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ABSTRACT 

 

Spectral counting has become a widely used approach for comparing 

protein abundance in label-free shotgun proteomics. However, when 

analyzing complex samples, the ambiguity of matching between peptides 

and proteins greatly affects the assessment of peptide and protein 

differentiation. Meanwhile, the configuration of database searching 

algorithms that assign peptides to MS/MS spectra may produce different 

results. Here, I present three strategies to improve comparative proteomics 

through spectral counting.  I show that comparing spectral counts for 

peptide groups rather than for protein groups forestalls problems 

introduced by shared peptides. I present four models to combine four 

popular search engines that lead to significant gains in spectral counting 

differentiation. Among these models, I demonstrate a powerful vote 

counting model that scales well for multiple search engines. I also show 

that semi-tryptic searching outperforms tryptic searching for comparative 

proteomics. Overall, these techniques considerably improve protein 

differentiation on the basis of spectral count tables. 
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CHAPTER I 

 

 INTRODUCTION 

 

1.1 Overview 

Shotgun proteomics based on tandem mass spectrometry has become a widespread 

method for analyzing complex biological mixtures. It begins by digesting protein 

mixtures and separating the resulting peptides by liquid chromatography. After peptide 

MS/MS spectra are acquired, they are matched to database peptide sequences by 

search engines such as Sequest[1], Mascot[2], X!Tandem[3], and MyriMatch[4]. Proteins 

are assembled from these raw identifications by validation tools [5-9] that convert 

arbitrary search scores into statistical measures [10].  Proteins can then be filtered by 

customized criteria for further analysis. Because shotgun analyses can represent 

complex proteomes in considerable depth, a key question is how one can compare 

shotgun proteome inventories to reveal molecular characteristics of biologically distinct 

phenotypes to discover clinically important biomarkers. Improvement in protein 

differentiation broadly benefits the identification and validation of molecular markers 

that relate to various biological or medical outcomes, thus improving the current state 

of the art in biological research and clinical practice.  

In shotgun proteomics, the link between peptides and proteins is lost through the 

digestion of protein mixture. Determining which protein these shared peptides arose 

from is a challenge in comparative proteomics.  A particular peptide may correspond to 
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multiple potential protein sources. In systems where proteins of multiple species are 

present, such as xenograft models of cancer, shared peptides are very common, and so 

a difference in one protein may masquerade as a difference in a second protein that 

shares peptides with the first. 

Moreover, search results differ from one search engine to the next, depending on both 

the type of mass spectrometer used and the configuration of the search. In biological 

samples, often the most interesting proteins are lowest in abundance, and meaningful 

changes in protein abundance may be small in magnitude. Detecting these differences 

may be visible by one search engine but not another because of differences in match 

scoring. Even if the search engine is held constant, the way in which the tool is 

configured may significantly impact the set of identifications produced.  Deciding 

between a “fully tryptic” search and a “semi-tryptic” search would seem to primarily 

impact the amount of time required, but this decision has been shown to significantly 

alter the set of peptides identified from a mixture. 

Here, I characterize three strategies for improving comparative proteomics through 

spectral counting.  First, I will demonstrate that the problem of shared peptides can be 

resolved through comparison for peptide groups rather than proteins, giving examples 

of differences that would be confused by standard approaches.  Then, I will examine the 

gains achieved for spectral counting when collating search results from a set of four 

high-performance peptide identifiers.  I will also determine the impact of tryptic and 

semi-tryptic searching for spectral count tables to frame recommendations for best 
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practices.  Taken together, these techniques enable higher quality differentiation on the 

basis of spectral count tables. 

In this chapter, I will provide an introduction to shutgun proteomics, comparative 

shotgun proteomics, and the workflow of proteomics data analysis, including peptide 

identification, protein inference and protein assembly.  

 

1.2 Shotgun Proteomics 

Shotgun proteomics is currently the most commonly used approach for identification 

and quantification of large number of proteins. It has been proved to be successful in 

post-translational modification identification, protein quantification, and protein-

protein interaction[1]. The workflow of shotgun proteomics is illustrated in Figure 1. 

First, taking the sample of a mixture of proteins, reduce the complexity by SDS-PAGE or 

two-dimensional gel electrophoresis.  Then the proteins are digested into peptides by 

sequence-specific proteolysis. Trypsin is the most commonly used protease that cleaves 

peptide at the C-terminal side of arginine and lysine. The peptide mixtures are then 

separated by liquid chromatography and ionized in a mass spectrometry. Peptides are 

isolated in mass spectrometer and characterized by tandem mass spectrometry 

(MS/MS), which involves breaking the peptide into smaller fragments and measuring 

the mass spectrum of these fragments. During data analysis, the peptides are identified 

from the tandem mass spectra. Then proteins are assembled from the peptides. 
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Figure 1. The workflow of shotgun proteomics 

 

1.3 Comparative Shotgun Proteomics 

 An important goal in proteomics is to globally profile changes in protein abundances in 

biological systems, thus discovering protein expression state in response to biological 

perturbation, disease progression or drug treatment. In general, protein quantification 

by mass spectrometry is performed by stable isotope labeling or a label-free approach. 

A number of methods of stable isotope labeling of proteins or peptides, including 

Isotope-Code Affinity Tag (ICAT)[2], Stable Isotope Labeling by Amino Acids in Cell 

Culture (SILAC)[3], Isobaric Tags for Relative and Absolute Quantification (iTRAQ)[4] are 

Peptide Mixture Liquid Chromatography Electrospray Ionization Mass Spectrometry

Isolate Ions of Peptide Collide Ions to Dissociate Collect Fragments in Tandem MS

Protein Mixture Protein DigestionBiological Sample Sample Fractionation

SDS-PAGE
2D-gel 
electrophoresis

Tandem Mass Spectra Peptide Identifications Confident Peptide List Assembled Protein List
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used. However, label based quantification methods have common limitations including 

requirements for higher amounts of biological samples, increased complexity in 

experiments, and high costs for the labeling reagents. Therefore, label-free shotgun 

proteomics have emerging and developed as an alternative for protein quantification 

and differentiation. Compared to label-based quantification, label-free quantification 

has the following advantages:  (a) There is no limit to the number of experiments to be 

compared while label-based approach, for example, SILAC is limited to 2-8 experiments 

that can be directly compared; (b) label-free methods provide higher dynamic range of 

quantification, thus will benefit analysis when large and global protein changes between 

experiments are observed[5]. Currently, two label-free quantification methods are used:  

(a) precursor intensity approach: measuring and comparing mass spectrometric signal 

intensity of peptide precursor ions of a given protein; (b) spectral counting approach:  

counting the number of MS/MS spectra matched to peptides of a given protein.  To use 

peptide precursor intensities, for every peptide, ion chromatograms are extracted from 

MS/MS run and their precursor MS peak areas or peak intensities are integrated over 

the chromatographic time or collected. The intensity for each peptide from one 

experiment can be compared to other experiments to yield relative quantitative 

information.   Prior work has demonstrated that a frequency-based analysis approach 

using the number of observed spectral counts for each protein provides a rough 

measure of protein levels in complex protein mixtures, especially for more abundant 

proteins[6-8]. Thus, relative abundance can be calculated by comparing the number of 

spectra between multiple experiments. 
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Comparing spectral counting and precursor intensity method, previous studies have 

shown that spectral counting can be as sensitive as ion peak intensities considering 

detection range, correlation and linearity. Spectral counting is more sensitive for 

detecting changes in protein abundance, whereas peak area provides more accurate 

estimates of protein ratios[9].  

Comparative proteomics spans two complementary goals.  First, researchers may seek 

to differentiate the proteomes of two sample cohorts, seeking the proteins that appear 

in one sample to a significantly greater degree than in another.  Second, researchers 

may seek to quantify the extent to which proteins change in magnitude between sample 

cohorts.  Here, I consider the first of these goals, leaving quantification as a topic for 

experimental methodologies better designed for this purpose, such as selected reaction 

monitoring[10] .  The evidence produced for a protein in “shotgun” experiments is the 

result of a high-throughput sampling process.  As a result, which spectra are captured 

from a particular protein digest will vary among experiments [11].  Spectral counts 

attributed to a particular protein group may vary due to random sampling or due to 

differences in protein quantity.  In general, one expects to collect both more spectra 

from individual peptides (potentially varying in charge state or modification state) as 

well as more peptides from a particular protein group as the concentration of that 

protein rises compared to the sample background.  As a result, finding significant 

differences requires the ability to compare variation in replicates to variation between 

cohorts. Here I focus on refining spectral counting method to achieve better protein 

differentiation.  
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1.4 Proteomic Data Analysis 

Usually, hundreds of thousands of tandem mass spectra are collected in a single 

shotgun proteomics experiment. Thus bioinformatics tools are required for proteomics 

data analysis.  

The typical proteomics data analysis workflow is shown in Figure 2. First, experimental 

spectra are interpreted as peptides with strategies discussed in next section. Next, 

peptide identifications are validated to estimate the false discovery rate of the 

confidence of the assignments. Peptides identified with high confidence are used to 

assemble proteins.  

 

Figure 2. Workflow of shotgun proteomics data analysis. 
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1.4.1 Peptide Identification 

Database search algorithms are essential to link tandem mass spectra (MS/MS) to 

peptide sequences from protein database. There are many search algorithms that are 

currently in use. Here I will introduce four major peptide identification approaches 

(Figure 3), with focus on four of the most popular search engines- Sequest[12], 

X!Tandem[13], MyriMatch[14] and TagRecon[15,16]. 

 

Sequence Database Search 

A general approach in Sequest, MyriMatch and X!Tandem are known as sequence 

database (DB) search. The overview of sequence database search is illustrated in Figure 

4. First, the experimental precursor ion mass of a peptide is compared with calculated 

peptide mass; database search tools perform an in-silico digestion of the protein 

database to enumerate all candidate peptide sequences that has the mass within the 

mass tolerance range. Then, tandem mass spectra are then matched to the fragment ion 

mass values. Corresponding mass values are counted or scored in a way that allows the 

identification of peptides best matches the data[17].  Database search tools then select 

the top ranked peptides of each spectrum for subsequent analysis. 
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Figure 3. Four peptide identification strategies  

Sequence DB search, spectral library search, sequence tag-assisted search and De novo 

sequencing search are used for peptide identification [18]. 

 

The scoring function is critical for measure the similarity between experimental and 

theoretical spectra. Scoring functions such as correlation fuctions (cross correlation in 

Sequest and dot product in X!Tandem) and probability-based function (ion score and 

identity score in Mascot and multivariate hypergeometric distribution score in 

MyriMatch) are used to evaluate the peptide-spectrum-matches (PSMs).   

Sequest uses a cross-correlation function to provide a measurement of similarity 

between mass-to-charge ratios for the fragment ions from the observed tandem mass 
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spectrum and the fragment ions predicted from amino acid sequences obtained from 

database. Difference between normalized cross-correaltion function of the first and 

second-ranked search results shows the confidence of match between sequence and 

spectrum.   

MyriMatch first stratifies peaks into multiple intensity classes, and then scores peptide 

matches based upon the multivariate hypergeometric (MVH) distribution on the basis of 

peak intensity. The scoring of peptides pays greater emphasis on matching intense 

peaks, which in result gains considerable discriminative power.   

X!Tandem generates theoretical spectra for the peptide sequences using knowledge of 

the intensity patterns associated with particular amino acid residues, and calculate an 

empirical E-value to access the significance of a peptide match. Peptide candidate score 

distributions are utilized for thresholding or E-value extrapolation. 

 

Figure 4. Overview of database search.  
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In these DB search tools, search parameters have great impact on search results.  First, 

precursor mass tolerance determines the peptide candidates to be compared to the 

experimental spectrum.  Mass tolerance window varies by instruments for collecting MS 

data, high mass accuracy instruments such as Orbitrap allow a very narrow mass 

window ~10ppm, while low mass accuracy instruments such as LTQ require a broader 

mass window  ~3 Da. Narrower mass window reduces search time and decreases 

number of false matches. Second, enzyme digestion specifications constraint also 

controls the number of candidate peptides to be analyzed. Tryptic search eliminates 

identification of peptides that undergo unexpected cleavages and spend less time than 

non-tryptic searches or semi-tryptic searches. I will discuss the difference further in the 

following sections. Other search parameters such as post-translational modifications 

and reference protein database can also affect search results.   

In spite of the wide spread usage of database search, database search tools rely heavily 

on protein databases, in which some of the genome sequences and annotation may not 

be accurate. Especially, mutations and modifications are often ignored by database 

search tools.  Moreover, database search is very time-consuming process for the large 

number of comparisons between observed spectra and theoretical spectra.  

 

Sequence tagging-based database search 

Sequence tagging-based database search first infers short peptide sequences (“tags”) 

from spectra.  The tags are then used to match candidate peptides via database search. 

Sequence tagging-based database search is particularly useful in the identification of 



12 
 

mutation and modifications. Tools such as InsPecT [19] and TagRecon[16] are examples 

of sequence tagging-based database search.   

TagRecon works with DirecTag as an integrated bioinformatics pipeline. DirecTag infers 

sequence tags from MS/MS spectra. TagRecon detects a sequence tag that matches a 

peptide sequence reconciling mass differences, and then compares the mass of flanking 

regions of both spectrum and peptide sequence to determine whether the masses 

matches is within a specified mass tolerance[16]. TagRecon uses two probabilistic 

subscores: an intensity-based probabilistic MVH score and a nonprobablistic fast cross-

correlation (XCorr) score to indicate the confidence of the PSMs.  

 

De novo sequencing search and spectral library search 

De novo sequencing infers peptide sequences directly from experimental spectra. The 

inferred peptides then mapped to proteins by downstream tools such as MS-BLAST[20]. 

This approach is especially useful when the organisms have unsequenced or partial 

sequenced genomes.  

Spectral library search matches MS/MS scans to a spectral library, a large collection of 

observed spectra that are confidently identified in previous experiments. It is a very 

efficient and accurate way for peptide identification. However, the assignment of 

peptides to observed spectra is largely affected by the completeness and accuracy of 

assembled spectral libraries.  
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Combining Search Engines 

The real proteomic samples are complex. Often the most interesting proteins are at low 

abundance and could not be discriminated due to the inference of other proteins and 

noises, especially when dealing with low quality spectra. Therefore, two search engines 

can provide very different results for the same sample [21]. 

Despite improvements in mass spectrometry instruments and peptide identification 

algorithms, a significant number of high quality MS/MS spectra left unassigned to 

peptide sequences or have scores below confidence thresholds[18]. This can be partially 

due to the deficiencies of scoring schemes implemented in the software to rank 

candidate peptides and select the best match for each experimental spectrum, resulting 

in loss of sensitivity in complex samples. A peptide may be identified by one search 

engine but blind to another due to their different scoring systems. Spectral counting 

depends upon identification, and yet little evaluation of its dependence on search 

engines has appeared in the peer-reviewed literature.  Integrating results from search 

algorithms is a promising strategy to improve peptide and protein identification 

confidence by reducing noise and utilizing complementary strengths.  Several 

approaches have been proposed for integrating search results. Alves et al. proposed 

combination of independent p-values from multiple search engines into a meta-analytic 

p-value for each peptide[22]. Searle et al. proposed a framework to combine the results 

of multiple search engines using Bayesian rules and the expectation maximization 

learning algorithm[23]. However, a peptide-centric model for combination of different 

search tools suffers from the difficulties from the lack of a common statistical standard. 
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Kwon et al. proposed a probabilistic approach by first converting raw search scores from 

search engines into a probability score for every possible PSM accounting for the 

correlation between scores, and control an unified false discovery rate for data 

integrated from different search engines[24]. Stepping beyond a single search scenario, 

researchers have demonstrated that collating results from multiple search engines 

improves sensitivity for inferring protein inventories [25,23,24], so long as false positives 

are kept under control.   It would seem that the improved coverage available through 

multiple search engines would be a boost for differentiation, as well.  How to leverage 

the increased information yield, however, has not yet been described.  

Here I will first compare the search results from different search engines on the same 

datasets in identifying differential proteins, then propose and compare four new 

approaches to combine search results at protein level, and examine the gains achieved 

for spectral counting when collating search results from a set of four high-performance 

peptide identifiers, thus providing new insights into integrating search tools to achieve 

better protein differentiation.  

 

1.4.2 Protein Inference 

Identification of peptides resulting from proteolytic digestion of proteins is only an 

intermediate step to identify and quantify proteins. The ultimate goal of a study is to 

identify and quantify proteins in the analyzed sample. One of the problems for protein 

differentiation arose from shared peptide in the task of assembling the sequences of 

identified peptides to infer protein content of the sample (Figure 5).  
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Figure 5. Protein inference in shotgun proteomics.  

 

 

 In this example, the sample contains two proteins, A and B, which share sequence homology. 

The three identified peptides, AEMK, GAGGLR, and HYFEDR are present in protein B, and 

GAGGLR, HYFEDR are present in protein A. in the shotgun approach, the connectivity between 

peptides and proteins are lost. No information on the number or properties of proteins in the 

samples is available. It is not possible to conclude the presence of A for B can account for all 

observed peptides[26].  

 For these peptides that are shared between two or more proteins, the abundance of 

the peptide is a combinational effect of multiple proteins, leading to ambiguities in 

protein differentiation by the redundancy. When using protein-based spectral count 
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differentiation, determining which protein these shared peptides arose from is a 

challenge to comparative proteomics.  After peptide validation, incorrect PSMs can still 

be accepted for protein inference.  A commonly used approach for protein inference 

and error estimation is to use a target-decoy strategy for database  search and apply 

various filters to control output proteins at a specific protein-level FDR. Protein filters 

including minimum number of distinct peptides to infer a protein, minimum number of 

spectra per protein and peptide FDR are usually used to remove incorrect proteins.   

Protein parsimony is widely accepted by proteomic community. The central idea is to 

present results of large scale shotgun experiments in terms of minimal lists of protein 

identifications.  Nesvizhskii et. al illustrated differentiation of proteins on the basis of 

identified peptides[26].  Zhang et. al  modeled peptide-protein relationships in a 

bipartite graph and identified protein clusters with shared peptides and to derive the 

minimal list of proteins[27]. The software- IDPicker, a protein assembly tool [28,27], 

organizes peptides into groups when they match identical sets of proteins, and it 

similarly organizes proteins into groups when they match identical sets of peptides 

(Figure 6). This structure enables the development of methods to differentiate 

proteomes in units of “peptide groups” that do not overlap with each other. This 

approach is based on the assumption that a high degree of similarity exists in the 

relative expression level of different proteins in the same protein group [29].  
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Figure 6. Protein assembly, protein groups and peptide groups in IDPicker 

In this diagram, three peptide groups are associated with two protein groups. IDPicker groups  

 

peptides, such as the two peptides in the orange box, to “peptide groups” when they match to 

exactly the same proteins- Histone-binding protein RBBP7 and RBBP4.   “Protein Groups” are 

sets of proteins such as RBBP4 and isoform 3 of RBBP4 that are indiscernible on the basis of the 

observed peptides.  Peptide groups that only associate with one protein group are called unique 

peptide groups (green box). Peptide groups that associate with more than one protein group are 

called shared peptide groups (orange box).Both the protein and peptide groups are shown in 

IDPicker reports.  

Several approaches have been proposed to improve the quantification and 

differentiation of proteins [30,27,29,31]. One approach is to discard shared peptides 

during protein quantification. However, previous studies have found that eliminating 

shared peptides from analysis eliminates protein inference but may significantly 
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decrease the number of proteins for which relative abundance can be obtained[29]. 

Fermin et. al describes a method to adjust spectral counts to accurately account for 

peptides shared across multiple proteins by spectral counts of unique peptides. 

However, this approach has the risk of attempting to apportion large numbers of 

spectra on the basis of relatively small sets of differentiating spectra[30]. Here, I 

propose a new approach for protein differentiation based on peptide groups, which 

forestalls problems introduced by shared peptides.  

 

1.4.3 Tryptic Search vs. Semi-Tryptic Search 

In shotgun proteomics, proteins are usually digested by trypsin followed by liquid 

chromatography mass spectrometry. One of the problems is the low coverage of 

peptides when analyzing complex protein samples. It has been shown that only ~10-15% 

of all tryptic peptides from a given protein sample can be identified [32] by search 

engines.  Non-tryptic or semi-tryptic peptides are generated from the truncation of 

regular tryptic peptides before separation. In semi-tryptic search, one end, but not both 

of the peptide is allowed to diverge from the expected cleavage site. Peptide truncation 

can be caused by several factors such as in vivo biological mechanism or various 

chemical mechanisms during sample preparation, handling and storage. When searching 

peptide tandem mass spectra against sequence database, peptides identified are 

conformed to the search parameters-fully tryptic, semi-tryptic or non-tryptic, where a 

trade-off of false positives and false negatives will be yielded.  Deciding between a “fully 

tryptic” search and a “semi-tryptic” search would seem to primarily impact the amount 
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of time required, but this decision has been shown to significantly alter the set of 

peptides identified from a mixture [28].  Many research groups consider only peptides 

that under a rigorous “fully tryptic” cleavage rules for protein database search, whereas 

other groups allow “non-tryptic” or “semi-tryptic”peptides.  It has been shown that non-

tryptic peptide search overdoes the noice and specificity is impaired. Furthermore, it is 

much more complex to compute and requires a large and counter-productive increase 

in search time. Olsen et. al used the high mass accuracy of a linear ion-trap-FTICR mass 

spectrometer to exclude precursor ions with less than 1 p.p.m mass accuracy and found 

that trypsin cleaves solely C-terminal to arginine and lysine[33]. This work provided 

evidence to support fully tryptic search.  However, the rigorous mass filter excluded the 

non-tryptic peptides, which composed a large portion of the overall experimental 

peptides. Moreover, this result is not applicable to lower sensitivity and mass accuracy 

experiments. It is found that although for a given protein, semi-tryptic peitdes might be 

generated at lower probability than the tryptic peptides, a high concentration protein 

often contribute large numbers of semi-tryptic peptides comparative to tryptic peptides 

of low concentration proteins in being selected for fragmentation[28]. However, the 

impact of trypsin specificity configurations on protein differentiation has not been 

considered in depth.  Deciding between a “fully tryptic” search and a “semi-tryptic” 

search has been shown to significantly alter the set of peptides identified from a mixture 

[28,34].  Here, I compare the fully tryptic and semi-tryptic search in protein 

differentiation, and generalize the conclusion in two datasets with different sensitivity 

and mass accuracy. 
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CHAPTER 2 

 

 MATERIALS AND METHODS 

 

2.1 Data Sources 

 

2.1.1 ABRF Data 

I used a dataset from the Association of Biomolecular Research Facilities (ABRF) iPRG 

2009 study. In that study, two samples of E.coli lysates (labeled “red” and “yellow”) 

were digested with trypsin then analyzed with LC-MS/MS on an LTQ-Orbitrap with five 

technical replicates for each sample. The Red and Yellow replicates were derived from 

the same E. coli lysate sample running on two halves of one gel with a single region 

excised from each half  (The “Green” and “Blue” proteomic data sets) . Proteins in the 

changing region of red and yellow cohorts were enriched in Blue and Green cohorts 

respectively (for more information see Figure S1 in Supplementary Information).  A 

differential protein key list was built by comparing the differentially expressed proteins 

between the less complex Blue and Green cohorts with significance level 0.05. 85% of 

the proteins in the key list corresponded with the mass regions excised from the gel. 

The proteins significantly expressed in the Blue cohort that were also significantly 

expressed in the Red cohort were considered as true positives. Similarly, the proteins 

significantly expressed in the Green cohort that were also significantly expressed in the 

Yellow cohort were considered as true positives.  
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2.1.2 CPTAC Data 

 I used a dataset created by the Clinical Proteomic Technology Assessment for Cancer 

(CPTAC) program [11]. In the study, a yeast lysate was spiked with a mixture of 48 

human proteins (Sigma-Aldrich UPS1) at several levels of concentrations. Each sample 

was analyzed with triplicates on seven independent instruments of four models 

(Thermo Fisher LTQ, LTQ-XL, LTQ-XL-Orbitrap, and LTQ-Orbitrap). Groups A, B, C, D, E 

were yeast spiked with UPS-1 at 0.25, 0.74, 2.2, 6.7, and 20 fmol/ul respectively. Data 

were processed using a FASTA database combining the yeast and human proteomes. 

Search parameters are provided in Supplemental File1.   

 

2.1.3 HNSCC Data 

The Head and Neck Tissue Repository [35] collected 20 head and neck squamous cell 

carcinomas (HNSCC) from all patients undergoing surgery in head and neck area at 

Vanderbilt University.  These cancerous samples can be compared to 20 normal 

tonsillectomy tissues which were collected from pediatric tonsillectomies performed at 

Vanderbilt Children’s Hospital. Tissues were snap-frozen in liquid nitrogen and kept at -

80  °C until processing. Tumor samples were macrodissected to achieve a minimum of 

70% tumor cells in the specimen to be analyzed. Epithelial cells were dissected away 

from lymphoid cells in normal specimen. The tissues were embedded in polyvinyl 

alcohol, which was then removed with wash with deionized water.  Peptides were 

separated by isoelectric focusing and cut into 20 fractions. Each of these fractions was 

analyzed by liquid chromatography, followed by MS/MS analysis on a LTQ-Orbitrap. 
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2.1.4 ASW480 Data 

 Adenomatous polyposis coli (APC) is a negative regulator of Wnt signaling. Mutation of 

APC occurs in up to 60% of colorectal cancer (CRC) tumors. Halvey et. al in Vanderbilt 

University has examined the proteomics of two colon tumor cell lines- SW480APC (APC 

restored), SW480Null (mutant APC). Cells were grown in RPMI 1640 medium, 

supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin and genetecin 

(1.5 mg/ml), then lysed at ambient temperature. Proteins were reduced and alkylated 

with 40 mM tris(2-carboxyethyl)phosphine (TCEP)/100 mM dithiothreitol (DTT) and 50 

mM iodoacetamide (IAM), respectively.  Samples were diluted in 50 mM AmBic, pH 8.0 

and tyrpsinized overnight at 37 °C (1:50, w:w).  Subsequently, peptides were lyophilized 

overnight.  Peptides were desalted as described [36], and separated by isoelectric 

focusing (IEF) using immobiline IPG strips (24 cm, pH 3.5-4.5) (GE Healthcare) as 

described.[36,37]  . LC-MS-MS shotgun proteomic analyses were performed on LTQ XL 

mass spectrometer (Thermo Fisher Scientific) equipped with an Eksigent NanoLC AS1 

autosampler and Eksigent NanoLC 1D Plus pump, Nanospray source, and Xcalibur 2.0 

SR2 instrument control. Peptides were separated on a packed capillary tip (Polymicro 

Technologies, 100 mm × 11 cm) with Jupiter C18 resin (5 mm, 300 Å, Phenomenex) 

using an in-line solid-phase extraction column (100 mm × 6 cm) packed with the same 

C18 resin using a frit generated with liquid silicate Kasil 1. Mobile phase A consisted of 

0.1% formic acid and mobile phase B consisted of 0.1% formic acid in 90% acetonitrile. A 

90-min gradient was carried out with a 30-min washing period (100% A) to allow for 

solid-phase extraction and removal of any residual salts. Following the washing period, 
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the gradient was increased to 25% B by 35 min, followed by an increase to 90% B by 50 

min and held for 9 min before returning 95% A. MS-MS spectra of the peptides are 

acquired using data-dependent scanning in which one full MS spectrum (mass range 

400-2000 m/z) is followed by five MS-MS spectra.  MS-MS spectra are recorded using 

dynamic exclusion of previously analyzed precursors for 60 s with a repeat of 1 and a 

repeat duration of 1. MS/MS spectra were generated by collision-induced dissociation 

of the peptide ions at normalized collision energy of 35% to generate a series of b- and 

y-ions as major fragments. Biological samples from 3 independent cell cultures were 

injected in duplicate for a total of 6 replicate measurements for the SW480null and 

SW480APC cell lines. A subset of proteins found to be differentially expressed by LC-

MS/MS were validated by targeted proteomics (LC-MRM-MS).  For all 22 proteins that 

were validated by targeted proteomics, label free shotgun proteomics data and LC-MRM 

data were broadly concordant, and identical trends in protein expression were observed 

between the two platforms[38].  

 

2.2 Database Search Pipeline 

MS/MS scans were converted to mzML file format by the msConvert tool in the 

ProteoWizard[39] library to provide input files for TagRecon (TR)[16], MyriMatch (MM) 

and X!Tandem (XT) search. These files were then converted to DTA format by 

ScanSifter[40,16] to enable Sequest (SQ) search.  All protein databases contained 

sequences in both forward and reverse orientations for estimation of protein and 

peptide identification error rates .For LTQ data, MM, TR, and XT applied a precursor 
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tolerance of 1.25 m/z, while SQ applied a 2.5 Da mass tolerance. For Orbitrap data, MM 

and XT applied a precursor tolerance of 10 or 40 ppm, while TR applied 0.01 m/z 

tolerance and SQ applied a 0.1 Da mass tolerance.  The search results were processed by 

IDPicker to yield a 5% or 2% False Discovery Rate (FDR). Peptides passing these 

thresholds were considered as legitimate identifications. IDPicker assembled protein 

identifications from peptides using parsimony rules [27,28]. 

Statistically significant differences in protein spectral counts between different groups 

were calculated using quasi-likelihood Generalized Linear Modeling (GLM) by 

QuasiTel[35]. Proteins with p-values less than 0.05 were considered as differential 

proteins.  Differentially expressed proteins were mapped to genes and compared for 

enrichment of defined classes against a reference set of all identified proteins. Search 

configurations, dataset information, and identified peptides are shown in Table S1, S4 

and Supplementary material 2. 

 

2.3 Model for Peptide Group-Based Spectral Count Differentiation 

IDPicker generates tables reporting the number of spectral counts for each peptide 

group (Figure 6). I used Fisher’s Exact Test instead of GLM to compute a p-value for each 

peptide group because the GLM includes additional covariates in the comparisons which 

may diminish accuracy for peptide groups with low spectral counts. I also used Fisher’s 

Exact Test to compute a p-value for each protein group as a comparison method.  I 

employed the Benjamini-Hochberg FDR method to correct p-values for multiple 
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hypothesis testing [41].   Statistical techniques for the peptide group-based analysis 

differed from those employed in the search algorithm combination and semi-tryptic 

evaluations.  These latter examinations employed the standard QuasiTel GLM for 

differentiation. 

Common data analysis practices in comparative proteomics reflect the belief that FDR 

(multiple hypothesis testing corrected p-value) is good both as a qualitative and a 

quantitative indicator of the overall significance of the results. The use of FDR based 

meta-analysis was previously demonstrated in ChIP-chip meta-analysis [42]. The 

corrected p-values of peptide groups corresponding to the same protein group were 

combined using Stouffer’s z-reverse normal transform method [43] to estimate the 

significance level of changes at the protein group level.   

The weighted Stouffer’s inverse normal transform method I built, described in equation 

(1) and (2), took peptide p-value, sample size and effect direction (4) into consideration 

to compute a protein p-value. Optimal weights for the weighted Z method were given 

by the square root of the spectral counts of peptide groups divided by their occurrence 

in protein groups (3). By this strategy, unique peptide groups are assigned higher 

weights than the shared peptides. 

     ∑    
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*    and     denote the standard normal cumulative distribution function and 

its inverse.  

 

2.4 Models for Combining Search Engines 

I present statistical models to combine search results from four search engines. 

Heterogeneity among search engines results from factors including spectral pre-

processing, theoretical spectrum prediction, and match scoring algorithms.  As a result, 

FDR-based meta-analysis was necessary to summarize results. In the first model, 

spectral counts from each search engine were added together prior to differentiation. 

The combined spectral counts were analyzed by QuasiTel and corrected by the FDR 

method to compute p-values. In the second model, I computed FDR corrected p-values 

of protein spectral counts separately by search engine. These p-values were then 

combined for each protein using Stouffer’s Z-transform probability test [44].  In the third 

model, I ranked the proteins by FDR corrected p-values from individual search engines 

(from smallest to largest). The ranks were then added together to compute a super rank 
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for each protein. In the “Stouffer p-combo Model” and “p-Rank Sum Model,” proteins 

that were not identified by any included search engine were excluded in the comparison.  

Vote counting is well described for use in microarrays and peptide identifications [45,46]. 

Rhodes et al used a comparative meta-profiling which assesses the overlap of gene 

expression differentiation from a diverse collection of microarray datasets. Several 

modifications enable its use for protein spectral count differentiation. Briefly, the 

spectral count data were analyzed by QuasiTel, and p-values from individual search 

engines were FDR corrected. I then defined a significance threshold –α (αDEFAULT=0.05) 

and the number of top proteins I wanted to select –NSELECT For these thresholds, I then 

ranked proteins by the number of search engines that find each significant; this 

positions each search engine as a “voter.” Within each class of proteins with the same 

vote-counts, I then ranked proteins by the minimum of their p-value from the combining 

search engines (minimum p-value, increasing).This process ranked potential protein 

differences, with the most substantial changes at the top. 

Assessing FDR for vote counts and best p-values followed a permutation strategy.  First, 

I counted the proteins for each possible number of vote counts (N1, N2…NS).  Permuting 

the p-values per search engine among proteins generated a set of randomly produced 

differences.  I counted these differences for each possible number of vote counts (E1, 

E2…ES). The minimum meta-false discovery rate (mFDRmin) can then be calculated by: 

                
[    ]

[  ]
)              
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Then I assess the validity of α with the following criteria: If mFDRmin<α, these proteins 

were found to be differentially expressed at the threshold α. If not, I repeated the 

enumeration of votes with the value of α lowered by 20% at each iteration until either a 

valid α is defined or the number of differential proteins detected in two or more search 

engines reaches 0. A valid α should not fall so far that the number of proteins with at 

least one vote was less than NSELECT. Furthermore, to be strict in the significant level of 

the threshold, I should find the smallest (most significant), valid α setting by lowering α 

by 20% and repeat the previous validity testings iteratively. The algorithm was 

implemented in R (Supplementary Material 3).  This model is tuned for the best 

performance when voter turnout is large, i.e. more search engines are deployed for 

each data set. 
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CHAPTER 3 

 

 RESULTS AND DISCUSSION 

 

3.1 Peptide Group-Based Spectral Count Differentiation Improves 

Protein Differentiation 

Peptide group-based spectral count differentiation better evaluates the impact of 

unique and shared peptide groups on protein differentiation, thus effectively reducing 

false positives. This method is most effective in reducing false positives when working 

with proteomic samples of higher organisms where a lot of shared peptide groups exist.  

Therefore, I tested the technique in ASW480 and HNSCC human proteomic datasets. In 

the ASW480 dataset, 6042 peptide groups were identified, mapping to 7325 proteins in 

5215 protein groups. I compared the cell line with and without the APC vector with 

protein group-based and peptide group-based techniques after MyriMatch search and 

IDPicker filtering. Of the differentiating proteins discovered by peptide group analysis, 

95% were also discovered through protein group analysis.  Correspondingly, 81% of the 

differential proteins from protein-based differentiation were also identified by peptide 

group-based differentiation (Figure S2, S4). At first, this would seem to imply higher 

sensitivity to differences in protein group analysis, perhaps due to more aggressive p-

value correction in the more numerous peptide group comparisons.  Only 5 proteins 

were identified exclusively by peptide group-based differentiation, while 21 proteins 

were differentiated by protein-based but not peptide-based techniques. I examined 
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these 21 proteins with a critical eye.  In the example of protein groups for Desmin and 

Vimentin, four peptide groups were shared between Desmin and Vimentin and six other 

protein groups (Table S2). The p-values of Desmin and Vimentin from protein-based 

spectral count differentiation were 0.0230 and <0.0001 respectively, signifying that 

these two proteins were both differentially expressed. However, I found that the 

spectral count of the unique peptide group of Desmin had not significantly changed (p-

value>0.05). Desmin and Vimentin share four peptide groups that were also shared by 

2-4 other protein groups, causing cross-talk between these proteins and others that 

were legitimately changing. The spectral count of these peptide groups greatly impacted 

the total spectral count of Desmin.  These data demonstrate that shared peptides can 

cause unchanging proteins to become false positive differences. 

The p-value for Desmin was 0.1551 when differentiation was performed at the level of 

peptide groups with combination via Stouffer’s inverse normal method[43].  Separating 

peptides by protein association revealed that the expression level of Desmin had not 

significantly changed.  On the other hand, the change of Vimentin level remained 

significant (p-value <0.0001). In fact, the lack of change for Desmin was reinforced by 

microarray (p-value of 0.9875) [38]. On the other hand, the enrichment analysis of 

proteomic data revealed that targets of transcription repressor ZEB1 were measured at 

lower levels in the SW480 Null cell line, implying elevated ZEB1 activity in this cell line. 

Others have shown that disruption of the ZEB1/SMARCA4 binding causes an increase in 

CDH1 expression and a decrease in Vimentin [47]. I also compared the two methods 

between replicates of APC or control group which I knew should not show any 
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differential proteins. Peptide-group based differentiation reduced the false positive 

differentiation by 20-41% (Figure S3).  These facts have shown that peptide group-based 

differentiation is robust against false positives induced by shared peptides.   

Peptide group based-spectral count differentiation is also more sensitive to changes in 

unique peptide groups. In the HNSCC dataset, 4011 proteins were assembled to 2569 

protein groups, with 2941 peptide groups mapping to them.  100 differential proteins 

were identified by peptide group-based differentiation (Figure S2). As a test, I evaluated 

the biomarker set resulting from a comparison using only the peptide groups that 

mapped to a single protein group; limiting the information to this set of peptides, 

however, reduced detection of differentiating proteins by 22% (Figure S2). Of the 

proteins found to be differences from the peptide group-based technique employing all 

peptides, 94% were also found through the protein-based technique.  Of the protein-

based difference set, 82% were also observed through peptide-group differentiation.  A 

majority of protein changes found by peptide group-based differentiation shared 

peptides with other protein groups. Myosin 14 was among the differences found by 

peptide group-based but not protein group-based techniques.  This non-muscle myosin, 

which appears to play a role in cytokinesis and cell shape, was matched to five peptide 

groups (Table S3). Protein-based spectral count differentiation could not provide 

enough evidence (p-value =0.2580>0.05) to show that myosin14 was differentially 

expressed in cancer group versus control group. However, when I look closely into each 

peptide group, I find that the peptide group that contains sequences specific to this 

form of myosin changes significantly in spectral counts, increasing from 39 to 110 (2.82 
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fold, p-value=0.0004<0.05). By peptide group based spectral count differentiation, the 

difference is significant (p-value=0.0016<0.05). Previous studies have shown that 

overexpression of myosin14 inhibits cell growth [48], which coincides with the 

heightened expression in normal samples.  Without peptide group-based comparison, 

this difference would be masked by other myosin forms.  

Generally, protein and peptide group-based differentiation are highly concordant with 

each other (Figure S4). The correlation coefficient for the p-values of ASW480 proteins 

was 0.9470, while the HNSCC set yielded a 0.9420 correlation.  After finding the 

differential proteins by p-values, the fold change of a protein can be estimated by 

averaging the fold change of its peptides. Because there are more peptide groups than 

protein groups for an assembly, multiple testing adjustment reduces the count of 

significant differences more strongly for peptide groups than for protein groups. For 

example, of the 20 proteins that were disagreements between the two differentiation 

techniques in the ASW480 dataset, three proteins (CD2 antigen cytoplasmic tail-binding 

protein 2, Envoplakin, Heat shock protein beta-1) are proteins with only one peptide 

group. As a result, the set of spectral counts compared in protein group and peptide 

group techniques are the same.  Once multiple testing correction has been applied, 

though, Envoplakin shifts to a 0.0446 p-value from protein group evaluation or to an 

insignificant 0.0581 p-value from peptide group evaluation. Whether this constitutes the 

removal of a false positive difference or losing sensitivity for real differences cannot be 

resolved from the data on hand. 
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3.2 Combining Multiple Search Engines Improves Protein 

Differentiation 
 

Protein differentiation is considerably affected by search algorithms. In the ABRF iPRG E. 

coli dataset, 1275 proteins in total were identified by the four search engines, while only 

662 proteins were shared between all four search engines.  The ability to identify truly 

differentiated proteins also varied among different search engines. MM, TR, XT, and SQ 

each identified 228, 225, 226, 207 truly differentiated proteins, respectively (Figure S5). 

Most truly differential proteins (derived from identifications in the “blue” and “green” 

samples) reach agreement between two or more search engines with consistent fold 

change directions. These results highlighted the necessity of combining search engines 

to detect more correct differences and reduce false discoveries. I applied four distinct 

models (see Methods) to combine different search engines. These models have shown 

their unique advantages to achieve better protein differentiation. I ranked the proteins 

by p-values from the “Count Sum Model” and “Stouffer p-combo Model” and by super 

rank of “p-Rank Sum Model” from smallest to largest, or by vote-counts from the “Vote 

Counting Model” from largest to smallest and chose the top 250 proteins 

(approximately the length of the key list) for true positive and false positive analyses. As 

shown in Figure 7, generally, combinations of search engines outperform individual 

search engines. For the pairing of SQ and TR, the “Stouffer p-combo Model” increased 

AUC by 12.7%, from 79.6% to 89.7%, and identified 18 more true positive proteins than 

TR by itself. Combining all four search engines by the “p-Rank Sum Model” identified 

3%-13% more true positive proteins than for any individual search engine; this 
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combination revealed that adding all possible search engines is not guaranteed to 

outperform a well-selected set of search engines, since the MM+TR+SQ combination 

was more effective.  Of the search engine pairs, XT and SQ appeared least effective at 

complementing each other. 

 

 

Figure 7. Number of true positive proteins out of the Top 250 of proteins of corresponding 

combination of search engines in ABRF E.coli dataset. 

 

 

  In “Count Sum Model”, results from different search engines are combined by adding 

spectral counts together, in “Stouffer p-combo Model”, p-values form different search 

engines are combined by Stouffer’s method. In “p-Rank Sum Model”, proteins were 

ranked by p-value from individual search engine (from smallest to largest). The ranks are 

added together to compute a super rank for each protein. In the “Vote Counting Model”, 
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proteins were ranked by the number of search engines deeming them significant 

along with the best individual search engine p-value. 

Combining all the four search engines with the “Vote Counting Model” produced the 

best true positive ratio and lowest false positive ratio, with 177 true positives out of top 

250 differences, while the best number of true positives of other models is only 167. 

The “Vote Counting Model” identified 20.5%, 22.1% 22.1% and 22.9% more true positive 

proteins than searching by MM, TR, XT or SQ individually. Combining three search 

engines such as MM+TR+SQ is also effective.  

 

Figure 8. Number of true positive proteins in top 50 differentiated proteins using different 

combination of search engines in CPTAC Study6 dataset.  

 

Combinations of search engines by these models were also evaluated in the context of 

the CPTAC LTQ dataset. I used data from C and E cohorts (a 9 fold difference of UPS-1 

spike concentration). In total, 45 out of 48 UPS-1 proteins were identified by the four 

search engines. MM, TR, XT, SQ identified 42,42,41,40 UPS-1 proteins respectively 
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(Figure S6). I ranked the proteins by p-values, super rank or vote-counts and analyzed 

the top 50 proteins with the four models. Numbers of true positives among the top 50 

proteins were compared in Figure 8. Again, combinations of search engines 

outperformed individual search engines for revealing protein differences.  Combining TR 

and SQ with the “Stouffer p-combo Model” generated 32% more true positives than SQ 

individually. Combining all four search engines by the “Count Sum Model” identified 

17.9%-50.0% more true positive proteins than individual search engines. 

Again, combining all the four search engines with the “Vote Counting Model” produced 

one of the best true positive ratio and lowest false positive ratio, with 33 true positives 

out of top 50 differences. The “Vote Counting Model” identified 17.9%, 43.5% 22.2% 

and 50.0% more true positive proteins than searching by MM, TR, XT or SQ individually. 

The advantage is not distinctive here because of the small number of proteins in the 

“answer key.” Combining only two search engines was helpful for one data set but not 

the other; the voting model benefits from a larger pool of votes (Figure 7, 8). For 

example, MM+XT, TR+XT, MM+TR only identified around 150 true positive proteins.  In 

the ABRF data set, only the combinations that included Sequest gave the highest 

performance, though this algorithm working alone had yielded the lowest number of 

true differences. 

The four models for combining search engines have different strengths and weaknesses. 

In simply adding spectral counts for a protein identified by multiple search engines, a 

single spectrum might be counted multiple times. Although the multiple counting 
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increases the confidence of identification and spectral count differentiation, it will get 

extreme p-values because of the correlation between search results. In the “Stouffer p-

combo Model”, combining p-values among algorithms increases the sensitivity of the 

collective analysis, but has risks of bias towards idiosyncratically significant p-values of 

one search engine. In the “p-Rank Sum Model”, the super rank comprises a non-

parametric assessment of the results from individual engines. Drawing conclusions 

about which of these techniques is best would over-generalize from the two sample sets 

evaluated in this study, though combination is clearly beneficial. The “Vote Counting 

Model” was most powerful when combining more search engines. Overall, combining 

search engines improves protein differentiation by not only increasing the protein 

inventories, but also increasing the pool of information available to differentiate each 

protein. Each combination of search engines allows for better discrimination than any 

individual search engine. 

 

3.3 Semi-Tryptic Search Outperforms Tryptic Search in Protein 

Differentiation 

A given search engine may yield different performance depending on its configuration.  

Bioinformaticists have argued for years that semi-tryptic searching, which allows the 

identification of peptides that differ from canonical trypsin specificity on one terminus, 

improves the inventories possible from proteomics[49]. I tested this parameter for its 

impact on comparative proteomics.  Table S4 reports the number of identified peptides 

by fully-tryptic and semi-tryptic searches. 
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I first compared Red/Yellow cohorts in the iPRG E.coli dataset. All the other 

configurations and analysis were identical. Figure 9 shows the ROC curve of 

differentiated protein expression with semi-tryptic or fully tryptic searches.  Semi-tryptic 

search achieved better sensitivity and specificity than fully tryptic search, with AUC 

increased by 6% (from 83.77% to 88.56%). Similarly, when comparing true positive and 

false positive proteins at the cut point of p-value 0.05, semi-tryptic search greatly 

increases true positive proteins by 7.07% for the same number of false positives. The 

improvement reveals that semi-tryptic search achieves better sensitivity and specificity 

than fully tryptic search for a sample in which many proteins offer stark differences 

between cohorts.

 

Figure 9.  Comparison of fully tryptic and semi-tryptic searching in ABRF dataset.  

 

{A} ROC curve of differentiated proteins expression using semi-tryptic and fully tryptic search in 

the iPRG dataset. {B} True positives and false positives at p-value of 0.05 discovered through 

semi-tryptic and fully tryptic search.   
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I next analyzed the CPTAC dataset (where the spiked proteins differed by a factor of 

three between each pair of five levels) with fully tryptic and semi tryptic search. I 

compared the spectral counts of proteins in these cohorts in pairs (Table 1). I chose a 

sampling of the possible fold changes, preferring samples where spike concentrations 

were greater.  Semi- tryptic search generally outperformed fully tryptic search in AUC.  

Especially in D and E cohorts, where UPS1 proteins were most dominant, semi-tryptic 

search increased AUC by 5.5% (from 86.76% to 91.50%).  

 

Table 1. Fully tryptic versus semi tryptic search in Yeast Sample with Spiked Human 

Proteins  

 

 Fully tryptic  Semi tryptic 

 True 

positive/false 

positive 

Average 

Spectral 

Count 

Ratio 

Area 

Under 

Curve 

True 

positive/false 

positive 

Average 

Spectral 

Count 

Ratio 

Area 

Under 

Curve 

 27-fold difference 

B versus E 30/20 10.74 0.9786 32/18      12.36 0.9827 

A versus D 25/25 9.67 0.9939 27/23 12.62 0.9944 

 9-fold difference 

C versus E 29/21 4.84 0.9777 31/19 4.33 0.9779 

B versus D 22/28 2.45 0.9799 25/25 6.76 0.9765 
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 3-fold difference 

D versus E 21/29 1.95 0.8676 24/26 2.12 0.9150 

C versus D 21/29 2.53 0.8290 24/26 2.48 0.8841 

B versus C 9/41 3.25 0.8859 14/36 3.21 0.8942 

 

*The amount of UPS-1 (Sigma-Aldrich) proteins that spiked in A, B, C, D, E are 0.24, 0.67, 2.7, 6.7, 

20 (fmol/µg yeast) respectively. 

*Geometric average is calculated by geometric mean of the ratio : 

                            )                             )⁄   , group 1 and group 2 indicates 

the comparison pairs. For spike in protein that is not found in the search results, their spectral 

counts are set as zero. 

The top 50 (approximately the number of proteins in the gold standard) most 

differentiated proteins for each pairwise comparison were evaluated against the list of 

proteins known to change, and the numbers of true positives and false positives were 

computed (TP/FP).  At different spike levels, semi-tryptic search detects more true 

positive proteins along with fewer or unchanged false positive proteins.  Especially in B 

vs C, which contained only small amounts of spiked proteins with a three-fold 

concentration difference, semi tryptic search identified 55% more true positives than 

fully tryptic search.  Generally, semi tryptic search provides better sensitivity and 

specificity than fully tryptic search, especially when comparing groups with small spike-

in protein concentration changes (D vs E, C vs D).  
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Why would adding semi-tryptic peptide improve protein differentiation? When an 

algorithm fails to identify a spectrum, a semi-tryptic search will typically assign a semi-

tryptic peptide to the spectrum (because random semi-tryptic peptides outnumber 

fully-tryptic peptides by more than an order of magnitude).  Software that separates 

correctly identified spectra from incorrectly identified ones exploits this information to 

identify a larger set of peptides, even if no semi-tryptic peptides are present.  The most 

abundant proteins in a mixture are, in turn, more likely to produce semi-tryptic peptides 

in addition to fully-tryptic peptides. As the concentration of UPS-1 proteins increases 

from group A to group E, the percentage of semi-tryptic peptides from these UPS-1 

proteins was 0% in group A and group B. The percentage increased to 6.9% -7.0% in 

group C and group D, and reached the highest-10.6% in group E.   The increased 

identification of semi-tryptics from dominant proteins increases the power of semi-

tryptic search in protein differentiation and expands the dynamic range of 

differentiation. 

  



42 
 

CHAPTER 4 

 

 CONCLUSIONS 

 

Spectral count differentiation benefits from a peptide group-based evaluation strategy, 

new models for combining database search engines, and care in search configuration.  

Peptide group-based spectral count differentiation helps to resolve the protein 

inference problem, giving particular power when untangling complex protein-peptide 

clusters. It can be used as an alternative or complementary differentiation method 

when working with complex comparative proteomic samples where a lot of shared 

peptide groups exist. In systems where proteins of multiple species are present, such as 

xenograft models of cancer or other samples that contain proteins from multiple 

eukaryotes, the method has great potential in improving protein differentiation. Due to 

the influence of multiple testing adjustment, this method may lose power for proteins 

near the p-value threshold. 

Three of the four tested models for combining search engines for differentiation proved 

to be effective.  The “Count Sum Model” can be easily implemented for almost any 

workflow and delivers solid performance, though false positives may prove problematic.  

The “p-Rank Sum Model” may be more robust against idiosyncratic performance for 

individual search engines. These two models can be used when combining two or three 

search engines; in this examination, MM+TR+SQ yielded the best performance. With the 

increased ability of incorporating three or more search engines, the “Vote Counting 
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Model” is very robust against idiosyncratic results for individual search engines.  Its 

steady, high performance in these datasets suggested great potential for fielding many 

search engines at once. 

These models may be most useful in biomarker discovery, where some proteins of 

interest are at low abundance.  The use of multiple engines can broaden the pool of 

information available to differentiate proteins present at small quantities. These models 

can also apply to samples with large genomes when low-resolution mass analyzers have 

measured precursor masses; these searches compare very large numbers of candidate 

sequences to every spectrum, thus losing discrimination. In the future, these models 

may be developed by recognizing the unique contribution of each search engine. The 

search engines that provide more confident IDs with better sensitivity and specificity, 

such as MM in the two datasets above, should be afforded more importance. In the 

“Count Sum Model,” excluding the overlapping peptide spectrum matching by different 

search engines can also be used to reduce the type I error.  

In both datasets, semi-tryptic peptide search outperforms fully tryptic peptide search in 

protein differentiation studies in multiple aspects including higher discovery rate, better 

specificity, and better sensitivity. Semi-tryptic search is more sensitive to small protein 

concentration changes. Ignoring the contributions of semi-tryptic peptides would 

sacrifice discrimination for levels of abundant proteins. If endogenous proteases are 

present in a sample, semi-tryptic search is obviously the choice for better protein 

differentiation, but the improved inventories are feasible through this option even in 
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samples dominated by fully-tryptic peptides. In the future, more general conclusions can 

be drawn by in-depth analysis of trypsin specificity configurations by search engines 

other than MM.  

In conclusion, these three strategies yield higher quality differentiation based on 

spectral counting.  These strategies are each generic enough to enable their 

incorporation in many bioinformatics pipelines.  Since the spectral counting strategy 

was introduced in 2004, it has become a standby for many laboratories.  These advances 

will enable its application to samples where proteins share peptides in complex 

relationships, discrimination of correct peptides requires multiple pipelines, and a wide 

dynamic range of proteins is interrogated. 
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APPENDIX A 

 

Supplementary Materials 1 

 

Table S1.    Data sets, Search Engines, Protein Sequence Databases used in this study. 

 

Dataset replicate

s 

Instrumen

t  

average 

No. of 

MS2 

scans 

Sequence 

databases 

MyriMatc

h 

Tagrecon X!Tandem Sequest 

Precursor 
mz 
tolerance/
fragment 
mz 
tolerance 

Precursor 
mz 
tolerance/fr
agment mz 
tolerance 

Parent 

monoisoto

pic mass 

error 

/fragment 

monoisoto

pic mass 

error 

Peptide 

mass 

tolerance/fr

agment ion 

tolerance 

ASW480  6 LTQ 12124 Uniprot-

Human-

20110701 

1.25/0.5 \ \ \ 

HNSCC 1 Orbitrap 28230 Uniprot-

Human-

20110701 

0.1/0.5 \ 
 

\ \ 

ABRF- 
Ecoli 

5 Orbitrap 17496 UniProt-
ECOLI-

20110208 

10ppm 
/0.5 

0.01/0.5 40 ppm/0.5 
daltons 

0.1/0.0 

CPTAC-
Yeast 

3 LTQ 261485 Uniprot-
Yeast and 
Human 

1.25/0.5 1.25/0.5 +3.0 -0.5 
daltons/0.5 
Daltons 

2.5/0.0 
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Table S2.  Peptide-to-protein Table of Desmin and Vimentin in ASW480 Dataset 

 

Peptide Group 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

Total 

Spectral 

Count of  

Proteins 

 

p-value 

Protein 
group 
based  
p-value 

Peptide 
group 
based  
p-value 

Occurence 

Only 
in 
Desm 

Shared 
by 
DESM, 
VIM 
and 2 
other  
protein 
groups 

Shared 
by 
DESM, 
VIM and  
2 other 
protein 
groups 

Shared 
by 
DESM, 
VIM and 
4 other 
protein 
groups 

Shared 
by 
DESM, 
VIM 

Only in 
VIM 

   

Spectra Count 
 APC/Null 

7/8 14/19 10/7 23/40 19/42 338/613    

P-value of 
individual 
peptide group 

1 1 1 0.4699 0.0879 4.30E-21    

Desmin(DESM) X X X X X  73/116  0.0232 0.1551 

Vimentin(VIM)  X X X X X 404/721 <0.0001 <0.0001 

 

Peptides corresponding to each peptide group are shown in Supplemental Material 4. 

 

Table S3. Peptide-to-protein Table of Myosin 14 in HNSCC Dataset 

 

Peptide 

Group 

1 

 

2 

 

3 

 

4 

 

5 

 

Total Spectral 

Count of  

Protein 

 

p-value 

Protein 
group 
based  p-
value 

Peptide 
group 
based  p-
value 
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Occurence 

Unique 
peptide 
group of 
myosin 
14 

Shared 
by 
myosin 
14, and 
3 other 
protein 
groups 

Shared 
by 
myosin 
14, and 
2 other 
protein 
groups 

Shared 
by 
myosin 
14 and 
2 other  
protein 
groups  

Shared 
by 
myosin 
14 and 
myosin 
9 

   

Spectra 
Count 
(Cancer/Ctrl) 

39/110 23/19 14/9 4/3 4/4 84/145   

P-value of 
individual 
peptide 
group 

0.0004 0.8260 0.7185 1 1    

Myosin 14 X X X X X  0.2584 0.0016 

 

Peptides corresponding to each peptide group are shown in Supplemental Material 4.  

 

Table S4. Average number of fully and semi-tryptic peptides confidently identified (rank1) 

by both searches  

 

 

  

 ABRF Dataset CPTAC Dataset 

Fully-

tryptic 

search 

Semi-tryptic 

search 

Fully-tryptic 

search 

Semi-tryptic 

search 

Number of Peptides 16581 16988 41209 49199 
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Figure S1.  The “Red/Yellow” iPRG 2009 LC-MS/MS data set with “Blue/Green” LC-MS/MS 

answer keys. 

 

 

source:  

http://www.abrf.org/ResearchGroups/ProteomicsInformaticsResearchGroup/Studies/iP

RG2009_presentation.pdf  
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Figure S2. Venn diagram of differentially expressed proteins at protein level and peptide 

group level in two datasets 

 

A     B       

 

Figure S2 Venn diagram of differentially expressed proteins at protein level, peptide 

group level and with only unique peptides in {A} ASW480, {B} HNSCC dataset.  With our 

method of protein differentiation at peptide group level, I identified 96 differential 

proteins in ASW480 dataset and 100 proteins in HNSCC dataset with 94-95% 

overlapping with protein based differentiation. When using peptide-based 

differentiation with only unique peptides, I will lose 7-22% differential proteins with few 

gains.  
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 Figure S3. Venn diagram of differentially expressed protein at protein and peptide group 

level in ASW480 replicates of the same groups 

 

A      B 

  

Figure S3 Venn diagram of differentially expressed protein at protein and peptide group 

level in ASW480 dataset comparing replicates of {A} control groups (Ctrl-Pro, Ctrl-Pep) 

or {B} APC groups (APC-Pro, APC-Pep) respectively. There should not be differential 

proteins between replicates of either control or APC group, thus these identified 

proteins are false discoveries. I can see that peptide group based differentiation 

effectively reduces false positives.  

 

Figure S4. Correlation coefficient between protein and peptide group-based p-values 

 

A. ASW480                    B.   HNSCC   
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Figure S4. The Correlation coefficient between protein and peptide group-based p-

values are {A} 0.9472 (ASW480  Dataset) and   {B}  0.9422 (HNSCC Dataset); 

Figure S5.  Venn diagram comparing the differential proteins identified by different search 

engines in ABRF dataset 

 

A                                                                                                  B 

  

Figure S5: Venn diagram comparing the differential proteins identified by different 

search engines –Myrimatch (MM), X!tandem(XT) Tagrecon (TR) and Sequest (SQ) in 

ABRF dataset. {A}Venn diagram of proteins that identified by four different search 

engines.  The number of proteins identified by MM, TR, XT, SQ are 934, 891, 863, 772 

respectively.   {B} Venn diagram of truly differential proteins identified by four different 

search engines.  Of the 193 truly differential proteins identified by all four search 

engines, only 3 proteins showed inconsistent fold change directions among search 

engines.  Average pairwise correlation of fold changes between search engines is 0.9109.  
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Figure S6.   Venn diagram comparing the differential proteins identified by different search 

engines in CPTAC dataset 
 

  

Figure S6: Venn diagram comparing the differential proteins identified by different 

search engines –Myrimatch (MM), X!tandem(XT) Tagrecon (TR) and Sequest (SQ) in 

CPTAC study 6 dataset. {A} Venn diagram of proteins that identified by four different 

search engines.  The number of proteins identified by MM, TR, XT, SQ are 744, 701, 651, 

672 respectively.   {B} Venn diagram of UPS-1proteins identified by four different search 

engines. MM, TR,XT,SQ have identified 42,42,41,40 UPS-1 proteins respectively. All the 

33 truly differential proteins identified by all four search engines showed consistent fold 

change directions among search engines.   

  

A        B 
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APPENDIX B 

 

Supplementary Materials 2 

 

MyriMatch Configurations 

 

ABRF and HNSCC Dataset Configurations 
 

PrecursorMzTolerance= 10 ppm    

FragmentMzTolerance = 0.5 

FragmentMzToleranceUnits = daltons 

 

AdjustPrecursorMass    = true  

MinPrecursorAdjustment = -1.008665  

MaxPrecursorAdjustment = 1.008665  

PrecursorAdjustmentStep = 1.008665  

NumSearchBestAdjustments = 3 

 

DuplicateSpectra = true 

UseChargeStateFromMS = true 

NumChargeStates = 4 

UseSmartPlusThreeModel = true 

TicCutoffPercentage    = 0.95 

 

CleavageRules =  "trypsin" 

NumMaxMissedCleavages =  2 

NumMinTerminiCleavages =  1 (for semi tryptic search  or 2 for fully tryptic search) 

UseAvgMassOfSequences = false 

MinCandidateLength =  5 

 

DynamicMods = "M ^ 15.9949 (Q * -17.026" 

MaxDynamicMods = 2 

StaticMods = "C 57.0215" 



60 
 

 

ComputeXCorr = true 

 

CPTAC Dataset Configuration 

PrecursorMzTolerance= 1.25 
PrecursorMzToleranceUnits = daltons 
FragmentMzTolerance = 0.5 
FragmentMzToleranceUnits = daltons 
 
AdjustPrecursorMass = false 
MinPrecursorAdjustment = -1.008665 
MaxPrecursorAdjustment = 1.008665 
PrecursorAdjustmentStep = 1.008665 
NumSearchBestAdjustments = 3 
 
DuplicateSpectra = true 
UseChargeStateFromMS = false 
NumChargeStates = 3 
UseSmartPlusThreeModel = true 
 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages =  2 
NumMinTerminiCleavages =  1 
UseAvgMassOfSequences = true 
MinCandidateLength =  5 
 
DynamicMods = "M ^ 15.9949 (Q * -17.026 C @ 57.021" 
MaxDynamicMods = 3 
StaticMods = "" 
 
ComputeXCorr = true 
 
DecoyPrefix = "rev_" 
 
MaxResults = 5 

 

ASW480 Dataset Configuration 

PrecursorMzTolerance= 1.25 
FragmentMzTolerance = 0.5 
 
DuplicateSpectra = true 
UseChargeStateFromMS = false  
NumChargeStates = 3 
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UseSmartPlusThreeModel = true 
TicCutoffPercentage = 0.98 
 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages =  2 
NumMinTerminiCleavages =  2 
UseAvgMassOfSequences = true 
MinCandidateLength =  5 
 
DynamicMods = "M ^ 15.9949 (Q @ -17.026 ( $ 42.015" 
MaxDynamicMods = 3 
StaticMods = "C 57.0215" 
 
MaxResults = 5 
ComputeXCorr = true 

 

 

 

Sequest Configurations 

 

ABRF Dataset Configuration 

database_name =/hactar/home/yaoyi/fasta/20110208-UniProt-ECOLI-Cntms-
reverse.fasta 
first_database_name =/hactar/home/yaoyi/fasta/20110208-UniProt-ECOLI-Cntms-
reverse.fasta 
second_database_name =  
peptide_mass_tolerance = 0.1 
create_output_files = 1                ; 0=no, 1=yes 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
fragment_ion_tolerance = 0.0           ; leave at 0.0 unless you have real poor data 
num_output_lines = 5                   ; # peptide results to show 
num_description_lines = 5              ; # full protein descriptions to show for top N peptides 
num_results = 500   ; # of results to process 
show_fragment_ions = 0                 ; 0=no, 1=yes 
print_duplicate_references = 1         ; 0=no, 1=yes 
enzyme_number = 0        # 0.  No_Enzyme        1.  Trypsin_Strict   KR            2.  Trypsin   
KRLNH 
diff_search_options = 15.994915 M 57.021464 C 
term_diff_search_options = 0.000 0.000; c term, n term diff mods 
max_num_differential_AA_per_mod = 3    ; max # of modified AA per diff. mod in a 
peptide 
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nucleotide_reading_frame = 0           ; 0=proteinDB, 1-6, 7=forward three, 8=reverse 
three, 9=all six 
mass_type_parent = 1                   ; 0=average masses, 1=monoisotopic masses 
mass_type_fragment = 1                 ; 0=average masses, 1=monoisotopic masses 
remove_precursor_peak = 0              ; 0=no, 1=yes 
ion_cutoff_percentage = 0.0            ; prelim. score cutoff % as a decimal number i.e. 0.30 
for 30% 
protein_mass_filter = 0 0              ; enter protein mass min & max value ( 0 for both = 
unused) 
max_num_internal_cleavage_sites = 2   ; maximum value is 5; for enzyme search 
match_peak_count = 0                   ; number of auto-detected peaks to try matching (max 
5) 
match_peak_allowed_error = 1           ; number of allowed errors in matching auto-
detected peaks 
match_peak_tolerance = 1.0             ; mass tolerance for matching auto-detected peaks 
partial_sequence =    
 

CPTAC Dataset Configuration 

database_name =/hactar/fasta/20080131-SGD-BSA-Cntm-Human-reverse.fasta 
first_database_name =/hactar/fasta/20080131-SGD-BSA-Cntm-Human-reverse.fasta 
second_database_name =  
peptide_mass_tolerance = 2.5 
create_output_files = 1                ; 0=no, 1=yes 
ion_series = 0 1 1 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
fragment_ion_tolerance = 0.0           ; leave at 0.0 unless you have real poor data 
num_output_lines = 5                   ; # peptide results to show 
num_description_lines = 5              ; # full protein descriptions to show for top N peptides 
num_results = 500   ; # of results to process 
show_fragment_ions = 0                 ; 0=no, 1=yes 
print_duplicate_references = 1         ; 0=no, 1=yes 
enzyme_number = 1                           ; # 0.  No_Enzyme        1.  Trypsin_Strict   KR            2.  
Trypsin   KRLNH 
diff_search_options = 15.9949 M 
term_diff_search_options = 0.000 0.000; c term, n term diff mods 
max_num_differential_AA_per_mod = 3    ; max # of modified AA per diff. mod in a 
peptide 
nucleotide_reading_frame = 0           ; 0=proteinDB, 1-6, 7=forward three, 8=reverse 
three, 9=all six 
mass_type_parent = 0                   ; 0=average masses, 1=monoisotopic masses 
mass_type_fragment = 1                 ; 0=average masses, 1=monoisotopic masses 
remove_precursor_peak = 0              ; 0=no, 1=yes 
ion_cutoff_percentage = 0.0            ; prelim. score cutoff % as a decimal number i.e. 0.30 
for 30% 
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protein_mass_filter = 0 0              ; enter protein mass min & max value ( 0 for both = 
unused) 
max_num_internal_cleavage_sites = 2   ; maximum value is 5; for enzyme search 
match_peak_count = 0                   ; number of auto-detected peaks to try matching (max 
5) 
match_peak_allowed_error = 1           ; number of allowed errors in matching auto-
detected peaks 
match_peak_tolerance = 1.0             ; mass tolerance for matching auto-detected peaks 
partial_sequence =    
sequence_header_filter =  
 
 
add_C_Cysteine = 57.0215               ; added to C - avg. 103.1388, mono. 103.00919 
 

 

 

 

TagRecon Configurations 

 

ABRF Dataset Configuration 

PrecursorMzTolerance= 0.01 
FragmentMzTolerance = 0.5 
NTerminusMzTolerance =  0.5 
CTerminusMzTolerance =  0.5 
 
AdjustPrecursorMass =  false 
 
DuplicateSpectra = true 
UseChargeStateFromMS = true 
NumChargeStates = 4 
UseSmartPlusThreeModel = true 
TicCutoffPercentage = 0.98 
 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages = 2  
NumMinTerminiCleavages =  1 
UseAvgMassOfSequences = false 
 
DynamicMods = "M ^ 15.9949 C @ 57.021" 
MaxDynamicMods = 3 
StaticMods = "" 



64 
 

ExplainUnknownMassShiftsAs = "preferredptms" 
PreferredDeltaMasses = "( 42.015 (Q -17.026 N -17.023 [DES] 21.981 [WYF] 15.996 W 
3.994 W 31.989  K 92.105 R 185.628 C 88.62 C 47.73 (C 39.902" 
MaxNumPreferredDeltaMasses = 2 
 
Blosum = “blosum62.fas" 
UnimodXML = "unimod.xml" 
BlosumThreshold = -4 
 
ComputeXCorr = true 
MinCandidateLength =  5 
 
MaxResults = 5 

 

CPTAC Dataset Configuration 
PrecursorMzTolerance= 1.25 
FragmentMzTolerance = 0.5 
NTerminusMzTolerance =  1.5 
CTerminusMzTolerance =  1.25 
 
DuplicateSpectra = true 
UseChargeStateFromMS = false 
NumChargeStates = 3 
UseSmartPlusThreeModel = true 
TicCutoffPercentage = 0.98f 
 
CleavageRules =  "trypsin" 
NumMaxMissedCleavages = 2  
NumMinTerminiCleavages =  1 
UseAvgMassOfSequences = true 
MinCandidateLength =  5 
 
DynamicMods = "M ^ 15.9949 (Q * -17.026 C @ 57.021" 
MaxDynamicMods = 3 
StaticMods = "" 
# Path to the unimod.xml and blosum.fas files. These files are packaged with the 
installation. 
UnimodXML = /hactar/home/dasaris/bumbershoot/src/tagrecon/unimod.xml 
Blosum = /hactar/home/dasaris/bumbershoot/src/tagrecon/blosum62.fas 
 
ComputeXCorr = true 
 
MaxResults = 5 
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X!Tandem Configurations 

 

ABRF Dataset Configuration 

         <enzymatic_search_constraint enzyme="trypsin" 
max_num_internal_cleavages="1" min_number_termini="1" /> 
         <aminoacid_modification aminoacid="C" massdiff="57.0215" mass="160.0307" 
variable="N" /> 
         <aminoacid_modification aminoacid="C" massdiff="-17.0265" mass="143.0042" 
variable="Y" symbol="^" /><!--X! Tandem n-terminal AA variable modification--> 
         <aminoacid_modification aminoacid="E" massdiff="-18.0106" mass="111.0320" 
variable="Y" symbol="^" /><!--X! Tandem n-terminal AA variable modification--> 
         <aminoacid_modification aminoacid="M" massdiff="15.9949" mass="147.0354" 
variable="Y" /> 
         <aminoacid_modification aminoacid="Q" massdiff="-17.0265" mass="111.0321" 
variable="Y" symbol="^" /><!--X! Tandem n-terminal AA variable modification--> 
          
         <!-- Input parameters --> 
         <parameter name="output, histogram column width" value="30"/> 
         <parameter name="output, histograms" value="no"/> 
         <parameter name="output, maximum valid expectation value" value="1"/> 
         <parameter name="output, parameters" value="yes"/> 
         <parameter name="output, path" value="C:\chen\ABRF-iPRG-
2009\xmls\sh_072808p_E_coli_ABRF_red.xml"/> 
         <parameter name="output, path hashing" value="no"/> 
         <parameter name="output, performance" value="yes"/> 
         <parameter name="output, proteins" value="yes"/> 
         <parameter name="output, results" value="all"/> 
         <parameter name="output, sequences" value="yes"/> 
         <parameter name="output, sort results by" value="protein"/> 
         <parameter name="output, spectra" value="yes"/> 
         <parameter name="output, title" value="Orbi X!Tandem"/> 
         <parameter name="protein, C-terminal residue modification mass" value="0.0"/> 
         <parameter name="protein, N-terminal residue modification mass" value="0.0"/> 
         <parameter name="protein, cleavage semi" value="yes"/> 
         <parameter name="protein, cleavage site" value="[RK]|[7]"/> 
         <parameter name="protein, taxon" value="UniprotHuman"/> 
         <parameter name="refine" value="no"/> 
         <parameter name="refine, maximum valid expectation value" value="0.1"/> 
         <parameter name="refine, spectrum synthesis" value="yes"/> 
         <parameter name="residue, modification mass" value="57.0215@C"/> 
         <parameter name="residue, potential modification mass" value="15.9949@M"/> 
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         <parameter name="scoring, maximum missed cleavage sites" value="1"/> 
         <parameter name="scoring, minimum ion count" value="4"/> 
         <parameter name="spectrum, dynamic range" value="100.0"/> 
         <parameter name="spectrum, fragment monoisotopic mass error" value="0.5"/> 
         <parameter name="spectrum, fragment monoisotopic mass error units" 
value="Daltons"/> 
         <parameter name="spectrum, maximum parent charge" value="4"/> 
         <parameter name="spectrum, minimum fragment mz" value="150.0"/> 
         <parameter name="spectrum, minimum parent m+h" value="500.0"/> 
         <parameter name="spectrum, minimum peaks" value="15"/> 
         <parameter name="spectrum, parent monoisotopic mass error minus" 
value="10"/> 
         <parameter name="spectrum, parent monoisotopic mass error plus" value="10"/> 
         <parameter name="spectrum, parent monoisotopic mass error units" 
value="ppm"/> 
         <parameter name="spectrum, parent monoisotopic mass isotope error" 
value="yes"/> 
         <parameter name="spectrum, path type" value="mzxml"/> 
         <parameter name="spectrum, threads" value="1"/> 
         <parameter name="spectrum, total peaks" value="50"/> 
         <parameter name="spectrum, use contrast angle" value="no"/> 
         <parameter name="spectrum, use noise suppression" value="no"/> 
 
CPTAC Dataset Configuration 
     <enzymatic_search_constraint enzyme="trypsin" max_num_internal_cleavages="1" 
min_number_termini="1" /> 
         <aminoacid_modification aminoacid="C" massdiff="57.0215" mass="160.0307" 
variable="N" /> 
         <aminoacid_modification aminoacid="C" massdiff="-17.0265" mass="143.0042" 
variable="Y" symbol="^" /><!--X! Tandem n-terminal AA variable modification--> 
         <aminoacid_modification aminoacid="E" massdiff="-18.0106" mass="111.0320" 
variable="Y" symbol="^" /><!--X! Tandem n-terminal AA variable modification--> 
         <aminoacid_modification aminoacid="M" massdiff="15.9949" mass="147.0354" 
variable="Y" /> 
         <aminoacid_modification aminoacid="Q" massdiff="-17.0265" mass="111.0321" 
variable="Y" symbol="^" /><!--X! Tandem n-terminal AA variable modification--> 
          
         <!-- Input parameters --> 
         <parameter name="protein, C-terminal residue modification mass" value="0.0"/> 
         <parameter name="protein, N-terminal residue modification mass" value="0.0"/> 
         <parameter name="protein, cleavage semi" value="yes"/> 
         <parameter name="protein, cleavage site" value="[RK]|[7]"/> 

         <parameter name="protein, taxon" value="20110726-Yeast-Human"/> 
         <parameter name="refine" value="no"/> 
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         <parameter name="refine, maximum valid expectation value" value="0.1"/> 
         <parameter name="refine, spectrum synthesis" value="yes"/> 
         <parameter name="residue, modification mass" value="57.0215@C"/> 
         <parameter name="residue, potential modification mass" value="15.9949@M"/> 
         <parameter name="scoring, maximum missed cleavage sites" value="1"/> 
         <parameter name="scoring, minimum ion count" value="4"/> 
         <parameter name="spectrum, dynamic range" value="100.0"/> 
         <parameter name="spectrum, fragment monoisotopic mass error" value="0.4"/> 
         <parameter name="spectrum, fragment monoisotopic mass error units" 
value="Daltons"/> 
         <parameter name="spectrum, maximum parent charge" value="4"/> 
         <parameter name="spectrum, minimum fragment mz" value="150.0"/> 
         <parameter name="spectrum, minimum parent m+h" value="500.0"/> 
         <parameter name="spectrum, minimum peaks" value="15"/> 
         <parameter name="spectrum, parent monoisotopic mass error minus" 
value="0.5"/> 
         <parameter name="spectrum, parent monoisotopic mass error plus" value="3.0"/> 
         <parameter name="spectrum, parent monoisotopic mass error units" 
value="Daltons"/> 
         <parameter name="spectrum, parent monoisotopic mass isotope error" 
value="no"/> 
         <parameter name="spectrum, path type" value="mzxml"/> 
         <parameter name="spectrum, threads" value="2"/> 
         <parameter name="spectrum, total peaks" value="50"/> 
         <parameter name="spectrum, use contrast angle" value="no"/> 
         <parameter name="spectrum, use noise suppression" value="no"/> 
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APPENDIX C 

 

Supplementary Materials 3 

 

R Code Implementation for Vote Counting Model 

data<-read.table("input path",sep="\t", header=T) 
 
##The input file should be with the columns: label Protein [MM TR XT SQ 
(whatever search engines to combine)] 
protcount <- length(data[,1]) 
summary(data) 
 
 
 
votesum_TP<-function(alpha,no.proteins,searchEngines){ 
#this function takes a p-value threshold, number of top proteins you want to choose, 
#and for this trained dataset, it also calculate number of true positives in the top 
proteins  
##The input is like: 
##votesum_TP(0.05,250,cbind(data$MM,data$XT,data$TR,data$SQ)) 
##The output is  like: 
##votesum==0  votesum==1  votesum==2  votesum==3   votesum==4   True positives in 
top N proteins' 
 
 
no_engines=length(searchEngines[1,]) 
searchEng_p=matrix(rep(NA,protcount*no_engines),nrow=protcount,ncol=no_engines) 
vot_sum=rep(NA,protcount) 
 
min_searchEngine=rep(NA,protcount) 
 
for (i in 1:protcount){ 
 for(j in 1:no_engines){ 
 if(!is.na(searchEngines[i,j])&&searchEngines[i,j]<=alpha) 
  searchEng_p[i,j]=1 
 else 
  searchEng_p[i,j]=0 
} 
vot_sum[i]=sum(searchEng_p[i,]) 
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if(sum(is.na(searchEngines[i,]))<no_engines){ 
min_searchEngine[i]=min(searchEngines[i,],na.rm=TRUE)} 
} 
list=data.frame(data,vot_sum) 
sort.vot <- list[order(vot_sum,-min_searchEngine,decreasing = TRUE) , ] 
TP_Top=sum(sort.vot$label[1:no.proteins]) 
 
vot_result=rep(NA,no_engines+1) 
for (i in 0:no_engines){ 
vot_result[i+1]=length(subset(vot_sum,vot_sum==(i)))} 
 
return (c(vot_result,TP_Top)) 
} 
 
Calc_FDRmin=function(alpha,no.proteins,searchEngines){ 
##this function simulates permutations of p-values of each search engine among 
proteins, and calculates a minimum FDR   
 
no_engines=length(searchEngines[1,]) 
 
N_sum=votesum_TP(alpha,no.proteins,searchEngines) 
 
sim=cbind(data$label,data$Protein) 
for (i in 1:no_engines){ 
sim=cbind(sim,sample(searchEngines[,i]))} 
 
E_sim_sum=votesum_TP(alpha,no.proteins,sim[,3:(3+no_engines-1)]) 
ratio=(E_sim_sum+1)[1:(no_engines+1)]/N_sum[1:(no_engines+1)] 
mFDRmin=min(ratio) 
num_threshold_engines=which(ratio==mFDRmin)-1 
return(c(mFDRmin,num_threshold_engines)) 
} 
 
 
 
eval_alpha=function(alpha,no.proteins,searchEngines){ 
##This function evaluates the validity of threshold with three criteria 
##(1) If mFDRmin<a, these proteins were found to be differentially expressed at the 
threshold a.  
##(2) If not, I repeated the enumeration of votes with the value of a lowered by 20% at 
each iteration until either a valid a is defined or the number of differential proteins 
detected in two or more search engines reaches 0.  
##(3) A valid a should not fall so far that the number of proteins with at least one vote 
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was less than N SELECT. 
 
 
no_engines=length(searchEngines[1,]) 
if(sum(votesum_TP(alpha,no.proteins,searchEngines)[3:(3+no_engines-2)])==0){ 
##two or more signatures reached 0 
 return(0) 
} 
actual_alpha=Calc_FDRmin(alpha,no.proteins,searchEngines) 
if(actual_alpha[1]<alpha){ 
      ## if none of these proteins are at this threshold can yield no. of proteins  
   ##This criteria is to avoid too small alpha 
  if(sum(votesum_TP(alpha,no.proteins,searchEngines)[2:(2+no_engines-
1)])<no.proteins){ 
  #not enough proteins have significant p-values at this threshold, please 
increase alpha' 
  return(0)  } 
  else{  
  #SUCCESS 
  return(alpha)  }} 
 
##this is to avoid too big alpha 
else{ 
  eval_alpha(alpha*.8,no.proteins,searchEngines) 
  } 
} 
 
find_alpha=function(alpha,no.proteins,searchEngines){ 
##this function finds the smallest (most strict) p-value threshold that is valid through 
eval_alpha validity test  
while(eval_alpha(alpha*0.8,no.proteins,searchEngines)!=0){ 
alpha=alpha*0.8} 
return(alpha) 
} 
 
###################################################### 
##User input area 
 
 
no.proteins=50 
start_alpha=0.1 
 
 searchEngines=cbind(data$MM,data$XT,data$SQ,data$TR) 
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# searchEngines=cbind(data$MM,data$XT,data$TR) 
# searchEngines=cbind(data$MM,data$XT,data$SQ) 
# searchEngines=cbind(data$MM,data$TR,data$SQ) 
# searchEngines=cbind(data$XT,data$TR,data$SQ) 
 
# searchEngines=cbind(data$XT,data$TR) 
# searchEngines=cbind(data$MM,data$TR) 
# searchEngines=cbind(data$MM,data$XT) 
# searchEngines=cbind(data$MM,data$SQ) 
# searchEngines=cbind(data$XT,data$SQ) 
# searchEngines=cbind(data$TR,data$SQ) 
 
 
###THE OUTPUT 
PART************************************************************ 
no_engines=length(searchEngines[1,]) 
#must specify the number of protein list that you want from the begining 
 
result_alpha=find_alpha(start_alpha,no.proteins,searchEngines) 
print(paste('The best p-value threshold for highest sensitivity and specificity within the 
top ',no.proteins, 'proteins is ',result_alpha)) 
result_alpha 
no_TP=votesum_TP(result_alpha,no.proteins,searchEngines) 
no_TP[length(no_TP)] 
 
 
##output with the data and protein information with the vote sum 
 
searchEng_p=matrix(rep(NA,protcount*no_engines),nrow=protcount,ncol=no_engines) 
vot_sum=rep(NA,protcount) 
 
for (i in 1:protcount){ 
 for(j in 1:no_engines){ 
 if(!is.na(searchEngines[i,j])&&searchEngines[i,j]<=result_alpha) 
  searchEng_p[i,j]=1 
 else 
  searchEng_p[i,j]=0 
} 
vot_sum[i]=sum(searchEng_p[i,]) 
} 
 
 
list=data.frame(data,vot_sum) 
sort.vot <- list[order(vot_sum,-searchEngines[,1],-searchEngines[,2],decreasing = 
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TRUE) , ] 
write.table(sort.vot,"output path",sep="\t",row.names =F) 
 



73 
 

APPENDIX D 

 

Supplementary Material 4 

Peptides Corresponding to Peptide Groups in ASW480 dataset Table S2 

 

Peptide 
Group 

1 2 3 4 5 6 

Peptide
s 

ELYEEELR EYQDLLN
VK 

KLLEGE
ESR 

LLEGE
ESR 

TNEKVELQE
LNDR 

DGQVINETSQHHDD
LE 

 NISEAEEWYK       VELQELNDR DNLAEDIMR 
 VYQVSRTSGGA

GGLGSLRASR 
        EEAENTLQSFR 

           EKLQEEMLQR 
           ELRRQVDQLTNDK 
           EMEENFAVEAANY

QDTIGR 
           EM1EENFAVEAANY

QDTIGR 
           ETNLDSLPLVDTH 
           ETNLDSLPLVDTHSK 
           FADLSEAANR 
           FANYIDK 
           FAVEAANYQDTIGR 
           GTNESLER 
           ILLAELEQLK 
           ISLPLPNFSSLNLR 
           KVESLQEEIAFLK 
           LGDLYEEEMR 
           LGDLYEEEM1R 
           LHEEEIQELQAQ 
           LHEEEIQELQAQIQE

QH 
           LLQDSVDFSLADAIN

TEFK 
           LQDEIQNMK 
           LQDEIQNM1K 
           LQDEIQNMKEEM 
           LQDEIQNMKEEM 
           LQDEIQNMKEEMA

R 
           LQDEIQNMKEEMA

R 
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           LQEEMLQR 
           MALDIEIATYR 
           NLQEAEEWYK 
           QDVDNASLAR 
           QESTEYR 
           QQYESVAAK 
           QVDQLTNDK 
           QVQSLTCEVDALK 
           SLTCEVDALK 
      SLYASSPGGVYATR 
      SVSSSSYR 
      SYVTTSTR 
      TCEVDALK 
      TYSLGSALRPSTSR 
      VESLQEEIAFLK 
      VEVERDNLAEDIMR 
      VQIDVDVSKPDLTA

ALR 
      SLYASSPGGVYATR 
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Supplementary Material 5 

Peptides Corresponding to Peptide Groups in HNSCC dataset Table S3 

 

Peptid
e 
Group 

1 2 3 4 5 

Peptid
es 

AEAELCAEAEETR EDQSILCTGESGAGK EEELQAALAR ALELDPN
LYR 

IFEYIDR/IFE
YLDR 

 ALEEEQEAR EDQSILCTGESGAGK
TENTK 

QLLQANPILEAF
GNAK 

    

 AQAELENVSGALNEA
ESK 

FDQLLAEEK      

 AQVTELEDELTAAED
AK 

KFDQLLAEEK       

 DLGEELEALR         
 DLQGRDEAGEER         
 EAEALTQR         
 EAQAALAEAQEDLES

ER 
        

 EEIFSQNR         
 ELQTAQAQLSEWR         
 ELSSTEAQLHDAQELL

QEETR 
        

 EQLEEEAAAR         
 EVGELQGR         
 EVVLQVEEER         
 FEEDLLLLEDQNSK         
 FEEDLLLLEDQNSKLS

K 
        

 GELEDTLDSTNAQQE
LR 

        

 GLEAEVLR         
 KFEEDLLLLEDQNSK         
 LAEFSSQAAEEEEK         
 LALEAEVSELR         
 LAQAEEQLEQETR         
 LAQLEEER         
 LELQLQEVQGR         
 LGEEDAGAR         
 LLGLGVTDFSR         
 LQEELAASDR         
 QDEVLQAR         
 QDEVLQAR         
 QDEVLQARAQELQK         



76 
 

 QEEEAGALEAGEEAR         
 QLEEAEEEASR         
 RQEEEAGALEAGEEA

R 
        

 RQLEEAEEEASR         
 TLEEETR         
 VAEQAANDLR         
 VAQLEEER         
 VGEEEECSR         

 


