIZATION SERVICE

Introduction

In this chapter, we describe a novel method that uses radio interferometry to rapidly estimate the

position of a mobile node. Radio interferometric positioning for mote-scale devices was first presented

in [22], however, RIPS is not appropriate for many types of WSN applications. For instance, RIPS

sensor nodes are used to measure the phase of the transmitted signal, but the localization algorithm

runs on a resource-rich PC-class device. Although many WSN applications are centralized, it is

often more desirable to run in a distributed manner, especially when mobility is involved. This will

eliminate the possibility of a single point of failure, and the mobile node will not be in danger of

moving out of range of the base station.

The basic idea of our technique, which we refer to as TripLoc, is to group together three of

the four nodes involved in a typical radio interferometric measurement to form an antenna array,

which acts as an anchor node. Two transmitters and one receiver are arranged in such a manner

that their antennas are mutually orthogonal to minimize parasitic antenna effects (see Figure 37.)

The measured phase difference between the receiver in the array and a target node constrains the

location of the latter to a hyperbola. The bearing of the target node is estimated by computing the

angle of the hyperbola asymptote, assuming the target node is not too close to the array. With a

sufficient number of anchors, triangulation can then be performed to determine node position.

Although several techniques exist for determining node position based on bearing informa-

tion [67], [83], [132], [133], [134], there are few options for actually measuring signal AOA in WSNs.

Currently available methods for bearing estimation require a heavy-weight infrastructure [135], rotat-

ing hardware [78], [64], directional antennas [136], and/or expensive and sophisticated sensors [68].

Furthermore, such techniques typically require participating nodes to be stationary for extended

periods of time. These constraints are often undesirable for WSN deployments, in which node size

and cost must be kept to a minimum. An AOA approach that does not require additional hardware,

runs on the nodes themselves, and is fast enough to support tracking in addition to static localization

would be a major step forward.
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Figure 37: TripLoc antenna array implementation using three XSM motes. The name TripLoc comes
from the fact that a triplet of nodes constitute an anchor node array in our localization scheme.

We present several new contributions for AOA-based RF localization in wireless sensor net-

works [21].

1. We describe an RF-based technique for determining node bearing and position.

2. We provide a detailed analysis that shows our bearing estimation and localization technique

is robust to measurement noise and approximation error.

3. We design a real-world implementation using COTS sensor nodes, in which bearing estimation

and triangulation is performed entirely on the resource-constrained motes without hardware

support.

4. We present experimental results that show our approach can rapidly and accurately estimate

node bearing and position.

System Overview

Radio Interferometric Measurements

Our system consists of stationary antenna arrays with cooperating wireless sensor nodes at unknown

positions. The array contains three nodes, a master (M) and two assistants (A1, A2), as shown

in Figure 38. We assume that the position of the midpoint of the array is known, as well as

the distance between the antennas in the array. At a predetermined time, the master, M , and
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Figure 38: Array containing a master node (M) and two assistant nodes (A1, A2). A target node
(R) computes its bearing (β) from the array.

one of the assistants, A1, transmit a pure sinusoidal signal at slightly different frequencies, which

interfere to create a low-frequency beat signal whose phase is measured by the other assistant in the

array, A2, and a receiver node, R, at an unknown position. Such a measurement is termed a radio

interferometric measurement (RIM).

The difference in phase, ∆ϕ = ϕR − ϕA2
, measured by receiver nodes R and A2 is a linear

combination of the distances between the transmitters and receivers,

∆ϕ =
2π

λ
(dMA2

− dA1A2
+ dA1R − dMR) (mod 2π),

where λ is the wavelength of the carrier frequency, dMR is the distance between the master node and

target receiver node, dA1R is the distance between the assistant transmitter and the target receiver

node, and dMA1
, dMA2

, and dA1A2
are the respective distances between all pairs of nodes in the array.

Note that the nodes in the array are equidistant from each other, and therefore dMA2 − dA1A2 = 0,

so the phase difference can be simplified:

∆ϕ =
2π

λ
(dA1R − dMR) (mod 2π). (26)

We denote the distance difference dA1R − dMR by dA1MR and refer to it as a t-range. From

Equation (26), we see that if −λ2 < dA1MR <
λ
2 , the phase difference will fall in the interval (−π, π).

When this is not the case, the possible range of ∆ϕ will exceed 2π, which results in a modulo 2π

phase ambiguity. To avoid this ambiguity, we would like the maximum possible distance difference

to be less than λ
2 . The maximum distance difference will occur when the receiver node is collinear

with the transmitters M and A1. dA1MR then corresponds to the distance between the master and

assistant. Therefore, to eliminate the modulo 2π phase ambiguity, we require the distance between

antennas in the array to be less than half the wavelength of the carrier frequency.
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Having removed the modulo operation, we can rearrange Equation (26) so that known values are

on the right hand side.

dA1MR =
∆ϕλ

2π
(27)

The t-range dA1MR defines an arm of a hyperbola that intersects the position of node R, and

whose asymptote passes through the midpoint of the line A1M , connecting the master and assistant

nodes. Figure 39 illustrates such a hyperbola with foci A1 and M . The absolute value of the distance

differences between the foci and any point on a hyperbolic arm is constant, formally defined as

x2

a2
− y2

b2
= 1

where (x, y) are the coordinates of a point on the hyperbola, a is the distance between the hyperbola

center and the intersection H of the hyperbola with the axis connecting the two foci, and b is the

length of the line segment, perpendicular to the axis connecting the foci, that extends from H to

the asymptote.
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Figure 39: The t-range defines a hyperbola that intersects node R, and whose asymptote passes
through the midpoint of the two transmitters in the array.

Bearing Approximation

The hyperbola in Figure 39 is centered at O, and the distance between O and either focus is denoted

by c. Furthermore, it can be shown that c2 = a2 + b2 [137]. From the figure, we see that the bearing
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of the asymptote is β = tan−1( ba ). Therefore, in order to solve for β, we must determine the values

of b and a.

We can solve for a by observing that

dA1R − dMR = dA1H − dMH

because, by definition, the distance differences between the foci and all points on the hyperbola are

constant. From Figure 39, we see that we can substitute (c+ a) for dA1H and (c− a) for dMH , and

therefore

dA1R − dMR = (c+ a)− (c− a) = 2a.

From Equation (27), we know the value of dA1R−dMR, which is the t-range, and therefore a =
dA1MR

2 .

We can then solve for b, using b =
√
c2 − a2. In terms of known distances, the bearing of the

asymptote is defined as

β = tan−1


√(

dA1M

2

)2
−
(
dA1MR

2

)2
(
dA1MR

2

)
 . (28)

In Figure 39, we see the case where dA1MR > 0, and the position of R lies on the right arm of

the hyperbola. If the phase difference is negative (i.e., ϕR < ϕA2
) then the position of R will lie on

the left arm of the hyperbola. When this is the case, β is taken clockwise, and we must adjust it by

subtracting it from π.

The line A1M connecting the two foci is called the transverse axis of the hyperbola, and is a

line of symmetry. This implies that although we know b, we do not know its sign, because mirrored

positions on either side of the transverse axis will result in the same dA1MR. Therefore, the asymptote

bearing β we obtain using this method could be either positive or negative. To find which bearing is

correct, we can switch the roles of the assistant nodes in the array and perform another RIM. This

will generate a different t-range, and hence another hyperbolic arm with foci A2 and M .

Each hyperbola provides us with two angles ±βi, where βi is the angle of the asymptote with

the transverse axis, AiM . Of course, these angles will be offset from the global x-axis, because

the orientation of AiM may not be 0. Adjusting for this, one of the β1 bearings, and one of the

β2 bearings will point in the same direction, which will approximate the actual bearing of R, as

illustrated in Figure 40. Due to the position difference between the centers of the two hyperbolas,

we do not expect these two angles to be equal, therefore we define a small threshold εβ , such that if
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|β1−β2| < εβ , these two angles are considered a match. We then take the average of the two angles

to obtain our bearing estimate, β̂.

A1

A2

M

+β1 +β2

R

A1

A2

M

+β1 +β2

R

Figure 40: Determining the true bearing of R is accomplished by selecting +β or −β from each
master-assistant pair, such that the difference between the two angles is below the threshold εβ .

Because points on the hyperbola converge with the asymptote as their distance from the hyper-

bola center increases, the bearing approximation error is larger when R is close to the array. We

therefore make the assumption that node R is a sufficient distance from the array. In our error

analysis below, we show that this distance does not need to be very large when using small-aperture

arrays.

Triangulation

Having approximated the bearing of target node R from a sufficient number of arrays, we can

estimate its position using triangulation. Triangulation is the process of determining the position

of an object by using the bearings from known reference positions. When two reference points are

used (Figure 41a), the target position will be identified as the third point in a triangle of two known

angles (the bearings from each reference point), and the length of one side (the distance between

reference points).
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We calculate the intersection of bearings using the following equations:

x = x2 + cos(α2)
y2 − y1 − tan(α1)(x2 − x1)

cos(α2)tan(α1)− sin(α2)
(29)

y = y2 + sin(α2)
y2 − y1 − tan(α1)(x2 − x1)

cos(α2)tan(α1)− sin(α2)
(30)

where (x, y) are the coordinates of the intersecting bearings (i.e., the position estimate of node R),

(xi, yi) are the coordinates of array Ti, and αi is the bearing of R from Ti.

(a) (b) (c)
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1 T

1
T

1T
2

T
2

T
2

T
3

R

R

Figure 41: Triangulation. (a) As few as two bearings from known positions are required to estimate
the position of a target. (b) Degenerate case where a third bearing is needed to disambiguate
position. (c) Three bearings may not intersect at the same position.

When the target position is directly between the two reference points (Figure 41b), two bearings

are not sufficient to determine position, because the target could be located at any point on that axis.

Therefore, a third bearing is required to disambiguate. However, three bearings may not intersect at

the same point if any one bearing is inaccurate (Figure 41c). Triangulation techniques are presented

in [84], [67], [135], and [85], in which position estimation using more than two bearings is considered.

The method we chose was a least squares orthogonal error vector solution based on [133] and [138],

which is rapid, has low complexity, and still provides accurate position estimates from noisy bearing

measurements.

Least squares triangulation using orthogonal error vectors works as follows. Figure 42 illustrates

a simplified setup with a single TripLoc anchor (Ti) and target receiver node (R). The actual bearing

from the anchor to the target is denoted as βi and the estimate as β̂i. Similarly, the vector pointing

from the anchor position to the actual target position is denoted as vi and the vector pointing to the

estimated target position as v̂i. Finally, we denote the difference between the actual and estimated

bearing vectors as the orthogonal error vector ei, such that ei
Tv̂i = 0.

77



iβ
iβ̂

iT

R
ie

iviv̂

x

Figure 42: Least squares triangulation using orthogonal error vectors.

If we let ai =

 sinβ̂i

−cosβ̂i

, then the orthogonal error vector is formally defined as

ei = ‖R−Ti‖ sin(β̂i − βi)ai,

where ‖R−Ti‖ is the distance between the target and anchor position vectors, β̂i − βi is the

Gaussian bearing noise with zero mean and variance σ2
i , and ai is the unit vector orthogonal to v̂i.

The position of the target can be represented as R = Ti + v̂i + ei. To remove v̂i, we multiply

with the transpose of ai, resulting in

ai
TR = ai

TTi + ηi,

where ηi = ‖R−Ti‖ sin(β̂i − βi). Considering all anchors (i = 1, · · · , N), we have a system of

equations that take the form

AR = b + η

where A = [a1
T,a2

T, · · · ,aNT]
T

and b = [a1
TT1,a2

TT2, · · · ,aNTTN ]
T

. A least squares solution

for estimating R is given by

R̂ = (ATA)−1ATb

where R̂ is the position estimate returned by the triangulation using noisy bearing measurements

from N anchors.
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Error Analysis

In this section, we present an error analysis of our bearing and position estimation techniques using

TripLoc. It is important to note that, although we use phase differences as input to our bearing

estimation algorithm, the algorithm is generalizable to small-aperture sensor arrays that can derive

distance differences using any means. For instance, RF ultra wide band antenna arrays, acoustic or

ultrasonic sensors, and other types of arrays that can yield time-difference-of-arrival measurements

from (sufficiently) distant sources fall into this category. Therefore, in this section, we assume the

inputs to be distance differences. Notice that the distance differences are linearly related to RIM

measurements (see Equation (27)), and therefore the error sensitivity results presented below remain

valid. In the generalized case, the same applies to TDOA measurements, from which the distance

differences can be computed via multiplication of the respective signal propagation speed (speed of

sound for acoustic, speed of light for RF).

Bearing Estimation Error Analysis

Typically, bearings are computed from distance differences by solving a nonlinear set of equations

using iterative techniques. Such techniques are prohibitive on low-end microprocessors due to their

computational cost. We make a set of assumptions that allows us to compute bearing estimates in

a reasonably simple way. While our bearing estimation technique is computationally less expensive

than traditional nonlinear optimization techniques, our simplifying assumptions introduce estimation

errors, which we identify below.

• Measurement noise. The distance differences observed by the receiver nodes contain mea-

surement noise. The measurement noise can be attributed to, for instance, non-ideal signal

propagation, noise from the electrical circuitry of the receiver, sampling error and quantization

error of the analog-to-digital converter.

• Asymptote approximation. For a pair of transmitters, we approximate the bearing of the

receiver with the angles of the asymptotes of the hyperbola. This is a good approximation if

the receiver is sufficiently far from the transmitters, because the hyperbola converges on its

asymptote. However, for close receivers, errors due to this assumption will not be negligible.

• Translation of bearing candidates. At least two transmitter pairs are required to unambiguously

compute the bearing because, for just one transmitter pair, the angles of both asymptotes are

possible solutions. We refer to the two solutions as bearing candidates. Since, for a transmitter
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pair, we compute the bearing candidates with respect to the midpoint of the segment defined

by the two antennas, fusing bearing candidates from two different transmitter pairs is not

possible without knowing the distance of the receiver. We use the far-field assumption (i.e.,

that the receiver is infinitely far from the transmitter array) to carry out the disambiguation

and fusion of bearings, introducing an error this way.

We intentionally omit the analysis of array position and orientation errors and instead make the

following assumptions:

• Antenna configuration is known. The transmitter locations are assumed to be given. It is

assumed that the transmitter nodes are fabricated with a prescribed antenna separation.

• Relative bearings. We assume that the computed bearings are given in the local coordinate

system of the array. Hence, the location and orientation errors of the array are not considered

in the error analysis of the bearing estimation.

We first analyze the sensitivity of the bearing estimates to noise in the distance difference inputs.

Second, we analytically derive the errors related to the asymptote approximation and to the trans-

lation of bearing candidates. These errors depend on the bearing and distance of the target receiver,

relative to the transmitter array. Finally, we provide an analysis of the total bearing estimation

error resulting from both noise in the inputs and the errors due to the asymptote approximation

and the translation of bearing candidates.

Sensitivity of bearing to measurement noise.

A distance difference from a pair of transmitters in the array constrains the location of the receiver

to one arm of a hyperbola, the foci of which are the positions of the two transmitters. For the

sake of simplicity, let us assume that the two transmitters M and A1 are located at (c, 0) and

(−c, 0), respectively (see Figure 39). If the measured distance difference is positive, the receiver is

constrained to the right arm of the hyperbola, while if the distance difference is negative, the receiver

is located on the left arm. We approximate the bearing of the receiver using the asymptote angles

as follows:

β̂ =


±tan−1

(√
c2−a2
a

)
if a > 0

±π2 if a = 0

π ∓ tan−1
(√

c2−a2
a

)
if a < 0

(31)
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We analyze the sensitivity of the bearing estimates β̂ to noise in the distance difference by

taking the partial derivative of Equation (31) with respect to the distance difference. To see what

amplification effect an error in a given distance difference d produces on the bearing estimate, we

need to evaluate the partial derivative at d.

Figure 43a shows the relation between the measured distance difference d and the bearing candi-

dates β̂ when the antenna separation is half the wavelength (λ2 ). Notice the ambiguity of the bearing

candidates. Figure 43b plots δβ̂
δd for each solution of β̂. This figure shows that when the absolute

value of the measured distance difference is close to the antenna separation, the computed bearing

candidates are very sensitive to measurement noise. For instance, if the distance difference is 80% of

the antenna separation, an infinitesimally small error in the measurement will be amplified ten-fold

in the bearing estimate.
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Figure 43: (a) Relationship between measured distance difference and computed bearing. (b) Sen-
sitivity of the computed bearing to measurement noise.

Asymptote approximation.

The error of approximating a hyperbola with its asymptote is the difference between the approxi-

mated bearing β̂ and the actual bearing β of the receiver. Assuming that the receiver R is located

at (u, v), the actual bearing will be β = tan−1( vu ). Hence, the error ε introduced by the asymptote

assumption is

ε = β̂ − β =


±tan−1

(
v
u

)
∓ tan−1

(√
c2−a2
a

)
if a > 0

0 if a = 0

∓tan−1
(
v
u

)
± tan−1

(√
c2−a2
a

)
if a < 0

(32)

81



Figure 44a shows the error introduced by the asymptote approximation when the receiver is

located respectively one, two, and three times the antenna distance away from the midpoint of the

segment connecting the two antennas. As expected, the error of the approximation decreases as the

distance of the receiver from the transmitter array increases, that is, as the hyperbola converges on

its asymptote. As we can see, the maximum error introduced by the asymptote assumption is less

than 0.6◦, as little as three antenna distances away.

Translation of bearing candidates.

For a pair of transmitter antennas, it is not possible to unambiguously approximate the bearing of the

asymptote. Because the hyperbola arm has two asymptotes, the angle of either one can be the correct

bearing estimate. Hence, we need two transmitter antenna pairs for disambiguation. Let us treat

the bearing candidates (computed from the t-ranges of both transmitter antenna pairs) as vectors of

unit length, with bases at the center of the hyperbolas, and whose angles are the computed bearing

candidates. Since these vectors are given in the coordinate system of the respective hyperbolas,

we need to transform them to the coordinate system of the array. This transformation includes a

translation and a rotation. Then, we translate each vector such that its base is at the origin. Clearly,

the bearing vector translated this way will not point directly toward the target receiver anymore,

but if the receiver is sufficiently far from the transmitter array, the introduced angular error will be

small. Finally, we disambiguate the bearing candidates by finding two that have approximately the

same value.

Let us now express the angular error caused by the translation of bearing candidates. We assume

that the transmitter is a uniform circular array of three antennas, with pairwise antenna distance

of λ
2 . The coordinate system of the array is set up such that the midpoint of the array is at the

origin, and antenna M lies on the positive side of the x-axis. Let us consider only the correct

bearing candidate (the other will be discarded later) for transmitter pair M and A1. Furthermore,

let us assume for now that the bearing candidate has no error. The difference between the actual

bearing of the target receiver and the angle of the bearing candidate translated to the origin gives

the angular error of the far-field assumption.

Figure 44b shows the error introduced by the far-field assumption when the receiver is located

respectively one, two, and three times the antenna distance away from the midpoint of the segment

connecting the two antennas. As we can see, as few as three antenna distances away, the maximum

error introduced by the far-field assumption is less than 5◦. In this particular antenna arrangement,

the maximum errors are at 15◦ and 225◦, respectively.
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Figure 44: Error in bearing (in degrees) caused by (a) the assumption that the receiver lies on the
asymptote, and (b) the assumption that the bearing from the midpoint of the segment connecting
the two antennas equals the bearing from the origin of the array coordinate system.

Compound bearing estimation error.

Since one transmitter pair reports two bearing candidates, at least two transmitter pairs are required

to resolve this ambiguity. For the sake of simplicity, let us assume that we have two transmitter

pairs. Clearly, there must be one bearing candidate for each transmitter pair that is close to the true

bearing. Except for some degenerate cases, the other two bearing candidates will be significantly

different than the true bearing, and will not be close to each other (see Figure 40). Therefore, in order

to disambiguate between the correct and incorrect bearing candidates, we take all possible pairs of

bearing candidates, one from the first transmitter pair and the other from the second transmitter

pair, and find the pair with the least pairwise angular difference. The reported bearing estimate is

computed as the average of the two closest bearing candidates.

Figure 45 shows the bearing estimation errors considering the above three types of error sources,

averaged over 500 simulation rounds. We added a Gaussian noise to the distance differences, with

zero mean and standard deviation set to 5% of the antenna distance. The plot suggests that the

expected bearing estimation errors are below 5◦, and peak around 30◦, 150◦, 240◦ and 330◦, exactly

where the individual transmitter pairs exhibit high error sensitivity.
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Figure 45: Absolute error of bearing estimation (in degrees) caused by noisy distance differences,
averaged over 500 simulation rounds. The standard deviation of the distance difference errors is 5%
of the antenna distance.

Position Estimation Error Analysis

Our localization technique relies on triangulation to compute the position of the receiver nodes.

Triangulation is a well studied localization method [84], [67], [85], [135], therefore we omit a detailed

evaluation and refer the reader to the above references. Instead, we only present simulation results

that demonstrate the effects of error from different sources. The simulation results will also serve as

a reference to evaluate our experimental results.

We consider three different sources of error: position error of the arrays, orientation error of the

arrays, and bearing estimation error.

Position error of the arrays

For simplicity, let us assume that we have two arrays T1 and T2, located at (0, 0) and (u, 0), respec-

tively. We model the error of array positioning by varying u around a nominal value of 20 meters.

Note that we can omit analysis of the effect of varying the y-coordinate of T2, since an error in both

coordinates of T2 can be modeled by an error in the x-coordinate and an orientation error of T1.

Figure 46 shows the localization error caused by error in the x-coordinate of array T2, while all

other sources of error are eliminated. As we can see, the maximum errors in the 20m by 20m sensing

region are approximately 0.15m, 0.3m, and 0.5m for array position errors of 0.1m, 0.2m, and 0.3m,

respectively.

84



0.05

0.1

0.1

0.1

0.1

0 5 10 15 20

0

5

10

15

20

T
1

T
2

(a)

0.05

0.1

0.15

0.15

5

0.2

0.2

0.2

0.25

0 5 10 15 20

0

5

10

15

20

T
1

T
2

(b)

0.05 0.1

0.15
0.2

0.2

0.2

0.25

0.25
0.3

0.3

0.3

0.3

0
0.35

0.4

0 5 10 15 20

0

5

10

15

20

T
1

T
2

(c)

Figure 46: Location error (in meters) caused by (a) 0.1 m, (b) 0.2 m and (c) 0.3 m error in the x
coordinate of array T2, respectively.
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Figure 47: Location error (in meters) caused by (a) 1◦, (b) 4◦, and (c) 8◦ errors in the orientation
of array T2, respectively.

Orientation error of the arrays

To simulate the effects of orientation error, we vary the orientation of array T2 around its nominal

value. This is simulated by adding a constant to the bearings reported from T2.

Figure 47 presents the localization error due to 1, 4 and 8 degrees of orientation error of T2,

eliminating all other error factors. As expected, if the receiver is close to the line defined by the two

arrays, even a small orientation error will cause a considerable localization error. This is because

the lines defined by the bearings intersect at an angle close to 180 degrees, and even a small error

in the angles causes a considerable relocation of the intersection. The simulation results show that

this particular configuration is very sensitive to orientation errors: with an orientation error of 1◦,

we see 0.5m localization errors in the sensing region. With an orientation error of 4◦, the expected

errors are close to 3m, while with 8◦ orientation error, the localization errors become unacceptably

large in most of parts of the sensing region.
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Figure 48: Standard deviation of location error (in meters) caused by bearing noise with zero mean
and standard deviation (a) σ = 4, (b) σ = 5 and (c) σ = 6 degrees, respectively.

Bearing estimation error

We now present simulation results to characterize the effect of bearing estimation errors on the

computed locations. We assume that the location and the orientation of two antenna arrays are

known. Furthermore, we assume that the bearing estimates have additive white noise. We model

the noise with a Gaussian random variable with zero mean and a known standard deviation σ. It is

assumed that the noise in the bearings from arrays T1 and T2 are uncorrelated.

Through 100 simulation rounds, we compute the standard deviation of localization errors for all

points on a high-resolution grid covering the entire sensing region. Figure 48 shows the simulation

results for bearing errors with standard deviation σ = 4◦, σ = 5◦ and σ = 6◦, respectively. The

results suggest that standard deviation of the position errors is high when the receiver is close to the

line connecting the two arrays, and increases towards the edge of the sensing region. The central

part of the sensing region gives the lowest error variance. As we increase the standard deviation

of the bearing error, the standard deviation of the location error also increases. As the standard

deviation of the bearing errors increases, localization precision degrades. With 6◦ standard deviation

of bearings, only the central part of the sensing region offers less than 1.5m location error variance.

Implementation

Our system is implemented on Crossbow ExScal motes [30], which use the Texas Instruments CC1000

radio chip [96], and transmit in the 433 MHz range. Three XSMs form a TripLoc array. Because

the two transmitting antennas are so close to each other, they will suffer from parasitic effects [139].

To minimize this negative interference, we place the nodes in a mutually orthogonal configuration.

The nodes are elevated approximately 1.5 meters to reduce ground-based reflections. The TripLoc

antenna array is pictured in Figure 37.
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All nodes in our system execute the same distributed application, coded in nesC [131], and run

the TinyOS operating system [128]. All operations run locally, and there is no offline or PC-based

processing. The entire application requires 3 kB of RAM and 57 kB of program memory (ROM).

Antenna Separation

The antenna separation of the TripLoc array is 35.35 cm. In order to avoid the modulo 2π phase

ambiguity, we were required to transmit a signal with wavelength greater than 70.7 cm, (i.e., a

frequency less than 424 MHz). This was possible, as we observed reliable CC1000 transmissions as

low as 405 MHz. Ultimately, we chose to transmit at a carrier frequency of 409 MHz, corresponding

to a wavelength of 73 cm.

Initialization

Before starting the localization process, system initialization is required.

Scheduling

First, we must create a schedule of the order that array anchors perform their RIMs. This schedule

is broadcast to all anchors in the sensing region. During run-time, the anchors keep track of who

is currently performing the RIM. The next anchor in the schedule will then know to begin its RIM

when the previous one ends.

Tuning

One of the issues that arises when using the CC1000 is that the true carrier frequency can differ

from that of the desired frequency by up to 2 kHz. In order to account for this, we must tune the

radios by having the master and assistant transmit at the intended frequencies, while a third node

monitors the signal. The master then changes the frequency in small steps. The receiver observes

the resulting beat frequency, and when it matches the desired one, informs the master. From this

point on, the master transmits at this new frequency, in order to maintain a consistent interference

signal.

Calibration

Finally, we note that it is difficult to fix exact array orientations. If the array is not level, or is rotated

slightly, the shape of the resulting hyperboloid will degrade the localization result. An easy way
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around this is to place one or more sensor nodes at known positions and run the bearing estimation

algorithm. Because all positions are known, bearings between the sensor nodes and arrays are also

known. The difference between the actual bearings and the computed bearings indicate the true

orientation of the arrays. By using this simple, yet effective technique, we saw a decrease in bearing

error by 56%.

Radio Interferometric Measurements

A RIM consists of several tasks, executed sequentially according to a strict schedule. In order to

transmit or receive the RF signal at the desired frequency, the radio must be acquired from the

standard MAC layer. Once the radio is acquired, nodes are unable to use their radios for standard

message passing, so each node participating in the RIM executes each task in lockstep. Therefore,

before acquiring the radio from the MAC layer, the first step is to synchronize the participating

nodes.

Time Synchronization

Because phase difference is used to determine bearing, each node must measure the signal phase

at the same time instant. This requires a synchronization protocol with accuracy on the order of

microseconds or better. To accomplish this, we use a SyncEvent [52], the same technique employed

by RIPS and other radio interferometric based ranging methods. The SyncEvent is a message,

broadcast by the master transmitter, that contains a time in the future to start the RIM. The time

is specified according to the local clock of the master. The clock offset between the sender and

receiver of this message is determined as follows. The sender inserts a timestamp at the end of

the message after the message has already begun transmission. On the receiver side, a timestamp

is taken upon message reception, and the difference between these two timestamps estimate the

clock offset between the two nodes. The propagation time of the message through air is negligible.

The accuracy of the SyncEvent was reported to be 1.4 µs. Clock skew is not an issue here because

synchronization is performed at the beginning of the RIM, and relative clock rate does not noticeably

change in the time it takes to perform the RIM.
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Acquiring the Radio

The first task each node (transmitter and receiver) must perform after synchronization is acquir-

ing the radio from the MAC layer. This involves switching radio drivers to enable the transmis-

sion/reception of a pure sine wave at the desired frequency, a feature the standard radio driver does

not support.

Radio Calibration

Once the radio has been acquired, we must calibrate it for transmission at the desired frequency.

To do this, we use previous calibration data, which avoids the time-consuming calibration step that

automatically occurs in the restore task.

Signal Transmission / Reception

In order to determine the signal phase, we must sample enough RSSI values to reconstruct the

signal. This requires a transmission/reception time that is long enough to sample about six periods,

from which we can use filtering techniques to obtain a fairly smooth sinusoid. As each RSSI value

is obtained, it is inserted into a 256-byte buffer. At the end of the sampling period, we traverse the

buffer, keeping track of the minimum and maximum values, from which we can determine the signal

amplitude and frequency. Once these signal characteristics are known, we can determine the phase

of the signal at the specified time instant.

Restoring the Radio

Once the transmission is complete, the standard radio must be restored to its original state in order

to exchange the phase data between nodes.

Bearing Approximation and Triangulation

After each array performs its RIMs, the assistant nodes broadcast their observed phase data, which

are received by the target receiver nodes. The phase data packets are small, only 12 bytes, five of

which comprise the standard active message header, two for the assistant ID, one for the sequence

number, and four bytes for the measured phase. For redundancy, the data packets are broadcast

three times; however, any messages that arrive after the communication deadline of 250 ms will be

discarded. The communication deadline signals the start of the localization process, and incoming

data after the algorithm is underway will cause unexpected errors. The localization method per-

89



forms both bearing approximation and triangulation and is optimized for memory and speed. The

localization result is sent to a basestation for logging; however, for mote applications that require

the position updates, no routing is required, and the position estimate is readily available.

Latency Analysis

Because we would like to use TripLoc to localize mobile sensors in addition to stationary nodes, each

array must perform its RIMs as fast as possible so that the mobile sensor has not had a chance to

significantly change its position. In order to keep the localization latency to a minimum, we provide

an analysis of the different component execution times.

Table 10 lists the execution deadlines of the tasks presented above. These deadlines were chosen to

give each task enough time to complete, assuming a reasonable amount of jitter, and were determined

experimentally. Each array performs two RIMs, one for each master-assistant pair. For each array,

only one synchronization message is broadcast at the beginning of the first RIM. When a RIM

completes, a measurementEnded() event is triggered on each participating node. This includes nodes

belonging to other arrays, even if they took no part in the phase measurement. The event enables the

next array to begin its RIM without delay. The receiver nodes store their phase measurements for

each array until all arrays have finished their RIMs. After all arrays have finished, the participating

assistants broadcast their phase measurements, and the receiver nodes calculate their bearings to

each array. We allow 250 ms for sending phase measurements. Localization takes no longer than 6.5

ms, after which the first array begins its next round of RIMs.

Task Latency (ms)

Synchronize 163
Acquire 5.4
Calibrate 1.08
Transmit / Receive 63.2
Restore 49.91
Report phase 250
Localize 6.5

Table 10: Latency of localization tasks.

Figure 49 is a sequence diagram of these events using a setup of two arrays and a single receiver

node. Because the target nodes act as receivers, no additional latency is incurred by introducing

more to the sensing region. Each array sends one synchronization message and performs two RIMs,

for a total time of 402.18 ms. After all arrays have performed their RIMs, an additional 256.5 ms

is required for communication and localization. Therefore, localization using three arrays will take
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1.46 seconds, and 1.86 seconds when using four arrays. It should be noted that this latency can be

further decreased by removing subsequent synchronization messages after the first one. Because a

round of RIMs takes a relatively short time, clocks will not experience a significant amount of drift.

In addition, the time alloted to report phases is much greater than is actually needed, and can be

shortened, if necessary. We chose to set it longer to ensure we received all measurement data for

analysis and debugging purposes. From this latency analysis, we see that a sufficient number of

arrays can perform RIMs to enable a receiver node to determine its position in under two seconds.
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Figure 49: Sequence diagram of a RIM schedule with two arrays (dotted boxes) and a receiver node
(R).

Experimental Evaluation

To evaluate the accuracy of TripLoc, we performed three experiments. The first two experiments

measure the bearing accuracy of the system, and the third experiment measures the localization

accuracy.

Bearing Accuracy

For Experiment 1, we measure the bearing accuracy of six receiver nodes, which are evenly spaced

around the array every 60◦ at a distance of ten meters from the array center. This experiment

demonstrates how the bearing error changes with respect to array orientation. For Experiment 2, we

measure the bearing accuracy of 14 receiver nodes from three arrays surrounding the sensing region

in an outdoor, low-multipath environment. This experiment is more representative of a real-world

deployment with multiple anchors. Figure 50 illustrates our setup for both of these experiments.
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Figure 50: Experimental setup for bearing accuracy of TripLoc. (a) Experiment 1. Bearing accuracy
of one array. Six receiver nodes (R1 . . . R6) are placed 10 meters from array (A), with angular
separation of 60◦. (b) Experiment 2. Three arrays (A1 . . . A3) surround the 20 x 20 m sensing region
containing 14 target receiver nodes (R1 . . . R14).

For Experiment 1, we perform 50 bearing estimates for each node surrounding the array. The

average bearing errors are displayed in Figure 51a. For Experiment 2, we perform approximately 35

bearing estimates from each anchor to all target nodes, resulting in a total of 105 estimates per target

and 1470 estimates total. Figure 51a shows the average error for each bearing from Experiment 1.

The distribution of bearing estimate errors from Experiment 2 are shown in Figure 51b. The average

bearing estimation error is 3.2◦ overall, with a 6.4◦ accuracy at the 90th percentile. The errors from

both experiments are consistent with our bearing error analysis, above.
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Figure 51: Experimental results. (a) Experiment 1 average bearing error with respect to array
orientation (sample size of 50). (b) Experiment 2 bearing error distribution (sample size of 1470).
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Localization Accuracy

For Experiment 3, we place four TripLoc array anchors at the corners of a 20 x 20 m sensing region

containing 16 target receiver nodes. Each target node periodically estimates its position using the

bearing estimation and triangulation techniques presented above. Figure 52 illustrates our setup for

this experiment.
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Figure 52: Experimental setup for localization accuracy of TripLoc (Experiment 3). Four arrays
(A1 . . . A4) surround the 20 x 20 m sensing region containing 16 target receiver nodes (R1 . . . R16).

For Experiment 3, we perform 50 position estimates for each target node. Figure 53 shows the

average position estimate for each target relative to its actual position. The distribution of position

estimate errors are shown in Figure 54. The average overall position error is 1.13 m.

Note that, for the most part, position accuracy tends to worsen as the target node position

approaches the perimeter of the sensing region. In this setup, the perimeter is where the bearings

from at least one array are particularly sensitive to estimation error. If we only focus on the node

locations in the center of the sensing region (at least 2.5 meters from the perimeter), the average

position error drops to 0.62 meters. We therefore suggest placing the TripLoc anchors outside of the

sensing region for the best overall accuracy.
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connect the estimated position of a target node with its actual location.

Conclusion

In this chapter, we present a method for rapid distributed bearing estimation and localization in

WSNs. The array anchor in our system consists of three nodes, two of which transmit at frequencies

that interfere to create a low-frequency beat signal. The phase of this signal is measured by the third

node in the array, as well as by multiple target nodes at unknown positions. The phase difference

defines a hyperbola, and bearing can be approximated by calculating the angle of the asymptote.

Our experimental results show that this technique has an average bearing estimation accuracy of

3.2◦, average position accuracy of 0.62 m, and measurements can be taken in approximately 1.5 sec.

Our system is designed to overcome several challenges in WSN AOA determination. The array

prototype is easily constructed by fixing three motes together with antennas at orthogonal angles.

It is comprised entirely of COTS sensor nodes, and no additional hardware is required because

RIM-based ranging only requires use of the radio. Unlike other radio interferometric techniques,

our system avoids the modulo 2π ambiguity, and therefore the need to perform RIMs on multiple

channels, by separating the two transmitting antennas less than half the wavelength of the carrier

frequency. Similarly, by constraining the location of one of the RIM receivers to the array, it becomes
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Figure 54: Experiment 3 position error distribution (sample size of 912).

possible to approximate the bearing of the other receiver without prolonged computation or having

to rely on a base station for processing. Our experimental results demonstrate that the accuracy of

our prototype implementation is on par with other state-of-the-art AOA techniques.
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CHAPTER VII

MOBILE SENSOR NAVIGATION USING TRIPLOC

Introduction

In this chapter, we describe a navigation system called TripNav that uses TripLoc (presented in

Chapter VI) to obtain position estimates. These estimates enable the mobile sensor to make the

proper course corrections in order to arrive at a goal position. Typically, autonomous navigation is

performed by robots that have cameras, laser rangefinders, and sonar sensors to collect range and

bearing information that can be used to calculate position or angular separation between landmarks.

However, these sensors are large, expensive, have considerable power requirements, and/or use a

powerful computing platform to analyze sensor data. In order to implement angle-based navigation

on a network of resource-constrained devices, we must use methods that are fast, accurate, and do

not require a substantial amount of system resources.

We have developed a waypoint navigation system, in which a mobile sensor follows a path by

navigating between position coordinates. As described in Chapter II, way-finding represents a major

category of navigational behavior. Waypoint navigation scenarios could include automated transport

routes and sentries that patrol a path along the perimeter of a secure area. For our research, the

mobile sensor is provided with a target speed and a set of waypoints, and is instructed to pass by

each waypoint in the order they are given. TripLoc anchors are used for localization because they

can rapidly provide accurate position estimates and do not require additional hardware support.

However, TripLoc does not enable the mobile sensor to determine its own orientation. To handle

this, we employ a digital compass, which provides heading estimates, from which we can calculate

the heading error of the mobile sensor with respect to the desired trajectory. A simple controller is

then used to derive the necessary wheel speeds for maintaining the correct heading.

In Chapter IV, we presented another waypoint navigation system for MWSNs called dNav.

Although both systems are RF-based and designed for resource-constrained mobile sensors, there are

some fundamental differences between the two. For instance, dNav estimates mobile sensor position

and velocity by measuring the Doppler shift in frequency of the radio interferometric beat signal,

whereas TripNav estimates only position by measuring signal phase. As a simple rule of thumb, the

frequency of a signal in the 433 MHz range will undergo a Doppler shift of approximately 1 Hz for

every 1 m/s velocity difference between transmitter and receiver. When dealing with slow moving
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mobile sensors, the Doppler shift can potentially be drowned out by measurement noise. In fact,

we found that when moving less than 0.5 m/s, we could not reliably determine position or velocity

based on Doppler shifts. Another issue with dNav is that it uses an EKF for estimating position

and velocity in the presence of measurement noise. Although the filter provides accurate estimates,

it consumes a substantial amount of memory, and we were required to implement it on a separate

mote. TripNav is unable to directly estimate speed or heading; however, it is able to run on a single

mote. Furthermore, it can still provide accurate navigation, even without the use of a filter.

The contributions of this work are as follows:

1. We describe a lightweight waypoint navigation system for resource-constrained mobile wireless

sensor networks.

2. We perform error and timing analyses that show TripNav performs reliably.

3. We demonstrate that TripLoc is indeed suitable for mobile sensor navigation.

4. Our experimental results show that the navigation technique works reliably and has low tra-

jectory error.

System Overview

Our waypoint navigation system consists of TripLoc infrastructure nodes and a mobile sensor that

traverses a region in order to perform some task. In order for a mobile node to travel between

waypoints, it is necessary to know the node’s current position. By approximating the bearing

of the mobile node from a sufficient number of landmarks, node position can be estimated using

triangulation [133]. Figure 55 illustrates a simple waypoint navigation scenario.

1

23

4

Figure 55: Waypoint Navigation. A mobile entity traverses the sensing region by navigating between
position coordinates.

The waypoint navigation system works as follows. A mobile sensor traverses the sensing region

by moving from waypoint to waypoint. The waypoint coordinates are stored in the mote’s memory.
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The mobile sensor observes the phase of interference signals transmitted sequentially by anchor

nodes at known positions within the sensing region. After observing a sufficient number of these

measurements, the mobile sensor estimates its current position via triangulation. These position

estimates are used to determine if the mobile node has reached the next waypoint. Heading error

is determined using an onboard digital compass. The heading error is fed into a controller, which

updates the wheel angular velocities and keeps the mobile sensor on the correct trajectory to intercept

the waypoint. Figure 56 is a diagram of the control loop. We describe each step of this process

below.

Anchor Nodes

Digital Compass

Mobile Platform
Mobile Sensor

Controller

TripLocNavigation

iRobot Create

Honeywell HMR3300

Crossbow XSM motes

Crossbow XSM mote

Mobile Sensor

Stationary 
Infrastructure

Figure 56: Control loop for waypoint navigation.

Mobile Sensor Kinematics

Similar to dNav (see Chapter IV), we use the following equations to describe the kinematic model

of our two-wheeled mobile platform with differential steering:

ẋ =
r(ωr + ωl)

2
cosφ (33)

ẏ =
r(ωr + ωl)

2
sinφ (34)

φ̇ =
r(ωr − ωl)

2b
(35)

where x and y constitute the mobile node’s position, φ is the heading, r is the wheel radius, b is the

distance between the hub center of the driving wheel and mobile platform axis of symmetry, and ωr

and ωl are the right and left wheel angular velocities, respectively. The speed of the mobile sensor

is the magnitude of the velocity, and in terms of angular velocity is represented as |v| = r(ωr+ωl)
2 .
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Position and Heading Estimation

In order for a mobile node to travel between arbitrary waypoints, it is necessary to know its current

position and heading. Using TripLoc, a node can determine its position with as little as two anchor

arrays, the minimum required for triangulation. As presented in Chapter VI, TripLoc was shown to

have an average position error of 0.62 meters.

Although TripLoc provides accurate localization, it is unable to estimate orientation. Therefore,

to obtain heading, we use an onboard digital compass, which has an accuracy of approximately 1◦.

Waypoint Navigation

The mobile node needs to follow a trajectory (reference heading) that will lead it to the next

waypoint. The bearing from the node’s current position to the waypoint is one such trajectory.

However, localization error can cause the trajectory to be quite inaccurate, especially when the

mobile node is close to the waypoint. Instead, we define the reference heading as the bearing from

the previous waypoint (or the initial position estimate of the mobile node) to the next waypoint:

φRef =


tan−1

(
wyi
−ŷ

wxi
−x̂

)
if i = 1

tan−1
(
wyi
−wyi−1

wxi
−wxi−1

)
if i > 1

where wxi
and wyi are the coordinates of waypoint i and x̂ and ŷ are the estimated position of the

mobile node. Initially, φRef is computed based on the position of the mobile node and the first

waypoint. After the mobile node has reached the first waypoint, φRef is calculated once for each

waypoint i at the time waypoint i− 1 is reached.

Heading error is then determined by subtracting the mobile node’s heading estimate, φ̂, from the

reference heading, φRef :

φErr = φRef − φ̂. (36)

99



Mobile Sensor Control

To arrive at the angular velocities that will keep the mobile sensor on the reference trajectory, we

use a PI controller that takes the heading error φErr as input. Because the heading wraps to 0 at

2π, we shift the heading error to fall between −π and π:

φErr =


φErr − 2π if φErr > π

φErr + 2π if φErr < −π

φErr otherwise

The controller then takes the following form:

φ̇ = KpφErr(T ) +KiTe

T∑
t=1

φErr(t) (37)

where Kp and Ki are constant proportional and integral gains, respectively, T is the current sample

number, φErr(t) is the heading error for sample t, and Te is the time elapsed from the previous sam-

ple. The output of the controller, φ̇, is the updated angular velocity of the mobile sensor; however,

the mobile platform is commanded by specifying an angular velocity for each wheel. Consequently,

we convert φ̇ into individual wheel angular velocities, ωl and ωr, as follows:

ωl =
|v| − bφ̇

r
(38)

ωr =
|v|+ bφ̇

r
(39)

where ωr and ωl are the right and left wheel angular velocities, respectively. Here, r and b (defined

above) are system parameters with known values. |v| is an input parameter to this system and does

not change even though the mobile platform may not actually achieve the desired value. This is

because we are only interested in regulating our heading and not our speed.

The effect of the above transformation is that both wheels will be set with an equal desired base

speed. If heading error exists, the controller will minimize it by turning one wheel faster than the

base speed, and the other wheel slower, which will result in the mobile node turning in the correct

direction as it moves forward. This type of controller has low run-time complexity and does not

require a substantial amount of memory.
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Error Analysis

In this section, we analyze the main sources of error in TripNav. We perform the analysis by

generating a simulated setup and observing how the following error sources affect the results. The

simulation engine models the dynamics of the mobile node and computes the ideal bearings from

each TripLoc anchor at each timestep. Triangulation is then performed using the computed bearings.

For the error analysis, Gaussian noise is added to the computed bearings and the position estimates,

as described below for each source of error. In the simulation, we position TripLoc anchors at the

corners of a 20 x 20 meter region. The mobile node follows a path that takes it around a 10 x 10

meter square within the sensing region. The desired speed of the mobile node is fixed first at 100

mm/s and then at 400 mm/s. This setup is identical to our real-world experimental evaluation,

described in detail below and illustrated in Figure 61.

TripLoc Position Error

Although TripLoc position error can reach as high as several meters, it contributes relatively little

to TripNav error. This is because TripLoc position estimates are only used to recognize waypoint

proximity. The rest of the time, the digital compass is used to maintain the desired trajectory. To

analyze the effect of TripLoc accuracy on TripNav, we simulate the system under ideal conditions,

while adding Gaussian noise with zero mean and varying the standard deviation between zero and five

meters. Figure 57 shows the simulated paths of the mobile node with different TripLoc accuracies.

We see from the figure that even with large TripLoc error, the mobile node will still complete the

circuit; however, the path it follows can be offset significantly from the desired path.
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Figure 57: TripNav trajectories due to TripLoc position error when the mobile sensor speed is (a)
100 mm/s, and (b) 400 mm/s.
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Digital Compass Measurement Noise

In order to compute the heading error of the mobile node, its current orientation must be known.

To determine this, we use a digital compass. To understand how noisy compass sensor data affects

navigation, we performed 100 simulated runs under ideal conditions, introducing a Gaussian noise

to the compass heading with zero mean and a standard deviation of 0.5◦, 1◦, 2◦, 3◦, 4◦, and 5◦.

Figure 58 shows the average associated position error for each. From the figure, we see that even

a compass heading error as high as 5◦ does not contribute significantly to the position error. The

digital compass we use in our real-world evaluation (see below) has an accuracy of about 1◦.

0.5 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

Heading Noise (degrees)

P
os

iti
on

 E
rr

or
 (

m
)

(a)

0.5 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

Heading Noise (degrees)

P
os

iti
on

 E
rr

or
 (

m
)

(b)

Figure 58: TripNav average position error due to digital compass sensor noise when the mobile
sensor speed is (a) 100 mm/s, and (b) 400 mm/s.

Latency

Because the mobile node is in motion while running TripLoc, the accuracy of the position estimate

will depend on the speed of the mobile node and the latency of the localization. In TripLoc, bearings

from each anchor are estimated sequentially. Triangulation is then performed to determine position

by finding the intersection of these bearing vectors. However, even if all other sources of error

were absent from this system, these bearing vectors would still not intersect at a common point

because each measurement is made from a slightly different physical location. In addition, once

all measurements have been taken, the mobile node continues to change its location while phase

data is being transmitted from the anchor nodes and the position estimate is computed. Therefore,

the faster the TripNav control loop runs, the more accurate the position estimates will be, because

the mobile node will not have had a chance to move far from the position where the localization

algorithm was initiated.
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To analyze how this affects the accuracy of the TripNav system, we simulate the system under

ideal conditions while varying the number of TripLoc anchors. We performed 100 simulated runs,

and averaged the position error for each localization. Figure 59 shows the average position error

we can expect due to latency when we use two, three, and four TripLoc anchors. From the figure

we can see that the latency incurred by increasing the number of anchors affects TripNav position

accuracy on the order of centimeters.
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Figure 59: TripNav average position error due to latency using 2, 3, and 4 anchors when the mobile
sensor speed is (a) 100 mm/s, and (b) 400 mm/s.

Implementation

Our mobile sensor is comprised of an XSM mote [30] attached to an iRobot Create robot [140], as

pictured in Figure 60. All localization and control operations are performed on the mote, which

communicates with the Create microcontroller over a serial interface. Mobile sensor heading is

determined using a Honeywell HMC3300 digital compass [141]. The Create acts solely as a mobile

platform and does not perform any computation or control independently of the mote. The TripLoc

anchor node implementation is described in Chapter VI.

The Create is a small-profile mobile platform, only 7.65 cm tall. Fixing the XSM mote to

the Create body becomes problematic because the localization transmission signal is influenced by

ground-based reflections. For the TripLoc implementation and experimental evaluation, TripLoc

anchors were elevated approximately 1.5 meters off the ground. Mounting the mote that high on the

Create would cause the mobile platform to tip over. Instead, we built a mount out of lightweight

PVC tubing that places the mote 85 cm off the ground. We determined this height was sufficient to

minimize the effect of ground-based reflections. The mount is fixed to the Create body, and houses

103



XSM mote

Mount

Digital compass

iRobot
Create

Battery

Side view Front view

Figure 60: Our mobile platform. An XSM mote is attached to an iRobot Create via a serial
connection. Although the Create has an onboard control module, it is disabled for our experiments,
and all control operations are performed on the attached mote.

the XSM mote, the digital compass, as well as the connecting cable assembly for communicating

with the Create, and a battery pack.

One of the main implementation challenges for TripNav is designing an accurate rapid localization

system, as well as waypoint navigation logic and a mobile controller that is small enough to fit on

a mote. Our TripNav implementation consumes approximately 3.1 kB RAM (out of an available 4

kB) and 60 kB of programming memory (120 kB available).

Evaluation

Performance Analysis

We placed four TripLoc anchors at the corners of a 20 x 20 meter region. The mobile sensor was

given a series of four waypoint coordinates that instructed it to drive in a square. Once the mobile

sensor reached the last waypoint (i.e., completed the circuit) it was instructed to come to a stop.

Figure 61 illustrates this setup.

There are several tunable parameters for waypoint navigation using TripNav. Unlike dNav,

TripNav only controls the heading of the mobile sensor and not its speed. Therefore an important

system parameter is the target drive speed (the average translational speed of the sensor). The

maximum speed of the Create is 500 mm/s. However, because we modified the Create with a sensor

mount, the increased weight (as well as the terrain) limit the speed to about 450 mm/s. Because the

controller specifies wheel speeds such that one wheel may rotate faster than the target speed and
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Figure 61: Waypoint navigation experimental setup. TripLoc anchors (A1 . . . A4) surround the
sensing region. The mobile sensor (T) is instructed to drive in a square, passing through each
waypoint (W1 . . .W4) before proceeding to the next.

the other slower, we set our maximum target drive speed to be 400 mm/s. For our experiments, we

performed waypoint navigation with target drive speeds of 100 mm/s and 400 mm/s.

Because of localization noise and continuous movement, the mobile sensor will not always be

able to land exactly on the waypoint, therefore, similar to dNav waypoint navigation, we chose

a waypoint range that specifies how close the mobile sensor must be to a waypoint before being

allowed to proceed to the next. For our experiments, we ultimately chose waypoint ranges of two

meters when moving at 100 mm/s and three meters when moving at 400 mm/s. We found that

if we increased the waypoint range beyond these values, the mobile sensor would still complete its

circuit, however, the path it followed had a high average position error. When we decreased the

waypoint range, the mobile sensor would occasionally miss the waypoint, then have to loop around

in an attempt to reach it again.

Finally, to filter out inaccurate position estimates, we use a simple validation gate that approxi-

mates the distance traveled since the last position estimate by multiplying the elapsed time by the

average wheel speed. If the distance difference between the current and previous position estimates

is greater than the estimated travel distance plus a position error constant (to account for position-

ing and drive error), then the current position estimate is discarded. We chose a value of 2.5 meters

for the position error constant.

We performed five waypoint navigation runs for both target drive speeds using TripNav. Fig-

ure 62 shows the average path of the mobile sensor over all runs. Note that the mobile sensor path

does not intersect with the waypoints, and seems to stop short of the final waypoint. This is due
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to the waypoint range setting, where the mobile sensor considers the waypoint reached if it comes

within the specified range. On average, position and heading accuracy with respect to the desired

trajectory was 0.95 m and 4.75◦ when traveling at 100 mm/s and 1.08 m and 5.05◦ when traveling

at 400 mm/s.
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Figure 62: Waypoint navigation average position results when mobile sensor speed is (a) 100 mm/s,
and (b) 400 mm/s. The dotted line represents the desired path. Waypoints are marked W1 . . .W4,
and the the surrounding circles represent the waypoint range of (a) 2 m and (b) 3 m.

Figure 63 displays the outermost and innermost positions along the circuit of the mobile sensor

over all runs. These are not individual paths, but bounds on the mobile sensor’s movement over all

five runs. This shows that one TripNav run does not significantly vary from another.
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Figure 63: Waypoint navigation outermost and innermost path when mobile sensor speed is (a)
100 mm/s, and (b) 400 mm/s. The dotted line represents the desired path. Waypoints are marked
W1 . . .W4, and the the surrounding circles represent the waypoint range of (a) 2 m and (b) 3 m.
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Latency Analysis

Because the mobile sensor is moving while estimating its position, localization must be performed

rapidly, otherwise the mobile node will be in a different location by the time a result is returned.

The speed of the entire localization process depends on the latency of each component within the

TripNav system, and so we provide a timing analysis of those components here. A latency analysis

of the individual TripLoc components is presented in Chapter VI.

Figure 64 shows a sequence diagram for each step in the TripNav control loop, in which two

TripLoc anchors are used. Table 11 lists the average and maximum execution times over 100 itera-

tions for the components pictured in Figure 56. Note that TripNav execution time depends on the

number of participating TripLoc anchors, because bearing to each anchor is estimated sequentially.

A minimum of two anchors is required for triangulation. The accuracy of the localization will im-

prove with the addition of more participating anchors. We therefore provide execution times for

three TripLoc scenarios, in which we vary the number of participating anchor arrays between two

(the minimum required) and four (the number we use in our real-world evaluation).
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Report phase data

RIM

Position estimation
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Figure 64: Sequence diagram of the TripNav control loop in which two TripLoc anchors are used.

Component Average latency (ms) Maximum latency (ms)

Digital compass 49.61 89.48
Waypoint Navigation 0.45 0.52
Controller 0.64 0.68
TripLoc (2 anchors) 888.72 956.22
TripLoc (3 anchors) 1283.81 1334.99
TripLoc (4 anchors) 1667.76 1734.48

Table 11: Latency of TripNav components.
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Note that on average the digital compass takes approximately 50 ms to estimate heading. This

estimation latency is in fact a limitation of the compass hardware, which provides heading estimates

at a rate of approximately 8 Hz, or 125 ms. The 50 ms latency reflects the average time we must

wait for the compass to deliver the next heading estimate. It is also worth noting that for TripLoc,

we reduced the phase data routing time from 250 ms to 125 ms, which explains the slight latency

reduction compared with the data presented in Chapter VI.

Conclusion

In this chapter, we described a method for waypoint navigation using resource-constrained mobile

sensors. We mounted a mote and digital compass to a mobile platform, and used TripLoc as the

underlying localization system. All computation and control operations were performed by the mote,

and no offline or base station processing was required. Using this system, a mobile sensor was able

to navigate a series of four waypoints, completing the circuit with an average trajectory deviation

error of 0.95 m and 4.75◦.

TripLoc is the key enabler of this system, thanks to its low latency, small memory footprint,

and accurate position estimation algorithm. The work presented in this chapter demonstrates that

TripLoc is indeed suitable for mobile sensor navigation. This is significant because TripLoc is one of

the few RF-based distributed localization techniques that is rapid and accurate enough to support

mobile sensor localization.
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CHAPTER VIII

CONCLUSION

Spatio-temporal awareness in mobile wireless sensor networks entails new challenges that result from

integrating resource-constrained wireless sensors onto mobile platforms. The localization methods

and algorithms that provide greater accuracy on larger-footprint mobile entities with fewer resource

limitations are no longer applicable. Similarly, centralized and high-latency localization techniques

for static WSNs are undesirable for the majority of MWSN applications. In this dissertation, we

presented a survey and taxonomy on spatio-temporal coordination for mobile wireless sensor net-

works. This includes integrating wireless sensors onto mobile platforms, time synchronization for

heterogeneous sensor networks, mobile sensor localization, and finally, mobile sensor navigation. We

described the problems we have studied in these areas, which includes HSN time synchronization,

mobile sensor localization and navigation using RF Doppler shifts (dNav), angular separation deter-

mination using RF Doppler shifts and wheel encoder data, a rapid distributed localization service

(TripLoc), and a TripLoc-based waypoint navigation system (TripNav).

One of the biggest challenges we currently face with RF propagation is multipath fading. Outdoor

urban areas and building interiors are both major sources of multipath, and yet these are places

where MWSNs have the greatest utility. At present, our localization techniques will only work

outdoors in a wide-open area. An RF-based localization system that provides accurate results in

high-multipath environments would be a major step forward. This is a future direction for MWSN

localization, and we have already obtained encouraging preliminary results. In [142], we were able to

demonstrate that precise RF indoor 1-dimensional tracking is indeed possible, and we are currently

investigating how we can extend this technique to two and three dimensions. Such fine-grained RF-

based localization would enable mobile sensors to navigate through hallways of burning buildings,

help to evacuate shopping malls in the event of an emergency, and monitor the health of patients in

every room of the house.
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APPENDIX A

LIST OF ACRONYMS

Acronym Meaning Acronym Meaning
A/D Analog to Digital PDA Personal Digital Assistant
ADC Analog to Digital Converter PF Particle Filter
AE Acoustic Emissions PI Proportional-Integral
AOA Angle of Arrival PLL Phase Locked Loop
COTS Commercial Off The Shelf PPM Parts Per Million
CPU Central Processing Unit RAM Random Access Memory
DCO Digitally Controlled RBS Reference Broadcast

Oscillator Synchronization
EKF Extended Kalman Filter RF Radio Frequency
ETA Elapsed Time on Arrival RIM Radio Interferometric

Measurement
FCC Federal Communications RIPS Radio Interferometric

Commission Positioning System
FOA Frequency of Arrival RITS Routing Integrated Time

Synchronization
FTSP Flood Routing Time ROM Read Only Memory

Synchronization
GPIO General Purpose IO RSS Received Signal Strength
GPS Global Positioning RSSI Received Signal Strength

System Indicator
HSN Heterogeneous Sensor SBE Sequential Bayesian

Network Estimation
IR Infrared SLAM Simultaneous Localization

and Mapping
ISM Industrial, Scientific, SLAT Simultaneous Localization

and Medical and Tracking
KF Kalman Filter SMC Sequential Monte Carlo
LOS Line of Sight SPS Samples Per Second
MAC Media Access Control TDOA Time Difference of Arrival
MANET Mobil Ad hoc Network TOA Time of Arrival
ML Maximum Likelihood TPSN Timing Sync Protocol

for Sensor Networks
MLE Maximum Likelihood Estimation TSS Timestamp Synchronization
MWSN Mobile Wireless UART Universal Asynchronous

Sensor Network Receiver Transmitter
NTP Network Time Synchronization UTC Coordinated Universal Time
OS Operating System WiFi Wireless Fidelity
PC Personal Computer WSN Wireless Sensor Network

Table 12: List of acronyms.
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