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Chapter I 

 

INTRODUCTION 

 

Metabolic Homeostasis: Skeletal Muscle as a Key Metabolic Organ 

The incidence of metabolic syndrome in the U.S. is on the rise with 

approximately 34% of the adult population meeting the criteria (1). Metabolic syndrome 

is a grouping of risk factors for the development of cardiovascular disease including three 

or more of the following: abdominal obesity, low HDL cholesterol, high triglycerides, 

raised blood pressure, and insulin resistance. The rise in metabolic syndrome is, in part, 

due to the increased diagnosis of type 2 diabetes and insulin resistance. Nearly 26 million 

people in the U.S. have diabetes and an alarming 79 million adults currently live with 

prediabetes (insulin resistance) (2). Insulin resistance and metabolic syndrome are 

multifactorial health issues that involve the potential interaction between lifestyle 

characteristics such as diet and physical activity level, obesity, genetic predisposition, 

chronic inflammation, elevated free fatty acids, mitochondrial dysfunction, and 

impairments in insulin signaling (3). Diabetes is the seventh leading cause of death due to 

increased risk for heart disease and stroke (2). 

Skeletal muscle is the primary site of action for insulin-stimulated glucose 

disposal. β-cells respond to postprandial hyperglycemia to secrete insulin into the 

circulation, which acts on peripheral tissues. The liver is responsible for approximately 

30% of postprandial glucose clearance while the periphery responds to the circulating 

insulin to stimulate skeletal muscle glucose uptake (MGU), thus promoting a return to 
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euglycemia (4-7). Furthermore, DeFronzo et al. demonstrated that skeletal muscle is the 

primary site of glucose disposal during hyperinsulinemic-euglycemic clamps 

corresponding to 80% of whole body glucose uptake and this response is blunted in 

diabetic subjects (8). Prediabetic and type 2 diabetic patients have an impaired response 

to insulin to stimulate MGU causing extended or unresolved hyperglycemia after a meal. 

Skeletal muscle insulin resistance is present prior to an overtly elevated fasting plasma 

glucose and a diagnosis of type 2 diabetes (5). There is an association between factors of 

metabolic syndrome and insulin resistance. Patients with essential hypertension and 

ischemic heart disease have a 35-50% decrease in insulin-stimulated glucose disposal (9, 

10).  The majority of hypertensive patients are either insulin resistant or diagnosed type 2 

diabetics suggesting a clear link between vascular and metabolic function in obese 

populations (11). The action of insulin to promote vasodilation and enhance skeletal 

muscle perfusion is a potential link between insulin resistance and vascular disease. 

However, the exact mechanisms for the pathogenesis of skeletal muscle insulin resistance 

are not fully elucidated and further studies are required to corroborate the potential 

interplay between vascular and metabolic dysfunction that could result in novel treatment 

targets for metabolic syndrome.  

 

Skeletal Muscle Perfusion: A Critical Component of In Vivo Insulin-Stimulated 

Muscle Glucose Uptake 

The ability of insulin to stimulate glucose disposal is principally regulated by 

skeletal muscle glucose influx (12). The control of MGU is distributed between 3-steps, 

as depicted in Figure 1 (13, 14).  To elucidate the resistances to glucose flux through the 
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three steps an in vivo model must be employed due to the complex regulation of fluxes 

via multiple organ systems. 

 

Figure 1.1 - Distributed Control of Muscle Glucose Uptake – Representation of the 

three step process of muscle glucose uptake and the contributing factors of each 

component  

 

Furthermore, in vivo glucoregulatory analysis is best studied under well-controlled 

conditions where the subject is conscious, unstressed, and arterial glucose levels are 

clamped. The clamping of glucose concentration prevents activation of compensatory 

hormone or autoregulatory systems. For example, clamping glucose at euglycemic levels 

averts hypoglycemia during an insulin infusion, which prevents the body from 

responding by increasing glucagon, corticosterone (in rodents), catecholamines, and other 

glucose counterregulatory factors. Also, in vivo glucose flux analysis is optimally 

performed in conscious animals because anesthesia decreases metabolism and hormone 

sensitivity. By utilizing the Vanderbilt Hyperinsulinemic-Euglycemic Clamp Method 

(insulin clamp) we are able to determine muscle glucose influx without the concerns 

delineated above or inducing a stress response from handling of mice (15, 16).  In vivo 
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metabolic studies facilitate the comprehensive understanding of how an experimental 

factor (e.g. increase in fat mass) affects MGU. Cell culture and ex vivo models remove 

the delivery component of MGU and require supraphysiological levels of insulin to 

stimulate glucose uptake. As a result, these experimental models isolate the glucose 

transport and phosphorylation components of insulin-stimulated MGU, but exclude the 

extramyocellular factors that contribute to insulin action.  

To understand the integrated regulation of MGU that occurs in a physiological 

state the three steps must be present in the experimental model. Glucose delivery is 

regulated by arterial concentration and perfusion of the muscle bed. Muscle blood flow is 

controlled by capillary recruitment and total blood flow in response to insulin stimulation 

(step 1). At the muscle interstitium glucose is transported across the sarcolemma 

membrane by GLUT4 after translocation to the membrane in response to myocellular 

insulin signaling events (step 2).  Intramyocellular glucose is phosphorylated to glucose-

6-phosphate, which is regulated by hexokinase activity and compartmentation (step 3). 

Glucose phosphorylation is the terminal step of MGU as muscle lacks glucose-6-

phosphatase activity trapping phosphorylated glucose in muscle. In the fasted state, 

control of MGU is at the transport step due to the low number of GLUT4 at the 

sarcolemma membrane rendering the muscle impermeable to glucose (17). Utilizing the 

principles of glucose countertransport, Halseth et al. showed that the transport barrier is 

minimal during insulin stimulation due to the muscle being highly permeable to glucose 

after GLUT4 insertion into the membrane. The control of insulin-mediated MGU is 

distributed between glucose delivery and phosphorylation (18-20).  
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Fueger et al. further defined the barriers to MGU utilizing genetic mouse models 

to functionally remove the transport barrier by overexpression of GLUT4, the 

phosphorylation barrier with hexokinase II overexpression, or the combination of both 

proteins (17). Data collected from insulin clamp studies in these mouse models support 

the conclusions of the countertransport studies of Halseth et al. (18). Fueger et al. applied 

control theory to determine the functional barriers to MGU (21): CTg = Δln(Rg)/Δln(PTg) 

where CTg is the control coefficient, Rg is the index for MGU, and PTg is the level of 

hexokinase II or GLUT4 relative to controls. The assumptions in this model are twofold; 

MGU is a defined pathway in which the sum of the control coefficients for each MGU 

equals 1 and the increase in protein expression directly correlates to its activity. As 

shown in Table 1.1, the primary barriers to MGU during insulin stimulation are delivery 

and phosphorylation.  

 

Control Step Delivery Transport Phosphorylation 

Rest 0.1 0.9 0.0 

Insulin Clamp; 4 mU·kg
-1

·min
-1

 0.5 0.1 0.4 

Table 1.1 - Control Coefficients for Muscle Glucose Uptake – Control coefficients for 

each component of muscle glucose uptake at rest and during insulin stimulation in lean 

mice 

 

The countertransport and genetic models emphasize the importance of glucose delivery 

during insulin-stimulated MGU. Glucose delivery is dependent on arterial concentration, 

which is regulated by nutrient absorption by the gut, liver glucose output in addition to 

the action of insulin to enhance muscle perfusion. Glucose delivery augments the 
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myocyte exposure of glucose by mass action down the glucose concentration gradient 

from the plasma to muscle interstitium.  

Any factor that causes changes in MGU, whether it is a characteristic of health or 

disease, works through one of these three steps. For example, skeletal muscle 

accumulation of glucose-6-phosphate reduces MGU by regulating glucose 

phosphorylation through negative feedback inhibition of hexokinase activity. 

Furthermore, the delivery component of MGU does not rest only on glucose movement 

from the vascular to muscle compartment. The delivery of arterial insulin to the 

interstitium of skeletal muscle is the rate-limiting step for the onset of insulin-stimulated 

MGU, suggesting the importance of insulin delivery to MGU (22).  

The metabolic action of insulin at skeletal muscle is limited by its transport from 

the plasma compartment to the interstitial compartment (23). Investigation by the 

laboratory of Olefsky extensively demonstrated the delayed onset of insulin action and 

insulin receptor kinase activation in skeletal muscle (24-26). During insulin clamps in 

healthy human subjects the half-maximal plasma insulin levels occurs between 4.9-7.2 

min with corresponding half-maximal glucose disposal rate and insulin receptor kinase 

activation between 40-60 min (24). Furthermore, obese subjects have a much slower 

onset of peripheral glucose disposal compared to healthy controls. Notably, there was no 

difference in the time to reach half-maximal suppression of hepatic glucose production 

(~20 min) in obese subjects, which is likely due to differences in microvascular structure 

(e.g. the liver has discontinuous capillaries and muscle has tight capillaries) and the high 

liver perfusion causing a more rapid appearance of insulin (26). The blood flow to the 

liver is homogenous and 33-fold higher at rest than skeletal muscle, which in congruence 
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to the leaky capillary structure permits much higher insulin extraction (27). Nolan et al. 

further demonstrated that the diabetic patients had a marked delay in the activation of 

glucose disposal and leg glucose uptake when comparing obese patients to diagnosed 

type 2 diabetics (25). Bergman and colleagues showed that the concentration of 

interstitial and lymph insulin correlates more closely to the onset of glucose disposal than 

the rise in plasma (28-30). The importance of insulin appearance at the muscle 

interstitium was confirmed by studies that directly injected skeletal muscle of dogs with 

insulin and showed an immediate stimulation of MGU (31).  

The architecture of the capillary wall within skeletal muscle determines the 

transport and delivery capacity of large molecules such as insulin. Skeletal muscle 

capillaries are characterized by tight junctions and an enrichment of caveolae number 

(27). King and Johnson were the first to propose that insulin moves across the endothelial 

layer in a receptor-mediated mechanism (32). This finding was supported by in vivo 

evidence. Wang et al. obtained serial muscle biopsies while performing an insulin clamp 

with FITC-labeled insulin and demonstrated that the labeled insulin was bound to the 

endothelium but was yet to be transported to the muscle interstitium 10 min after the 

outset of the clamp (33). Wang and Barrett further showed the co-localization of the 

labeled insulin with the insulin receptor and caveolin-1 on the luminal membrane of 

endothelial cells (33). The transport potential of the endothelium is dependent on the 

activation and downstream signaling of the endothelial insulin receptor.  The transport of 

insulin is impaired with  exposure to inflammatory cytokines such as TNFα and with 

knockdown of the caveolin-1 protein, which is critical to the formation of caveolae (34). 

However, the in vivo effects of diet-induced insulin resistance on skeletal muscle 
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capillary transport capacity of insulin and whether structural changes occur that could 

alter the transport potential is unknown.  

Obesity is a major risk factor for cardiovascular morbidity and mortality that 

associates with the development of insulin resistance at tissues such as skeletal muscle, 

liver, and adipose tissue. A deficit at any of the three steps to MGU can cause insulin 

resistance. In animal models of obesity impairments in the action of insulin to augment 

muscle blood volume (35-38), glucose sarcolemma transport (39-41), and glucose 

phosphorylation can be present (42, 43).  However, in high fat-fed rats the primary deficit 

in insulin-stimulated MGU is in the delivery component (18). The hemodynamic action 

of insulin to increase muscle blood volume is blunted in obesity supporting the paradigm 

that the delivery step of MGU is critical to  the etiology of skeletal muscle insulin 

resistance (35, 36, 44). 

 

Loss of Vascular Function 

The initiation of skeletal muscle insulin action is dependent on the appearance of 

interstitial insulin. The transcapillary delivery of insulin to muscle is rate-limiting in 

healthy subjects and is delayed in insulin resistant patients (23). Insulin acts on the 

vascular tree to enhance its own delivery by relaxing resistance arteries and arterioles to 

augment total limb blood flow, relaxing precapillary arterioles to recruit unperfused 

capillaries thus increasing the surface area for substrate exchange, and enhancing 

capillary vasomotion to enhance blood flow distribution (23, 45, 46). The hemodynamic 

actions of insulin precede insulin-stimulated MGU. Bergman et al. demonstrated that in 

vivo insulin injection directly into skeletal muscle immediately induces MGU, supporting 
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the hypothesis that insulin delivery is a significant barrier to the onset of insulin-

stimulated MGU (31). 

The increase in capillary blood volume occurs within minutes of insulin 

administration with a delayed increase in total limb blood flow (45). Ellmerer et al. 

showed that insulin augments macronutrient delivery to skeletal muscle during an insulin 

clamp and appearance of macromolecules in skeletal muscle lymph, a surrogate for the 

interstitium, is diminished in obese dogs (47). Moreover, the presence of the endothelial 

insulin signaling machinery is essential for the vascular actions. The significance of 

insulin and glucose delivery to tissue glucose uptake is specific to muscle. The structure 

of the endothelium in muscle is continuous, which contrasts with the discontinuous 

endothelial barrier of liver and the blood flow to the liver is naturally high in the basal 

state (27, 48). Insulin resistance occurs at the level of large arteries and the 

microcirculation that prevents the rise in skeletal muscle perfusion during insulin 

stimulation (49, 50). Structural and functional capillary rarefaction contribute to the 

blunted muscle blood volume during insulin stimulation. Structural capillary rarefaction 

is the attenuation in capillary to myocyte ratio and functional capillary rarefaction is the 

impairment in endothelial function preventing arterial relaxation at sites of resistance. 

Structural and functional capillary rarefaction develops in insulin resistant patients and 

experimental models of type 2 diabetes (36-38, 44, 49, 51-57).  
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Figure 1.2 - Capillary Density in Healthy and Insulin Resistant Muscle – Insulin 

resistant subjects have decreases in the number of capillaries perfusing skeletal muscle 

compared to healthy controls 

 

The abnormal vascular responses to insulin diminish the surface area available for 

insulin and glucose exchange exacerbating the insulin resistant phenotype. Benedict et al. 

performed a complex analysis of the capillary network connectivity and structure in 

Zucker diabetic fatty rats before and after the onset of type 2 diabetes. After the 

development of insulin resistance, there was a 37% decrease in capillary branching and a 

44% decrease in capillary flow per muscle compared to non-diabetic controls (49). This 

large deficit in functional capillary reserve limits the action of insulin to augment 

microvascular blood volume. Moreover, a graded occlusion of  skeletal muscle capillaries 

with 15µm diameter microspheres, in a healthy perfused hindlimb, is sufficient to impair 

muscle insulin action supporting the importance of the skeletal muscle capillary reserve 

(58). However, it is currently unknown whether structural capillary rarefaction is critical 

to the pathogenesis of muscle insulin resistance. 
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Functional capillary rarefaction contributes to the deficit in insulin-stimulated 

muscle perfusion. Inhibiting the action of insulin to recruit unperfused capillaries impairs 

insulin-stimulated glucose disposal (59). Multiple experimental techniques, such as 1-

methylxanthine metabolism and contrast enhanced ultrasound, permit the characterization 

of the effect of insulin to rapidly recruit unperfused capillaries, thus increasing skeletal 

muscle blood volume (23, 45, 60).  Endothelial dysfunction in large arteries parallels the 

deficit in capillary recruitment contributing to the overall decrease in skeletal muscle 

perfusion (61). A large systemic review and meta-analysis showed that markers of 

vascular dysfunction strongly associate with type 2 diabetes. Specifically, this 

comprehensive review determined that plasma soluble adhesion molecules, vascular 

reactivity, arteriole to venule ratio, and microalbuminuria (all markers of vascular 

dysfunction) correlate to the presence of type 2 diabetes in patients (62). Vincent et al. 

determined that inhibiting insulin-induced activation of nitric oxide synthase (NOS) 

attenuates glucose disposal by 30-40% (59). Extending this concept, subjects with the 

greatest muscle blood volume have the greatest glucose disposal during an insulin clamp 

even in healthy, normotensive, and non-obese subjects (63). Vascular dysfunction is an 

important risk factor for cardiovascular mortality, which is the leading cause of death in 

diabetic patients (64). Vascular dysfunction may be a common characteristic linking the 

co-prevalence of cardiovascular and metabolic diseases. 

The binding of insulin to the endothelial insulin receptor initiates a PI3-kinase-

dependent pathway similar to other insulin responsive tissues. Activation of endothelial 

insulin signaling causes Akt-mediated phosphorylation of endothelial NOS (eNOS) that 

stimulates nitric oxide synthesis and vasodilation (46). Insulin concurrently activates the 
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mitogen-activated protein kinase pathway, which increases the expression of the 

vasoconstrictor endothelin-1 (ET-1); however, in healthy subjects the eNOS pathway 

dominates (46, 65). The endothelium is characterized by pathway selective insulin 

resistance in obesity blunting PI3-kinase activation and promoting ET-1 production 

resulting in further endothelial dysfunctional (66).  

 

 

Figure 1.3 - Endothelial Insulin Signaling in Health and Disease – The vasodilatory 

and capillary recruitment actions of insulin occur via the canonical insulin receptor 

pathway in endothelial cells, which is defective in insulin resistant states 

 

Pharmacologically or genetically eliminating eNOS activation in the presence of 

insulin diminishes glucose disposal and skeletal muscle perfusion (67, 68). Kubota et al. 

characterized the essential role of endothelial insulin signaling to MGU. The 

enhancement in skeletal muscle perfusion during an insulin clamp is abolished in obese 

and IRS-2 deficient mice, the primary endothelial isoform (48). Both mouse models have 

decreased insulin-mediated eNOS activation, insulin delivery to skeletal muscle 
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interstitium, and MGU. In diet-induced insulin resistant animal models, the deficit in 

vascular insulin signaling precedes the onset of peripheral insulin resistance, suggesting 

that the endothelium is more susceptible to dietary fat ingestion (50). Moreover, activity 

restriction in lean non-human primates impairs microvascular function and induces 

insulin resistance providing a potential link between obesity and physical inactivity to the 

pathogenesis of insulin resistance (69). This vascular detriment is an early and likely a 

causative factor for the development of skeletal muscle insulin resistance.  

 

VEGF-Dependent Angiogenesis 

Vascular endothelial growth factor-A (VEGF) is essential for the coordinated 

development of the vascular system during embryonic maturation and angiogenesis in 

adult animals. Notably, global deletion of a single VEGF allele is sufficient to cause 

embryonic death (70-72). Eukaryotic organisms have a family of VEGF proteins, listed in 

Table 1.2, that regulate vasculogenesis, angiogenesis, and lymphanogenesis. VEGF binds 

primarily to two receptors, VEGFR1 and R2. The angiogenic action of VEGF is mediated 

through VEGFR2. The role of VEGFR1 is less characterized and considered to be anti-

angiogenic, in particular soluble VEGFR1. VEGFR1 has a high affinity for VEGF 

sequestering it from VEGF2 interaction and the induction of angiogenesis. VEGF action 

is essential for the adaptive response to changes in substrate demand. For example, 

increases in oxygen and energy demands during exercise stimulates the growth and 

branching of tissue capillaries to increase the surface area for substrate and waste 

exchange in metabolically active tissues. VEGF induces chemotaxis and differentiation 
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of endothelial precursor cells, endothelial cell proliferation, the assembly of endothelial 

cells into the vascular network, and remodeling (73) 

 

Table 1.2 - VEGF Isoforms, Receptors, and Physiological Actions – VEGF-A 

is the critical isoform that regulates angiogenesis and microvascular density  

 

There is an augmentation of skeletal muscle VEGF expression during exercise in 

response to the increase in energy demand (74). Skeletal muscle adapts to the greater 

oxygen and substrate requirements to increase capillary density, and thus, muscle 

perfusion. Tang et al. demonstrated that skeletal muscle VEGF deletion causes capillary 

rarefaction characterizing the critical role of VEGF in the maintenance of muscle 

capillary density (75, 76). In accordance with the results in skeletal muscle, Giordano et 

al. discovered that the deletion of VEGF in cardiac muscle induces fewer capillaries 

perfusing the heart (77). These studies describe the importance of paracrine VEGF 

signaling from the muscle to the endothelium to sustain tissue capillary requirements. 

This contrasts with endothelial specific VEGF expression that is necessary for endothelial 

cell integrity and survival via an autocrine signaling mechanism (78).  



15 

 

There is impairment in VEGF action in diabetic patients that causes capillary 

rarefaction and a blunted adaptive response to increases in metabolic demand (79-83). 

Animal models of diabetes develop cardiomyopathy due to a progressive loss of 

myocardial VEGF expression (81). In peripheral and cardiac ischemia, diabetic animals 

and patients are unable to induce collateral vessel growth to ameliorate the hypoxic event 

(79, 82). The detriment in angiogenesis worsens outcomes in diabetic patients leading to 

increase mortality after an ischemic event compared to non-diabetics.  

 

Gain of Vascular Function 

Modulation of skeletal muscle perfusion impacts MGU as described in equation 1 

for the calculation for MGU:  

                     

Femoral            is the arterial-venous difference across the muscle of interest and 

     is the total blood flow to that muscle. Baron et al. showed that limb blood flow 

independently modulates femoral glucose uptake (84). Baron and colleagues performed 

insulin clamps on lean subjects and determined glucose uptake during steady-state period 

(equation 1). The investigators next increased blood flow with metacholine, a NO 

dependent vasodilator. The study determined that elevating blood flow during steady-

state hyperinsulinemia augments femoral glucose uptake (84). This seminal result 

showed the significance of modulating blood flow to enhance insulin-mediated MGU and 

highlighted the importance to consider muscle perfusion in the treatment of insulin 

resistance.  
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Baron and colleagues furthered defined the influence of muscle blood flow in type 

2 diabetic patients. In this study, the authors performed a constant insulin infusion at 

120mU/m
2
·min

-1
 in diabetic and healthy subjects with glucose concentrations clamped at 

incremental levels. At all steady-state glucose concentrations there was no change in 

femoral ΔAVglucose; however; limb blood flow was significantly lower at each glucose 

step in the diabetic patients and plateaued at a lower glucose concentration resulting in 

the lower limb glucose uptake (36). These results indicate that reduced glucose and 

insulin delivery to skeletal muscle is critical to the pathogenesis of diabetes. Moreover, 

large artery dysfunction correlates to the state of metabolic impairment evident in obese, 

type 2 diabetics (27). The permeability surface area for glucose during insulin 

stimulation, a measurement of the capacity for glucose to reach the interstitial fluid, in 

forearm muscle is impaired in obese insulin resistant subjects compared to obese insulin 

sensitive controls. This deficit that can be overcome by co-infusion of a vasodilator (85).  

 The diseased vasculature associated with insulin resistance and type 2 diabetes 

provides an important pharmacological target to comprehensively treat the metabolic 

syndrome. Murdolo et al. demonstrated that an acute infusion with the vasodilator 

metacholine, during hyperinsulinemia, improves the delayed onset of insulin action at 

skeletal muscle present in insulin resistant subjects (85). It is important to note that this 

study was performed in an acute setting and without focus on intervention to treat muscle 

insulin resistance. Our laboratory investigated the effects of inhibiting cGMP breakdown 

using the phosphodiesterase-5 inhibitor sildenafil at the onset and duration of diet-

induced insulin resistance (86). Nitric oxide rapidly diffuses from the endothelium to 

smooth muscle stimulating cGMP synthesis by soluble guanylate cyclase, the secondary 
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messenger necessary for NO-mediated vasodilation. Ayala et al. demonstrated the 

protective effect of pharmacologically targeting the vasculature at the outset of a high fat 

(HF) diet to prevent the development of skeletal muscle insulin resistance (86). While 

this study provided evidence consistent with improved vascular function in the 

prevention of diet-induced insulin resistance, it was not designed to address the more 

clinically relevant issue of reversing insulin resistance. Kang et al. expanded on these 

studies to show that capillary density was greater in mice treated with sildenafil for the 

duration of an obesogenic diet, suggesting that the actions of sildenafil to maintain 

capillary density and muscle perfusion are important (87). Additionally, a study in 

fructose-fed rats showed that an intervention with an angiotensin II receptor inhibitor 

reverses skeletal muscle insulin resistance attributed to a normalization of capillary 

density compared to chow-fed controls (53). These studies support the concept that the 

vascular system provides novel and viable therapeutic targets to concomitantly treat 

metabolic and cardiovascular diseases that associate with the growing obesity epidemic. 

 

Relaxin: A Novel Therapeutic Agent with Possibilities to the Treatment of Diabetes 

The hormone relaxin was first discovered by Frederick Hisaw in 1926 and 

described as a hormone of pregnancy (88). Relaxin is now characterized as a critical 

hormone for the cardiovascular and renal adaptations during pregnancy. The pleiotropic 

actions of relaxin include systemic vasodilation to increase fetal nutrient delivery and 

enhanced renal function to accommodate higher demand for waste excretion (89). Recent 

clinical and animal data have expanded the cardiovascular actions of relaxin to males. 

Relaxin was originally described to belong to the insulin hormone superfamily due to the 
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6 kDa size of both peptides and disulfide bonds that are crucial for structural integrity. 

However, current data now suggests that relaxin diverged from the insulin family of 

proteins early in vertebrate evolution forming a specific relaxin peptide family (90). 

There are three unique relaxin genes in humans (RLN1, RLN2, and RLN3) that encode for 

H1, H2, and H3 relaxin respectively (90). In non-human primates there are only two 

relaxin genes (RLN1 and RLN3), in which the RLN1 gene corresponds to H2 relaxin.  The 

physiological actions described herein refer to H2 relaxin as relaxin. Relaxin is expressed 

in reproductive and non-reproductive tissues including uterus, prostate gland, brain, 

pancreas, kidney, and heart (91, 92). Relaxin acts through two G-protein coupled 

receptors RXFP1 and RXFP2, which contain leucine-rich repeats (93). Relaxin has a 

much higher affinity for RXFP1. RXFP1 is widely expressed and abundantly present in 

the reproductive, nervous, and cardiovascular systems in both male and female animals 

(93).  

The vascular effects of relaxin, inducing vasodilation and a decrease in systemic 

vascular resistance, are mediated by the endothelin system. The close proximity of the 

relaxin and the ET-1 signalosomes support this mechanism. ET-1 is synthesized by 

endothelial cells and processed to ET1-32, which specifically induces the vasodilatory 

actions of relaxin. ET-1 binds to the ETA and ETB receptors on vascular smooth muscle to 

cause vasoconstriction; however, the ETB receptor is present on endothelial cells and 

induces NO dependent relaxation (94). Relaxin increases matrix metalloproteinase 

(MMP) activity that regulates the processing of ET-1 and MMPs are required for the 

acute vasodilatory effects of relaxin (94). The in vivo actions of relaxin to alter vascular 

compliance are not fully understood. Specific mechanisms depend on the exposure time 
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such that the fast acting (minutes) response is dependent on components of RXFP1 

signaling directly, the intermediate response (hours) is primarily dependent on MMP-9 

activation, and the long-term (days) action of relaxin is dependent on both ET-1 and 

VEGF signaling mechanisms (95). Convergence on eNOS activation and NO synthesis is 

common between all three pathways.  

 

Figure 1.4 - Mechanisms of Relaxin Action – Physiology of relaxin that result in the 

anti-fibrotic, vasodilatory, and angiogenic actions and proposed to be important to 

intervene on the development of insulin resistance 

 

The physiological actions of relaxin are not limited to the cardiovascular effects. 

Relaxin decreases collagen biosynthesis and promotes collagen degradation. The 

regulation of connective tissue homeostasis promotes an anti-fibrotic environment. 

Relaxin inhibits transforming growth factor-β (TGFβ) signaling to prevent collagen 
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biosynthesis (96-99). Relaxin augments MMP expression and/or decreases expression of 

tissue inhibitor of metalloproteinase to enhance the activity of MMPs (100-103). 

Importantly, the anti-fibrotic action of relaxin occurs only in the presence of aberrant 

fibrosis and does not alter extracellular matrix proteins in healthy tissue.  Genetically 

engineered mice with RLN1 deletion corroborate the extracellular matrix remodeling 

characteristics of the hormone. Relaxin-deficient mice exhibit an age-induced increase in 

cardiac fibrosis compared to wild-type controls, and this phenotype was normalized after 

a 2 week relaxin intervention (103).  

The stimulation of VEGF expression is critical to the vasodilatory and angiogenic 

mechanisms of relaxin physiology (104, 105). Hisaw and colleagues first discovered the 

angiogenic role of relaxin showing the importance of relaxin for the increase in capillary 

density in the endometrium during pregnancy (106). Additionally, relaxin causes 

angiogenesis in a rat model for chronic myocardial infarction (107). This conclusion was 

further confirmed in a swine model of heart failure. In the swine model, Formigli et al. 

transfected myoblasts with the relaxin gene and grafted the cells into the post-infarcted 

heart. The transplanted relaxin expressing cardiomyoblasts increases VEGF expression in 

the endogenous myocardial cells to expand capillary density (108). The angiogeneic 

mechanism of relaxin is, in part, by acting on bone marrow derived endothelial cells 

(BMDEC) to mobilize and enhance homing to sites of angiogenesis (104). Relaxin acts 

via the RXFP1 receptor on BMDECs to increase NO synthesis, which is critical for 

function (104). This is an important discovery because many secreted factors that 

mobilize BMDEC to integrate into sites of angiogenesis are concurrently described as 
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inflammatory agents (e.g. granulocyte-colony stimulating factor), which differs from the 

actions of relaxin.   

The cardiovascular, angiogenic, and anti-fibrotic properties of relaxin make the 

hormone a promising candidate for intervention. The diverse actions of relaxin have 

provided enthusiasm and promise in several clinical disease states. There are ongoing 

clinical trials for the therapeutic application of relaxin. The first clinical trial to test the 

efficacy of relaxin was in scleroderma patients. In phase III trials relaxin decreased 

fibrosis of the skin, improved renal function, and decreased diastolic blood pressure, but 

the results were not considered clinically significant enough for market approval (109). 

The focuses of two current trials are pre-eclampsia and congestive heart failure. Pre-

eclampsia is a disorder in pregnant woman manifested by systemic vascular constriction 

resulting in the development of hypertension and impaired organ function, particularly of 

the kidney. The pathogenesis of pre-eclampsia is, in part, due to the endogenous 

inhibition of VEGF signaling. The goal of relaxin intervention is to alleviate 

hypertension, improve renal function, and maintain endometrial vascular capacity to 

accommodate the requirements for placental perfusion (109). The RELAX-AHF phase III 

clinical trial for congestive heart failure has shown encouraging results. Congestive heart 

failure is the most common reason for hospitalization of patients older than 65 years. 

These patients have a very poor prognosis attributable to end-organ dysfunction in heart, 

liver, and kidney. The vascular and anti-fibrotic actions of relaxin have potential to 

ameliorate these early clinical symptoms and extend long-term survival by promoting 

cardiac oxygen delivery and abating fibrosis. The RELAX-AHF clinical trial has shown 
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positive outcomes that indicate reduced cardiac, renal, and hepatic damage after the 

initial hospitalization and increased 180-day survival rate (110).  

The advantage of relaxin intervention is the unique property of the hormone to 

reverse disease pathology by invoking multiple systems and not affecting healthy tissue. 

Cardiovascular disease is the major risk factor for mortality in obese, diabetic patients. 

Furthermore, macro- and microvascular dysfunction in addition to collagen deposition 

associate with the development of insulin resistance and type 2 diabetes (62, 87, 111). To 

decrease the risk of cardiovascular disease in the obese population, it is critical to 

consider endothelial health in drug development. Endothelial health is important to organ 

metabolism and function. The endothelial cell layer was originally considered a simple 

physical barrier between the blood and perfused tissue; however, the endothelium is a 

functioning cell type important for tissue integrity. The functional properties of the 

endothelium are primarily regulated by eNOS activity and synthesis of NO. Our goal is to 

investigate the potential for relaxin to reverse the extramyocellular adaptations associated 

with a high fat (HF) diet to treat insulin resistance and cardiovascular dysfunction.  

 

Hypotheses 

The hypothesis investigated in the dissertation is that skeletal muscle vascular 

integrity is critical for skeletal muscle insulin action. More specifically, I propose that 

capillary rarefaction directly impairs insulin-stimulated MGU by creating a resistance to 

the delivery component of MGU, the vascular impairments induced by a HF diet are 

viable intervention targets to reverse muscle insulin resistance by removing the 
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resistance, and HF-fed mice have a decrease in caveolae density in skeletal muscle 

capillaries.  

 

 

Figure 1.5 - Hypotheses - Loss of Vascular Function (A) and Gain of Vascular 

Function (B) – Hypothesis A is designed to test whether a decrease in capillary density is 

sufficient, absent of any other insulin resistance-inducing factors, to cause muscle insulin 

resistance. Hypothesis B is designed to test whether targeting the extramyocellular 

adaptations to a HF diet - vascular dysfunction and capillary rarefaction - with the 

hormone relaxin reverses diet-induced skeletal muscle insulin resistance 

 

The goal of Aim 1 (Chapter III) is to determine whether capillary rarefaction is a 

cause or a consequence of muscle insulin resistance. To address Aim 1, mice with 
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muscle-specific genetic deletion of vascular endothelial growth factor-A were utilized to 

induce muscle capillary rarefaction in a lean mouse model. This model permits the 

investigation into the specific consequence of reducing capillary number to insulin-

stimulated MGU. I hypothesize that a genetic decrease in skeletal muscle capillary 

density by VEGF ablation will induce skeletal muscle insulin resistance in otherwise 

healthy mice.  

The goal of Aim 2 (Chapter IV) is to determine whether pharmacologically 

targeting the vasculature with the hormone relaxin rescues HF diet-induced muscle 

insulin resistance. To address Aim 2, lean C57BL/6J mice were first studied to determine 

the hemodynamic and metabolic effects of relaxin during a hyperinsulinemic-euglycemic 

clamp. To investigate the therapeutic potential of relaxin C57BL/6J mice were fed a HF 

diet for 13 weeks with the final 3 weeks of the diet mice received a continuous infusion 

of relaxin or vehicle via osmotic minipumps. I hypothesize that a chronic intervention of 

relaxin will reverse the extramyocellular adaptations to a HF diet thus ameliorating diet-

induced skeletal muscle insulin resistance.  

The goal of Aim 3 (Chapter V) is to determine whether microstructural changes to 

endothelial caveolae occur after 16 weeks of HF-feeding. Caveolae have been 

hypothesized to play a critical role in transendothelial insulin transport specifically in 

skeletal muscle microvasculature. To address Aim 3 C57BL/6J mice were fed a HF diet 

for 16 weeks or a low fat chow diet. Mice underwent perfused fixation to preserve in vivo 

microstructures of skeletal muscle capillaries for visualization by transmission electron 

microscopy. I hypothesize that a decrease in caveolae number within skeletal muscle 
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capillaries contributes to the etiology of skeletal muscle insulin resistance by increasing 

the delivery barrier for insulin.   
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Chapter II 

 

RESEARCH MATERIALS AND METHODS 

 

Mouse Models 

 The Vanderbilt University Animal Care and Use Committee approved all animal 

protocols. Mice were housed with a 12:12 h light-dark cycle in a temperature and 

humidity controlled environment. Mice with muscle-specific genetic deletion of VEGF 

were studied in Chapter III. Mice with LoxP sites flanking exon 3 of the VEGF gene 

(generously provided by Dr. Alvin Powers Laboratory) on a congenic background (112) 

and mice expressing Cre recombinase under the muscle creatine kinase (MCK) promoter 

(purchased from Jackson Laboratory) were crossed to generate the MCK-cre/VEGF
lox/lox 

(mVEGF
-/-

)
 
 mice and wild-type littermates VEGF

lox/lox 
(mVEGF

+/+
). Mice were 

backcrossed on to a C57BL/6 background for at least 10 generations. The MCK promoter 

is expressed in skeletal and cardiac muscle. mVEGF
-/-

 mice lack all VEGF-A isoforms. 

Female mVEGF
+/+ 

mice were mated with male mVEGF
-/-

 to prevent cardiac 

complications during gestation. Mice were weaned at 3 weeks of age and separated by 

sex. Mice were briefly anesthetized using isofluorane to obtain a sample of tail tissue for 

genotyping and to ear punch for identification. The genotype of each mouse was 

determined by polymerase chain reaction (PCR) with DNA isolated using the DNeasy 

Tissue Kit (Quiagen) with primers displayed in table 2.1.  Mice were fed a chow diet 

(5.5% fat by weight; 5001 Purina Laboratory Rodent Diet) ad libitum for 9 weeks 

beginning at 3 weeks of age and all studies were performed at 12 weeks of age.  
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Primer Sequence 

Cre GTGAAACAGCATTGCTGTCACTT 

MCK forward TAAGTCTGAACCCGGTCTGC 

+ Control Forward CAAATGTTGCTTGTCTGGTG 

+ Control Reverse GTCAGTCGAGTGCACAGTTT 

VEGF LOX Forward CCTGGCCCTCAAGTACACCTT 

VEGF LOX Reverse TCCGTACGACGCATTTCTAG 

  Table 2.1 – PCR primer sequences 5’ to 3’ to genotype mVEGF
+/+ 

and mVEGF
-/-

        

mice 

 

Commercially available C57BL/6J mice male mice were ordered from Jackson 

Laboratory at 6 weeks of age and were either fed ad libitum a chow (5001 Laboratory 

Rodent Diet) or high fat (F3282 Bioserv) diet containing 5.5% or 60% calories as fat to 

metabolically stress the mice in Chapter IV and V. The cohorts of mice in Chapter IV 

were all studied at 19 weeks of age and were individual housed to protect mice from 

injury due to fighting. Mice in Chapter V were studied at 22 weeks of age. In all studies 

mice were weighed and handled weekly to observe any health issues and to acclimate 

mice to prevent stress from handling during the studies. 

 

Surgical Procedures 

Prior to the onset of any surgical procedure mice were anesthetized with 40-85 

mg/kg pentobarbital or with isoflurane. Surgical setup and processes were performed in 

an aseptic environment to prevent infection. Once anesthetized, mice were prepped by 
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removing hair around the surgical site. The shaved area was disinfected with alcohol 

followed by betadine scrub.  

An incision was first made 5 mm cephalic to the sternum and the left 

sternomastoid muscle was exposed. The sternomastoid muscle was reflected to reveal the 

left carotid artery. Once the artery has been located the connective tissue and vagus nerve 

were separated from the vessel. A silk suture was tied at the cephalic end and another 

loosely knotted on the caudal end of the carotid. The artery was clamped with a micro-

serrefine and cut just below the ligated end and the catheter was inserted until the tip 

reached the aortic arch. The ligatures were secured and catheter sampling confirmed. 

An incision was made 5 mm to the right of the midline and 2 mm caudal to the 

incision for the carotid catheter. The jugular vein was isolated and ligated at the cephalic 

end with a loose knot at the caudal end similar to the carotid catheter. The catheter for the 

jugular vein was inserted after a small incision and flushed to assure infusion. For the 

glucose tolerance tests the catheter was inserted directly into the stomach cavity in lieu of 

the jugular vein. 

A third incision was made between the shoulder blades of each mouse and a 14-

gauge needle was tunneled under the skin. The catheters (carotid and jugular or gastric) 

were threaded through the needle to tunnel out of the back of the mouse. The ventral 

incisions were closed with a nylon suture. The arterial catheter was clamped with micro-

serrefine at the incision site between the shoulder blades. The catheter was cut 1 cm 

above the clamp and connected to the MASA™ with a silk suture and repeated for the 

either the venous or gastric catheter. The dorsal incision was closed with nylon sutures. 
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Special attention was given to post-operative care to assure each mouse fully 

recovered within a 5-7 day timeline before performing each study by observing body 

weight, grooming behavior, and other signs of stress daily. This care was important to 

perform quality studies. Mice were immediately placed into clean cages, which sit on a 

heating pad. Animals were observed daily for any abnormal behavior cues and weighed 

daily.  

Surgical procedures are outlined in the Vanderbilt Mouse Metabolic Phenotyping 

website for their annual clamping course (www.mc.vanderbilt.edu/mmpc) (113).  

 

In Vivo Experiments 

Hyperinsulinemic-Euglycemic Clamp (insulin clamp) 

Mice were allowed to recover for five-seven days after surgical implantation of 

carotid artery and jugular vein catheters. Mice that did not weigh within 10% of the 

presurgical weight were excluded from any clamp studies. Mice were fasted for 5 h prior 

to the start of clamps to assure all mice were in the post-absorptive phase. The mice were 

placed in a 1 L plastic tub at the start of the fast (7:00am) and after an hour acclimation 

period mice were attached to a swivel from their catheter lines to allow free movement. 

The method employed by our laboratory differs from those performed by most other 

laboratories (114, 115) in that mice were not handled and were unstressed (15). Red 

blood cells were replaced to prevent a fall in hematocrit that would inevitably occur. 

Samples for basal arterial glucose specific activity were taken at t = -15 and -5 min and 

arterial insulin at t= -5 min. The clamp was initiated at t=0 min with a continuous insulin 

infusion (4mU·kg
-1

·min
-1

) that persisted for 155 min. Arterial glucose concentrations 

http://www.mc.vanderbilt.edu/mmpc
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were determined at 10 min intervals to provide feedback to adjust the rate of exogenous 

glucose (glucose infusion rate; GIR) as needed to clamp mice between 150-160 mg/dL. 

Steady state [3-
3
H]glucose kinetics were determined at 10 min intervals between t= 80-

120 min. The [3-
3
H]glucose infusion began at t= -90 min to allow for a priming dose (2 

µCi/min for 1.2 min, then  0.04 µCi/min) to reach a steady-state level and continued at 

0.12 µCi/min during the clamp period. Plasma insulin concentrations during the clamp 

were determined at t= 100 and 120 min. A 13 µCi injection of 2[
14

C]deoxyglucose 

(2[
14

C]2DG) was administered as an intravenous bolus at t=120 min. 2[
14

C]2DG was 

used to determine the glucose metabolic index (Rg), an indication of tissue specific 

glucose uptake. Blood samples were then collected at t= 2, 15, 25 and 35 min after the 

bolus to measure the disappearance of 2[
14

C]DG from the plasma. After the last sample 

of the insulin clamp, 50 µL yellow DYE-TRAK
®

 15µm microspheres were injected into 

the carotid artery to determine microsphere content in skeletal muscle and the left and 

right kidney. Clamp setups are depicted in Figures 2.1-2.3. 

 

Saline Clamp 

Saline infusion protocols were performed using the same design as the insulin 

clamp. However, saline was infused in lieu of insulin and glucose during the 155 min 

clamp period. This setup permitted the measurement of fasting muscle glucose uptake 

and served as a time control for the insulin clamp. 
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Glucose Tolerance Tests 

One week prior to glucose tolerance tests (GTT), mice had indwelling carotid 

artery and gastric catheters surgically implanted for sampling and glucose administration. 

Mice were studied in the postabsorptive state after a 5 h fast. Baseline arterial glucose 

and insulin measurements were obtained via the arterial catheter to avoid handling of 

mice. Mice were then administered 2g/kg body weight of glucose through the gastric 

catheter. The gastric catheter permitted the mice to absorb the glucose via physiological 

mechanisms and to avoid a stress response from intraperitoneal injection or gavage. 

Arterial glucose was measured at 5, 10, 15, 20, 30 45, 60, 90, and 120 min after glucose 

administration. Arterial insulin levels during the GTT were assessed at 10, 20, 30, 60, and 

120 min. 

 

Body Composition and Cardiac Function 

 Body composition was determined with a mq10 nuclear magnetic resonance 

analyzer (Bruker Optics) in 5 h fasted mice. Echocardiogram (Sonos 5500 system; 

Agilent) was used to assess cardiac function, and blood pressure was measured with a 

blood pressure transducer via a carotid arterial catheter with the assistance of the 

Cardiovascular Pathophysiology and Complications Core of the Vanderbilt Mouse 

Metabolic Phenotyping Center. 
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Ex Vivo Experiments 

Isolated Muscle Glucose Uptake 

Isolated soleus (mainly slow-twitch fibers) and extensor digitorum longus (mainly 

fast-twitch fibers) muscles were obtained from 5 h fasted, anesthetized mice to measure 

glucose uptake. After a 15 min basal incubation period, muscles were transferred to fresh 

media and incubated for 30 min in the absence or presence of insulin (10mU/mL). 

Following stimulation, 2-deoxy-D-glucose uptake was measured for 10 min in fresh 

media in the absence or presence of insulin, by adding cold 2-deoxy-D-glucose (1mM), 

2-[1,2-
3
H]deoxy-D-glucose (0.25Ci/mL), and D-[1-

14
C]mannitol (0.16Ci/mL). Muscles 

were then lysed and radioactivity in the supernatant was measured using liquid 

scintillation counting (116). 

 

Aortic Ring Reactivity 

Mouse aortas were excised after the clamp and placed directly in HEPES buffer 

(140 mM NaCl, 4.7 mM KCl, 1.0 mM MgSO4, 1.0 mM NaH2PO4, 1.5 mM CaCl2, 10 

mM glucose, and 10 mM HEPES, pH 7.4). The aortas were equilibrated with 95% 

oxygen and 5% carbon dioxide at 37°C. The excised aortas were suspended in a muscle 

bath apparatus. Subcutaneous fat and adventitial tissues were removed after which the 

aorta was sectioned to create rings. The rings were progressively stretched to an optimal 

resting tension that produced a maximal response to contractile agents. Force 

measurements were obtained with a Radnoti Glass Technology force transducer 

interfaced with a Powerlab data acquisition and Chart Software (ADInstruments). 
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Contraction was first generated with 110 mM KCl to determine functional viability and 

the rings that did not contract were discarded. Functioning aortic rings were equilibrated 

in bicarbonate buffer for 30 min and then contraction was induced by phenylephrine (10
-6

 

M). Percent endothelial relaxation was measured from precontracted rings that were 

treated with carbachol (5 x 10
-7

 M). Quality of the intact endothelial layer was 

determined by whether carbachol induced vasoconstriction in lieu of dilation. Carbachol 

causes smooth muscle dependent constriction in the absence of functional endothelium. 

Sodium nitroprusside (10
-7

 M) was applied to determine smooth muscle specific 

relaxation. The percent relaxation was calculated by the change in stress compared with 

the maximal tension induced by phenylephrine (117, 118). Stress was determined by 

converting force measurements with the following equation:  

10
5
 N/m

2
 = force (g) x 0.0987/area 

where the area was equal to the wet weight in milligrams divided by the length divided 

by 1.055. 

 

Processing Plasma Samples 

Plasma Radioactivity 

Radioisotopes of glucose were infused during the insulin clamp protocol to 

measure steady-state plasma [3-
3
H]glucose and the disappearance of plasma 2[

14
C]DG  

after the venous injection. Plasma samples were treated with diluted 0.3 N barium 

hydroxide and 0.3 N zinc sulfate for deproteinization. Radioactivity of plasma [3-

3
H]glucose and of 2[

14
C]DG were assessed by liquid (Ultima Gold; Packard) scintillation 
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counting (Packard TRI-CARB 2900TR). Samples for the measurement of plasma [3-

3
H]glucose underwent a drying procedure to remove all 

3
H2O from the plasma as a result 

of glycolysis of the radioactive glucose tracer.  

 

Plasma Enzyme-Linked Immunosorbent Assay of Insulin 

Plasma insulin was collected during all the insulin and saline clamps performed at 

indicated times from each protocol. Ten µL of plasma, standard, and control were 

transferred into a 96-well plate as instructed by the manufacturer (80-INSMS-E01; 

Alpco). The supplied plate has mouse monoclonal antibodies specific for insulin 

immobilized to each well. A conjugate was added that includes horseradish peroxidase 

enzyme labeled monoclonal antibody resulting in the insulin from the plasma samples to 

be sandwiched between the immobilized and conjugate antibodies. Unbound conjugate 

was washed and TMB substrate added for incubation. The final step was the addition of a 

stop solution and the optical density was measured at 450 nm with a reference at 620 nm. 

The intensity of the optical density read at 450 nm was proportional to the amount of 

insulin from the plasma sample.  

 

Plasma Non-Esterified Fatty Acid 

Non-esterified free fatty acids (NEFA) were assessed spectrometrically by an 

enzymatic calorimetric assay (NEFA C Kit; Wako Chemicals). Basal FFAs were an 

average of samples taken at t= -15 and -5 min and the FFA levels during the insulin 

clamp were the average at t= 80 and 120 min. Whole blood was collected in EDTA tubes 
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and the plasma transferred to dried THL. The NEFA assay is based on the following 

chemical reactions: 

 

NEFA + ATP + CoA-SH                   Acyl-CoA + AMP + PPi 

Acyl-CoA + O2                  2,3-trans-Enoyl-CoA + H2O2   

2 H2O2 + 4-Aminophenazone + MEHA                   Quinoneimine-color + 4H2O   

 

The intensity of the red pigment was proportional to the NEFA concentration of the 

plasma sample. The ascorbic acid was removed by ascorbate oxidase and the absorbance 

of the 96-well plate read at 550 nm.  

  

Processing Tissue Samples 

Tissue Radioactivity 

Tissue samples were weighed to approximately 30 mg and the appropriate amount 

and style of Bullet Blender™ beads were added for tissue homogenization. The combined 

tissue and beads were homogenized using the Bullet Blender™ in 750 µL 0.5% 

perchloric acid according to the manufacturer’s instructions. Samples were then 

centrifuged at 13,000 rpm for 10 min. To measure the radioactivity of 2[
14

C]DG-6-

phosphate and 2[
14

C]DG, 125 µL of the supernatants were transferred directly into a 

scintillation vial for counting. Another 125 µL aliquot from each sample was 

deproteinized with 0.3 N barium hydroxide and 0.3 N zinc sulfate. The supernatant, 250 

µL, from this mixture was transferred to scintillation vials for the counting of 2[
14

C]DG. 

ACS 

ACOD 

POD 
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To determine the quantity of tissue 2[
14

C]DG-6-phosphate, the amount of 2[
14

C]DG was 

subtracted from the total quantity of the tracer within the tissue.  

 

Hepatic Glycogen Content 

Liver glycogen content was determined after the insulin clamp and a time control 

experiment during which saline was infused as previously reported by Chan and Exton 

(119). The latter experiment was useful in obtaining a measure of fasting liver glycogen 

for comparison to insulin clamp glycogen concentrations. Livers were homogenized in 

10% (w/v) in 0.03 N HCl. The liver suspensions were boiled for 10 min and 200 µL of 

each sample was transferred to the corresponding chromatography paper and briefly 

dried. As a standard and control, 200 µL oyster glycogen (5 mg/mL) and 0.03 N HCl 

were transferred to paper strips. The paper strips were washed 3x for 40 min per wash in 

a 70% ethanol solution using a stir plate. After the last wash, the ethanol was poured off 

and the strips were briefly rinsed with acetone. The paper strips were dried overnight in a 

ventilation hood. The dried strips were transferred into a 5 mL solution of 

aminoglucosidase containing 20 mg aminoglucosidase, 100 mL 0.2 M NaOAc buffer, 

and 400 mL distilled water. The tubes were placed in a shaking water bath at 37°C for 3 

h. Glucose concentration was then measured enzymatically in a 96 well plate at 340 nm. 

The following reaction was used: 

 

Glucose + ATP                         Glucose-6-phosphate + ADP 

 

Glucose-6-phosphate + ADP                          6-phospho-D-gluconolactone + NADPH 

Hexokinase 

G6PDH 
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Standard glucose concentrations were used to measure known equivalent NADPH, which 

was used to generate a standard curve for the measurement of the absorbance for the 

glucose concentrations of each sample.   

 

Glycogen Synthase Activity 

Liver tissues were homogenized in buffer containing 50 mM Tris buffer, 100 mM 

sodium fluoride, 10 mM EDTA, 0.5% glycogen, and 5 mM dithiothreitol at pH 6.8. 

Twenty-five µL of homogenates were added to 50 µL of a solution that contains 50 mM 

Tris buffer pH 7.5, 5 mM EDTA, 1% glycogen; 1.5 mM UDPG and UDPG labeled with 

14
C in glucose. The medium for the synthase a activity contains 15 mM in Na2SO4 and 

the medium for total synthase (a + b) had the sulfate replaced with 3 mM glucose-6-

phosphate. The samples were the incubated at 37°C for 0, 15, and 30 min and glycogen 

was analyzed as described in the previous section. Synthase activity in the presence of 

glucose-6-phosphate reflects the maximal enzyme activity, while activity in the absence 

of glucose-6-phosphate reflects the active form of glycogen synthase as previously 

described (120). 

 

Microsphere Tissue Content 

Gastrocnemius and both kidneys were collected in 15 mL polypropylene tubes 

and digested overnight in 6 mL of 1 M KOH in a temperature controlled oven set to 

60°C. After the overnight incubation, the tubes were vortexed to completely homogenize 

each sample and incubated again at 60°C for 1 h. Each sample was filled to 14 mL total 

volume with 50°C distilled water. Tubes were centrifuged for 15 min at 1,500 g and the 
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supernatant aspirated. The pellets were resuspended in 12 mL 10% Triton X-100 and 

sonicated prior to repeating the centrifugation step for 5 min. The pellets were 

resuspended in 12 mL acidified ethanol and centrifuged. The pellets were resuspended in 

12 mL ethanol. After the centrifugation step the samples were left to dry overnight in a 

ventilation hood. The fluorescent dye in the microspheres was eluted with 150 µL of 

N,N-dimethylformide and absorbance measured from 100 µL of each sample. 

Absorbance was measured at 450 nm (yellow) and 670 nm (blue) in 96-well 

polypropylene plates. Blue microspheres were added after the overnight digestion to 

monitor assay recovery to permit correction of microspheres lost during processing.  The 

number of microspheres per muscle was normalized to weight of each tissue processed 

and the number of microspheres was based on a known standard curve from the 

manufacturer. 

 

Immunoprecipitation and Immunoblotting  

Cardiac, liver, and gastrocnemius samples were homogenized in buffer containing 

50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 1% Triton X-100, 1 

mM DTT, 1 mM PMSF, 5 µg/mL protease inhibitor, 50 mM NaF, and 5 mM sodium 

pyrophosphate. Samples were then centrifuged at 13,000 rpm for 20 min at 4°C and 

supernatants collected. All samples were diluted 1:20 to determine protein concentrations 

using the Bradford protein assay. Protein was assessed using 96-well plates at a 

wavelength of 595 nm and albumin protein standards were used to generate a standard 

curve to calculate protein concentrations. 30 µg of the supernatant was loaded onto 4-

12% SDS-PAGE gel and then transferred to a PVDF membrane. All membranes were 
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blocked in commercially available Odyssey Blocking Buffer or 5% milk for 1 h at room 

temperature. Membranes were incubated overnight at 4°C with primary antibodies for 

phosphorylated Akt (Ser 473), total Akt (Cell Signal), glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH; Abcam), phosphorylated SMAD2 (Ser 465/467; Cell Signal) 

and total SMAD2 (cell signal). Membranes were washed then incubated with secondary 

antibodies for α-mouse or α-rabbit IRDye™ 700/800 to be visualized using the Odyssey 

system (Li-Cor).  Enhanced chemiluminescence was performed with horseradish 

peroxidase conjugated α-rabbit secondary antibody for phospho-SMAD2 visualization. 

GAPDH was used as the loading control for each blot.  

Immunoprecipitation was performed using 500 µg of the gastrocnemius protein 

supernatant and incubated with 3 µg of IRS-1 antibody (Santa Cruz Biotechnology) 

overnight at 4° C. Then, 20 µl of protein A/G PLUS-Agarose (Santa Cruz Biotechnology) 

was added and incubated overnight at 4° C. The mixture was centrifuged at 1,000 g and 

the supernatant removed. The beads were washed 4 times with cold PBS and 

centrifugation step repeated. Beads were resuspended in 30 µl NuPAGE LDS loading 

buffer and heated at 80° C for 5 min. Immunoblots were incubated with primary 

antibodies for phospho-IRS-1 (Tyr612; Invitrogen) and the p85 subunit of 

phosphoinositide (PI) 3-kinase (Millipore). For all blots, secondary antibodies were 

incubated at room temperature for 1 h and visualization and quantifications were 

performed using the Odyssey imaging system and ImageJ software. 
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Tissue and Plasma VEGF Protein 

The gastrocnemius and cardiac muscles were homogenized in a lysis buffer 

containing 50 mM Tris-HCl (pH 7.4), 150 mM Na Cl, 0.5% Triton X-100, and protease 

inhibitors (Halt™ Protease Inhibitor Cocktail; Fisher Scientific) as previously described 

(76). Tissue homogenates were centrifuged at 4°C, 7200 g, for 10 min and protein 

content measured. The plasma and tissue VEGF concentrations were assayed by the 

manufacturer’s specifications (VEGF ELISA Kit, Mouse No. QIA52; Calbiochem), 

which detects VEGF120 and VEGF164 isoforms. 

 

Immunohistochemistry Analysis of Capillary Density and Extracellular Matrix 

Composition 

CD31, collagen III, and collagen IV proteins were assessed by 

immunohistochemistry in paraffin-embedded cardiac, skeletal, and liver sections.  Five 

µm sections were incubated for 60 min with anti-CD31 (BD Biosciences), collagen III 

(CosmoBio), and collagen IV (Abcam) primary antibodies. Slides were counterstainted 

with Mayer hematoxylin. The EnVision+HRP/DAB System (DakoCytomation) was used 

to produce localized, visible staining with assistance from the Vanderbilt University 

Immunohistochemistry Core. Images were obtained using a Q-Imaging Micropublisher 

camera mounted on an Olympus microscope. Muscle capillary density was determined by 

counting CD31 positive structures. Collagen protein content was quantified by measuring 

integrated intensity of staining. Quantification was carried out by ImageJ software. 
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Transmission Electron Microscopy of Skeletal Muscle Capillaries 

Mice were anesthetized and chest cavity opened for insertion of a catheter into the 

left ventricle. With gentle pressure, cacodylate buffer (0.1 M) was perfused through the 

mouse vascular system to rinse erythrocytes from the circulation (~50 mL). Once flow 

was confirmed by observing rigidity in organs such as the kidney, the liver was nicked to 

relieve pressure to prevent rupture of blood vessels. Blood and buffer leaked from the 

liver until the solution was a pale pink, which indicates the mouse had been sufficiently 

rinsed with the buffer. At this time point the buffer was replaced with 2.5% 

glutaraldehyde in cacodylate buffer (~75 mL) to allow for muscle fixation. Contractino of 

the arms and legs indicated that the muscle had been appropriately fixed. The left red 

gastrocnemius was excised from the mouse and cut into pieces (less than 1 mm on two 

sides) and placed in a vial of fresh fixative. The tissues were allowed to rest for 1 h and 

then placed into a 4°C refrigerator until further processing.  

Once samples were fixed the Vanderbilt University Cell Imaging Shared 

Resource Core further processed the samples for transmission electron microscopy. The 

tissues were dehydrated through a series of diluted ethanol up to 100% and embedded in 

Spur resin. Thick sections (0.5 µm) were cut and stained with toluidine blue for light 

microscopic examination to select regions of interest. An area of 500 µm x 500 µm was 

selected from each sample with equivalent cross sections to permit equivalent imaging 

across all samples. Thin sections were cut (80 nm) from the regions of interest and 

examined using a Philips/FEI T-12 transmission electron microscope operated at 80 kilo-

electron volts. Capillary structures were identified with a random and unbiased technique 

that allows the location of a structure at low magnification to be marked by observing the 
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section grid without detecting ultrastructures. Images were acquired at 67,000 

magnification for quantification of caveolae area per endothelial cell area.  

ImageJ software was used to quantify the caveolae area per single endothelial cell 

capillary within skeletal muscle. ImageJ generates a random grid box that overlays the 

micrograph and by counting the number of points within the caveolae / number of points 

within the endothelial cell permits calculation of area of caveolae per each endothelial 

cell. Two ImageJ plugins were downloaded for this analysis: Grid and Multipurpose Grid 

(121-123).  

  

Reverse Transcription (RT) Polymerase Chain Reaction (PCR) 

 Total RNA was isolated from liver tissue using the RNeasy Mini Kit (Qiagen). 

Total RNA (1 mg) was reverse transcribed using the iScript cDNA Synthesis Kit (Bio-

Rad). RNA concentration and quality were measured at absorbance wavelength 260 and 

280 nm. Real-time PCR was then performed using TaqMan® Universal PCR Master Mix 

(Applied Biosystems) on the CFX Real Time PCR Instrument (Bio-Rad). Expression of 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were 

measured. Data were normalized with either control gene, ribosomal protein 18S. 

Primer Assay ID 

PEPCK Mm01247058_m1 

G6Pase Mm00839363_m1 

18S Mm03928990_g1 

  Table 2.2 – RT- PCR assay ID numbers purchased from Life Technologies  
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Gelatin Zymography 

The activation of MMP-2 and -9 were determined using the gelatin zymograph 

technique. Gastrocnemius muscles were homogenized in buffer containing 0.5% Triton 

X-100, 100 mM EDTA, and 10 µL/mL protease inhibitor (pH 7.5). Homogenates were 

centrifuged at 13,000 rpm for 20 min. Supernatants were incubated at 4°C for 2 h with 40 

µL of gelatin-Sepharose (Pharmacia) to concentrate the protein and washed 3x with 

equilibration buffer containing 200 mM NaCl. The gelatin-Sepharose beads were 

resuspended in 20 µL of 4x nonreducing SDS-sample buffer and loaded on 10% 

zymogram gels (Invitrogen). The gel was incubated at 37°C in a buffer containing 50 

mM Tris-HCl, 0.2 M NaCl, 20 mM CaCl2, pH 7.4 for 12 h. Gels were stained with 

Coomassie brilliant blue R-250 0.5% (w/v) in 45% methanol (v/v), 10% ascetic acid 

(v/v), and destained in the solution without Coomassie. Gels were developed according to 

manufacturer’s instructions and quantified using ImageJ software.  

 

Calculations 

Glucose Flux Analyses  

Glucose production (Ra) and disappearance (Rd) were calculated using Steele 

non-steady state equations (124). The endogenous Ra was determined by subtracting the 

GIR rate during the clamp from the total Ra. When the tracer infusion was in steady-

state, which should correspond to minutes 80-120 of the clamp, the equation for Ra 

simplifies: 
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where I is the tracer infusion rate and SA is the specific activity of the tracee (dpm/mg). 

To measure the index for tissue glucose uptake (Rg), the following equation was applied 

(86): 

    
 [   ]         

    [   ]        
 [                ] 

where  [   ]          is the  [   ]    in the muscle (dpm/g),     [   ]         is the 

area under the curve for the disappearance of plasma  [   ]   (dpm·min·mL
-1

), and 

[                ] is the average blood glucose (mmol/L) from t= 122-155 min of the 

clamp.  

 

Western Blot and RT-PCR Quantification  

Western blot protein intensities were determined by ImageJ or Odyssey software 

analysis image intensity and all proteins were normalized to GAPDH. Real-time RT-PCR 

gene expression levels were analyzed using the 2
-ΔΔCt

 method (125) and presented as 

relative expression. GAPDH or 18S were used to standardize for gene loading of each 

sample.  

 

Statistical Analysis  

Student t-test or two-way ANOVA, followed by Tukey’s post hoc tests when 

appropriate, were used to determine statistical significance. Data are expressed as mean ± 

SE. The significance level was P ≤ 0.05. 
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Figure 2.1 – Experimental setup for the hyperinsulinemic-

euglycemic clamp 
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Figure 2.2 – Experimental setup for the saline clamp 
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Figure 2.3 – Experimental setup for the hyperinsulinemic-

euglycemic clamp with acute relaxin infusion 
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Chapter III 

 

LOSS OF VASCULAR FUNCTION: CAPILLARY RAREFACTION IS 

SIGNIFICANT TO THE PATHOGENESIS OF SKELETAL MUSCLE INSULIN 

RESISTANCE 

 

Aims  

The goal of Chapter III was to determine whether capillary rarefaction is a cause 

or a consequence of muscle insulin resistance.  The microvascular adaptations that are 

present in insulin resistance have been well established. However, previous studies rely 

on correlative data that suggests a causative relationship between capillary rarefaction 

and skeletal muscle insulin resistance. The current Aim investigated whether a decrease 

in the number of capillaries that perfuse skeletal muscle directly impairs insulin-

stimulated MGU in otherwise healthy mice. To address this Aim, mice with muscle-

specific genetic deletion of vascular endothelial growth factor-A were utilized to induce 

muscle capillary rarefaction in low fat chow-fed mice. This genetic mouse model permits 

the investigation into the specific consequence of reducing capillary number to insulin-

stimulated MGU. The hypothesis tested within Chapter III was that capillary rarefaction 

specifically impairs insulin-stimulated MGU by increasing the resistance to the delivery 

component of MGU.  
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Introduction 

 

Insulin resistance is closely associated with cardiovascular disease and together 

are central to the metabolic syndrome (126). Skeletal muscle contributes ~80% of 

insulin-mediated glucose disposal, thus impairments in insulin-stimulated MGU are 

critical to the pathogenesis of insulin resistance.  Pharmacologically limiting glucose and 

insulin delivery to the muscle impairs insulin-stimulated MGU (59). Moreover, there is a 

correlation between reduced blood flow to the muscle and insulin resistance (17, 18, 31, 

47). Recent studies have linked diet-induced extramyocellular adaptations to insulin 

resistance in rodent models (53, 87, 127) and humans (111). The number of capillaries 

perfusing the muscle is positively related to peripheral insulin action - independent of 

age, body composition, energy expenditure, and lipid status (128). The important 

question that remains to be answered is whether the reduction in capillaries is a cause or 

consequence of muscle insulin resistance. 

Insulin recruits unperfused capillaries which enhances nutrient blood flow to 

metabolically active muscle. The augmented microvascular blood volume precedes 

insulin-stimulated MGU (45). Studies estimate that 40% of insulin-stimulated MGU 

results from increased muscle perfusion and this hemodynamic response is absent in 

patients with type 2 diabetes (36, 37, 47, 48, 50, 57, 59). Muscle capillarity is an 

important predictor of insulin-mediated glucose disposal and, accordingly, insulin 

resistant humans and rodents exhibit capillary rarefaction (51, 53-55, 80). 

Pharmacological agents that target the vasculature to increase tissue perfusion also 

improve skeletal muscle insulin resistance and augment muscle microvascular density 



50 

 

(53, 86, 87). This affirms the importance of restoring skeletal muscle perfusion in 

ameliorating insulin resistance (53, 86, 87, 129). 

The vascular endothelial growth factor (VEGF) family of proteins regulate 

vasculogenesis, angiogenesis, and lymphanogenesis (130). In particular, VEGF-A 

stimulates the formation of new vascular networks by recruiting and differentiating 

endothelial progenitor cells in addition to inducing endothelial cell proliferation and 

migration (130). Insulin resistant states are characterized by impaired VEGF-A action in 

the vascular beds of cardiac and skeletal muscle triggering capillary regression (51, 79, 

82, 131). Cardiac and skeletal myocellular VEGF-A production regulates capillarity by 

paracrine signaling to the endothelium (75, 76). Capillary density correlates with the 

severity of insulin resistance in obesity; however, the specific effect of capillary 

rarefaction to the pathogenesis of skeletal and cardiac muscle insulin resistance has not 

been elucidated (53, 54, 127, 128).  

The experiments described herein test the hypothesis that skeletal and cardiac 

muscle capillary rarefaction, in lean, otherwise healthy mice impairs muscle insulin 

action. Genetic deletion of skeletal and cardiac muscle VEGF-A (referred to as VEGF in 

subsequent sections) was used to selectively reduce muscle capillarity in lean mice to 

determine the specific consequence of capillary rarefaction on insulin-stimulated MGU. 

 

Experimental Design 

Mice with genetic deletion of skeletal and cardiac muscle VEGF-A (mVEGF
-/-

) 

and wild-type (mVEGF
+/+

) were studied as a genetic model of capillary rarefaction. This 
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model permits the investigation of the direct effects of microvascular density, 

independent of another known insulin resistant insult (e.g. diet), in the pathogenesis of 

muscle insulin resistance. Mice were fed a low fat chow diet for 9 weeks and glucose 

regulatory effects were studied at 12 weeks of age. To determine the effects of capillary 

rarefaction on glucose kinetics mice either underwent an insulin clamp (Figure 3.1), 

saline clamp (Figure 3.2), or glucose tolerance test (Figure 3.3). Cardiac function was 

assessed by echocardiography. See Chapter II for detailed methods.  

 

Results 

Adaptations to genetic ablation of skeletal and cardiac muscle VEGF  

There were no differences in total body, fat, or lean masses at 12 weeks of age 

(Table 3.1). VEGF levels in cardiac and skeletal muscle of mVEGF
-/-

 mice were 

undetectable, compared to ~30 pg/mg protein in cardiac and skeletal muscle of 

mVEGF
+/+

 littermates (Figure 3.4A; p≤0.001). The reduction in VEGF protein 

corresponded to 60% and 50% decreases in capillary density in skeletal and cardiac 

muscle respectively (Table 3.1; p≤0.05). Plasma VEGF levels were similar in both 

groups (Figure 3.4B). Cardiac output was equal between genotypes (Table 3.1) as heart 

rate and stroke volume, calculated from the echocardiography, did not differ (data not 

shown). Furthermore, mean arterial pressure was similar between genotypes (Table 3.1). 

Left ventricular (LV) volume and LV mass were significantly increased in the mVEGF
-/-

 

mice but, ejection fraction and fractional shortening were 2 and 2.5-fold lower (Table 3.1; 

p≤0.05).   
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mVEGF
-/-

 mice have impaired insulin-stimulated glucose disposal and augmented 

fasting hepatic glucose turnover  

Basal (5 h fasting) and insulin clamp arterial glucose and insulin did not differ 

between genotypes (Table 3.2). The basal circulating FFA concentrations and the 

suppression of FFA by insulin were similar between genotypes (Table 3.2). The steady-

state GIRs were equal (Figure 3.5B). Fasting endogenous glucose production (EndoRa) 

and glucose disappearance (Rd) were 1.6-fold greater in mVEGF
-/-

 mice (Figure 3.5C and 

D; p≤0.05). The relative gene expression for phosphoenolpyruvate carboxykinase 

(PEPCK; Figure 3.6D) was not different between genotypes, however, glucose-6-

phosphatase (G6Pase; Figure 3.6D; p≤0.05) was higher in mVEGF
-/-

 mice and may have 

contributed to the augmented fasting EndoRa. The suppression of EndoRa and the 

absolute whole-body Rd during insulin stimulation were similar between groups (Figure 

3.5C and D). Notably, the increase in insulin-stimulated glucose disposal was blunted by 

56±16% in the mVEGF
-/-

 mice suggesting an impairment in peripheral insulin action 

(Figure 3.5E; p≤0.05). The results from the GTTs (Figure 3.6A) indicated that mVEGF
-/-

 

mice were less glucose tolerant than their wild-type littermates. The area under the curve 

for the first 30 min (Figure 3.6C; p≤0.05) of the GTT was greater in the mVEGF
-/-

 mice 

and the insulin response did not differ except for the 60 min time point (Figure 3.6B). 

Consistent with the impairment in insulin-stimulated whole-body Rd, insulin-

stimulated Rg in skeletal and cardiac muscle in mVEGF
-/-

 mice was also abated compared 

to mVEGF
+/+ 

littermates (Figure 3.7A and B; p≤0.05). Insulin-stimulated Rg is the 

difference between the Rg during the insulin clamp and an average Rg from the saline-

infused cohort of mice. The data obtained from these saline-infused time controls permit 
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the quantification of the specific effect of insulin on Rg. Furthermore, in vivo insulin 

signaling in skeletal muscle was attenuated during the insulin clamp evident by a 

decrease in the association of the p85 subunit of PI 3-kinase with phospho-IRS-1 (Figure 

3.8B; p≤0.05). Interestingly, downstream Akt activation, which is central to multiple 

signaling pathways in muscle, was unaffected during the insulin clamp (Figure 3.8D).  

 

Muscle Insulin action is decreased in mVEGF
-/-

 mice in vivo, but not in vitro 

Glucose uptake was analyzed on isolated muscle, thus removing the 

extramyocellular barriers to MGU. Isolated MGU was determined in the soleus (slow-

twitch) and extensor digitorum longus (EDL) (fast-twitch) muscles. The basal and 

insulin-stimulated glucose uptake in isolated skeletal muscles were equal between 

genotypes (Figure 3.9) suggesting no direct impairment of insulin action at the myocyte. 

The data in isolated muscle contrasts with the muscle glucose uptake and insulin 

signaling data from the insulin clamp, which were diminished as described above. These 

data indicate insulin action was impaired by muscle VEGF deletion in the whole 

organism where extramyocellular factors are present, but not in isolated muscle where 

they are not. This strongly suggests that muscle VEGF deletion results in resistance to 

insulin because of an impaired capacity to deliver insulin to the sarcolemma. 

 

Liver glycogen content was greater in mVEGF
-/-

 mice after the insulin clamp 

Whole-body Rd was elevated in the basal state of mVEGF
-/-

 mice and equal during 

the insulin clamp. Liver glycogen content was assessed after the insulin clamp to test the 

possibility that liver glucose uptake was compensating for the impaired insulin-stimulated 
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MGU. Consistent with this possibility mVEGF
-/-

 mice had a ~two-fold increase in liver 

glycogen concentrations compared to mVEGF
+/+ 

littermates (Table 3.2; p≤0.05). During 

the time control experiment, where saline was infused in lieu of insulin, fasting (7.5 h) 

liver glycogen levels (Table 3.2) were minimal and there was no significant difference 

between genotypes. The greater hepatic glycogen concentration in the mVEGF
-/-

 mice 

was independent of changes in phosphorylation of Akt in the liver (Figure 3.8F) during 

the insulin clamp. Hepatic glycogen synthase activity was assessed after the insulin 

clamp. mVEGF
-/-

 mice tended to have greater glycogen synthase activity (Table 3.2; p = 

0.08) which likely contributes to the greater liver glycogen content after the insulin 

clamp.  Thus, indirect adaptations at the liver may counterbalance the diminished insulin-

stimulated MGU and explain the similar total glucose utilization between the two 

genotypes during insulin stimulation (Figure 3.5B). 

 

Discussion 

These studies demonstrate that capillary rarefaction impairs muscle insulin action 

in vivo. Our data support the paradigm that capillary regression contributes to the 

pathogenesis of skeletal muscle insulin resistance. Diabetic states are characterized by 

muscle capillary regression which results from impaired VEGF action (75, 80). Here we 

show that local VEGF deletion is sufficient to cause muscle insulin resistance due to 

diminished muscle capillary density. Although the decrease in muscle capillaries is 

substantive it is also possible that an alteration in the vessel wall that affects permeability 

to insulin occurs. Previous studies have shown muscle capillarity strongly correlates with 

insulin-sensitivity (54, 55). Furthermore, serveral therapeutic treatments that reverse 
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muscle insulin resistance in mice augment capillary density (53, 87). Our data illustrates 

that attenuating capillarity specifically in muscle blunts insulin-stimulated Rd due to 

diminished muscle Rg, without directly affecting myocellular insulin action. Additionally, 

mVEGF
-/- 

mice were less glucose tolerant than their wild-type littermates despite similar 

insulin responses to a glucose load. These data emphasize the importance of increased 

muscle blood volume and capillary surface area for the delivery of insulin and glucose to 

skeletal muscle during hyperinsulinemia (37, 45, 59).  

The reduced insulin-stimulated MGU in mVEGF
-/-

 mice was not attributable to 

impaired insulin action directly at the myocyte; however, in vivo insulin signaling during 

hyperinsulinemia was blunted in mVEGF
-/- 

mice suggesting a defect in insulin delivery. 

There was no difference in ex vivo insulin-mediated glucose uptake in isolated muscles. 

Measuring glucose uptake in isolated muscle removes the vascular delivery component of 

MGU eliminating the difference between genotypes evident during the insulin clamp. 

Skeletal muscle does not express VEGF receptors indicating the decrease in muscle 

VEGF does not have direct effects at the myocyte (132). The association of the p85 

subunit of PI 3-kinase with phospho-IRS-1 during the insulin clamp was attenuated in 

mVEGF
-/- 

mice, though skeletal muscle Akt activation was preserved. Kim et al. 

demonstrated that insulin stimulated phosphorylation of Akt in diabetic muscle was 

normal and the primary deficiency in insulin signaling was attributed to a decrease in PI 

3-kinase association with IRS-1 (133). Our data are consistent with studies that showed 

the critical role of glucose and insulin delivery to insulin-stimulated MGU (17, 18, 27, 

36, 86). Moreover, in genetic- and diet-induced models of muscle insulin resistance the 

physiological actions of insulin to increase muscle microvascular recruitment and nutrient 
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blood flow are impaired resulting in an abatement in insulin and glucose delivery to the 

myocyte (18, 35, 47, 48, 134). The present data demonstrate that the attenuation in 

muscle capillary density associated with insulin resistance, in the absence of other 

primary defects, is capable of seriously diminishing insulin-stimulated MGU due to 

decreases in insulin and, likely, glucose delivery to the myocyte. It is also possible that 

other nutritional or endocrine factors that are deficient with poor muscle perfusion are 

necessary for the full response to insulin in vivo. These studies clearly demonstrate that a 

loss in muscle capillaries causes a marked impairment in muscle insulin action, thus, 

supporting the paradigm that capillary rarefaction in insulin resistant human skeletal 

muscle is not simply a consequence of the disease but central to the pathogenesis of 

muscle insulin resistance. 

At rest ~30% of capillaries are required to maintain the demand for skeletal 

muscle perfusion (135, 136). As a result of the low number of capillaries necessary to 

maintain nutrient blood flow, there was no defect in fasting MGU in mVEGF
-/- 

mice (data 

not shown). Physiological hyperinsulinemia recruits unperfused capillaries doubling the 

microvascular blood volume in the muscle (35, 137). The augmented insulin and glucose 

delivery to the muscle interstitium during hyperinsulinemia is dependent on the increased 

surface area for substrate exchange induced by insulin-mediated capillary recruitment 

(27, 35, 137). The ~60% attenuation in skeletal muscle capillary density in mVEGF
-/- 

mice resulted in an impairment in glucose uptake during steady-state hyperinsulinemia. 

This effect is similar to the decrease in capillary recruitment that prevents an increase in 

muscle blood volume and impairs muscle insulin action in obese, type 2 diabetic 

individuals (35).  
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In our model of muscle specific VEGF deletion, cre-recombinase is under the 

MCK promoter which is not expressed until fetal day 16 and then is upregulated post-

birth (138). This time course of VEGF ablation limits developmental abnormalities. 

VEGF expression is critical for embryonic development and the loss of a single VEGF 

allele in the whole organism causes embryonic lethality with developmental 

abnormalities evident by day 9.5 of gestation (71, 72). Furthermore, endothelial-specific 

deletion of VEGF results in endothelial apoptosis and sudden death in 55% of mutant 

mice by 25 weeks of age which indicates the importance of autocrine VEGF signaling in 

the maintenance of endothelial integrity in the adult animal (78). Olfert et al. showed in 

muscle-specific VEGF deficient mice that the attenuation in skeletal muscle capillary 

density occurs as early as at 1 month of age (76). The myocellular paracrine signaling of 

VEGF is essential for the spatial branching of the capillary network and is necessary for 

muscle capillary architectural organization (75, 77, 139). The capillaries present in 

mVEGF
-/-

 mice are likely a combination of refractory capillaries, VEGF independent 

capillaries, and vessels present prior to MCK expression that are maintained by autocrine 

endothelial VEGF signaling. 

Diabetic states are characterized by cardiac muscle capillary regression and 

impaired VEGF action (82, 131). Severe hyperglycemia downregulates VEGF 

expression, which is seminal in the pathology of diabetic cardiomyopathy (81). 

Endothelial cells are particularly sensitive to changes in plasma glucose because they are 

very permeable to glucose. VEGF ablation in our model resulted in a 50% decrease in 

cardiac capillary density. Notably, compensatory mechanisms kept cardiac output 

normal. The conserved cardiac output is a mathematical consequence of the decreased 
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ejection fraction coupled with the increase in left ventricular diastolic volume. The 

potential relationship of this to the underlying vascular pathology must be speculative at 

this point. The thinner but larger ventricular cavity might entail less transmural resistance 

to flow, allowing better capillary perfusion pressure through an attenuated vascular 

network. Alternatively, the larger endocardial surface area might allow some direct 

supply of oxygen and nutrients to the immediately adjacent myocardium, a mechanism 

important in the right ventricle, but potentially significant for the left ventricle in 

mVEGF
-/-

 mice. While the dilation in our model is common to many cardiomyopathic 

conditions, the preservation of cardiac output may be a consequence of this specific 

etiology. 

Basal glucose flux was elevated in mVEGF
-/-

 mice compared to mVEGF
+/+ 

littermates. Glucose homeostasis was maintained, despite the elevated glucose fluxes. 

mVEGF
-/- 

mice had greater liver glycogen deposition after the insulin clamp; however, 

there was no significant difference in fasting hepatic glycogen between the two 

genotypes. The greater liver glycogen in mVEGF
-/- 

mice may offset the reduction in 

insulin-stimulated muscle Rg, explaining the equal GIRs and absolute whole-body Rd 

during the insulin clamp. The augmented liver glycogen after the insulin clamp was 

independent of the phosphorylation status of Akt in the liver. However, glycogen 

synthase activity tended to be augmented in mVEGF
-/-

 mice. The elevated activity of 

glycogen synthase likely contributes to the higher hepatic glycogen concentrations in 

mVEGF
-/-

 mice after the insulin clamp. The presence of G6Pase in the liver obviates the 

use of isotopic 2-deoxyglucose to measure Rg in the liver, thus, no precise measurement 

of hepatic glucose uptake can be determined with the insulin clamp protocol performed in 
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the current studies.  Moreover, the increased basal glucose turnover suggests accelerated 

hepatic cycling of glucose independent of hepatic insulin action (140). However, this is 

unlikely with utilizing [3-
3
H]glucose. The increased fasting EndoRa may be due to the 

greater G6Pase expression in the liver of mVEGF
-/-

 mice.  The mechanism behind the 

hepatic adaptation is unclear. However, it is notable that untreated insulin resistant 

humans also have accelerated glucose production. 

The compensatory mechanisms in the mVEGF
-/- 

mice cannot be attributed to 

changes in circulating VEGF levels. Thus, the deletion of all VEGF-A variants in muscle 

is not likely to have direct physiological effects on other tissues. The compensation 

present in the liver is expected to be a consequence of the impaired insulin-stimulated 

MGU or perhaps inflammation secondary to heart or skeletal muscle hypoxia resulting 

from poor perfusion.   

These data show for the first time that a reduction in capillary density is sufficient 

to induce muscle insulin resistance in lean mice.  The present investigation is consistent 

with human data that exhibit a strong relationship between muscle capillary density and 

insulin-mediated peripheral glucose disposal (51, 52, 55). The results further elucidate the 

significance of the extramyocellular adaptations present in insulin resistant states, thus, 

highlighting the importance for novel therapeutic approaches to target the vascular bed of 

insulin sensitive tissues in the treatment of insulin resistance and type 2 diabetes.  
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Figure 3.1 – Protocol for the hyperinsulinemic-euglycemic clamps 

performed in Chapter III. Experiments were performed 7 days after surgical 

implantation of carotid artery and jugular vein catheters. Mice were fasted 

for 5 h prior to the onset of the clamp. Primed-continuous infusion of [3-
3
H]glucose began at t= -90 min. At t= 0 min insulin was elevated to 

postprandial levels. Basal blood draws occurred at t= -15 and -5 min and 

blood glucose was measured at 10 min intervals starting at t= 0 min. 

Variable glucose was infused to maintain euglycemia at ~150 mg/dL and 

red blood cell replacement maintained hematocrit during the study period. 

2[
14

C]glucose was injected intravenously at t= 120 min to measure tissue 

specific glucose uptake.  
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Figure 3.2 – Protocol for the saline clamps performed in Chapter III. 

Experiments were performed 7 days after surgical implantation of carotid 

artery and jugular vein catheters. Mice were fasted for 5 h prior to the onset 

of the clamp. Primed-continuous infusion of [3-
3
H]glucose began at t= -90 

min. At t= 0 min saline was infused in lieu of insulin. Basal blood draws 

occurred at -15 and -5 min and blood glucose was measured at 10 min 

intervals starting at t= 0 min. Red blood cell replacement maintained 

hematocrit during the study period. 2[
14

C]glucose was injected 

intravenously at t= 120 min to measure tissue specific glucose uptake.  
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Figure 3.3 – Protocol for the glucose tolerance test performed in Chapter 

III. Experiments were performed 7 days after surgical implantation of 

carotid artery and gastric catheters. The gastric catheter permits 

physiological absorption of glucose without inducing a stress response. 

Mice were fasted for 5 h prior to the outset. At t= 0 min 2g/kg body weight 

of glucose was administered via the gastric catheter. Blood glucose was 

assessed at t= 5, 10, 15, 20, 30, 45, 60, 90, and 120 min. Plasma insulin was 

assessed at t= 10, 20, 30, 60, and 120 min. Fasting arterial glucose and 

insulin were measured at t = -5 min.  
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Table 3.1 

Characteristics of muscle specific VEGF deficient mice 

 
mVEGF

+/+
 mVEGF

-/-
 

N 8 9 

Weight (g) 26.1 ± 1.5 25.3 ± 0.9 

Fat (g) 2.2 ± 0.30 2.1 ± 0.20 

Muscle (g) 18.5 ± 1.2 18.0 ± 0.7 

Gastrocnemius capillary density
† 

1.00 ± 0.2 0.41 ± 0.1* 

Cardiac capillary density
† 

1.00 ± 0.06 0.52 ± 0.06* 

Mean arterial pressure (mmHg) 117 ± 4.0 108 ± 4.4 

Cardiac output (mL/min) 23.9 ± 1.7 21.0 ± 0.6 

Fractional shortening (%) 46.6 ± 1.2 18.7 ± 2.0* 

Ejection fraction (%) 78.9 ± 1.3 38.5 ± 3.7* 

LV diastolic volume (µL) 47.3 ± 4.0 89.5 ± 7.0* 

LV mass (mg) 54.6 ± 5.5 66.9 ± 3.4* 

Data are expressed as mean ± SE. 
†
Capillary density is quantified by the number of CD 

31+ structures normalized to mVEGF
+/+

 mice.  LV is the abbreviation for left ventricular. 

*P-value ≤ 0.05. 
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Figure 3.4- (A) VEGF-A protein levels in tissue homogenates from cardiac and 

skeletal muscle and (B) VEGF-A plasma concentration. Skeletal muscle VEGF 

levels were quantified in the gastrocnemius. Values are expressed as means ± 

SE. n = 5, *P-value ≤ 0.05 vs. mVEGF
(+/+)

. 
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Table 3.2 

Fasting and insulin clamp characteristics 

 
mVEGF

+/+
 mVEGF

-/-
 

Arterial glucose (mg/dL)   

      Basal 119 ± 7 113 ± 5 

      Insulin clamp 145 ± 3 151 ± 3 

Arterial insulin (ng/mL)   

      Basal 1.2 ± 0.2 1.6 ± 0.3 

      Insulin clamp 4.2 ± 0.8 5.2 ± 0.5 

Free fatty acids (mmol/L)   

      Basal 0.76 ± 0.10 0.76 ± 0.10 

      Insulin clamp 0.18 ± 0.04 0.17 ± 0.01 

Liver glycogen (mg glucose/g liver) 10.0 ± 2.3 18.6 ± 2.1* 

Fasting liver glycogen (mg glucose/g liver) 3.90 ± 2.0 8.30 ± 1.9 

Glycogen synthase activity
†
 0.06 ± 0.007 0.09 ± 0.015 

Liver glycogen was measured from tissue excised immediately after the insulin clamp 

and fasting liver glycogen was assessed immediately after the 7.5 h saline infused 

experiments. 
†
Liver glycogen synthase activity was determined after the insulin clamp 

and presented as the ratio of glycogen synthase activity in the absence and presence of 

glucose-6-phosphate. Data are expressed as mean ± SE. n= 7-9, *P-value ≤ 0.05. 
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Figure 3.5 - Arterial glucose (A) and glucose infusion rate (B) during the 

hyperinsulinemic-euglycemic clamp. Mice were fasted 5 h prior to the onset of the 

clamp. Blood glucose was maintained at ~150 mg/dl during steady-state (80-120 

min) and the time course is displayed to demonstrate quality of the clamp. 50% 

glucose was infused to maintain euglycemia. Endogenous glucose production 

(EndoRa - C), whole-body glucose disappearance (Rd - D), and insulin-stimulated 

glucose disposal (E) determined during the hyperinsulinemic-euglycemic clamp. 

Basal values were determined from samples at t= -15 and -5 min prior to the onset 

of the clamp and insulin clamp levels were calculated from steady-state values 

(80-120 min).  Insulin-stimulated Rd was calculated by subtracting the basal Rd 

from the clamp Rd, which measures the increase in insulin-stimulated glucose 

disposal. Data are expressed as mean ± SE, n= 7-9,*P-value ≤ 0.05 vs. 
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Figure 3.6 - Glucose tolerance was determined (A) and corresponding plasma 

insulin levels quantified (B) on 5 h fasted mice. The area under the curve (C) was 

determined from 0-30 min and normalized to fasting arterial glucose 

concentration. RT-PCR was performed on hepatic RNA extracts from mice fasted 

for 5 h for the relative expression of the gluconeogenic genes PEPCK and G6Pase 

(D). Values are expressed as mean ± SE. n=5-6, *P-value ≤ 0.05 vs. mVEGF
(+/+)
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Figure 3.7 - Insulin-stimulated metabolic index (Rg) in skeletal (A) and cardiac 

(B) muscle. To quantify insulin-stimulated Rg, we performed a time control in a 

cohort of mVEGF
(+/+)

 and mVEGF
(-/-)

 mice in which saline was infused in lieu of 

insulin to quantify basal Rg. The Rg values from the saline infusion were averaged 

and subtracted from the Rg values during the insulin clamp. Data are expressed as 

mean ± SE. n= 7-9, *P-value ≤ 0.05 vs. mVEGF
(+/+)

. 
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Table 3.3 

Fasting Muscle Glucose Uptake during the Saline Clamp 

 mVEGF
+/+

 mVEGF
-/-

 

Soleus 

Rg (µmol·100gtissue
-1

·min
-1

) 

 

 

9.5 
 

7.6 

Gastrocnemius 

Rg (µmol·100gtissue
-1

·min
-1

) 

 

 

5.4 

 

3.4 

Heart 

Rg (µmol·100gtissue
-1

·min
-1

) 

 

 

127.5 

 

260.5 

Mice were fasted 5 h prior to the onset of the saline clamp. Tissues were collected after 

2.5 h saline infusion. Data are expressed as mean ± SE and n= 7-9.  
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skeletal muscle (A and C) and liver (E). Immunoprecipitation (IP) from 
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were completed for phospho-IRS-1 at Tyr612 and the p85 subunit of PI 3-kinase 

(A). Insulin-stimulated p85 association with phospho-IRS-1 was quantified as the 

ratio of p85 to phospho-IRS-1 (B). Insulin activation of Akt (C and E) was 

quantified as the ratio of phospho-Akt to total Akt in skeletal muscle (D) and liver 

(F). GAPDH was used as a loading control. Data are expressed as mean ± SE, n= 
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Figure 3.9 - Skeletal muscle insulin action was assessed in the isolated soleus (A) 

and extensor digitorum longus (B). Mice were fasted for 5 h prior to the excision 

of the muscles. Values are expressed as mean ± SE, n= 6. 
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Chapter IV 

 

GAIN OF VASCULAR FUNCTION: PHARMACOLOGICALLY TARGETING 

THE EXTRAMYOCELLULAR BARRIERS TO MUSCLE GLUCOSE UPTAKE 

WITH THE HORMONE RELAXIN 

 

Aims 

The goal of Chapter IV was to determine whether pharmacologically targeting the 

extramyocellular barriers to MGU with the hormone relaxin rescues HF diet-induced 

skeletal muscle insulin resistance. Previous work has established a critical role for 

glucose and insulin delivery in the regulated process of insulin-stimulated MGU.  

Furthermore, extracellular matrix remodeling and vascular dysfunction are involved in 

the pathogenesis of insulin resistance and the greater metabolic syndrome. There is a 

need for therapeutic options to treat insulin resistance with a physiological approach that 

has the potential to improve both metabolic and vascular dysfunction associated with 

obesity. To address this, lean and HF-fed C57BL/6J mice were studied to determine the 

hemodynamic and metabolic effects of relaxin during a insulin clamp. To investigate the 

therapeutic potential of relaxin C57BL/6J mice were fed a HF diet for 13 weeks with the 

final 3 weeks of the diet mice received a continuous infusion of relaxin or vehicle via 

osmotic minipumps. The hypothesis tested was that a chronic intervention with relaxin 

will reverse the extramyocellular adaptations to a HF diet, thus ameliorating diet-induced 

skeletal muscle insulin resistance.  
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Introduction 

Insulin resistance precedes the development of type 2 diabetes and it is associated 

with cardiovascular disease. Recent evidence suggests that muscle insulin resistance 

coincides with extramyocellular adaptations including extracellular matrix (ECM) 

remodeling and capillary rarefaction (51, 82, 87, 111). Kang et al. established that the 

accumulation of ECM proteins and lower capillary number correspond to muscle insulin 

resistance in HF-fed mice (87, 111). The vascular and ECM abnormalities associated 

with obesity provide novel therapeutic targets to simultaneously treat insulin resistance 

and its co-aggregates.  

The hemodynamic action of insulin is fundamental to skeletal muscle metabolism 

during insulin stimulation (141, 142). Hyperinsulinemia increases skeletal muscle 

microvascular blood volume, thus, enhancing nutrient and hormone flux to this tissue 

(37, 45, 84). Previous studies estimated that 40% of insulin-stimulated MGU was a result 

of increased muscle perfusion and that this hemodynamic response is diminished in 

insulin resistant individuals (36, 57). Studies applying metabolic control analysis 

demonstrated that the vascular delivery of glucose to the muscle is a major limitation to 

insulin-stimulated MGU (14, 17). HF-fed mice have attenuated vascular insulin signaling 

that precedes the impairment in insulin responsive tissues such as skeletal muscle, liver, 

and adipose tissue (50). Kubota et al. showed that impaired endothelial insulin signaling, 

in mice lacking endothelial insulin receptor substrate 2, prevented eNOS activation and 

resulted in decreased muscle perfusion, substrate delivery, and MGU during steady-state 

hyperinsulinemia (48).  
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Relaxin (Rlx), a 6-kDa protein hormone, has potent vasodilatory and antifibrotic 

actions (101, 102, 143-145). Rlx augments circulating vascular endothelial growth factor-

A (VEGF) concentrations, which is essential to the vasodilatory response (95). 

Furthermore, Rlx induced VEGF expression stimulates the integration of  bone-marrow 

derived endothelial cells into sites of vasculogenesis to enhance vessel growth (104, 105). 

In experimental models of type I diabetes and hypertension, Rlx attenuated the fibrotic 

response in cardiac and renal tissues respectively (101, 102).  An important mechanism 

for the antifibrotic actions of Rlx is blunted TGFβ signaling, which can reduce collagen 

(Col) deposition (96-99). Rlx regulation of matrix metalloproteinases (MMP) -2 and -9 

activities has been shown to be important to the ECM remodeling mechanism of Rlx and 

the acute vasodilatory response (94, 96, 99). The pleiotropic actions of Rlx provide an 

intriguing therapeutic candidate for insulin resistance.  

The goal of the current investigation was to determine the viability of Rlx 

intervention in rescuing muscle insulin resistance. The hypotheses tested herein are: (1) 

acute Rlx infusion will enhance skeletal muscle perfusion and insulin action in lean but 

not HF-fed mice; and chronic Rlx intervention in HF-fed mice will (2) reverse muscle 

insulin resistance and (3) enhance endothelial reactivity and augment skeletal muscle 

capillarity.  

 

Experimental Design 

Male 6-week old C57BL/6J mice (Jackson Laboratory) were either placed on a 

chow or HF diet containing 5.5% or 60% calories as fat respectively. In Protocol 1 

(Figure 4.1), 13 week chow-fed and HF-fed mice had a primed (10µg) continuous 
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infusion (15µg/h) with recombinant H-2 Rlx (15µg/h; H2-relaxin, Corthera, Inc, a 

subsidiary of Novartis Pharmaceuticals Corp.) or Vehicle (20mM sodium acetate, pH 5.0) 

for 6.5 h total. The infusion of Rlx or Vehicle began 1 h after the onset of the fast and 

lasted for the duration of the insulin clamp. In Protocol 2 (Figures 4.2 and 4.3), mice were 

fed a HF diet for 13 weeks. At week 10 of HF-feeding osmotic minipumps (Alzet models 

2001 and 2002; replaced after 2 weeks) were implanted subcutaneously to deliver Rlx at 

a rate of 1 mg·kg
-1

·day
-1 

or Vehicle. The HF-fed cohort in Protocol 1 permitted a control 

for any potential acute actions of relaxin in Protocol 2 during the insulin clamps. In all 

protocols, insulin clamps were performed to assess insulin action (Figures 4.1 and 4.3) 

and aortic ring reactivity tests to assess vascular function. See Chapter II for detailed 

methods.  

 

Results 

Protocol 1: Acute Rlx infusion enhances insulin-stimulated MGU in chow-fed but 

not HF-fed mice.  

Glucoregulatory: To test the hypothesis that a 6.5 h Rlx infusion enhances insulin-

stimulated MGU in chow-fed mice, insulin clamps were performed in 5 h fasted mice.  

There was no difference in body weight between treatment groups (Table 4.1). The acute 

chow-fed Rlx group had greater fasting arterial insulin; however, no change in fasting 

arterial glucose was present (Table 4.1). Insulin clamps were performed to determine in 

vivo muscle insulin action in conscious unrestrained mice (15). During the steady-state 

period of the insulin clamp (80-120 min), Rlx treated mice required a higher GIR to 

maintain euglycemia compared to Vehicle infused mice (p≤0.05; Figure 4.4A). The 
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increase in GIR was independent of changes in the suppression of endoRa (Figure 4.4B). 

The enhanced GIR in the Rlx group was due to an augmented whole-body glucose 

disappearance (Rd) during the clamp steady-state period (p≤0.05; Figure 4.4B). The Rg in 

the Rlx infusion group was greater in the gastrocnemius, superior vastus lateralis (SVL), 

and heart (p≤0.05; Figure 4.4C). The in vivo muscle glucose flux data coincided with 

augmentation of the ratio of phospho-Akt to total Akt in the gastrocnemius (p≤0.05; 

Figure 4.5B). 

The acute Rlx infusion of Protocol 1 was repeated in HF-fed mice. In contrast to 

the chow-fed mice, there was no difference in insulin action and glucose fluxes between 

the Vehicle and Rlx infused groups. There was no difference in body weight or arterial 

glucose and insulin levels in the fasted and clamp states (Table 4.1). The GIR during the 

insulin clamps were equal (Figure 4.6A). The endoRa and Rd were comparable between 

groups in the basal and insulin clamp states (Figure 4.6B). The Rg data corresponded to 

the flux analysis with no difference in the gastrocnemius, SVL, or heart (Figure 4.6C). 

HF-fed mice are resistant to the acute effects of Rlx. 

Ex vivo glucose uptake was determined in isolated muscle from chow-fed mice 

that underwent a 6.5 h Rlx infusion (Protocol 1) identical to the insulin clamp cohorts. 

Isolated glucose uptake was performed only in the chow-fed mice due to the enhanced 

insulin clamp Rg. Glucose uptake in isolated muscle removes the vascular delivery barrier 

of MGU during hyperinsulinemia. There was no difference in basal or insulin-stimulated 

glucose uptake in isolated soleus or extensor digitorum longus (EDL) muscles between 

groups (Figure 4.5A).  
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Vascular: The 6.5 h Rlx infusion enhanced the hemodynamic response to insulin in 

chow-fed mice. Endothelial-dependent aortic ring relaxation in the Rlx group was 

amplified with no difference in smooth muscle-dependent relaxation (p≤0.05; Figure 

4.4D). The acute enhancement in endothelial specific vascular reactivity was absent in 

the HF-fed cohort (Figure 4.6D). Muscle blood flow was increased in the Rlx group as 

indicated by a 2.5-fold increase in gastrocnemius microsphere content (p≤0.05; Figure 

4.5C). The 6.5 h Rlx infusion resulted in a 2.5-fold increase in MMP-9 and pro-MMP-2 

activities (p≤0.05; Figure 4.5D).  

 

Protocol 2: Rlx intervention reverses diet-induced insulin resistance and the 

associated extramyocellular adaptations.  

Glucoregulatory: To test the hypothesis that intervention with Rlx can reverse muscle 

insulin resistance and the extramyocellular adaptations to a HF diet, mice were treated 

with Rlx or Vehicle for the final 3 weeks of a 13 week HF diet. Rlx intervention did not 

alter body weight or composition (Table 4.2). Furthermore, the 3 week Rlx treatment did 

not result in differences in mean arterial blood pressure or cardiac morphology (Table 

4.2).  Insulin clamps were performed after the 3 week intervention. Fasting (5 h) arterial 

glucose was lower in the Rlx treated mice (p≤0.05; Table 4.2). During the steady-state 

period of the insulin clamp, the Rlx group required a higher GIR to maintain euglycemia 

at ~150 mg/dL (p≤0.05; Figure 4.7A). Rlx did not affect fasting glucose fluxes. Insulin 

suppressed endoRa during the steady-state period to a greater extent with Rlx intervention 

(p≤0.05; Figure 4.7B), suggesting improved hepatic insulin action. The greater GIR in the 

Rlx treated group corresponded to enhanced whole-body Rd during the steady-state 
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period of the insulin clamp (p≤0.05; Figure 4.7B). Rg was elevated in the gastrocnemius 

and SVL in the Rlx group compared to Vehicle during hyperinsulinemia (p≤0.05) and 

cardiac muscle Rg tended to be higher (p=0.1; Figure 4.7C). Skeletal muscle and hepatic 

phospho-Akt to total Akt ratio tended to be higher after the Rlx intervention but 

differences were not significant (Figure 4.8A). 

 Ex vivo glucose uptake in isolated soleus and EDL showed no difference between 

the Vehicle or Rlx groups (Figure 4.7D). This suggests that the extramyocellular effects 

of Rlx are key to the effectiveness of Rlx intervention in HF-fed mice. 

Extracellular Matrix Remodeling: Col-III and -IV levels were equivalent in skeletal 

muscle between treatment groups (Figure 4.8B and C). The improvement in hepatic 

insulin action with Rlx treatment was associated with reduced col-III (p≤0.05; Figure 

4.8D). Cardiac col-III and -IV were increased in response to the HF diet, but were 

reduced by ~50% and ~65% respectively after the 3 week Rlx intervention (p≤0.05; 

Figure 4.9A and B). This effectively normalized these ECM proteins to levels of lean 

mice. The abatement in cardiac ECM protein associated with a reduction in SMAD2 

phosphorylation (p≤0.05; Figure 4.9C), which is a marker of TGFβ receptor downstream 

activation.   

Vascular: The enhanced muscle insulin action in Rlx treated mice was associated with a 

2-fold expansion of skeletal muscle capillary density (p≤0.05; Figure 4.10A). Improved 

vascular reactivity was present after the Rlx intervention as indicated by an augmented 

endothelial-dependent aortic relaxation (p≤0.05; Figure 4.10C). There was no difference 

in smooth muscle-dependent relaxation in response to sodium nitroprusside and no 

significant change in the vasculature response to phenylephrine (PE) (Figure 4.10C and 
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D).  A potential common mechanism for the changes in skeletal muscle capillary density 

and endothelial-dependent relaxation is the elevated arterial VEGF concentrations after 3 

weeks of continuous Rlx administration (p≤0.05; Figure 4.10B). 

 

Discussion 

These studies demonstrate for the first time that infusion of the hormone Rlx 

acutely augments muscle perfusion and insulin-stimulated MGU in lean, healthy 

C57BL/6J mice. There is no such acute Rlx effect in HF-fed mice. However, results show 

that a 3 week Rlx intervention in HF-fed ameliorates the metabolic and cardiovascular 

dysfunction. It is important to recognize that the potent metabolic effects of Rlx were 

absent in isolated muscle fibers, regardless of whether Rlx was administered acutely in 

lean mice or as a chronic intervention in HF-fed mice. The data from isolated muscle 

support the hypothesis that Rlx diminishes the extramyocellular barriers to MGU during 

hyperinsulinemia. 

Baron et al. demonstrated that the co-infusion of insulin and a vasodilator in 

healthy subjects resulted in a synergistic effect to enhance limb blood flow and muscle 

glucose uptake (84). In congruence with this clinical study, the acute Rlx infusion in the 

chow-fed mice of Protocol 1 increased steady-state Rd and muscle Rg during the insulin 

clamp.  The Rlx infused mice had greater muscle microsphere deposition at the 

termination of the insulin clamp and enhanced aortic ring relaxation suggesting a greater 

hemodynamic response to insulin. The amplified muscle blood flow increases insulin and 

glucose access to the muscle interstitium. This would predictably enhance insulin action 

as supported by augmented in vivo skeletal muscle insulin signaling. The increased pro-
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MMP-2 and MMP-9 activities were consistent with the acute vasodilatory mechanisms of 

Rlx (94).The equivalent basal and insulin-stimulated glucose uptake in isolated muscle 

suggests that the primary mechanism for the enhanced muscle Rg was independent of 

direct actions of Rlx on the myocyte. 

The 3 week Rlx intervention in Protocol 2 was effective in improving insulin 

action in HF-fed mice. The improvement in glucose homeostasis in both the fasted and 

insulin-stimulated state is speculated to be a result of the actions unique to Rlx that 

improve vascular adaptations to the HF diet. The isolated MGU data support this 

conclusion. Potentially other extramyocellular factors that require long-term treatment, 

such as an increase in plasma VEGF, could be necessary for the in vivo glucoregulatory 

effects of Rlx that are absent ex vivo. Furthermore, Rlx has been shown to antagonize 

angiotensin II action (146) and the renin-angiotensin system has been implicated in the 

pathogenesis of skeletal muscle capillary rarefaction and insulin resistance (53). The 

glucoregulatory and vascular adaptations that are present with the chronic Rlx 

administration are notably absent in the HF-fed cohort of Protocol 1. This may provide 

insight into the mechanism of Rlx action in HF-fed mice. It would suggest that an 

adaptive process, rather than acute activation, is required to overcome the impairments in 

insulin action in HF-fed mice. Rlx intervention has previously been shown to ameliorate 

endothelial dysfunction in models of hypertension (95, 145, 147). In the current model of 

HF diet-induced insulin resistance, Rlx improved endothelial function.  The improvement 

in endothelial reactivity did not occur in HF-fed mice that underwent an acute Rlx 

infusion, suggesting long-term administration is necessary to overcome the vascular 

impairment associated with a HF diet (148). Rlx acts through an eNOS dependent 
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pathway to cause vascular relaxation. It is speculated that the vascular remodeling and 

impaired eNOS function present in HF-fed mice nullifies the acute Rlx effect in the HF-

fed mice in Protocol 1 (149). Consistent with this finding, acute administration of Rlx 

does not ameliorate hypertension in spontaneously hypertensive rats (146). Additionally, 

Rlx treated mice had a ~2-fold increase in skeletal muscle capillary density. Capillary 

rarefaction and endothelial dysfunction associated with obesity are critical to the 

pathogenesis of skeletal muscle insulin resistance (38, 54, 55, 150). The actions of Rlx on 

the vasculature may enhance the hemodynamic response to hyperinsulinemia, thus 

augmenting microvascular perfusion. An increase in muscle blood volume would 

increase the surface area for insulin and glucose diffusion, in addition to other hormones 

and nutrients (14, 45, 48, 59).  The likely mechanism for the improved endothelial 

function and expansion of skeletal muscle capillary density is the elevation in circulating 

VEGF, which has been shown to be critical to the sustained vasodilatory and angiogenic 

actions of Rlx (95, 104, 105).  

The efficacy of Rlx to enhance MGU during hyperinsulinemia acutely in lean and 

chronically in HF-fed mice was independent of an interaction directly with the insulin 

receptor. Originally, Rlx was characterized to be part of the insulin family of proteins due 

to their common two-chain structure. More recent data demonstrated that Rlx diverged 

from the insulin family early in vertebrate evolution forming a separate protein and 

receptor family (151). There is no evidence to support the cross-reactivity of Rlx with the 

insulin receptor, as Rlx does not activate protein kinase receptors (152). The metabolic 

effects demonstrated in the current study were likely due to extramyocellular and 
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extrahepatic adaptations to Rlx. Notably, the specific receptor for Rlx, RXFP1, has not 

been identified in skeletal myocytes or hepatocytes (152).  

ECM deposition occurs in skeletal muscle, liver, and cardiac tissue of HF-fed 

rodents (87, 153, 154) and insulin resistant humans (111, 153, 155, 156). The interaction 

of collagen proteins with the integrin receptors has been linked to the development of 

hepatic and skeletal muscle insulin resistance (87). In the current studies, Rlx reversed 

the deposition of hepatic col-III, though there was no difference in hepatic col-IV (data 

not shown). It is speculated that the improved hepatic insulin action was related to the 

reduction in col-III and the potential interaction with the hepatic integrin receptors. 

Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis are associated with the 

development and progression of fibrosis in type 2 diabetes and subsequent impairments 

in hepatic insulin action (153, 157). Previously, col-III and –IV have been shown to be 

elevated in muscle of HF-fed mice and humans (87, 111); however, there was no 

difference in these collagen species in skeletal muscle in the current model, perhaps 

relating to differences in diet duration. Although col-III and -IV are major components of 

the extracellular matrix there are other distinct matrix proteins that could have been 

altered.  

Rlx intervention diminished col-III and -IV accumulation in the heart, which is 

consistent with the antifibrotic effects of long-term Rlx treatment shown in rodent models 

of type 1 diabetes (101) and hypertension (102). The decreased cardiac ECM proteins 

after the Rlx treatment was likely a consequence of Rlx inhibiting the downstream 

activation of SMAD2 by transforming growth factor-β (TGFβ) (96, 97, 99). The 

diminished cardiac col-III and –IV and ameliorated endothelial dysfunction in Protocol 2 
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emphasizes that Rlx may be efficacious in the treatment of the broader dysfunction 

associated with the metabolic syndrome. 

Macro- and microangiopathies correlate with insulin resistance (158, 159) leading 

to impaired tissue perfusion, which is a key component of the etiology of diabetes-related 

tissue and organ damage (46). Furthermore, endothelial dysfunction and capillary 

rarefaction contribute to hypertension and insulin resistance, both of which are 

components of the metabolic syndrome and increase the risk of cardiovascular mortality 

(46, 150, 160). Thus, it is critical to consider the common underlying vascular 

pathologies to develop novel intervention strategies to treat the metabolic syndrome. 

However, a critical consideration for the long-term clinical administration of a vascular 

proliferative compound is the potential exacerbation of tumor development and 

metastasis. This is particularly important because there is a positive association between 

insulin resistance and many types of cancers (161). It is possible that chronic exposure to 

Rlx for the treatment of insulin-resistance may exacerbate outcomes in cancer patients. 

Notably, Rlx is expressed at higher levels in prostate cancer and correlates to metastatic 

potential and diminished survival (162) and the inhibition of RXFP1 has been 

investigated as a potential therapeutic target (163).  

These studies demonstrate the effectiveness of Rlx in targeting the 

extramyocellular barriers to MGU for the treatment of insulin resistance. Intervention 

with the hormone Rlx targets multiple physiological systems to ameliorate cardiac and 

hepatic collagen accumulation, increase skeletal muscle capillary density, and improve 

diet-induced endothelial dysfunction. These effects contribute to the enhancement of in 

vivo insulin action in HF-fed mice and require an extended treatment period to mitigate 
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these extramyocellular barriers to insulin-stimulated MGU. The results not only highlight 

the efficacy of Rlx in the correction of muscle insulin resistance, but also demonstrate the 

potential therapeutic value of Rlx in reversing fibrosis and vascular dysfunction 

associated with a HF diet.  
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Figure 4.1 – Protocol 1: Experimental setup for the hyperinsulinemic-

euglycemic clamps performed in Chapter IV. Experiments were performed 

7 days after surgical implantation of carotid artery and jugular vein 

catheters. Mice were fasted for 5 h prior to the onset of the clamp. A 

primed-continuous infusion of relaxin began at t= -240 min. Primed-

continuous infusion of [3-
3
H]glucose began at -90 min. At t= 0 min insulin 

was elevated to postprandial levels. Basal blood draws occurred at t= -15 

and -5 min and blood glucose was measured at 10 min intervals starting at 

t= 0 min. Variable glucose was infused to maintain euglycemia at ~150 

mg/dL and red blood cell replacement maintained hematocrit during the 

study period. 2[
14

C]glucose was injected intravenously at t= 120 min to 

measure tissue specific glucose uptake.  
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Figure 4.2 – Protocol 2: Diet and treatment time-course for the 

chronic relaxin intervention in high-fat fed C57BL/6J mice. The 

onset of the high-fat diet began at 6 weeks of age and lasted for 

13 weeks. Relaxin or Vehicle was administered at a rate of 1 

mg·kg
-1

·day
-1

 and began at week 10 of the high fat diet. Relaxin 

and Vehicle were administered continuously for the final 3 

weeks of high fat-feeding, at which time hyperinsulinemic-

euglycemic clamps were performed.  
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Figure 4.3 – Protocol 2: Experimental setup for the hyperinsulinemic-

euglycemic clamps performed in Chapter IV. Experiments were performed 

7 days after surgical implantation of carotid artery and jugular vein 

catheters. Mice were fasted for 5 h prior to the onset of the clamp. Primed-

continuous infusion of [3-
3
H]glucose began at t= -90 min. At t= 0 min 

insulin was elevated to postprandial levels. Basal blood draws occurred at 

t= -15 and -5 min and blood glucose was measured at 10 min intervals 

starting at t= 0 min. Variable glucose was infused to maintain euglycemia at 

~150 mg/dL and red blood cell replacement maintained hematocrit during 

the study period. 2[
14

C]glucose was injected intravenously at t= 120 min to 

measure tissue specific glucose uptake.  
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Table 4.1 

Insulin Clamp Characteristics in Protocol 1 

 
 

Vehicle Relaxin 

Protocol 1: 

Chow-fed Mice 

n 9 8 

Weight (g) 30.0 ± 0.3 29.5 ± 0.3 

Arterial glucose (mg/dL)   

        Basal 130 ± 7 129 ± 3 

        Clamp 148 ± 2 149 ± 3 

Arterial insulin (ng/mL)   

        Basal 0.8 ± 0.1 1.2 ± 0.1* 

        Clamp 4.6 ± 0.3 4.6 ± 0.3 

Protocol 1:   

HF-fed Mice 

n 5 5 

Weight (g) 38.6 ± 2 40.1 ± 1 

Arterial glucose (mg/dL)   

        Basal 132 ± 9 126 ± 11 

        Clamp 148 ± 3 146 ± 4 

Arterial insulin (ng/mL)   

        Basal 5.2 ± 1 7.1 ± 2 

        Clamp 10.9 ± 2 12.6 ± 2 

Mice were fasted 5 h prior to the onset of the insulin clamp. The Rlx infusion occurred 

for a duration of 6.5 h through the insulin clamp. Insulin clamp arterial glucose was an 

average of 80-120 min and arterial insulin was an average of t= 100 and 120 min. Data 

are expressed as mean ± SE. *P-value ≤ 0.05 
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  Figure 4.4 - Protocol 1, chow-fed: Hyperinsulinemic-euglycemic clamps, 

glucose flux analysis, and vascular reactivity after a 6.5 h Rlx or Vehicle 

infusion in lean mice. (A) Glucose infusion rate (top) and arterial glucose 

(bottom) during the insulin clamp. Mice were fasted 5 h prior to the onset of 

the clamp. Blood glucose was maintained at ~150 mg/dL during steady-state 

(80-120 min) and the time course is displayed to demonstrate quality of the 

clamp. 50% glucose was infused to maintain euglycemia. Endogenous 

glucose production and whole-body glucose disposal (B-EndoRa and Rd) 

during the insulin clamp. Basal values are an average of t= -15 and -5 min 

and the insulin clamp values are an average of 80-120 min (steady-state). 

(C) Glucose metabolic index (Rg) after the insulin clamp in the 

gastrocnemius, SVL (superior vastus lateralis), and heart. Endothelial and 

smooth muscle dependent relaxation (D) in aortas excised from mice after 

the insulin clamp in response to carbachol (Cch) and sodium nitroprusside 

(SNP) respectively. Data are expressed as mean ± SE, n= 8-9,*P-value ≤ 

0.05. 
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Figure 4.5 - Protocol 1, chow-fed: Isolated MGU, insulin signaling, muscle 

perfusion, and MMP activation after the 6.5 h Rlx or Vehicle infusion. 

Isolated muscle glucose uptake (A) on the soleus and EDL (extensor 

digitorum longus). Mice were fasted for 5 h and muscles excised after the 

6.5 h Rlx infusion. Western blot analysis of the activation status of Akt (B) 

after the insulin clamp analyzed as the ratio of phosphorylated Akt to total 

Akt. Microsphere content in the gastrocnemius (C) after the insulin clamp. 

Gelatin zymogram to determine matrix metalloproteinase-2 and -9 activitity 

(D) in gastrocnemius muscle after the insulin clamp. AU represents arbitrary 

units. AU represents arbitrary units. Data are expressed as mean ± SE, n= 5. 
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Figure 4.6 - Protocol 1, high fat-fed: Hyperinsulinemic-euglycemic clamps, 

glucose flux analysis, and vascular reactivity after a 6.5 h Rlx or Vehicle 

infusion in HF-fed mice. (A) Glucose infusion rate (top) and arterial glucose 

(bottom) during the insulin clamp. Mice were fasted 5 h prior to the onset of 

the clamp. Blood glucose was maintained at ~150 mg/dL during steady-state 

(80-120 min) and the time course is displayed to demonstrate quality of the 

clamp. 50% glucose was infused to maintain euglycemia. Endogenous 

glucose production and whole-body glucose disposal (B-EndoRa and Rd) 

during the insulin clamp. Basal values are an average of t= -15 and -5 min 

and the insulin clamp values are an average of 80-120 min (steady-state). 

(C) Glucose metabolic index (Rg) after the insulin clamp in the 

gastrocnemius, SVL (superior vastus lateralis), and heart. Endothelial and 

smooth muscle dependent relaxation (D) in aortas excised from mice after 

the insulin clamp in response to carbachol (Cch) and sodium nitroprusside 

(SNP) respectively. Data are expressed as mean ± SE, n= 5. 



93 

 

 

 

Table 4.2 

Treatment Group Characteristics in Protocol 2 

 
Vehicle Relaxin 

n 13 11 

Weight (g) 34.8 ± 0.8 34 ± 1.0 

Fat (%) 16.5 ± 1.3 15.6 ± 2.5 

Muscle (%) 65.1 ± 0.7 65.7 ± 1.5 

Arterial glucose (mg/dL)   

        Basal 145 ± 6 130 ± 5* 

        Clamp 151 ± 2 148 ± 3 

Arterial insulin (ng/mL)   

        Basal 1.8 ± 0.3 2.1 ± 0.4 

        Clamp 6.2 ± 0.9 7.5 ± 0.9 

Free fatty acids (mmol/L)   

        Basal 1.10 ± 0.08 0.80 ± 0.10 

        Clamp 0.44 ± 0.05 0.42 ± 0.03 

Mean arterial pressure (mmHG) 126 ± 3 131 ± 3 

Cardiac output (mL/min) 21 ± 1 21 ± 2 

Ejection fraction (%) 81 ± 1 77 ± 2 

Fractional shortening (%) 48 ± 0.6 45 ± 0.1* 

LV mass (mg) 62.5 ± 3 63.9 ± 5 

LV diastolic volume (µL) 41 ± 3 43 ± 5 

Mice were fasted 5 h prior to the onset of the insulin clamp. Insulin clamp arterial 

glucose was an average of 80-120 min. Arterial insulin and free fatty acids were an 

average of t= 100 and 120 min. LV is the abbreviation for left ventricular. Data are 

expressed as mean ± SE. *P-value ≤ 0.05 
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Figure 4.7 - Protocol 2: Hyperinsulinemic-euglycemic clamps, glucose flux 

analysis, and isolated muscle glucose uptake after the 3 week Rlx or Vehicle 

intervention in HF-fed mice. (A) Glucose infusion rate (top) and arterial 

glucose (bottom) during the insulin clamp. Mice were fasted 5 h prior to the 

onset of the clamp. Blood glucose was maintained at ~150 mg/dL during 

steady-state (80-120 min) and the time course is displayed to demonstrate 

quality of the clamp. 50% glucose was infused to maintain euglycemia. 

Endogenous glucose production and whole-body glucose disposal (B-EndoRa 

and Rd) during the insulin clamp. Basal values are an average of t= -15 and -5 

min and the insulin clamp values are an average of 80-120 min (steady-state).  

(C) Glucose metabolic index (Rg) after the insulin clamp in the gastroc 

(gastrocnemius), SVL (superior vastus lateralis), and heart. Isolated muscle 

glucose uptake (D) on the soleus and EDL (extensor digitorum longus). Mice 

were fasted for 5 h prior to muscles being excised.  Data are expressed as mean 

± SE, n= 11-13,*P-value ≤ 0.05. 



95 

 

  
Figure 4.8 - Protocol 2: Insulin signaling and immunohistochemical stain of 

skeletal muscle and liver. Western blot analysis of the activation status of Akt 

(A) analyzed as the ratio of phosphorylated Akt to total Akt in liver (top) and 

skeletal muscle (bottom) from protein extracted from mice after the insulin 

clamp (V-vehicle and R-relaxin). Immunohistochemical detection of skeletal 

muscle collagen-III (B) and collagen-IV (C) from the gastrocnemius muscle. 

Immunohistochemical detection of hepatic collagen-III (D). 

Immunohistochemical analysis was performed on tissues fixed immediately 

following the insulin clamp. AU represents arbitrary units. Data are expressed as 

mean ± SE, n= 5-6,*P-value ≤ 0.05. 
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Figure 4.9 - Protocol 2: Collagen protein levels and SMAD2 signaling in cardiac 

muscle. Immunohistochemical detection of collage-III (A) and –IV (B) from 

hearts fixed after the insulin clamp. Western blot analysis of phospho-SMAD2, 

total SMAD2, and the ratio of phospho to total SMAD2 (C) from cardiac protein 

extracts after the insulin clamp. AU represents arbitrary units. Data are expressed 

as mean ± SE, n= 5-6,*P-value ≤ 0.05. 
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  Figure 4.10 - Protocol 2:  Capillarity density and vascular reactivity in response 

to the Rlx intervention. Capillary density (A) quantified with 

immunohistochemical staining of CD-31. Capillary density is quantified as the 

number of CD-31+ cells. Plasma vascular endothelial growth factor (VEGF) 

concentration (B) after the insulin clamps. Vascular reactivity (C) from excised 

aortas after the insulin clamps. Endothelial-dependent relaxation (left; 

carbachol), smooth muscle-dependent relaxation (middle; sodium nitroprusside), 

and stress generated from phenylephrine (right; PE). Responses represented as a 

percent of maximal tension from KCl stimulation. Data are expressed as mean ± 

SE, n= 5-8,*P-value ≤ 0.05. 
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Chapter V 

 

CELLULAR BASIS FOR IMPAIRED ENDOTHELIAL INSULIN TRANSPORT 

SYSTEM IN THE SKELETAL MUSCLE MICROVASCULATURE OF HIGH 

FAT-FED C57BL/6J MICE 

 

Aims 

Insulin resistance and impaired vascular insulin signaling is associated with a 

blunted delivery of insulin to the interstitium of skeletal muscle limiting the interaction 

with the insulin receptor (48). The Barrett Laboratory has investigated the transport 

mechanisms of insulin across the endothelial capillary barrier (23, 27, 33). These studies 

have characterized the binding of insulin to the capillary wall, a delayed delivery to the 

muscle interstitium in vivo, dependence of caveolin-1 for transendothelial insulin 

transport in vitro, and shown that stimuli that induce insulin resistance (e.g. TNFα) 

decrease  insulin transport and caveolin-1 expression in vitro (33, 34, 164). Cavoelin-1 is 

the critical protein for the formation of caveolae. The elegant investigations performed by 

the Barrett Laboratory describe the transport of insulin via a receptor mediated process. 

However, a limitation to these studies is that the mechanistic work was performed 

utilizing bovine aortic endothelial cells. It is currently unknown whether stimuli that 

create skeletal muscle insulin resistance, such as a HF diet, cause structural changes to 

the capillary wall that may hinder insulin transport. The hypothesis tested in Chapter V 

was that 16 week HF-fed mice will have a decrease in caveolae number within the 

endothelial cell layer of skeletal muscle capillaries. 
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Introduction 

The capillary network in skeletal muscle forms tight junctions with an enrichment 

of caveolae, which contrasts from the liver that is comprised of a discontinuous 

endothelium that permits greater exchange of macromolecules (27). This suggests that the 

transport of insulin is specific to the tissue of interest and that transport may be limiting 

in a tissue such as skeletal muscle (or adipose with a similar capillary architecture), but 

not in a tissue more adept to transport of large macromolecules such as the liver.  

A primary transport mechanism for the movement of macromolecules across tight 

capillaries is endocytosis and secretion via a caveolae dependent process. Schubert et al. 

showed that caveolae-deficient endothelial cells are incapable of transporting albumin in 

vivo, as the endothelial cells were unable to endocytose albumin for transport (165). 

Notably, only one study has comprehensively characterized the role of insulin transport 

in vivo. The study was performed in rat cardiac muscle and established a receptor 

mediated transendothelial transport mechanism (166). This study has not been expanded 

to other insulin sensitive tissues. Schutzer et al. demonstrated a decline in caveolin-1with 

aging, a risk factor for the development of insulin resistance, in a smooth muscle cell line 

(167). However, the effect of aging on the endothelial caveolae structure was not 

investigated. 

The goal of Chapter V was to visualize the capillary endothelial caveolae 

architecture in vivo. Specifically, Chapter V was designed to determine whether 16 week 

HF-fed mice (that are insulin resistant) have alterations in caveolae number or size in 

single endothelial layer capillaries that perfuse skeletal muscle utilizing transmission 
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electron microscopy (TEM). This study is a first step in bridging the in vitro work 

performed (33, 34, 164) to animal models of insulin resistance suggesting the importance 

of transendothelial insulin transport to skeletal muscle insulin action. The hypothesis 

tested was that diet-induced insulin resistant mice have fewer endothelial caveolae 

compared to low fat chow-fed controls.  

 

Experimental Design 

C57BL/6J mice were fed a chow or HF diet for 16 weeks. Mice were studied at 

20 weeks of age. At the termination of the diet mice underwent perfused fixation as 

described in Chapter II and the right red gastrocnemius was excised. The samples were 

further processed for TEM staining by the Vanderbilt University Cell Imagine Shared 

Resource Core. Visualization is described in detail in Chapter II.  

 

Results 

Mice fed the 16 week HF diet gained significant body weight and fat mass 

compared to the age-matched, chow-fed controls (Table 5.1).  Qualitative analysis of 

caveolae density has been performed. Micrographs were randomized, labels removed, 

and then separated based on the caveolae density within the capillary. The micrographs 

were separated into chow-fed and HF-fed groups. This initial screen permitted the 

decision to move forward with specific quantification of caveolae area per endothelial 

cell area with an inclusion criterion of greater than 80% success of the qualitative 

analysis, which was accomplished. There was a striking reduction in caveolae number in 

the HF-fed group compared to the chow-fed mice (Figures 5.1 and 5.2).  
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Discussion 

The TEM studies indicate that diet-induced insulin resistant mice have fewer 

caveolae within the endothelial layer of the capillary compared to chow-fed controls. I 

speculate this microstructural adaptation in the HF-fed mice provides a low insulin 

transport capacity environment compared to lean mice with capillaries enriched with 

caveolae. This low transport state is consistent with the in vitro findings from Barrett and 

colleagues (34) that indicated inflammatory cytokines decrease the expression of 

caveolin-1 and the transendothelial transport of insulin.  

The strength of TEM is that it allows for tissue collection by perfusing a fixative 

that maintains capillary integrity giving a representation of the in vivo capillary 

architecture. The current data can only be extrapolated and applied to the concept of 

insulin transport within skeletal muscle. The experiments were not designed to visualize 

insulin localization within caveolae and future investigation will address this limitation. 

There is clearly a qualitative reduction in endothelial caveolae in HF-fed mice. The 

current experiments will be expanded in future studies to be more quantitative so that we 

may determine whether there are significant differences in caveolae per capillary area in 

our model.  

The paradigm of insulin delivery in skeletal muscle is not without controversy 

(27). The initial work used bovine aortic endothelial cells or umbilical vein endothelial 

cells. The caveat to applying transport techniques to venous endothelium is that venous 

cells are innately leaky when compared to aortic or arterial endothelium, thus the 

potential for false transport data.  
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The transport assays performed by Barrett’s Laboratory (33, 34, 164) were 

performed in cell culture without in vivo validation. Furthermore, the TEM technique we 

applied can be expanded by injecting labeled insulin into mice and visualizing whether 

insulin is specifically endocytosed and localized within caveolae structures. The potential 

of confocal microscopy in live animals could allow for visualization of insulin transport; 

however, a caveat to this technique is the visualized muscle is superficial limiting the 

access to nutrient blood flow. The current state of the insulin transport field is limited and 

critical data for basic characterization of the mechanisms of insulin transport in skeletal 

muscle remains to be elucidated.  

These preliminary findings suggest a potential link between skeletal muscle 

insulin resistance, transendothelial insulin transport, and caveolae density. The basic 

process of tissue specific insulin transport needs further characterization. The 

understanding of how insulin transverses the capillary barrier to reach skeletal muscle 

insulin receptors could provide a novel pharmacological target to treat insulin resistance 

and more complete understanding of the pathogenesis of skeletal muscle insulin 

resistance.  
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Table 5.1 

Mouse body weight and composition 

 
Chow-Fed HF-Fed 

N 3 3 

Body Weight (g) 25.8 ± 0.9 47.3 ± 1.5* 

Fat Mass (%) 4.9 ± 0.4 35.4 ± 4.0* 

Lean Mass (%) 76.4 ± 0.4 53.9 ± 2.9* 

Data are expressed as mean ± SE. *P-value ≤ 0.01 
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A B 

Figure 5.1 – Transmission electron micrograph from the red gastrocnemius of 

chow-fed (A) and 16 week HF-fed (B) mice. Arrows indicate single endothelial 

capillary. Images were acquired at a magnification of 11,000x.  
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Figure 5.2 – Transmission electron micrograph from the red gastrocnemius of 

chow-fed (A) and 16 week HF-fed (B) mice. Red arrows indicate single 

endothelial capillary and blue arrows indicate a single caveolae. Micrographs are 

the same capillaries from Figure A.1. Images were acquired at a magnification of 

67,000x.  

 

A B 
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Chapter VI 

 

SUMMARY 

 

Collectively the data presented within the Dissertation show the significant 

contribution of vascular function, capillary density, and capillary architecture to skeletal 

muscle insulin resistance. The genetic induction of capillary rarefaction in Chapter III 

showed that the decrease in capillary density within insulin resistant skeletal muscle is a 

direct cause of the diseased muscle and models that induce muscle capillary proliferation 

ameliorate skeletal muscle insulin resistance. Furthermore, therapeutic application of the 

vasoactive and extracellular matrix remodeling hormone relaxin, in Chapter IV, reduced 

the extramyocellular barriers to insulin-stimulated MGU, which are exacerbated in 

insulin resistant states. Chapter V demonstrated gross reductions in caveolae density 

within skeletal muscle endothelium of obese mice. The diminished caveolae number 

could contribute to the pathogenesis of skeletal muscle insulin resistance; however, the 

role of caveolae in insulin transport to muscle interstitium needs further investigation. 

These data provide an opportunity for investigation of novel therapeutic targets to treat 

the underlying vascular dysfunction with the goal to simultaneously intervene to 

ameliorate the greater metabolic syndrome associated with obesity.  

The correlation between functional and structural capillary rarefaction to skeletal 

muscle insulin resistance has been well established. To date there has been no evidence 

directly linking structural capillary rarefaction to the pathogenesis of insulin resistance. 

These are the first studies to show the causative role of changes in capillary density to the 
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development of skeletal muscle insulin resistance. Notably, the mouse model investigated 

within Chapter III took advantage of tissue specific cre-lox recombination technology to 

specifically ablate VEGF-A from skeletal and cardiac muscle without the complications 

of a high fat diet (e.g. weight differences, tissue fat accumulation). This mouse model 

facilitated the direct investigation into the role of capillary rarefaction in the development 

of skeletal muscle insulin resistance. The phenotype in the VEGF-deficient mice 

emphasizes the significance of capillary rarefaction to the early progression of skeletal 

muscle insulin resistance.  

The comparison between in vivo and ex vivo insulin action was important to 

corroborate that the loss of the vascular delivery component of MGU caused the 

impairment in insulin-stimulated glucose uptake in Chapter III.  This comparison 

indicated that the phenotype was not driven by an off target effect due to the genetic loss 

of muscle VEGF directly impairing myocellular insulin action. There are limitations to 

this conclusion. Indeed assessing insulin action ex vivo removes the delivery component 

of MGU and focuses on the direct effects of the genetic loss of capillaries on myocellular 

insulin action; however, the absence of blood flow is more complex than uptake that is 

reliant solely on diffusion. Evidence from our laboratory suggests an important regulatory 

role of the extracellular matrix-integrin interaction, which may not be active in the ex 

vivo setting. Additionally, endocrine and nutritional factors that may interact with the 

insulin signaling pathway and glucose uptake are absent in this model. It would be 

necessary to monitor the plasma to interstitial gradient of glucose and insulin to 

conclusively determine that there was a detriment in glucose and insulin delivery to 

skeletal muscle during the insulin clamps. Though unlikely, the ex vivo loss of multiple 
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extramyocellular factors may overemphasize the contribution the capillary density to a 

decrease in vascular delivery of glucose and insulin to our model.  

The muscle creatine kinase promoter driving the expression of cre-recombinase in 

Chapter III is expressed in skeletal and cardiac muscle. The loss of cardiac VEGF-A 

induced compensation in the heart to maintain cardiac output. The equivalent cardiac 

output between genotypes was critical to the interpretations and conclusions of Chapter 

III. Changes in cardiac output can affect downstream muscle perfusion and delivery of 

molecules. Delivery is based on muscle blood volume and blood flow velocity, and a 

detriment in cardiac output would likely cause a subsequent decrease in both. The 

compensatory mechanisms, present in the skeletal and cardiac muscle VEGF-A deficient 

mice, to maintain cardiac output are unknown and could potentially contribute to the 

peripheral impairment in insulin action. Cardiac compensation and failure is associated 

with insulin resistance. A possible mechanistic link between peripheral insulin resistance 

and cardiac adaptations are elevated catecholamine levels (168). To optimize our 

experimental setup a more specific cre-recombinase promoter could be utilized with the 

VEGF-A
lox/lox

 mice. Recently McCarthy et al. developed a cre-recombinase mouse strain 

with an inducible human α-skeletal actin promoter that is not active in cardiac muscle 

(169). This technology would permit the investigation of skeletal muscle specific 

capillary rarefaction, thus eliminating the potential confounding factor of the cardiac 

phenotype in my model. Furthermore, the inducible system more closely mimics the 

pathological state of capillary rarefaction and limits any compensatory mechanisms as the 

recombination would occur in adult animal.  
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The influence of capillary density in skeletal muscle insulin action needs further 

investigation, particularly in different physiological states. The benefits of exercise and 

lifestyle changes to obesity related insulin resistance has long been established. 

Moreover, the importance of skeletal muscle capillary supply is critical to exercise 

capacity. Exercise training induces muscle capillary expansion, which is regulated by 

muscle VEGF secretion (170). By employing our mouse model, key mechanistic links 

between exercise, capillary density, and skeletal muscle insulin action could determine 

whether the metabolic benefits of exercise in skeletal muscle are dependent on an 

augmentation of capillary density induced by VEGF. This experiment would provide 

insight into the potential efficacy of treating insulin resistance skeletal muscle with a 

vascular proliferative agent.  

Though lifestyle changes such as exercise and diet are recommended for 

treatment of obesity related metabolic disease, compliance to this prescription is low. 

There is demand for comprehensive therapeutic options to combat the low adherence to 

exercise and diet prescription to treat metabolic and vascular disorders, as these co-

morbidities associate with obesity. The pleiotropic hormone relaxin targets multiple 

physiological systems, including the vasculature and extracellular matrix, to benefit 

vascular and metabolic dysfunction present in HF-fed mice (Chapter IV). This 

physiological approach to the treatment of insulin resistance provides a novel avenue to 

investigate the potential to target the extramyocellular barriers to MGU. Our laboratory 

and others have demonstrated that genetic and pharmacological interventions targeting 

the extracellular matrix and vasculature ameliorate diet-induced insulin resistance (86, 

87, 171). 



111 

 

The hemodynamic action of relaxin is well established. The data presented in 

Chapter IV was the first to test the vascular effect in skeletal muscle. An acute 

administration in lean mice resulted in enhanced skeletal muscle perfusion and insulin-

mediated MGU. Notably, the acute vasodilatory and metabolic response to relaxin was 

absent in HF-fed mice. The complex regulation of the vasoactive response to 

pharmacological administration of relaxin converges on activation of eNOS and synthesis 

of nitric oxide (145). However, obese clinical patients and animals models have an 

impaired response to eNOS activators. This dysfunction is likely the basis of the non-

response in the acute relaxin infusion, HF-fed cohort. Importantly the chronic 

intervention with relaxin proved to be efficacious in improving vascular and metabolic 

function present in the HF-fed mice (Protocol 2; Chapter IV). The dependence on 

treatment duration is consistent with hypertensive rat models (146).  

The treatment effects of relaxin in our model were dependent on the duration of 

administration. The expansion in skeletal muscle capillary density and improvement in 

endothelial specific vasodilation, decreasing the extramyocellular delivery barrier to 

MGU, are mechanisms that require chronic relaxin exposure. The angiogenic response 

requires longer than the 6.5 h infusion duration in Protocol 1 of Chapter IV, thus the 

remodeling effects evident with long-term treatment were necessary for the outcomes in 

Protocol 2 of Chapter IV. The coupling and phosphorylation state of aortic eNOS in our 

model, surrogates for the functional state of eNOS, are unknown. The studies performed 

in Chapter IV utilized aortic ring reactivity to measure endothelial function. Aortic ring 

reactivity provides a more physiological assessment of eNOS function than the 

biochemical analysis of eNOS coupling and phosphorylation. The analysis of the 
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coupling and phosphorylation state of eNOS before and after treatment could be an 

important next step in understanding the mechanisms by which relaxin improves 

endothelial-dependent relaxation.  

The improvement in glucose flux during the insulin clamps (Protocol 2; Chapter 

IV) was not limited to skeletal muscle. Hepatic glucose production was suppressed to a 

greater extent in response to hyperinsulinemia after the 3 week relaxin treatment. This is 

an important result as hepatic insulin resistance and excessive glucose production 

contributes to the pathogenesis of type 2 diabetes. The mechanism of action for the 

enhancement in hepatic insulin action is not fully elucidated. The glucoregulatory effects 

of the relaxin intervention at the liver and skeletal muscle are likely independent 

mechanisms. The liver is composed of a highly perfused, discontinuous capillary network 

facilitating rapid and efficient exchange of hormones and macromolecules. However, the 

extracellular matrix remodeling phenotype in the liver is speculated to contribute to the 

mechanisms for the improvement in hepatic insulin action. Kang et al. has described the 

significant interaction between collagen and cell surface integrin receptors in regulating 

insulin action (87). The dichotomous action of relaxin on liver and skeletal muscle 

glucose flux highlights the pleiotropic effects of the hormone on multiple physiological 

systems. The broad actions of relaxin make it a possible candidate to treat metabolic and 

cardiovascular dysfunction induced by obesity.    

The studies performed in Chapter III and IV could have benefited from a direct 

measurement of skeletal muscle blood volume and muscle interstitial insulin 

concentration. The insulin clamp technique relies on a constant rate of insulin infusion for 

2.5 h to maintain postprandial plasma concentrations. The subsequent rise in plasma 
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insulin concentration during the clamp recruits unperfused capillaries and increases total 

limb blood flow (45, 84, 137, 141, 142, 172). Microvascular recruitment and skeletal 

muscle blood volume are affected by capillary density and the response in total limb 

blood flow is dependent on insulin induced eNOS activation (37, 44, 49, 58, 59, 67). 

Kubota et al. demonstrated in models of impaired endothelial insulin signaling and diet-

induced insulin resistance that mice have a blunted increase in muscle blood volume and 

interstitial insulin concentration during an insulin clamp (48). Notably, the detriment in 

muscle capillary blood volume, interstitial insulin, and subsequent impaired peripheral 

glucose disposal was reversed by chronic infusion of an eNOS dependent vasodilator 

(48). Moreover, insulin clamps in normal conscious dogs revealed that lymph insulin, a 

marker for the interstitial concentration, remained lower through the duration of the 

clamp at a ratio of 3:2 (28). Together these studies provide evidence for the importance of 

insulin delivery to the muscle and that impairments in the hemodynamic action of insulin 

can delay or attenuate the rise in interstitial insulin during an insulin clamp. Interstitial 

insulin more strongly correlates to the onset of peripheral glucose uptake than plasma 

insulin. One can postulate that the loss of vascular function in Chapter III may hinder the 

rise in interstitial insulin and that the gain of function in Chapter IV may have enhanced 

it.  

Skeletal muscle angiogenesis is a complexly regulated process involving several 

growth factors. The primary stimulus and driver for capillary growth and sprouting is 

VEGF. The tightly regulated process becomes abnormal in obesity and diabetic states. 

Though many report an elevation of VEGF expression in diabetes, there is a concordant 

elevation of anti-angiogenic factors such as the adipokine thrombospondin-1, 
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dysregulation of soluble VEGFR1 secretion, vasohibin-1, and impaired VEGFR2 signal 

transduction (173-175). The imbalance of pro- and anti-angiogenic factors associated 

with diabetes results in a weakened response to cardiac and peripheral ischemia that may 

culminate in heart disease, limb amputation, and other disorders. Vasoactive compounds 

that can overcome this angiogenic dysregulation may reduce mortality and morbidity 

associated with diabetes. Relaxin elevated plasma VEGF, shown in Chapter IV, and may 

switch the balance towards a pro-angiogenic environment leading to skeletal muscle 

capillary preservation and expansion. It is important to note that excessive VEGF 

signaling can be detrimental to skeletal muscle morphology. Viral delivery of VEGF in a 

rabbit model of hindlimb ischemia promoted long-term angiogenesis and increased 

muscle perfusion; however, the unregulated angiogenic stimulus induced skeletal muscle 

fibrosis and increased skeletal muscle macrophage intravasation (176). A potential 

approach to combat the aberrant angiogenesis in the setting of excessive VEGF is the co-

expression of angiopoietin-1 (ang-1). Ang-1 is critical for capillary maturation and 

integrity. The administration of VEGF and ang-1 directly into ischemic skeletal muscle 

resulted in greater collateral vessel development, capillary density, and a decrease in the 

incidence of necrosis compared with either VEGF or ang-1 alone (177). The application 

of pro-angiogenic therapeutic agents to skeletal muscle must take into account the 

coordinated regulation and maturation of capillary development. 

A contrast in circulating VEGF existed between the results of Chapter III and IV. 

The diet-induced insulin resistant mice in Chapter IV had greater plasma VEGF levels 

compared with the lean mice in Chapter III, consistent with previous investigations (175). 

The capillary rarefaction present in the muscle-specific VEGF knockout animals was 
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induced by the absence of muscle tissue VEGF expression. Tissue expression of VEGF is 

essential for normal capillary development and maintenance. The genetic deletion of 

VEGF occurred at gestational day 16. The mVEGF
-/-

 mice of Chapter III likely were born 

with fewer capillaries perfusing skeletal muscle that was conserved through adulthood. 

Interestingly there was no difference in circulating VEGF; however, there was an 

elevation in circulating VEGF after the relaxin intervention that likely contributed to the 

expansion of capillary density (Protocol 2; Chapter IV). The equivalent plasma VEGF in 

the genetic models in Chapter III provides a survival signal for the vascular networks 

present (78), whereas the increased plasma VEGF after the 3 week relaxin intervention 

provides a pro-angiogenic environment for the expansion and preservation of skeletal 

muscle capillary density in HF-fed mice. 

The transport of insulin to the skeletal muscle interstitium and the contribution of 

caveolae to capillary transendothelial transport is a poorly understood phenomenon. 

Barrett and colleagues (33, 34, 164) showed promising in vitro work indicating the 

critical role of caveolae to insulin delivery and localization of the insulin receptor within 

these microstructures of the endothelial wall. The novel aspect of the studies performed 

in Chapter V were the comparison between a lean, healthy mouse and an obese, insulin 

resistant mouse while using a perfused fixation technique to maintain in vivo capillary 

architecture. The results of Chapter V support previous in vitro work performed that 

implicated insulin resistant inducing stimuli, such as proinflammatory cytokines, to the 

blunted transport of insulin across the endothelium and the decreased expression of the 

essential protein for caveolae formation, cavoelin-1 (34). The characterization of skeletal 

muscle capillary structure and potential transport capacity is important to the 
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development and progression of the pathogenesis of skeletal muscle insulin resistance. 

Further investigation needs to corroborate the dependence of transcellular transport of 

insulin across skeletal muscle capillary endothelial cells for delivery. This is the first 

characterization of capillary caveolae content in lean and obese mice and supports the 

need for further research to the mechanism of insulin delivery.  

A strength of the work presented in this Dissertation is the emphasis on in vivo 

analyses and the use of animal models of disease. The components of insulin-mediated 

glucose and insulin delivery are impossible to examine with ex vivo and in vitro 

experimental approaches. These experiments over emphasize the role of insulin action 

specifically at the myocyte, which include the steps for glucose transport and 

phosphorylation. The current work comprehensively addresses the significant 

contribution of skeletal muscle capillary density to the etiology of insulin resistance and 

the potential for targeting the extramyocellular barriers to MGU to rescue diet-induced 

insulin resistance. The data presented is consistent with previous reports from our 

laboratory and others that demonstrate a strong relationship between capillary density and 

insulin action (53, 54, 86, 87, 171). More specifically, pharmacological and genetic 

interventions that prevent or reverse the onset of diet-induced skeletal muscle insulin 

resistance also have greater muscle capillary density.  The vasodilatory action of insulin 

and the capillary reserve present in skeletal muscle are viable treatment targets for 

skeletal muscle insulin resistance. 
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Chapter VII 

 

CONCLUSIONS AND IMPLICATIONS 

 

The data that comprise this Dissertation support the paradigm that the 

extramyocellular barriers to insulin-stimulated MGU are essential to the pathogenesis of 

insulin resistance and provide novel therapeutic targets. These barriers involve the 

physiological regulation of processes that influence hormone and substrate delivery, such 

as capillary density, vascular function, extracellular matrix remodeling, and endothelial 

caveolae density. The fundamental conclusions of the cumulative work include: capillary 

rarefaction is significant to the pathogenesis of skeletal muscle insulin resistance, the 

vasoactive and extracellular matrix remodeling hormone relaxin rescues diet-induced 

insulin resistance, and a deficiency in caveolae microstructure density is present within 

the endothelial layer of the skeletal muscle capillaries in HF-fed mice.  
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