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Chapter 1: Introduction 
 

1.1 Motivation 

In the push to decarbonize our electricity and transportation sectors, the continued reduction in 

the cost of electrical energy storage is critical. Intermittent renewable resources, such as solar and wind, 

require low-cost electrical energy storage to provide grid flexibility. Similarly, the wide-spread success 

of electric vehicles relies on their cost competitiveness, which hinges on the cost of their battery pack. 

Li-ion batteries have emerged as the best-suited technology to meet the demands of both of these 

applications. However, the cost-sensitivity of these applications and the concerns over the limited 

reserves of Li precursors motivates the need to develop alternative strategies for low-cost electrical 

energy storage.  

 

1.2 History and overview of Li-ion batteries 

In 1976, after extensive research at Exxon, Stanley Whittingham reported a breakthrough 

rechargeable electrochemical energy storage device.1 By today’s standards, Whittingham’s motivation 

may appear out of place for a scientist working at an oil company, as he sought to develop technology 

that would enable “electric vehicle propulsion and the storage of off-peak and solar power”. More than 

40 years later, this goal remains a major motivation for continued research into new battery 

technologies, and is the driver of my thesis research. 

Using a TiS2 cathode, a Li metal anode, and an electrolyte of LiClO4 dissolved in a mixture of 

ether solvents, dimethoxyethane (monoglyme) and tetrahydrofuran (THF), Whittingham demonstrated a 

high specific energy battery capable of reversible cycling. The cell as assembled was in a charged state. 

During discharge, the Li metal anode oxidized, releasing Li ions into the electrolyte that were inserted 
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into the layered TiS2 cathode as it was reduced. The discharge of the cell would continue until either all 

of the Li metal was depleted or all of the TiS2 was saturated with Li, forming LiTiS2. This limit on the 

charge stored is referred to as the capacity, often expressed with respect to the mass of the electrodes. 

Here, the Li anode has a high capacity of 3860 mAh/g (owing to its exceptionally low atomic mass, 0.53 

g/cm3) and the TiS2 cathode has a capacity of 240 mAh/g (corresponding to one electron per TiS2). 

Accordingly, to balance this cell with respect to capacity, the mass of the cathode would need to be 16 

times the mass of the anode. The voltage of the cell was determined by the difference in the 

electrochemical potential of the two electrodes, with the difference between Li metal and the Ti3+/4+ 

redox couple providing a maximum of 2.5 V, but an average discharge of 2.12 V. The corresponding 

specific energy of this cell can be calculated with respect to the mass of the electrodes as follows: 

𝐸 = #$#%		
#$'#%

× (𝜇+ −	𝜇-)/𝑒   (Eq. 1) 

where Q is the specific capacity of the anode or cathode, and µ is the electrochemical potential of the 

anode or cathode. The specific energy of Whittingham’s Li cell was calculated as 480 Wh/kg with 

respect to the active materials, far surpassing the aqueous Ni-Cd batteries.1, 2  

Despite Whittingham’s monumental work, early efforts to commercialize rechargeable Li metal 

batteries proved problematic.3 The high reactivity of the Li metal anode, with its electrochemical 

potential above the lowest unoccupied molecular orbitals (LUMO) band of the organic electrolyte led to 

the corrosion of the Li metal and the continuous growth of a solid-electrolyte interface (SEI) layer 

consisting of decomposed electrolyte. To compensate for the inadequate cycling efficiency (<99%), a 

large excess of Li was required. (Notably, even a 1% charge loss per cycle would causes a battery to 

lose over 60% of its capacity in 100 cycles.) Moreover, the lack of a host material to store the Li at the 

anode led to the rapid shape change of the Li, with the uneven deposition of Li during charging creating 
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needle-like growths (referred to as dendrites). Such dendrites posed a safety risk as they could short the 

cell, creating a fire hazard. 

 

 

 

Figure 1: Battery configurations: (a) Li metal battery using Li metal anode, (b) Li-ion battery with anode host. 

	
To solve the problems of the Li metal battery, researchers aimed to create Li-ion batteries, where 

Li ions could be transferred back and forth between two host materials without the use of Li metal. 

Figure 1 shows illustrations of the Li metal and Li-ion batteries. In the case of the Li-ion battery, 

the use of a host material provides structure to the anode, alleviating the concerns with Li plating and 

enhancing the lifespan and operation stability of the Li-ion cells. However, the added mass of the host 

and the inevitable decrease in the electrochemical potential of the reaction at the host decreased the 

achievable specific energy. In addition, lithiated cathodes were required to provide the Li, as the new 

anode hosts did not contain Li. This requirement was met by John Goodenough and others, who 

developed a family of lithiated transition metal oxide cathodes of the form LiMO2 (where M is a 

transition metal) that could supply cells with Li and offer higher operating voltages. Among the array of 
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materials studied, LiCoO2 (abbreviated as LCO) emerged as the most favorable, with Sony selecting it 

for its Li-ion battery released in 1991. 

 

Figure 2: Illustration of the stage formation that occurs during the electrochemical intercalation of Li ions into 
graphite. Reproduced from Ref. 4 with permission. Copyright 1998, Wiley. 

 

To serve as the anode host, researchers considered a range of materials, including Li-alloying 

metals, transition-metal oxides, and carbons.4 Although the alloying metals, such as Al, could provide 

higher capacities, graphite proved to be the material of choice as it offered a higher electrochemical 

potential, a flat voltage profile, and eventually would allow for high reversibility. The process by which 

ions insert into graphite is known as intercalation. Intercalation into graphite and the resulting graphite 

intercalation compounds had already been extensively researched and characterized over the previous 50 

years by material scientists, notably including the late Mildred Dresselhaus, because of their unique 

structures and electronic properties.5 Following a remarkably ordered fashion, Li (as well as a number of 
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other known guest species) can electrochemically intercalate into graphite (illustrated in Figure 2). 

During this process, a series of stages are sequentially formed, where the Li ions occupy galleries 

between separated layers of graphene. Since it is thermodynamically favorable to maximize the out-of-

plane distance between layers of intercalated guests, a long-range periodic ordering is maintained during 

this process. The stage number, which corresponds to the number of graphene layers between each 

gallery of guest species, decreases as more guest species are inserted. When the final stage 1 compound 

is reached, galleries of ions separate each graphene layer. 

To enable the stable performance of the graphite anode, it was found that the intercalation of Li 

ions needed to be exclusive. When using solvents such as propylene carbonate (PC), however, 

researchers learned that solvated Li ions, rather than naked Li-ions, preferentially intercalated into the 

graphite. This cointercalation of ion and solvent proved to be highly detrimental. As the reaction 

proceeded, the electrochemical potential surpassed the LUMO energy level of the PC and caused it to 

decompose inside the graphite. As a result, the graphite was shown to undergo exfoliation, which was 

accompanied by a rapid drop in performance (as illustrated in Figure 3).4, 6 To prevent cointercalation, 

researchers discovered that ethylene carbonate (EC), with its decreased cathodic stability (lower LUMO 

energy level), decomposed before inserting into the graphite. The SEI layer that was formed with EC 

conveniently allowed Li ion conduction into the graphite, but blocked solvent and further electron 

transfer to the electrolyte. In order to utilize EC in Li-ion cells, EC, which is a solid at room 

temperature, was mixed with less viscous carbonates, such as diethyl carbonate (DEC). 
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Figure 3: (a) Problematic cointercalatian of ion and solvent molecule, (b) intercalation of naked ion enabled by a 
stable SEI layer.  

Progress with the graphite anode enabled the development of the Li-ion battery that is still used 

today. While a multitude of cathode materials are commercially used, such as LiFePO4 (LFP) and 

LiMn2O4 (LMO), to serve a range of niche applications, the LCO-graphite cell has remained the 

industry standard for over twenty years.7 Unlike the Li-TiS2 cell introduced by Whittingham, the Li-ion 

battery is assembled in a discharged state. During charging, the LiCoO2 cathode serves as the source of 

Li ions, with the Li deintercalating until Li0.5CoO2 composition is reached, providing a capacity of 136 

mAh/g at a voltage of ~4 V vs. Li/Li+. (Further delithiation of Li0.5CoO2 is avoided, as it results in 

irreversible structural changes and undesirable reactions with the electrolyte). At the anode, the Li ions 

intercalate into graphite, with a maximum capacity of 372 mAh/g (forming LiC6) at an average potential 

of ~0.1 V vs. Li/Li+. The specific energy of this pairing (using Equation 1) is ~390 Wh/kg. In practice, 

however, the specific energy of commercial cells is significantly reduced, as additional components are 

required, including: electrode additives (conductive carbon and polymer binders), polymer separator, 

metal foil current collectors (Cu at the anode and Al at the cathode), and the packaging (either pouch or 

can). Furthermore, cells lose approximately 10% of their capacity during the initial charging (due to the 

formation of the SEI layer and other irreversible processes), and excess anode material is used to prevent 
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the over-charging of the anode (which problematically results in the plating of Li metal on the anode). 

As a result, commercial LCO-graphite cells have specific energies of 150-200 Wh/kg.  

While as of 2015, the LCO-graphite cells remained the dominant chemistry, the battery industry 

has now been moving towards LiNiXMnyCo1-x-yO2 cathodes (abbreviated as NMC accompanied by 3 

numbers corresponding to the atomic ratios of the transition metals).7 NMC 111 has emerged as an 

attractive replacement of LCO because it can deliver higher power and improved thermal stability 

(making it safer), while reducing the amount of cobalt required. Going forward, the trend appears to be 

to further increase the Ni content to achieve higher capacities, with so-called Ni-rich NMCs (532, 622 or 

811).8 In addition, for the anode, many battery companies are adding (or working to add) Si, which 

alloys with Li with a specific capacity of up to 4,200 mAh/g, to graphite to increase the capacity.9 

Nevertheless, despite our society’s growing dependence on Li-ion technology, the cell-level chemistry 

and working principles have continued to remain relatively consistent over the last 27 years.  

As this brief overview primarily serves as an introduction to the Li-ion battery to provide context 

to my dissertation work, it skips many of the important achievements that have led to the success of Li-

ion technology. I recommend references 2, 4 and 6 for a more comprehensive perspective on the history 

and current status of Li-ion batteries.  
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1.3 Overview of Na-ion batteries  

Until recently, the high cost of Li-ion batteries has mainly limited their usage to small 

applications, such as portable electronics and power tools, and excluded them from the larger 

applications that are more cost-sensitive, such as stationary electric storage and vehicles. This is now 

beginning to change as a recent decline in the price of Li-ion cells has been accompanied by a rise in the 

demand for stationary storage and electric vehicles. However, the rapid growth of the Li-ion battery 

market has led to concerns about the limited supply of Li. In addition, since most of the world’s reserves 

of Li are in Chile and China, the United States may be vulnerable if it begins to rely heavily on Li-ion 

technology for its electric grid and transportation sector.      

 Accordingly, there is great interest in developing alternative high-performance batteries that do 

not use Li. Among the alternative chemistries considered, including: Na, K, Mg, Ca, and Al), Na stands 

out with its great abundance (approximately 1000 times as abundant as Li in the Earth’s crust, with large 

reserves in the United States) and its similarity to Li (it is one row below Li on the periodic table). In 

addition to Na precursors (i.e. Na2Co3) being ~30 times cheaper than Li precursors (Li2CO3), the Cu foil 

negative current collector used in Li-ion batteries can be replaced, when using Na, by the significantly 

cheaper and lighter Al foil.9, 10 This is possible because Na, unlike Li, does not electrochemically alloy 

with Al.  

 Prior to the successful development of the Li-ion battery, there was initial research conducted on 

Na intercalation electrodes.11 However, research efforts were mainly abandoned as most of the focus 

shifted to Li-ion. Then around 2010, concerns about the limited reserves of Li and interest in stationary 

storage revived the Na-ion field.  
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Table 1: Comparison of Li and Na. 

 Li Na 

Abundance in Earth’s Crust (ppm) 20 23,000 

Mass (g/mol) 6.9 23.0 

Ionic Radius (pm) 76 102 

E0 vs. Li/Li+ (V) 0  0.34 

 

While Na-ion batteries are not expected to be capable of competing with Li-ion batteries with 

respect to specific energy, they have attracted attention for cost-sensitive applications, mainly stationary 

storage (but potentially transportation as well). The main disadvantages of Na (in contrast to Li) is its 

lower electrochemical potential (which limits the voltage of the cell), the larger ionic radius, and the 

heavier atomic mass (shown in Table 1).  

The goal of Na-ion research has been to utilize the vast knowledge that has been accumulated in 

the Li-ion field to develop an analogous Na-ion battery. Unfortunately, this has not proved to be a 

straightforward endeavor. In comparison to Li cathodes, Na cathodes have shown lower operating 

voltages, lower specific capacities, and more complicated structural transformations during 

sodiation/desodiation.12 Nonetheless, researchers have reported new layered transition-metal oxides,13, 14 

and polyanion compounds (including phosphates, fluorophosphates and hexacyanometalates)15-19 

capable of reversibly storing Na with promising specific capacities. Figure 4a shows many of the 

reported Na cathodes plotted with respect to their reported capacities and voltages.   
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Figure 4: Operating voltage vs. specific capacity for Na-ion (a) cathodes and (b) anodes. The difference between 
the operating voltage of the anode and cathode determines the full-cell operating voltage. Reproduced from Ref. 
9 with permission. Copyright 2016, Nature Publishing Group. 
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For the anode, the use of graphite was originally ruled out because unlike Li and K, Na was not 

found to form a binary graphite intercalation compound, such as LiC6 or KC8, with significant ion-

storage capacity.20 This critical drawback of transitioning to Na led to the investigation of a range of 

alternative anode materials. Non-graphitized carbon materials with an increased interlayer spacing 

known as hard carbons are considered the most practical option, offering up to 300 mAh/g capacity. 

However, their poor rate capabilities and large irreversibly capacities remain obstacles to Na-ion battery 

development. Alternatively, elements that alloy with Na, such as Sn, Pb, Bi and P, have been shown to 

offer higher specific capacities, but the large volumetric change during charging and discharging 

associated with the high capacity leads to mechanical degradation and poor cycling performance. Figure 

4b shows many of the reported Na-ion anodes plotted with respect to their reported capacities and 

voltages. With a growing interest in Na-ion batteries, researchers continue to report new materials and 

materials structures, new electrolyte combinations, and new characterization approaches to progress the 

field. 

 Building on these advancements, a number of research groups have demonstrated full Na-ion 

cells. However, in the context of present day Li-ion technology, the current practicality of such Na-ion 

cells remains questionable, even for applications where cost is more important than performance. This is 

because the final cost per kilowatt-watt ($/kWh) of a cell is a function of both the specific energy 

(Wh/kg) as well as the material cost ($/kg). In this respect, the key shortcoming of these Na-ion batteries 

is the achievable specific energy. Choi and Aurbach highlighted this concern in their recent review 

article.9 Comparing the expected cost of Na-ion pouch cell with a Li-ion pouch, they found that the Na-

ion battery was actually expected to result in a 27% increase in cost per kWh. In light of this issue, it 

remains unclear if going forward Na-ion batteries can provide a sufficient material cost savings to 

compensate for their lower specific energy, and reach cell costs per kWh below state-of-the-art Li-ion 
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batteries.9, 21 While rising Li prices can change this calculus, the cost of Li only currently accounts for 

less than 3% of the cost of a Li-ion cell. This is not to say that Na-ion battery research should be 

abandoned. Instead, I believe this shortcoming should be more directly addressed by the research 

community. In addition, there should be a greater divergence of research, with an increased focus on less 

conventional strategies to develop Li-ion analogues.22, 23 This is the direction that I take in this 

dissertation. 

Rather than developing Na-ion cells analogous to commercial Li-ion cells, I focus on the unique 

advantages of Na, in the attempt to develop a battery that offers higher performance than what can be 

achieved using the analogue strategy. This effort has led me to work on Na systems that are considered 

highly problematic for Li. Specifically, in this dissertation, I first examine the cointercalation of solvated 

Na ions into graphitic carbon. In contrast to the cointercalation of Li, which is known to lead to graphite 

exfoliation, Na ion cointercalation is shown to be highly reversible while offering exceptional rate 

capability. Then, I explore the electroplating of Na metal, and go on to develop a Na metal battery using 

an “anode-free” configuration. While such an approach results in instabilities with Li, I demonstrate a 

stable Na metal battery, achieving a specific energy competitive with current Li-ion cells.    

Throughout this work I exclusively use the electrolyte 1M NaPF6 in the linear ether diethylene 

glycol dimethyl ether (diglyme). While the focus of this work is on the electrode materials, it is 

important to initially highlight this electrolyte and provide a brief background on its use with Na. 

 

1.4 Na, diglyme and NaPF6 

The downfall of Whittingham’s original Li battery was the high reactivity of the Li metal with 

the electrolyte and the resulting unstable SEI layer. Na metal has also been reported to be highly 

unstable in electrolytes, with reports showing it to be even more problematic than Li. However, as I 
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discuss here, this was later shown to be solvable using the right electrolyte. The commonly noted 

disadvantage of Na for battery development is its electrochemical potential that is below Li (or less 

negative in terms of standard reduction potentials). It makes sense, however, that the lower 

electrochemical of Na can be advantageous for stable SEI formation. Examining the comparisons 

between the electrochemical windows of different solvents (shown in Figure 5), the ethers possess the 

highest cathodic stability (or highest LUMO energy level), meaning they require more energy to reduce. 

(This may be one of the reasons that Whittingham used ethers in his Li battery.) In this respect, the 

combination of Na with ethers provides a unique opportunity for increased stability. 

 

Figure 5: (a) Illustration of the electrochemical window of different solvent families using tetraalkyl ammonium 
salts. Adapted from Ref. 6 with permission of The Royal Society of Chemistry. (b) Illustration of the relative 
energies of the anode and cathode with respect to the electrolyte window (Eg). 

 

Figure 6: Illustration of a Na ion coordinated to two diglyme molecules. 
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 In 2013, P. Hartmann (working with P. Adelhelm and J. Janek in Germany) reported a Na-O2 

cell using a diglyme electrolyte with surprisingly promising performance, concluding that Na-O2 

batteries may be preferable to Li-O2 batteries. 23 The following year, B. Jache and P. Adelhelm reported 

that Na ions and solvent could reversibly cointercalate into graphite, again using a diglyme electrolyte.24 

In contrast to the early problems reported for cointercalation for Li-ion cells, the reversible 

cointercalation of diglyme and Na ions appeared to be due to the stability of the electrolyte, with 

significant decomposition of the electrolyte in the graphite not occurring. (Around this time, I was using 

a diglyme-based electrolyte to determine if Mg ions could be stored in carbon. However, I shifted my 

focus to Na cointercalation after reading the report by Jache and Adelhelm.)  

In 2015, Z. Seh (working with Y. Cui at Stanford) reported an extensive study of the stability of 

Na metal in different electrolytes, testing different glymes and carbonates as well as five different Na 

salts. This work showed Na to be remarkably stable in monoglyme, diglyme, and tetraglyme when using 

a NaPF6 salt. In contrast, Na was shown to be highly unstable in carbonates (as had been previously 

reported), and glymes using other Na salts, including: NaN(SO2CF3)2, NaSO3CF3, NaN(SO2CF)2, and 

NaClO4. To better understand their findings, x-ray photoelectron spectroscopy (XPS) with depth 

profiling was conducted on the SEI layers formed on the surface of the Na in these different electrolyte 

combinations. Seh found that the NaPF6-glyme combination produced a very thin (~4 nm), compact SEI 

layer that mainly consisted of inorganic species (NaF and NaO2). The underlying reason for this, as I 

understand it, goes as follows: PF6- or the impurities found in NaPF6 (NaF is mentioned to be potentially 

important) preferentially reduce at the surface of the Na metal prior to the reduction of glymes (owing to 

their higher reductive stability). The reduction of the inorganic species first promotes the formation of a 

compact inorganic film that effectively passivates the Na metal, blocking further side reactions with the 

electrolyte. In contrast, the use of carbonates or other Na salts either favors the reduction of the solvent 
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first (creating a porous organic SEI layer that poorly passivates the Na) or still leads to the reduction of 

the salt first, but the SEI layer created by these other salts does not sufficiently prevent the continued 

reduction of the solvent. (At the time this paper was published, I was already experimentally realizing 

the stability of Na plating on/under graphene films using 1M NaPF6 in diglyme electrolyte, but I was 

mainly unaware of why this electrolyte was special.) 

Since the publication of these initial successes, diglyme-based electrolytes have been utilized for 

a range of different Na-ion electrodes. Notably, significant improvements in the cycle lifespan and rate 

capability have recently been shown for bulk pyrite,25 bulk Sn,26 bulk Bi,27, and bulk Pb (K. Wolfe et al., 

manuscript in preparation). 

 

1.5 Dissertation organization  

This dissertation is organized as follows: 

Chapter 2 presents the investigation of the cointercalation of Na ions with glyme molecules into 

graphitic carbon. Following initial work showing promising performance, the reaction is characterized 

using a few-layer graphene electrode, demonstrating remarkably high rate capability and cycle lifespan. 

In order to better understand the cointercalation phenomenon, in-situ Raman spectroscopic experiments 

are performed. New insight on the staging process is provided, including the Fermi level of the first and 

second stage compound. 

Chapter 3 presents the first anode-free Na metal battery. It is shown that a nucleation layer can 

facilitate the stable plating and stripping of Na metal. Half-cell testing is shown, with 1000 stable cycles. 

Finally, a proof-of-concept full cell is demonstrated using a pre-sodiated pyrite cathode to achieve a 

specific energy of 400 Wh/kg, surpassing the theoretical value for the LCO-graphite cell and all 

previous reports on Na-ion batteries. 
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Chapter 4 presents a follow-up study comparing different nucleation layer compositions. A 

range of carbon materials and alloying metals are evaluated as nucleation layers. The initial Na-ion 

storage characteristics and the nucleation energetics are highlighted to be important in determining the 

performance of Na metal plating and stripping on these different nucleation layers. Carbon black is 

demonstrated to promote the best performance. In addition, it is shown that the problem of high first-

cycle charge loss can be overcome by using the anode-free approach.  

Chapter 5 presents the further development of the anode-free Na metal battery with a focus on 

the cathode and full-cell testing. The selection and synthesis of a carbon-coated Na3V2(PO4)3 cathode is 

described. Anode-free cells are shown to exhibit a high energy efficiency of 98% and a flat operating 

voltage at 3.35 V. In addition, cells cycled 100 times at 0.25 mA/cm2 (~C/6) and 0.5 mA/cm2 (~C/3), are 

shown to retain 70.4% and 82.5% of their initial capacity, respectively.  

Chapter 6 presents the use of a cathode with a Na surplus to extend the cycle life of anode-free 

cells. Half-cell testing shows that a Na metal surplus facilitates improved Coulombic efficiency. In 

addition, the initial plating current is highlighted as a variable that can further control the cycle lifespan. 

Finally, a Na4V2(PO4)3 cathode is used to extend the lifetime of an anode-free cell to over 200 cycles. 

Chapter 7 summarizes my work and discusses future opportunities.  
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Chapter 2: Cointercalation of Solvated Na Ions into Few-Layer Graphene 
 

2.1 Introduction 

In this chapter I investigate the cointercalation of Na ions and glyme into few-layer graphene 

foam electrodes using standard electrochemical testing and a series of in-situ Raman experiments in 

order to gain a better understanding of the cointercalation process. 

 

2.2 Background 

 The most practical anodes for Na-ion batteries are considered to be hard carbons. However, their 

poor rate capabilities and large irreversible capacities remain to be critical obstacles to Na-ion battery 

development. In this respect, since power-balancing applications for the electric grid require energy 

storage devices that can provide fast response times and long cycle lives, the viability of Na-ion batteries 

for this important application remain in question. 

However, an exciting new opportunity for Na-ion anodes was presented 2014. While the 

cointercalation of Li ions and solvent into graphite is considered a significant problem for Li-ion 

batteries, the cointercalation of Na ions and solvent has been reported to exhibit remarkable reversibility. 

This is especially of interest because graphite does not allow the intercalation of “naked” Na ions with 

any considerable capacity, and graphite is the industry-standard anode for Li-ion batteries.  This 

successful cointercalation of Na ions and solvent into graphite was first reported in 2014 by B. Jache and 

P. Adelhelm, with 1000 cycles of stable operation.24 A follow-up study conducted by H. Kim et al. in 

2015 confirmed the finding, and also showed exceptionally fast kinetics.28 Despite the impressive 

performance, many questions remained about this cointercalation process, and the origin of this 

promising performance. These questions include: (1) how does the graphite structure change during 
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cointercalation? (2) how does cointercalation differ from “naked” intercalation? (3) why are the kinetics 

so fast? (4) does an SEI layer form on the graphite? (5) why does exfoliation not occur?  

 In order to better understand the unique cointercalation into graphite, I first conducted initial 

electrochemical tests using a few-layer graphene foam electrode, and then carried a series of in-situ 

Raman experiments. 

 

2.3 Methods 

2.3.1 Material fabrication and characterization  

Few-layer graphene (FLG) foam was grown using chemical vapor deposition (CVD) on a nickel 

foam substrate29 (110 ppi from MTI) using a C2H2 precursor using a 1” quartz tube in a Lindberg/Blue 

tube furnace. The foam was heated to 850 oC under flows of Ar and H2 and annealed for 10 minutes. 

Then C2H2 was introduced with respective flow rates of C2H2:H2:Ar at 0.3:3:500 sccm for 6 minutes. 

Finally, the C2H2 flow was halted and the system was cooled to room temperature.  

Raman measurements were performed using a Renishaw inVia Confocal Raman spectrometer. 

Micro-Raman maps were conducted using a 2.33 eV laser using an L50x object with a laser spot size of 

~1.5 µm and a laser power of 350 µW. X-ray diffraction measurements were conducted using a using a 

Scintag XGEN 4000 system with a CuKα radiation source. SEM characterization was performed using a 

Zeiss MERLIN with GEMINI II SEM. TEM characterization was performed using a FEI Tecnai Osiris. 

 

2.3.2 Electrochemical testing 

Coin cells were assembled in an Ar filled glove box using a Na metal (Sigma Aldrich, 99.95%) 

counter/reference electrode, an electrolyte of 1M NaPF6 (Strem, 99%) in anhydrous diglyme (Sigma 

Aldrich, 99.5%), and a Whatman grade GF/F glass fiber microfiber filter separator (Sigma Aldrich). 
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Galvanostatic measurements performed at 0.2 A/g and the extended cycling at 1 A/g were conducted 

using a MTI 8 channel battery analyzer. Higher rate measurements, including the 12 A/g cycling, were 

performed using a Metrohm Autolab multichannel electrochemical workstation. Cycling data presented 

was performed after initial device characterization (approximately 50 cycles). Working electrodes were 

composed of FLG on Ni foam with an active loading mass of ~100 µg/cm2. The underlying Ni foam 

mass was not included in the active mass due to the negligible capacity of bare Ni foam.  

 

2.3.3 In-situ Raman measurements 

A homemade test cell was assembled using a thin glass coverslip window (see Figure 7) and an 

O-ring seal. The FLG foam was pressed under the window, with the separator and Na reference 

electrode below. Galvanostatic measurements were performed using a single-channel Metrohm Autolab. 

Raman measurements were performed using a Renishaw inVia Confocal Raman spectrometer with an 

L50x objective. The laser powers were kept below 700 µW for both the 1.58 eV and 2.33 eV lasers. 

Most measurements were performed using static scans over the range of 1000 to 2000 cm-1. It should be 

noted that 2.33 eV laser locally prevented the deintercalation reaction from taking place, even when 

laser powers <50 µW were used. This was one of the reasons both lasers were used to probe the system. 

Also, during some in-situ experimentation, a D peak was observed to emerge at low voltages when using 

the 2.33 eV. We attribute this to the high sensitivity of the material to the laser as seen with the G peak 

enhancement. For this reason, caution was taken and lower laser powers were used. Individual, low-

power measurements were also performed to confirm that no D peak was exhibited even when the 

device was fully shorted (0 V vs. Na/Na+).  
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Figure 7: Photograph of the in-situ Raman setup. 

 

2.4 Results and discussion 

The surface of the graphene foam is shown in Figure 8a, with the inset showing the 3D structure. 

To characterize the graphene material grown on the Ni foam, a micro-Raman map was performed 

covering a ~50um x 50um region, collecting 225 spectra. Representative Raman spectra are presented in 

Figure 8b, with the three characteristic Raman peaks labeled. The D peak (~1350 cm-1) arises from 

defect-activated in-plane breathing modes and corresponds to sp3 carbon bonding, the G peak (~1580 

cm-1) arises from in-plane optical phonon modes at the Γ point and corresponds to sp2 carbon bonding, 

and the 2D peak (~2700 cm-1) arises from a two-phonon process that is sensitive to the electronic band 

structure.30, 31 The line shape, position, and relative intensity of the 2D peak can be used to approximate 
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the layer thickness, and the D/G relative intensity ratio is used as a measure of carbon crystallinity. In 

this manner, the presented spectra correspond to highly crystalline, few-layer graphene typical of 

previous reports of graphene grown on nickel.29, 32 High-resolution transmission electron microscopy 

(TEM) (Figure 8c) show sheets consisting of 2-10 graphene layers.  

 

 

Figure 8: (a) SEM image showing the surface of the few-layer graphene foam; scale bar, 20 μm. Inset, SEM 
image showing 3D foam; scale bar, 400 μm. (b) Representative Raman spectra acquired using 2.33 eV laser. (c) 
TEM characterization of thickness of graphenic sheets: scale bars, 5 nm. (d) Distributions of Raman spectra 
acquired over ~50 um x 50 um region (225 spectra) with respect to the relative 2D peak intensity. Reprinted with 
permission from A. P. Cohn, K. Share, R. Carter, L. Oakes and C. L. Pint, Nano Lett., 2016, 16, 543-548. 
Copyright 2016 American Chemistry Society. 

	
2.3.2 Electrochemical testing  

Galvanostatic cycling was carried out at varying rates in the potential range of 0.01 to 2.0 V vs. 

Na/Na+. The first 5 cycles performed at 0.2 A/g presented in Figure 9a show stable cycling after initial 

Na+ insertion with a reversible capacity of ~150 mAh/g, suggesting a stoichiometry we propose to be 

~Na(Diglyme)xC15, which is in agreement with previous reports on chemically derived stage 1 Na+ 

ternary graphite intercalation compounds (GIC).33 We attribute the initial irreversible capacity to the 

partial reductive decomposition of the electrolyte. Whereas the overall shape of the charge-discharge 
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profiles closely matches previously reported curves for diglyme cointercalation into natural graphite,24, 28 

testing the FLG material at higher rates (Figure 9b and c) demonstrates rate capability exceeding 

previously tested carbon materials. Remarkably, the FLG foam electrode maintains ~125 mAh/g (~80% 

maximum capacity) at a rate of 10 A/g and ~100 mAh/g (~65% maximum capacity) at a rate of 30 A/g 

(corresponding to a ~12 second charge). In comparison, Lin et al. utilizes solvent cointercalation for Al-

ion batteries and report up to 4 A/g rate capability (~ 60 second charge) with 50% capacity drop, and 

Kim et al. report ~50% capacity drop at 10 A/g for Na-ion cointercalation into graphite.28, 34 We 

attribute the exceptional rate capability observed to a combination of fast diffusion through the 

electrode, the high surface area of the graphene foam, and the lack of desolvation at the electrode-

electrolyte interface which has been shown to be rate-limiting in other systems.35  

 

Figure 9: (a) First 5 Galvanostatic charge-discharge profiles at current density of 0.2 A/g. (b) Galvanostatic 
charge-discharge profiles at current densities ranging from 1 A/g to 30 A/g with the corresponding cycling 
performance (c). Inset shows the linear relation between specific capacity and current density. (d) Extended 
cycling performed at current density of 12 A/g over 8000 cycles with selected Galvanostatic charge-discharge 
profiles (e). Inset, the decreasing overpotential with cycling. Reprinted with permission from A. P. Cohn, K. Share, 
R. Carter, L. Oakes and C. L. Pint, Nano Lett., 2016, 16, 543-548. Copyright 2016 American Chemistry Society. 
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In order to evaluate the reversibility of this process, extended cycling was performed (Figure 9d). 

Over a span of 8,000 cycles, the FLG electrode retained 96% of its initial capacity with an average 

Coulombic efficiencies of 99.2%. We also observed a decreasing overpotential with cycling (Figure 9e), 

which may indicate a slight change in the electrode morphology or SEI layer. In contrast to the avoided 

cointercalation of Li and solvent into graphite, the near-perfect capacity retention observed here 

indicates that exfoliation36 is not an issue.  

 

2.3.3 Post-cycling characterization 

To examine the impact of cycling on the carbon structure, a second micro-Raman map was 

performed covering a ~50um x 50um region, collecting 225 spectra from a FLG electrode after 8000 

cycles. Figure 10 presents distributions of the relative D peak intensities found in the pristine and the 

post-cycling FLG. We see that even after 8,000 cycles, the distribution of ID/IG ratios remains centered < 

0.05. This demonstrates that a high degree of crystallinity is preserved through cycling and explains the 

near-perfect capacity retention.  In contrast, the ID/IG ratio in graphene has been reported to increase to 

>1.0 after only 5 lithiation cycles.37 We attribute the retention of crystallinity to weaker ion – host lattice 

interactions due to solvent screening.  This is in comparison to intercalation occurring after desolvation 

at the electrode-electrolyte interface, where stronger interactions between ions and the crystalline 

carbons (e.g. LiC6) yields enhanced electrode degradation and irreversibility over successive cycling.  
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Figure 10: Distributions of 225 Raman spectra (acquired over ~50um x 50um region using 2.33 eV laser) with 
respect to relative D peak intensity prior to testing (above) and after 8,000 Galvanostatic charge-discharge cycles 
(below) showing minimal cycling-induced degradation. Inset, individual spectrum acquired after cycling with D and 
G components fitted with Lorentzian peaks. Reprinted with permission from A. P. Cohn, K. Share, R. Carter, L. 
Oakes and C. L. Pint, Nano Lett., 2016, 16, 543-548. Copyright 2016 American Chemistry Society. 

 

2.3.4 Cointercalation of K ions 

While the focus of this thesis is my work developing Na-ion and Na metal batteries, it is worth 

noting that I demonstrated that K ions can similarly cointercalate into graphitic materials using gylme 

solvents. This finding shows that cointercalation electrodes can be used to develop both high-rate Na-ion 

and K-ion batteries, broadening the selection of cathode materials. Figure 11 shows the K-ion 

cointercalation with a reduced capacity and rate capability in comparison to K. X-ray diffraction 

measurements and Raman characterization show that electrodes retain their crystallinity after 1000 

cycles. Details on this work can be found in our 2016 publication.38 
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Figure 11: (a) Galvanostatic charge-discharge curves at 0.2 A/g in 1M KPF6 in diglyme. (b) Galvanostatic rate 
performance at current densities ranging from 1 to 10 A/g. Inset, corresponding charge-discharge curves. (c) 
Long-term stability test showing the Coulombic efficiency and capacity retention over 1000 cycles. (d) Comparing 
the x-ray diffraction pattern of the pristine carbon electrode (black) to the stage 1 GIC formed through 
cointercalation (red) and the final deintercalated state after 1000 galvanostatic cycles. (e) Corresponding 
comparison using Raman spectroscopy. Reproduced from Ref. 38 with permission from The Royal Society of 
Chemistry. 
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2.3.5 In-situ Raman characterization 

To further understand the mechanisms associated with this fast and stable reaction, we performed 

in-situ Raman spectroscopy to optically probe the FLG material during Na-diglyme cointercalation. 

While performing these tests, a vibrant color change was observed in the carbon foam which is valuable 

to discuss prior to the Raman results. By optically monitoring the reaction in real time,39 it was possible 

to correlate the color changes in the material to the electrochemical potential as shown by the images of 

the FLG foam (Figure 12a).  A video (available in the supporting information of our 2016 publication40) 

shows this color change over four successive cycles.  The FLG foam initially appears grey/silver with 

the color darkening to black as the potential reaches the start of the pronounced plateau. Then, individual 

grains begin switching to red/orange, with most of the grains taking on this color by the end of the 

plateau. Finally, by full sodiation, the color gradually transitions to yellow. Upon Na removal, these 

color changes repeat in reverse order and successive cycles show matching color transitions.  Notably, 

insertion of Na ions into FLG with capacity of 150 mAh/g corresponds to an electron concentration of 

~2.5x1014 cm-2 for each graphene layer, which is a much higher electron concentration than is 

achievable using a top-gate method.41-43 As a result, the Fermi level shift is sufficient enough to block 

optical interband absorption and increase the transparency44, 45 for photons with ħω<2EF, with greater 

description of this phenomenon for Li intercalated ultrathin graphite described by Bao et al.44  With this 

in mind, we attribute the red/orange and yellow colors to the increased transmittance of the graphene 

material for lower-energy visible photons and the subsequent reflection of the transmitted photons back 

off the Ni substrate. 
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Figure 12: (a) Microscope images showing the vibrant color change in the FLG during cointercalation; scale bar, 
20 μm. (b) Galvanostatic discharge (~0.6 A/g) profile recorded during in-situ Raman measurements with band 
illustrations showing corresponding Fermi levels. (c) In-situ Raman intensity plots normalized to the initial G peak 
intensity acquired using 1.58 eV laser (top) and 2.33 eV laser (bottom) consisting of 40 spectra each with 
schematics depicting the setup shown on the right. Reprinted with permission from A. P. Cohn, K. Share, R. 
Carter, L. Oakes and C. L. Pint, Nano Lett., 2016, 16, 543-548. Copyright 2016 American Chemistry Society. 
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To gain more insight, in-situ Raman measurements were conducted. Figure 12c presents 

intensity plots comprised of 40 spectra (with 20 s exposure times) for both 1.58 eV (785 nm) and 2.33 

eV (532 nm) laser excitations acquired during the electrochemical intercalation (at ~0.6 A/g) of FLG 

shown in Figure 12B. For 1.58 eV excitations, a single G peak (~1580 cm-1) is initially observed which 

is denoted as GUC - representing the G mode of an uncharged graphene layer. After ~100 s, a second, 

blue-shifted G peak emerges at ~1600 cm-1, which is denoted as GC, as it corresponds to the G mode of a 

charged graphene layer. This G peak splitting is characteristic of graphite staging reactions,5, 44, 46-48 

arising from the presence of both charged graphene layers in contact with an intercalant layer and 

uncharged graphene layers that are shielded. Accordingly, the appearance of the GC peak signifies the 

beginning of the staging process. As the reaction continues, the intensity of the GC peak begins to 

drastically increase as the GUC peak red-shifts and disappears, all coinciding with the time when the 

pronounced voltage plateau is reached electrochemically. The disappearance of the GUC layer indicates 

the absence of uncharged layers, which takes place when the reaction reaches a stage 2 compound 

(where the stage number corresponds to the number of graphene layers in between each intercalant 

layer). At this point, we see a rapid enhancement of the Gc peak intensity, reaching 12x the initial GUC 

peak intensity. This dramatic change in the G peak intensity can be attributed to the Pauli blocking of 

destructive interference Raman pathways43 that takes place when the Fermi level approaches half the 

excitation laser energy.  Accordingly, we can use this understanding to estimate the Fermi level of the 

stage 2 compound to be ~0.8 eV, which corresponds to a work function of ~3.8 eV.  As the reaction 

continues to progress, the GC peak intensity fades and then is completely suppressed by 800 s, which can 

be attributed to Pauli blocking of all of the G-peak Raman pathways. For this reason, we chose to switch 

to a 2.33 eV laser to better probe the later portion of the reaction. For the 2.33 eV excitations, G peak 

splitting similarly occurs but the rapid GC peak enhancement is delayed until after the pronounced 
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plateau reaction is completed. At this point, which corresponds to a stage one compound, we observe 

22x enhancement and can again estimate the Fermi level as ~1.2 eV, corresponding to a work function 

of ~3.4 eV. In comparison to our results, the stage 1 LiC6 compound has been reported with EF  ~ 1.5 

eV.49  Other Raman studies have reported stage 1 FeCl3 intercalated FLG to exhibit EF ~ 0.9 eV, and 

stage 2 and stage 1 ammonium persulfate/sulfuric acid intercalation compounds to exhibit EF ~ 1.0 eV 

and EF ~ 1.2 eV, respectively.46, 50  However, our work is the first to utilize G peak enhancement during 

in-situ electrochemical testing to monitor the Fermi level of a progressing intercalation reaction.     

 

Figure 13: (a) In-situ Raman spectra (normalized) of FLG showing the highly-ordered staging reaction as 
measured using a 1.58 eV laser with (b) selected spectra and Lorentzian fits of GC (blue line) and GUC (red line) 
components. (c) Tracking the positions of the Raman G peak components (GC shown in blue and GUC shown in 
red) measured in situ with the 1.58 eV laser (triangles) and the 2.33 eV laser (circles) during the electrochemical 
intercalation reaction with the corresponding Galvanostatic discharge (~0.2 A/g) profile shown with respect to right 
y-axis (black line). Reprinted with permission from A. P. Cohn, K. Share, R. Carter, L. Oakes and C. L. Pint, Nano 
Lett., 2016, 16, 543-548. Copyright 2016 American Chemistry Society.  

Next, in-situ Raman measurements were conducted using a decreased rate to better monitor the 

staging processes. Consecutive Raman spectra taken during insertion with a 1.58 eV laser (Figure 13A) 

demonstrates a transition from all uncharged graphene layers to all charged graphene layers, with 

representative spectra and Lorentzian peak fits shown in Figure 13B. Peak positions for in-situ 
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measurements are plotted in Figure 13C for both laser energies with respect to the charging time (using 

a rate of ~0.2 A/g). The staging process, as observed through Raman measurements, is distinctly 

different from the lithiation of FLG44, 51 and graphite48, which are useful well-studied benchmarks due to 

their similarities to our system and their comparatively limited rate capability and cycling. These 

lithiation reactions exhibit an initial blue-shift in a single G-peak corresponding to the formation of a 

dilute stage 1 compound, followed by peak broadening and splitting into two poorly defined peaks 

(staging >2). Finally the G peaks evolve into a broad (FWHM ~ 60 cm-1) peak by stage 2 and then 

disappear by stage 1.48  In contrast, we do not observe any initial dilute staging and the progressing 

spectra show extremely sharp, well-resolved Lorenztian peaks through stage 2 formation, indicating a 

more ordered staging process. Accordingly, these findings demonstrate that minimal in-plane 

deformation of the lattice occurs during the reaction, which is likely a result of the weak interaction of 

the ion with the host, and appears to be another key factor facilitating the fast in-plane diffusion and 

improved cycling stability.   

While the narrowing of the G peak can be simply attributed to increasing structural order, it has 

also been ascribed to increased phonon lifetimes in charge graphene—a result of blocking the decay of 

G-mode phonons into electron-hole pairs that takes place during the Kohn anomaly process.30  The 

blocking of this renormalization process also explains the stiffening of the G mode that has been shown 

to occur during both electron-doping and hole-doping.30, 41, 43, 52 Therefore, the G peak is a signature of 

the charge present on the graphene layers which can identify the staging processes during intercalation. 

In Figure 5C, after the initial blue-shift (Δpos ~ 18 cm-1) in the position of the GC peak, there are two 

additional blue-shifts (Δpos ~ 4 cm-1 at ~ 700 s and Δpos ~ 2 cm-1 at ~ 1700 s) with increasing Na 

insertion. The initial blue-shift (the formation of the GC peak) indicates the start of the staging reaction, 

the second blue-shift occurs just before the loss of the GUC peak and the start of the pronounced voltage 
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plateau in the electrochemical data.  This shift was not anticipated, since one would expect the charge on 

the FLG layers to maintain relatively consistent through stage 2 formation.5 We attribute this to a 

reconfiguration of the Na+-solvent intercalated layer that appears to take place prior to stage 2 formation. 

The last blue-shift, which takes place before the GC peak disappears in the 1.58 eV laser data is 

attributed to the formation of a stage 1 compound where each individual graphene layer is surrounded on 

both sides by an intercalant layer. The GC peak at this point, as measured using 2.33 eV excitations, 

displays a sharp, but noticeably asymmetric, line shape (shown in Figure 14) which has been reported to 

be a signature of stage 1 GICs.53 Additional in-situ Raman data showing spectra acquired with the 2.33 

eV laser, the deintercalation reaction, the evolution of the 2D peak are presented in Figure 15-Figure 18, 

and illustrations of the different stages and  the model for stage transitions are included as Figure 19 and 

Figure 20, respectively. 

 

Figure 14: Raman spectra acquired using both a 1.58 eV and 2.33 eV laser of the stage 1 compound (~ 0V vs. 
Na/Na+). 
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Figure 15: Evolving Raman spectra (normalized) acquired using 1.58 eV laser during electrochemical intercalation 

 

Figure 16: Evolving Raman spectra (normalized) acquired using 2.33 eV laser during electrochemical 
intercalation. 
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Figure 17: Raman intensity plot (normalized) showing the intercalation and deintercalation reaction using the 1.58 
eV laser. 

 



 

 

34 

 

Figure 18: Raman intensity plot (normalized) using the 2.33 eV laser showing both the G peak and 2D peak 
evolution during the electrochemical intercalation. The 2D peak red-shifts though stage 2 formation (a result of 
electron doping) and then is suppressed by stage 1 formation. 
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Figure 19: Illustration of the different stages showing the changing ratio between charged and uncharged 
graphene layers. 

 

 

Figure 20: Daumas-Herold model showing the expanding and sliding of ion galleries, which serves to explain the 
smooth transition between stages. 

 

Lastly, it is worthwhile to discuss the method used for correlating the Raman data to the 

compound stage number. While it was straightforward to identify the time at which the stage 2 

compound was reached from the Raman data (because it coincides with the loss of the GUC peak), 

determining the earlier stages proved to be more difficult. The following equation has been used in 

previous Raman studies of GICs to  determine the stage number:47, 48 

12%	(3)
1%	(3)

= 42%
4%

5(3)67
7

    (Eq. 2) 



 

 

36 

where 𝐼 is the peak intensity, 𝜎 is the cross section for Raman scattering and n is the stage number. In 

order to use this equation, the relative cross section for Raman scattering for the two peaks must be 

known or determined. However, we cannot assume the relative cross sections for Raman scattering to 

remain constant in our case because we have observed significant changes in the GC peak intensity 

during the staging process. 

In an attempt to find another method to relate the Raman data to the stage number, we decided to 

disregard the GC data and concentrate on the GUC data, assuming that the GUC cross section for Raman 

scattering remained relatively constant. Examining the peak area of the GUC peak (rather than the peak 

intensity because we have observed that the FWHM decreases during this period of interest) as shown in 

Figure 21, we see that GUC peak area remained constant until the emergence of the GUC peak. Afterward, 

it appears to drop in a step-wise fashion. Since we know that the initial peak area corresponds to 100% 

of the graphene layers being in an uncharged state, we matched the later peak areas to a percent of the 

remaining uncharged graphene layers. The first prominent step in the GUC peak area plot (at ~ 410 s) has 

a value equal to ~50% of the initial peak area, which indicates a stage 4 compound with half of the 

initial uncharged layers now charged. Then, the second step in the GUC peak area plot (at ~ 520 s) has a 

value equal to ~33% of the initial peak area, which indicates a stage 3 compound. In this manner, we 

were able to establish the relationship between the changing G peak area with respect to time and the 

changing stage number as follows: 

+2%	(3)
+2%	(3:)

= 1 − 7
5	(3)

		(Eq. 3) 

where A is the peak area and n	is the stage number. By identifying the stages in this way, we were then 

able to correlate the stages with the electrochemical data and the 1.58 eV data set as shown in Figure 13.  
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Figure 21: Determining the stage number by examining the changing GUC peak area during the initial staging 
reaction. 
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2.5 Conclusion 

In this chapter, I explored the fast and reversible cointercalation of Na ions and diglyme 

molecules into few-layer graphene. Electrochemical testing showed remarkably high rate capability, 

moderate specific capacity, and exceptional cycling. Conducting in-situ Raman spectroscopy, I resolved 

the sequential stage formation and determed the Fermi energy of the stage 1 and stage 2 intercalation 

compounds as 1.2 and 0.8 eV, respectively. These results are promising for the development of high-rate 

Na-ion batteries, as well a variety of other applications including: other alternative-ion batteries, 

electrochemical actuators, electrochemical sensors, and electrochemical energy harvesters. In addition, I 

hope that the extensive Raman characterization will be of interest to battery scientists and material 

scientists alike.   
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Chapter 3: Utilizing a Nucleation Layer to Enable an “Anode-Free” Na Battery 
 

3.1 Introduction 

In this chapter, I demonstrate a new approach that allows us to overcome the capacity limitations 

faced by Na-ion anodes by abandoning the anode host material and instead plating Na metal in-situ on 

an Al current collector equipped with a nucleation layer. In this design, the nucleation layer functions to 

facilitate the stable electroplating of Na metal. Testing over 1000 plating-stripping cycles shows an 

average plating-stripping Coulombic efficiency of 99.8% and a low average hysteresis of 14 mV. 

Imaging of the plated Na reveals island growth, with the islands coalescing to form a smooth Na film. 

Building on these promising results, I assemble and test the first anode-free Na cell using a pre-sodiated 

pyrite cathode to provide a specific energy of ~400 Wh/kg with respect to the mass of the cathode and 

nucleation layer. These results show that Na cells, relying on earth-abundant raw materials such as C, 

Al, and Na, can be developed with specific energies competitive with current Li-ion cells.  

 

3.2 Background 

The growing interest in Na-ion batteries suitable for commercialization has spurred a recent 

surge in research activity focused on developing electrodes capable of hosting Na ions. However, the 

larger ionic radius and less negative standard reduction potential (in comparison to Li ions) have limited 

the specific energy of emerging Na-ion battery technology, with recent state-of-the-art full cells 

demonstrating only ~200 Wh/kg with respect to active mass of the anode and cathode.26, 54-56On this 

front, the anode side has proven to be the most challenging, as graphite, the standard Li-ion anode, 

cannot intercalate sufficient Na ions. While alternative anode materials including disordered carbons57-61 

and alloying metals62, 63 such as Sn ,Sb or Pb, have been extensively researched with notable progress 
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made, a Na-ion anode that can deliver high capacity and operate at practical currents without sacrificing 

cycling performance or Coulombic efficiency is yet to be realized.  

The continued research effort in this direction begs the question: Is an anode host material truly 

needed? Transitioning to “host-less” Na metal, in theory, is highly favorable in terms of specific energy 

as it offers a capacity of 1166 mAh/g (more than double the charged state of the Sn anode: Na15Sn4), as 

well as the highest electrochemical potential achievable for a Na anode. Furthermore, the density of Na 

metal (0.97 g/cm3) also serves to maximize volumetric capacity and achieve high areal loading, 

eliminating the common tradeoff between gravimetric and volumetric performance. Finally, since the 

plating/stripping reactions takes place on the surface, there are no solid-state diffusion limitations, and as 

a result, high-rate capabilities may be achievable without relying on high-surface-area electrodes.  

Despite these clear advantages of a Na metal battery, research on room-temperature Na metal 

electrodes is emergent and currently remains sparse. In 2015, it was shown that Na metal is less stable 

with carbonate electrolytes than Li metal, due to the organic SEI formed.64 More recently, there have 

been initial reports on controlling this SEI layer, either through the use of alternative electrolytes, 

notably NaPF6 in gylme65 or highly concentrated NaFSI in gylme66, to form more stable inorganic SEI 

layers, or by directly depositing an artificial inorganic SEI layer on Na metal electrodes.67  However, 

there has been no research addressing the accompanying issues associated with: (1) the interface 

between the Na metal and the current collector, (2) the uneven deposition of Na on the current collector, 

or (3) the large volumetric expansion during deposition, which, in addition to engineering the SEI, have 

all been identified as critical in recent research on current collectors for Li metal batteries68-78 and are 

essential for developing an anode-free Na metal battery. 

To maximize specific energy without sacrificing manufacturability, I propose the use of an 

anode-free design, where the cell is assembled in a discharged state with all the Na contained in the 
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cathode. While a similar approach was originally demonstrated for thin-film Li batteries using a LiPON 

electrolyte,79 the sole effort to adapt this concept for high specific energy Li cells proved challenging 

due to the limited Coulombic efficiency of Li plating and stripping, and the resulting rapid loss of 

capacity.63 In contrast, the high Coulombic efficiency of Na plating and stripping in glyme-based 

electrolytes makes this a promising approach for developing a Na metal battery.  

 

3.3 Methods 

3.3.1 Electrochemical measurements 

 Carbon films were assembled on Al foil using a mixture of conductive carbon black (TIMCAL 

Super C45) and Na carboxymethyl cellulose (CMC) with a ratio of 8:2, respectively. Triton X-100 0.35 

wt% in deionized water was used at the solvent, avoiding N-methylpyrrolidone (NMP) processing for 

battery electrodes.80  Slurries were then spread onto Al foil to obtain carbon films with ~400 µg/cm2. 

FeS2 electrodes were processed similarly using a ratio of 8:1:1 for FeS2 (325 mesh): carbon black : 

CMC. FeS2 electrodes were tested with active mass loading of ~5mg/cm2.  

Electrochemical testing was performed at room temperature in CR2032 coin cells using Celgard 

2325 separators. Half-cell testing was performed using ~20 mg of flattened Na metal (Strem Chemicals, 

99.95%) as the reference and counter electrode. An electrolyte of 1M NaPF6 in diethylene glycol 

dimethyl ether (diglyme) (99.5%, Sigma-Aldrich) was used as the electrolyte due to its stability against 

Na metal and tendency to form stable SEI layers for Na-based chemistries.40, 65 The NaPF6 salt, acquired 

from Strem Chemicals with a purity of 99%, was dried at 100 C for 24 hours in Ar before electrolyte 

preparation. 

Prior to plating/stripping testing, all devices were initially galvanostatically cycled 10 times at 

0.4 mA/cm2 from 0.01 to 1.0 V vs. Na/Na+ to remove any surface contamination. Plating/stripping 
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testing was performed using a stripping cutoff voltage of 100 mV vs. Na/Na+. Coulombic efficiencies 

were calculated as the capacity ratio of the Na removed / Na deposited. The voltage hysteresis for each 

cycle was calculated as the difference between the average voltage measured for corresponding plating 

and stripping steps. We note that Coulombic efficiency values exceeding 100% for individual cycles 

may be attributed to the stripping of Na metal that was left behind after previous cycles.   

Electrochemical impedance spectroscopy (EIS) was performed on 0.25 mAh/cm2 of plated Na 

(0.5 mA/cm2 for 30 minutes) after the 1st, 2nd, 3rd, 4th, 5th and 10th cycles in half cell configurations with 

a Na metal reference/counter electrode. EIS was performed using a Metrohm Autolab multichannel 

electrochemical workstation. 

Prior to assembling anode-free cells, FeS2 electrodes were pre-sodiated in shorted cells with Na 

metal, a Celgard 2325 separator, and 1M NaPF6 diglyme electrolyte for 24h. The pre-sodiated FeS2 

electrodes were then dried and paired with a carbon/Al negative electrode using a Celgard 2325 

separator and 1M NaPF6 diglyme electrolyte and assembled into CR2032 coin cells. After cell assembly, 

full cells were galvanostatically charged to 3.0 V prior to cycling. 

Specific energy calculations were based on the weight of the carbon black on the negative side and the 

pre-sodiated FeS2 on the positive side, assuming a stoichiometry of Na1.5FeS2, which would correspond 

to a FeS2 specific capacity of ~335 mAh/g. 

 

3.3.2 Na metal imaging 

In order to image the plated Na metal, plating was performed in a split-flat cell in an Ar 

glovebox connected to a single-channel Metrohm Autolab. After plating, electrodes were removed from 

the glovebox, sealed between two glass slides using a greased O-ring secured with binder clips. To 

perform the SEM imaging, a “pop-top” transfer cell (shown in Figure 22) was made in the lab utilizing a 



 

 

43 

taught rubber membrane positioned underneath a needle, so that the membrane bursts when placed 

under vacuum in the SEM loading chamber to expose the sample to the electron beam in a similar 

fashion to the cell reported by R. Guame and L. Joubert.81 A Zeiss MERLIN with GEMINI II SEM was 

used for imaging.  

 

 

Figure 22: Images of "pop-top" transfer cell used for imaging air-sensitive Na metal samples 

3.4 Results and discussion 

To evaluate the role of the carbon nucleation layer on the Na plating process, we performed 

galvanostatic plating at low currents (to minimize diffusion limitations) for both bare Al and carbon/Al 

substrates. Al was selected instead of Cu because it offers significant cost (~3X cheaper) and weight 

(~3X lighter) benefits—a key advantage made available by transitioning to Na-based chemistries. Figure 

23a shows the sodiation of the carbon/Al current collector, where the sloping potential curve above 0V 

vs. Na/Na+ corresponds to the storage of Na ions in disordered carbon, and the steady voltage reached 

below 0V corresponds to the plating of Na metal. While this figure highlights the sodiation and initial 

plating that occurs, it is important to note that the capacity provided by the sodiation of the carbon layer, 

0.05 mAh/cm2 (or ~120 mAh/g), is negligible in comparison to the plating capacities, up to 12 
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mAh/cm2, we demonstrate in this work. Subsequent plating and stripping testing was performed below 

100 mV, so the carbon nucleation layer remained mostly sodiated throughout these tests. Accordingly, 

we refer to the carbon/Al electrodes as current collectors for anode-free cells as the meaningful capacity 

is achieved through the in situ plating of the Na metal. 

 

Figure 23: (a) Galvanostatic sodiation and then plating for carbon/Al current collector at 40 μA/cm2 with carbon 
loading of 400 μg/cm2. (b) Comparison of the Na nucleation overpotential for bare Al and carbon/Al current 
collectors at 40 μA/cm2. (c) Cycling of bare Al and carbon/Al current collectors at 0.5 mA/cm2 with 30 minute 
plating times with (d) enlarged voltage profiles. Reprinted with permission from A. P. Cohn, N. Muralidharan, R. 
Carter, K. Share and C. L. Pint, Nano Lett., 2017, 17, 1296-1301. Copyright 2016 American Chemistry Society. 

Comparing the plating process for a sodiated carbon and a bare Al current collector (Figure 23b), 

we observe that nucleation overpotential (difference between the bottom of the trough where nucleation 

occurs and the steady-state plating potential) is reduced from 19 mV to 12 mV by the carbon layer. 

Reducing this nucleation barrier is critical for facilitating a smoother deposition, minimizing parasitic 

reactions, and allowing for high-rate performance. The improved performance observed can be 

attributed to the increased surface area provided by the carbon (~ 180X increase in surface area for a 400 

µg/cm2 carbon layer),71, 73, 82 the presence of highly-reactive sp3 carbon sites and oxygen-containing 

functional groups, and the initial storage of Na ions in the carbon.  These observations provide the first 
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examination of the importance of substrate on the nucleation of Na metal and compliment recent work 

performed by K. Yan et al. on the effect of substrate on the nucleation of Li metal.75  Going forward, this 

work motivates the engineering of carbons nanomaterials for facilitating Na nucleation, bridging the 

extensive literature aimed at designing carbon materials for Na ion storage forward to higher specific 

energy Na metal batteries.  

 

Figure 24: Comparing initial cycling performance for bare Al electrodes and carbon/Al electrodes. We observe 
higher initial Coulombic efficiency for the carbon/Al electrodes followed by more stable performance. Testing was 
performed at 0.5 mA/cm2 for 30 min plating times. 

Figure 23c shows 150 hours of plating/stripping cycles performed at an increased rate of 0.5 

mA/cm2. Examining the initial cycles (shown in Figure 23d), we see that during the first plating process, 

the bare Al electrode exhibits signs of shorting which we attribute to the uneven plating that occurs due 

to the higher nucleation overpotential. In contrast, the carbon/Al electrodes demonstrate more stable 

plating and stripping with higher Coulombic efficiency. While we also see sporadic failure in the Al 

electrodes at later times, as shown in the 141st cycle where a stripping process is cut short due to 

delamination of the Na metal from the current collector, such occurrences did not take place in the 

carbon/Al electrodes owing to the improved mechanical stability achieved by utilizing a carbon 

nucleation layer providing a 3-dimensional interface. A comparison of the Coulombic efficiency and 

voltage hysteresis for both electrodes is shown in Figure 24. 
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Figure 25: (a) Galvanostatic plating/stripping of Na on carbon/Al current collectors performed over a range of 
currents for 30 minute plating times. (b) Nyquist curves performed after initial plating cycles with 0.25 mAh/cm2 
loading. (c) Galvanostatic plating/stripping of Na on carbon/Al current collectors performed over a range of times 
(or loadings) at 1.0 mA/cm2.  (d) 50 cycles performed at 1 mA/cm2 with 12 mAh/cm2 loading of Na with the in set 
showing a corresponding potential profile (e) Coulombic efficiency and voltage hysteresis from over 1,000 
plating/stripping cycles performed at 0.5 mA/cm2 with 0.25 mAh/cm2 loading. (f) Corresponding potential profiles 
of the 1st, 2nd, 499th, 500th, 999th and 1000th plating/stripping cycles. Figure 26: (a) Galvanostatic sodiation and 
then plating for carbon/Al current collector at 40 μA/cm2 with carbon loading of 400 μg/cm2. (b) Comparison of the 
Na nucleation overpotential for bare Al and carbon/Al current collectors at 40 μA/cm2. (c) Cycling of bare Al and 
carbon/Al current collectors at 0.5 mA/cm2 with 30 minute plating times with (d) enlarged voltage profiles. 
Reprinted with permission from A. P. Cohn, N. Muralidharan, R. Carter, K. Share and C. L. Pint, Nano Lett., 2017, 
17, 1296-1301. Copyright 2016 American Chemistry Society. 
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To further assess the carbon/Al electrodes, we conducted testing over a range of currents from 

0.5 mA/cm2 to 4 mA/cm2. As shown in Figure 25a, the carbon nucleation layer enables a low voltage 

hysteresis even at high currents, with a 45 mV hysteresis at 4 mA/cm2. In contrast, bare Al electrodes 

were prone to failure at these currents. To assist our understanding of the low hysteresis, electrochemical 

impedance spectroscopy was performed after initial plating cycles with 0.25 mAh/cm2 of fresh Na 

(Figure 25b). We found the charge-transfer resistance, corresponding to the diameter of the semicircle in 

the Nyquist plot, to be extremely low and stable with cycling. Next, we performed plating/stripping 

testing at increased loadings of Na (Figure 25c). We found that the electrodes exhibited stable 

performance at 1 mA/cm2 for 30 minute plating times (0.5 mAh/cm2) up to 8 hour plating times (8 

mAh/cm2), with the Coulombic efficiency slightly increasing with loading, from 99.8% to 99.9%, 

indicating that the minor losses in the system occur during the initial seeding and/or the final stripping 

processes. To further demonstrate the versatility of this approach for exceptionally high loadings of Na, 

50 cycles were performed at 12 mAh/cm2 with the average Coulombic efficiency exceeding 99.9% 

(Figure 25d). These results are promising for the development electrodes with high aerial capacities, a 

focus of researchers who aim to minimize the cost of current collectors and separators.59, 80, 83 

To test the long-term durability, we ran over 1000 plating-stripping cycles using 30 minute 

plating times to maximize the initial seeding and final stripping events that appear most problematic 

(Figure 25e). Nonetheless, we observed a stable hysteresis averaging 14 mV and a stable Coulombic 

efficiency averaging 99.8%, with no evidence of short circuiting or delaminating. Figure 25f shows the 

voltage profiles from the 1st, 2nd, 499th, 500th, 999th and 1000th cycles, which all appear nearly identical, 

emphasizing the stability maintained during cycling.  
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Figure 27: Photographs (SB=2 mm) and micrographs (SB=500 μm) of Na metal on carbon/Al electrodes following 
plating at 0.5 mA/cm2 for (a, b) 10 minutes, (c,d) 1 hour, (e, f) 4 hours, and (g,h) 8 hours. (i) SEM image of 
hexagon-shaped Na metal island (SB=20 μm). (j) EDS map showing coalescing Na metal islands (CB=50 μm). (k) 
Micrograph of plated Na metal film with 4 mAh/cm2 loading (SB=20 μm). Figure 28: (a) Galvanostatic sodiation 
and then plating for carbon/Al current collector at 40 μA/cm2 with carbon loading of 400 μg/cm2. (b) Comparison of 
the Na nucleation overpotential for bare Al and carbon/Al current collectors at 40 μA/cm2. (c) Cycling of bare Al 
and carbon/Al current collectors at 0.5 mA/cm2 with 30 minute plating times with (d) enlarged voltage profiles. 
Reprinted with permission from A. P. Cohn, N. Muralidharan, R. Carter, K. Share and C. L. Pint, Nano Lett., 2017, 
17, 1296-1301. Copyright 2016 American Chemistry Society. 
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In order to gain insight into the plating process, carbon/Al electrodes were imaged with 

progressing Na loading. Figure 27 shows electrodes after 10 minutes (a,b), 1 hour (c,d), 4 hours (e,f) and 

8 hours (g,h) of plating at 0.5 mA/cm2. From these images, we see a progression from the seeding of 

well-spaced islands of Na to the growth and coalescence of these islands to form a smooth, shiny film of 

Na metal. Interestingly, we found that the islands appear to grow as hexagons, as shown in the scanning 

electron micrograph (SEM) in  Figure 27i, and the hexagonal pattern is maintained as the islands begin 

to coalesce together (shown in the energy dispersive x-ray spectroscopic map in  Figure 27j) and 

persevered in the formed film, creating the appearance of polycrystallinity with defined grain boundaries 

(Figure 27k). To the best of our knowledge, this is the first documentation of such a plating process for 

alkali metals, which is especially interesting as it underlies extremely efficient and stable 

electrochemical performance. In comparison, the Na film that is deposited on bare Al electrodes appears 

to exhibit a less defined pattern (Figure 29). Furthermore, examining Na plated at an increased current 

density of 4 mA/cm2 (Figure 30), we observed smaller grains, in line with the recent work of A. Pei et 

al.84  

 

 

Figure 29: Bare Al electrode (10 mm diameter) with 2 mAh/cm2 of plated Na metal performed at a rate of 0.5 
mA/cm2 (4 hour plating duration). 



 

 

50 

 

Figure 30: Carbon/Al electrode (10 mm diameter) plated with 2 mAh/cm2 of plated Na metal performed at a rate of 
4 mA/cm2 (30 minute plating duration). 

 

Figure 31: Illustration of the charged and discharged states of the anode-free Na battery utilizing the carbon/Al 
electrode. (b) Galvanostatic potential profiles of the full cell showing the first 5 cycles at 0.125 mA/cm2 from 0.8 to 
3.0 V with (c) the delivered specific energy of the first 40 cycles with respect to the combined active mass of both 
electrodes. Figure 32: (a) Galvanostatic sodiation and then plating for carbon/Al current collector at 40 μA/cm2 
with carbon loading of 400 μg/cm2. (b) Comparison of the Na nucleation overpotential for bare Al and carbon/Al 
current collectors at 40 μA/cm2. (c) Cycling of bare Al and carbon/Al current collectors at 0.5 mA/cm2 with 30 
minute plating times with (d) enlarged voltage profiles. Reprinted with permission from A. P. Cohn, N. 
Muralidharan, R. Carter, K. Share and C. L. Pint, Nano Lett., 2017, 17, 1296-1301. Copyright 2016 American 
Chemistry Society. 
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Finally, to demonstrate the feasibility of using this plating approach for an anode-free cell 

configuration, we developed a full-cell anode-free Na battery. To accomplish this, we employed pyrite 

(FeS2) for the cathode as it is a cheap, abundant material that has recently been shown to be an excellent 

candidate for Na-ion batteries with diglyme-based electrolytes.25 However, since it natively does not 

contain Na, we first pre-sodiated the pyrite cathode prior to cell assembly, in a fashion similar to 

previous reports.85 Full cells were constructed using pre-sodiated pyrite paired with carbon/Al current 

collectors, corresponding to a discharged device state, as illustrated in Figure 31. During the initial 

charge, the Na ions are removed from pyrite during the oxidation reaction and reduced on the carbon/Al 

current collector to form Na metal in situ. In this manner, we have developed a Na metal battery that 

does not contain Na metal on assembly. To prove that Na metal was indeed forming during the charging 

process, we dissembled a fully charged full cell and show the plated Na metal on the carbon/Al electrode 

in Figure 33. Initial voltage profiles exhibited during galvanostatic testing are shown with respect to the 

mass of the pyrite (assuming a Na1.5FeS2 stoichiometry) in Figure 4b for the full cell following the initial 

charging process. Figure 31c shows the stability of the delivered specific energy over 40 cycles. The 

~400 Wh/kg specific energy, calculated based on the mass of the pre-sodiated pyrite (assuming a 

Na1.5FeS2 stoichiometry or a FeS2 capacity of 335 mAh/g) and the carbon nucleation layer, exceeds all 

previous reports for Na-ion batteries and, assuming a 50% packaging penalty, exceeds current Li-ion 

technology. Going forward, better optimization of the cathode is expected to allow for increased cycling 

stability and improved rate capability.  
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Figure 33: Na metal (1 mAh) plated from pre-sodiated FeS2 on carbon/Al electrode during the first charging of the 
device. The image shows that, as expected, Na metal is formed during charging for the anode-free full cells. To 
open this cell without shorting the device, testing was performed in a split-flat cell in the glovebox for easy 
disassembly. 

   

3.5 Conclusion 

In this chapter, I demonstrated that a carbon nucleation layer can be used to enable highly 

efficient and stable Na plating and stripping. This finding provided the foundation to develop a new Na 

battery: the “anode-free” Na battery. I have shown here that this strategy can be used to achieve specific 

energies competitive with current Li-ion cells while relying on earth-abundant materials. These system 

is especially promising for cost-sensitive large applications, such as stationary storage and electric 

vehicles.  
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Chapter 4: Rethinking Na-Ion Anodes as Nucleation Layers for Stable Na Metal 
Plating 

 

4.1 Introduction 

 In the previous chapter, I showed that a thin layer of carbon (the nucleation layer) allowed the 

use an aluminum negative current collector, rather than denser and more costly copper, while achieving 

highly reversible Na plating and stripping. However, many key concepts of this system remain 

unexplored, such as the effect of the material composition of the nucleation layer on Na nucleation and 

the resulting cycling performance. In this chapter, I explore the use of different materials, including a 

range of carbons and Na-alloying metals, that have shown stable Na-ion storage properties as anodes in 

gylme-based electrolytes with the aim of identifying the best-suited nucleation layer composition to use 

for anode-free full cells.  

Based on the work in the previous chapter, the hypothesis going into this set of experiments was 

that the lower the energetic barrier to Na metal nucleation, the more stable and reversible the Na plating-

stripping performance would be. However, as I show in this chapter, I found the opposite to be the case. 

 

4.2 Methods 

4.2.1 Material fabrication and characterization 

 To synthesize hard carbon, an aqueous sucrose solution (1.5 M) was kept at 190 oC in an 

autoclave for 5 hours, dried, and then pyrolyzed at 1100 oC under an Ar flow for 5 hours. X-ray 

diffraction was performed using a Rigaku SmartLab XRD. X-ray diffraction patterns comparing the 

carbon black (TIMCAL Super C45) and synthesized hard carbon are presented in Figure 34. 
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Figure 34: X-ray diffraction patterns for carbon black (TIMCAL Super C45) and synthesized hard carbon 

 

4.2.2 Electrochemical testing 

Electrodes were made by mixing active material (70%) with TIMCAL Super C45 carbon black 

(10%) and CMC binder (20%) using water as the solvent. All slurries were spread onto carbon-coated 

Al foil (MTI), as shown in Figure 35, and then punched as 1 cm diameter discs and dried in a vacuum 

oven at 70 oC prior to device assembly with loadings of of ~1 mg/cm2. An electrolyte of 1M NaPF6 in 

diglyme was used for all electrochemical testing. Prior to making electrolyte, NaPF6 salt (Strem, 99%) 

was dried at 100 oC overnight in an Ar glovebox and diglyme (99.5%, Sigma-Aldrich) was dried using 

4A molecular sieves. Electrolyte was used within a day of preparation. Half cells were assembled using 

Na metal that was pressed flat onto a stainless steel disc (using a hydraulic crimper (~100 psi) and 

placing a metal plate and Celgard 2325 separator—to prevent the Na from sticking to the metal plate—

on top of the Na metal on stainless steel disc), a Celgard 2325 separator, ~40 µl of electrolyte, and 

crimped in CR2032 coin cells (~1200 psi). Coin cell assembly and the flattened Na metal is shown in 

Figure 36.  
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Figure 35: Homemade adjustable film applicator. Blade height was adjusted using a feeler gauge set. Aluminum 
foil was placed onto a glass plate with isopropyl to keep the foil flat and well adhered. 

 

 

 

Figure 36: Na metal flattened onto a stainless steel disc (left).  Two coin cells prior to crimping (right). 



 

 

56 

4.2.3 Data analysis 

 To construct the slippage plots, I wrote a script to import and organize the data using Pandas (a 

data analysis/data structures toolkit for Python). Each slippage plot consists of ~180,000 data points, 

with 2 second record intervals over the ~100 hours of cycling.   

 

4.3 Results and discussion 

4.3.1 Evaluating anode materials as nucleation layers 

To evaluate the performance and nucleation energetics of the different nucleation layer 

compositions, electrochemical testing was conducted in half cells using Na metal as the counter and 

reference electrode and an electrolyte of 1M NaPF6 in diethylene glycol dimethyl ether (diglyme). 

Carbon black and hard carbon were first selected for comparison because they exhibit different Na-ion 

storage properties despite their similar defective nature. As shown in the insertion-extraction profiles in 

Figure 37a and b, hard carbon exhibited approximately three times the Na-ion storage capacity of carbon 

black. The hard carbon plateau at 0.1 V, which accounts for the increased capacity, has controversially 

been attributed to either the adsorption of Na ions in carbon micropores or the intercalation of Na ions 

between graphene sheets.86, 87  
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Figure 37: Figure 2. (a,b) Electrochemical voltage profiles for Na ion insertion/extraction at 0.1 A/g for carbon 
black (left) and hard carbon (right) electrodes. (c,d) Na metal nucleation profiles at 40 μA/cm2 on sodiated 
electrodes. (e,f) Slippage profiles for Na metal plating and stripping over 50 cycles at 0.5 mA/cm2 on sodiated 
electrodes.  
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The energy barrier to Na nucleation was measured by plating (allowing the voltage to drop 

below 0 V vs. Na/Na+) on fully sodiated electrodes at a low current density of 40 µA/cm2 to minimize 

the effect of mass transfer.75 We found that the nucleation overpotential (Figure 37c and d) was 

significantly lower for the hard carbon (6 mV) than the carbon black electrode (13 mV). This difference 

may be explained in part by the different operating voltages of the Na ion storage in the different carbon 

materials. The lower operating voltage of the Na ion storage in hard carbon indicates a lower degree of 

ionicity of the stored Na,88 resulting in an electrode that is more similar to Na metal. Accordingly, the 

nucleation overpotential is lower on such an electrode, which is expected to result in smaller and more 

numerous Na nuclei, as the nuclei critical radius is dependent on the energy barrier.84  

To assess the Na plating-stripping performance, testing was conducted at an increased current 

density of 0.5 mA/cm2, a plating capacity of 0.5 mAh/cm2, and a stripping cutoff of 50 mV. Figure 37e 

and f show 50 plating-stripping cycles performed on the carbon black and hard carbon electrodes with 

the start of each cycle plotted from the capacity endpoint of the previous cycle in order to capture the 

slippage due to the loss of charge. This form of plot, which has been utilized by Dahn’s group to analyze 

full cells,89 highlights the total conservation of charge while also showing all the cycle profiles in 

entirety. Loss of charge, with Coulombic efficiencies deviating from unity, results in a cycle-to-cycle 

shift to the right. In this manner, the difference in the starting and ending point after 50 cycles 

corresponds to the cumulative loss of charge. While both electrodes exhibited stable performance, the 

loss of charge over 50 cycles using the carbon black electrode was approximately half that found when 

using the hard carbon electrode. Average Coulombic efficiencies were calculated to be 99.90% and 

99.78% for the carbon black and hard carbon electrodes, respectively. This difference is expected to be 

very significant for anode-free cell performance, where the loss of Na is expected to be the limiting 

factor for cycle life.  
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Figure 38: (a,b) Electrochemical voltage profiles for Na ion alloying/dealloying at 0.1 A/g for bismuth (left) and tin 
(right) electrodes. (c,d) Na metal nucleation profiles at 40 μA/cm2 on sodiated electrodes. (e,f) Slippage profiles 
for Na metal plating and stripping over 50 cycles at 0.5 mA/cm2 on sodiated electrodes.   
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Next, tin and bismuth were selected for comparison as alloying electrodes because they show 

different Na alloying behavior and they have both been recently reported to exhibit stable performance 

as alloying anodes in diglyme-based electrolytes.26, 27 Electrodes were prepared with microsized 

particles (325 mesh) in accordance with these previous reports. Figure 38 a and b show the voltage 

profiles performed at 0.1 A/g between 0 and 2 V vs. Na/Na+. The bismuth alloying curve displays flat 

plateaus at 0.7 and 0.5 V, with the lower voltage plateau reaching twice the capacity of the higher 

voltage plateau. These two distinct plateaus have been identified as the formation of NaBi and Na3Bi 

alloys, which is in agreement with the capacity of ~380 mAh/g. In contrast, the tin alloying curve shows 

more than twice the capacity, approximately forming Na15Sn4, and less distinct plateaus that are closer 

to the Na/Na+ potential. 

Figure 38c and d show the voltage profiles for the nucleation of Na metal on these alloys. The 

nucleation overpotentials for the Na-bismuth alloy and the Na-tin alloy are 3 mV and less than 1 mV, 

respectively. The difference between the two nucleation overpotentials can again be explained in part by 

the difference in operating voltage of the initial alloying process, with the formation of the Na-tin alloy 

taking place closer to the potential of Na/Na+. In addition, the higher Na content of the Na-tin alloy can 

be interpreted as making the alloy more Na-like.  

Where the small barrier to nucleation measured for the Na-bismuth alloy suggests the initial 

formation of small Na nuclei, the absence of a barrier to nucleation on the Na-tin alloy may indicate 

layered growth. From the corresponding 50 cycles of plating-stripping shown in Figure 38e and f, it is 

clear that the Na-bismuth electrode demonstrated less charge loss than the Na-tin electrode. Average 

Coulombic efficiencies were calculated to be 99.85% and 99.63% for the bismuth and tin alloying 

electrodes, respectively. Interestingly, the carbon black and the bismuth electrodes, which showed the 

comparatively lower capacities and higher operating voltages for Na-ion storage, facilitated improved 
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Coulombic efficiencies for the plating and stripping of Na metal. These findings indicate a correlation 

between initial plating morphology, which is indirectly measured as the nucleation overpotential, and 

the resulting Coulombic efficiency. Specifically, we suspect that Na depositions with higher surface-

area-to-volume ratios (correlating to lower nucleation overpotentials) are likely to result in more 

parasitic reactions with the electrolyte than depositions with lower surface-area-to-volume ratios 

(correlating to higher nucleation overpotentials). However, it is important to point out that we previously 

showed that plating on materials exhibiting very high nucleation overpotentials, such as bare aluminum, 

can result in more severe concerns, including: (1) delamination due to poor mechanical connectivity 

between the Na and the electrode; and (2) problematic dendritic growth due to the high effective current 

densities produced by non-uniform and poorly-spread Na depositions.90 In this respect, our use of 

nucleation layers allows us to overcome these highly problematic events and probe the more subtle 

differences in Coulombic efficiency that appear to be due to differing nucleation energetics and resulting 

morphologies. In contrast, recent work examining nitrogen-doped graphene91 and carbon nanofibers 

with silver nanoparticles92 as nucleation layers for Li plating, have been mainly limited to alleviating 

dendritic growth. 
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Figure 39: (a,b) Electrochemical voltage profiles for Na ion insertion/extraction at 0.1 A/g for natural graphite (left) 
and activated carbon (right) electrodes. (c,d) Na metal nucleation profiles at 40 μA/cm2 on sodiated electrodes. 
(e,f) Slippage profiles for Na metal plating and stripping over 50 cycles at 0.5 mA/cm2 on sodiated electrodes. 
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While all of the tested electrodes exhibited high Coulombic efficiencies and stable performance, 

carbon black was selected as the nucleation layer for anode-free cells because it demonstrated the 

highest Coulombic efficiency. Testing to evaluate natural graphite and activated carbon as nucleation 

layers was also conducted (Figure 39) to determine if either the significantly higher surface area of 

activated carbon (>1,600 m2/g) or the significantly lower surface area of the natural graphite flakes (~3 

m2/g) offered an advantage, but neither showed improved performance in comparison to the carbon 

black (45 m2/g). However, it is important to note that in addition to differing surface areas, these carbons 

significantly differ in terms of crystallinity, with the activated carbon containing more defects and sp3 

carbon bonding.  Such sites are expected to be more reactive with the electrolyte and maybe the cause of 

the increase in charge loss observed for the activated carbon electrode. 

 

4.3.2 Additional testing on carbon black nucleation layer 

Additional testing using carbon black nucleation layers was performed to evaluate the potential 

for dendritic growth and evaluate the resting stability of the plated Na metal. Figure 40 shows >30 

mAh/cm2 of continuous plating at 1 mA/cm2. Disassembling the cell, we see that all of the Na was 

removed from the negative side of the cell and plated on to the working electrode, forming a shiny, 

smooth film of Na metal on top of the nucleation layer. This test further confirms that Na can be plated 

without detrimental dendrites growing, in contrast to a recent report showing that dendritic growth 

becomes more problematic and apparent with higher plating capacities.93     
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Figure 40: Plating on carbon black nucleation layer in a half-cell configuration until exhaustion of the Na metal 
counter/reference electrode. Voltage profile shows stable plating over ~30 mAh/cm2 of operation. Images show 
the full removal of all the Na metal from the stainless steel disc and the deposition of Na metal on the nucleation 
layer disc. 

Next, the resting stability of the plated Na metal was tested. While battery electrodes are 

conventionally characterized through galvanostatic cycling, the resting stability of a potentially reactive 

electrode is very important because commercial batteries are required to store charge in addition to 

undergoing charging and discharging. Figure 41 shows the Coulombic efficiency of 50 cycles performed 

at a capacity of 1 mAh/cm2 with a 10 hour rest period between each plating and stripping step. The 
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average Coulombic efficiency was found to be 99.73%, which is lower than what we have found without 

the rest step (~99.9%), indicating additional charge is lost, but the plated Na metal remains relatively 

well passivated by the SEI layer.   

 

Figure 41: 50 cycles of plating and stripping on a carbon black nucleation layer in a half-cell configuration using a 
10 hour rest between each plating and stripping step. The plating current was 1 mA/cm2 and the plating capacity 
per cycle was 1 mAh/cm2. The inset shows the voltage profile for 4½ of these cycles. The average Coulombic 
efficiency of 99.73% over these 50 cycles indicates that minimal Na is lost during the 10 hour resting period. 

 
4.3.3 Mitigating first-cycle loss 

The first-cycle loss of capacity at the negative electrode presents a significant challenge to many 

new battery chemistries. This is particularly problematic in the case of Na-ion battery development, 

where hard carbon anodes consume at least 15% of the Na content during the first cycle. While 

numerous techniques have been proposed to help alleviate this issue, such as pre-charging the anode, 

adding excess Na/Li to the cathode, and using sacrificial salts, it remains unclear if these techniques can 

be practically applied for scaled-up manufacturing.94, 95 Moreover, increasing the mass loading of the 

cathode is not considered a practical approach to compensate for the loss of Na because this may result 
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in the unintended plating of Na metal.96 However, the unbalanced design of the anode-free cell allows us 

to overcome this key challenge. Although there is first-cycle loss in the anode-free cell that results from 

the initial sodiation of the nucleation layer and the formation of a solid electrolyte interphase (SEI) 

layer, the percent loss can be simply reduced by increasing the areal loading of the cathode. In Figure 

42, we illustrate this distinction between an insertion anode and a nucleation layer using half-cell testing. 

Figure 42a shows the first-cycle profile for hard carbon, exhibiting a 16% first-cycle loss. Importantly, 

this percent will not significantly change with areal loading. In contrast, Figure 42b shows the first-cycle 

profile for a carbon black nucleation layer (0.25 mg/cm2), exhibiting only 3.5% first-cycle loss after 

plating 2 mAh/cm2. As expected, we observed that this percent loss is dependent on the plating capacity, 

with lower capacities showing a greater percent loss (Figure 43). In the context of commercial cells, 

with cathode areal loadings greater than 2 mAh/cm2, this unique feature of the anode-free approach will 

be highly advantageous and allow for higher achievable energy densities. 

 
Figure 42: First-cycle voltage profiles for (a) Na-ion storage in hard carbon at 0.1 A/g and (b) Na 
metal plating on a 0.25 mg/cm2 carbon black electrode at 0.5 mA/cm2 for a capacity of 2 mAh/cm2. 
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Figure 43: First-cycle voltage profiles for Na metal plating on a 0.25 mg/cm2 carbon black electrode at 0.5 mA/cm2 
for a capacity of 0.5 mAh/cm2.  

	
4.4 Conclusion 

In this chapter, I focused on a series of materials that exhibit stable performance in glyme-based 

electrolytes as insertion anodes, and reconsidered their utility as nucleation layers. I found that carbon 

black, a relatively poor Na-ion anoded, provided the best-suited platform for Na metal deposition. In 

contrast, both hard carbon and Sn, two of the most promising Na-ion anodes, showed higher irreversible 

losses as nucleation layers. Building on these findings, I conducted addition half-cell testing using 

carbon black nucleation layers to show remarkably low first-cycle loss as well as other attractive 

features.  
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Chapter 5: An Anode-Free Battery with a Na3V2(PO4)3 Cathode 
 

5.1 Introduction 

 In chapter 3, I presented a proof-of-concept anode-free Na cell. However, the use of the pre-

sodiated pyrite cathode only offered limited cycling at low rates. To make a more commercially viable 

cell, an air-stable cathode with a higher operating voltage is preferable. In this chapter, I build on my 

findings from the previous two chapters to report an anode-free cell that operates at 3.35 V, with an 

exception energy efficiency of 98%, and a longer lifespan. To achieve this, I synthesize a carbon-coated 

Na3V2(PO4)3 cathode material and assemble full cells with relatively high cathode loadings (~12 

mg/cm2). 

 

5.2 Methods 

5.2.1 Material fabrication and characterization 

Carbon-coated Na3V2(PO4)3 was synthesized as follows: V2O5, NaH2PO4 · H2O, and citric acid 

were combined in a molar ratio of 1:3:3 and then ball milled in ethanol in a planetary ball mill (FRITZ, 

Pulverisette 7) at 300 RPMs for 24 hours. The resulting green slurry was dried (Figure 44a), hand 

ground using a mortar and pestle, and subsequently sintered at 350 oC in Ar for 4 hours. Afterwards, the 

powder was hand ground again using a mortar and pestle, pressed into 1 cm diameter discs, and sintered 

at 800 oC in Ar for 8 hours (Figure 44b). Finally, the discs were ground into powder using a mortar and 

pestle and carbonized under Ar and C2H2 (90:10 volumetric flow ratio, respectively) for 30 minutes, 

while ramping from 600 oC to 690 oC. Photographs of the dried precursor after ball milling and the discs 

after sintering are presented in Figure 44. SEM imaging was performed using a Zeiss MERLIN with 

GEMINI II SEM. XRD was performed using a Rigaku SmartLab XRD. 
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Figure 44: (a) Dried precursor after ball milling. (b) Sintered Na3V2(PO4)3 discs in ceramic boat. 

 

5.2.2 Electrochemical measurements 

High-loading NVP electrodes were made using 5% CMC binder, 5% polyolefin grafted acrylic 

acid copolymer, and 10% carbon black. These electrodes were processed with water:IPA (80:20 wt%). 

Slurries were spread onto carbon-coated Al foil (MTI) and then punched as 1 cm diameter discs and 

dried in a vacuum oven at 70 oC prior to device assembly. An electrolyte of 1M NaPF6 in diglyme was 

prepared as described in the previous chapter. Anode-free cells were assembled using a 1 cm diameter 
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nucleation layer disc, a Celgard 2325 separator, a Whatman glass fiber separator, and a 1 cm diameter 

cathode disc, ~100 µl of electrolyte, and crimped in CR2032 coin cells.  

5.3 Results and discussion 

5.3.1 Evaluating the Na3V2(PO4)3 cathode 

In choosing a cathode to demonstrate the anode-free approach, it was important to select an air-

stable material that is not Na deficient to allow for facile processing. With the target of reaching Li-ion 

performance, we also sought a cathode to allow for extended cycling, a high specific energy, a stable 

discharge voltage, and stability in the electrochemical window of the 1M NaPF6 in diglyme electrolyte 

(Figure 45). After careful consideration, we selected Na3V2(PO4)3: a NASICON compound with an open 

3D structure that allows for rapid Na-ion conduction. Specifically, carbon-coated Na3V2(PO4)3 

nanoparticles were prepared using a solid-state synthesis after wet ball-milling of the precursors.97 

Figure 46a and b show the synthesized particles and the corresponding x-ray diffraction pattern. To 

evaluate the cathode properties, half-cell testing was conducted using 1M NaPF6 in diglyme. Figure 46c 

shows one full cycle between the range of 3.0 and 3.7 V vs. Na/Na+. The measured capacity of 105 

mAh/g is about 90% of the theoretical capacity of 117 mAh/g. The stable discharge voltage at ~3.35 V 

provides a cathode-specific energy of ~350 Wh/kg. The low voltage hysteresis of 30 mV at a rate of C/6 

is less than one hundredth of the operating voltage, allowing for round-trip energy efficiencies 

approaching 99%. In addition, half-cell cycling without significant capacity decay over 100 cycles is 

shown in Figure 47. 
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Figure 45: Cyclic voltammogram of Na3V2(PO4)3 half cell performed at 0.25 mV/s to 4.5 V vs. Na/Na+ using an 
electrolyte of 1M NaPF6 diglyme. 

 

 

Figure 46: (a) SEM image of Na3V2(PO4)3 particles and corresponding (b) XRD pattern. (c) Voltage profile for 
Na3V2(PO4)3 half cell at C/6 (where C=117 mA/g). 
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Figure 47: Cycling of Na3V2(PO4)3 in a half-cell configuration performed at 0.5 mA/cm2 (0.37C) for 100 cycles. 

	
5.3.1 Comparing the anode-free Na battery to the Na-ion battery 

A Na-ion battery and an anode-free Na battery using a nucleation layer are both illustrated in 

Figure 48a. In contrast to a Na-ion battery, the anode-free battery is intentionally unbalanced, and 

operates through the plating and stripping of Na metal on the nucleation layer at the negative electrode. 

The use of a nucleation layer, as opposed to plating directly on the Al current collector, stabilizes the 

plating and stripping of Na (alleviating problems of Na delamination and dendritic growth) and 

increases the Coulombic efficiency.90 Figure 48b shows the specific energy of different negative 

electrodes paired with a Na3V2(PO4)3 cathode, including the anode-free configuration. The reported 

energy densities are from recent work conducted by Tarascon and coworkers.26 The maximum specific 

energy of 388 Wh/kg for the anode-free cell is calculated assuming the mass of the nucleation layer is 

1% of the mass of the cathode. The 318 Wh/kg demonstrated in this work is notably 40% higher than the 

recently reported value for the tin//Na3V2(PO4)3 cell. 
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5.3.3 Anode-free cell testing 

Anode-free cells were assembled and tested (Figure 49) using carbon black (~0.2 mg/cm2) on Al 

foil as the negative electrode and Na3V2(PO4)3 (~12 mg/cm2) on Al foil as the positive electrode. To 

achieve mass loadings of >10 mg/cm2 without electrode cracking, isopropyl alcohol was added to the 

aqueous solution to reduce surface tension.98 Importantly, no Na metal was used in making these cells, 

and no modification to the electrodes were made such as pre-sodiation or pre-cycling.  Accordingly, this 

design should allow for manufacturing in line with current methods employed for Li-ion batteries.  

 

 

Figure 48: (a) Schematic diagram illustrating the difference between the Na-ion battery and the 
anode-free Na battery. (b) Specific energy comparison between battery configurations using 
different negative electrodes with a Na3V2(PO4)3 cathode; the anode-free approach using a 
nucleation layer is highlighted on the bottom. 
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Figure 49b shows the first 20 cycles of an anode-free cell cycled galvanostatically at 0.25 

mA/cm2 (~C/6 with respect to the cathode) between 3.0 and 3.7 V. In the first cycle, starting at ~0.8 V, 

the carbon black nucleation layer is sodiated (taking place prior to the flat charging plateau). The 

transition from Na-ion storage in the carbon black to Na plating is marked by a nucleation spike. In this 

first cycle, the nucleation spike appears small on the left shoulder of the charging curve (as shown in 

inset in Figure 49b), but then becomes more pronounced in the subsequent cycles. We attribute this to 

nucleation initially occurring prior to the cathode reaching its plateau. After Na is lost in the first few 

cycles, the cathode is never fully sodiated, so the nucleation event aligns with the plateau, and as a 

result, it is more evident in the voltage profiles. It is also worth noting here that the presence of the 

nucleation spike observed at the start of each charging step indicates that Na metal is freshly plated on 

the nucleation layer during each cycle (Figure 51 shows how the magnitude of the nucleation spike 

evolves with cycling). 

Figure 49: (a) Schematic of the charged and discharged state of the anode-free cell. (b) 
Slippage profile for the first 20 cycles of the anode-free cell. Inset, nucleation spike during 
charging. 
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In the first cycle, the discharge capacity was 96 mAh/g with respect to the mass of the cathode, 

or 1.26 mAh/cm2. The maximum specific energy discharged was 318 Wh/kg with respect to the mass of 

the cathode and the nucleation layer. The first-cycle loss of 8% includes oxidation of the electrolyte at 

the cathode in addition to carbon sodiation and SEI formation at the nucleation layer. Stable 

performance is observed over the first 20 cycles with some evidence of electrolyte oxidation (slippage in 

the upper right corner of the plot), and additional loss of charge at the negative electrode (further 

slippage on the left side of the plot). Accordingly, the Coulombic efficiency that levels out around 

99.4% after the first five cycles indicates minor parasitic reactions at both electrodes, rather than a direct 

loss of 0.6% Na per cycle.  

 

 

Figure 50: (a) 100-cycle voltage profiles for anode-free cells at 0.50 mA/cm2 (above) and 0.25 mA/cm2 (below). 
(b) Corresponding cycling capacity retention with decay curves plotted for guidance. 
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Figure 51: Nucleation spike voltage for anode-free cells cycled at 0.25 mA/cm2 and 0.5 mA/cm2. Above, example 
of the nucleation spike measurement.  

Figure 50a and b show the voltage profiles for cells cycled at 0.25 mA/cm2 (~C/6) and 0.5 

mA/cm2 (~C/3) over 100 cycles, and the corresponding capacity retention with respect to cycle number. 

Over the first 100 cycles, the capacity retention was 70.4% and 82.5% for the devices cycled at 0.25 

mA/cm2 and 0.5 mA/cm2, respectively. Additional plots of energy efficiency, Coulombic efficiency, and 

average charging/discharging voltages over the first 100 cycles are presented in Figures S9 and S10. 

Since the cathode material exhibited stable performance in half-cell testing, we assume the capacity fade 

is primarily due to Na loss. This assumption was later confirmed by removing the cathode from an 

anode-free cell and testing it in a half cell, with the cathode reverting back to full capacity. Accordingly, 

the capacity retention with respect to cycle number can be described as follows: 

𝑄(𝑛) = 𝑄@𝜂5		 (Eq. 4) 

where 𝑄 is the cell capacity, 𝑛 is the cycle number, and 𝜂 is the Na retention per cycle. Decay curves for 

x= 99.9%, 99.8%, 99.7%, 99.6% and 99.5% are plotted for comparison. The 𝜂 = 99.9% line corresponds 
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to the Coulombic efficiency of the plating and stripping on carbon black nucleation layer measured in 

half cell testing. Our results approximately follow 𝜂 =99.8% for the device cycled at 0.5 mA/cm2 and 𝜂 

=99.65% for the device cycled at 0.25 mA/cm2. The deviation from the half-cell testing may be due to 

changes in the electrolyte caused by the cathode and/or the deactivation of some Na metal during 

cycling. The difference in cycling between the two rates can be attributed in part to cycling time,99 as the 

device cycled at the slower rate cycled for approximately twice the duration, providing more time for 

parasitic reactions. In comparison, recent work testing anode-free Li batteries with a LiFePO4 cathode 

supplied by A123 and a highly concentrated electrolyte showed a capacity retention of ~35% after 100 

cycles at 0.2 mA/cm2,63 corresponding to 𝜂 < 99.0%, with cycling at 0.5 mA/cm2 showing similar 

performance. The significantly improved capacity retention demonstrated in our work underscores the 

advantage of using a nucleation layer and the pairing of Na with the 1M NaPF6 in diglyme electrolyte. 

 

Figure 52: Disassembled anode-free cells after 100+ cycles showing deposited Na metal 
(charged state) for devices cycled at (a) 0.5 mA/cm2 and (b) 0.25 mA/cm2. 
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Next, to better understand the observed capacity fade with cycling, the anode-free cells 

characterized in Figure 50 were disassembled in a fully charged state (3.7 V) after 100+ cycles and 

photographed (Figure 52). Here, we note a relatively uniform covering of the 1 cm diameter nucleation 

layers (black) with shiny Na metal. As expected,84 the islands of Na appear smaller in the cell operated 

at higher current. Interestingly, Na metal is also found adhered to the edges of the nucleation layer discs 

with patches of duller-gray Na spread onto the larger stainless steel discs. The presence of potentially 

inactive Na on the stainless steel discs may be due to the geometry of the assembled cells, which 

produces non-uniform current distributions at the edges of the electrodes. In addition, variations in 

pressure due to the stack arrangement and the crimping process can deform separators, and have been 

reported to result in spatial variations in deposition near the edges.100 With some of the measured cell 

capacity loss likely explained by the spreading and deactivation of Na, we are optimistic that scaled-up 

devices will show improved cycling through the reduction of these edge effects. Additional promising 

routes to reach lifespans competitive with Li-ion batteries include increasing the Coulombic efficiency 

through the optimization of the nucleation layer and developing methods to incorporate surplus Na into 

the cells. 

Finally, it is worthwhile to note additional unique battery attributes that are enabled by our 

anode-free approach that are particularly important for system-level integration. First, the voltage during 

discharge is remarkably stable, with 98% percent of the discharge occurring between 3.4 and 3.3 V 

when operated at 0.25 mA/cm2 from 3.7 to 3.0 V. This capability to maintain a constant voltage during 

discharge may eliminate the need for power electronics (such as boost converters) at the system level 

that are costly and consume energy. Second, the round-trip energy efficiencies of the anode-free cells 

were found to be exceptionally high, with averages of 98.1% (0.5 mA/cm2) and 98.0% (0.25 mA/cm2) 

over 100 cycles. This feature is especially attractive in the context of stationary electric storage, where 
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energy losses reduce the value of batteries as resources to the grid and accumulate to be significant over 

long operational lifetimes.101 High energy efficiencies are also expected to allow for simpler and 

potentially less costly thermal management. 

 

5.4 Conclusion  

In this chapter, I developed a Na metal battery using an anode-free assembly, where all the Na is 

initially stored in an air-stable cathode material for ease of manufacturing. Using the anode-free 

approach with a Na3V2(PO4)3 cathode, a full-cell was demonstrated to achieve attributes unattainable 

with the use of conventional Na-ion anodes, including: high specific energy (up to 318 Wh/kg at 0.25 

mA/cm2 with respect to the mass of the cathode and nucleation layer), minimal first-cycle capacity loss 

(down to 8%), exceptional round-trip energy efficiency (98%), and a stable discharge voltage at 3.35 V. 

Going forward, additional work needs to be focused on improving the lifespan of these cells, as this 

remains their key disadvantage. 
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Chapter 6: Extending the Cycle Life of Anode-Free Batteries using a Cathode with 
an Ion Reservoir 

 

6.1 Introduction 

In this chapter, I present a new strategy to increase the cycle life of anode-free cells by 

incorporating an additional reserve of metal ions in the cathode. To demonstrate this concept, I utilize 

Na-enriched NVP, where an additional Na ion is stored through the V3+/V2+ redox couple, providing a 

~50% surplus of Na, and enabling a full cell with 325 Wh/kg capable of 230 stable cycles with >80% 

capacity retention. Since a collection of techniques to add a surplus of metal ions to the cathode have 

already been established for both Li-ion94, 102-104 and Na-ion95, 105-107 batteries to offset first-cycle loss, I 

expect this strategy to be broadly applicable to different chemistries with an array of embodiments, and 

allow for the design of anode-free batteries capable of significantly longer lifespans. 

 

6.2 Methods 

Na4V2(PO4)3 electrodes were prepared as follows: (1) Na3V2(PO4)3 electrodes were prepared as 

reported in the previous chapter with loadings of ~12mg/cm2. (2) Half cells using an electrolyte of 1M 

NaPF6 in diglyme with the Na3V2(PO4)3 electrodes were assembled. (3) Half cells were pre-cycled and 

then discharged to 1V vs. Na/Na+. (4) Half cells were disassembled in an Ar glovebox and the 

Na4V2(PO4)3 electrodes were removed for testing in anode-free cells. All additional methods used in this 

chapter have been previously described elsewhere in this dissertation.    

 

6.3 Results and discussion  

Figure 53a illustrates the projected cycling performance of an anode-free cell with and without 

an ion reservoir. By considering a reservoir with a 50% excess of ions and a 99.9% Coulombic 
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efficiency for both cells, we project that the addition of the reservoir can provide a 224% extension of 

the cell’s cycle life with >80% capacity retention. During the first charge, the excess of ions will be 

electroplated to form a metal surplus at the negative electrode. During the subsequent cycling, this 

surplus will compensate for the cycle-to-cycle loss of charge. In this manner, the projected cycling of the 

anode-free cell with the ion reservoir can be segmented into two distinct regimes. First, there is a period 

of surplus-enable stable cycling. During this period, the surplus is expected to decrease linearly with 

cycling and allow for a stable capacity to be maintained. This period of stable cycling will continue until 

the surplus is depleted. In this second period, where there is no longer a surplus, the cell capacity is 

projected to decay exponentially with cycling, as expected for anode-free cells without the incorporation 

of an ion reservoir.63  

 

 

Figure 53: (a) Projected cycling performance of an anode-free cell with (red line) and without (black line) an ion 
reservoir, assuming a plating-stripping Coulombic efficiency of 99.9%. (b) Projected cycle life where >80% of the 
initial capacity of an anode-free cell is retained, considering a range of plating-stripping Coulombic efficiencies 
and ion reservoir sizes, expressed as the excess of ions as a percent of the operating capacity. 
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Considering this system more generally, we can map out the projected cycle life of cells based 

on the excess of ions in the reservoir and the plating-stripping Coulombic efficiencies as shown in 

Figure 53b. Equation 5 shows N, the number of cycles with ≥ 80% capacity, as a function of 𝜂, plating-

stripping Coulombic efficiency, and QR, the excess of ions, expressed as a percent of the cell operating 

capacity. 

𝑁(𝜂, 𝑄D) =
EF(@.H)
EF(I)

+ #K
L6I

   (Eq. 5) 

Figure 53b shows that >2000 cycles can be reached when operating at 99.95% Coulombic efficiency 

with an ion reservoir. While incorporating an ion reservoir into the cell will come at the expense of cell 

energy density, with this specific relationship dependent on the capacity of the reservoir, this general 

strategy provides a pathway to engineer anode-free cells to reach specific cycle life and energy density 

targets. 

 

Figure 54: Voltage profiles of 50 cycles of Na metal plating and stripping on carbon black nucleation layers at a 
current of 1.0 mA/cm2 with a plating capacity per cycle of 2.0 mAh/cm2 performed (a) without a Na surplus, using 
a voltage cutoff per cycle of 100 mV vs. Na/Na+, and (b) after a surplus of 1.0 mAh/cm2 of Na was first plated (red 
line), using a 2.0 mAh/cm2 capacity cutoff per cycle for the 50 cycles, and a final full strip (blue line) with a voltage 
cutoff of 100 mV vs. Na/Na+ after the 50 cycles. The cumulative loss of charge is shown for both tests as QLoss. 
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 Underlying our projected cycle life calculations is the assumption that after charging the cell for 

the first time, the excess ions in the reservoir can be converted to form a surplus of alkali metal at the 

negative electrode that can be stored without a significant increase in parasitic reactions. To assess this 

assumption, half-cell testing was performed using an aluminum foil current collector equipped with 

carbon black nucleation layer as the working electrode. Figure 54 shows the voltage profiles with 

respect to time from two different cycling protocols. Figure 54a shows a cell cycled with a plating 

capacity of 2 mAh/cm2, and a 100 mV voltage cutoff. In this test, fresh Na metal is plated each cycle 

and then fully removed at the end of the cycle. The average Coulombic efficiency per cycle can be 

calculated as the total stripped capacity divided by the total plated capacity, and was found to average 

99.88%, with 0.12 mA/cm2 total loss in the first 50 cycles. Figure 54b shows a cell where 1 mAh/cm2 of 

Na metal was first plated before the start of the cycling (red line), serving as a 50% surplus. During the 

subsequent cycling, 2 mAh/cm2 of Na metal was plated and stripped each cycle, using a stripping 

capacity cutoff of 2 mAh/cm2. After 50 cycles, all of the Na metal was fully stripped (blue line) using a 

voltage cutoff of 100 mV. Since a surplus of Na is left behind each cycle during this cycling protocol, 

the negative voltage spike characteristic of nucleation present in every cycle in Figure 54a is only 

observed in the first cycle in Figure 54b. The inset in Figure 54b compares the final stripping capacity 

(blue line) to the capacity of the initially plated surplus (red line). The difference in capacity of 0.07 

mA/cm2 is the cumulative loss of charge over the 50 cycles, corresponding to an average Coulombic 

efficiency of 99.93% per cycle. Figure 55 shows a similar test, where the current used to plate the 

surplus was reduced from 1 mA/cm2 to 0.1 mA/cm2, highlighting the initial current as another variable 

that can be optimized to extend the cell cycle life. Overall, our half-cell testing shows that the surplus of 

Na metal did not lead to an increase in side reactions over the 50 cycles, an encouraging sign for full cell 

development using an ion reservoir.  
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Figure 55: Voltage profiles of 50 cycles of Na metal plating and stripping on a carbon black nucleation layer at a 
current of 1.0 mA/cm2 with a plating capacity per cycle of 2.0 mAh/cm2 performed after a surplus of 1.0 mAh/cm2 
of Na was first plated at a current of 0.1 mA/cm2 (red line), using a 2.0 mAh/cm2 capacity cutoff per cycle for the 
50 cycles, and a final full strip (blue line) with a voltage cutoff of 100 mV vs. Na/Na+ after the 50 cycles. The 
cumulative loss of charge is shown as QLoss.  

	
In order to demonstrate this strategy in an anode-free configuration, carbon-coated Na3V2(PO4)3 

nanoparticles were synthesized to function as the Na-ion cathode. While the NASICON-structured 

Na3V2(PO4)3 is reported to provide a capacity of up to 117 mAh/g during oxidation at 3.4 V vs. Na/Na+, 

it has also been reported to store an addition 59 mAh/g during reduction at 1.6 V vs. Na/Na+, forming 

Na4V2(PO4)3.19 While the potential functionality of this secondary reaction has remained unclear for Na-

ion batteries, here, we identify this reactions as an excellent opportunity to create a Na-enriched cathode 

to provide an ion reservoir for an anode-free cell. To make the Na4V2(PO4)3 phase, we performed an 

electrochemical reduction, although we expect that ball milling Na3V2(PO4)3 with Na metal can also be 

carried out in a manner similar to recent work from B. Zhang et al., where they reported the synthesis of 

Na4V2(PO4)2F3.95 The comparative X-ray diffraction patterns of the Na vanadium phosphate before and 

after electrochemical reduction is shown in Figure 56, with the later matching recent reports of the 

Na4V2(PO4)3 phase.108  
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Figure 56: XRD patterns of NVP before (bottom) and after (red) electrochemical reduction. The top pattern was 
acquired using an air-sensitive sample holder with the pattern from the holder baseline subtracted.  

 

Figure 57: Voltage profile of the first 3 cycles of the anode-free cell with ion reservoir performed at a current of 0.5 
mA/cm2 (~C/3).   

Anode-free cells with an ion reservoir were assembled using the Na4V2(PO4)3 cathode, (~12 

mg/cm2) and a carbon black nucleation layer (~0.2 mg/cm2). Figure 57 shows the first three cycles of an 

anode-free cell performed galavanostatically at 0.5 mA/cm2 (~C/3). During the first charge, the cell 

voltage rises until reaching a flat plateau at 1.6 V where the Na4V2(PO4)3 is oxidized, releasing the 

excess Na ions that are plated onto the nucleation layer, forming a surplus of Na metal. The end of this 
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low-voltage plateau signals that the cathode has reached the Na3V2(PO4)3 phase. The subsequent plateau 

at 3.4 V corresponds to the further oxidation from Na3V2(PO4)3 to NaV2(PO4)3, releasing additional Na 

ions that are plated onto the surplus layer of Na metal. Then, during the discharge process, the Na metal 

is oxidized at the negative electrode and the ions are stored in the cathode, with the cathode returning 

from NaV2(PO4)3 back to Na3V2(PO4)3. To prevent the stripping of the surplus layer of Na metal, a 3 V 

discharge cutoff is used. Accordingly, as in the half-cell testing in Figure 54b, a surplus of Na metal is 

stored on the nucleation layer. In this manner, the incorporation of the ion reservoir creates a cathode-

limited cell until the surplus of Na metal is depleted.  

 

Figure 58: Capacity of anode-free cell with ion reservoir over 230 cycles performed at a current of 0.5 mA/cm2 
(~C/3).  The left inset shows the voltage profile for all cycles from cycle 2 to 180, and the right inset shows the 
voltage profile for all cycles from cycle 180 to 230. 

Figure 58 shows the corresponding cycling performance of this cell performed at a current of 0.5 

mAh/cm2 (~C/3). As predicted, we observe an extended period of stable cycling followed by a steady 
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decline in the cell capacity. During the stable period, the cell capacity of 1.37 mAh/cm2 corresponds to a 

capacity of 97 mAh/g and a specific energy of 325 Wh/kg, both with respect to the mass of the 

Na4V2(PO4)3 and the carbon black nucleation layer. Over the first 180 cycles, the capacity retention is 

>98%, and the average Coulombic efficiency is 99.88% (this corresponds to the Na3V2(PO4)3 

Coulombic efficiency). In addition, the low overpotential of both the Na metal plating/stripping and 

Na3V2(PO4)3 intercalation/deintercalation provides a remarkably high energy efficiency, averaging 

98.4% during this period. Surprisingly, this is, to the best of our knowledge, the highest energy 

efficiency reported to date for a battery system. The voltage profile for every cycle from the second to 

the 180th are plotted on top of each other in the left inset in Figure 58, showing both a stable capacity 

and a stable voltage profile.  After 180 cycles, the cell capacity begins to steadily decline. The onset of 

the capacity decline signals that the surplus of Na metal that was plated during the first cycle has been 

depleted. As a result, the cell transitions from being cathode limited to Na-metal limited. Evidence of 

this transition can be seen with the appearance of a nucleation spike at the start of the charging voltage 

profile in these later cycles, as Na metal is re-nucleated at the negative electrode at the start of every 

cycle (Figure 59). Despite the slow decline in capacity, the right inset in Figure 58 shows that the 

voltage profile remains consistent in this period. This is important to point out because dendritic growth 

is reported to cause erratic changes in voltage caused by dendrites momentarily short-circuiting cells.93 

Accordingly, we can conclude from our cycling data that problematic dendritic growth is not an issue. 

Figure 58 shows 230 cycles with a >80% capacity retention, a significantly extended life span in 

comparison to other reports,63, 90, 109 which serves to highlight the impact of our ion-reservoir strategy. 
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Figure 59: Voltage profile showing the beginning of the charging profile for all cycles from cycle 180 to 230. The 
spike that emerges corresponds to the nucleation of Na metal. The delay in the emergence of this spike (as the 
surplus appears depleted by cycle 180) is due to the alignment of the NVP voltage plateau with the nucleation 
event, requiring the additional loss of Na content from the NVP before the spike aligns with the flat plateau and 
becomes apparent. 

 

6.4 Conclusion 

In conclusion, this work introduces the use of ion reservoir to extend the cycle life of anode-free 

cells. I demonstrated the feasibility of this approach by first performing half-cell tests using a Na metal 

surplus, showing >99.9% Coulombic efficiencies, and then full cell testing using Na-enriched Na 

vanadium phosphate nanoparticles, to reach 230 cycles with >80% capacity retention, a high energy 

density of 325 Wh/kg, and an exceptional energy efficiency of >98%. By providing a strategy by which 

cells can be engineered to attain both high energy densities and long cycle lives, my work here opens up 

new paths to meet the growing demands for high-performance batteries. 
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Chapter 7: Conclusion 
	

The focus of this research has been to explore opportunities for alternative Na batteries. The 

great natural abundance of Na and its similarities to Li make it a promising battery chemistry to 

investigate. However, Na-ion batteries in a form analogous to commercial Li-ion batteries appear 

unlikely to be able to compete with their Li counterparts in terms of performance (i.e. specific energy or 

specific power) or cost (in dollars per kWh). For these reasons, my research has been aimed at 

developing and characterizing alternative options for Na-based batteries that can potentially offer an 

advantage over Li-ion batteries. In Chapter 2, I examined a cointercalation reaction capable of 

exceptionally fast charging times and long lifespans, and in Chapters 3-6, I developed an anode-free Na 

metal battery aimed at competing with Li-ion batteries in terms of specific energy and cost. In this final 

chapter, I will briefly summarize the findings of this thesis and offer my perspective on the future. 

 

7.1 Summary and outlook 

In Chapter 2, I examined the cointercalation of Na ions and diglyme solvent into graphitic 

carbon. The remarkable rate (achieving up to 12 second charging times) and extended lifespan (96% 

capacity retention after 8,000 cycles) of this reaction motivated me to system  seek a better 

understanding of the underlying mechanism. By conducting a series of in-situ Raman experiments, I was 

able to resolve the staging behavior and correlate the stage number with the electrochemical data. I 

found that unlike the naked intercalation of Li ions or K ions into graphite, the cointercalation of Na ions 

and solvent did not initially create a dilute stage 1 compound. In addition, I was able to highlight that 

after reaching a stage 1 compound, there appeared to be further packing of the ion galleries, resulting in 

supercapacitor-like storage. Furthermore, I was able to apply the findings of Chen et al. (published in 
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Nature) to a staging reaction in-situ for the first time, and identify the Fermi level of the stage 1 and 

stage 2 intercalation compounds.  

While I did not develop full cells utilizing solvated Na-ion cointercalation, there have been 

numerous reports by others, including the pairing of a carbon-coated Na3V2(PO4)3 cathode (similar to 

the material synthesized in Chapter 5) and the pairing of a high surface area carbon electrode, to 

demonstrate high-rate performance.110, 111 In addition, there have been a number of interesting follow-up 

studies further characterizing the solvated Na ion cointercalation process utilizing atomic force 

microscopy112 and electrochemical dilatometry113 as well explorations of different ethers.114, 115  

Beyond energy storage, the fast reaction kinetics, the large volume change, and the high 

reversibility of the cointercalation process are attractive for mechanical actuation and sensing. In 2006, 

Yet-Ming Chiang’s group at MIT reported an assessment of different intercalation-driven actuators.22 

While actuators relying on the intercalation of Li ions into graphite result in slow actuation (>100 

seconds) and ~10% volume change, the solvated Na-ion cointercaltion into graphite offers significantly 

faster actuation (<15 seconds) and a far greater volume change (~260%). To take advantage of these 

properties, I have assisted Nitin Muralidharan (at Vanderbilt) in his recent work evaluating 

cointercalation for a symmetric energy harvesting device (manuscript in preparation). I have also 

collaborated with Zack Coppens and Chibuzor Fabian Ugwu in Jason Valentine’s group with the aim of 

developing an electrochemically actuated dynamic metamaterial to function as a low-power display. In 

this design, the distance between an array of metal resonators and a reflective backplane is tuned by the 

intertercalation/deintercalation of solvated Na ions into a few-layer graphene spacer layer. In our initial 

testing, we have measured fast switching times (~200 mS), and we expect faster switching may 

achievable by shortening the diffusion length. More information on this device design can be found in 

the dissertation of Zack Coppens.116    
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In Chapters 3-6, I developed an anode-free Na metal battery. In Chapter 3, I found that a 

nucleation layer improved the plating and stripping of Na metal on an Al current collector, as it appeared 

to improve the connection between the current collector and the Na metal film and promote more 

uniform plating. Building on these findings, I went on to demonstrate the first anode-free Na metal 

battery by using a presodiated pyrite cathode. The exceptional specific energy of the full cell together 

with the promising cycling performance observed in the half cell testing encouraged me to continue to 

explore this anode-free approach. In Chapter 4, I investigated a range of different materials as nucleation 

layers. I compared the Na-ion storage properties of these materials, the Na metal nucleation energetics 

of Na plating on these materials, and their performance as nucleation layers. I found that carbon black 

was the best material for minimizing irreversible charge loss, and attributed the improved performance 

to the expected lower surface area of the nucleated Na metal on this nucleation layer. In Chapter 5, I 

selected and synthesized the cathode material Na3V2(PO4)3 to pair with the carbon black nucleation layer 

to demonstrate an anode-free cell to that can be assembled using air-stable electrodes. In comparison to 

a Na-ion cell with this cathode, I showed the anode-free cell to have a 40% greater specific energy. In 

addition, I showed higher energy efficiencies (98%) and flatter discharges (remaining constant at 3.35 

V) with this approach than can otherwise be achieved. Cycling tests, however, revealed that these cells 

were limited to ~100 cycles. Finally, in Chapter 6, I presented a new strategy to increase the cycle life of 

these cell by including an excess Na in the cathode. The introduction of a Na surplus provided the 

opportunity to experiment with the initial plating current for depositing the initial Na metal. Here, I 

found initial evidence that a lower current improved the later Coulombic efficiency. As in Chapter 4, I 

attributed the improved performance to the expected lower surface area of the nucleated Na metal when 

using lower currents. Finally, I demonstrated that the incorporation of a Na reservoir could extend the 

cycle life from ~100 cycles to ~230 cycles. 
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Moving forward, the anode-free approach can be tailored to achieve a range of performance 

goals and satisfy different design constraints. With respect to specific energy, cathodes can be selected 

to provide up to 500 Wh/kg with options such as fluorophosphates with elevated operating voltages,15 or 

nickel-containing O3-type layered oxides with higher capacities.14, 45  Alternatively, transitioning from 

vanadium to more abundant and environmentally-benign transition metals (iron and/or manganese) may 

be of interest, potentially through the use of Prussian white17 or iron sulfates18. Of these different 

cathode pairings, the rhombohedral Prussian white, Na2Fe[Fe(CN)6], that was first reported by 

Goodenough’s group3 appears to be the ideal combination of high energy, abundant raw materials, and 

compatibility with glymes. While it is not included in this dissertation, I worked to synthesize a similar 

Prussian white material, but struggled to develop an anode-free cell capable of satisfactory cycling. 

While I attribute the poor reversibility of the cells I tested to the presence of trapped water and other 

contaminants in the Prussian white material, recent work from Rudola et al., showing that drying above 

240 oC in an Ar environment can sufficiently dehydrate the material,117 is very encouraging. 

Interestingly, this same group published a follow-up paper in 2018 using their Prussian white material to 

make an anode-free Na battery using a bare Cu current collector and an electrolyte of NaBF4 in 

tetraglyme with a high specific energy of 336 Wh/kg and a moderate cycle lifespan (<100 cycles).109 I 

think a incorporating a nucleation layer and switching to NaPF6 salt could further advance this system. 

In addition, I am excited about the use of high cathode areal loadings to boost the cycle life and 

the specific energy of these cells, as an increase in the plating capacity per unit area will reduce the first-

cycle loss and improves the Coulombic efficiency of subsequent cycles. In regard to safety 

considerations, the stability of the Na metal in the diglyme electrolyte and the capability to discharge the 

cell to a Na metal-free state are an encouraging start. Future progress in this direction may include the 
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development of non-flammable polymer electrolytes, advanced separators, and diagnostic tools adapted 

to this battery type.  
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