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Chapter 1

Introduction

The main problem in sampling theory is to reconstruct a function from the values (sam-

ples) on some discrete subset Ω of its domain (Fig. 1.1). This type of inverse problems are

common in many applications such as signal processing, image and audio processing, data

analysis as well as in biology, medicine, geology and other fields [10]. For it to be solvable,

the function to be reconstructed must be known to belong to a certain class of functions.

Moreover, the sampling set Ω must be chosen appropriately.

Figure 1.1: Classical sampling

For example, consider a function f from the so-called Paley – Wiener space PWσ (R),

for some σ > 0 (called the bandwidth), that is, the space of functions whose Fourier trans-

forms vanish outside of the interval [−σ ,σ ]:

PWσ (R) =
{

f ∈ L2(R) : supp( f̂ )⊂ [−σ ,σ ]
}
.

Here, the Fourier transform is defined as

f̂ (ξ ) =
∫
R

f (t)e−2πiξ tdt.
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The Paley – Wiener spaces are often used for modeling analog signals in signal processing.

The reason is that computers can process only those sound frequencies that lie within a

certain range. An important property of the Paley – Wiener spaces is that any function

f ∈ PWσ (R) can be uniquely recovered from its uniform samples on 1
2σ

Z due to Nyquist –

Shannon – Kotelnikov sampling theorem.

Theorem. Any function f ∈ PWσ (R) can be uniquely recovered from its uniform samples

on TZ, for T ≤ 1
2σ

, by the formula

f (t) = ∑
k∈Z

f (kT ) · sinc
(

x− kT
T

)

for sinc(t) = sinπt
πt , where the series converge in L2(R) and uniformly on compact sets.

Claude Shannon, in his paper titled “Communication in the Presence of Noise” [60]

published in 1949, saw a possibility for application of this theorem to signal processing

and communications. The theorem itself was independently proved by several authors,

including, E. T. Whittaker and V. Kotelnikov [66]. In the mathematical and engineering

literature, the theorem can be found under several different names like Nyquist – Shannon

theorem, Shannon – Kotelnikov theorem, Whittaker – Shannon theorem, etc.

Sampling and reconstruction theory is important because it bridges the modern digital

world and the analog world of continuous functions. Many applications of digital signal

processing begin by converting a continuous function to a sequence of real or complex

numbers. This process is called analog-to-digital conversion or sampling. The inverse pro-

cess, converting a sequence of numbers to a continuous function, is called reconstruction.

Since the publication of Shannon’s paper to our times, the field of sampling theory has

expanded and become more mathematical. There are many overlaps with wavelets, splines,

shift-invariant spaces, frame theory, etc. [14, 27, 37, 71]

In many situations of interest, taking samples on an appropriate sampling set Ω is not

always practical or even possible—it can be that measuring devices are too expensive or
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scarce. For example, for functions from PWσ (R), it is well-known that undersampling a

signal in PWσ (R) by a rate T > 1
2σ

(i.e. taking samples on the sparser grid Ω = TZ instead

of 1
2σ

Z) will introduce aliasing: the samples f (Ω) will not give enough data to recover f .

Nevertheless, it often happens that the sparseness of the sampling locations can be

compensated by involving dynamics and sampling the evolved versions of the function. For

example when f is the initial state of a physical process (say, change of temperature or air

pollution), we can sample its values at the same sampling locations as the time progresses,

and try to recover f from the combination of these spatio-temporal samples (Fig. 1.2).

Figure 1.2: The evolution system

This new problem, called dynamical sampling problem, was introduced by A. Aldroubi,

J. Davis and I. Krishtal in [8], motivated by the work of Y. Lu and M. Vetterli in [43, 55].

They assume the process of evolution is given by a discrete-time dynamical system, fn =

An f , where A is a linear operator. Lu and Vetterli studied the space-time sampling for the

functions in the Paley – Wiener space, in the case when the evolution operator is the heat

operator.

The theory developed for the dynamical sampling problem has similarities with the
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wavelet theory [16, 23, 24, 36, 44, 51, 52, 61]. In dynamical sampling, an operator A is

applied iteratively to the function f producing the functions fn = An f . The fn is then,

typically, sampled coarsely at each level n. Thus, f cannot be recovered from samples at

any single time level. But, similarly to the wavelet transform, the combined data at all time

levels is required to reproduce f . However, unlike the wavelet transform, there is a single

operator A instead of two complementary operators L (the low-pass operator) and H (the

high pass operator). Moreover, A is imposed by the constraints of the problem, rather than

designed, as in the case of L and H in wavelet theory. Finally, in dynamical sampling, the

spatial sampling grids are not required to be regular.

In inverse problems, given an operator B that represents a physical process, the goal is to

recover a function f from the observation B f . Deconvolution or deblurring are prototypical

examples. When B is not bounded below, the problem is considered ill-posed (see e.g.,

[47]). The dynamical sampling problem can be viewed as an inverse problem when the

operator B is the result of applying the operators SX0,SX1A,SX2A2, . . . ,SXLAL, where SXl

is the sampling operator at time l on the set Xl , i.e., BX = [SX0,SX1A,SX2A2, . . . ,SXLAL]T .

However, unlike the typical inverse problem, in dynamical sampling the goal is to find

conditions on L, {Xi : i = 0, . . . ,L}, and A such that BX is injective, well-conditioned, etc.

The dynamical sampling problem has connections and applications to other areas of

mathematics, including, C∗-algebras, spectral theory of normal operators, and frame theory

[5, 18, 22, 28, 30, 31, 53, 63].

Dynamical sampling has potential applications in plenacoustic sampling, on-chip sens-

ing, data center temperature sensing, neuron-imaging, and satellite remote sensing, and

more generally to wireless sensor networks (WSN). In wireless sensor networks, measure-

ment devices are distributed to gather information about a physical quantity to be moni-

tored, such as temperature, pressure, or pollution [38, 42, 55, 43, 57]. The goal is to exploit

the evolutionary structure and the placement of sensors to reconstruct an unknown field.

When it is not possible to place sampling devices at the desired locations (e.g. when there
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are not enough devices), then the desired information field can be recovered by placing the

sensors elsewhere and taking advantage of the evolution process to recover the signals at

the relevant locations. Even when the placement of sensors is not constrained, if the cost

of a sensor is expensive relative to the cost of activating the sensor, then the relevant infor-

mation may be recovered with fewer sensors placed judiciously and activated frequently.

Super resolution is another application when an evolutionary process acts on the signal of

interest.

In our recent work, we have taken a more operator-theoretic approach to the dynamical

sampling problem [12, 6]. We assume that the unknown function f is a vector in some

Hilbert space (H ,〈·, ·〉) and A is a bounded linear operator on H . The samples are given

in the form

〈An f ,g〉 for 0≤ n < L(g), g ∈ G (1.1)

where G is a countable (finite or infinite) set of vectors in H , and the function L : G →

{1,2, . . . ,∞} represents the “sampling level” (Fig. 1.3). Then the main problem is to

recover the unknown vector f ∈H from the measurements (1.1).

Note that in this abstract setting we don’t have a notion of domain on which the vectors

are defined as functions so the samples or measurements are modeled as continuous linear

functionals on H and, from Riesz representation theorem, every continuous functional Φ

on Hilbert space H has the form Φ( f ) = 〈 f ,g〉 for every f ∈H and some g ∈H .

Figure 1.3: Spatio-temporal sampling
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It is fundamental in applications that the reconstruction operator R : `2(X)→H given

by R(〈An f ,g〉) = f for all f ∈H , exists and is well-defined [43]. Moreover, it is very

important that the function and data are continuously dependent on each other. This is

because very often, the samples {〈An f ,g〉 : (g,n) ∈ X} are corrupted by “noise” {εg,n :

(g,n) ∈ X}, and we require the reconstruction f̃ = R(〈An f ,g〉)+R(εg,n) to be close to f

when the noise is small. Similarly, the data from two vectors that are “close” should be

close too. In other words, we want R to exist and the operators R,R−1 to be continuous,

which is equivalent to the condition

α‖ f‖2 ≤ ∑
g∈G

∑
0≤n<L(g)

|〈An f ,g〉|2 ≤ β‖ f‖2,

for every f ∈H , where α,β > 0 are absolute constants. In this case, it is said that the

reconstruction is stable.

Using the Hahn-Banach theorem and the relation between an operator and its adjoint,

we make the following observations:

(a) Any f ∈H can be recovered from the samples {〈An f ,g〉}g∈G ,0≤n<L(g) if and only if

the system {(A∗)ng}g∈G ,0≤n<L(g) is complete in H .

(b) Any f ∈H can be recovered from {〈An f ,g〉}g∈G ,0≤n<L(g) in a stable way if and only

if the system {(A∗)ng}g∈G ,0≤n<L(g) is a frame in H .

Because of these equivalences, we drop the ∗ and investigate systems of iterations of the

form {Ang}g∈G ,0≤n<L(g), where A is a bounded operator on the Hilbert space H and G is a

subset of H . The goal is then to find conditions on A, L, and G such that {Ang}g∈G ,0≤n<L(g)

is complete, Bessel, frame, etc.

In Chapter 2, we introduce the main concepts and results used in the dissertation and

provide references.

Chapter 3 offers a general introduction to the classical and dynamical sampling prob-

lems and reviews some of the existing results.
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In Chapter 4, we discuss the iterative systems when the operator is normal. We charac-

terize all countable subsets G ⊂H such that {Ang}g∈G , 0≤n<∞
is complete in H when the

operator A is a normal reductive operator (Theorem 4.1.1). These results are also extended

to the system of vectors {Ang}g∈G , 0≤n<L(g), where L is any suitable function from G to

N∗. However, we also show that the system {Ang}g∈G , 0≤n<∞
always fails to be a basis for

H when A is a normal operator (Corollary 4.2.2). In fact, if the set G ⊂H is finite, and

A is a reductive normal operator, then {Ang}g∈G , 0≤n<L(g) cannot be a basis for H for any

choice of the function L (Corollary 4.2.5). The obstruction to being a basis is the redun-

dancy in the form of non-minimality of the set of vectors {Ang}g∈G , 0≤n<L(g). Two of the

main theorems in Section 4.3 (Theorems 4.3.1 and 4.3.2) can be reformulated as

Theorem. If for some set of vectors G ⊂H , {Ang}g∈G , n≥0 is a complete Bessel system

in H , then ‖A‖ ≤ 1 and, for the projection valued spectral measure EA of A, EA|S1 is

absolutely continuous with respect to the arc length measure (the Lebesgue measure) on

the unit circle S1.

Conversely, if A ∈ B(H ) is a normal operator, ‖A‖ ≤ 1 and EA|S1 is absolutely contin-

uous with respect to the arc length measure on S1, then there exists a countable set G ⊂H

such that {Ang}g∈G , n≥0 is a complete Bessel system.

Theorem. If A is a normal operator and {Ang}g∈G , n≥0 is a frame in H for some countable

set G ⊂H then ‖A‖ ≤ 1 and EA|S1 = 0.

Conversely, if ‖A‖ ≤ 1 and EA|S1 = 0 then there exists a countable set G ⊂H such

that {Ang}g∈G , n≥0 is a Parseval frame for H .

Thus, the system {Ang}g∈G , 0≤n<∞
, (or {Ang}g∈G , 0≤n<L(g)) may be a frame, but cannot

be a basis. However, it is difficult for a system of vectors of the form {Ang}g∈G , 0≤n<∞

to be a frame as the spectrum of A must be very special. When the set G is finite such

frames do exist, as shown by the constructions in [7]. Surprisingly, the difficulty becomes

an obstruction if we normalize the system of iterations to become
{

Ang
‖Ang‖

}
g∈G , n≥0

when

the operator A is self-adjoint as described in Section 4.5 (Theorem 4.5.2).
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In Section 4.6, we apply our results to systems that are generated by the unitary actions

of a discrete group Γ on a set of vectors G ⊂H which is common in many constructions

of wavelets and frames.

In Chapter 5, we present our results for the case of general operators. We show that

{Ang}g∈G , n≥0 being a frame in H implies that (A∗)n f → 0 as n→ ∞ for every f ∈H

(Theorem 5.0.1). Under the additional condition that ‖A‖ ≤ 1, we also prove the inverse

in the following sense: if for every f ∈H , (A∗)n f → 0 as n→ ∞, then we can choose

G ⊆H such that {Ang}g∈G , n≥0 is a Parseval frame (Theorem 5.0.3).

In Chapter 6, we consider the dynamical sampling problem when the unknown initial

function f is modeled as an element of a shift-invariant space. Necessary and sufficient

conditions for stable reconstruction from dynamical samples is found and some special

cases are discussed.
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Chapter 2

Notation and preliminaries

2.1 Systems of vectors in Hilbert space

Let H be a complex Hilbert space where the inner product is denoted by 〈h,g〉 for

h,g ∈H , and let I be a countable (finite or infinite) set. A system of vectors indexed

by a set I is any mapping i 7→ hi from I to H that we denote by {hi}i∈I . In the system of

vectors, compared to a set of vectors, we allow repetitions. Often in the literature the set I is

assumed to have some form of order associated with it because infinite sums can converge

conditionally (i.e. convergence depends on the specific order of the elements in the series),

but for our investigations the order of summation will not affect the sum of series because

frames provide unconditional convergence.

Note that the indexing of the iterative system {Ang}g∈G ,0≤n<L(g), which is one of the

main objects of our research, is given by the set

I = {(g,n) : g ∈ G ,0≤ n < L(g)}.

We denote by `2(I) the set of all c = {ci}i∈I , ci ∈ C, such that

∑
i∈I
|ci|2 = ‖c‖2

`2(I) < ∞.

Definition 2.1.1. Given a system of vectors E = {hi}i∈I in H , we say that

• E is complete if the closure of the linear span of E (denoted by spanE ) is equal to

H .

• E is minimal if, for every hi ∈ E , hi 6∈ span{h j} j∈I, j 6=i.

9



• E is a Riesz system if there exists numbers 0 < α ≤ β such that

α ∑
i∈I
|ci|2 ≤

∥∥∥∥∥∑i∈I
cihi

∥∥∥∥∥
2

≤ β ∑
i∈I
|ci|2,

for every c = {ci}i∈I ∈ `2(I) .

If a Riesz system is complete, we call it a Riesz basis.

• E is a Bessel system if there exists a number β > 0 such that, for every f ∈H ,

∑
i∈I
|〈 f ,hi〉|2 ≤ β‖ f‖2.

• E is a frame in H if there exists numbers 0 < α ≤ β numbers such that, for every

f ∈H ,

α‖ f‖2 ≤∑
i∈I
|〈 f ,hi〉|2 ≤ β‖ f‖2.

If α = β = 1 we say that the system is a Parseval frame.

Some of the relations between these different properties of systems of vectors is given

below [20, 33, 35]:

(a) A Riesz system is minimal.

(b) A system is a Riesz basis if and only if it is a frame and minimal.

(c) In finite-dimensional space, a finite set of vectors is a frame if and only if it is complete.

The notion of frames was introduced by Duffin and Schaffer [25] in the context of non-

harmonic Fourier series as a generalization of the notion of Riesz bases. Later frames found

a wide range of applications in mathematics and engineering.

The three main properties of frames that make them useful in applications are

10



1. Redundancy: many systems of vectors are not minimal, and it is not practical to throw

out some of them to achieve minimality. Moreover, the redundancy can be utilized for

reducing the reconstruction error in the presence of noise in the measurements.

2. Existence of reconstruction formula: it turns out that if the system of vectors {hi}i∈I is

a frame in H , then there exists another system of vectors {ηi}i∈I called the dual frame

of {hi}i∈I such that, for any vector f ∈H ,

f = ∑
i∈I
〈 f ,hi〉ηi.

The dual frame can be computed using the formula ηi = S−1hi where S is the frame

operator defined as

S( f ) = ∑
i∈I
〈 f ,hi〉hi.

There are iterative methods to compute the operator S−1 [35].

For Parseval frames, ηi = hi and we have

f = ∑
i∈I
〈 f ,hi〉hi.

which is called Parseval identity, and it makes Parseval frames a natural generalization

of orthonormal bases.

3. The stability of the coefficients and the reconstruction in the presence of noise: if f is

corrupted by “noise” ε , then, for the coefficients {〈 f̃ ,hi〉}i∈I of f̃ = f + ε , we get

∑
i∈I

∣∣〈 f ,hi〉−〈 f̃ ,hi〉
∣∣2 ≤ β‖ε‖2,

where β is the upper frame bound. Thus a small noise added to the function will result

in a small change in the coefficients. Similarly, if we have noise in the coefficients

c̃i = 〈 f ,hi〉+ εi then, for the noisy reconstruction f̃ = ∑i∈I c̃iηi, from the lower frame

11



bound we get that

‖ f − f̃‖2 ≤ 1
α

∑
i∈I
|εi|2 ,

which means a small error in the coefficients results in a small error in the reconstruc-

tion.

2.2 Shift-invariant spaces

As pointed out in the introduction, the Paley – Wiener spaces PWσ (R) are often used

for modeling analog signals in signal processing. From the mathematical perspective, we

can always assume that σ = 1
2 after scaling. In this case, we use the notation PW (R).

The function

sinc(t) =
sinπt

πt

is called the sinc function.

Theorem 2.2.1. {sinc(t − k)}k∈Z is an orthonormal basis in PW (R), and for any f ∈

PW (R),

f (t) = ∑
k∈Z

f (k)sinc(t− k),

where the convergence is understood in the L2 sense.

One important property of the Paley-Wiener space PW (R) is that it is invariant under

integer shifts, i.e. if f (t) ∈ PW (R) then, for every k ∈ Z, f (t− k) ∈ PW (R). We call the

spaces with this type of property Shift-Invariant Spaces (SIS). Shift invariant spaces are the

typical space of functions considered in sampling theory [10, 13, 67, 62, 64, 46, 72]. Shift

invariant spaces also appear in many other fields of analysis such as Wavelet theory (e.g.

multiresolution analysis), Splines, Gabor analysis, etc.

Let φ ∈ L2(R) and denote by V (φ) the span closure of the system {φ(·− k)}k∈Z of

integer translates of φ . This kind of spaces are often called principal shift-invariant spaces

or singly generated shift-invariant spaces.

12



In this notation, PW (R) =V (sinc); moreover the integer shifts of sinc(t) is an orthonor-

mal basis of PW (R) as we saw above.

The advantage of working with shift-invariant spaces is that, even though V (φ) is a

space of functions defined on R, it has similar properties to `2(Z) and many questions

related to sampling can be reduced to `2(Z). A standard assumption is that any function in

V (φ) is uniquely determined by its values on Z. In particular, the condition

∑
k∈Z

φ̂(ξ + k) 6= 0 a.e.

that will be assumed to hold throughout this dissertation, guarantees this property [13, 68].

Proposition ([17, 35]). Let Φ(ξ ) =∑k∈Z |φ̂(ξ +k)|2, called the periodization of |φ̂ |2. Then

(a) {φ(·− k)}k∈Z is a Riesz basis for V (φ) if and only if there exist 0 < α ≤ β such that

α ≤Φ(ξ )≤ β , a.e. ξ ∈
[
−1

2
,
1
2

]
, (2.1)

(b) {φ(·− k)}k∈Z is a frame in V (φ) if and only if there exist 0 < α ≤ β such that

α ·1supp (Φ)(ξ )≤Φ(ξ )≤ β ·1supp (Φ)(ξ ), a.e. ξ ∈
[
−1

2
,
1
2

]
,

(c) If φ ∈ L1(R)∩L2(R), then {φ(·− k)}k∈Z is a frame if and only if it is a Riesz basis for

V (φ).

To be able to consider the sampling problem, the sampling operator f 7→ { f (k)}k∈Z

should be well-defined. For that reason, we need both local and global control for the

function φ . This can be done by using the Wiener amalgam spaces [10].

Definition 2.2.2. We say that a measurable function f belongs to the Wiener amalgam
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space W (Lp), 1≤ p < ∞, if it satisfies

‖ f‖p
W (Lp)

:= ∑
k∈Z

esssup{| f (t + k)|p : t ∈ [0,1]}< ∞

and, for p = ∞,

‖ f‖W (L∞) := sup
k∈Z
{esssup{| f (t + k)| : t ∈ [0,1]}}< ∞.

For 1≤ p≤ ∞, denote W0(Lp) =W (Lp)∩C(R).

Proposition 2.2.3 ([10]). (a) W0(Lp)⊂ Lp,

(b) if a ∈ Lp and φ ∈W0(L1), then a∗φ ∈W0(Lp),

(c) if φ ∈W0(L1) and {φ(·− k)}k∈Z is a Riesz basis for V (φ), then V (φ)⊂W0(L2).

Moreover, if f ∈V (φ) and

f (t) = ∑
k∈Z

ckφ(t− k)

then ‖ f‖L2 � ‖c‖`2 � ‖ f‖W (L2).

2.3 Operators in Hilbert space

We denote by B(H ) the space of all bounded linear operators mapping the Hilbert

space H to H .

For every operator A ∈ B(H ) there exists another uniquely determined operator A∗ ∈

B(H ), called its adjoint [22], such that

〈A f ,g〉= 〈 f ,A∗g〉

for every f ,g ∈H .

Definition 2.3.1. An operator A ∈ B(H ) is called
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• normal if

AA∗ = A∗A

• self-adjoint if

A = A∗

• unitary if

AA∗ = A∗A = Id

(where Id is the identity operator) or, equivalently, ‖A f‖= ‖ f‖ for every f ∈H .

One of the main tools that we use in this work is the spectral theorem for normal oper-

ators described below.

Let µ be a non-negative regular Borel measure on C with compact support K. Denote

by Nµ the operator

Nµ f (z) = z f (z), z ∈ K

acting on functions f ∈ L2(µ) (i.e. f : C→ C , measurable with
∫
C | f (z)|2dµ(z)< ∞.)

For a Borel non-negative measure µ , we will denote by [µ] the class of Borel measures

that are mutually absolutely continuous with µ .

Theorem 2.3.2 (Spectral theorem). For any normal operator A on H , there are mutually

singular compactly supported non-negative Borel measures µ j, 1 ≤ j ≤ ∞, such that A is

equivalent to the operator

N(∞)
µ∞
⊕Nµ1⊕N(2)

µ2 ⊕·· ·

i.e. there exists a unitary transformation

U : H → (L2(µ∞))
(∞)⊕L2(µ1)⊕ (L2(µ2))

(2)⊕·· ·

such that

UAU−1 = N(∞)
µ∞
⊕Nµ1⊕N(2)

µ2 ⊕·· · . (2.2)

15



Moreover, if M is another normal operator with corresponding measures ν∞,ν1,ν2, . . . then

M is unitarily equivalent to A if and only if [ν j] = [µ j], j = 1, . . . ,∞.

A proof of the theorem can be found in [22] (Ch. IX, Theorem 10.16) and [21] (Theo-

rem 9.14).

Example 1. Let A be the 8×8 diagonal matrix

A =


λ1I2 0 0

0 λ2I3 0

0 0 λ3I3


where λi 6= λ j if i 6= j and I j denotes the j× j identity matrix. For this case, the theorem

above gives: H̃ = (L2(µ2))
(2)⊕ (L2(µ3))

(3), µ2 = δλ1 , µ3 = δλ2 + δλ3 , where δx is the

Dirac measure at x. If g = (g1, . . . ,g8)
T , then Ug = g̃ =

(
g̃ j
)
. In particular, g̃3(λ2) =

g3

g4

g5

, g̃3(λ3) =


g6

g7

g8

 and g̃3(z) =~0 for z 6= λ2,λ3 (in fact for z 6= λ2,λ3, g̃3(z) can

take any value since the measure µ3 is concentrated on {λ2,λ3} ⊂ C). We have

〈U f ,Ug〉 =
∫
C
〈 f̃ (z), g̃(z)〉dµ(z)

=
∫
C
〈 f̃2(z), g̃2(z)〉dµ2(z)+

∫
C
〈 f̃3(z), g̃3(z)〉dµ3(z)

= 〈 f̃2(λ1), g̃2(λ1)〉+ 〈 f̃3(λ2), g̃3(λ2)〉+ 〈 f̃3(λ3), g̃3(λ3)〉

=
8

∑
j=1

f jg j = 〈 f ,g〉.

Since the measures µ j are mutually singular, there are mutually disjoint Borel sets {E j}

such that µ j is concentrated on E j for every 1≤ j ≤ ∞.

We will define the scalar measure µ , (usually called the scalar spectral measure) asso-
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ciated with the normal operator A to be

µ := ∑
1≤ j≤∞

µ j. (2.3)

The Borel function J : C→ N∗∪{0} given by

J(z) =


j, z ∈ E j

0, otherwise
(2.4)

is called multiplicity function of the operator A.

From Theorem 2.3.2, every normal operator is uniquely determined, up to a unitary

equivalence, by the pair ([µ],J).

For j ∈ N, define Ω j to be the set {1, ..., j} and Ω∞ to be the set N. Note that `2(Ω j)∼=

C j, for j ∈N, and `2(Ω∞) = `2(N). For j = 0, we define `2(Ω0) to be the trivial space {0}.

Let W be the Hilbert space

W := (L2(µ∞))
(∞)⊕L2(µ1)⊕ (L2(µ2))

(2)⊕·· ·

associated with the operator A and let U : H →W be the unitary operator given by Theo-

rem 2.3.2. If g ∈H , we will denote by g̃ the image of g under U . Since g̃ ∈W we have

g̃ = (g̃ j) j∈N∗ , where g̃ j is the restriction of g̃ to (L2(µ j))
( j). Thus, for any j ∈ N∗, g̃ j is a

function from C to `2(Ω j) and

∑
j∈N∗

∫
C
‖g̃ j(z)‖2

`2(Ω j)
dµ j(z)< ∞.

Let Pj be the projection defined for every g̃ ∈W by f̃ = Pjg̃ where f̃ j = g̃ j and f̃k = 0 for

k 6= j.

Let EA be the projection valued spectral measure for the normal operator A. Then for
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every µ-measurable set G⊆ C and vectors f ,g in H we have the following formula

〈EA(G) f ,g〉H =
∫

G

[
∑

1≤ j≤∞

1E j(z)〈 f̃ j(z), g̃ j(z)〉`2(Ω j)

]
dµ(z),

which relates the spectral measure of A with the scalar spectral measure of A.

In [40] and [1], the spectral multiplicity of multiplication operator is computed.

As a generalization of self-adjoint operators, we will consider normal reductive opera-

tors. Reductive operators were first studied by P. Halmos [32] and J. Wermer [70].

Definition 2.3.3. A closed subspace V ⊆H is called reducing for the operator A if both

V and its orthogonal complement V ⊥ are invariant subspaces of A.

Notice that, V ⊆ H being a reducing subspace for A is equivalent to V being an

invariant subspace both for A and its adjoint A∗, and also equivalent to APV = PV A where

PV is the projection operator onto V .

Definition 2.3.4. An operator A is called reductive if every invariant subspace of A is

reducing.

It is not known whether every reductive operator is normal. In fact, every reductive

operator being normal is equivalent to the veracity of the long-standing invariant subspace

conjecture, which states that every bounded operator on a separable Hilbert space has a

non-trivial closed invariant subspace [26].

Proposition 2.3.5. [41] A normal operator is reductive if and only if its restriction to every

invariant subspace is normal.

Proposition 2.3.6 ([70]). Let A be a normal operator on the Hilbert space H and let µ j

be the measures in the representation (2.2) of A. Let µ be as in (2.3). Then A is reductive if

and only if for any two vectors f ,g ∈H

∫
C

zn

[
∑

1≤ j≤∞

1E j(z)〈g̃ j(z), f̃ j(z)〉`2(Ω j)

]
dµ(z) = 0
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for every n≥ 0 implies µ j-a.e. 〈g̃ j(z), f̃ j(z)〉`2(Ω j)
= 0 for every j ∈ N∗.

Note that the property in the above proposition is equivalent to the implication

∫
C

znh(z)dµ(z) = 0 and h ∈ L1(µ)⇒ h = 0 µ− a.e.

As proved in [70], being reductive is not entirely a property of the spectrum: it is

possible to find two operators with the same spectrum such that one is reductive and the

other is not. However, the following sufficient condition holds.

Proposition 2.3.7 ([70]). Let A be a normal operator on H whose spectrum σ(A) has

empty interior and C\σ(A) is connected. Then A is reductive.

Corollary 2.3.8. Every self-adjoint operator on a Hilbert space is reductive.

The fact that self-adjoint operators are reductive is easily derived without the use of

Proposition 2.3.7. However, to see how this fact follows from Proposition 2.3.7, simply

note that for a self-adjoint operator A, σ(A) is a compact subset of R, hence it has empty

interior (as a subset of C), and C−σ(A) is connected.

Also the following necessary condition for being reductive holds.

Proposition ([59]). Let A be a normal operator. If the interior of σ(A) is not empty then A

is not reductive.

Definition 2.3.9. 1) An operator S ∈ B(H ) is called unilateral shift operator if it is an

isometry and there exists a subspace V ⊂H such that

H =
⊕
n≥0

Sn(V ).

2) An operator T ∈ B(H ) is called bilateral shift operator if it is unitary and there exists
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a subspace V ⊂H such that

H =
⊕
n∈Z

T n(V ).
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Chapter 3

The classical and dynamical sampling problems

3.1 The classical sampling problem

Shift invariant spaces are a common choice in signal processing for modeling analog

signals. In this thesis, we work with singly generated shift-invariant spaces but multiply

and infinitely generated shift-invariant spaces are often considered in signal processing as

well. Spaces with wavelet and Gabor generators are examples of infinitely generated shift-

invariant spaces. Wavelets are typically used for modeling images and Gabor frames are

used for audio signals, utilizing their symmetries with respect to frequency shifts. [27]

When the underlying domain on which the functions are defined is not discrete, we

need to ensure the pointwise evaluation is well-defined. For example, in L2(R) any two

functions that coincide on a set of measure zero are considered to be equal so the sampling

in the domain of the function makes no sense here.

Let H be a Hilbert space of functions defined on the set X .

Definition 3.1.1. H is called a Reproducing Kernel Hilbert Space (RKHS) if the evalua-

tion function δx : g 7→ g(x), δx : H → C is well defined and is continuous for every x ∈ X.

The point evaluation function is continuous hence, from the Riesz representation theo-

rem, for every x ∈ X there exist a unique element Kx ∈H such that f (x) =< f ,Kx >.

In [10], the authors find conditions under which the singly generated shift-invariant

spaces become RKHS and thus the sampling problem can be considered.

In recent years compressed sampling has become a popular field of investigation in

signal processing and applied mathematics. Just like in dynamical sampling, in compressed

sensing the samples are assumed to be scarce resulting in an ill-posed problem, and that

makes the recovery of the function impossible unless additional assumptions are made
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about the function. In compressed sampling, to compensate for the scarceness in samples,

it is assumed that many of the coefficients in the representation of the signal are equal

to zero. Then the problem becomes to find which of the coefficients are non-zero and

obtaining their values using the samples. [29]

3.2 The dynamical sampling problem

The problem of spatio-temporal sampling and reconstruction was first addressed in the

engineering literature, in the work of M. Vatterli and Y. Lu [43] when the evolution operator

is given by the diffusion process. They consider the one-dimensional diffusion equation

∂u(x, t)
∂ t

= K
∂ 2u(x, t)

∂x2 for x ∈ R, t > 0

where K is the diffusion coefficient and can be assumed to be equal to 1 by rescaling the

time. They assume the spatio-temporal samples of the function u(x, t) are given at locations

Ω⊂ R and at times

{kτ}k=0,...,L−1

where τ is the uniform sampling length in the time, and the goal is to reconstruct the

u(x,0) = f (x). They assume the function f can be well approximated by band-limited

functions and restrict their attention to this class. In particular, they point out that for the

uniform spatial samples and for the sub-Nyquist rate there is no stable reconstruction (at

a sup-Nyquist rate the samples at the 0th level already provide stable reconstruction), and

proceed to get results for the case of non-uniform samples.

The work in dynamical sampling for a more general setting was started with the convo-

lution operators on the spaces `2(Zd), `
2(Z) and L2(R) with the samples taken on a sparse

uniform grid [8, 2, 3, 4, 9].

In [9], the authors assume H = `2(Z) and A is convolution operator with a kernel

a ∈ `1(Z), i.e. A f = a ∗ f . Let G = {emk}k∈Z for some m > 1 where {ek}k∈Z is the
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canonical basis of `2(Z). The Fourier transform of a is defined as

â(ξ ) = ∑
k∈Z

a(k)e−2πiξ k, ξ ∈ [0,1].

Denote

Am(ξ ) =



1 1 . . . 1

â( ξ

m) â(ξ+1
m ) . . . â(ξ+m−1

m )

...
...

...
...

â(L−1)( ξ

m) â(L−1)(ξ+1
m ) . . . â(L−1)(ξ+m−1

m )


.

Let σ(ξ ) denote the smallest singular value of the matrix Am(ξ ). Let L(g) = M for each

g ∈ G . From [9], the system {Ang}g∈G ,0≤n<M is complete in `2(Z) if and only if Am(ξ )

has a left inverse for a.e. ξ ∈ [0,1], or equivalently σ(ξ ) > 0 for a.e. ξ ∈ [0,1], and it

forms a frame if and only if σ(ξ ) ≥ α for a.e. ξ ∈ [0,1] for some α > 0. Since Am(ξ )

is a Vandermonde matrix, iterations n > m−1 will not affect the completeness of the sys-

tem. Thus, we let M = m. In that case, {Ang}g∈G ,0≤n≤m−1 is complete in `2(Z) if and

only if detAm(ξ ) 6= 0 for a.e ξ ∈ [0,1], and it is a frame if and only if for a.e ξ ∈ [0,1],

|detAm(ξ )| ≥ α} for some α > 0.

Although there are infinitely many convolution operators that satisfy this last condi-

tion, many natural operators in practice do not. For example, an operator where a is real,

even and â is strictly decreasing on [0, 1
2 ]. For this case, it can be shown that the matrices

Am(0) and Am(
1
2) are singular, while all the other matrices Am(ξ ) are invertible. For this

case, any set of the form G = {emk}k∈Z ∪ {emlk+1}k∈Z where l ≥ 1, produces a system

{Ang}g∈G ,0≤n≤m−1 which is a frame for H = `2(Z).

In [9], the results in [3] has been generalized to the multidimensional case when the

convolution kernel has what’s called strongly quadrantal symmetry.

In [11], the authors allow the operator A to be unknown too. They use a generalization

of Prony’s method to reconstruct the spectrum of A and eventually the function itself.

In [54] when the locations of the sampling positions are allowed to change, is consid-
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ered.

In [7], the authors consider the case when f ∈ `2(N), A is a diagonalizable operator on

`2(N), i.e. A is a bounded self-adjoint operator on `2(N) such that there exists a basis of

eigenvectors of A. Then there is a bounded invertible operator B such that A = B−1DB and

D = ∑ j λ jPj is an infinite diagonal matrix, where σ(A) = {λ j} ⊂R is the pure spectrum of

A and Pj is the projections onto the eigenspace E j corresponding to eigenvalue λ j. Given a

set Ω⊂ N, for

li = min
{

n : (A∗)nei ∈ span{ei, · · · ,(A∗)n−1ei}
}

i ∈Ω

(li is the degree of minimal A-annihilator of basis vector ei), they prove the following theo-

rem

Theorem. {Anei : i ∈Ω,n = 0, . . . , li−1} is complete in `2(N) if and only if, for each j,

the set
{

Pj(Bei) : i ∈Ω
}

is complete in the corresponding eigenspace E j.

They also find a necessary and a sufficient condition for the existence of a single sam-

pling location that allows stable recovery.

Theorem. There exists an i0 ∈N such that {Anei0 : n = 0,1 . . .} is a frame for `2(N), if and

only if the following are satisfied for the eigenvalues of A

(i) |λ j|< 1 for every j

(ii) |λ j| → 1

(iii) {λ j} satisfy Carleson’s condition

inf
k

∏
j 6=k

|λ j−λk|
|1− λ̄ jλk|

≥ δ

for some δ > 0

(iv) C1
√

1−|λ j|2 ≤ |Bei0( j)| ≤C2
√

1−|λ j|2 where 0 <C1 ≤C2.

An interesting field of application for the dynamical sampling is graph theory and ge-
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ometric data analysis. The authors in [56] provide one example of such framework where

the dynamical sampling can be applied. Let G = (V,E) be a finite, simple, connected graph

associated with the weight function w. The operator

L = Id−D−
1
2 AD−

1
2

is called symmetric Laplacian of the graph, where Id is the identity matrix, D is the degree

matrix of G and A is the adjacency matrix of G.

Let A = D−
1
2 e−L D

1
2 , and consider the dynamical sampling problem with the spatio-

temporal samples

f |Ω, A f |Ω, · · · , AL−1 f |Ω (3.1)

where Ω⊂V and f ∈ `2(V ). Note that An f is the discrete time homogeneous heat evolution

with the initial state f .

If f = δx, where

δx(y) =


1, y = x

0, otherwise

then (3.1) is called the spectral signature of the vertex x. Spectral signature is a special

case of dynamical samples when the initial state is known to be one of the standard basis

vectors

In [56], the authors show that for every finite graph there exists a Ω⊂V with |Ω|< |V |

such that every vertex has a unique signature. Also, if all the eigenvectors of the Laplacian

are different, and at least one of the eigenvectors has all non-zero entries then there exists a

single vertex x ∈V such that every other vertex has a unique signature for Ω = {x}.

They also offer an algorithm, that computes the symmetries of the graph G when the dy-

namical sampling problem 3.1 has a unique solution. Then conduct numerical experiments

and successfully compute the symmetry group of several graphs.
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Chapter 4

The case of normal operators

Let H be an infinite-dimensional separable complex Hilbert space, A ∈ B(H ) be a

bounded normal operator and G a countable (finite or countably infinite) collection of vec-

tors in H . Let L be a function L : G → N∗, where N∗ = {1,2, . . .}∪{+∞}. We are inter-

ested in the structure of the set of iterations of the operator A when acting on the vectors in

G and are limited by the function L. More precisely, we are interested in the following two

questions:

(I) Under what conditions on A, G and L is the iterated system of vectors

{Ang : g ∈ G , 0≤ n < L(g)}

complete, Bessel, a basis, or a frame for H ?

(II) If {Ang : g ∈ G , 0 ≤ n < L(g)} is complete, Bessel, a basis, or a frame for H for

some system of vectors G and a function L : G →N∗, what can be deduced about the

operator A?

We study these and other related questions and we give answers in many important and

general cases. In particular, we show that there is a direct relation between the spectral

properties of a normal operator and the properties of the systems of vectors generated by

its iterative actions on a set of vectors. We are hoping that the questions above and the

approach we use can be interesting for research in both, frame theory and operator theory.

The questions above, in their formulation have similarities with problems involving

cyclical vectors in operator theory, and our analysis relies on the spectral theorem for nor-

mal operators with multiplicity [22]. There have been some attempts to generalize mul-

tiplicity theory to non-normal operators [49]. Although it cannot be generalized entirely,
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some aspects of it have been extended to general operators. In finite dimensions, the spec-

tral theorem for normal operators, represents the underlying space as a sum of invariant

subspaces. For general operators, the decomposition into invariant subspaces leads to Jor-

dan’s theorem. In the infinite-dimensional case, the extension leads to a decomposition into

invariant subspaces, and one of the goals is to give conditions under which these subspaces

{Sn} form Riesz basis or equivalently unconditional basis, see [49, 65] and the references

therein (this notion of Riesz basis is related but different from the one in Definition (2.1.1)).

The multiplicity of a spectral value for a normal operators has also been extended. For

general operators, a global multiplicity (called multicyclicity) is particularly useful in the

context of control theory: using multicyclicity theory for a completely non-unitary con-

traction A, a formula for min |G | such that {Ang : g ∈ G , n ≥ 0} is complete in H was

obtained ( see [50, 48] and the references therein). For a normal operator A, this number

can be deduced from Theorem 4.1.1 below.

Our main goal in this chapter is to find frames or other types of systems through the

iterative action of a normal operator, and we use the full power of the spectral theorem

for normal operators. We consider both Problem (I) and (II) above, in the general separa-

ble Hilbert space setting, and for general normal operators. Problem (I) has already been

studied in [7] for the special case when A ∈B(H ) is a self-adjoint operator that can be

unitarily mapped to an infinite diagonalizable matrix in `2(N). Thus, all the results in [7]

are subsumed by the corresponding theorems of this chapter. The present chapter contains

new theorems that are not generalizations of those in [7]. In particular, those related to

Problem (II) and those that are connected to the action of a group of unitary operators.

4.1 Complete systems with iterations

This section is devoted to the characterization of completeness of the system of vectors

{Ang}g∈G , n≥0 where A is a reductive normal operator on a Hilbert space H and G is a

set of vectors in H . This is done by “diagonalizing” the operator A using multiplicity
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theory for normal operators, and the properties of reductive operators. We use the notation

introduced in Section 2.3.

Theorem 4.1.1. Let A be a normal operator on a Hilbert space H , and let G be a count-

able set of vectors in H such that {Ang}g∈G , n≥0 is complete in H . Let µ∞,µ1,µ2, . . . be

the measures in the representation (2.2) of the operator A. Then for every 1 ≤ j ≤ ∞ and

µ j-a.e. z, the system of vectors {g̃ j(z)}g∈G is complete in `2{Ω j}.

If in addition to being normal, A is also reductive, then {Ang}g∈G , n≥0 being complete

in H is equivalent to {g̃ j(z)}g∈G being complete in `2{Ω j} µ j-a.e. z for every 1≤ j ≤ ∞.

Example 2. Let A be a convolution operator on H = L2(R) given by A f = a ∗ f , where

a ∈ L1(R) is a real valued, even function (hence the Fourier transform â of a is real valued

even function) such that â is strictly decreasing on [0,∞). For example, A can be the

discrete-time heat evolution operator given by the convolution with the Gaussian kernel

a(x) = 1√
4π

e−
x2
4 . Since a ∈ L1(R), â is continuous, and the spectrum of A is the compact

interval I = [0, 1√
4π
]⊂R. Hence as a subset of C, I satisfies the assumption of Proposition

2.3.7 and thus A is reductive. Moreover, the facts that â is real valued, even function, strictly

decreasing on [0,∞), imply that µ j = 0 for j 6= 1,2. In fact, using [1, Theorem 5], we get

that µ j = 0 for j 6= 2. Then, using Theorem 4.1.1, for a set of functions G ⊂ L2(R), the

system of iterations {Ang}g∈G , n≥0 is complete in L2(R) if and only if {(ĝ(ξ ), ĝ(−ξ ))}g∈G

is complete in R2 for a.e. x ∈ R.

Definition 4.1.2. For a given set G , let L be the class of functions L : G → N∗ such that

cl(span{Ang}g∈G , 0≤n<L(g)) = cl(span{Ang}g∈G , n≥0) (4.1)

where cl denotes the taking closure.

Remark 4.1.3. Note that condition (4.1) is equivalent to

AL(h)h ∈ cl(span{Ang}g∈G , 0≤n<L(g)). (4.2)
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for every h ∈ G such that L(h)< ∞.

In particular, L contains the constant function L(g) = ∞ for every g ∈ G . It also

contains the function

l(g) = min
{{

m | Amg ∈ span{g,Ag, . . . ,Am−1g}
}
,∞
}

for every g ∈ G . (4.3)

When l(g) is finite, it is called the degree of the annihilator of g.

Because of condition (4.1), the reduced system {Ang}g∈G , 0≤n<L(g) will be complete in

H if and only if {Ang : g ∈ G ,n≥ 0} is complete in H . Therefore, Theorem 4.1.1 holds

if we replace {Ang}g∈G ,n≥0 by {Ang}g∈G , 0≤n<L(g) as long as L ∈L . In particular,

Theorem 4.1.4. If A is a normal and reductive operator, then {Ang}g∈G , 0≤n<L(g) is com-

plete in H if and only if L ∈L and {g̃ j(z)}g∈G is complete in `2{Ω j} µ j-a.e. z for every

1≤ j ≤ ∞.

Although when L∈L , {Ang}g∈G , n≥0 and {Ang}g∈G , 0≤n<L(g) are either both complete

or both incomplete, the system {Ang}g∈G , 0≤n<L(g) may form a frame while {Ang}g∈G , n≥0

may not, since the possible extra vectors in {Ang}g∈G , n≥0 may damage the upper frame

bound. This difference in behavior between the two systems makes it important to study

{Ang}g∈G , 0≤n<L(g) for L ∈L .

Example 3. Let H = `2(Z) and A be convolution operator with a kernel a ∈ `1(Z), i.e.

A f = a ∗ f . Let G = {emk}k∈Z for some m > 1 where {ek}k∈Z is the canonical basis of

`2(Z). The Fourier transform of a is defined as

â(ξ ) = ∑
k∈Z

a(k)e−2πiξ k, ξ ∈ [0,1].
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Denote

Am(ξ ) =



1 1 . . . 1

â( ξ

m) â(ξ+1
m ) . . . â(ξ+m−1

m )

...
...

...
...

â(L−1)( ξ

m) â(L−1)(ξ+1
m ) . . . â(L−1)(ξ+m−1

m )


.

Let σ(ξ ) denote the smallest singular value of the matrix Am(ξ ). Let L(g) = M for each

g ∈ G . From [9], the system {Ang}g∈G ,0≤n<M is complete in `2(Z) if and only if Am(ξ )

has a left inverse for a.e. ξ ∈ [0,1], or equivalently σ(ξ ) > 0 for a.e. ξ ∈ [0,1], and it

forms a frame if and only if σ(ξ ) ≥ α for a.e. ξ ∈ [0,1] for some α > 0. Since Am(ξ ) is

a Vandermonde matrix, iterations n > m−1 will not affect the completeness of the system.

Thus, we set M = m. In that case, {Ang}g∈G ,0≤n≤m−1 is complete in `2(Z) if and only

if detAm(ξ ) 6= 0 for a.e ξ ∈ [0,1], and it is a frame if and only if for a.e. ξ ∈ [0,1],

|detAm(ξ )| ≥ α for some α > 0.

Although there are infinitely many convolution operators that satisfy this last condition,

many natural operators in practice do not. For example, an operator where a is real, even

and â is strictly decreasing on [0, 1
2 ]. For this case, it can be shown that the matrices

Am(0) and Am(
1
2) are singular, while all the other matrices Am(ξ ) are invertible. For

this case, any set of the form G = {emk}k∈Z∪{emlk+1}k∈Z where l ≥ 1, produces a system

{Ang}g∈G ,0≤n≤m−1 which is a frame for H = `2(Z).

The proof of Theorem 4.1.1 below, also shows that, for normal reductive operators,

completeness in H is equivalent to the system
{

Nn
µ j

g̃ j

}
g∈G , n≥0

being complete in the

space (L2(µ j))
( j) for every 1≤ j≤∞, i.e. the completeness of {Ang}g∈G , n≥0 is equivalent

to the completeness of its projections onto the mutually orthogonal subspaces UPjU∗H of

H . This should be contrasted to the fact that, in general, completeness of a set of vectors

{hn} ⊂H is not equivalent to the completeness of its projections on subspaces whose

orthogonal sum is H . We have

Theorem 4.1.5. Let A be a normal reductive operator on a Hilbert space H , and let G be

30



a countable system of vectors in H . Then, {Ang}g∈G , n≥0 is complete in H if and only if

the system
{

Nn
µ j

g̃ j

}
g∈G , n≥0

is complete in (L2(µ j))
( j) for every 1≤ j ≤ ∞.

Proof of Theorem 4.1.1. Since {Ang}g∈G , n≥0 is complete in H ,

U{Ang : g ∈ G ,n≥ 0}= {(Nn
µ j

g̃ j) j∈N∗ : g ∈ G ,n≥ 0}

is complete in W =UH . Hence, for every 1≤ j ≤ ∞, the system S =
{

Nn
µ j

g̃ j

}
g∈G , n≥0

is complete in (L2(µ j))
( j).

To finish the proof of the first statement of the theorem we use the following lemma

which is an adaptation of [40, Lemma 1].

Lemma 4.1.6. Let S be a complete countable set of vectors in (L2(µ j))
( j), then for µ j-

almost every z {h(z) : h ∈S } is complete in `2(Ω j).

Since S is complete in (L2(µ j))
( j), Lemma 4.1.6 implies that {zng̃ j(z)}g∈G , n≥0 is com-

plete in `2(Ω j) for each j ∈ N∗. But span{zng̃ j(z)}g∈G , n≥0 = span{g̃ j(z)}g∈G . Thus, we

have proved the first part of the theorem.

Now additionally assume that A is also reductive. Let

f̃ ∈ (L2(µ∞))
(∞)⊕L2(µ1)⊕ (L2(µ2))

(2)⊕·· ·

and

〈UAng, f̃ 〉= ∑
1≤ j≤∞

∫
C

zn〈g̃ j(z), f̃ j(z)〉`2(Ω j)
dµ j(z) = 0

for every g ∈ G and every 0 ≤ n < ∞. Since the measures µ j, 1 ≤ j ≤ ∞, are mutually

singular, we get that

∑
1≤ j≤∞

∫
C

zn < 〈g̃ j(z), f̃ j(z)〉`2(Ω j)
dµ j(z) (4.4)

=
∫
C zn

[
∑1≤ j≤∞1E j〈g̃ j(z), f̃ j(z)〉`2(Ω j)

]
dµ(z)
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for every g ∈ G and every n≥ 0 with µ as in (2.3).

Using the fact that the operator A is reductive, from Proposition 2.3.6, we conclude that

〈g̃ j(z), f̃ j(z)〉`2(Ω j)
= 0 µ j-a.e. z.

Since, by assumption {g̃ j(z)}g∈G is complete in `2(Ω j) for µ j-a.e z, we obtain

f̃ j = 0 µ j-a.e. z for every j ∈ N∗.

Thus f̃ = 0 µ-a.e., and therefore, {Ang}g∈G , n≥0 is complete in H .

4.2 Minimality property and basis

The goal of this section is to study the conditions on the operator A and the set of vectors

G such that the system {Ang}g∈G , 0≤n<L(g) is minimal or a basis for H . We start with the

following proposition:

Proposition 4.2.1. If A is a normal operator on H then, for any set of vectors G ⊂H ,

the system of iterates {Ang}g∈G ,n≥0 is not a complete and minimal system in H .

Note that Proposition 4.2.1 is trivial if the dimH < ∞ and becomes interesting only

when dimH = ∞. As a corollary of Proposition 4.2.1 we get

Corollary 4.2.2. If A is a normal operator on H then, for any set of vectors G ⊂H , the

system of iterates {Ang}g∈G ,n≥0 is not a basis for H .

If we remove the completeness condition in the statement of Proposition 4.2.1 above,

then the operator A f = z f on the unit circle with arc length measure gives an orthogonal

system when iterated on the vector g ≡ 1, i.e., for this case {zng}n≥0 is minimal since it

is an orthonormal system. However, if in addition to being normal, we assume that A is

reductive then the statement of proposition 4.2.1 remains true without the completeness
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condition since, by Proposition 2.3.5, the restriction of A onto cl(span{Angg∈G ,n≥0) will

be a normal operator and we will have a minimal complete system contradicting the claim

of Proposition 4.2.1. Thus, we have the following corollary

Corollary 4.2.3. If A is a reductive normal operator on H , then, for any countable system

of vectors G ⊂H , the system of iterates {Ang}g∈G ,n≥0 is not a minimal system.

As another corollary of Proposition 4.2.1, we get

Corollary 4.2.4. Let A be a reductive normal operator on H , G a countable system of vec-

tors in H and let L ∈L . If for some h ∈ G , L(h) = ∞, then the system {Ang}g∈G , 0≤n<L(g)

is not a basis for H .

Proof. Let V = cl(span{Anh}n≥0) where L(h) = ∞. V is a closed invariant subspace for

A hence, by Proposition 2.3.5, the restriction of A on V is also normal, therefore, from

Proposition 4.2.1, {Anh}n≥0 is not minimal.

In particular, since dimH = ∞ (the assumption in this paper), if |G | < ∞, then there

exists g ∈ G such that L(g) = ∞. Thus we have

Corollary 4.2.5. Let A be a reductive normal operator. If |G |< ∞, then for any L ∈L the

system {Ang}g∈G , 0≤n<L(g) is never a basis for H .

Proof of Proposition 4.2.1. We prove that if {Ang}g∈G ,n≥0 is complete in H , then for any

m≥ 0, {Ang}g∈G ,n=0,m,m+1,... is also complete in H , which implies non-minimality.

Assume {Ang}g∈G ,n≥0 is complete in H . Let δ > 0 and f ∈H be a vector such that

f̃ (z) = 0 for any z ∈Dδ where Dδ is the closed unit disc of radius δ centered at 0. Then for

a fixed m, f̃
zm is in UH and hence can be approximated arbitrarily closely by finite linear

combinations of the vectors in {zng̃}g∈G ,n≥0. Let f̃ (1), f̃ (2), . . . be a sequence in UH such

that f̃ (s)→ f̃
zm in UH and f̃ (s) is a finite linear combinations of the vectors in {zng̃}g∈G ,n≥0

for each s. Since zm is bounded on the spectrum of A, it follows that zm f̃ (s)→ f̃ . Finally,

we note that zm f̃ (s) is a finite linear combination of the vectors {zng̃}g∈G ,n≥m.
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For a general f ∈H , we have that

lim
δ→0
‖ f̃ − f̃1Dc

δ
‖2

L2(µ) = ∑
j∈N∗
‖ f̃ j(0)‖2

`2(Ω j)
µ({0}) = µJ(0)({0})‖ f̃J(0)(0)‖2

`2(ΩJ(0))
(4.5)

where J(0) is the value of the multiplicity function defined in (2.4) at point z = 0.

From Theorem 4.1.1, for any ε > 0 there exists a finite linear combination h̃ ∈UH of

vectors {g̃}g∈G such that µJ(0)({0})‖ f̃J(0)(0)− h̃J(0)(0)‖`2(ΩJ(0))
< ε

2 . Define w̃ := f̃ − h̃.

Using (4.5) for w, we can pick δ so small that ‖w̃− w̃1Dc
δ
‖2

L2(µ)
< ε

2 . Let ũ be a finite linear

combination of {zng̃}g∈G ,n≥m such that ‖w̃1Dc
δ
− ũ‖2

L2(µ)
< ε

2 . Then ‖w̃− ũ‖2
L2(µ)

< ε , i.e.,

‖ f̃ − h̃− ũ‖2
L2(µ)

< ε . Hence in this case we get that any vector f ∈H is in the closure of

the span of {g̃}g∈G ∪{zng̃}g∈G ,n≥m = {zng̃}g∈G ,n=0,m,m+1,....

Without the condition that A is normal, the statement of the Corollary 4.2.5 may not

be true. Let S be the unilateral shift operator on `2(N) and en be the n-th canonical basis

vector in `2(N). Then we have Sne1 = en, thus in this case the iterated system is not only a

Riesz basis, but an orthonormal basis.

Even though we cannot have bases for H by iterations of a countable system G by

a normal operator when the system {Ang}g∈G , 0≤n<L(g) is complete, the non-minimality

suggest that we may still have a situation in which the system is a frame leading us to the

next section.

4.3 Complete Bessel systems and frames of iterations

It is shown in [7] that it is possible to construct frames from iteration {Ang}n≥0 of a

single vector g for some special cases when the operator A is an infinite matrix acting on

`2(N), has point spectrum and g is chosen appropriately [7]. However, it is also shown that

generically, {Ang}n≥0 does not produce a frame for `2(N). Since a frame must be a Bessel

system, we study the Bessel properties of {Ang}g∈G , n≥0 when A is normal. In addition, we

find conditions that must be satisfied when the system {Ang}g∈G , n≥0 has the lower frame
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bound property for the case where G is finite.

Denote by Dr the open disk in C of radius r centered at the origin, by Dr its closure,

and by Sr its boundary, that is Sr =Dr \Dr. For a set E ⊂C, we will use the notation C\E

or Ec for the complement of E. Then we have the following theorem.

Theorem 4.3.1. Let A ∈B(H ) be a normal operator, µ be its scalar spectral measure,

and G a countable system of vectors in H .

(a) If {Ang}g∈G , n≥0 is complete in H and for every g ∈ G the system {Ang}n≥0 is Bessel

in H , then µ
(
C\D1

)
= 0 and µ|S1 is absolutely continuous with respect to arc length

measure (Lebesgue measure) on S1.

(b) If {Ang}g∈G , n≥0 is frame in H , then µ (C\D1) = 0.

The converse of Theorem 4.3.1 is true in the following sense.

Theorem 4.3.2. Let A∈B(H ) be a normal operator, and µ be its scalar spectral measure.

(a) If µ
(
C\D1

)
= 0 and µ|S1 is absolutely continuous with respect to arc length measure

on S1, then there exists a countable set G ⊂H such that {Ang}g∈G , n≥0 is a complete

Bessel system.

(b) If µ (C\D1) = 0 then there exists a countable set G ⊂H such that {Ang}g∈G , n≥0 is

a Parseval frame for H .

Example 4. Let A be the convolution operator as in Example 2. If there exists a com-

plete Bessel system by iterations of A, then from Theorem 4.3.1 (a), â(0) ≤ 1. Conversely,

if â(0) ≤ 1, then the conditions in Theorem 4.3.2 (b) are satisfied and hence there ex-

ists a set of vectors G ⊂ L2(R) such that {Ang}g∈G , n≥0 is a Parseval frame in L2(R).

From the proof of the theorem, to construct the set G , we take an orthonormal basis O in

cl
(
(1−|â|2) 1

2 L2(R)
)
= L2(R), then G = (1−|â|2)O . Note that G is already complete in

L2(R). A natural question will be, what is the smallest G (in terms of its span closure) such
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that {Ang}g∈G , n≥0 is a frame? We will see from Theorem 4.3.6, that G can not be finite for

such a convolution operator since its spectrum is continuous.

Using the previous two theorems, we get the following necessary and sufficient condi-

tions for the system {Ang}g∈G , n≥0 to be a complete Bessel system in H .

Corollary 4.3.3. Let A ∈B(H ) be a normal operator, and µ be its scalar spectral mea-

sure. Then the following are equivalent.

1. There exists a countable set G ⊂H such that {Ang}g∈G , n≥0 is a complete Bessel

system.

2. µ (C\D1) = 0 and µ|S1 is absolutely continuous with respect to arc length measure

on S1.

For the case of iterates {Ang}g∈G , 0≤n<L(g), where L ∈L as defined in Remark 4.1.2,

one has the following theorem.

Theorem 4.3.4. Let A be a normal operator on a Hilbert space H and G a system of

vectors in H , and assume L ∈L . If {Ang}g∈G , 0≤n<L(g) is a complete Bessel system for

H , then for each g ∈ G with L(g) = ∞, the set {x ∈ Dc
1| g̃(x) 6= 0} has µ-measure 0.

When the system {Ang}g∈G , n≥0 has the frame bound property and G is finite, we have

the following necessary condition.

Theorem 4.3.5. Let A∈B(H ) be a normal operator, and µ be its scalar spectral measure.

If |G | < ∞ and {Ang}g∈G , n≥0 satisfy the lower frame bound, then, for every 0 < ε < 1,

µ

(
Dc

1−ε

)
> 0.

As a corollary of 4.3.1, we get that

Theorem 4.3.6. Let A be a bounded normal operator in an infinite-dimensional Hilbert

space H . If the system of vectors {Ang}g∈G , n≥0 is a frame for some G ⊂H with |G |< ∞,

then A = ∑ j λ jPj where Pj are projections such that rankPj ≤ |G | (i.e. the global multiplic-

ity of A is less than or equal to |G |).
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Combining Theorem 4.3.6 with the result in [7], where A was assumed to be a diagonal

operator on `2(N), we get the following characterization for a general normal operator

A ∈B(H ) when |G |= 1.

Theorem 4.3.7. Let A be a bounded normal operator in an infinite-dimensional Hilbert

space H . Then {Ang}n≥0 is a frame for H if and only if

i) A = ∑ j λ jPj, where Pj are rank one orthogonal projections

ii) |λk|< 1 for all k

iii) {λk} satisfy Carleson’s condition

inf
n ∏

k 6=n

|λn−λk|
|1− λ̄nλk|

≥ δ (4.6)

for some δ > 0

iv)

0 <C1 ≤
‖Pjg‖√
1−|λk|2

≤C2 < ∞,

for some constants C1,C2.

Example 5. Let H = `2(N), A a semi-infinite diagonal matrix whose entries are given

by a j j = λ j = 1− 2− j for j ∈ N, and let g ∈ `2(N) be given by g( j) =
√

1−λ 2
j . Then,

the sequence λ j = 1− 2− j satisfies Carleson’s condition (see e.g. [34]), and g satisfies

condition (v). Thus, {Ang}n≥0 are a frame for `2(N).

For the special case defined by (4.3), we get the following necessary condition on the

measure µ .

Theorem 4.3.8. Suppose A is a normal operator, and {Ang}g∈G , n=0,1,...,l(g) (where l(g) is

given by (4.3)) is a complete Bessel system for H . Then

(a) If l(g) = ∞ then {x ∈ Dc
1 : g̃(x) 6= 0} has µ-measure 0.
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(b) The restriction of µ on Dc
1 is concentrated on at most a countable set, i.e., either

µ(Dc
1) = 0, or there exists a countable set E ⊂ Dc

1 such that µ|Dc
1

(
Ec∩Dc

1

)
= 0.

(c) µ|S1 is a sum of a discrete and an absolutely continuous measure (with respect to arc

length measure) on S1.

In fact, if for every g∈ G , l(g)< ∞ then without the condition that the system is Bessel,

but with the completeness condition alone, we get that the measure µ is concentrated on a

countable subset of C, as stated in the following theorem.

Theorem 4.3.9. Let A be a normal operator and G ⊂H be a system of vectors such that,

for every g ∈ G , l(g)< ∞ and {Ang}g∈G , n=0,1,...,l(g) is complete in H . Then there exists a

countable set E ⊂ C such that µ (Ec) = 0. Moreover, every g is supported, with respect to

the measure µ , on a finite set of cardinality not exceeding l(g).

4.4 Proofs of Theorems in Section 4.3

Proof of Theorem 4.3.1. (a) Suppose µ(Dc
1)> 0, then µk(D

c
1)> 0 for some k, 0≤ k ≤ ∞.

Thus, there exists ε > 0 such that µk(D
c
1+ε)> 0. Since the system of vectors {Ang}g∈G , n≥0

is complete in H , it follows from Theorem 4.1.1 that there exists a g ∈ G such that

µk(D
c
1+ε ∩ supp(g̃k))> 0.

Let f ∈H be any vector such that f̃ = Pk f̃ , and f̃ (z) = 0 for z ∈ D1+ε . Then

|〈 f ,Ang〉|

=

∣∣∣∣∣ ∑
0≤ j≤∞

∫
C

zn〈g̃ j(z), f̃ j(z)〉`2(Ω j)
dµ j(z)

∣∣∣∣∣
=

∣∣∣∣∫Dc
1+ε∩ supp(g̃k)

zn〈g̃k(z), f̃k(z)〉`2(Ωk)
dµk(z)

∣∣∣∣ .
For each n, denote by λn( f ) the linear functional on the space H0 := { f ∈ H : f̃ =

Pk f̃ , f̃ (z) = 0 for z ∈ D1+ε}, defined by λn( f ) = 〈 f ,Ang〉. The norm of this functional
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(on H0) is

‖λn‖2
op =

∫
Dc

1+ε∩ supp(g̃k)
|z|2n‖g̃k(z)‖2

`2{Ωk}dµk(z)

≥ (1+ ε)2n
∫
Dc

1+ε∩ supp(g̃k)
‖g̃k(z)‖2

`2{Ωk}dµk(z).

Since the right side of the last inequality tends to infinity as n→ ∞, so does ‖λn‖op. Thus,

from the uniform boundedness principle there exists an f ∈H0 such that

lim
n→∞

∣∣∣∣∫Dc
1+ε∩ supp(g̃k)

zn〈g̃k(z), f̃k(z)〉`2(Ωk)
dµk(z)

∣∣∣∣= ∞.

For such f , λn( f ) = |〈 f ,Ang〉‖ → ∞ as n→ ∞. Thus, we also have that

∞

∑
n=0
|〈 f ,Ang〉|2 = ∞

which is a contradiction to our assumption that {Ang}n≥0 is a Bessel system in H .

To prove the second part of the statement, let k≥ 1 be fixed, and consider the Lebesgue

decomposition of µk|S1 given by µk|S1 = µac
k +µs

k where µac
k is absolutely continuous with

respect to arc length measure on S1, µs
k is singular and µac

k ⊥ µs
k . We want to show that

µs
k ≡ 0.

For a vector a = (a1,a2, . . . ,ak) ∈ `2(Ωk), define Qra := ar. Fix 1 ≤ r ≤ k and m ≥ 1.

Let f ∈H be the vector such that

i) Qr f̃k(e2πit) = e2πimt , µs
k-a.e.

ii) Qr f̃k(e2πit) = 0, µac
k -a.e.

iii) Qs f̃ j(z) = 0 if r 6= s or k 6= j

iv) f̃ (z) = 0 for z /∈ S1.

Then for such an f and a fixed g∈G , from the assumption that {Ang}n≥0 is a Bessel system
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in H , we have

∑
n≥0

∣∣∣∣∫S1

e2πintQrg̃k(e2πit)e2πimtdµ
s
k(e

2πit)

∣∣∣∣2

= ∑
n≥0

∣∣∣∣∣ ∑
0≤ j≤∞

∫
C

zn〈g̃ j(z), f̃ j(z)〉`2(Ω j)
dµ j(z)

∣∣∣∣∣
2

=
∞

∑
n=0
|〈Ang, f 〉|2 ≤C‖ f‖2 ≤Cµ(S1).

Thus

∑
n≥0

∣∣∣∣∫S1

e2πi(n−m)tQrg̃k(e2πit)dµ
s
k(e

2πit)

∣∣∣∣2 ≤Cµ(S1).

Since the last inequality holds for every m≥ 1, we have

∑
n∈Z

∣∣∣∣∫S1

e2πintQrg̃k(e2πit)dµ
s
k(e

2πit)

∣∣∣∣2 ≤Cµ(S1).

This means the Fourier – Stieltjes coefficients of the measure Qrg̃k(e2πit)dµs
k(e

2πit) are in

`2(Z). Hence, from the uniqueness theorem of the Fourier Stieltjes coefficients ([39], p. 36)

and the fact that any element of `2(Z) determines Fourier coefficients of an L2(S1) function

(with respect to arc length measure), Qrg̃k(e2πit)dµs
k(e

2πit) is absolutely continuous with

respect to the arc length measure. But the measure µs
k is concentrated on a measure zero set

as a singular measure, hence Qrg̃k(e2πit)dµs
k(e

2πit) is the zero measure. Since the system

{Ang}g∈G , n≥0 is complete in H , from Theorem 4.1.1 we obtain that µs
k = 0 and hence µk

is absolutely continuous with respect to the arc length measure on S1. Thus µ is absolutely

continuous with respect to the arc length measure on S1.

(b) Suppose {Ang}g∈G , n≥0 is a frame with frame bounds α and β . Let f ∈H be any

vector such that f̃ = 0 on C \ S1. For such an f , we have that ‖(A∗)m f‖ = ‖Am f‖ = ‖ f‖
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for any m ∈ Z. Thus, for any m ∈ Z, we have

α‖ f‖2 = α‖(A∗)m f‖2 ≤ ∑
g∈G

∞

∑
n=0
|〈(A∗)m f ,Ang〉|2 = ∑

g∈G

∞

∑
n=0
|〈 f ,An+mg〉|2 (4.7)

= ∑
g∈G

∞

∑
n=m
|〈 f ,Ang〉|2 ≤ β‖Am f‖2 ≤ β‖ f‖2.

Since (4.7) holds for every m, the right inequality implies ∑
∞
n=m ∑g∈G |〈 f ,Ang〉|2 → 0 as

m→ ∞. Hence, using the left inequality we conclude that ‖ f‖ = 0. Since f is such that

f̃ = 0 on C\S1, but otherwise is arbitrary, it follows that µ(S1) = 0. But, from Part (a), we

already know that µ(C\D1) = 0, hence µ(C\D1) = 0.

Proof of Theorem 4.3.2. Let H1 = { f ∈H : f̃ (z) = 0,z /∈ S1} and H2 = { f ∈H : f̃ (z) =

0,z /∈D1}. Then H =H1⊕H2. Let Gi ⊂Hi, be complete Bessel systems in Hi, i = 1,2,

then, it is not difficult to see that G1 ∪G2 is a complete Bessel system in H . We will

proceed by constructing complete Bessel systems for H1 and H2. To construct a complete

Bessel sequence for H1, we first consider the operator Nµ j|S1
on L2(µ j|S1) for a fixed j,

with 1≤ j ≤ ∞, where µ j is as in the decomposition of Theorem 2.3.2. Since for f ∈H1,

f̃ (z) = 0 for z /∈ S1, and since µ|S1 (and hence also µ j|S1) is absolutely continuous with

respect to the arc lengh measure σ , we have that on the circle S1, dµ j|S1 = w jdσ for some

w j ∈ L1(σ). Hence on the support E j of w j, µ j and σ are mutually absolutely continuous,

i.e., for ν j defined by dν j = 1E jdσ , µ j and ν j are mutually absolutely continuous.

Now consider the two functions p j and q j such that p j(z) = q j(z) = 0 for z /∈ S1,

while on S1, p j(e2πit) = 1[0, 1
2 ]
(t) and q j(e2πit) = 1[ 1

2 ,1]
(t). From the properties of the

Fourier series on L2(S1,σ), the sets {zn p j(z)}n≥0 and {znq j(z)}n≥0 are Bessel systems in

L2(S1,σ) with bound 1. Thus, {zn p j(z)}n≥0 and {znq j(z)}n≥0 are also Bessel systems

in L2(S1,ν j) with bound 1. Therefore, {zn p j(z)}n≥0 ∪ {znq j(z)}n≥0 is a Bessel system

for ⊕∞
j=1L2(S1,ν j). By Proposition 2.3.7 and Theorem 2.3.2 the sytem {zn p j(z)}n≥0 ∪

{znq j(z)}n≥0 is also complete in ⊕∞
j=1L2(S1,ν j). Thus, {zn p j(z)}n≥0 ∪{znq j(z)}n≥0 is a
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complete Bessel system for ⊕∞
j=1L2(S1,ν j).

Since µ j and ν j are mutually absolutely continuous, the multiplication operator z on

⊕∞
j=1L2(S1,ν j) is unitarily equivalent to the multiplication operator z on ⊕∞

j=1L2(S1,µ j)

which we denote by V . Hence, {znV (p j)(z)}n≥0 ∪{znV (q j)(z)}n≥0 is a complete Bessel

system for ⊕∞
j=1L2(S1,µ j). Finally, using Theorem 2.3.2, it follows that

{AnU−1V (p j(z))}n≥0∪{AnU−1V (q j(z))}n≥0

forms a complete Bessel system for UH1 =⊕∞
j=1L2(S1,µ j).

The existence of complete Bessel system in H2 (moreover, a Parseval frame) follows

from Part (b) of Theorem 4.3.2 which we prove next.

(b) Let D be the operator (Id−AA∗)
1
2 . Let O be an orthonormal basis for cl(DH ),

and define G = {g = Dh : h ∈ O}. Then

m

∑
n=0

∑
h∈O
|〈 f ,AnDh〉|2 =

m

∑
n=0

∑
h∈O
|〈D(A∗)n f ,h〉|2 =

m

∑
n=0
‖D(A∗)n f‖2

=
m

∑
n=0
〈D2(A∗)n f ,(A∗)n f 〉=

m

∑
n=0
〈(Id−AA∗)(A∗)n f ,(A∗)n f 〉

= ‖ f‖2−‖(A∗)m+1 f‖.

Using Lebesgue’s Dominated Convergence Theorem,

‖(A∗)m f‖2 =
∫
D1

|z|2m‖ f̃ (z)‖2dµ(z)→ 0

as m→ ∞ since |z|2m→ 0, µ−a.e. on D1. Hence, from the identity above we get that

∞

∑
n=0

∑
h∈I
|〈 f ,AnDh〉|2 = ‖ f‖2.

Therefore the system of vectors G = {g = Dh : h ∈ O} is a tight frame for H .
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The proof of Theorem 4.3.4 is a direct consequence of the proof of (a) in the above

theorem.

Proof of Theorem 4.3.5. Suppose µ(Dc
1−ε) = 0 for some 0 < ε < 1. Because |G |< ∞ and

dim(H ) = ∞, the system {Ang}g∈G , n=0,1,...,M is not complete in H for M < ∞. From the

Hahn – Banach theorem, there exists a vector h ∈H with ‖h‖ = 1 such that 〈Ang,h〉 = 0

for every g ∈ G , and n = 0, . . . ,M. Then

∑
g∈G

∞

∑
n=0
|〈h,Ang〉|2

= ∑
g∈G

∞

∑
n=M+1

∣∣∣ ∑
0≤ j≤∞

∫
C

zn〈h̃ j(z), g̃ j(z)〉`2(Ω j)
dµ j(z)

∣∣∣2
≤ ∑

g∈G

∞

∑
n=M+1

∣∣∣∫
D1−ε

zn
∑

0≤ j≤∞

1E j(z)〈h̃ j(z), g̃ j(z)〉`2(Ω j)
dµ(z)

∣∣∣2
≤ ∑

g∈G

∞

∑
n=M+1

(1− ε)2n
(

∑
0≤ j≤∞

∫
C
|〈h̃ j(z), g̃ j(z)〉`2(Ω j)

|dµ j(z)
)2

.

Applying Hölder’s inequality several times, we get

∑
0≤ j≤∞

∫
C
|〈h̃ j(z), g̃ j(z)〉`2(Ω j)

|dµ j(z)

≤ ∑
0≤ j≤∞

∫
C
‖h̃ j(z)‖`2(Ω j)

‖g̃ j(z)‖`2(Ω j)
dµ j(z)

≤ ∑
0≤ j≤∞

(∫
C
‖h̃ j(z)‖2

`2(Ω j)
dµ j(z)

) 1
2
(∫

C
‖g̃ j(z)‖2

`2(Ω j)
dµ j(z)

) 1
2

≤ ‖h‖‖g‖.

Hence,

∑
g∈G

∞

∑
n=0
|〈h,Ang〉|2 ≤ ∑

g∈G

∞

∑
n=M+1

(1− ε)2n‖h‖2‖g‖2

=
(1− ε)2(M+1)

1− (1− ε)2 ‖h‖
2

∑
g∈G
‖g‖2 → 0 as M→ ∞.
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Therefore the left frame inequality does not hold, and we have a contradiction.

Proof of Theorem 4.3.6. Define the subspace Vρ of H to be Vρ = { f : supp f̃ ⊆ Dρ}. The

restriction of A to Vρ is a normal operator with its spectrum equal to the part of the spectrum

of A inside Dρ . Let G̃ = UG where U is as in Theorem 2.3.2. Let G̃ρ = {1Dρ
g̃ : g̃ ∈ G̃ }.

Since {Ang}g∈G ,n≥0 is a frame by assumption, {znw̃}w̃∈G̃ρ
is a frame for UVρ . Thus, since

ρ < 1, Theorem 4.3.5 implies that Vρ is finite-dimensional. Hence the restriction of the

spectrum of A to Dρ for any ρ < 1 is a finite set of points. We also know from Theorem

4.3.1 (b) that µ(Dc
1) = 0. Thus, UAU−1 has the form Λ = ∑ j λ jPj.

Proof of Theorem 4.3.8. (a) Follows from Theorem 4.3.4.

(b) If l(g) < ∞ then Al(g)g−∑
l(g)−1
k=0 ckAkg = 0 for some complex numbers ck. Call

Q the polynomial Q(z) := zl(g) −∑
l(g)−1
k=0 ckzk. We have Q(A)g = 0 and therefore 0 =

U(Q(A)g)(z) = Q(z)g̃(z) µ−a.e. z.

Let Eg be the set of roots of Q. Hence g̃(z) = 0 µ a.e. in (C \Eg). This together with

part (a) of the theorem gives us that, for all g ∈ G ,

g̃(z) = 0 a.e. µ in
⋂

g∈GF

(Dc
1 \Eg) (4.8)

where, GF = {g ∈ G : l(g)< ∞}.

The set E :=
⋃

g∈GF
Eg is countable and

⋂
g∈GF

(Dc
1 \Eg) = Dc

1 \E. So (4.8) holds on

Dc
1 \E. It follows that for each j ∈ N∗, span{g̃ j(z)}g∈G is not complete in `2(Ω j) µ j −

a.e. z ∈ Dc
1 \E and therefore µ j(D

c
1 \E) = 0. We conclude that µ(Dc

1 \E) = 0.

(c) Let ∆ := {x∈ S1 : x∈ suppg, g∈ G , l(g)<∞}. From the proof of (b) ∆ is countable.

Then, since the projection of a Bessel system is Bessel, and the projection of a complete

set is complete, following the proof of Theorem 4.3.1(a) we can see that µ is absolutely

continuous on S1 \∆.
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4.5 Self-adjoint operators

The class of self-adjoint operators is an important subclass of normal reductive oper-

ators which has some interesting properties that we study in this section. In particular,

we prove that for self-adjoint operators the normalized system
{

Ang
‖Ang‖

}
g∈G , n≥0

is never a

frame. The proof of this fact relies on the following theorem.

Theorem 4.5.1. Every unit norm frame is a finite union of Riesz basis sequences.

Theorem 4.5.1 was conjectured by Feichtinger and is equivalent to the Kadison – Singer

theorem [19, 15] which was proved recently in [45].

Theorem 4.5.2. If A is a self-adjoint operator on H then the system
{

Ang
‖Ang‖

}
g∈G , n≥0

is

not a frame for H .

Remark 4.5.3. An open problem is whether the theorem remains true for general normal

operators. The theorem does not hold if the operator is not normal. For example, the shift

operator S on `2(N) defined by S(x1,x2, . . .) = (0,x1,x2, . . .), is not normal, and {Sne1}

where e1 = (1,0, . . .) is an orthonormal basis for `2(N).

Remark 4.5.4. It may be that the system
{

Ang
‖Ang‖

}
g∈G , n≥0

is not a frame for H because

it is overly redundant due to the fact that we are iterating {Ang}g∈G for all n ≥ 0. We

may reduce the redundancy by letting 0 ≤ n < L(g) where L ∈ L as defined in Remark

4.1.2. For example, if {g}g∈G is an orthonormal basis for H , then trivially, we can choose

L(g) = 1 and the system
{

Ang
‖Ang‖

}
g∈G ,0≤n<L(g)

is an orthonormal basis for H . However, if

G is finite,
{

Ang
‖Ang‖

}
g∈G ,0≤n<L(g)

cannot be a frame for H as in the corollary below.

Corollary 4.5.5. Let {g}g∈G ⊂ H and assume that |G | < ∞ and L ∈ L . Then for a

self-adjoint operator A,
{

Ang
‖Ang‖

}
g∈G ,0≤n<L(g)

is not a frame for H .

Proof of Theorem 4.5.2. Suppose it is a frame. Using Feichtinger’s theorem, we decom-

pose the set
{

Ang
‖Ang‖

}
g∈G , n≥0

into a finite union of Riesz sequences. Choose a vector h∈ G .
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Thus the subsystem
{

Anh
‖Anh‖

}
n≥0

can be decomposed into a union of Riesz sequences and

therefore a union of minimal sets. Since there are finitely many sequences, the powers

of A in one of these sequences must contain infinite number of even numbers {2nk} (in

particular, the system {A2nkh}k=1,... is a minimal set) such that

∑
k≥1

1
nk

= ∞. (4.9)

If we consider the operator A2, then its spectrum is a subset of [0,∞). In order to finish

the proof of the theorem, we use the following Lemma whose proof is a corollary of the

Müntz – Szász theorem [58].

Lemma 4.5.6. Let µ be a regular Borel measure on [0,∞) with a compact support and nk,

k = 0,1, . . . , be a sequence of natural numbers such that n0 = 0 and

∑
k≥1

1
nk

= ∞.

For a function φ ∈ L1(µ), if

∫
∞

0
xnkφ(x)dµ(x) = 0 for every k,

then φ = 0 µ a.e.

Let V = cl(span{(A2)nh}n≥0), and let B be the restriction of A2 on V . Since B is

positive definite, its spectrum σ(B)⊂ [0,b] for some b ≥ 0. Let µ be the measure defined

in (2.3) associated with B. By Theorem 4.1.1, µ j = 0 for all j 6= 1 (i.e., µ = µ1), and

h̃(x) 6= 0 a.e. µ .

Let nk,k≥ 1 be the sequence of integers chosen above such that {A2nkh}k=1,... is a mini-

mal set and (4.9) holds. Set n0 = 0. Note that both sequences {nk}k≥0, and {nk}k=0,m,m+1,...

satisfy the condition of the Lemma 4.5.6, hence
∫ b

0 xnk h̃(x) f̃ (x)dµ(x) = 0 for all k ≥ 0 im-
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plies that f̃ = 0 a.e. µ , as well as
∫ b

0 xnk h̃(x) f̃ (x)dµ(x)= 0 for all k = 0,m,m+1, . . . implies

that f̃ = 0 a.e. µ . Thus, V = cl(span{(A2)nh}n≥0) = cl(span{(A2)nkh}k=0,m,m+1,...) =

cl(span{(A2)nkh}k≥0) which contradicts the minimality condition.

Proof of Corollary 4.5.5. Suppose the system
{

Ang
‖Ang‖

}
g∈G , 0≤n<L(g)

is a frame for H . Be-

cause dimH = ∞, the set G∞ = {g ∈ G | L(g) = ∞} is non-empty. Then the system{
Ang
‖Ang‖

}
g∈G∞,0≤n<L(g)=∞

is a frame for its closure since we get it by removing finite number

of vectors from a frame. The closure is an invariant subspace and A restricted to it remains

self-adjoint which contradicts Theorem 4.5.2.

4.6 Applications to groups of unitary operators

In this section, we apply some of our results to discrete groups of unitary operators.

These often occur in wavelet, time frequency and frame constructions.

As a corollary of the spectral theorem of normal operators, a normal operator is uni-

tary if and only if its spectrum is a subset of the unit circle. We will need the following

Proposition from Wermer [70].

Proposition 4.6.1 ([70]). For a unitary operator T , the following are equivalent

1. T is not reductive

2. The arc length measure is absolutely continuous with respect to the spectral measure

of T .

Let π be a unitary representation of a discrete group Γ on Hilbert space H . The order

o(γ) of an element γ ∈ Γ is the smallest natural number m such that γm = 1. If no such

number exists then we say o(γ) = ∞. The same way we define the order of an operator

π(γ).

Notice that if o(π(γ))< ∞ then it is reductive and its spectrum is a subset of the set of

o(π(γ))-th roots of unity.
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Theorem 4.6.2. Let π be a unitary representation of a discrete group Γ on Hilbert space

H and suppose there exists a set of vectors G ⊆H such that {π(γ)g : γ ∈ Γ,g ∈ G } is a

minimal system. Then, for every γ ∈ Γ with o(γ) = ∞, π(γ) is non-reductive and hence the

arc length measure on S1 is absolutely continuous with respect to the spectral measure of

π(γ).

Proof. The minimality condition implies that π is injective and hence o(γ) = o(π(γ)). Let

γ ∈ Γ be such that o(γ) = ∞, then from the minimality assumption, {π(γ)ng : γ ∈ Γ,g ∈

G } is a minimal subsystem. Thus, from Corollary 4.2.3, π(γ) is non-reductive. The rest

follows from Proposition 4.6.1 above.

Theorem 4.6.3. Let π be a unitary representation of a discrete group Γ on Hilbert space H

and suppose there exists a set of vectors G ⊆H such that Γ{G }= {π(γ)g : γ ∈ Γ,g ∈ G }

is complete in H and, for every g ∈ G , Γ{g} = {π(γ)g : γ ∈ Γ} is a Bessel system in

H . Then for every γ ∈ Γ with o(γ) = ∞, the measure µ associate with π(γ) is absolutely

continuous with respect to the arc length measure on S1.

Proof. Suppose o(γ) = ∞. The assumption that the system {π(γ)g : γ ∈ Γ} is Bessel

implies that the kernel of the representation π must be finite, otherwise any vector in the

system will be repeated infinitely many times, prohibiting the Bessel property from holding.

Thus o(γ) = ∞ implies o(π(γ)) = ∞.

Pick any vector π(h)g where h ∈ Γ,g ∈ G . Then {π(γ)nπ(h)g}n≥0 is a subsystem of

Γ{g} since π(γ)nπ(h) 6= π(γ)mπ(h) if n 6= m. Hence, using the fact that {π(γ)nπ(h)g}n≥0

is a Bessel sequence, from the proof of Theorem 4.3.1(a) we get that, for every j ∈ N∗, the

measure µ j in the (2.2) representation of π(γ) is absolutely continuous on supp [(π(h)g)̃ j].

Since {π(h)g : h ∈ Γ,g ∈ G } is complete in H , from Theorem 4.1.1, µ is concentrated on

the set ∪0≤ j≤∞supp [(π(h)g)̃ j] thus we get that the spectrum of π(γ) is absolutely continu-

ous with respect to arc length measure.

In fact, it was shown in [69] (lemma 4.19) that the assumptions in the previous theorem

48



hold if and only if π is a subrepresentation of the left regular representation of Γ with

some multiplicity. And as a corollary of that, if the conditions of Theorem 4.6.3 hold, it is

possible to find another set G ′ ⊂H such that {π(γ)g : γ ∈ Γ,g ∈ G ′} is a Parseval frame

for H .
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Chapter 5

General operators

In this chapter, we consider the case of systems generated by the iterative actions of

operators that are not necessarily normal.

Theorem 5.0.1. If for an operator A ∈ B(H ) there exists a set of vectors G in H such

that {Ang}g∈G , n≥0 is a frame in H then for every f ∈H , (A∗)n f → 0 as n→ ∞.

Proof. Suppose, for some {g}g∈G, {Ang}g∈G , n≥0 is a frame with frame bounds B1 and B2.

Let f ∈H . Then for any m ∈ Z we have

∑
g∈G

∞

∑
n=0
|〈(A∗)m f ,Ang〉|2 = ∑

g∈G

∞

∑
n=0
|〈 f ,An+mg〉|2 (5.1)

= ∑
g∈G

∞

∑
n=m
|〈 f ,Ang〉|2.

Since ∑g∈G ∑
∞
n=0 |〈 f ,Ang〉|2 ≤ B2‖ f‖2, we conclude that ∑

∞
n=m ∑g∈G |〈 f ,Ang〉|2 → 0 as

m→ ∞. Thus, from (5.1), we get that ∑g∈G ∑
∞
n=0 |〈(A∗)m f ,Ang〉|2→ 0 as m→ ∞. Using

the lower frame inequality, we get

B1‖(A∗)m f‖ ≤ ∑
g∈G

∞

∑
n=0
|〈(A∗)m f ,Ang〉|2.

Since the right side of the inequality tends to zero as m tends to infinity we get that

(A∗)m f → 0 as m→ ∞.

Corollary 5.0.2. For any unitary operator A : H →H and any set of vectors G ⊂H ,

{Ang}g∈G , n≥0 is not a frame in H .

If for every f ∈H , (A∗)n f → 0 as n→ ∞, then we can get the following existence

theorem of frames for H from iterations.
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Theorem 5.0.3. If A is a contraction (i.e., ‖A‖ ≤ 1), and for every f ∈H , (A∗)n f → 0 as

n→ ∞, then we can choose G ⊆H such that {Ang}g∈G , n≥0 is a tight frame.

Remark 5.0.4. The system we find in this case is not very useful since the initial system G

is “too large” (it is complete in H in some cases). Moreover, the condition ‖A‖ ≤ 1 is not

necessary for the existence of a frame with iterations. For example, we can take nilpotent

operators with large operator norm for which there are frames with iterations.

Proof. Suppose for any f ∈H , (A∗)n f → 0 as n→ ∞ and ‖A‖ ≤ 1. Let D = (Id−AA∗)
1
2

and V = cl(DH ). Let I be an orthonormal basis for V . Then

m

∑
n=0

∑
h∈I
|〈 f ,AnDh〉|2 =

m

∑
n=0

∑
h∈I
|〈D(A∗)n f ,h〉|2

=
m

∑
n=0
‖D(A∗)n f‖2

=
m

∑
n=0
〈D2(A∗)n f ,(A∗)n f 〉

=
m

∑
n=0
〈(Id−AA∗)(A∗)n f ,(A∗)n f 〉

= ‖ f‖2−‖(A∗)m+1 f‖.

Taking limits as m→ ∞ and using the fact that (A∗)m f → 0 we get from the identity above

that

∞

∑
n=0

∑
h∈I
|〈 f ,AnDh〉|2 = ‖ f‖2.

Therefore the system of vectors G = {g = Dh : h ∈I } is a tight frame for H .

Theorem 5.0.5. If dimH = ∞, |G |< ∞, and {Ang}g∈G , n≥0 satisfy the lower frame bound,

then ‖A‖ ≥ 1.

Proof. Suppose ‖A‖ < 1. Since {g}g∈G is finite and dim(H ) = ∞, for any fixed N there

exists a vector f ∈H with ‖ f‖= 1 such that 〈Ang, f 〉= 0, for every g ∈ G and 0≤ n≤ N.
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Then

∑
g∈G

∑
n≥0
|〈Ang, f 〉|2 = ∑

g∈G

∞

∑
n=N
|〈Ang, f 〉|2 ≤ ∑

g∈G
‖g‖

∞

∑
n=N
‖A‖2n→ 0

as N→ ∞ hence the lower frame bound cannot hold.

Corollary 5.0.6. Suppose {Ang}g∈G , n≥0 with |G |< ∞ satisfy the lower frame bound. Then

for any coinvariant subspace V ⊂H of A with ‖PV APV ‖< 1 we have that dim(V )< ∞.

Proof. V is coinvariant for A that is equivalent to

PV A = PV APV .

It follows that PV An = PV AnPV . Hence, if {Ang}g∈G , n≥0 satisfy the lower frame inequality

in H , then {(PV APV )ng}g∈G , n≥0 also satisfy the lower frame inequality for V and hence

from the previous theorem if dim(V ) = ∞, then ‖PV APV ‖ ≥ 1.
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Chapter 6

Dynamical sampling in shift-invariant spaces

In this chapter, we formulate the problem of dynamical sampling in shift-invariant

spaces and study its connection to the dynamical sampling in `2(Z). We show that, in

some cases, the problem of dynamical sampling in a shift-invariant space can be reduced

to the problem of dynamical sampling in `2(Z). In other cases when this reduction is not

possible, we provide specific reconstruction results.

6.1 Formulation of the problem

Let V =V (φ) be the shift-invariant space generated by φ . We assume the atom φ is in

the space W0(L1) :=W (L1)∩C(Rd) and satisfies the condition (2.1):

α ≤Φ(ξ )≤ β , a.e. ξ ∈
[
−1

2
,
1
2

]
,

where Φ(ξ ) = ∑k∈Z |φ̂(ξ + k)|2. Then any function f in V has a representation

f (t) = ∑
k∈Z

ckφ(t− k) (6.1)

for some c = (cn)n∈Z ∈ l2(Z), also f is continuous and can be sampled at any x ∈ Rd .

We assume the evolution operator A is given as a convolution with some kernel a ∈

L1(R) and the measurements are given by samples with uniform rate m: Ω0 = · · ·=ΩL−1 =

mZ. Thus, the dynamical sampling problem becomes to recover, preferably in the stable

way, the function f ∈V (φ), given the samples

y0 = f |mZ, y1 = (a∗ f )|mZ, . . . yn = (aL−1 ∗ f )|mZ. (6.2)
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For a∈ L1(Rd), we have a∗φ ∈W0(L1) whenever φ ∈W0(L1) from Proposition 2.2.3. This

means that A maps V (φ) onto another SIS V (a ∗φ); under these restrictions an f lies in a

shift-invariant space generated by another function a∗φ .

Lemma 6.1.1. For a vector g ∈ `2(Z),

(̂Smg) (ξ ) =
1
m

m−1

∑
s=0

f̂
(

ξ + s
m

)

where Sm denotes the downsampling operator with rate m given by Sm(k)g = g(mk), ∀k ∈

Z.

Proof. From the definition

m−1

∑
l=0

f̂
(

ξ + l
m

)
=

m−1

∑
l=0

∑
s∈Z

f (s)e
−2πi(ξ+l)s

m = ∑
s∈Z

m−1

∑
l=0

f (s)e
−2πi(ξ+l)s

m

= ∑
s∈Z

f (s)e
−2πiξ s

m

m−1

∑
l=0

e
−2πls

m = m ∑
s∈Z

f (s′m)e−2πiξ s′

since
m−1

∑
l=0

e
−2πls

m =

 m, when s ∈ mZ

0, when otherwise
.

Lemma 6.1.2. Let Φn be the restriction of Anφ ∈W0(L1) to the set of integers: Φn =Anφ |Z.

Then Φn ∈ `1(Z) and the corresponding Fourier series of sub-sampled states are

ŷn(ξ ) =
1
m ∑

l∈Zm

ĉ
(

ξ + l
m

)
Φ̂n

(
ξ + l

m

)
. (6.3)

Proof. The proof of the fact Φn ∈ `1(Z) can be found in [10]. Notice that, yn = Sm(c∗Φn),

where Sm is the downsampling operator. Then using the Lemma 6.1.1 we conclude the

proof.
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Remark 6.1.3. Note that, if the Poisson Summation formula holds for Anφ , then Φ̂n(ξ ) is

just the periodization of (Anφ )̂(ξ ) = ân(ξ )φ̂(ξ ):

Φ̂n(ξ ) = ∑
k∈Z

ân(ξ + k)φ̂(ξ + k).

Using the following matrix notation

ΦL(ξ ) =



Φ̂0(
ξ

m) Φ̂0(
ξ+1

m ) . . . Φ̂0(
ξ+m−1

m )

Φ̂1(
ξ

m) Φ̂1(
ξ+1

m ) . . . Φ̂1(
ξ+m−1

m )

...
...

...
...

Φ̂L−1(
ξ

m) Φ̂L−1(
ξ+1

m ) . . . Φ̂L−1(
ξ+m−1

m )


,

C̄(ξ ) =



ĉ
(

ξ

m

)
ĉ
(

ξ+1
m

)
...

ĉ
(

ξ+m−1
m

)


and Ȳ (ξ ) =



ŷ0(ξ )

ŷ1(ξ )

...

ŷL−1(ξ )


The equations (6.3), for each n = 1, . . . ,L− 1, can be combined together and written in

matrix form:

Proposition 6.1.4. For each n = 1, . . . ,L−1,

ΦL(ξ )C(ξ ) = Y (ξ ), ∀ξ ∈ [0,1]. (6.4)

Corollary 6.1.5. Let f ∈V =V (φ). We can recover the coefficients sequence {cλ}λ∈Zd in

the expansion (6.1) of f from the collection of samples

yn = (An f (n))n∈mZ n = 0,1, . . . ,m−1,

if and only det(Φm(ξ )) 6= 0 for a.e. ξ ∈ [0,1]. And we can recover in stable way if and only
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if |det(Φm(ξ ))|> α a.e. for some α > 0.

Theorem 6.1.6. If ΦL(ξ ) is singular only when ξ ∈ {ξi}i∈I , where |I| < ∞, and J is a

positive integer such that |ξi−ξ j| 6= k
J for any i, j ∈ I and k ∈ {1, . . . ,m−1}, then the extra

samples {SmJTc f} combined with

yn(k) = (An f (mk))k∈Z, n = 0,1,2, ...,L−1

allow a stable recovery of f ∈V (φ).

6.2 Reduction to `2(Z) case

Under the appropriate conditions on φ , the dynamical sampling in SIS reduces to the

discrete case `2(Z). To establish this connection we use the following theorem

Theorem 6.2.1. Let V (φ) be the SIS generated by the function φ . For a kernel a(t) such

that â ∈ L∞(R), the following are equivalent

1. a∗φ ∈V (φ)

2. a∗V (φ)⊆V (φ)

3. there exists a convolutor b with b̂ ∈ L∞ such that for any c ∈ `2(Z)

a∗ (c∗sd φ) = (b∗d c)∗sd φ (6.5)

4. for every k ∈ Z and a.e. ξ ∈ [0,1]

â(ξ + k)φ̂(ξ + k) = b̂(ξ )φ̂(ξ + k) (6.6)

for some function b̂(ξ ) ∈ L2 [0,1].
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Proof. (1)⇒ (4) If a∗φ ∈V (φ), then there exists (bk)k∈Z ∈ `2(Z) such that

a∗φ(x) = ∑
k∈Z

bkφ(x− k). (6.7)

Taking the Fourier transform of both sides of the (6.7), for

b̂(ξ ) = ∑
k∈Z

bke−2πikξ

we get â(ξ )φ̂(ξ ) = b̂(ξ )φ̂(ξ ) which is the same as (6.6), since b̂ is 1-periodic.

(4)⇒ (3) From (6.6), we get

∑
k
|â(ξ + k)|2|φ̂(ξ + k)|2 = |b̂(ξ )|2 ∑

k
|φ̂(ξ + k)|2.

Since â ∈ L∞, using (2.1) we get |b̂(ξ )|2 ≤ ‖â‖2
∞, so that b̂ ∈ L∞[0,1]. The conclusion

follows by multiplying both sides of (6.6) with ĉ(ξ ), where

ĉ(ξ ) = ∑
k∈Z

cke−2πikξ ,

and taking the inverse Fourier transform.

(3)⇒ (2) Noting that b̂ĉ ∈ L2[0,1] implies b∗c ∈ `2, we see clearly that the right hand

side of (6.5) is in V (φ).

The implication (2)⇒ (1) is straight forward.

Note that we can reduce the dynamical sampling problem in V (φ) to the one in `2(Z)

using the theorem above. Specifically, if φ ∈ W0(L1) and the condition that Φ̂0(ξ ) =

∑k φ̂(ξ + k) 6= 0, then for each f = c ∗sd φ we associate x ∈ `2 by x = f (Z). The map

f 7→ x from V (φ) to `2 is well-defined, since φ ∈W0(L1). Note that the convolution op-

erator a ∗ f corresponds to the discrete convolution b ∗d x where b is obtained from a as

in Theorem 6.2.1. Hence Sm(an f ) = Sm(bnx). By solving the dynamical system on `2 to
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obtain x, we can recover f by finding ĉ = x̂/Φ̂0. Since Φ̂0 is continuous and nonzero,

ĉ ∈ L2[0,1].

As a particular case of Theorem 6.2.1, if the sets Ek = {supp φ̂(ξ +k),ξ ∈ [−1/2,1/2]}

are disjoint, it is a sufficient conditions for the (6.6) to hold, as we can take

b̂(ξ ) = ∑
k∈Z

â(ξ + k)χEk for ξ ∈ [−1/2,1/2].

For φ = sinc, as discussed in the introduction, we get the following corollary.

Corollary 6.2.2. The dynamical sampling problem in PW (R) =V (sinc) can be reduced to

that of the dynamical sampling in `2(Z) with

b̂(ξ ) = â(ξ )χ[−1/2,1/2](ξ )

for ξ ∈ [−1/2,1/2].

The condition under which the dynamical sampling problem in SIS can be reduced to

that in `2(Z) can be further elucidated by the following theorem which can be proved by

solving (6.6).

Theorem 6.2.3. Let φ ∈ L2 be such that {φ(· − k) k ∈ Z} is a Riesz basis for its closed

span V (φ) with E = supp φ̂ . For a convolutor a such that â ∈ L∞, and any of the equivalent

conditions (1)-(4) of Theorem 6.2.1 is satisfied, then there exists g ∈ L∞ such that

â = b̂χE +gχEc. (6.8)

Conversely, if (6.8) holds, for a 1-periodic b̂ ∈ L∞, some g ∈ L∞ and a measurable

set E such that ∑ j χE(ξ + j) ≥ 1 a.e. ξ then clearly â ∈ L∞. In addition, for any φ with

E = supp φ̂ satisfying (2.1) (i.e., {φ(· − k) k ∈ Z} is a Riesz basis for V (φ)), the four

equivalent conditions of Theorem 6.2.1 are satisfied.
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