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CHAPTER I

INTRODUCTION

The question of adaptive approximation by splines has been studied for a number of years

by various authors. The results obtained have numerous applications in computational and

discrete geometry, computer aided geometric design, finite element methods for numeri-

cal solutions of partial differential equations, image processing, and mesh generation for

computer graphics, among others.

In this dissertation we will investigate some questions of adaptive approximation by

various classes of splines (linear, multilinear, biquadratic). In particular, we will study the

asymptotic behavior of the optimal error of weighted approximation in different norms by

interpolating splines from these classes.

I.1 Main questions.

To introduce the main questions addressed in this dissertation we need the following notation

and definitions.

For simplicity, let the domain D be the unit cube [0, 1]d ⊂ R
d. However, any bounded

connected region that can be represented as a finite union of simplices (d-dimensional poly-

topes that have exactly d + 1 distinct vertices) can be treated analogously.

Let Lp(D), 1 ≤ p ≤ ∞, be the standard Lebesgue space of functions defined on D with

the usual norm ‖ · ‖p (sup-norm if p = ∞). Given a positive continuous function Ω(x) on

D define a weighted norm ‖ · ‖p,Ω as

‖f‖p,Ω :=



















(∫

D
|f(x)|pΩ(x)dx

) 1
p

, p 6= ∞;

max
x∈D

{|f(x)|Ω(x)}, p = ∞.

The purpose of introducing a weight function is to allow more control of the quality of

approximation over various regions of the domain.
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Let us consider a function f ∈ Cj(D), j ∈ N. Given a partition ♦N = {Ei}N
i=1 of the

domain D and a space of polynomials P of fixed degree define the space S(♦N ) of splines

to be

S(♦N ) := {f ∈ C(D) : ∀i = 1, ..., N ∃ pi ∈ P s.t. f |Ei
= pi}.

Let s(f,♦N ) denote the spline from S(♦N ) which interpolates the function f ∈ C(D)

at certain points (knots) associated with the partition ♦N . Depending on the particular

class of splines, various interpolation schemes are used.

Now let a function f ∈ Cj(D), j ∈ N, and a number N ∈ N of elements of partition ♦N

be fixed. Define the optimal Lp,Ω-error of the interpolation of the function f by the spline

s(f,♦N ) ∈ S(♦N ) to be

RN (f, Lp,Ω, S(♦N )) := inf
♦N

‖f − s(f,♦N )‖p,Ω.1 (1)

In this definition ♦N = {Ei}N
i=1 denotes either a simplicial partition 4N or a partition into

d-dimensional boxes �N (for precise definitions see the corresponding chapters).

A partition ♦0
N is called optimal for a given f if

‖f − s(f,♦0
N )‖p,Ω = RN (f, Lp,Ω, S(♦N )). (2)

An explicit form and the exact value of RN (f, Lp,Ω, S(♦N )), as well as the explicit

construction of the optimal partition, for every particular function f can be found only

in exceptional situations. It was shown by Below, De Loera, and Richter-Gebert in 2000

[6] that it is not possible to construct an adaptive algorithm for optimal mesh (partition)

generation that runs in polynomial time.

That is why the following two problems are interesting and important:

1. For each given function f ∈ Cj(D), j ∈ N, find the exact asymptotics of the optimal

error RN (f, Lp,Ω, S(♦N )) as N → ∞.

1In spite of the fact that the right-hand side does not depend on the partition ♦N we keep it in the

notation on the left-hand side to illustrate what class of splines and on what partitions we use at the

moment.
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2. For each given function f ∈ Cj(D), j ∈ N, find an asymptotically optimal sequence of

partitions, i.e. a sequence of partitions {♦∗
N}∞N=1 of D such that

lim
N→∞

‖f − s(f,♦∗
N )‖p,Ω

RN (f, Lp,Ω, S(♦N ))
= 1. (3)

Note that the problems formulated above are interesting for functions of arbitrary

smoothness as well as for various classes of splines (for instance, for splines of higher or-

der, interpolating splines, best approximating splines, best one-sided approximating splines,

etc.). These problems have been thoroughly investigated in the univariate setting. In the

multivariate situation, fewer results are known.

In this work we answer the above stated questions and describe the asymptotic behaviour

of the optimal error in the case of interpolation by linear, multilinear, and biquadratic

splines. The results obtained lead to algorithms for construction of the asymptotically

optimal sequences of partitions (simplicial or box partitions, respectively).

As we already mentioned, these questions are interesting, in particular because of numer-

ous applications in CAGD, adaptive mesh generation for numerical solutions of PDE, com-

putational geometry, image processing, etc.. For more details see, for example, [8, 19, 41].

I.2 Organization of material and main results obtained.

The dissertation is organized as follows. Chapter I contains an introduction with definitions

of necessary concepts, the main questions addressed, and the history of known results,

together with an overview of the results obtained.

Chapter II contains results on interpolation by the class S0
1(4N ) of linear splines on

triangulations 4N in R
2. First we consider functions with positive Hessian H(f ; x, y) :=

(fxxfyy−f2
xy)(x, y) bounded away from zero and obtain the form of the error estimate (with

a description of a constant) in the Lp case. We prove the following theorem.

Theorem. Let f ∈ C2(D), D = [0, 1]2, and H(f ; x, y) ≥ C+ > 0 for all (x, y) ∈ D.

3



Let also the positive continuous weight function Ω(x, y) be given. Then for all 1 ≤ p < ∞

lim sup
N→∞

N‖f − s(f,4N )‖p,Ω ≤
C+

p

2

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

, (4)

where

C+
p = min

T

Lp − error of linear interpolation of x2 + y2 on T

|T |1+
1
p

, (5)

and min in 5 is taken over all possible triangles T .

Moreover, for any sequence {∆N}∞N=1 of triangulations satisfying

sup
N

√
N max

T∈4N

diam(T ) < ∞ (6)

we have

lim inf
N→∞

N‖f − s(f,4N )‖p,Ω ≥
C+

p

2

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

. (7)

We then calculate the exact values of the constants C+
p in certain cases, namely in the cases

of L1, L2, and L∞ norms. In the case p = ∞ we do not need any additional assumptions

of type (6).

Moreover, in the case p = ∞ we also prove the exact asymptotics of the error of linear

interpolation for functions with negative Hessian bounded away from zero. Chapter 2 also

contains an example of an algorithm to construct an asymptotically optimal sequence of

triangulations which can be derived using our estimates. In addition, we provide one of the

most natural applications of our results on adaptive mesh generation: obtaining quadrature

formulas which are exact on piecewise linear functions corresponding to the partitions from

the asymptotically optimal sequence of partitions.

Chapter III deals with similar questions in R
d. Namely, we use the class Sd,0

1 (4N ) of

d-dimensional linear splines on simplicial partitions 4N of D to interpolate the function

f ∈ C2(D). After introducing all necessary concepts from discrete geometry and proving

auxiliary results, we arrive at the following result.

Theorem. Let f ∈ C2(D), D = [0, 1]d ⊂ R
d, and H(f ;x) := det

(

∂2f
∂xi∂xj

(x)
)

≥ C+ >

4



0 for all x ∈ D. Let also the positive weight function Ω(x) ∈ C(D) be given. Then

lim inf
N→∞

N
2
d ‖f − s(f,4N )‖∞,Ω ≤ 1

2

(

Θd

κd

)2/d(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

, (8)

where Θd is the density of the thinnest covering of R
d by balls of fixed radius, and κd is

the volume of the unit ball in R
d. Moreover, for any sequence of sets of points and the

corresponding sequence of Delaunay triangulations {4N}∞N=1 such that

sup
N

N
1
d max

T∈4N

diam(T ) < ∞ (9)

we have

lim inf
N→∞

N
2
d ‖f − s(f,4N )‖∞,Ω ≥ 1

2

(

Θd

κd

)2/d(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

. (10)

To prove these results we use the concepts of the thinnest covering of the space and

Delaunay triangulations in R
d.

In Chapter IV we consider the space BS0
1(�N ) of bilinear (linear in each variable) splines

in R
2 and questions of so-called near interpolation (when we interpolate the given function

at all but a few points) by these splines. Although the error of interpolation by linear splines

on the triangulations and the error of near interpolation by bilinear splines on rectangular

partitions have the same order, in all cases considered the constant was better for bilinear

splines in the case of interpolating functions with negative Hessian (due to the hyperbolic

nature of bilinear splines). In Chapter IV we obtain the exact asymptotics of the Lp,Ω error

in the case of approximation of C2 functions (with both positive and negative Hessian) by

near interpolating continuous splines and we compute the explicit value of the constants in

the cases p = 1, 2,∞.

Chapter V is concerned with the problem of near interpolation of multivariate functions

by splines from the class BSd,0
1 (�N ) which are linear in each variable. One of the most

interesting results obtained here is the result about a sharp constant for the interpolation

of a quadratic function in R
d which has an arbitrary signature. This is used for obtaining

the exact asympotics of the error for any C2 function whose quadratic part of the second
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degree Taylor polynomial has an arbitrary (but the same at every point of the domain)

signature. (Recall that the signature of a form is the pair of numbers which represent the

number of positive and negative coefficients in the form).

Theorem. Let f ∈ C2(D), and D = [0, 1]d ⊂ R
d. In addition, assume that at every

point x the quadratic form
d
∑

i=1

∂2f

∂x2
i

(x)h2
i has the signature (k, d − k), 0 < k < d, and

|H(f ;x)| :=

∣

∣

∣

∣

∣

d
∏

i=1

∂2f

∂x2
i

(x)

∣

∣

∣

∣

∣

≥ C+ > 0 for all x ∈ D. Let also a positive continuous weight

function Ω(x) be given. Then in the case of interpolation by multilinear splines on box

partitions in R
d we have

lim sup
N→∞

N
2
d ‖f − s(f,�N )‖∞,Ω ≤ k

k
d (d − k)1−

k
d

8

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

. (11)

Moreover, for any sequences of box partitions {�N} which satisfies

sup
N

N
1
d max

R∈�N

diam(R) < ∞ (12)

we also have the estimate from below

lim inf
N→∞

N
2
d ‖f − s(f,�N )‖∞,Ω ≥ k

k
d (d − k)1−

k
d

8

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

. (13)

A similar theorem is proved for the case k = d.

Chapter VI deals with the class QS0
1(�N ) of biquadratic splines on rectangular partitions

�N in R
2 used in the construction of the popular serendipity finite elements. We prove the

exact asymptotics of the error RN (f, Lp,Ω, QSd,0
1 (�N )). We then compute the explicit values

of the constant and provide the sketch of the explicit construction of the asymptotically

optimal sequence of rectangular partitions for cases p = 1, 2,∞.

Chapter VII is a general discussion of some potential generalizations and extensions of

the results obtained, as well as related open questions.

Each chapter contains a short introduction with necessary definitions, the history of the

particular problem considered in the chapter, and the description of the results obtained.
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I.3 History of results.

I.3.1 Univariate Case.

The problem of best approximation by variable knot univariate splines has been studied for

many years. By allowing the knots to vary, a function can be approximated much more

closely for a given number of knots. The following is a brief survey of the work on related

problems. More detailed information on this question can be found, for example, in the

book of Schumaker [47].

In 1966 Powell [42] analyzed variable knot best L2 spline approximation, and obtained

conditions for optimal knot location. Phillips in 1970 obtained error estimates for best Lp

polynomial and piecewise polynomial approximation.

Subbotin and Chernykh [48] in 1970 showed that by varying knots it is possible to

improve the order of approximation by one:

sup
x∈W r+1

L1[0,1]

inf
4n([0,1])

‖x − sr(x,4n[0, 1])‖L∞[0,1] = O

(

1

nr+1

)

where r ∈ N and sr(x,4n[0, 1]) denotes the spline of Subbotin and Chernykh on the optimal

partition. On the other hand, we have only

inf
4n([0,1])

sup
x∈W r+1

L1[0,1]

‖x − scr(x,4n[0, 1])‖L∞[0,1] = O

(

1

nr

)

as n → ∞ for splines over the uniform partition of the interval.

McClure thoroughly analyzed best L2 piecewise polynomial approximation, with exten-

sions to Lp and to spline approximation. Burchard and Hale obtained the asymptotic error

estimate for best L2 spline approximation, and analyzed the order of convergence. Barrow

and Smith obtained an asymptotic error estimate for best L2 approximation by splines, and

Pence and Smith refined these results and extended them to the Lp approximation.

Observe that all previous results are optimal for the whole class of functions, and do

not provide methods to find optimal knots for each particular function. This leads to the

question about asymptotically optimal knots.
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The first results about asymptotically optimal choice of knots for approximation of a

particular function by splines appeared for the first time in 1976. These are results of Azarin

and Barmin [1, 2], Grebennikov [29], Ligun and Storchai [36, 37]. The following theorem

combines their results and gives the exact asymptotics for the error of interpolation by

Hermite splines.

Theorem 1. Let r be odd. Let also the function x ∈ Cr+2[0, 1] be such that |x(r+1)(t)| > 0

for all t ∈ [0, 1]. Then for p ∈ [1,∞] for n → ∞

‖x − shr(x,4∗
n[0, 1]‖p = inf

4n[0,1]
‖x − shr(x,4n[0, 1]‖p(1 + o(1))

=
Cp,r,n

nr+1
‖x(r+1)‖β(1 + o(1)), (14)

where shr(x,4n[0, 1] denotes the Hermite spline over the partition 4n[0, 1], β = (r + 1 +

1
p)−1, and the constants are

Cp,r,n = {(r + 1)!−1(Γ2(p(r + 1)/2 + 1)/Γ(rp + p + 1)}1/p, when p < ∞,

and Cp,r,n =
(

(r + 1)!2r+1
)−1

, when p = ∞.

A sequence of asymptotically optimal partitions {4∗
n[0, 1]}∞n=1 can be found from the

equation
∫ t∗i,n

0
|x(r+1)(t)|βdt =

i

n

∫ 1

0
|x(r+1)(t)|βdt, i = 0, 1, ..., n.

The above theorem was proved by Azarin and Barmin [1, 2] in the case r = 1, p = 2;

by Grebennikov [27] in the case of odd r and p = 1,∞; by Ligun and Storchai [36, 37] in

general form.

To summarize let us say that in the univariate case general questions of this type have

been investigated by many authors. The results obtained in this case are more or less

complete (see, for example, [35, 47]) and have numerous applications (see, for example,

[35]).
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I.3.2 Multivariate Case.

Fewer results are known in the multivariate case.

The following classical results of L. Fejes Toth about approximation of convex bodies

by inscribed polytopes can be considered as the first result in this direction. He indicated

( [24], Ch. 5, §12) that for a body C ⊂ R
3 with boundary of differentiability class C2 and

positive Gaussian curvature KC(x, y), the distance from C to its best inscribed polytope

Pins with at most n vertices in the Hausdorff metric is

dH(C, Pn
ins) =

1 + o(1)

3
√

3

(∫

∂C
KC(x, y)1/2dσ(x, y)

)

1

n

as n → ∞, where σ is the surface area measure in R
3. He also indicated that the distance

of C to its best inscribed polytope with at most n vertices measured as the volume of the

difference between C and the polytope is

d1(C, Pn
ins) =

1 + o(1)

4
√

3

(∫

∂C
KC(x, y)1/4dσ(x, y)

)2 1

n

as n → ∞, where as above σ is the surface area measure in R
3. These formulae were

proved by Gruber in [28]. He also obtained a formula for the error in the Hausdorff metric

of approximation of convex bodies in R
d. He showed that if the body C in R

d has twice

differentiable boundary with curvature KC > 0 then

dH(C, Pn
inn) =

1 + o(1)

2

(

Θd−1

κd−1

∫

∂C
KC(x)1/2dσ(x)

)2/d 1

n
,

where Θd−1 is the minimum density of covering R
d−1 with balls of fixed radius, and κd−1 is

the (d − 1)-dimensional volume of a unit ball. In 1981 Schneider [46] proved this formula

for the case when the boundary of C is three times differentiable. Schneider and Gruber

discovered that the problem of approximation of C by inscribed polytopes with respect to dH

was intimately connected with the thinnest covering of ∂C with geodesic discs determined

by a suitable Riemannian metric on ∂C. Thus, it is related to the thinnest covering of R
d

with balls of fixed radius.
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Table 1: Previously known results in R
2

Author(s) Class Result Norm Const Wgt Alg.

Fejes Toth ’72 f ∈ C2, K > 0 asympt. Hausd. sharp no no

Nadler ’86 f ∈ C3, K > 0 asympt. L2, disc. sharp no no

D’Azevedo-Simpson ’89 quadr.,|K| > 0 local L∞ local no local

Gruber ’92 f ∈ C2, K > 0 asympt. Hausd. sharp no no

Pottmann-Hamann et al ’00 quadr.,|K| > 0 local L∞ local no yes

Huang-Sun ’03 f ∈ C2, K > 0 mesh L2 no no no

Chen ’04 f ∈ C2, K > 0 order Lp no no no

Further investigations on asymptotically optimal errors for approximation of convex

bodies by various classes of polytopes have been done by Böröczky, Ludwig, Gruber. A

survey of further results in this direction can be found in [9, 28].

In his 1986 PhD. thesis Nadler [39] solved the problem of asymptotically optimal choice

of a sequence of triangulations for approximation of C3 functions by piecewise linear splines

(which are not globally continuous) of best L2-approximation.

D’Azevedo and Simpson in 1989 [17] studied the question of triangulating a given set of

vertices for interpolation of a convex quadratic surface by piecewise linear functions. They

showed that the Delaunay triangulation will be optimal for the error in the L∞ norm. For

the error in Lp norm this fact was proved by Rippa [44]. Chen and Xu [13] generalized

this result to arbitrary dimensions. A Delaunay triangulation is therefore characterized as

the optimal triangulation for piecewise linear interpolation to an isotropic function for a

given set of points in the sense of minimizing the interpolation error in the Lp, 1 ≤ p ≤ ∞,

norm.

Later D’Azevedo [16] obtained local error estimates for functions with both positive

and negative curvature. The same estimates were later obtained by Pottmann, Hamann

et al [41] who studied the problem of optimally triangulating the plane for approximating

quadratic functions by piecewise linear functions. They obtained local estimates (which

repeated the result of D’Azevedo) and also suggested some algorithms for constructing
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function dependent triangulations of the whole domain.

Huang [32], and Huang and Sun [33] considered the problem of variational mesh adap-

tation in the numerical solutions of partial differential equations. This method utilizes

a functional (the so-called monitor function) to determine the coordinate transformation

needed for mesh generation. Using this method, they obtained asymptotic bounds on the

interpolation error estimates in L2 for adaptive meshes that satisfy regularity and equidis-

tribution conditions.

Chen proved that if f ∈ C2(D) is a strictly convex (or concave) function defined on

a bounded convex region D, and {TN} is a family of triangulations of D satisfying some

additional assumptions (most of which are either not necessary or redundant) then there

exists a constant C such that

lim
N→∞

N2/d‖f − fN
I ‖p = C‖ n

√
det H‖L pd

2p+d

, 1 ≤ p ≤ ∞,

where fN
I is a linear interpolant to f constructed on TN . Therefore, Chen in fact proved

only the order of the error, not the exact asymptotic behavior.

Table 1 summarizes major results in the direction of investigating the asymptotics of

the error of adaptive interpolation by linear functions in R
2 (a similar table for R

d will be

given in Chapter III).
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CHAPTER II

LINEAR SPLINES IN R
2

Let D = [0, 1]2 and f ∈ C2(D). Denote the Hessian of f(x, y) by

H(f ; x, y) := (fxxfyy − f2
xy)(x, y).

Observe the connection between the Hessian H(f ; x, y) and the Gaussian curvature K(x, y)

of the surface which is the graph of the function f(x, y):

K(x, y) =
H(f ; x, y)

(1 + (fx(x, y))2 + (fy(x, y))2)2
.

We shall use the following commonly accepted definition. A collection 4N = 4N (D) =

{Ti}N
i=1 of N triangles in the plane is called a triangulation of a set D provided that

1. any pair of triangles from 4N intersect at most at a common vertex or along a common

edge,

2. D = ∪N
i=1Ti.

Clearly, in the case of interpolation by linear splines, triangulations are the most natural

partitions of the domain.

Let P1 be the set of linear polynomials

p(x, y) = ax + by + c, a, b, c ∈ R.

Given a triangulation 4N define the space S0
1(4N ) of linear splines to be

S0
1(4N ) := {f ∈ C(D) : ∀i = 1, ..., N ∃ pi ∈ P1 s.t. f |Ti

= pi}.

Let s(f,4N ) denote the spline from S0
1(4N ) which interpolates the function f ∈ C(D)
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at the vertices of the triangulation 4N . Note that the linear spline s(f,4N ) is uniquely

defined by its values at the vertices of the triangulation 4N .

Now let the function f ∈ C2(D) and the number of triangles N ∈ N be fixed. Define

the optimal Lp,Ω-error of the interpolation of the function f by the continuous piecewise

linear function s(f,4N ) ∈ S0
1(4N ) to be

RN (f, Lp,Ω, S0
1(4N )) := inf

4N

‖f − s(f,4N )‖p,Ω. (15)

A triangulation 40
N is called optimal for the given function f if

‖f − s(f,40
N )‖p,Ω = RN (f, Lp,Ω, S0

1(4N )). (16)

In this chapter we will investigate the asymptotic behavior of the error of optimal inter-

polation of functions from the class C2(D) by linear splines in two cases: when the Hessian

of the given function is positive at every point of the domain and when the Hessian is

negative.

The chapter is organized as follows. In Sections II.4.1-II.4.2 we give the proof of the

following two general theorems for the weighted Lp (1 ≤ p < ∞) error for functions with

positive Hessian.

Theorem 2. Let f ∈ C2(D) and H(f ; x, y) ≥ C+ > 0 for all (x, y) ∈ D. Let also the

positive continuous weight function Ω(x, y) be given. Then for all 1 ≤ p < ∞

lim sup
N→∞

N‖f − s(f,4∗
N )‖p,Ω ≤

C+
p

2

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

, (17)

where

C+
p = min

T

Lp − error of linear interpolation of x2 + y2 on T

|T |1+
1
p

. (18)

To prove the lower bound we impose some (mild) additional restrictions which most

likely can be avoided.

Theorem 3. Let f ∈ C2(D) and H(f ; x, y) ≥ C+ > 0 for all (x, y) ∈ D. Let also the

positive continuous weight function Ω(x, y) be given. Then for all 1 ≤ p < ∞ and for any
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sequence {∆N}∞N=1 of triangulations satisfying

sup
N

√
N max

T∈4N

diam(T ) < ∞ (19)

we have

lim inf
N→∞

N‖f − s(f,4N )‖p,Ω ≥
C+

p

2

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

, (20)

where C+
p is defined in (18).

The estimate from above is contained in Section II.4.1, and the estimate from below is

in Section II.4.2. Sections II.4.3 – II.4.4 are devoted to calculating the constant C+
p for the

cases p = 1, and p = 2.

For the case p = ∞ the result is contained in the following theorem.

Theorem 4. Let f ∈ C2(D) and H(f ; x, y) ≥ C+ > 0 for all (x, y) ∈ D. Let also the

positive continuous weight function Ω(x, y) be given. Then

RN (f, L∞,Ω, S0
1(4N )) =

2(1 + o(1))

3
√

3N

∫

D

√

H(f ; x, y)Ω(x, y)dxdy, N → ∞. (21)

The proof of this theorem can be found in Section II.6.

For functions with negative everywhere Hessian we prove the following theorems in

Section II.5.

Theorem 5. Let f ∈ C2(D) and H(f ; x, y) ≤ C− < 0 for all (x, y) ∈ D. Let also

the positive continuous weight function Ω(x, y) be given. Then there exists a sequence of

triangulations {4∗
N}∞N=1 satisfying

sup
N

√
N max

T∈4∗
N

diam(T ) < ∞ (22)

such that

lim sup
N→∞

N‖f − sN (f,4∗
N )‖∞,Ω ≤ 1

2
√

5

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy. (23)
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Theorem 6. Let f ∈ C2(D) and H(f ; x, y) ≤ C− < 0 for all (x, y) ∈ D. Let also

positive continuous weight function Ω(x, y) be given. Then for any sequence of triangulations

{4N}∞N=1 satisfying (22) we have

lim inf
N→∞

N‖f − sN (f,4N )‖∞,Ω ≥ 1

2
√

5

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy. (24)

Remark 1. Assumption (22) implies avoiding anisotropic meshes (triangulations with

long and “skinny” triangles). However, such triangulations can be useful for interpolation

of certain functions. For some details on using anisotropic meshes see, for example, [44].

Remark 2. In all results here we impose certain restrictions on the Hessian. We take

it to be bounded away from zero. However, this is not a necessary assumption and can be

removed using techniques similar to those used by Böröczky in [9].

In fact, in the case when the Hessian (or curvature) equals (or is close) to zero, the plane

can be used as a local approximation for a function. In this case large elements of partition

can be used and the order of approximation will be improved (to o(N)).

Remark 3. Although all theorems above are stated for only either convex or saddle-

shaped surfaces, clearly the results can be combined (with the help of introducing a piecewise

constant weight function) to obtain exact asymptotics of the error for interpolation of more

complex surfaces (which have positive curvature on some regions, and negative curvature

on others).

Remark 4. Theorems 4-6 for the special case Ω ≡ 1 were proved in [4].

Let us describe the most essential part of obtaining estimates from above in these theo-

rems. It consists of finding an appropriate sequence of “good” triangulations of D. This is

done in the following way:

1. Divide D into a number m2
N (which is small in comparison with N) of equal subregions

DN
i . On each DN

i , instead of f , consider its Taylor polynomial PN,i of second degree

taken at the center of DN
i .

2. To find an appropriate triangulation of DN
i , first take any triangle T which solves the
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following extremal problem:

Lp − error of linear interpolation of x2 ± y2 on T

|T |1+
1
p

→ min .

The value of the minimum will provide the constant C±
p .

Then we reshape T depending on values of second derivatives of the function f at a

point of DN
i .

Moreover, we choose the size of T in such a way that the overall number nN
i of

triangles used for DN
i is such that the sum

m2
N
∑

i=1

nN
i is approximately N , and the errors

of interpolation on each DN
i are approximately equal.

3. We obtain the final triangulation of D by “gluing” together triangulations of each

region DN
i possibly subdividing (without adding new vertices) triangles which have

nonempty intersection with ∪i∂DN
i where ∂DN

i denotes the boundary of DN
i .

II.1 Basics from Differential Geometry of a surface.

In this section let us recall some notions from the differential geometry of a surface, see,

for example, [14, 20].

Let us consider the quadratic form

Q(x, y) = fxxdx2 + 2fxydxdy + fyydy2 = d2f. (25)

Let a surface z = f(x, y) and a point (x0, y0, z0) at which grad f = 0 be given (for

simplicity we suppose that the z−axis is perpendicular to the tangent plane to the surface

at (x0, y0, z0). This condition, in fact, can be removed requiring more technical details). We

define the principal curvatures of the surface at the point to be the eigenvalues of the matrix

of the quadratic form (25). (These eigenvalues are real since the matrix is symmetric).

It was shown by Gauss (see for example [20]) that the Gaussian curvature K of the

surface (which was defined earlier) is an “intrinsic” invariant of the surface, i.e. depends

only on the internal metrical properties of the surface.
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If we assume that the eigenvalues k1, k2 are distinct, then by Lemma 8.2.1 from [20]

we have that corresponding eigenvectors are perpendicular. Hence, we can replace the

coordinate system x, y by a new system x′, y′, with axes in the principal directions, obtained

from the old system by means of a rotation of the (x, y)-plane through an angle ϕ. Then

in terms of the new coordinates x′, y′, z we have

z = f(x(x′, y′), y(x′, y′)),

where

x = x′ cos ϕ + y′ sinϕ,

y = −x′ sinϕ + y′ cos ϕ.

Relative to these new coordinates, the second fundamental form (25) becomes (at the point

(x0, y0, z0))

k1(dx′)2 + k2(dy′)2. (26)

Let us also recall the classification of surfaces in R
3 depending on the sign of the Gaussian

curvature K, see [14]. When K is positive, the normal curvature (defined as the curvature

of the curve in a normal cross-section) in this case never leaves the range from k1 to k2

and has the same sign in all directions. Thus, the surface is bending away from its tangent

plane in all tangent directions. Such a surface is said to be synclastic (or “oval”). Ellipsoids,

elliptic paraboloids and hyperboloids of two sheets are everywhere synclastic. In the case

K > 0, the quadratic approximation to the surface z = f(x, y) near point (x0, y0, z0) is the

paraboloid

2z = k1x
2 + k2y

2.

When K is negative, the normal curvature changes sign twice (during the rotation of the

normal plane through a half-turn about the normal at a point); therefore, it is zero in the

directions of two special tangents, called the inflectional tangents. Clearly, in this case the

principal curvatures k1 and k2 have opposite signs. Such a surface is said to be anticlastic

(or “saddle-shaped”). Non degenerate ruled quadrics (namely, hyperbolic paraboloids and
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hyperboloids of one sheet) are everywhere anticlastic. The quadratic approximation of such

a surface near point (x0, y0, z0) is a hyperboloid.

Surfaces more complicated than quadrics may be synclastic in some regions and anti-

clastic in others. Regions of the two kinds are then separated by a locus of parabolic points,

at which K = 0.

Surfaces on which K = 0 everywhere are said to be developable. Such surfaces include

cones and cylinders, and also the surfaces traced out by the tangents of any twisted curve.

In the case when only one principal curvature is zero, the quadratic approximation is a

ruled surface. When both principal curvatures vanish the quadratic approximation reduces

simply to the plane.

II.2 An estimate for the deviation of the second degree Taylor polynomial for

C2 functions defined on [0, 1]2.

Let us define the modulus of continuity of f ∈ C2(D) as follows

ω(f, δ) := sup{|f(x, y) − f(x′, y′)| : |x − x′| ≤ δ, |y − y′| ≤ δ, (x, y), (x′, y′) ∈ D}. (27)

Set

ω1(δ) := ω(fxx, δ), ω2(δ) := ω(fxy, δ), ω3(δ) := ω(fyy, δ),

and

ω(δ) := max{ω1(δ), ω2(δ), ω3(δ)}. (28)

Lemma 1. Let f ∈ C2(D). If P2(x, y) denotes the quadratic part of the Taylor polynomial

for f at the center of a square Dh ⊂ D with side length equal to h, then we have the following

estimate

|f(x, y) − P2(x, y)| ≤ h2

2
ω

(

h

2

)

, (x, y) ∈ Dh, (29)

where ω(t) is defined in (28).
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Proof: The Taylor formula for f ∈ C2(D) about the point (x0, y0) with remainder in

the Lagrange form is given by

f(x, y) = P1(x, y) + R1(x, y), (30)

where

P1(x, y) = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

and for some 0 < θ < 1

R1(x, y) =
(x − x0)

2

2
fxx(x0 + θ(x − x0), y0 + θ(y − y0))

+ (x − x0)(y − y0)fxy(x0 + θ(x − x0), y0 + θ(y − y0))

+
(y − y0)

2

2
fyy(x0 + θ(x − x0), y0 + θ(y − y0)). (31)

We add and subtract the term

(x − x0)
2

2
fxx(x0, y0) + (x − x0)(y − y0)fxy(x0, y0) +

(y − y0)
2

2
fyy(x0, y0) (32)

to the right-hand side of (31). Then (30) can be rewritten as

f(x, y) = P2(x, y) +
(x − x0)

2

2
(fxx(x0 + θ(x − x0), y0 + θ(y − y0)) − fxx(x0, y0))

+ (x − x0)(y − y0)(fxy(x0 + θ(x − x0), y0 + θ(y − y0)) − fxy(x0, y0))

+
(y − y0)

2

2
(fyy(x0 + θ(x − x0), y0 + θ(y − y0)) − fyy(x0, y0))

= P2(x, y) + R2(x, y), (33)

where

P2(x, y) := P1(x, y) +
(x − x0)

2

2
fxx(x0, y0) + (x − x0)(y − y0)fxy(x0, y0)

+
(y − y0)

2

2
fyy(x0, y0),
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and

R2(x, y) :=
(x − x0)

2

2
(fxx(x0 + θ(x − x0), y0 + θ(y − y0)) − fxx(x0, y0))

+ (x − x0)(y − y0)(fxy(x0 + θ(x − x0), y0 + θ(y − y0)) − fxy(x0, y0))

+
(y − y0)

2

2
(fyy(x0 + θ(x − x0), y0 + θ(y − y0)) − fyy(x0, y0)).

By the triangle inequality we have

|R2(x, y)| ≤ (x − x0)
2

2
|fxx(x0 + θ(x − x0), y0 + θ(y − y0)) − fxx(x0, y0)|

+ |x − x0||y − y0||fxy(x0 + θ(x − x0), y0 + θ(y − y0)) − fxy(x0, y0)|

+
(y − y0)

2

2
|fyy(x0 + θ(x − x0), y0 + θ(y − y0)) − fyy(x0, y0)|.

|R2(x, y)| ≤ (x − x0)
2

2
ω(max{|θ(x − x0)|, |θ(y − y0)|})

+ |x − x0||y − y0|ω(max{|θ(x − x0)|, |θ(y − y0)|})

+
(y − y0)

2

2
ω(max{|θ(x − x0)|, |θ(y − y0)|}). (34)

Hence, on the square Dh with side length equal to h we have the following estimate

|f(x, y) − P2(x, y)| ≤ h2

2
ω

(

h

2

)

, (35)

and, therefore,

‖f − P2‖∞ ≤ h2

2
ω

(

h

2

)

.

�

Corollary. Under the conditions of Lemma 1 we have

‖f − P2‖p
Lp(Dh) =

∫ h

0

∫ h

0
(f(x, y) − P2(x, y))p dxdy ≤ h2‖f − P2‖p

L∞(Dh)

and, hence,

‖f − P2‖p ≤ h
2(1+ 1

p
)

2
ω

(

h

2

)

. (36)
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II.3 Preliminaries.

To investigate the asymptotic behavior of the error of the optimal piecewise linear inter-

polation of an arbitrary function from the class C2(D), D = [0, 1]2, we shall use linear

interpolation of the piecewise quadratic functions which appear as intermediate approxima-

tions of f (see the idea of the proof in the previous section).

Some of the facts we shall present in this section are quite easy to see. However, we

shall prove them, first of all for completeness, and secondly, because we shall use them in

the construction of the asymptotically optimal sequence of triangulations.

First, observe that the error of linear interpolation of a quadratic function on a triangle

is not affected by a shift of this triangle or a reflection about the midpoint of any side of

this triangle. More precisely, we have the following almost obvious lemma.

Lemma 2. For the given quadratic function

Q(x, y) = Ax2 + By2 + 2Cxy, (37)

an arbitrary triangle T , and any (a, b) ∈ R
2, the Lp-errors (1 ≤ p ≤ ∞) of linear interpo-

lation of Q(x, y) on T , (a, b) + T , and a triangle T̃ which is symmetric to T with respect to

the midpoint of any side of T , are equal.

Let LQ,T (x, y) denotes the linear function which interpolates Q(x, y) at the vertices of

the triangle T . Define

dQ,T,p := ‖Q − LQ,T ‖p.

As we already mentioned, we need to solve the problem

dQ,T,p

|T |1+
1
p

→ min, (38)

and describe those triangles T which provide the minimum in (38). Observe that such an

optimal triangle always exists.
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Lemma 3. There always exists an optimal triangle T which solves problem (38).

Proof: Observe that for any triangle T dQ,T,p is a continuous function of six variables

(vertices of triangle T ). Therefore, dQ,T,p achieves its minimum and maximum values (call

them min(d) and max(d), respectively) on the compact set which is the subset of [0, 1]6 of

vertices of all triangles T with area equal to 1. From the definition of dQ,T,p it is easy to see

that the function
dQ,T,p

|T |1+
1
p

is a homogeneous function in the sense that if we take an arbitrary

triangle T and its scaled version αT then

dQ,T,p

|T |1+
1
p

=
dQ,αT,p

|αT |1+
1
p

.

Therefore, for any triangle T , the minimum and maximum values of
dQ,T,p

|T |1+
1
p

will coincide

with min(d) and max(d), respectively. �

In Sections II.4.3-II.4.4 we shall solve problem (38) for sign definite quadratic forms, i.e.

for forms Q(x, y) such that AB − C2 > 0, and for cases p = 1, 2. The case of the uniform

norm is considered separately in Section II.6. For forms Q(x, y) with AB − C2 < 0 in case

p = ∞ the solution will be given in Section II.5.1.

Now let

Q(x, y) = Ax2 + By2 + 2Cxy (39)

be an arbitrary form such that either AB − C2 > 0 or AB − C2 < 0. Without loss of

generality we may assume A ≥ 0 (A > 0 in the case of the form with AB − C2 > 0).

First let us find the eigenvalues and eigenvectors (take the lengths of the eigenvectors

to be equal to 1) of the matrix of this quadratic form.

For eigenvalues we have

λmax =
A + B

2
+

√

(

A + B

2

)2

− (AB − C2), (40)

λmin =
A + B

2
−
√

(

A + B

2

)2

− (AB − C2). (41)

Observe that we have 0 < λmin < λmax for the form Q(x, y) with AB − C2 > 0, and
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λmin < 0 < λmax for the form Q(x, y) with AB − C2 < 0. Also note that

λminλmax = AB − C2.

Let (ξ1, ξ2) from the unit circle S
1 be an eigenvector of Q(x, y) corresponding to the

eigenvalue λmax. Then (ξ2,−ξ1) ∈ S
1 is an eigenvector corresponding to the eigenvalue

λmin. Observe that

λmax = Aξ2
1 + Bξ2

2 + 2Cξ1ξ2,

λmin = Aξ2
2 + Bξ2

1 − 2Cξ1ξ2.

We shall define the new coordinate system (x′, y′) with the help of vectors (ξ1, ξ2) and

(ξ2,−ξ1) in the following way

F1 : x′ = xξ1 + yξ2, y′ = xξ2 − yξ1. (42)

The quadratic function (39) in this new system has the form

(Q ◦ F−1
1 )(x′, y′) = λmax(x

′)2 + λmin(y
′)2. (43)

Note that the ratio
dQ,T,p

|T | does not depend on the choice of the orthogonal coordinate

system, i.e.,

dQ,T,p

|T | =
dQ,F1T,p

|F1T | .

Therefore, we shall solve the problem of minimizing
dQ,T,p

|T | in the coordinate system (x′, y′).

II.4 Functions with positive Hessian.

Let

Q(x, y) = Ax2 + By2 + 2Cxy (44)

be a sign definite form. Without loss of generality we may assume (44) to be a positive

definite form, i.e. such that A > 0 and AB − C2 > 0.

To characterize triangles T which give a solution to problem (38) let us consider the
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following linear transformation

F2 : u =
√

λmaxx
′, v =

√

λminy
′, (45)

which converts (43) to

(Q ◦ F−1
1 ◦ F−1

2 )(u, v) = u2 + v2.

Both the Lp-error of interpolation and the area of the triangle must be multiplied by the

Jacobian of the transformation, i.e. |F2T | = |T |
√

λmaxλmin and

dQ◦F−1
1 ◦F−1

2 ,(F2◦F1)T,p = dQ,T,p(λmaxλmin)
1
2p .

Observe also that

dQ,T,p

|T |1+
1
p

=
dQ◦F−1

1 ◦F−1
2 ,(F2◦F1)T,p(λmaxλmin)

1
2p

(

1√
λmaxλmin

|(F2 ◦ F1)T |
)1+ 1

p

.

Therefore, by definition of C+
p we obtain

dQ,T,p

|T |1+
1
p

≥ C+
p

√

λmaxλmin. (46)

This can be rewritten as

dQ,T,p ≥ C+
p |T |1+

1
p

√

λmaxλmin (47)

which will be used later.

In addition, we shall need the following lemma.

Lemma 4. Let us consider the collection of quadratic forms of type (44) which satisfy the

following conditions:

0 < A ≤ A+, 0 < B ≤ B+, and H = AB − C2 > C+, (48)

where A+, B+, C+ are some positive numbers. Then for any such form

λmin ≥ 1

2
(A+ + B+) −

√

(

1

2
(A+ + B+)

)2

− C+ > 0. (49)
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Proof: Due to (41) and the assumption that H = AB − C2 ≥ C+ > 0, we have

λmin =
1

2
(A + B) −

√

(

1

2
(A + B)

)2

− (AB − C2)

≥ 1

2
(A + B) −

√

(

1

2
(A + B)

)2

− C+.

Let us consider the function

g(u) = u −
√

u2 − C+, u > C+.

Differentiating we obtain

g′(u) = 1 − u√
u2 − C+

< 0.

Hence, g(u) is a decreasing function, and achieves its minimum when u is maximal. There-

fore,

λmin ≥ 1

2
(A+ + B+) −

√

(

1

2
(A+ + B+)

)2

− C+ > 0.

�

Later we shall also need the following statement which follows from Lemmas 3 and 4.

Lemma 5. For the collection of quadratic forms satisfying the assumptions of Lemma 4,

the ratio of the diameter of the optimal triangle to the square root of the area of this triangle

is uniformly bounded.

II.4.1 General form for the error of interpolation of C2 functions defined on

[0, 1]2 by linear splines. Estimate from above.

Proof of Theorem 2: For a fixed ε ∈ (0, 1) and for every N ∈ N we define

mN := min

{

m > 0 :
1

2m
2(1+ 1

p
)
ω

(

1

2m

)

≤ ε

N

}

, (50)

where ω(δ) is the function defined in (28).

Observe that clearly for mN defined in (50) it is true that mN → ∞ as N → ∞. In
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addition, note that

N

m
2(1+ 1

p
)

N

→ ∞, N → ∞, (51)

i.e. mN = o

(

N
1

2(1+ 1
p )

)

as N → ∞ and 1
N = o

(

1

m
2(1+ 1

p )

N

)

. Indeed, by the definition of mN

for all large enough N we have

N

m
2(1+ 1

p
)

N

= 2
(mN − 1)

2(1+ 1
p
)

m
2(1+ 1

p
)

N

1

ω
(

1
2(mN−1)

)

1

2

N

(mN − 1)
2(1+ 1

p
)
ω

(

1

2(mN − 1)

)

≥ ε2
(mN − 1)

2(1+ 1
p
)

m
2(1+ 1

p
)

N

1

ω
(

1
2(mN−1)

) → ∞, as N → ∞,

since
(

mN−1
mN

)2(1+ 1
p
)
→ 1 and ω

(

1
2(mN−1)

)

→ 0 as N → ∞. Hence, (51) is proved.

Divide the unit square [0, 1]× [0, 1] into squares with side length equal to 1
mN

and denote

the resulting squares by DN
i , i = 1, . . . , m2

N . Next take the center point (xN
i , yN

i ) in each

square DN
i and set

AN
i :=

1

2
fxx(xN

i , yN
i ), BN

i :=
1

2
fyy(x

N
i , yN

i ), CN
i := fxy(x

N
i , yN

i ).

Note that

H(xN
i , yN

i ) := H(f ; xN
i , yN

i ) = 4(AN
i BN

i − (CN
i )2) ≥ C+, ∀i = 1, . . . , m2

N . (52)

Set

nN
i :=

















N(1 − ε)H(xN
i , yN

i )
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

















, i = 1, ..., m2
N . (53)

The nN
i , i = 1, . . . , m2

N , are determined by minimizing the sum of the errors of the

interpolation of piecewise quadratic functions on each region, subject to the condition that

the total number of triangles is N . For that purpose we shall use the method of Lagrange
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multipliers. Let us consider

∂

∂ñi





m2
N
∑

i=1

H(xN
i , yN

i )
p

2

m
2(p+1)
N (ñN

i )p+1
ñN

i Ω(xN
i , yN

i ) + λ

m2
N
∑

i=1

ñN
i



 = 0.

This can be rewritten as

− pH(xN
i , yN

i )
p

2

m
2(p+1)
N (ñN

i )p+1
Ω(xN

i , yN
i ) + λ = 0.

Hence,

ñi =

(

pH(xN
i , yN

i )
p

2 Ω(xN
i , yN

i )

λm
2(p+1)
N

) 1
p+1

.

We shall find λ from the condition that the total number of triangles is N :

N =

m2
N
∑

i=1

ñN
i =

p
1

p+1

λ
1

p+1 m2
N

m2
N
∑

i=1

H(xN
i , yN

i )
p

2(p+1) Ω(xN
i , yN

i )
1

p+1 .

Solving for λ and plugging this value back into the expression for ñN
i , we obtain

ñN
i =

N(1 − ε)H(xN
i , yN

i )
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

.

The method of Lagrange multipliers provides only the necessary conditions for the minimum.

However, in this case the obtained ñN
i indeed provides the minimum, because it clearly does

not provide the maximum (the maximum can be explicitly constructed in a simple way)

and the minimum exists.

Observe that all nN
i → ∞ when N → ∞. This follows from the obvious estimate

nN
i ≥







N(1 − ε)(C+)
p

2(p+1) min
(x,y)∈D

{Ω(x, y)}
1

p+1

m2
N‖H‖

p

2(p+1)
∞ ‖Ω‖

1
p+1
∞






, (54)

together with (51) (since if N

m
2(1+ 1

p )

N

→ ∞ then clearly N
m2

N

→ ∞ as N → ∞), and

min
(x,y)∈D

{Ω(x, y)} > 0.
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Given nN
i for each square DN

i we construct the triangulation 4∗
N (DN

i ) of DN
i in the

following way:

1. Given the positive definite quadratic function

QN
i (x, y) = AN

i x2 + 2CN
i xy + BN

i y2

on DN
i , consider transformations FN

1,i and FN
2,i of form (42) and (45) respectively,

corresponding to the quadratic form QN
i (x, y).

2. Take an arbitrary triangle T which solves problem (38), and consider ((FN
1,i)

−1 ◦

(FN
2,i)

−1)T .

3. Define TN
i to be a rescaling of ((FN

1,i)
−1 ◦ (FN

2,i)
−1)T so that

|TN
i | =

1

m2
NnN

i

.

4. Let T̃N
i be a triangle symmetric to TN

i with respect to the midpoint of any side. Their

union is a parallelogram.

5. Cover the square DN
i with shifts of this parallelogram. We obtain the cover of DN

i by

the shifts of the triangle TN
i and its reflection T̃N

i .

6. If the intersection of DN
i and a triangle T from this cover is a triangle, call it T̃ , and

include it in 4∗
N (DN

i ).

Figure 1: If the intersection of the triangle and a region is a quadrilateral, subdivide it
without adding new vertices
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Figure 2: Subdivision of triangles on the boundary without adding new vertices

If the intersection of DN
i and a triangle T is a quadrilateral, subdivide it into triangles

without adding new vertices and include those triangles in 4∗
N (DN

i ) (see Figure 1).

We obtain the triangulation 4∗
N (D) of the whole domain D “gluing” together triangu-

lations of each region without adding new vertices (see, Figure 2). Let us show that the

triangulation 4∗
N (D) is asymptotically optimal.

Everywhere below c1, c2, . . . , stand for constants independent of N .

Let us note that since for all (x, y) ∈ D we have

0 < fxx(x, y) < ‖fxx‖∞, 0 < fyy(x, y) < ‖fyy‖∞, and H(f ; x, y) ≥ C+ > 0, (55)

by Lemma 4 and Lemma 5 there exists a constant c1 such that for any triangle TN
i we have

diam(TN
i ) ≤ c1

√

1

m2
NnN

i

.

Let us consider a c1

√

1
m2

N
nN

i

-neighborhood of the boundary of DN
i . Only those triangles

that lie completely in this neighborhood may have nonempty intersection with the boundary
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of DN
i . Therefore, if we denote their number by KN

i then

KN
i |TN

i | = KN
i

1

m2
NnN

i

≤ 8

√

1

m2
NnN

i

(

1

mN
+ 2c1

√

1

m2
NnN

i

)

.

This implies that

KN
i ≤ c2

√

nN
i .

After possible subdivision the number of triangles that have nonempty intersection with the

boundary in the triangulation of DN
i will be not greater than c3

√

nN
i with some constant

c3. Hence, the total number of triangles that have nonempty intersection with the boundary

is not greater than

c3

m2
N
∑

i=1

√

nN
i ≤ c3

m2
N
∑

i=1

√

√

√

√

√

√

√

√

N(1 − ε)H(xN
i , yN

i )
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

≤ c4

√
Nm2

N

‖H‖
p

4(p+1)
∞ ‖Ω‖

1
2(p+1)
∞

mN (C+)
p

4(p+1)

(

min
(x,y)∈D

{Ω(x, y)}
) 1

2(p+1)

≤ c5

√
NmN = o



N

3+ 1
p

2(2+ 1
p )



 ,

as N → ∞ (since mN = o

(

N
1

2(1+ 1
p )

)

as N → ∞ because of (51)).

Therefore, since 3 + 1
p ≤ 2(2 + 1

p), the number of triangles in the constructed triangula-

tion will not exceed N , for all N large enough.

Let fN denote the piecewise quadratic function constructed in the following way. On

DN
1 we set fN to be AN

1 x2 + 2CN
1 xy + BN

1 y2. Then for i > 1 on DN
i \ ∪i−1

j=1D
N
j we set

fN (x, y) := AN
i x2 + 2CN

i xy + BN
i y2.

Observe that

RN (f, Lp,Ω, S0
1(4N )) ≤ ‖f − s(f,4∗

N )‖p,Ω

≤ ‖f − fN‖p,Ω + ‖fN − s(fN ,4∗
N )‖p,Ω + ‖s(fN ,4∗

N ) − s(f,4∗
N )‖p,Ω.
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Obviously,

‖s(fN ,4∗
N ) − s(f,4∗

N )‖p,Ω ≤ ‖f − fN‖p,Ω.

Hence,

RN (f, Lp,Ω, S0
1(4N )) ≤ 2‖f − fN‖p,Ω + ‖fN − s(fN ,4∗

N )‖p,Ω.

Let us estimate each term. First of all, by the corollary of Lemma 1 and the definition of

mN we have

‖f − fN‖p,Ω ≤ ‖Ω‖
1
p
∞

2m
2(1+ 1

p
)

N

ω

(

1

2mN

)

≤ ε

N
‖Ω‖

1
p
∞.

Let us estimate the second term now. It is clear that for two embedded triangles the error of

linear interpolation of a quadratic function with H(f ; x, y) ≥ C+ > 0 is greater on the larger

triangle. Therefore, we shall estimate this error on triangles that do not have intersection

with the boundary.

Let us take a triangle TN
i ∈ 4∗

N (DN
i ) that does not have common points with the

boundary of DN
i . By (47), for every point (x, y) ∈ TN

i we have

|fN (x, y) − s(fN ,4∗
N ; x, y)|p ≤

(

C+
p

2

)p

H(xN
i , yN

i )
p/2 Ω(xN

i , yN
i )

(m2
NnN

i )p+1
.

Hence, the p-power of the error on the whole D is bounded by

|fN (x, y) − s(fN ,4∗
N ; x, y)|p ≤

(

C+
p

2

)p m2
N
∑

j=1

nN
i Ω(xN

i , yN
i )H(xN

i , yN
i )

p/2 1

(m2
NnN

i )p+1
.

By the definition of nN
i and by (54), for all large enough N , for all i, and for all (x, y) ∈ D,

we have

|fN (x, y) − s(fN ,4∗
N ; x, y)|p ≤

≤
(

C+
p

2

)p
(1 + ε)

m
2(p+1)
N

m2
N
∑

j=1

H(xN
i , yN

i )
p/2

Ω(xN
i , yN

i )















m2
N
∑

i=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

N(1 − ε)H(xN
i , yN

i )
p

2(p+1) Ω(xN
i , yN

i )
1

p+1















p

=

31



=

(

C+
p

2

)p
(1 + ε)

Npm
2(p+1)
N





m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1





p+1

.

Since this estimate does not depend on x and y, we obtain that

‖fN − s(fN ,4∗
N )‖p,Ω ≤

(1 + ε)C+
p

2N





1

m2
N

m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1





p+1
p

.

Note that since H(f ; x, y) and Ω(x, y) both are Riemann integrable

1

m2
N

m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

=

m2
N
∑

j=1

|DN
j |H(xN

j , yN
j )

p

2(p+1) Ω(xN
j , yN

j )
1

p+1 →
∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy (56)

as N → ∞. Hence, for all N large enough we obtain

‖fN − s(fN ,4∗
N )‖p,Ω <

C+
p

2N

1 + 2ε

1 − ε

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.

Therefore,

‖f − s(f,4∗
N )‖p,Ω <

2ε

N
‖Ω‖

1
p
∞ +

C+
p

2N

1 + 2ε

1 − ε

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.

Because ε > 0 is arbitrary, we obtain the desired estimate. �

II.4.2 General form for the error of interpolation of C2 functions defined on

[0, 1]2 by linear splines. Estimate from below.

In what follows, the quantities mN , nN
i , DN

i , AN
i , BN

i etc., are the same as defined in

Section II.4.1.

Proof of Theorem 3: To obtain the estimate from below we shall consider an arbitrary

sequence of triangulations {4N}∞N=1 which satisfies (22). For any ε > 0 denote by DN
i (ε)

the square congruent to DN
i with side length equal to 1−ε

m2
N

. Assumption (22) implies that
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mN = o
(√

N
)

and, hence, for all large enough N there exists a triangle TN
iN

which lies

completely in DN
i (ε).

For each N and iN , set

fN,iN (x, y) := AN
iN

x2 + 2CN
iN

xy + BN
iN

y2.

Observe that

‖f − s(f,4N )‖Lp,Ω(T N
iN

) ≥ ‖fN,iN − s(fN,iN ,4N )‖Lp,Ω(T N
iN

) − 2‖f − fN,iN ‖Lp,Ω(T N
iN

).

By (47) we have for all N large enough

‖fN,iN − s(fN,iN ,4N )‖p

Lp,Ω(T N
iN

)
≥

(1 − ε)(C+
p )p

2p(m2
NnN

iN
)p+1

H(xN
iN

, yN
iN

)
p/2

Ω(xN
iN

, yN
iN

).

By the definition of nN
iN

we have that the error on the whole D for all N large enough

satisfies

‖fN − s(fN ,4N )‖p
p,Ω ≥

m2
N
∑

i=1

(1 − ε)(C+
p )p

(m2
NnN

iN
)p+1

H(xN
i , yN

i )
p/2

Ω(xN
i , yN

i )

≥
(C+

p )p(1 − ε)

m
2(p+1)
N

m2
N
∑

i=1

H(xN
i , yN

i )
p/2

Ω(xN
i , yN

i )

















m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

N(1 − ε)H(xN
i , yN

i )
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

















p

=
(C+

p )p

(1 − ε)p−1Npm
2(p+1)
N





m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1





p+1

>
(C+

p )p(1 − ε)

Np(1 − ε)p−1

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)p+1

.

Hence, for all N large enough we obtain

‖fN − s(fN ,4N )‖p,Ω >
C+

p

2N
(1 − c6ε)

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.
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On the other hand

‖f − fN,iN ‖Lp,Ω(T N
iN

) ≤ ‖f − fN,iN ‖Lp,Ω(DN
iN

) ≤
‖Ω‖

1
p
∞

2m
2+ 1

p

N

ω

(

1

2mN

)

≤ ε

N
‖Ω‖

1
p
∞

due to the choice of mN . Hence, we obtain that for all large enough N

‖f − s(f,4N )‖p,Ω ≥ (1 − c7ε)
C+

p

2N

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

with some positive constant c7. Therefore,

lim inf
N→∞

‖f − s(f,4N )‖p,Ω

C+
p

2N

(

∫

D H(f ; x, y)
p

2(p+1) Ω(x, y)
1

p+1 dxdy
)

p+1
p

≥ 1.

This completes the proof of the theorem. �

II.4.3 Calculation of C+
2 .

In this section we shall find the solution to the following extremal problem. Let

Q(x, y) = Ax2 + By2 + 2Cxy (57)

be a sign definite quadratic form, i.e. such that AB − C2 > 0. Without loss of generality

we may take A > 0.

Let LQ,T (x, y) denote the linear function which interpolates Q(x, y) at the vertices of

the triangle T . Recall that we denoted by

dQ,T,2 := ‖Q − LQ,T ‖2 =

(∫

T
(Q(x, y) − LQ,T (x, y))2dxdy

)1/2

, (58)

and as before let |T | denote the area of triangle T . The problem is to describe those triangles

T which solve the problem

dQ,T,2

|T |3/2
→ min . (59)
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(u,h)

(−a,0) (a,0)

y=ho

x0 u x1

Figure 3: Triangle Tu

Lemma 6. For the function Q(x, y) = x2 + y2 and an arbitrary triangle T we have

dQ,T,2

|T |3/2
≥ 4√

45
.

The equality occurs if and only if T is an equilateral triangle.

Remark. By definition of C+
2 this lemma implies that

C+
2 =

4√
45

. (60)

Proof: First, let us consider the triangle Tu in Figure 1 with vertices (−a, 0), (a, 0) and

(u, h), and let us investigate how the difference between function Q(x, y) = x2 + y2 and its

interpolant LQ,Tu(x, y), denoted by

δTu(x, y) := Q(x, y) − LQ,Tu(x, y),

behaves, depending on u.

First of all, observe that the equation of the interpolant LQ,Tu(x, y) to x2 + y2 at the
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vertices of the triangle Tu is

LQ,Tu(x, y) =
1

h
(u2 + h2 − a2)y + a2. (61)

Note that it is enough to consider the behavior of the difference δTu(x, y) on the lines of

the form y = h0. The restriction of the elliptic paraboloid Q(x, y) to this line is

z(x, h0) = x2 + h2
0,

and the restriction of the interpolant LQ,Tu(x, y) to this line is

LQ,Tu(x, h0) =
1

h
(u2 + h2 − a2)h0 + a2.

The points of intersection of the line y = h0 with the sides of the triangle Tu are

(

h0

h
(u + a) − a, h0

)

,

(

h0

h
(u − a) + a, h0

)

.

For brevity, denote the x-coordinates of these points by x0(h) and x1(h), respectively.

Observe that in this notation

d2
Q,Tu,2 =

∫ h

0

∫ x1(h)

x0(h)
(δTu(x, y))2 dxdy.

Computing the square of the L2 error on y = h0, we obtain

q2(u) :=

∫ x1(h)

x0(h)
(δTu(x, h0))

2 dx =

∫ x1

x0

(

1

h
(u2 + h2 − a2)h0 + a2 − x2 − h2

0

)2

dx (62)

= 1/5

(

h0 (u − a)

h
+ a

)5

− 1/5

(

h0 (u + a)

h
− a

)5

+1/3

(

−2

(

u2 + h2 − a2
)

h0

h
− 2 a2 + 2 h0

2

)(

(

h0 (u − a)

h
+ a

)3

−
(

h0 (u + a)

h
− a

)3
)

+

(

(

u2 + h2 − a2
)

h0

h
+ a2 − h0

2

)2
(

h0 (u − a)

h
+ 2 a − h0 (u + a)

h

)

.
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The roots of the equation

d

du
q2(u) = 0

are

u1 = 0,

u2 = 1/3

√

−3 h0 (3h2h0 + 2 a2h + 3 a2h0 )

h0

,

u3 = −1/3

√

−3 h0 (3h2h0 + 2 a2h + 3 a2h0 )

h0

.

Since the only real root is u1 = 0, the minimum of the L2 error of the difference between

function and interpolant is obtained when u = 0 or, in other words, for isosceles triangle T .

Now observe that, clearly, no equilateral triangle can be optimal. For every isosceles

triangle which is not equilateral, using arguments similar to the arguments above, we can

find a triangle with the same area but on which the L2 norm of the difference will be smaller.

Next we calculate the square of the L2 error of interpolation in the case when the triangle

T is equilateral with given side length 2a (or fixed area |T |). In this case we have u = 0

and, therefore, the interpolant becomes 2
√

3a
3 y + a2 and we obtain for the error

d2
Q,T,2 =

∫

√
3a

0

∫

√
3(a−x)

√
3(a+x)

(

2√
3
ay + a2 − x2 − y2

)2

dxdy =
16
√

3

15
a6 (63)

or, in terms of the area |T | =
√

3a2,

(dQ,T,2)
2 =

16

45
|T |3.

In other words, if T is an equilateral triangle then

dQ,T,2

|T |3/2
=

4

3
√

5
.

�

Therefore, taking into consideration (47) note that we have proved the following lemma.
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Lemma 7. For the quadratic form

Q(x, y) = Ax2 + By2 + 2Cxy

such that AB − C2 > 0, and for an arbitrary triangle T we have

dQ,T,2

|T |3/2
≥ 4√

45
(AB − C2)1/2. (64)

Moreover, equality is obtained for triangles T = (F2 ◦ F1)
−1T̃ , where T̃ is an arbitrary

equilateral triangle, and only for them.

II.4.4 Calculation of C+
1 .

The result of this section will repeat the result of Fejes Toth (see Section I.3.2). However, we

shall need it later to prove the generalization of Fejes Toth’s result to the case of integration

with any positive continuous weight.

In this section we shall find the solution to the following extremal problem. Let

Q(x, y) = Ax2 + By2 + 2Cxy (65)

be a sign definite quadratic form, i.e. such that AB − C2 > 0. Without loss of generality

we may take A > 0.

As before, let LQ,T (x, y) denote the linear function which interpolates Q(x, y) at the

vertices of the triangle T . Recall the notation

dQ,T,1 := ‖Q − LQ,T ‖1 =

∫

D
|Q(x, y) − LQ,T (x, y)|dxdy, (66)

and below let |T | denote the area of the triangle T . The main goal is to find

dQ,T,1

|T |2 → min (67)

and to describe those triangles T which solve this minimization problem.
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Lemma 8. For the function Q(x, y) = x2 + y2 and an arbitrary triangle T we have

dQ,T,1

|T |2 ≥
√

3

3
.

The equality occurs if and only if T is an equilateral triangle.

Remark. From this lemma it follows that

C+
1 =

√
3

3
. (68)

Proof: First, let us consider the triangle Tu in Figure 1 with vertices (−a, 0), (a, 0) and

(u, h), and let us investigate how the difference between function Q(x, y) = x2 + y2 and its

interpolant LQ,Tu(x, y), denoted by

δTu(x, y) := Q(x, y) − LQ,Tu(x, y),

behaves, depending on u.

First of all, observe that the equation of the interpolant LQ,Tu(x, y) to x2 + y2 at the

vertices of the triangle Tu is

LQ,Tu(x, y) =
1

h
(u2 + h2 − a2)y + a2. (69)

Note that it is enough to consider the behavior of the difference δTu(x, y) on the lines

y = h0. The restriction of the elliptic paraboloid Q(x, y) to this line is

z(x, h0) = x2 + h2
0,

and the restriction of the interpolant LQ,Tu(x, y) is

LQ,Tu(x, h0) =
1

h
(u2 + h2 − a2)h0 + a2.
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The points of intersection of the line y = h0 with the sides of the triangle Tu are

(

h0

h
(u + a) − a, h0

)

,

(

h0

h
(u − a) + a, h0

)

.

For brevity, denote the x-coordinates of these points by x0(h) and x1(h), respectively.

Therefore, the value of the L1 error on y = h0 is

q(u) :=

∫ x1

x0

|δ(x, h0)|dx =

∫ x1

x0

∣

∣

∣

∣

1

h
(u2 + h2 − a2)h0 + a2 − x2 − h2

0

∣

∣

∣

∣

dx (70)

=

∫ x1

x0

(

1

h
(u2 + h2 − a2)h0 + a2 − x2 − h2

0

)

dx.

Differentiating this function of u, we obtain

d

du
q(u) =

4h0ua(h0 − h)2

h3
.

Obviously, the only solution to the equation

d

du
q(u) = 0 or

4h0ua(h0 − h)2

h3
= 0

is u = 0, and, hence, the minimum of the L1 error of the difference between function and

interpolant is obtained when u = 0 or, in other words, for isosceles triangle Tu.

Now observe that, clearly, no equilateral triangle can be optimal. For every isosceles

triangle which is not equilateral, using arguments similar to the arguments above, we can

find a triangle with the same area but on which the L1 norm of the difference will be smaller.

Next we calculate the L1 error of interpolation in the case when triangle T is equilateral

with given side length 2a (or fixed area |T |). In this case we have u = 0 and, therefore, the

interpolant becomes 2
√

3a
3 y + a2 and we obtain for the error

dQ,T,1 =

∫

√
3a

0

∫

√
3(a−x)

√
3(a+x)

(

2√
3
ay + a2 − x2 − y2

)

dxdy =
√

3a4 (71)
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or, in terms of the area |T | =
√

3a2,

1

2
dQ,T,1 =

3√
3
|T |2.

In other words, if T is an equilateral triangle then

dQ,T,1

|T |2 =
3√
3
.

�

Therefore, we have proved the following lemma.

Lemma 9. For the quadratic form

Q(x, y) = Ax2 + By2 + 2Cxy

such that AB − C2 > 0, and for an arbitrary triangle T we have

dQ,T,1

|T |2 ≥
√

3

3

√

AB − C2. (72)

Moreover, equality is obtained for triangles T = (F2 ◦ F1)
−1T̃ , where T̃ is an arbitrary

equilateral triangle, and only for them.

II.4.5 Computing constants C+
p for other values of p.

Using a method similar those described in the two previous section we can also calculate

constants for some other values of p. For example

C+
3 =

(

124

35 · 3 5
2

) 1
3

, C+
4 =

(

704

4725

) 1
4

, C+
5 =

(

256

55 · 3 7
2

) 1
5

, . . . .

However, at this point we do not have the explicit value of C+
p for an arbitrary p.
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II.5 Functions with negative Hessian and the case of the L∞,Ω norm.

Now we shall consider the quadratic form

Q(x, y) = Ax2 + By2 + 2Cxy (73)

with A ≥ 0 and AB − C2 < 0. Recall that in this case λmin < 0 < λmax.

Let us consider the following transformation

G2 : u =
√

λmaxx
′ −
√

|λmin|y′, v =
√

λmaxx
′ +
√

|λmin|y′. (74)

Under this transformation (73) becomes

(Q ◦ F−1
1 ◦ G−1

2 )(u, v) = uv.

Note that the interpolation error does not change under this transformation, but to obtain

the area of the new triangle G2T we have to multiply the area |T | by the Jacobian of the

transformation G2, i.e., |G2T | = 2
√

|λmaxλmin||T |.

As before we are interested in the problem of minimizing the ratio

dQ,T,∞
|T | , (75)

and characterizing those triangles which provide the minimum of this ratio.

Observe that for an arbitrary triangle T we have

dQ,T,∞
|T | =

dQ◦F−1
1 ,F1T,∞
|F1T | =

dQ◦F−1
1 ◦G−1

2 ,(G2◦F1)T,∞
1

2
√

|λmaxλmin|
|(G2 ◦ F1)T | . (76)

Therefore, if we denote

C−
∞ := min

T

L∞ − error of linear interpolation of uv on T

|T | (77)
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then for an arbitrary quadratic form of type (73) we have

dQ,T,∞
|T | ≥ 2C−

∞
√

|λmaxλmin|. (78)

II.5.1 Calculation of C−
∞.

We shall need the following two simple auxiliary statements.

Lemma 10. The L∞-error of interpolation of the function z = xy by a linear function on

any triangle is attained on its boundary.

Proof: For any fixed value x = x0 the function z = xy is a linear function of y:

z = x0y.

The restriction of the interpolant to this line x = x0 is also linear. Hence, their difference

is a linear function as well. Therefore, it achieves its maximal and minimal values at the

end points of the interval (which is the intersection of the triangle with the line x = x0).

This is true for any value of x0. Therefore, the maximal value of the error will be indeed

attained on the boundary of the triangle. �

Remark. Clearly, the statement of the last lemma holds for any bilinear function on a

convex set.

Lemma 11. For any triangle T there exists a shift that maps one of the vertices of the

triangle to the origin, and the remaining two to the same coordinate quadrant.

Proof: For the given triangle T let us consider the rectangle of minimal area containing

T whose sides are parallel to the coordinate axes. Because the area of the rectangle is

minimal, every side of the rectangle should contain a vertex of the triangle T , and one of

the vertices of T has to coincide with a vertex of the rectangle. This is the one that has to

be placed at the origin. Clearly, setting the sides of the rectangle that contain this vertex

on the coordinate axes, we obtain that the rectangle lies in one quadrant. �

Further, due to Lemma 2 and the fact that the error of interpolation will not change

if we take the triangle which is symmetric to the given one with respect to any coordinate
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a

b

S1 S2

S3

Figure 4: Triangle T with one vertex at the origin and corresponding areas S1, S2, and S3

axis, without loss of generality, we consider a triangle in the first coordinate quadrant.

Let us now take an arbitrary triangle T . By Lemma 11, we may take T to have one

vertex at the origin and to be inscribed in the rectangle with side length equal to a and

b. Observe that this creates three right triangles whose union forms the complement of T

with respect to the rectangle. Denote their areas by S1, S2, and S3 (see Figure 4).

Note that the error of linear interpolation on each side of triangle T is equal to the error

on the longest side of the right triangle which has this side common with T and complements

T to the rectangle. The error on the longest side of this right triangle will not change if

we place its right angle at the origin, and will be attained on its longest side (hypotenuse).

The interpolant on this triangle is zero, and it is easy to calculate the maximum of the

restriction of the function to the longest side. This shows, in particular, that the error of

linear interpolation on each side of triangle T is equal to half of the area of a right triangle

which has this side common with T and complements T to the rectangle.

Therefore, the problem of minimizing ratio (75) is equivalent to the extremal problem:

max{S1, S2, S3}
2(ab − (S1 + S2 + S3))

→ min . (79)
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The following lemma provides the solution to this problem.

Lemma 12. For an arbitrary a > 0 and b > 0, the solution to problem (79) is given by the

triangle with vertices

(0, 0) ,

(

3 −
√

5

2
a, b

)

,

(

a,
3 −

√
5

2
b

)

. (80)

Moreover, ratio (75) (and (79)) for this triangle is equal to 1
2
√

5
.

Proof: If we denote the coordinates of an arbitrary triangle T with one vertex at the

origin and the other two vertices on the sides of the rectangle with sides a and b by (x, b)

and (a, y) then (79) can be rewritten as

1

2
max

{

bx

ab − xy
,

ay

ab − xy
,
(a − x)(b − y)

ab − xy

}

→ min . (81)

We need to show that for an arbitrary triangle T , with vertices (0, 0), (x, b), and (a, y),

where x ∈ (0, a) and y ∈ (0, b), we have

1

2
max

{

bx

ab − xy
,

ay

ab − xy
,
(a − x)(b − y)

ab − xy

}

≥ 1

2
√

5
. (82)

As for the location of vertices of T the following four cases are possible:

1. x ≥ 3−
√

5
2 a, y ≥ 3−

√
5

2 b.

2. x ≤ 3−
√

5
2 a, y ≤ 3−

√
5

2 b.

3. x ≥ 3−
√

5
2 a, y ≤ 3−

√
5

2 b.

4. x ≤ 3−
√

5
2 a, y ≥ 3−

√
5

2 b.

Before we consider each case, observe that for x ∈ (0, a) and y ∈ (0, b) the function

bx
ab−xy is increasing with respect to x when y is fixed; the function ay

ab−xy is increasing with

respect to y when x is fixed; the function (a−x)(b−y)
ab−xy is decreasing with respect to x when y

is fixed and with respect to y when x is fixed.
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Case 1. Clearly, in this case we have

1

2
max

{

bx

ab − xy
,

ay

ab − xy
,
(a − x)(b − y)

ab − xy

}

≥ bx

2(ab − xy)

≥
3−

√
5

2 ab

2(ab − 3−
√

5
2 a3−

√
5

2 b)
=

1

2
√

5
.

Case 2. In this case we have

1

2
max

{

bx

ab − xy
,

ay

ab − xy
,
(a − x)(b − y)

ab − xy

}

≥ 1

2

(a − x)(b − y)

ab − xy

≥ 1

2

(a − 3−
√

5
2 a)(b − 3−

√
5

2 b)

ab − 3−
√

5
2 a3−

√
5

2 b
=

1

2
√

5
.

Cases 3 – 4. Note that it is enough to consider only one of the cases 3 and 4 because of

the symmetry. Let us choose case 3.

First of all, observe that conditions of this case imply that x
a ≥ y

b . Hence,

1

2
max

{

bx

ab − xy
,

ay

ab − xy
,
(a − x)(b − y)

ab − xy

}

=
1

2
max

{

bx

ab − xy
,
(a − x)(b − y)

ab − xy

}

.

Clearly, since the first term is increasing and the second is decreasing, the maximum value

will be greater than the value at the point where both terms are equal, i.e. when x = a(b−y)
2b−y .

This gives

1

2
max

{

bx

ab − xy
,
(a − x)(b − y)

ab − xy

}

≥
a(b−y)
2b−y

ab − a(b−y)
2b−y y

=
b(b − y)

b2 + (b − y)2
.

Note that the function u
1+u2 is increasing for any u (in our case u = b − y). Therefore, it

attains its minimum for the minimal possible value of u which corresponds to the maximal

possible value of y, that is 3−
√

5
2 b. Plugging this value in, we obtain the desired inequality.

This completes the proof of the lemma. �

With the help of Lemma 12, observations (76) and (78) we can prove the following
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lemma.

Lemma 13. For the quadratic form

Q(x, y) = Ax2 + By2 + 2Cxy (83)

with AB − C2 < 0 and an arbitrary triangle T we have

dQ,T,∞
|T | ≥

√

|AB − C2|√
5

.

The equality occurs for triangles T = (F−1
1 ◦ G−1

2 )T̄ where T̄ is an arbitrary triangle with

vertices (80) or symmetric to it with respect to any coordinate axis, and only for such

triangles.

Later in Section II.5 in the process of construction of the optimal triangulation we would

like to avoid long and skinny triangles. This can be done due to the following lemma.

Lemma 14. The parameters a and b in the triangle with vertices (80) can always be chosen

so that ratios of lengths of each side of the triangle T = (F−1
1 ◦G−1

2 )T̄ where T̄ is an arbitrary

triangle of the form (80) to the square root of the area of the triangle are all bounded.

Proof: Note that the orthogonal transformation F1 does not affect the ratios in the

statement of the lemma. Preimages of vertices (0, 0) ,
(

3−
√

5
2 a, b

)

,
(

a, 3−
√

5
2 b

)

with respect

to the transformation G2 are

A1 : = (0, 0) , (84)

A2 : =

(

1

2
√

λmax

(

3 −
√

5

2
a + b

)

,
1

2
√

|λmin|

(

b − 3 −
√

5

2
a

))

,

A3 : =

(

1

2
√

λmax

(

a +
3 −

√
5

2
b

)

,
1

2
√

|λmin|

(

3 −
√

5

2
b − a

))

,

respectively.
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Calculating the lengths of the vectors defined by these vertices, we obtain

d2
1 = ‖−−−→A1A2‖2

2 =
1

4λmax

(

3 −
√

5

2
a + b

)2

+
1

4|λmin|

(

b − 3 −
√

5

2
a

)2

, (85)

d2
2 = ‖−−−→A1A3‖2

2 =
1

4λmax

(

a +
3 −

√
5

2
b

)2

+
1

4|λmin|

(

3 −
√

5

2
b − a

)2

,

d2
3 = ‖−−−→A2A3‖2

2 =

(√
5 − 1

2

)2
(

1

4λmax
(a − b)2 +

1

4|λmin|
(a + b)2

)

.

For the area of the triangle G−1
2 T̄ we have

2S = (
−−−→
A1A2,

−−−→
A1A3) =

1

4λmax

(

3 −
√

5

2
a + b

)(

a +
3 −

√
5

2
b

)

+
1

4|λmin|

(

b − 3 −
√

5

2
a

)(

3 −
√

5

2
b − a

)

.

The following two cases are possible:

Case 1. λmax < |λmin|

Case 2. |λmin| < λmax

Observe that because the Hessian AB − C2 is bounded away from zero, both λmax and

|λmin| cannot be small.

Case 1. Let us take

a = b =
√

λmax.

For these values of parameters we have

2S ≥ 21

16

(√
5 − 1

2

)2

, d2
1 ≤ 13

2

(√
5 − 1

2

)2

, d2
2 ≤ 13

2

(√
5 − 1

2

)2

, d2
3 ≤

(√
5 − 1

2

)2

.

Hence, the corresponding ratios can be bounded from above as follows

d2
1

2S
≤ 13

168
,

d2
2

2S
≤ 13

168
,

d2
3

2S
≤ 16

21
.

Therefore, under the conditions of the Case 1 we found values of parameters a and b

such that all ratios of the lengths of each side to the square root of the area of the triangle
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are bounded. Case 2 can be considered analogously. �

II.5.2 The error of linear interpolation of C2 functions with negative Hessian.

Estimate from above.

Proof of Theorem 5: Let ε > 0 be fixed and mN be defined as in (50). Recall that we

showed in Section II.4.1 that mN = o(
√

N) as N → ∞. As before, without loss of generality

we may assume fxx(x, y) ≥ 0 for all (x, y) ∈ D.

As in Section II.4.1 we shall divide the unit square [0, 1] × [0, 1] into squares with side

length equal to 1
mN

and denote the resulting squares by DN
i , i = 1, . . . , m2

N . Next we shall

choose the center point (xN
i , yN

i ) in each square DN
i and set

AN
i :=

1

2
fxx(xN

i , yN
i ), BN

i :=
1

2
fyy(x

N
i , yN

i ), CN
i := fxy(x

N
i , yN

i ).

Note that in this case

H(xN
i , yN

i ) := H(f ; xN
i , yN

i ) = 4(AN
i BN

i − (CN
i )2) ≤ C−, ∀i = 1, . . . , m2

N . (86)

Set

nN
i :=

















N(1 − ε)
√

|H(xN
i , yN

i )|Ω(xN
i , yN

i )

m2
N
∑

j=1

√

|H(xN
j , yN

j )|Ω(xN
j , yN

j )

















, i = 1, ..., m2
N . (87)

We find ni, i = 1, ..., m2
N , by minimizing the overall L∞,Ω-error on D, i.e. by equating errors

on all regions DN
i under additional condition that the total number of knots is N :

1√
5

√

|H(xN
i , yN

i )|
m2

N ñN
i

Ω(xN
i , yN

i ) =
1√
5

√

|H(xN
1 , yN

1 )|
m2

N ñN
1

Ω(xN
1 , yN

1 ).

From this condition we can find ñN
i :

ñN
i = nN

1

√

|H(xN
i , yN

i )|Ω(xN
i , yN

i )
√

|H(xN
1 , yN

1 )|Ω(xN
1 , yN

1 )
.
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From the condition
m2

N
∑

i=1

ñN
i = N

we have

N =
ñN

1
√

|H(xN
1 , yN

1 )|Ω(xN
1 , yN

1 )

m2
N
∑

i=1

√

|H(xN
i , yN

i )|Ω(xN
i , yN

i ).

After solving this equation for ñN
1 , then substituting the result in the expression for ñN

i ,

and finally taking the integer part we obtain the formula for nN
i .

We can estimate (87) similary to (54) in the proof of Lemma 2 which will imply that all

nN
i → ∞ as N → ∞ because of (86).

Given nN
i for each region DN

i we construct a triangulation 4∗
N (DN

i ) of DN
i in the

following way:

1. Given the quadratic function

AN
i x2 + 2CN

i xy + BN
i y2 (88)

with AN
i BN

i − (CN
i )2 ≤ 0 on DN

i , let us consider transformations FN
1,i and GN

2,i of

types (42) and (74) respectively, corresponding to the quadratic form QN
i (x, y).

2. Take a triangle T with vertices as in (80) where parameters a and b are chosen de-

pending on the quadratic form QN
i (x, y) (see Lemma 14):

a = b = min
{√

λN
i,max,

√

|λN
i,min|

}

,

λN
i,max and λN

i,min are eigenvalues of QN
i (x, y).

3. Define TN
i to be a rescaling of ((FN

1,i)
−1 ◦ (GN

2,i)
−1)T so that

|TN
i | =

1

m2
NnN

i

.

4. Let T̃N
i be a triangle symmetric to TN

i with respect to the midpoint of any side. The

union of TN
i and T̃N

i is a parallelogram.
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5. Cover the square DN
i with shifts of this parallelogram. We obtain the cover of DN

i by

the shifts of the triangle TN
i and its reflection T̃N

i .

6. If the intersection of DN
i and a triangle T from this cover is a triangle, denote it T̃

and include in 4∗
N (DN

i ).

If the intersection of DN
i and a triangle T is a quadrilateral, subdivide it into triangles

without adding new vertices and include those triangles in 4∗
N (DN

i ).

Finally, the triangulation 4∗
N (D) of the whole domain D is obtained by “gluing” to-

gether the partitions 4∗
N (DN

i ) of the subdomains DN
i without adding new vertices as was

described before.

Because of Lemma 14 we have

diam(TN
i ) ≤ c8

√

1

m2
NnN

i

. (89)

Considering a c8

√

1
m2

N
nN

i

-neighborhood of the boundary of DN
i and counting the number of

triangles in it, we can show, as in II.4.1, that the number of triangles that have nonempty

intersection with the boundary does not exceed c9

√

nN
i .

Hence, in this case as well as before, the total number of triangles that have nonempty

intersection with the boundary will be o(N) as N → ∞.

Therefore, the total number of triangles in the constructed triangulation will not exceed

N for N large enough. This fact together with (89) shows that the constructed triangulation

satisfies condition (22) of Theorem 5.

Let fN denote the piecewise quadratic function constructed in the following way. On

DN
1 we set fN to be AN

1 x2 + 2CN
1 xy + BN

1 y2. Then for i = 2, . . . , m2
N on DN

i \ ∪i−1
j=1D

N
j we

set

fN (x, y) := AN
i x2 + 2CN

i xy + BN
i y2.

We observe that as in the proof of Lemma 2

‖f − s(f,4∗
N )‖∞,Ω ≤ 2‖f − fN‖∞,Ω + ‖fN − s(fN ,4∗

N )‖∞,Ω.
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Let us estimate each term. First of all, by Lemma 1 and the definition of mN we have

‖f − fN‖∞,Ω ≤ 1

2m2
N

ω

(

1

2mN

)

‖Ω‖∞ ≤ ε

N
‖Ω‖∞.

As for the second term, it is clear that for two embedded triangles the error of linear

interpolation by quadratic function with H(f ; x, y) ≤ C− < 0 is greater on the larger

triangle. Therefore, it is enough to estimate this error on triangles that do not have common

points with the boundary.

By Lemma 13 and the definition of nN
i , for every triangle TN

i ∈ 4∗
N (DN

i ) that has an

empty intersection with the boundary and for all large enough N we have

|fN (x, y) − s(fN ,4∗
N ; x, y)|Ω(x, y) ≤ ‖fN (x, y) − s(fN ,4∗

N )‖L∞,Ω(T N
i )

=
1

2
√

5

√

|H(xN
i , yN

i )|Ω(xN
i , yN

i )

m2
NnN

i

≤ 1

2
√

5

1

m2
N

√

|H(xN
i , yN

i )|Ω(xN
i , yN

i )(1 + ε)

m2
N
∑

j=1

√

|H(xN
j , yN

j )|Ω(xN
j , yN

j )

N(1 − ε)
√

|H(xN
i , yN

i )|Ω(xN
i , yN

i )

=
1 + ε

2
√

5N(1 − ε)m2
N

m2
N
∑

j=1

√

|H(xN
j , yN

j )|Ω(xN
j , yN

j ).

Note that

1

m2
N

m2
N
∑

j=1

√

|H(xN
j , yN

j )|Ω(xN
j , yN

j ) =

m2
N
∑

j=1

|DN
j |
√

|H(xN
j , yN

j )|Ω(xN
j , yN

j )

→
∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy

as N → ∞.

Hence, for all N large enough we obtain

‖fN − s(fN ,4∗
N )‖∞,Ω <

1

2
√

5N

1 + 2ε

1 − ε

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy.

52



Therefore,

‖f − s(f,4∗
N )‖∞,Ω <

2ε

N
‖Ω‖∞ +

1

2
√

5N

1 + 2ε

1 − ε

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy.

Because ε > 0 is arbitrary we obtain the desired estimate

lim sup
N→∞

‖f − s(f,4∗
N )‖∞,Ω

1
N

1
2
√

5

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy
≤ 1

which completes the proof. �

II.5.3 The error of linear interpolation of C2 functions with negative Hessian.

Estimate from below.

In this section all quantities mN , DN
i , nN

i , AN
i etc. are as defined in the previous sections.

Proof of Theorem 6: To prove Theorem 6 we shall consider an arbitrary sequence of

triangulations {4N}∞N=1 which satisfies (22).

Assumption (22) insures that for an arbitrary fixed ε ∈ (0, 1) and for large enough N

there exists a triangle TN
iN

from the triangulation 4N which lies completely in DN
iN

with

area greater than (1 − ε) 1
m2

N
nN

iN

which lies completely in DN
iN

.

Now for each such N and iN let

fN,iN (x, y) := AN
iN

x2 + 2CN
iN

xy + BN
iN

y2.

Observe that

‖f − s(f,4N )‖L∞,Ω(T N
iN

) (90)

≥ ‖fN,iN − s(fN,iN ,4N )‖L∞,Ω(T N
iN

) − 2‖f − fN,iN ‖L∞,Ω(T N
iN

).

By Lemma 13, we have

‖fN,iN − s(fN,iN ,4N )‖L∞,Ω(T N
iN

) ≥
1

2
√

5

√

|H(xN
iN

, yN
iN

)|Ω(xN
iN

, yN
iN

)

m2
NnN

iN

(1 − ε).
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Clearly, since |H(f ; x, y)| is an integrable function, we have as before

√

|H(xN
iN

, yN
iN

)|Ω(xN
iN

, yN
iN

)

m2
NnN

iN

≥

√

|H(xN
iN

, yN
iN

)|Ω(xN
iN

, yN
iN

)

m2
N

m2
N
∑

j=1

√

|H(xN
j , yN

j )|Ω(xN
jN

, yN
jN

)

N(1 − ε)
√

|H(xN
iN

, yN
iN

)|Ω(xN
iN

, yN
iN

)

=
1

m2
NN(1 − ε)

m2
N
∑

j=1

√

|H(xN
j , yN

j )|Ω(xN
jN

, yN
jN

) ≥ 1

N

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy

as N → ∞. Therefore, for all large enough N





√

|H(xN
iN

, yN
iN

)|Ω(xN
iN

, yN
iN

)

m2
NnN

iN



 /

(

1

N

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy

)

> 1.

Hence, for all large enough N we obtain

‖fN,iN − s(fN,iN ,4N )‖L∞,Ω(T N
iN

) ≥ (1 − ε)
1

2
√

5N

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy.

On the other hand

‖f − fN,iN ‖L∞,Ω(T N
iN

) ≤ ‖f − fN,iN ‖L∞,Ω(DN
iN

) ≤
1

2m2
N

ω

(

1

mN

)

‖Ω‖∞ ≤ ε

N
‖Ω‖∞

due to the choice of mN . Hence, combining these two estimates with (90) we obtain that

for all large enough N

‖f − s(f,4N )‖∞,Ω ≥ (1 − c10ε)
1

2
√

5N

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy.

Therefore,

lim inf
N→∞

‖f − s(f,4N )‖∞,Ω

1
N

1
2
√

5

∫

D

√

|H(f ; x, y)|Ω(x, y)dxdy
≥ 1,

which completes the proof of Theorem 6. �

II.6 The L∞-error of interpolation of C2 functions with positive Hessian.

In this section all quantities mN , DN
i , nN

i , AN
i etc. are as defined in the Section II.4.1.
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T

Figure 5: Chebyshev circle of the triangle T

II.6.1 Calculation of C+
∞.

Lemma 15. For the function

Q(x, y) = x2 + y2,

and an arbitrary triangle T

dQ,T,∞
|T | ≥ 4

3
√

3
. (91)

Equality occurs only in the case when T is an arbitrary equilateral triangle.

Remark. This lemma implies that

C+
∞ =

4

3
√

3
. (92)

Proof: Let T be an arbitrary triangle, let O be its Chebyshev center (which coincides

with the center of the circumscribed circle if the center belongs to a triangle, and is the

midpoint of the longest side if the center does not belong to a triangle), and let R be its

Chebyshev radius. Observe that T is contained in the circle (call it ST ) centered at O with

radius R. The error of linear interpolation of Q(x, y) on T is equal to R2. Clearly, the

ratio in (38) will decrease if instead of T we consider the triangle which contains T and

has all vertices on the circle ST (the error does not change, but the area increases). As is
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well known, the equilateral triangle has the largest area among all triangles inscribed in a

circle. Hence, in this case, equilateral triangles and only they solve problem (38). It is easy

to calculate that the ratio of the left-hand side of (91) for an equilateral triangle is equal to

4
3
√

3
. �

Taking into consideration (46), note that we have proved the following lemma.

Lemma 16. For the quadratic form

Q(x, y) = Ax2 + By2 + 2Cxy (93)

such that AB − C2 > 0, and for an arbitrary triangle T we have

dQ,T,∞
|T | ≥ 4

√
AB − C2

3
√

3
.

Equality occurs for triangles T = (F−1
1 ◦F−1

2 )T̄ , where T̄ is an arbitrary equilateral triangle,

and only for them.

II.6.2 Estimates of the error.

In this section we shall provide the proof of Theorem 4. The upper bound for the error is

in the following lemma.

Lemma 17. Let f ∈ C2(D) and H(f ; x, y) ≥ C+ < 0 for all (x, y) ∈ D. Let also the

positive continuous weight function Ω(x, y) be given. Then

lim sup
N→∞

N‖f − sN (f,4N )‖∞,Ω ≤ 2

3
√

3

∫

D

√

H(f ; x, y)Ω(x, y)dxdy. (94)

The proof of the upper bound is very similar to the proof of Theorem 5, so we shall

not provide it here. However, the lower bound can be proven without any additional

assumptions on the triangulations. Namely we can prove the following lemma.

Lemma 18. Let f ∈ C2(D) and H(f ; x, y) ≥ C+ < 0 for all (x, y) ∈ D. Let also the
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positive continuous weight function Ω(x, y) be given. Then

lim inf
N→∞

N‖f − sN (f,4N )‖∞,Ω ≥ 2

3
√

3

∫

D

√

H(f ; x, y)Ω(x, y)dxdy. (95)

For the proof of this lemma we shall need some auxiliary results.

Lemma 19. If H(f ; x, y) ≥ C+ > 0 for all (x, y) ∈ [0, 1]× [0, 1], then the second derivative

of f ∈ C2(D) in any direction ξ = (ξ1, ξ2), ξ2
1 + ξ2

2 = 1, is also bounded away from 0.

Proof: For an arbitrary point (x, y) we have

∂2f

∂ξ2
(x, y) = fxx(x, y)ξ2

1 + 2fxy(x, y)ξ1ξ2 + fyy(x, y)ξ2
2 . (96)

Let us consider the matrix of this form

M = M(x, y) :=







fxx(x, y) fxy(x, y)

fxy(x, y) fyy(x, y)







so that

∂2f

∂ξ2
(x, y) = (ξ, M(x, y)ξ) = (ξ, Mξ) .

As is known (see, for instance, [5]), for eigenvalues of this matrix λmin < λmax, we have

λmax = max
ξ

(ξ, Mξ)

(ξ, ξ)
,

and

λmin = min
ξ

(ξ, Mξ)

(ξ, ξ)
.

Observe that coefficients of form (96) are satisfying the assumptions of Lemma 4 because

of (55).

Therefore, if ξ belongs to the unit sphere S
1 then by Lemma 4 we obtain

(ξ, M(x, y)ξ) ≥ λmin ≥
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≥ 1

2
(‖fxx‖∞ + ‖fyy‖∞) −

√

(

1

2
(‖fxx‖∞ + ‖fyy‖∞)

)2

− C+ > 0.

This implies that in any direction ξ the derivative ∂2f
∂ξ2 is bounded away from zero. �

Lemma 20. Let f ∈ C2[0, h] be such that f ′′(x) ≥ c > 0 for all x ∈ [0, h]. Let l(f, x) be a

linear function which interpolates f at the end points 0 and h. Then

‖f − l(f)‖∞ ≥ c
h2

4
.

Proof: Let p(x) = cx2

2 . First of all, let us show that for all x ∈ [0, h]

l(f, x) − f(x) ≥ l(p, x) − p(x).

Assume, to the contrary, that there exists x0 such that

l(f, x0) − f(x0) ≤ l(p, x0) − p(x0).

Consider the difference

δ(x) := l(f, x) − f(x) − (l(p, x) − p(x)).

Clearly, we have δ(0) = δ(h) = 0 and δ(x0) < 0. By Rolle’s theorem this implies that there

exist points x1 ∈ [0, x0) and x2 ∈ (x0, h] such that δ′(x1) < 0 and δ′(x2) > 0. Therefore,

there is a point x3 ∈ (x1, x2) such that δ′′(x3) = −f ′′(x3) + c > 0, i.e. f ′′(x3) < c and we

obtain a contradiction with the assumption of the lemma.

Now calculating the maximum of the difference between p(x) and l(p, x) which interpo-

lates p(x) at 0 and h, we obtain the desired estimate. �

Proof of Lemma 18: To obtain the estimate from below we shall consider an arbitrary

sequence of triangulations {4N}∞N=1.

The following two cases are possible:

Case 1. L := lim sup
N→∞

max
i

diam(TN
i )

1/mN
> 0.
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Case 2. max
i

diam(TN
i ) = o

(

1

mN

)

when N → ∞.

In the first case for any 0 < ε < L there exists a sequence {Nk}, Nk → ∞ as k → ∞,

and a sequence of triangles {TNk

ik
}, TNk

ik
∈ 4(DNk

Nk
), such that

diam (TNk

ik
)

1/mNk

> L − ε.

On every such triangle TNk

ik
the deviation of the interpolant from the function will be not less

than the deviation of the interpolant from the function on the longest side of the triangle.

Taking into consideration the boundedness away from zero of the second derivative of f in

any direction and using Lemma 20 we obtain that there exists a constant c6 such that

‖f − s(f,4Nk
)‖∞ ≥ c6

1

m2
Nk

.

Observe that

‖f − s(f,4Nk
)‖∞

1
Nk

≥ c6
Nk

m2
Nk

.

Recall that Nk

m2
Nk

→ ∞ as k → ∞, hence,

‖f − s(f,4Nk
)‖∞

1
Nk

→ ∞

as k → ∞, so that triangulations satisfying the conditions of Case 1 provide a large error

of interpolation and cannot be asymptotically optimal.

Next, we shall consider Case 2. Let ε > 0 be fixed. We shall estimate the sum of the

areas of triangles in the triangulation 4N that have common points with the union of the

boundaries of DN
i , i = 1, . . . , m2

N .

The sum of these areas will not exceed

4(mN + 1)max
i

diam(TN
i ) = 4(mN + 1)o

(

1

mN

)

= o(1),

as N → ∞.

We shall show that under the conditions of Case 2, for all large enough N there is
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a triangle TN
iN

in the region DN
iN

from the triangulation 4N with area greater than (1 −

ε) 1
m2

N
nN

iN

. Indeed, if for some subsequence Nk → ∞ all triangles in each DN
i , i = 1, . . . , m2

Nk
,

have area that does not exceed (1 − ε) 1

m2
Nk

n
Nk
i

, then their sum will not exceed

m2
Nk
∑

i=1

nNk

i (1 − ε)
1

m2
Nk

nNk

i

= 1 − ε.

But this contradicts the fact that the sum of the areas of all triangles that have nonempty

intersection with the union of boundaries DNk

i is o(1) as N → ∞.

For each such N and iN , set

fN,iN (x, y) := AN
iN

x2 + 2CN
iN

xy + BN
iN

y2.

Observe that

‖f − s(f,4N )‖L∞,Ω(T N
iN

) ≥ ‖fN,iN − s(fN,iN ,4N )‖L∞,Ω(T N
iN

) − 2‖f − fN,iN ‖L∞,Ω(T N
iN

).

By Lemma 15, we have

‖fN,iN − s(fN,iN ,4N )‖L∞,Ω(T N
iN

) ≥
2

3
√

3

√

H(xN
iN

, yN
iN

)Ω(xN
iN

, yN
iN

)

m2
NnN

iN

(1 − ε).

By definition of nN
iN

we have that for all N large enough

√

H(xN
iN

, yN
iN

)Ω(xN
iN

, yN
iN

)

m2
NnN

iN

≥

√

H(xN
iN

, yN
iN

)

m2
N

m2
N
∑

j=1

√

H(xN
j , yN

j )Ω(xN
j , yN

j )

N(1 − ε)
√

H(xN
iN

, yN
iN

)Ω(xN
iN

, yN
iN

)

=
1

m2
NN(1 − ε)

m2
N
∑

j=1

√

H(xN
j , yN

j )Ω(xN
j , yN

j ) >
1

N

∫

D

√

H(x, y)Ω(x, y)dxdy.

Hence, for all large enough N we obtain

‖fN,iN − s(fN,iN ,4N )‖L∞,Ω(T N
iN

) ≥ (1 − ε)
2

3
√

3N

∫

D

√

H(x, y)Ω(x, y)dxdy.
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On the other hand

‖f − fN,iN ‖L∞,Ω(T N
iN

) ≤ ‖f − fN,iN ‖L∞,Ω(DN
iN

) ≤
‖Ω‖∞
2m2

N

ω

(

1

2mN

)

≤ ε

N
‖Ω‖∞

due to the choice of mN . Hence, we obtain that for all large enough N

‖f − s(f,4N )‖∞,Ω ≥ (1 − c̃ε)
2

3
√

3N

∫

D

√

H(x, y)Ω(x, y)dxdy

with some positive constant c̃. Therefore,

lim inf
N→∞

‖f − s(f,4N )‖∞,Ω

2
3
√

3
1
N

∫

D

√

H(x, y)Ω(x, y)dxdy
≥ 1.

This completes the proof of the lemma. �

II.7 Algorithms.

In this section we shall provide an example of an algorithm for the construction of the

asymptotically optimal sequence of triangulations for a spline interpolation. We shall also

discuss the question of optimality of the presented algorithm.

We restrict ourselves to the case of functions with positive Hessian. Algorithms for

functions with negative Hessian can be developed analogously.

There are two main questions in the problem of constructing an algorithm:

1. Given a precision ε, design an algorithm which provides this precision.

In this section, in particular, we shall show why and in what sense our algorithm is

optimal.

2. Given number N of elements of the parition (or number of measurements), construct

an algorithm, which places these elements in an optimal way, and compute the error.

The answer to this question was already given in Sections II.4.1–II.4.2 and will be recalled

in this section as well.

To develop an algorithm we have to impose some additional (not too restrictive) smooth-

ness assumptions on the function. Namely, we need to assume that f ∈ C2+α(D), α ∈ (0, 1],
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where

C2+α(D) := {f ∈ C2(D) : ω(t) ≤ Kf tα}, (97)

where Kf is some positive constant and the modulus of continuity ω(t) is defined in (28).

Observe that for functions from this class Lemma 1 can be restated as follows.

Lemma 21. Let f ∈ C2+α(D). If P2(x, y) denotes the quadratic part of Taylor polynomial

for f at the center of a square with side length equal to h, then in this square the following

estimate holds:

|f(x, y) − P2(x, y)| ≤ 2Kf

(

h

2

)2+α

. (98)

For simplicity we take the weight function Ω(x, y) ≡ 1.

Let δ > 0 and precision ε > 0 be given. Taking δ in the place of ε in the proof of

Theorem 2, we obtain after carrying out all the necessary constructions and computations

(see, Section II.4.1) that for all N large enough

RN (f, Lp, S
0
1(4N )) = ‖f − s(f,4∗

N )‖p <
2δ

N
Kf +

K+
p

N

1 + 2δ

1 − δ
, (99)

where

K+
p :=

C+
p

2

(∫

D
H(f ; x, y)

p

2(p+1) dxdy

)
p+1

p

.

Given the precision ε > 0 we set

2δ

N
+

K+
p

N

1 + 2δ

1 − δ
= ε. (100)

Solving this equation for N we obtain

N =
2K+

p δ + K+
p + 4δ − 4δ2

2ε(1 − δ)
=

K+
p

ε

(

1 +

(

2

K+
p

+ 2

)

δ

)

=
K+

p

ε
(1 + kδ). (101)

Therefore, we define the number of triangles to be

N0 :=

[

2K+
p δ + K+

p + 4δ − 4δ2

2ε(1 − δ)

]

+ 1. (102)
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Next we choose mN0 which is the linear size (the length of a side) of the initial grid for D.

It is sufficient to take

mN0 :=

[

(

N0

4ε

) 1

3(1+ 1
p )

]

. (103)

Divide the unit square [0, 1]×[0, 1] into squares with side length equal to 1
mN0

and denote

the resulting squares by DN0
i , i = 1, . . . , m2

N0
. Next we take the center point (xN0

i , yN0
i ) in

each square DN0
i , and set

AN0
i :=

1

2
fxx(xN0

i , yN0
i ), BN0

i :=
1

2
fyy(x

N0
i , yN0

i ), CN0
i := fxy(x

N0
i , yN0

i ) (104)

and

H(xN0
i , yN0

i ) := H(f ; xN0
i , yN0

i ) = 4
(

AN0
i BN0

i − (CN0
i )2

)

, ΩN0
i := Ω(xN0

i , yN0
i ).

Set the number of triangles to be

nN0
i :=



















N0(1 − ε)H(xN0
i , yN0

i )
p

2(p+1)

m2
N0
∑

j=1

H(xN0
j , yN0

j )
p

2(p+1)



















, i = 1, ..., m2
N0

. (105)

Given a number of triangles nN0
i for each region DN0

i , i = 1, ..., m2
N0

, we construct a trian-

gulation of DN0
i as described in the proof of Lemma 2.

By fN0 denote the piecewise quadratic function constructed in the following way. On

DN0
1 we set fN0 to be AN0

1 x2 + 2CN0
1 xy + BN0

1 y2. Then for i > 1 on DN0
i \ ∪i−1

j=1D
N0
j we set

fN0(x, y) := AN0
i x2 + 2CN0

i xy + BN0
i y2.

By the choice of N0 we have

RN (f, Lp, S
0
1(4N )) < ε,

and, hence, for the given precision ε > 0 we gave an algorithms to construct a sequence
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of triangulations which provides this precision. This algorithm is optimal in the following

sense. In (101) we observed that

N ≈ K̃

ε
(1 + kδ), k > 0.

If instead we take

N ≈ K̃

ε
(1 − lδ), l > 0,

then from the estimate from below (see the proof of Lemma 2) it will follow that for all

N ≥ N0

RN (f, Lp, S
0
1(4N )) ≥ (1 − c7)

K̃
K̃
ε (1 − lδ)

=
1 − c7δ

1 − lδ
ε > ε

for l ≥ c7, and, therefore, we will not obtain the desired precision ε. This answers the

question in what sense the described algorithm is optimal.

II.8 Applications to quadrature formulae.

One of the most natural applications of adaptive choice of knots is to design quadrature

formulae which are optimal on the class of functions we consider and exact on a certain

subset of it.

In this section we shall give a rule for computing an integral of an arbitrary function

f ∈ C2(D), such that its Hessian H(f ; x, y) is positive and bounded away from zero, with

positive weight Ω ∈ C(D), and obtain the estimate for the error. For convenience, in this

section we take N to be the number of vertices.

Any triangulation generates a quadrature formula which is exact on the piecewise linear

functions corresponding to this particular partition. To introduce the formula we shall first

take an asymptotically optimal triangulation 4∗
N constructed in Section II.4.1 and define

the following functions. Let l4∗
N

,i be the linear spline defined on 4∗
N which interpolates 1

at the vertex vN
i , i = 1, . . . , N , and interpolates 0 at the rest of vertices. Set

c4∗
N

,i =

∫

D
l4∗

N
,i(x, y)Ω(x, y)dxdy, (106)

64



where TN
i ∈ 4∗

N . Define the quadrature formula for a function f ∈ C2(D) to be

Q(f,4∗
N ) :=

N
∑

i=1

c4∗
N

,if(vN
i ). (107)

Denote by

E(f,4∗
N ) :=

∣

∣

∣

∣

Q(f,4∗
N ) −

∫

D
f(x, y)Ω(x, y)dxdy

∣

∣

∣

∣

.

We have the following estimate:

E(f,4∗
N ) :=

∣

∣

∣

∣

Q(f,4∗
N ) −

∫

D
f(x, y)Ω(x, y)dxdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

c4∗
N

,if(vN
i ) −

∫

D
f(x, y)Ω(x, y)dxdy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

(∫

D
l4∗

N
,i(x, y)Ω(x, y)dxdy

)

f(vN
i ) −

∫

D
f(x, y)Ω(x, y)dxdy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

D

(

N
∑

i=1

l4∗
N

,i(x, y)f(vN
i ) − f(x, y)

)

Ω(x, y)dxdy

∣

∣

∣

∣

∣

Observe that
N
∑

i=1

l4∗
N

,i(x, y)f(vN
i ) is a spline sN (f) which interpolates f at the vertices of

triangulation 4∗
N . Hence,

E(f,4∗
N ) ≤ ‖Ω‖1/p

p RN (f, Lp,Ω, S0
1(4N )).

Using Theorems 2-4, we can rewrite it in the form

E(f,4∗
N ) ≤ ‖Ω‖1/p

p

C+
p

2N

(∫

D
H(f ; x, y)

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.

In cases p = ∞, p = 1, and p = 2 we can provide explicit constants due to Lemmas 15, 6,

and 8.
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CHAPTER III

LINEAR SPLINES IN R
d

Let D = [0, 1]d and f ∈ C2(D). In this chapter we shall give the exact asymptotics of the

uniform error of optimal linear spline interpolation in R
d. More precisely, if by Sd,0

1 (4N )

we denote the space of d-dimensional linear splines, then the problem is to investigate the

asymptotic behavior of the optimal error RN (f, L∞,Ω, Sd,0
1 (4N )), where 4N is a simplicial

partition of D.

For the given function f ∈ C2(D) and x ∈ R
d define the Hessian

H(f ;x) := det

(

∂2f

∂xi∂xj
(x)

)

, i, j = 1, . . . , d.

The main results of this chapter are in the following two theorems.

Theorem 7. Let f ∈ C2(D), D = [0, 1]d ⊂ R
d, and H(f ;x) ≥ C+ > 0 for all x ∈ D. Let

also positive weight function Ω(x) ∈ C(D) be given. Then

lim inf
N→∞

N
2
d ‖f − s(f,4N )‖∞,Ω ≤ 1

2

(

Θd

κd

)2/d(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

, (108)

where Θd is the density of the thinnest covering of R
d by balls of fixed radius, and

κd =
πd/2

Γ(d
2 + 1)

(109)

is the volume of the unit ball in R
d.

Theorem 8. Let f ∈ C2(D), where D = [0, 1]d ⊂ R
d, and H(f ;x) ≥ C+ > 0 for all x ∈ D.

Let also positive weight function Ω(x) ∈ C(D) be given. Then for any sequence of sets of

points and a corresponding sequence of Delaunay triangulations of D {4N}∞N=1 satisfying

sup
N

N
1
d max

T∈4N

diam(T ) < ∞ (110)
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we have

lim inf
N→∞

N
2
d ‖f − s(f,4N )‖∞,Ω ≥ 1

2

(

Θd

κd

)2/d(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

, (111)

where Θd is the density of the thinnest covering of R
d by balls of fixed radius, and and κd

is the volume of the unit ball in R
d.

After providing the necessary background in Sections III.1 – III.3, in Section III.4 we give

the upper bound for the asymptotics of the error. To describe the sequence of asymptotically

optimal simplicial partitions we use the thinnest coverings of R
d by balls of certain fixed

radius and the corresponding (to centers of balls providing the thinnest covering) Delaunay

triangulations. In Section III.6 we discuss the lower bound. Since for the cases d = 2, 3, 4, 5

the lattice covering density is known, in III.8 we restrict ourselves to considering the thinnest

covering only by the lattice arrangements of balls, which enables us to provide explicit

constants in certain cases.

III.1 An estimate for the deviation of the second degree Taylor polynomial

for C2 functions defined on [0, 1]d.

Let us define the modulus of continuity of f ∈ C2(D), D ∈ R
d, as

ω(f, δ) := sup{|f(x) − f(x′)| : |x − x′| ≤ δ, x,x′ ∈ D ⊂ R
d}, (112)

where |x| := max
1≤i≤d

|xi| for x ∈ R
d.

Set

ωij(δ) := ω(fxixj
, δ), i, j = 1, . . . , d,

and

ω(δ) := max
1≤i,j≤d

{ωij(δ)}. (113)

Lemma 22. Let f ∈ C2(D). If P2(x) denotes the quadratic Taylor polynomial for f at the

center x0 of a cube Dh ⊂ D in R
d with side length equal to h, then we have the following
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estimate:

|f(x) − P2(x)| ≤ d2

2

(

h

2

)2

ω

(

h

2

)

, x ∈ Dh, (114)

where ω(t) is defined at (113).

Proof: The Taylor formula for f ∈ C2(D) about point x0 ∈ R
d with remainder in the

Lagrange form is

f(x) = P1(x) + R1(x), (115)

where P1(x) = f(x) +

d
∑

i=1

fxi
(x)(xi − xi0) and

R1(x) =
1

2

d
∑

i=1

d
∑

j=1

fxixj
(x + θ(x − x0))(xi − xi0)(xj − xj0), θ ∈ (0, 1). (116)

We add and subtract the term

1

2

d
∑

i=1

d
∑

j=1

fxixj
(x)(xi − xi0)(xj − xj0)

to the right-hand side of (116). Then (115) can be rewritten as

f(x) = P2(x) + R2(x), (117)

where

P2(x) := P1(x) +
1

2

d
∑

i=1

d
∑

j=1

fxixj
(x)(xi − xi0)(xj − xj0)

and

R2(x) :=
1

2

d
∑

i=1

d
∑

j=1

(

fxixj
(x + θ(x − x0)) − fxixj

(x)
)

(xi − xi0)(xj − xj0)

By the triangle inequality we have

|R2(x)| ≤ 1

2

d
∑

i=1

d
∑

j=1

∣

∣fxixj
(x + θ(x − x0)) − fxixj

(x)
∣

∣ |xi − xi0 ||xj − xj0 |.
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In other words, on the cube centered at x0 with side length equal to h

|R2(x)| ≤ 1

2

(

h

2

)2 d
∑

i=1

d
∑

j=1

ω(|x − x0|).

Hence, on the d-dimensional cube with side length equal to h we have the following

estimate

|f(x) − P2(x)| ≤ d2

2

(

h

2

)2

ω

(

h

2

)

. (118)

�

III.2 Necessary concepts and facts from Discrete and Computational Geome-

try.

Let us introduce the following notation and definitions.

Let D = [0, 1]d be the unit cube in R
d. In this section we shall take N ∈ N to be the

number of vertices in the simplicial partition.

Let F = {F} be a family of sets, and U be a region in the space R
d. We say that F is a

covering of U if U is contained in the union ∪F∈FF of all members of F. If U is the whole

Euclidean space R
d then a covering of U is simply called a covering.

If U is a bounded region, then the density Θ(F|U) of F relative to U is defined as

Θ(F|U) :=
1

V (U)

∑

F∈F

V (F ∩ U), (119)

where V (U) denotes the volume of set U . We shall also need concepts of inner and outer

density of F relative to U :

Θ(F|U)inn :=
1

V (U)

∑

F∈F,F⊂U

V (F ∩ U),

Θ(F|U)out :=
1

V (U)

∑

F∈F,F∩U 6=∅
V (F ∩ U).
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Define the lower density to be

Θ−(F) := lim inf
r→∞

Θinn(F|B(r)), (120)

where B(r) is a ball of radius r, and the upper density to be

Θ+(F) := lim sup
r→∞

Θout(F|B(r)). (121)

If they coincide we call the common value the density of F and denote it by Θ(F).

The covering density v(K) of a convex body K is defined to be

v(K) := inf{Θ−(C) | C is a covering of R
d with congruent copies of K}.

Recall that the lattice is the set of all integer linear combinations of a particular basis of

R
d. The lattice arrangement is the set of translates of a given set in R

d by all vectors of a

lattice. The lattice covering density vL(K)

vL(K) := inf{Θ−(C) | C is a covering of R
d with lattice arrangements of K}.

By Θd denote the density of the thinnest covering of R
d by balls of equal radius.

By polytope P we understand the convex hull of a finite set of points. For a d-dimensional

polytope its boundary consists of faces of dimension -1 (the empty set), 0 (vertices), 1

(edges), 2, ..., and d−1 (facets). A d-dimensional simplex is a d-polytope with exactly d+1

distinct vertices.

A simplicial complex Γ in R
d is a finite nonempty family of simplices in R

d such that

1. σ ∈ Γ implies that τ ∈ Γ for every face τ of σ;

2. if σ, τ ∈ Γ and σ ∩ τ 6= ∅ then σ ∩ τ is a face of both σ and τ .

If the body of Γ is the polytope P , then we call Γ a triangulation of P .

Let S be a finite set of points. Let R(S) be the maximal of all numbers R such that

there exists a ball of radius R centered at a point of D, the interior of which does not
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contain points of the set S. Let r(S) be the smallest of numbers r such that the balls of

radius r centered at points of S cover D.

Lemma 23. (see, for example, [3] )

R(S) = r(S).

Proof: Let balls of radius r centered at points of S cover D. Then for any point M ∈ D

min
Mk∈S

ρ(M, Mk) ≤ r,

where ρ(M, Mk) denotes the Euclidean distance between two points M and Mk in R
d, i.e.

R(S) > r(S) is not possible. Therefore,

R(S) ≤ r(S).

On the other hand, by the definition of r(S), for every ε > 0 there exists a point M0 ∈ D

such that

min
Mk∈S

ρ(M0, Mk) ≥ r(S) − ε.

This implies that the ball centered at M0 with radius r(S)− ε does not contain any points

from S. Hence,

R(S) ≥ r(S) − ε,

and since ε is arbitrary we obtain the desired

R(S) ≥ r(S). �

III.3 Delaunay triangulations in R
d.

We shall also need the definition of the Delaunay triangulation (in R
d), since it is one of

the tools used for the main construction in this chapter.

Sometimes we will refer to a d-dimensional simplex as a triangle in R
d. A triangulation
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Figure 6: Delaunay triangulation in R
2

of a set of points in R
d is a simplicial decomposition of the convex hull of the point set where

the vertices of the tringles are contained in the point set. The Delaunay triangulation of

a set of points in R
d is defined (see, for example, [26]) to be the triangulation such that

the circumsphere of every triangle in the triangulation contains no point from the set in

its interior (see Figure 6 for an example of a Delaunay triangulation of a set of points in

R
2). Such a triangulation exists for every point set in R

d. The triangulation is unique if

the points are in general position. (The set of sites (points) S ⊂ R
d is said to be in general

position (or is nondegenerate) if no d + 2 points lie on a common d-sphere and no k + 2

points lie on a common k-flat, for k < d.)

In R
2 Delaunay triangulations have been studied extensively (see, for example, [25,

7]). These triangulations possess many nice optimality properties. In particular, among

all triangulations of a set of points in R
2, the Delaunay triangulation lexicographically

maximizes the minimum angle (Lawson), and also lexicographically minimizes the maximum

circumradii.

Recall that in the Introduction we also mentioned the results on the optimality of De-

launay triangulations for the interpolation in Lp norm. In three and higher dimension very
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few results are known [26]. Most of the optimality properties of Delaunay triangulations

do not generalize to higher dimensions. However, there is one exception: the Delaunay

triangulation minimizes the maximum radius of a simplex enclosing sphere. Recall that the

enclosing sphere (or Chebyshev sphere) is the smallest sphere containing a simplex. It is

either the circumsphere, or the circumsphere of some face (see Figure 5).

Lemma 24. (Rajan, [43]) The Delaunay triangulation minimizes the maximum radius of

a simplex enclosing sphere (or Chebyshev radius).

To compute the Delaunay triangulation for the given set of points several algorithms

exist. In particular, using the connection with convexity, any (d + 1)-dimensional convex

hull algorithm can be used to compute a d-dimensional Delaunay triangulation. In fact,

randomized incremental and gift-wrapping algorithms which are specialized convex hull

algorithms, can be used.

The randomized incremental algorithm adds sites one by one, updating the Delaunay

triangulation after each addition. The update consists of discovering all Delaunay faces

whose circumspheres contain the new site. These faces are deleted and the empty region is

partitioned into new faces, each of which has the new site as a vertex. An efficient algorithm

requires a good data structure for finding the faces to be deleted. Then the running time is

determined by the total number of faces updates, which depends upon site insertion order.

Running time for the worst-case inputs is O(N dd/2e), and for inputs chosen uniformly at

random is O(N log N).

The gift-wrapping algorithm is a specialization of the convex-hull gift-wrapping algo-

rithm (or the graph traversal method) to Delaunay triangulations.

For an overview of these basic algorithms and their development see, for example, [26,

23].
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III.4 History.

Let C1 and C2 be compact convex bodies in R
d, hC1 and hC2 be the corresponding support

functions (see, for example, [29]) on the unit sphere Sd−1. Define

δH(C1, C2) := ‖hC1 − hC2‖∞ = sup{|hC1(u) − hC2(u)| : u ∈ Sd−1}. (122)

This is called the Hausdorff distance. If C is a convex body with boundary (denoted by

∂C) of class C2 for which the Gaussian curvature KC is positive it was shown by Gruber

[29] for d > 3 (for d = 3 this is the result of Fejes Toth, see Section I.3.2) that

δH(C, PN
ins) =

1

2

(

Θd

Nκd

∫

∂C
KC(x)1/2dσ(x)

) 2
d

+ o

(

1

N2/d

)

, N → ∞, (123)

where PN
ins is an iscribed polytope with N vertices, Θd is the density of the thinnest covering

of R
d by balls of fixed radius, and κd is the volume of the unit ball in R

d as in (109). However,

there is no algorithm to construct a sequence of inscribed polytopes which provides the

asymptotically optimal error.

In general, questions of approximating the convex bodies by polytopes of various types

are of special interest in convex and discrete geometry. In particular, Böröczky [9] obtained

exact asymptotics of the optimal error for approximation of a convex body by general

polytopes, i.e. polytopes that are not necessarily inscribed or circumsrbibed to the body C.

An interesting construction, somewhat similar to ours (presented later) was used by

Gruber to prove a formula similar to (123) in the case of symmetric difference metric

(also called Nikodym metric [29]). However, the obtained constants are maximal only for

ellipsoids.

He considers first the approximation problem for paraboloids. His idea proceeds as

follows. Given a thin covering in R
d with balls of different sizes, one may delete balls in

such a way that the remaining balls form a packing where the total volume of the balls of

the packing is not too small. For paraboloids the case of inscribed polytopes corresponds

to Delaunay triangulations in R
d. The transition from paraboloids to the convex body C is

achieved by a version of Blaschke’s “Schüttelung” (shaking) operator; best approximating
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Table 2: Previously known results in R
d

Author(s) Class Result Norm Const Weight Algor.

Dudley (1974) convex up. bound Hausd. no no no

Bronstein-Ivanov (’75) convex up. bound Hausd. no no no

Betke-Wills(’79) convex up. bound Hausd. no no no

Schneider-Wieacker (’81) f ∈ C3, K > 0 asympt. Hausd. sharp no no

Gruber (’92) f ∈ C2, K > 0 asympt. Hausd. sharp no no

Chen (’04) f ∈ C2, K > 0 order p no no no

polytopes of paraboloids are transformed into polytopes which well approximate C locally

and vice versa.

III.5 Linear interpolation of quadratic functions.

Let the domain be the d-dimensional unit cube D = [0, 1]d ⊂ R
d.

Let P d
1 be a set of linear polynomials in d variables. In this chapter let N be the

number of vertices of a simplicial partition, or simply partitions, rather than the number of

simplicies in a partition.

Given a triangulation 4N of D define the space Sd,0
1 (4N ) of d-dimensional linear splines

to be

Sd,0
1 (4N ) :=

{

f ∈ C(D) : ∀i = 1, ..., N ∃ p ∈ P d
1 s.t. f |Ti

= p|Ti

}

.

Let s(f,4N ) denote the spline from Sd,0
1 (4N ) which interpolates the function f ∈ C(D)

at the vertices of the triangulation 4N .

Let f ∈ C2(D) and number of vertices N ∈ N be fixed. Let MN be a system of N points

in the cube D that contains the vertices of D. Define

R(f, MN ) := inf
4N

‖f − s(f,4N )‖∞ (124)
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and

RN (f) := inf
MN

R(f, MN ). (125)

A sequence {4∗
N}∞N=1 of simplicial partitions of D is called asymptotically optimal if

lim
N→∞

‖f − s(f,4∗
N )‖∞

RN (f)
= 1. (126)

The goal of this chapter is to investigate the asymptotic behavior of RN (f) as N → ∞ and

to describe those sequences of simplicial partitions that provide exact asymptotics of the

error.

Lemma 25. The uniform error of linear interpolation of the quadratic form
d
∑

i=1

Aix
2
i on a

simplex T is equal to the square of the Chebyshev radius of this simplex in the norm

‖u‖ =

√

√

√

√

d
∑

i=1

u2
i

Ai
, u ∈ R

d. (127)

Proof: Let x̄ be the Chebyshev center, and RA be the Chebyshev radius of the simplex

T in the norm (127). The uniform error of linear interpolation on T of the given quadratic

form
d
∑

i=1

Aix
2
i and of the form

R2
A −

d
∑

i=1

Ai(xi − x̄i)
2 (128)

coincide. The value of the form (128) at the point x̄ is equal to R2
A. The values of it at the

vertices of the simplex T ( since they belong to the ball B(x̄, RA) in the norm (127)) are

nonnegative. Therefore, the values of the interpolant on the whole simplex are nonnegative.

Hence, at every point of T the error does not exceed R2
A.

On the other hand, for the Chebyshev center x̄ there exists a face of a simplex (can be

the whole simplex T ) that has all its vertices on the sphere S(x̄, RA). Therefore, the values

of the interpolant at x̄ is zero. �

Lemma 26. For every ε > 0 there exist numbers N0 and l such that for all k ≥ N0 there

exists a simplicial partition {Ti}k
i=1 of the cube P such that every simplex is contained in a
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ball of radius

rk ≤ (1 + ε)

(

ΘdV [P ]

kκdl

) 1
d

, (129)

where Θd is the density of the thinnest covering of R
d by balls of equal radius, and κd is the

volume of the unit ball in R
d as in (109).

Moreover, the number of vertices in the partition satisfies

N(k, N0) ≤ (1 + ε)dkld.

Proof: Let ε > 0 and l be fixed. We shall divide P into ld of equal cubes. It follows

from the Theorem 1.10 of [45] that there exists N0 = N0(ε) such that for all k ≥ N0 some

system of balls B = {bi + B}k
i=1, bi ∈ P , of shifts of the ball B centered at the origin and

of radius rk will cover one of the cubes of the partition with the volume ld. In this case, we

have

krd
k

ldκd
≤ (1 + ε)dΘd.

To construct the needed partition {Ti}k
i=1 let us consider the system of balls { s

l + bi + B},

where s ∈ Z
d and i = 1, . . . , k. We shall take the projections of the centers of those balls

that cover P on (d − 1)-dimensional faces of P . Clearly, there will be k2dld−1 projections.

Let Vk be the set of those centers of the balls of the system that belong to P , obtained

projections, and vertices of the cube. It is easy to see that the number of elements in Vk

will not exceed

kld + 2dkld + 2d.

Using the empty ball method (see, for example, [18]) it is easy to see that there exists a

simplicial partition of P (in fact, it is going to be exactly the Delaunay triangulation of Vk)

with vertices at the points from Vk (and only them) such that every simplex is contained

in the ball of radius rk.

If we now chose l from the condition

1 +
2d

l
+

2d

ld
< (1 + ε)d
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we obtain the desired partition {Ti}k
i=1. The lemma is proved. �

Lemma 27. For the quadratic function Q(x) =
d
∑

i=1

Aix
2
i on a parallelepiped P with sides

parallel to coordinate axes and volume V [P ] the uniform error of linear interpolation RN (Q)

on P satisfies

lim inf
N→∞

N
2
d RN (Q) =

(

ΘdV [P ]
√

H

κd

) 2
d

, (130)

where H =
d
∏

i=1

Ai.

Proof: For the given quadratic form Q(x) =
d
∑

i=1

Aix
2
i let us consider a linear transfor-

mation F such that

(Q ◦ F )(u) =
d
∑

i=1

u2
i . (131)

In other words,

F (u) =

(

u1√
A1

, . . . ,
ud√
Ad

)

. (132)

Observe that the determinant of the inverse of this transformation is

det(F−1) =

√

√

√

√

d
∏

i=1

Ai. (133)

Let us consider the parallelepiped F−1(P ) with the volume

V [F−1(P )] = V [P ] det(F−1). (134)

Let us also define the radius R to be such that

NκdR
d ≈ ΘdV [F−1(P )]. (135)

More rigorously, from Lemma 26 it follows that for every ε > 0 there exists a subsequence

{Nk}∞k=1 and the corresponding sequence {RNk
}∞k=1 of radii such that

RNk
≤ (1 + ε)

(

ΘdV [F−1(P )]

Nkκd

)1/d

. (136)
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Let us take the thinnest covering of R
d by balls of radius RNk

. The set of centers of these

balls that fall into the parallelepiped F−1(P ), their projections on the (d − 1) faces, and

vertices of F−1(P ), we denote by F−1(MNk
).

By Lemma 26 there exists a simplicial partition TNk
= {Ti}Nk

i=1 of F−1(P ) such that

the uniform error of linear interpolation of Q ◦ F on any simplex of (and, therefore, on the

whole F−1(P )) satisfies

RNk
(Q ◦ F ) ≤ (1 + ε)2

(

ΘdV [F−1(P )]

Nkκd

)2/d

. (137)

Note that the uniform error will not change under the linear transformation F . Hence, the

uniform error of linear interpolation of Q on F (F−1(P )) = P is also equal to (137). In

other words, we found a sequence of simplicial partitions {F (Ti)}∞i=1 on which

lim inf
N→∞

N
2
d RN (Q) ≤ (1 + ε)

(

ΘdV [P ]
√

H

κd

) 2
d

, (138)

and because ε > 0 is arbitrary, the estimate from above in the lemma is proved.

Observe also that the image of the thinnest covering by balls of radius R under linear

transformation F becomes the thinnest covering of R
d by “ellipsoids” (the density Θd will

be the same, see Theorem 1.9 in [45]).

Let us show now that in fact for all large enough N we have

lim inf
N→∞

N
2
d RN (Q) ≥ (1 − ε)

(

ΘdV [P ]
√

H

κd

) 2
d

.

Observe that a ball in the norm defined in (127) is in fact an ellipsoid in the usual

Euclidean (l2) norm.

If in Lemma 23 we use the distance function defined by

ρ(u,v) := ‖u − v‖, u,v ∈ R
d, (139)

where ‖ · ‖ is as in (127), then the statement of the lemma will hold for radii of the balls in

the new norm, i.e. if VNk
is the set of centers obtained from the thinnest covering by balls
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in the new metric than

r(VNk
) = R(VNk

).

It is not hard to see that for all Nk large enough

r(VNk
) ≥

(

ΘdV [P ]
√

H

Nkκd

) 1
d

,

since otherwise we would have for some δ > 0, Nk0 and TNk0
that

Nk0r(VNk0
)d

ΘdV [P ]
√

H
≤ (1 − δ)Θd.

This implies that there exists a covering of R
d with equal balls with the density less than

Θd which contradicts the definition of Θd. �

III.6 Error of linear interpolation of C2 functions defined on [0, 1]d. Estimate

from above.

Proof of Theorem 7: For the fixed ε ∈ (0, 1) and for every N we define

mN := min

{

m > 0 :
d2

2

(

1

2m

)2

ω

(

1

2m

)

≤ ε

N
2
d

}

, (140)

where ω(δ) is the function defined in (113).

Observe that, clearly, for mN defined in (140) it is true that mN → ∞ as N → ∞. In

addition,

N
2
d

m2
N

→ ∞, N → ∞, (141)

i.e. mN = o(N
1
d ) as N → ∞. Indeed, by the definition of mN for all large enough N we

have

N
2
d

m2
N

=
8

d2

(mN − 1)2

m2
N

1

ω
(

1
2(mN−1)

)

d2

8

N
2
d

(mN − 1)2
ω

(

1

2(mN − 1)

)

≥ ε
8

d2

(mN − 1)2

m2
N

1

ω
(

1
2(mN−1)

) → ∞, as N → ∞,
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since
(

mN−1
mN

)2
→ 1 and ω

(

1
2(mN−1)

)

→ 0 as N → ∞. Hence, (141) is proved.

Divide the unit cube D into cubes with side length equal to 1
mN

and denote the resulting

cubes by DN
l , l = 1, . . . , md

N . Next we take the center point xN
l in each cube DN

l and set

AN,l
i,j :=

1

2

∂2f

∂xi∂xj
(xN

l ), i, j = 1, . . . , d, l = 1, . . . , md
N .

Set also

H(xN
l ) := det

(

∂2f

∂xi∂xj
(xN

l )

)

, i, j = 1, . . . , d, l = 1, . . . , md
N .

Set

nN
l :=

















N(1 − ε)H(xN
l )

1
2 Ω(xN

l )
d
2

md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2

















, l = 1, ..., md
N . (142)

We find nN
l by minimizing the overall error on D.

Set the radius

RN
l :=

(

Θd

κdn
N
l md

N

) 1
d

, l = 1, ..., md
N . (143)

Let us consider the thinnest covering of the space R
d by balls of radius RN

l and system

of points which are centers of this balls. Next we shall take the Delaunay triangulation 4̃

of this system of points.

As we mentioned before, to compute the d-dimensional Delaunay triangulation one

can use any (d + 1)-dimensional convex hull algorithm. For example, either randomized

incremental or “gift-wrapping” algorithms can be used (for detailed description see, for

example, [26], pp. 516–518).

Recall that by Lemma 24 this triangulation has the following property: it has the small-

est maximum of Chebyshev radii of the obtained simplices among all possible triangulations

of V N
l .

Given a positive definite quadratic form

QN
l (x) =

d
∑

k=1

d
∑

j=1

AN,l
k,j xkxj ,
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consider the corresponding to this form orthogonal transformation FN
1,l which

FN
1,l : QN

l (x) →
d
∑

i=1

λN,l
i x2

i , l = 1, . . . , md
N ,

where λN,l
i , i = 1, . . . , d are the eigenvalues of the form QN

l (x); and the linear transformation

FN
2,l of the form (132) which

FN
2,l :

d
∑

i=1

λix
2
i →

d
∑

i=1

x2
i , l = 1, . . . , md

N .

Taking the partition ((FN
1,l)

−1 ◦ (FN
2,l)

−1)4̃ we construct the desired partition 4∗
N (DN

l ) of

DN
l in the following way. If the intersection of ((FN

1,l)
−1◦(FN

2,l)
−1)4̃ and DN

l is a simplex we

include it in 4N (DN
l ). If the intersection of ((FN

1,l)
−1 ◦ (FN

2,l)
−1)4̃ and DN

l is a nonsimplex

we subdivide it without adding new vertices and resulting simplices include in 4N (DN
l ).

We finally obtain the needed partition of D by gluing together partitions of each DN
l

without adding new vertices. Denote by 4∗
N the partition of D obtained in this way.

Because of (143) and because, clearly, there will be only o(N) vertices on the boundary,

the total number of vertices in 4∗
N is asymptotically N .

Recall that by Lemma 27 the error of linear interpolation of the quadratic form QN
l on

DN
l satisfies

lim inf
N→∞

N
2
d RN (QN

l ) =





Θd

√

det |AN,l
k,j |

κdn
N
l md

N





2
d

.

Let fN denote the piecewise quadratic function constructed in the following way. On

DN
1 we set fN to be QN

1 (x). Then for l > 1 on DN
l \ ∪l−1

j=1D
N
j we set

fN (x) := QN
l (x).

As before, we have

‖f − s(f,4∗
N )‖∞,Ω ≤ 2‖f − fN‖∞,Ω + ‖fN − s(fN ,4∗

N )‖∞,Ω.
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By Lemma 22 and definition (140) of mN

‖f − fN‖∞,Ω ≤ ‖Ω‖∞
d2

2

(

h

2

)2

ω

(

h

2

)

≤ ε‖Ω‖∞
N

2
d

.

Let us take a simplex TN
l ∈ 4N (DN

l ) that does not have common points with the

boundary of DN
l . By Lemma 27, for every x ∈ DN

l we have

|fN (x) − s(fN ,4∗
N ;x)|Ω(x) ≤ 1

2





Θd

√

H(xN
l )

κdm
d
NnN

l





2/d

Ω(xN
l ).

By the definition of nN
l , for all large enough N , for all l = 1, . . . , md

N , and for all x ∈ TN
l ,

we have

|fN (x)− s(fN ,4∗
N ;x)| ≤ 1

2





Θd

√

H(xN
l )

κd





2
d

1 + ε

m2
N

















md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2

N(1 − ε)H(xN
l )

1
2 Ω(xN

l )
d
2

















2
d

Ω(xN
l ).

Simplifying the last expression and taking into consideration that this estimate does not

depend on x, we obtain that

‖fN − s(fN ,4∗
N )‖∞,Ω ≤ 1

2

(

Θd

κdN(1 − ε)

) 2
d 1 + ε

m2
N





md
N
∑

j=1

H(xN
j )1/2Ω(xN

j )
d
2





2
d

.

Note that since H(x) is Riemann integrable

1

m2
N





md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2





2
d

=





1

md
N

md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2





2
d

→
(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

(144)

as N → ∞. Hence, for all N large enough we obtain

‖fN − s(fN ,4∗
N )‖∞,Ω <

1

2

(

Θd

κdN(1 − ε)

) 2
d

(1 + 2ε)

(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

.
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Therefore,

‖f − s(f,4∗
N )‖∞,Ω <

2ε‖Ω‖∞
N

+
1

2

(

Θd

κdN(1 − ε)

) 2
d

(1 + 2ε)

(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

.

Because ε > 0 is arbitrary, we obtain the desired estimate. �

III.7 Error of linear interpolation of C2 functions defined on [0, 1]d. Estimate

from below.

Let mN . nN
i , DN

i etc. be as defined in the previous section.

The proof of Theorem 8: Let us consider an arbitrary sequence {4N} of simplicial

partitions of D which satisfies (110). Recall that the notation 4N means that the partition

has N vertices. As before, by v(4N ) denote the set of all vertices of the simplicial partition

4N .

Since the total number of vertices is N there exists an index l0 such that the number nl0

of vertices in the cube whose center coincides with the center of DN
nl0

but the side length is

1−2ε
mN

satisfies

nl0 ≤
N(1 + ε)H(xN

l0
)

1
2 Ω(xN

l0
)

d
2

md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2

. (145)

For the radius of the covering by balls with the centers at these nl0 vertices we have for all

N large enough

rN ≥
(

ΘdH(xN
l0

)
1
2

κdnl0

)

1
d

1 − ε

mN
. (146)

Therefore, the error on a simplex from this region, and, hence, on the whole region will be

not less than

‖fN − s(fN ,4∗
N )‖L∞,Ω(DN

nl0
) ≥

1

2
r2
NΩ(xN

l0 ) ≥ 1

2

(

ΘdH(xN
l0

)
1
2 Ω(xN

l0
)

d
2

κdnl0

)

2
d

(1 − ε)2

m2
N
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≥ 1

2

















ΘdH(xN
l0

)
1
2 Ω(xN

l0
)

d
2

md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2

κdN(1 + ε)H(xN
l0

)
1
2 Ω(xN

l0
)

d
2

















2
d

(1 − ε)2

m2
N

=
1

2

(1 − ε)2

(1 + ε)2

(

Θd

κd

) 2
d 1

N2/d





1

md
N

md
N
∑

j=1

H(xN
j )

1
2 Ω(xN

j )
d
2





2
d

≥ 1

2

(

Θd

κd

) 2
d
(

1 − 2ε

1 + ε

)2 1

N2/d

(

1

m2
N

∫

D
H(x)

1
2 Ω(x)

d
2 dx

) 2
d

.

Hence for all N large enough we have

‖fN − s(fN ,4∗
N )‖∞,Ω ≥ 1

2

(

Θd

κd

) 2
d 1

N2/d

(

1 − 2ε

1 + ε

)2( 1

m2
N

∫

D
H(x)

1
2 Ω(x)

d
2 dx

) 2
d

.

In addition, recall that by Lemma 22 and definition (140) of mN we have

‖f − fN‖∞,Ω ≤ ‖Ω‖∞
d2

2

(

h

2

)2

ω

(

h

2

)

≤ ε‖Ω‖∞
N

2
d

.

Hence,

‖f − s(f,4N )‖L∞,Ω
≥ ‖fN,iN − s(fN,iN ,4N )‖L∞,Ω

− 2‖f − fN,iN ‖L∞,Ω

≥ 1

2
(1 − c̃ε)

(

Θd

κd

) 2
d 1

N2/d

(

1

m2
N

∫

D
H(x)

1
2 Ω(x)

d
2 dx

) 2
d

,

where c̃ is some positive constant.

Since ε > 0 is arbitrary, we obtain the statement of the theorem. �

III.8 Locally lattice-like systems of points.

Particularly nice, explicit construction of an asymptotically optimal sequence of partitions

can be given in the case when centers of the balls from the thinnest covering are arranged

in a lattice.

Let the sequence {MN} of sets of N points be given. We say that this system is
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asymptotically locally lattice-like if there exists a sequence {αN} (αN = o(N)) such that for

each N there are αN of lattices λN
k and

αN
∑

k=1

#(MN ∩ λN
k ) = (1 + o(1))N.

By M l.l. denote the collection of all such sets, and by 4l.l.
N the set of all possible simplicial

partitions of set of point from M l.l. with N elements.

Define

Rl.l.
N (f) := inf

4l.l.
N

‖f − s(f,4l.l.
N )‖∞,Ω.

If we consider the question of asymptotic behavior of Rl.l.
N (f) as N → ∞, we shall arrive to

results similar to Theorems 7 and 8. However, instead of density Θd, the lattice covering

density (denote it by vL(Bd)) will appear in the constant. Therefore, we obtain the following

result.

Theorem 9. Let f ∈ C2(D), D = [0, 1]d ⊂ R
d, and H(f ;x) ≥ C+ > 0 for all x ∈ D. Let

also positive weight function Ω(x) ∈ C(D) be given. Then there exist a sequence of sets of

points and a sequence of triangulations {4l.l.
N }∞N=1 such that

Rl.l.
N (f) =

1

2N
2
d

(

vL(Bd)

κd

)2/d(∫

D
H(f ;x)

1
2 Ω(x)

d
2 dx

) 2
d

+ o

(

1

N2/d

)

, (147)

where vL(Bd) is the lattice covering density of R
d by balls of fixed radius, and

κd =
πd/2

Γ(d
2 + 1)

is the volume of the unit ball in R
d.

The exact value of vL(Bd) is known for d = 2, 3, 4, 5 (see Table 3, [26]).

For d ≥ 6 only the upper estimate for the vL(Bd) is known:

vL(Bd) ≤ cd(ln d)log2

√
2πe,

with some suitable constant c. This estimate was proved by Rogers [45].
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Table 3: Known values of lattice covering density

Dim vL(Bd) Author

2 2π
3
√

3
Kershner

3 5
√

5π
24 Bambah

4 2π2

5
√

5
Delaunay and Ryshkov

5 245
√

35π2

3888
√

3
Baranovskii and Ryshkov

Coxeter, Few, and Rogers ( [45], Theorem 8.1) proved a dual counterpart to Roger’s

bound:

vL(Bd) ≥ v(Bd) ≥ τd,

where τd is the ratio between the total volume of the intersection of d + 1 unit balls with

the regular simplex of edge
√

2(d + 1)/d if their centers lie at the vertices of the simplex,

and the volume of the simplex. Asymptotically,

τd � d

e3/2
.
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CHAPTER IV

BILINEAR SPLINES IN R
2

In this chapter we shall consider the question of near interpolation of a bivariate C2 func-

tion by bilinear spline surface. As for the linear splines in the previous chapters we shall

investigate the asymptotics of the error (in L1, L2, and L∞ norms) of near interpolation

and consider sequences of rectangular partitions which provide this error.

The only other work known to us in the direction of analysis of the asymptotic behav-

ior of the optimal error in the case of bilinear interpolation at the points associated with

a rectangle is due to D’Azevedo [15]. In the case of the uniform error he locally com-

pared the errors of interpolation by linear splines over triangles and by bilinear splines over

quadrilaterals.

IV.1 Notation and Definitions.

Let the domain D be the unit square D = [0, 1]2. Let f ∈ C2(D). Define

H(f ; x, y) := (fxxfyy)(x, y). (148)

By �N = {Ri}N
i=1 we denote any rectangular partition of the set D consisting of N

elements with sides parallel to the coordinate axis (see Figure 7 for a typical partition).

Let P2 be the set of bilinear polynomials

p(x, y) = axy + bx + cy + d, a, b, c, d ∈ R.

Given a partition �N (D) define the space BS0
1(�N ) of bilinear splines to be

BS0
1(�N ) := {f ∈ C(D) : ∀i = 1, ..., N ∃ p ∈ P2 s.t. f |Ri

= p|Ri
}.

Note that the bilinear spline s(f,�N ) is uniquely defined by its values at the vertices of
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Figure 7: Type of meshes we use for bilinear near interpolation (before subdivision)

the rectangular partition.

Let s(f,�N ) ∈ BS0
1(�N ) denote a spline which interpolates the function f at all vertices

of the partition �N except for o(N) of them.

Now let f ∈ C2(D) and the number of rectangles N ∈ N be fixed. Define the error

of optimal interpolation of the function f by the continuous piecewise bilinear function

s(f,�N ) ∈ BS0
1(�N ) to be

RN (f, Lp,Ω, BS0
1(�N )) := inf

�N

‖f − s(f,�N )‖p,Ω, (149)

where inf is taken over all rectangular partitions of D containing N rectangles. The

main goal of this chapter is to investigate the asymptotic behaviour of the optimal error

RN (f, L∞,Ω, BS0
1(�N )). The main theorems of this chapter are the following.

Theorem 10. Let f ∈ C2(D) and |H(f ; x, y)| ≥ C+ > 0 for all (x, y) ∈ D. Let also

positive continuous weight function Ω(x, y) be given. Then for any 1 ≤ p < ∞

lim sup
N→∞

N‖f − s(f,�N )‖p,Ω ≤
M±

p

2

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

, (150)
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where

M±
p = min

R

Lp − error of bilinear interpolation of x2 ± y2 on R

|R|1+
1
p

. (151)

Theorem 11. Let f ∈ C2(D) and |H(f ; x, y)| ≥ C+ > 0 for all (x, y) ∈ D. Let also

positive continuous weight function Ω(x, y) be given. Then for any 1 ≤ p < ∞ and for any

sequence {�N}∞N=1 of rectangular partitions with sides parallel to the coordinate axes which

satisfies

sup
N

√
N max

R∈�N

diamR < ∞ (152)

we have

lim inf
N→∞

N‖f − s(f,�N )‖p,Ω ≥
M±

p

2

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

, (153)

where

M±
p = min

R

Lp − error of bilinear interpolation of x2 ± y2 on rectangle R

|R|1+
1
p

. (154)

In the case of the uniform norm a similar theorem can be proved.

This theorem is a particular case of Theorem ?? in Chapter V, so we will not present a

separate proof of it.

The main idea of the proofs (estimate from above) of these theorems is similar to the

idea of proofs of corresponding statements for linear splines on R
2 and proceeds as follows.

1. Divide D into a number m2
N (which is small in comparison with N) of equal subregions

DN
i . On each DN

i instead of f we consider the quadratic part of its Taylor polynomial

PN,i taken at the center of DN
i .

2. To find an appropriate partition of DN
i we shall use rectangles R which solve the

following extremal problem:

Lp − error of bilinear interpolation of PN,i on rectangleR

|R|1+
1
p

→ min . (155)

Moreover, we choose the size of these rectangles in such a way that their number nN
i

90



is such that the sum

m2
N
∑

i=1

nN
i is approximately N , and the errors of interpolation on

each DN
i are approximately equal.

3. We obtain the final partition of D by “gluing” together partitions of each region DN
i

possibly subdividing (without adding new vertices) rectangles which have nonempty

intersection with the boundary ∪i∂DN
i .

The chapter is organized as follows. Sections IV.4.1–IV.4.3 solve the optimization prob-

lem (155) for functions Ax2 + By2 in the cases p = ∞, 1, 2, respectively. Sections IV.5.1–

IV.5.3 solve the optimization problem (155) for functions Ax2−By2 in the cases p = ∞, 1, 2,

respectively. Section IV.6 is devoted to the obtaining the estimate from above for the error

RN (f, Lp,Ω). Section IV.7 is devoted to the obtaining the estimate from below for the error

RN (f, Lp,Ω).

IV.2 Two approaches: near interpolation and near continuity.

For bilinear splines there are two approaches, depending on the problem.

1. If we take the “near continuity” approach, the result will be an interpolating spline

which is discontinuous on o(N) elements of a partition.

In this case on every rectangle we take an interpolating spline and define it to be 0

outside of the rectangle. Taking thier average gives the interpolating but discontinuous

bilinear spline.

2. In contrast to this, the “near interpolation” approach will provide a continuous spline

which interpolates the original function at all but o(N) vertices.

In this case, the idea is to take a coarse partition of a square (domain), put a regular

lattice on each region, refine “boundary elements”, and interpolate not the original

function but the spline already defined there. This way we gain continuity of the

approximant but interpolate in all but o(N) vertices. In this case we do have to

introduce some restrictions on the rectangular partitions we work with (not to have

to refine all of them).
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Both methods provide asymptotically optimal error. So the difference is which we want:

continuity or interpolation.

We shall demonstrate the first approach in the case of bilinear splines, and the second

one in the case of biquadratic splines.

IV.3 Solution of the interpolation problem.

The fact that the problem of interpolation at four knots Pi, i = 1, 2, 3, 4, of the rectangular

lattice is equivalent to the fact that there is no bilinear polynomial that takes zero values

at these knots.

Let us assume that such a polynomial p̃(x, y) exists, i.e.

p̃(xi, yi) = 0, i = 1, 2, 3, 4. (156)

Solving the equation

axiyi + bxi + cyi + d = 0

for yi, we obtain

yi = −d + bxi

c + axi
. (157)

This implies that the polynomial P̃ (x, y) annihilates at the points (xi, yi) if and only if (157)

holds, i.e. these points lie on the hyperbola. However, we consider only rectangular lattices

with sides parallel to the coordinate axis. Therefore, (157) is not possible.

IV.4 Interpolation of quadratic functions Ax2 + By2 with AB > 0 by bilinear

splines.

Let the quadratic form

Q(x, y) = Ax2 + By2 (158)

with AB > 0 be given. Observe that for interpolation by bilinear splines it is enough to

consider quadratic functions of type (158), without the term ”xy”.

First of all, observe that the error of interpolation of quadratic functions on a rectangle
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does not depend on a shift of this rectangle. More precisely, we prove the following simple

statement.

Lemma 28. For the given quadratic function

Q(x, y) = Ax2 + By2 (159)

and an arbitrary rectangle R, the error (in any Lp norm) of bilinear interpolation on R and

HR, where HR is obtained from R by the linear transformation

H : x′ = x + a, y′ = y + b, (160)

is the same.

Proof: In the new coordinates function (159) has the form

Q(x′, y′) = A(x′ − a)2 + B(y′ − b)2 = A(x′)2 + B(y′)2 + L(x′, y′), (161)

where L(x′, y′) = −2Aax′ + Aa2 − 2Bby′ + Bb2 is a linear function and, hence, can be

regarded as a part of an interpolant.

Since coefficients next to terms containing x and x′, y and y′ are the same, the errors

of interpolation by bilinear splines on R and HR are the same in any metric. �

We shall need a solution to the following extremal problem : minimize the ratio

Lp − error of interpolation of Q(x, y) on R

|R|1+
1
p

. (162)

The solution to this problem in the case of Q(x, y) with AB > 0 will be given in Section

IV.4.1 (case of uniform norm), Section IV.4.2 (case of L1 norm), and Section IV.4.3 (case

of L2 norm).
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IV.4.1 The uniform norm.

Let TQ,R(x, y) denote the bilinear spline which interpolates the quadratic function Q(x, y)

at the vertices of the rectangle R. Set also

dQ,R,∞ := max
(x,y)∈R

|Q(x, y) − TQ,R(x, y)|, (163)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R for which

dQ,R,∞
|R| → min, (164)

and find the minimum of this ratio.

By Lemma 28, it is enough to consider the error of interpolation on the symmetric

rectangle R = [−h1, h1] × [−h2, h2] centered at the origin, since any other rectangle can be

brought to this by a linear transformation (shift).

The following lemma gives the answer to problem (164).

Lemma 29. Let the quadratic form

Q(x, y) = Ax2 + By2

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,∞
|R| ≥ 1

2

√
AB. (165)

Moreover, equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: Obviously, the interpolant to the function Q(x, y) on the rectangle R is a con-

stant equal to

TQ,R(x, y) = Ah2
1 + Bh2

2.

In addition, note that the error in the uniform norm on the rectangle R is the same as the

error on [0, h2] × [0, h1].
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Denote the difference between function Q(x, y) and interpolant TQ,R(x, y) by

δ(x, y) := Ax2 + By2 − Ah2
1 − Bh2

2. (166)

Clearly, the point (0, 0) is a critical point of this function. The value of difference (166) at

this point is

δ(0, 0) = Ah2
1 + Bh2

2.

In addition, observe that on the boundary of [0, h2] × [0, h1] we have

δ(x, h2) = Ax2 − Ah2
1, and δ(h1, y) = By2 − Bh2

2

and, hence, the maximal values are

|δ(0, h2)| = Ah2
1 and |δ(h1, 0)| = Bh2

2.

Therefore, in the case of the uniform norm extremal problem (164) can be rewritten as

follows. Find

d := min
h1,h2

max{Ah2
1 + Bh2

2, Ah2
1, Bh2

2} (167)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. It is

easy to see that this minimum will be attained when
√

Ah1 =
√

Bh2. From this fact and

from the condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/4 √
S, h2 =

(

A

B

)1/4 √
S. (168)

Plugging this back into the expression for the error (167) gives the minimal value for the

error over the rectangle of area S:

d = 2
√

ABS.

Therefore, for the error on the whole R (recall that |R| = 4S) we have

dQ,R,∞
|R| =

1

2

√
AB (169)
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which gives the solution to problem (164) and completes the proof of the lemma. �

Remark. The previous lemma gives

M+
∞ =

1

2
. (170)

IV.4.2 The L1 norm.

Let again TQ,R(x, y) denote the bilinear spline which interpolates the quadratic function

Q(x, y) at the vertices of the rectangle R. Let also

dQ,R,1 :=

∫

R

∫

|Q(x, y) − TQ,R(x, y)|dxdy, (171)

and let |R| denote the area of the rectangle R. According to (162) for p = 1, the problem

is to characterize those rectangles R which minimize the ratio

dQ,R,1

|R|2 → min, (172)

and find the minimum of it.

The following lemma gives the answer to this problem. Clearly, it is enough to consider

the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2] centered

at the origin, since any other rectangle can be brought to this by a linear transformation

(shift).

Lemma 30. Let the quadratic form

Q(x, y) = Ax2 + By2

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,1

|R|2 ≥ 1

3

√
AB. (173)

Moreover, equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: As we already mentioned, the interpolant on the rectangle R is a constant equal
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to

TQ,R(x, y) = Ah2
1 + Bh2

2.

In the L1 case, extremal problem (172) can be rewritten as follows: Find

d := min
h1,h2

∫ h1

0

∫ h2

0

∣

∣Ax2 + By2 − Ah2
1 − Bh2

2

∣

∣ dxdy (174)

under the condition that the area of the rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S.

We have

∫ h1

0

∫ h2

0
|Ax2 + By2 − Ah2

1 − Bh2
2|dxdy =

∫ h1

0

∫ h2

0
(Ah2

1 + Bh2
2 − Ax2 − By2)dxdy

=
2

3
(Ah2

1 + Bh2
2)h1h2.

Hence, we have to minimize the function 2
3(Ah2

1 + Bh2
2)h1h2 under the condition h1h2 = S.

Using the method of Lagrange multipliers we obtain that the minimum is attained for
√

Ah1 =
√

Bh2. From here and condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/4 √
S, h2 =

(

A

B

)1/4 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d =
4

3

√
ABS2.

Note that |R| = 4S. Therefore, for the error on the whole R we have

d1
Q,R

|R|2 =
1

3

√
AB (175)

which gives solution to (172) and completes the proof of the lemma. �

Remark. The previous lemma provides

M+
1 =

1

3
. (176)
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IV.4.3 The L2 norm.

Let again TQ,R(x, y) denote the bilinear spline which interpolates quadratic function Q(x, y)

at the vertices of the rectangle R. Let also

dQ,R,2 :=

∫

R

∫

(Q(x, y) − TQ,R(x, y))2dxdy, (177)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,2

|R|3/2
→ min, (178)

and find the minimum of it.

The following lemma gives the answer to this problem (again it is enough to consider

the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2] centered at

the origin).

Lemma 31. Let the quadratic form

Q(x, y) = Ax2 + By2

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,2

|R|3/2
≥
√

11

90

√
AB. (179)

Moreover, equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: As we mentioned before, the interpolant on the rectangle R is a constant equal

to

TQ,R(x, y) = Ah2
1 + Bh2

2.

In the case of L2 norm, extremal problem (178) can be rewritten as follows. Find

d2 := min
h1,h2

∫ h1

0

∫ h2

0

(

Ax2 + By2 − Ah2
1 − Bh2

2

)2
dxdy (180)
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under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. We

have

∫ h1

0

∫ h2

0

(

Ax2 + By2 − Ah2
1 − Bh2

2

)2
dxdy = h1h2

(

8

15
B2h4

2 +
8

9
ABh2

1h
2
2 +

8

15
A2h4

1

)

.

Hence, we have to minimize the function

h1h2

(

8

15
B2h4

2 +
8

9
ABh2

1h
2
2 +

8

15
A2h4

1

)

under the condition h1h2 = S. Considering the corresponding Lagrangian and partial

derivatives with respect to h1 and h2, we obtain that the minimum is attained for
√

Ah1 =
√

Bh2. From here and condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/4 √
S, h2 =

(

A

B

)1/4 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d2 =
88

45
ABS3.

Therefore, for the error on the whole R (recall that |R| = 4S) we have

dQ,R,2

|R|3/2
=

√

11

90

√
AB (181)

which gives solution to (178) and completes the proof of the lemma. �

Remark. The previous lemma gives

M+
2 =

√

11

90
. (182)
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IV.5 Interpolation of quadratic functions Ax2 − By2 with AB > 0 by bilinear

splines.

IV.5.1 The L∞-norm.

Let TQ,R(x, y) denote the bilinear spline which interpolates the quadratic function Q(x, y)

at the vertices of the rectangle R. Set also

dQ,R,∞ := max
(x,y)∈R

|Q(x, y) − TQ,R(x, y)|, (183)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,∞
|R| → min, (184)

and find the minimum of it.

By Lemma 28, it is enough to consider the error of interpolation on the symmetric

rectangle R = [−h1, h1] × [−h2, h2] centered at the origin, since any other rectangle can be

brought to this one by a linear transformation (shift).

The following lemma gives the answer to problem (184).

Lemma 32. Let the quadratic form

Q(x, y) = Ax2 − By2

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,∞
|R| ≥ 1

4

√
AB. (185)

Moreover, equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: Obviously, the interpolant to the function Q(x, y) on a rectangle R is a constant

equal to

TQ,R(x, y) = Ah2
1 − Bh2

2.
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Observe that the error in the uniform norm on R is the same as the error on [0, h2]× [0, h1].

Denote the difference between the function Q(x, y) and the interpolant TQ,R(x, y) by

δ(x, y) := Ax2 − By2 − Ah2
1 + Bh2

2. (186)

Clearly, the point (0, 0) is a critical point of this function. The value of the difference (186)

at this point is

|δ(0, 0)| = |Ah2
1 − Bh2

2|.

Also observe that on the boundary of [0, h2] × [0, h1] we have

δ(x, h2) = Ax2 − Ah2
1, and δ(h1, y) = By2 − Bh2

2

and, hence, maximal values are

|δ(0, h2)| = Ah2
1 and |δ(h1, 0)| = Bh2

2.

Therefore, in the case of uniform norm the extremal problem (164) can be rewritten as

follows. Find

d := min
h1,h2

max{|Ah2
1 − Bh2

2|, Ah2
1, Bh2

2} (187)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. It

is easy to see that this minimum will be attained when
√

Ah1 =
√

Bh2. From here and

condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/4 √
S, h2 =

(

A

B

)1/4 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d =
√

ABS.
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Therefore, for the error on the whole R we have

dQ,R,∞
|R| =

1

4

√
AB (188)

which gives the solution to (184) and completes the proof of the lemma. �

Remark. The previous lemma gives

M−
∞ =

1

4
. (189)

IV.5.2 The L1-norm.

Let TQ,R(x, y) denote the bilinear spline which interpolates quadratic function Q(x, y) at

the vertices of the rectangle R. Let also

dQ,R,1 :=

∫

R

∫

|Q(x, y) − TQ,R(x, y)|dxdy, (190)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,1

|R|2 → min (191)

and find the minimum of it.

The following lemma gives the answer to this problem. Clearly, it is enough to consider

the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2] centered at

the origin, since any other rectangle can be brought to this one by a linear transformation

(shift).

Lemma 33. Let the quadratic form

Q(x, y) = Ax2 − By2
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with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,1

|R|2 ≥ 1

12

√
AB. (192)

Moreover, equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: As we already mentioned, the interpolant on a rectangle R is a constant equal

to

TQ,R(x, y) = Ah2
1 − Bh2

2.

The extremal problem (191) can be rewritten as follows: find

d := min
h1,h2

∫ h1

0

∫ h2

0
|Ax2 − By2 − Ah2

1 + Bh2
2|dxdy (193)

under the condition that the area of rectangle [0, h1]× [0, h2] is fixed, i.e. h1h2 = S (assume

for definiteness h2 > h1, another case is analogous). Set

r(x) :=

√

Ax2 − Ah2
1 + Bh2

2

B
.

With this notation we have

∫ h1

0

∫ h2

0

∣

∣Ax2 − By2 − Ah2
1 + Bh2

2

∣

∣ dydx

=

∫ h1

0

∫ r(x)

0

(

Ah2
1 − Bh2

2 − Ax2 + By2
)

dydx −
∫ h1

0

∫ h2

r(x)

(

Ah2
1 − Bh2

2 − Ax2 + By2
)

dydx

=

∫ h1

0

(

h2

(

Bh2
2 − Ah2

1 + Ax2
)

− B

3
h3

2 −
4

3
√

B

(

Bh2
2 − Ah2

1 + Ax2
)3/2

)

dx. (194)

Hence, we have to minimize the function

∫ h1

0

(

h2

(

Bh2
2 − Ah2

1 + Ax2
)

− B

3
h3

2 −
4

3
√

B

(

Bh2
2 − Ah2

1 + Ax2
)3/2

)

dx

under the condition h1h2 = S. Clearly, the minimum of this function exists since the

function is continuous on a compact set. Let us show that the minimum is obtained for
√

Ah1 =
√

Bh2. Assume to the contrary, that the minimum is attained for the point (h1, h2)
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such that
√

Ah1 6=
√

Bh2. For this point necessary conditions of the minimum have to be

satisfied. Considering the corresponding Lagrangian and setting partial derivatives with

respect to h1 and h2 equal to 0, we have:

−2

3
Bh3

2 − 2Ah2
1h2 + 4

√

A

B
h1

(√
AB

2
h1h2 +

Bh2
2 − Ah2

1

2
ln

√
Ah1 +

√
Bh2

√

Bh2
2 − Ah2

1

)

+ λh2 = 0.

−2

3
Ah3

1 + 2Bh2
2h1 − 4

√

B

A
h2

(√
AB

2
h1h2 +

Bh2
2 − Ah2

1

2
ln

√
Ah1 +

√
Bh2

√

Bh2
2 − Ah2

1

)

+ λh1 = 0.

Multiplying the first equation by h1, the second one by −h2 and adding, we obtain after

simplifying

(Ah2
1 − Bh2

2)

(

2

3
h1h2 − 2

(Bh2
2 + Ah2

1)√
AB

ln

√
Ah1 +

√
Bh2

√

Bh2
2 − Ah2

1

)

= 0.

Due to the assumption
√

Ah1 6=
√

Bh2 we obtain

(

2

3
h1h2 − 2

(Bh2
2 + Ah2

1)√
AB

ln

√
Ah1 +

√
Bh2

√

Bh2
2 − Ah2

1

)

= 0.

First of all observe that it is enough to consider the case A = B = 1 (due to the change of

variables) and h1h2 = 1. Then the system of equations can be rewritten

(h2
2 + h2

1) ln
h1 + h2

h2 − h1
=

2

3

and h1h2 = 1. Set h1 = h < 1 and, hence, h2 = 1
h > 1. Therefore,

ln
1 + h2

1 − h2
=

2h2

3(h4 + 1)
.

Denote the left-hand side of the last equation by f(h) and right-hand side by g(h). Note

that f(0) = g(0) = 0. Let us show that for all h ∈ (0, 1)

f ′(h) > g′(h). (195)

104



Indeed, calculating the derivatives we obtain

f ′(h) =
4h

1 − h4
, g′(h) =

4

3
h

1 − h4

(1 + h4)2
.

Therefore, we obtain an obvious inequality and (195) holds. This means that the only

solution of the system is
√

Ah1 =
√

Bh2 or

h1 =

(

B

A

)1/4 √
S, h2 =

(

A

B

)1/4 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d =
1

3

√
ABS2.

Note that |R| = 4S. Therefore, for the error on the whole R we have

dQ,R,1

|R|2 =
1

12

√
AB (196)

which gives solution to (191) and completes the proof of the lemma. �

Remark. The previous lemma gives

M−
1 =

1

12
. (197)

IV.5.3 The L2-norm.

Let again TQ,R(x, y) denote the bilinear spline which interpolates quadratic function Q(x, y)

at the vertices of the rectangle R. Let also

dQ,R,2 :=

(∫

R

∫

(Q(x, y) − TQ,R(x, y))2dxdy

)1/2

, (198)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,2

|R|3/2
→ min, (199)
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and find the minimum of it.

The following lemma gives the answer to this problem (again it is enough to consider

the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2] centered at

the origin).

Lemma 34. Let the quadratic form

Q(x, y) = Ax2 − By2

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,2

|R|3/2
≥
√

1

90

√
AB (200)

Moreover, the equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: As we mentioned before, the interpolant on the rectangle R is a constant equal

to

TQ,R(x, y) = Ah2
1 − Bh2

2.

In the case of L2 norm the extremal problem (199) can be rewritten as follows. Find

d2 := min
h1,h2

∫ h1

0

∫ h2

0
(Ax2 − By2 − Ah2

1 + Bh2
2)

2dxdy (201)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. We

have

∫ h1

0

∫ h2

0
(Ax2 − By2 − Ah2

1 + Bh2
2)

2dxdy = h1h2

(

8

15
B2h4

2 −
8

9
ABh2

1h
2
2 +

8

15
A2h4

1

)

.

Hence, we have to minimize the function

h1h2

(

8

15
B2h4

2 −
8

9
ABh2

1h
2
2 +

8

15
A2h4

1

)

under the condition h1h2 = S. Using the method of Lagrange multipliers we obtain that

the minimum is attained for
√

Ah1 =
√

Bh2. From this and from the condition h1h2 = S
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we can find h1 and h2:

h1 =

(

B

A

)1/4 √
S, h2 =

(

A

B

)1/4 √
S.

Plugging these back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d2 =
8

45
ABS3.

Therefore, for the error on the whole R (recall that |R| = 4S) we have

dQ,R,2

|R|3/2
=

√

1

90

√
AB (202)

which gives the solution to (199) and completes the proof of the lemma. �

Remark. The previous lemma gives

M−
2 =

√

1

90
. (203)

IV.6 General form of the error in the case of near interpolation of C2 functions

defined on [0, 1]2 by bilinear splines. Estimate from above.

We restart numbering of the constants c1, c2, . . . .

Proof of Theorem 10: For an arbitrary fixed ε ∈ (0, 1) and for every N ∈ N we define

mN := min

{

m > 0 :
1

2m
2(1+ 1

p
)
ω

(

1

2m

)

≤ ε

N

}

, (204)

where ω(δ) is a function defined in (28).

Observe that clearly for mN defined in (204) it is true that mN → ∞ as N → ∞. In

addition, as before we can show

N

m
2(1+ 1

p
)

N

→ ∞, N → ∞, (205)
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i.e. mN = o

(

N
1

2(1+ 1
p )

)

as N → ∞ and 1
N = o

(

1

m
2(1+ 1

p )

N

)

.

Divide the unit square [0, 1]× [0, 1] into squares with side length equal to 1
mN

and denote

the resulting squares by DN
i , i = 1, . . . , m2

N . Next we take the center point (xN
i , yN

i ) in each

square DN
i and set

AN
i :=

1

2
fxx(xN

i , yN
i ), BN

i :=
1

2
fyy(x

N
i , yN

i ).

Note that

|H(xN
i , yN

i )| := 4|AN
i BN

i | ≥ C+, ∀i = 1, . . . , m2
N . (206)

Set

nN
i :=

















N(1 − ε)|H(xN
i , yN

i )|
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

















, i = 1, ..., m2
N . (207)

The nN
i , i = 1, . . . , m2

N , are determined by minimizing the sum of the errors of the

interpolation of piecewise quadratic functions on each region subject to the condition the

total number of rectangles is N .

To find the minimum we shall use the method of Lagrange multipliers. Let us consider

∂

∂ñi





m2
N
∑

i=1

|H(xN
i , yN

i )| p

2

m
2(p+1)
N (ñN

i )p+1
ñN

i Ω(xN
i , yN

i ) + λ

m2
N
∑

i=1

ñN
i



 = 0.

This can be rewritten as

− p|H(xN
i , yN

i )| p

2

m
2(p+1)
N (ñN

i )p+1
Ω(xN

i , yN
i ) + λ = 0.

Hence,

ñi =

(

p|H(xN
i , yN

i )|p/2Ω(xN
i , yN

i )

λm
2(p+1)
N

) 1
p+1

.
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We shall find λ from the condition that the sum of all rectangles is N :

N =

m2
N
∑

i=1

ñN
i =

p
1

p+1

λ
1

p+1 m2
N

m2
N
∑

i=1

|H(xN
i , yN

i )|
p

2(p+1) Ω(xN
i , yN

i )
1

p+1 .

Solving for λ and plugging this value back into the expression for ñN
i , we obtain

ñN
i =

N(1 − ε)|H(xN
i , yN

i )|
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

.

The method of Lagrange multipliers provides only necessary conditions for the minimum.

However, in this case the obtained ñN
i indeed provides the minimum, because it clearly does

not provide the maximum (the maximum can be explicitly constructed in a simple way)

and the minimum exists.

Observe that all nN
i → ∞ when N → ∞.

Having the number of rectangles nN
i on each region DN

i , i = 1, ..., m2
N , we construct a

partition �
∗
N (DN

i ) of DN
i in the following way.

Let hN
i,1 and hN

i,2 be the linear sizes of the optimal rectangle on DN
i (call it RN

i ), i.e. the

one which solves the problem

Lp − error of biquadratic interpolation of AN
i x3 ± BN

i y3 on RN
i

|RN
i |

3
2
+ 1

p

. (208)

Observe that due to Lemmas 29-34 we can provide the explicit expressions for hN
i,1 and

hN
i,2 in cases p = 1, 2,∞:

hN
i,1 =

(

BN
i

AN
i

)1/4
1

mN

√

nN
i

, hN
i,2 =

(

AN
i

BN
i

)1/4
1

mN

√

nN
i

, i = 1, ..., m2
N . (209)

Most likely these expressions will also provide optimal parameters for other values of p as

well.
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v2

 
  v1

v3

Di Dj

Figure 8: Stitching of partitions on neighboring regions.

The intersection of the lattice

[khN
i,1, (k + 1)hN

i,1] × [lhN
i,2, (l + 1)hN

i,2], k, l ∈ Z (210)

with DN
i gives us the partition �

∗
N (DN

i ) of DN
i , i = 1, ..., m2

N .

Stitching of partitions of neighboring regions proceeds as follows.

Let us consider two neighboring regions DN
i and DN

j with corresponding interpolants SN
i

and SN
j . If the parameters of the grid on them are different, we have to subdivide rectangles

that have nonempty intersection with the boundary to ensure the global continuity of the

approximant (see Figure 8). For that purpose we need to continue each line (horizontal

in this case) of the grid from DN
i which intersects the boundary between DN

i and DN
j to

the intersection with the first line (vertical in this case) of the grid of DN
j and vice versa.

Newly created in this way vertices (v1, v2 and v3 on the picture) we shall call “irregular”

vertices, and all vertices of both partitions before subdivision we call “regular”. We shall

also call “irregular” those rectangles from �
∗
N (DN

i ) that have sides on the boundary of DN
i

and “regular” - all the rest.

To obtain the final approximant and to ensure the global continuity of it we shall in-

terpolate the original function f at the regular vertices, and we shall interpolate original

splines SN
i and SN

j at irregular vertices.

Let us calculate the number of irregular rectangles (denote it by KN
i ). Recalling (313)
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and the fact that the area of a rectangle from �
∗
N (DN

i ) is 1
m2

N
nN

i

we have that

KN
i = 2

√

AN
i

BN
i

√

nN
i + 2

√

BN
i

AN
i

√

nN
i = c1

√

nN
i

with c1 = 2

(√

AN
i

BN
i

+

√

BN
i

AN
i

)

. The number of irregular rectangles in the partition of DN
i

is not greater than c1

√

nN
i . Hence, the total number of irregular rectangles is not greater

than

c2

m2
N
∑

i=1

√

nN
i ≤ c2

m2
N
∑

i=1

√

√

√

√

√

√

√

√

N(1 − ε)|H(xN
i , yN

i )|
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

m2
N
∑

j=1

H(xN
j , yN

j )
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

≤ c3

√
Nm2

N

‖H‖
p

4(p+1)
∞ ‖Ω‖

1
2(p+1)
∞

mN (C+)
p

4(p+1)

(

min
(x,y)∈D

{Ω(x, y)}
) 1

2(p+1)

≤ c4

√
NmN = o



N

3+ 1
p

2(2+ 1
p )



 ,

as N → ∞ (since mN = o

(

N
1

2(1+ 1
p )

)

as N → ∞ because of (205)).

Therefore, since 3 + 1
p ≤ 2

(

2 + 1
p

)

, the number of rectangles in the constructed partition

will not exceed N for all N large enough.

By fN denote the piecewise quadratic function constructed in the following way. On

DN
1 we set fN to be AN

1 x2 + BN
1 y2. Then for i > 1 on DN

i \ ∪i−1
j=1D

N
j we set

fN (x, y) := AN
i x2 + BN

i y2.

If a function f is such that fxxfyy > 0 for all (x, y) ∈ D then all BN
i > 0, i = 1, . . . , m2

N . If

a function f is such that fxxfyy < 0 for all (x, y) ∈ D then all BN
i < 0, i = 1, . . . , m2

N .

To estimate RN (f, Lp,Ω, BS0
1(�N )) we observe that

RN (f, Lp,Ω, BS0
1(�N )) ≤ ‖f − s(f,�∗

N )‖p,Ω ≤ ‖f − fN‖p,Ω + ‖fN − s(fN , �∗
N )‖p,Ω

+‖s(fN , �∗
N ) − s(f,�∗

N )‖p,Ω.
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Obviously,

‖s(fN , �∗
N ) − s(f,�∗

N )‖p,Ω ≤ ‖f − fN‖p,Ω.

Hence,

RN (f, Lp,Ω, BS0
1(�N )) ≤ 2‖f − fN‖p,Ω + ‖fN − s(fN , �∗

N )‖p,Ω.

Let us estimate each term. First of all, by Lemma 1 and the definition of mN we have

‖f − fN‖p,Ω ≤ ‖Ω‖
1
p
∞

2m
2(1+ 1

p
)

N

ω

(

1

2mN

)

≤ ε

N
‖Ω‖

1
p
∞.

Let us estimate the second term now. It is clear that for two embedded rectangles the error

of linear interpolation of quadratic function with |H(f ; x, y)| ≥ C+ > 0 will be greater on

the larger rectangle. Therefore, we shall estimate this error on rectangles that do not have

an intersection with the boundary.

Let us take a rectangle RN
i ∈ �

∗
N (DN

i ) that does not have common points with the

boundary of DN
i . By (47), for every (x, y) ∈ RN

i we have

|fN (x, y) − s(fN , �∗
N ; x, y)|p ≤

(

M±
p

2

)p

|H(xN
i , yN

i )|p/2 1

(m2
NnN

i )p+1
.

Hence, the p-power of the error on the whole D is bounded by

|fN (x, y) − s(fN , �∗
N ; x, y)|p ≤

(

M±
p

2

)p m2
N
∑

i=1

nN
i Ω(xN

i , yN
i )|H(xN

i , yN
i )|p/2 1

(m2
NnN

i )p+1
.

By the definition of nN
i and by (54), for all large enough N , for all i, and for all (x, y) ∈ D,

we have

|fN (x, y) − s(fN ,�∗
N ;x, y)|p

≤
(

M±
p

2

)p
(1 + ε)

m
2(p+1)
N

m2
N
∑

i=1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )

















m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

N(1 − ε)|H(xN
i , yN

i )|
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

















p
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=

(

M±
p

2

)p
(1 + ε)

Npm
2(p+1)
N





m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1





p+1

.

Since this estimate does not depend on x and y, we obtain that

‖fN − s(fN , �∗
N )‖p,Ω ≤

(1 + ε)M±
p

2N





1

m2
N

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1





p+1
p

.

Note that since H(f ; x, y) and Ω(x, y) are Riemann integrable

1

m2
N

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1 (211)

=

m2
N
∑

j=1

|DN
j ||H(xN

j , yN
j )|

p

2(p+1) Ω(xN
j , yN

j )
1

p+1 →
∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

as N → ∞. Hence, for all N large enough we obtain

‖fN − s(fN , �∗
N )‖p,Ω <

M±
p

2N

1 + 2ε

1 − ε

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.

Therefore,

‖f − s(f,�∗
N )‖p,Ω <

2ε

N
‖Ω‖

1
p
∞ +

M±
p

2N

1 + 2ε

1 − ε

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.

Because ε > 0 is arbitrary, we obtain the desired estimate. �

IV.7 General form of the error in the case of near interpolation of C2 functions

defined on [0, 1]2 by bilinear splines. Estimate from below.

In this section, let mN , nN
i , DN

i etc. be as defined in Section IV.6.

Proof of Theorem 11: To obtain the estimate from below we shall consider an arbi-

trary sequence of partitions {�N}∞N=1 which satisfies (152).

For the fixed ε > 0 denote by DN
i (ε) the square congruent to DN

i with side length equal

to 1−ε
m2

N

. Assumption (22) implies that for all large enough N and for any ε > 0 there exists

a rectangle RN
iN

which lies completely in DN
i (ε).
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For each such N and iN , set

fN,iN (x, y) := AN
iN

x2 + BN
iN

y2.

If a function f is such that fxxfyy > 0 for all (x, y) ∈ D then all BN
i > 0, i = 1, . . . , m2

N . If

a function f is such that fxxfyy < 0 for all (x, y) ∈ D then all BN
i < 0, i = 1, . . . , m2

N .

Observe that

‖f − s(f,�N )‖Lp,Ω(RN
iN

) ≥ ‖fN,iN − s(fN,iN , �N )‖Lp,Ω(RN
iN

) − 2‖f − fN,iN ‖Lp,Ω(RN
iN

).

By Lemmas 29–34 we have for all N large enough

‖fN,iN − s(fN,iN , �N )‖p

Lp,Ω(RN
iN

)
≥

(1 − ε)(M±
p )p

2p(m2
NnN

iN
)p+1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )

By the definition of M±
p , by definition of nN

iN
, and (315) we have that for all N large enough

(1 − ε)(M±
p )p

(m2
NnN

iN
)p+1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )

≥
(M±

p )p

m
2(p+1)
N

m2
N
∑

j=1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )

















m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1

N(1 − ε)|H(xN
i , yN

i )|
p

2(p+1) Ω(xN
i , yN

i )
1

p+1

















p

=
(M±

p )p

(1 − ε)pNpm
2(p+1)
N





m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2(p+1) Ω(xN
j , yN

j )
1

p+1





p+1

>
(M±

p )p

Np

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)p+1

.

Hence, for all N large enough we obtain

‖fN − s(fN , �∗
N )‖p,Ω >

M±
p

2N
(1 − ε)

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

.
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On the other hand

‖f − fN,iN ‖Lp,Ω(RN
iN

) ≤ ‖f − fN,iN ‖Lp,Ω(DN
iN

) ≤
‖Ω‖

1
p
∞

2m
2(1+ 1

p
)

N

ω

(

1

2mN

)

≤ ε

N
‖Ω‖

1
p
∞

due to the choice of mN . Hence, we obtain that for all large enough N

‖f − s(f,�N )‖p,Ω ≥ (1 − c6ε)
M±

p

2N

(∫

D
|H(f ; x, y)|

p

2(p+1) Ω(x, y)
1

p+1 dxdy

)
p+1

p

with some positive constant c6. Therefore,

lim inf
N→∞

‖f − s(f,�N )‖p,Ω

M±
p

2N

(

∫

D |H(f ; x, y)|
p

2(p+1) Ω(x, y)
1

p+1 dxdy
)

p+1
p

≥ 1.

This completes the proof of the theorem. �

IV.8 Remarks: choice of an element.

The choice of whether to use a triangular or rectangular partition depends primarily on the

setting of the problem and on the shape of the domain. Triangles are more flexible, however,

in solid mechanics (the study of load carrying members in terms of forces, deformations, and

stability, where there are often prefered directions because of certain geometric relations)

rectangular elements are generally preferred.
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CHAPTER V

MULTILINEAR SPLINES IN R
d

In R
d we understand the space of multilinear splines to be the collection of functions of d

variables which are linear in each variable, i.e. have the form

a
d
∏

i=1

xi +
d
∑

j=1

bj

∏

i6=j

xi +
d
∑

j=1

∑

k 6=j

ckj

∏

i6=j,k

xi + . . . .

Denote this space by BSd,0
1 . Let the d-dimensional box partition �N of D = [0, 1]d with

sides parallel to the coordinate axes be fixed. By BSd,0
1 (�N ) denote the space of multilinear

splines on this partition. Let s(f,�N ) ∈ BSd,0
1 (�N ) denote a spline which interpolates the

function f at all vertices of the partition �N except for o(N) of them.

The main question of this chapter is to investigate the asymptotic behaviour of the

optimal error RN (f, Lp,Ω, BSd,0
1 (�N )).

In this chapter the main theorems are the following.

Theorem 12. Let f ∈ C2(D), and D = [0, 1]d ⊂ R
d. In addition, assume that at every

point x the quadratic form
d
∑

i=1

∂2f

∂x2
i

(x)h2
i has the signature (k, d − k), 0 < k < d. Let also

|H(f ;x)| ≥ C+ > 0 for all x ∈ D and a positive continuous weight function Ω(x) be given.

Then

lim sup
N→∞

N
2
d ‖f − s(f,�∗

N )‖∞,Ω ≤ 1

8
k

k
d (d − k)1−

k
d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

. (212)

Theorem 13. Let f ∈ C2(D), and D = [0, 1]d ⊂ R
d. In addition, assume that at every

point x the quadratic form
d
∑

i=1

∂2f

∂x2
i

(x)h2
i has the signature (k, d − k), k > 0. Let also

|H(f ;x)| ≥ C+ > 0 for all x ∈ D and a positive continuous weight function Ω(x) be given.

Then for any sequences of box partitions {�N} which satisfies

sup
N

N
1
d max

R∈�N

diam(R) < ∞ (213)
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we have

lim inf
N→∞

N
2
d ‖f − s(f,�N )‖∞,Ω ≥ 1

8
k

k
d (d − k)1−

k
d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

. (214)

Let us remark here that the interpolation problem on the partitions with sides parallel

to the coordinate axes has a solution since clearly the interpolation matrix is nonsingular.

V.1 Interpolation of quadratic functions with arbitrary signature.

Let the following quadratic form

Q(x) =
d
∑

i=1

σix
2
i (215)

be given. Assume that σi = 1 for all 1 ≤ i ≤ k and σi = −1 for all k + 1 ≤ i ≤ d. In this

case we say that the quadratic form (215) has the signature (k, d − k).

Lemma 35. The error of interpolation of the quadratic form (215) with signature (k, d−k),

0 ≤ k ≤ d, by multilinear splines at the vertices of the d-dimensional box
d
∏

i=1

[−hi, hi] is

max
{

h2
1 + · · · + h2

k, h
2
k+1 + · · · + h2

d

}

. (216)

Proof: We shall proceed by induction. The basis of induction, i.e. the statement of the

theorem in the case d = 2 and k = 1 has been proved in Lemma 32.

Next let us consider the form (215) with signature (k, d − k). The value of the error at

the center is

δ(0) =

∣

∣

∣

∣

∣

k
∑

i=1

h2
i −

d
∑

i=k+1

h2
i

∣

∣

∣

∣

∣

. (217)

Let us consider the error on the boundary.

On the face xi = hi in the case when i ≤ k the form (215) becomes

k
∑

j=1,j 6=i

x2
j −

d
∑

j=k+1

x2
j (218)
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and the error by hypothesis of induction is

max







k
∑

j=1,j 6=i

h2
j ,

d
∑

j=k+1

h2
j







. (219)

On the face xi = hi in the case when i > k the form (215) becomes

k
∑

j=1

x2
j −

d
∑

j=k+1,j 6=i

x2
j (220)

and the error by hypothesis of induction is

max







k
∑

j=1

h2
j ,

d
∑

j=k+1,j 6=i

h2
j







. (221)

Therefore, the global error is

∆ = max







∣

∣

∣

∣

∣

k
∑

i=1

h2
i −

d
∑

i=k+1

h2
i

∣

∣

∣

∣

∣

,max
i

max







k
∑

j=1,j 6=i

h2
j ,

d
∑

j=k+1

h2
j







,max
i

max







k
∑

j=1

h2
j ,

d
∑

j=k+1,j 6=i

h2
j













= max







max
i≤k

max







k
∑

j=1,j 6=i

h2
j ,

d
∑

j=k+1

h2
j







,max
i>k

max







k
∑

j=1

h2
j ,

d
∑

j=k+1,j 6=i

h2
j













= max







max







max
i≤k

k
∑

j=1,j 6=i

h2
j ,

d
∑

j=k+1

h2
j







,max







k
∑

j=1

h2
j ,max

i>k

d
∑

j=k+1,j 6=i

h2
j













= max







max
i≤k

k
∑

j=1,j 6=i

h2
j ,

d
∑

j=k+1

h2
j ,

k
∑

j=1

h2
j ,max

i>k

d
∑

j=k+1,j 6=i

h2
j







= max







d
∑

j=k+1

h2
j ,

k
∑

j=1

h2
j







.

The lemma is proved. �

Next we shall compute the value of the minimal l∞ error. Denote by

∆ := min
hi







k
∑

j=1

h2
j ,

d
∑

j=k+1

h2
j







, (222)
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where min is taken over all hi such that

2d
d
∏

i=1

hi = V. (223)

In the next two lemmas we shall compute the value of ∆ in the case of positive definite

quadratic form and in the case of the quadratic form with arbitrary signature.

Lemma 36. The minimal error of interpolation of the quadratic form (215) with signature

(d, 0), by multilinear splines at the vertices of the d-dimensional box
d
∏

i=1

[−hi, hi] of volume

V is

∆ =
d

4
V

2
d . (224)

Proof: Clearly, the minimum of the function

d
∑

i=1

h2
i with the additional assumption

(223) is achieved when all hi are equal, i.e.

h1 = h2 = · · · = hd := h.

In this case, we have

∆ = min
hi

{

d
∑

i=1

h2
i

}

= dh2.

From condition (223) we also have

h =
V

1
d

2
,

and, hence,

∆ = d
V

2
d

4
.

�

Lemma 37. The minimal error of interpolation of the quadratic form (215) with signature

(k, d− k), 0 < k < d, by multilinear splines on the d-dimensional box
d
∏

i=1

[−hi, hi] of volume

V is

∆ =
1

4
k

k
d (d − k)1−

k
d V

2
d . (225)

Proof: To prove the lemma, i.e. to minimize the l∞−norm of (216), we minimize the lp
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norm (with an arbitrary p) of (216) under assumption that the volume of the parralelepiped

is fixed (= V ) and take the value of the minimum when p = ∞:





d
∑

j=k+1

h2
j





p

+





k
∑

j=1

h2
j





p

, (226)

since

lim
p→∞

‖x‖Lp(Rd) = ‖x‖L∞(Rd),

and, therefore, if the actual maximum value was less than the value obtained in this way

then it would also be true for all p large enough.

The assumption of volume being fixed is equivalent to

22d
d
∏

i=1

h2
i = V 2. (227)

To minimize the function in (226), we shall use the method of Lagrange multipliers. Let us

consider the function (we substitute xi = h2
i )

f(x) =





d
∑

j=k+1

xj





p

+





k
∑

j=1

xj





p

+ λ
d
∏

j=1

xj , (228)

and its partial derivatives

∂f

∂xi
= p





k
∑

j=1

xj





p−1

+ λ
d
∏

j=1,j 6=i

xj = 0, i = 1, . . . , k

∂f

∂xi
= p





d
∑

j=k+1

xj





p−1

+ λ
d
∏

j=1,j 6=i

xj = 0, i = k + 1, . . . , d. (229)

Multiplying the first equation by xi we obtain

pxi





k
∑

j=1

xj





p−1

+ λV 22−2d = 0, i = 1, . . . , k. (230)
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Analogously,

pxi





d
∑

j=k+1

xj





p−1

+ λV 22−2d = 0, i = k + 1, . . . , d. (231)

Therefore, the only solution is

x1 = · · · = xk =: x,

xk+1 = · · · = xd =: y.

Taking into consideration assumption (227)

xkyd−k = V 22−2d,

and using equations (230) and (231), we can find x and y:

x(kx)p−1 = y((d − k)y)p−1.

It is easy to check that we obtain

x =

(

d − k

k

)(1− k
d
)(1− 1

p
) V

2
d

4
, (232)

and

y =

(

d − k

k

)− k
d
(1− 1

p
) V

2
d

4
. (233)

In the case p = ∞ we have

x =
1

4

(

d − k

k

)(1− k
d
)

V
2
d ,

y =
1

4

(

d − k

k

)− k
d

V
2
d .

Therefore,

hi =
1

2

(

d − k

k

)
d−k
2d

V
1
d , i ≤ k, (234)

hj =
1

2

(

d − k

k

)− k
2d

V
1
d , j > k. (235)
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Hence, the global error is

∆ =
1

4
k

(

d − k

k

)(1− k
d
)

V
2
d =

1

4
k

k
d (d − k)1−

k
d V

2
d . (236)

�

Now let the quadratic form

Q(x) =
d
∑

i=1

Aix
2
i (237)

be given. Assume that Ai > 0 for all 1 ≤ i ≤ k and Ai < 0 for all k + 1 ≤ i ≤ d, i.e. the

form Q(x) has the sign (k, d − k).

Lemma 38. The error of interpolation of quadratic form (237) with signature (k, d − k),

0 < k < d, by multilinear splines on the d-dimensional box P of volume V [P ] is

1

4
k

k
d (d − k)1−

k
d



V

√

√

√

√

d
∏

i=1

Ai





2
d

. (238)

Proof: For the given quadratic form Q(x) =
d
∑

i=1

Aix
2
i let us consider a linear transfor-

mation F such that

(Q ◦ F )(u) =
d
∑

i=1

u2
i . (239)

In other words,

F (u) =

(

u1√
A1

, . . . ,
ud√
Ad

)

. (240)

Observe that the determinant of the inverse of this transformation is

det(F−1) =

√

√

√

√

d
∏

i=1

Ai. (241)

Let us consider the box F−1(P ) which clearly has the volume

V [F−1(P )] = V [P ] det(F−1). (242)

Combining the result of the previous lemma about the error of interpolation on the box
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F−1(P ) with (242) and (241), we obtain (243). �

Similarly, in the case of positive definite form we obtain the following statement.

Lemma 39. The error of interpolation of the positive definite quadratic form by multilinear

splines on the d-dimensional box P of volume V [P ] is

d

4



V

√

√

√

√

d
∏

i=1

Ai





2
d

. (243)

V.2 Error of near interpolation of C2 functions defined on [0, 1]d. Estimate

from above.

In this section we restart the numbering of constants.

Proof of Theorem 12: For a fixed ε ∈ (0, 1) and for every N we define as before

mN := min

{

m > 0 :
d2

2

(

1

2m

)2

ω

(

1

2m

)

≤ ε

N
2
d

}

, (244)

where ω(δ) is a function defined in (113).

Observe that clearly for mN defined in (244) it is true that mN → ∞ as N → ∞. In

addition, we can show as in Section II.4.1 that

N
2
d

m2
N

→ ∞, N → ∞, (245)

i.e. mN = o(N
1
d ) as N → ∞.

Divide the unit cube D into cubes with side length equal to 1
mN

and denote the resulting

cubes by DN
l , l = 1, . . . , md

N . Next take the center point xN
l in each cube DN

l and set

AN,l
i,j :=

1

2

∂2f

∂xi∂xj
(xN

l ), i, j = 1, . . . , d, l = 1, . . . , md
N .

Observe that, clearly,

AN,l
i,j = AN,l

j,i , i, j = 1, . . . , d, l = 1, . . . , md
N .
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In addition, denote by

H(xN
l ) :=

d
∏

i=1

AN,l
i,i , l = 1, . . . , md

N .

Set

nN
l :=

















N(1 − ε)|H(xN
l )| 12 Ω(xN

l )
d
2

md
N
∑

j=1

|H(xN
j )| 12 Ω(xN

j )
d
2

















, l = 1, . . . , md
N . (246)

We find nN
l by minimizing the overall error on D.

Clearly, the minimal overall error in the uniform norm will be achieved when errors

on each region are equal. Using this condition and Lemma 39 we arrive at the following

equations for all l = 1, . . . , md
N

1

4
k

k
d (d − k)1−

k
d





√

|H(xN
l )|

md
N ñN

l





2/d

Ω(xN
l ) =

1

4
k

k
d (d − k)1−

k
d





√

|H(xN
1 )|

md
N ñN

1





2/d

Ω(xN
1 ).

From this we find the number ñN
l :

ñN
l = ñN

1

|H(xN
l )|1/2

Ω(xN
l )d/2

|H(xN
1 )|1/2

Ω(xN
1 )d/2

.

From the condition

md
N
∑

l=1

ñN
l = N we have

N =
ñ1

|H(xN
1 )|1/2

Ω(xN
1 )d/2

md
N
∑

l=1

|H(xN
l )|1/2

Ω(xN
l )d/2

Solving for ñN
1 , substituting it in the expression for ñN

l , and taking the integer part of it

gives us the formula for nN
l .

We have shown in Section II.4.1 that nN
l → ∞ when N → ∞.
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Now set

hN
l,i :=

1

2

(

d − k

k

)
d−k
2d
(

1

md
NnN

l

) 1
d

, i ≤ k, l = 1, . . . , md
N , (247)

hN
l,j :=

1

2

(

d − k

k

)− k
2d
(

1

md
NnN

l

) 1
d

, j > k, l = 1, . . . , md
N . (248)

The intersection of the lattice

∏

i≤k

[Lih
N
l,i, (Li + 1)hN

l,i] ×
∏

i>k

[Lih
N
l,i, (Li + 1)hN

l,i], Li ∈ Z, l = 1, . . . , md
N , (249)

with DN
l gives us the desired partition �

∗
N (DN

l ) of DN
l , l = 1, ..., m2

N . The stitching of the

partitions on the neighboring regions proceeds as was described in Section IV.3 for R
2 with

the obvious corresponding changes. Denote by �
∗
N (D) the obtained partition of D. Let us

show that the sequence of obtained in such a way partitions {�∗
N (D)} will be asymptotically

optimal.

By fN denote the piecewise quadratic function constructed in the following way. On

DN
1 we set fN to be

d
∑

i=1

AN,1
i,i x2

i . Then for l > 1 on DN
l \ ∪l−1

j=1D
N
j we set

fN (x) :=
d
∑

i=1

AN,l
i,i x2

i .

To estimate RN (f, L∞,Ω, BSd,0
1 (�N )) we observe that

RN (f, L∞,Ω, BSd,0
1 (�N )) ≤ ‖f − s(f,�∗

N )‖∞,Ω ≤ ‖f − fN‖∞,Ω + ‖fN − s(fN , �∗
N )‖∞,Ω

+‖s(fN , �∗
N ) − s(f,�∗

N )‖∞,Ω ≤ 2‖f − fN‖∞,Ω + ‖fN − s(fN , �∗
N )‖∞,Ω.

Let us estimate each term. First of all, by Lemma 22 and the definition of mN we have

‖f − fN‖∞,Ω ≤ d2

2

(

1

2m

)2

ω

(

1

2mN

)

‖Ω‖∞ ≤ ε

N
2
d

‖Ω‖∞.

Let us estimate the second term now. It is clear that for two embedded elements of partition
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the error of multilinear interpolation of a quadratic function is greater on the larger element.

Therefore, we shall estimate this error on elements that do not have intersection with the

boundary.

Let us take an element RN
l ∈ �

∗
N (DN

l ) that does not have common points with the

boundary of DN
l . By Lemma 37, for every x ∈ RN

l we have

|fN (x) − s(fN , �∗
N ;x)|Ω(xN

l ) ≤ ‖fN − s(fN , �∗
N ; ·)‖∞,Ω

=
1

8
k

k
d (d − k)1−

k
d

(

1

md
NnN

l

√

|H(xN
l )|
) 2

d

Ω(xN
l ).

By the definition of nN
l , for all large enough N , for all l, and for all x ∈ RN

l , we have

|fN (x) − s(fN , �∗
N ;x)|Ω(xN

i ) ≤

≤ 1

8
k

k
d (d − k)1−

k
d

















md
N
∑

j=1

|H(xN
j )|

1
2 Ω(xN

j )
d
2

md
NN(1 − ε)|H(xN

l )|
1
2 Ω(xN

l )
d
2

√

|H(xN
l )|

















2
d

Ω(xN
l ).

Since this estimate does not depend on x, we obtain

‖fN − s(fN , �∗
N ; ·)‖∞,Ω ≤ k

k
d (d − k)1−

k
d

8(N(1 − ε))2/d





1

m2
N

md
N
∑

j=1

|H(xN
j )|

1
2 Ω(xN

j )
d
2





2
d

.

Note that

1

m2
N

md
N
∑

j=1

|H(xN
j )|

1
2 Ω(xN

j )
d
2 →

∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx, as N → ∞.

Hence, for all N large enough we have

‖fN − s(fN , �∗
N ; ·)‖∞,Ω ≤ k

k
d (d − k)1−

k
d

8(N(1 − ε))2/d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

.
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Therefore,

‖f − s(f,�∗
N ; ·)‖∞,Ω ≤ 2ε

N
2
d

‖Ω‖∞ +
k

k
d (d − k)1−

k
d

8(N(1 − ε))
2
d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

.

Because ε > 0 is arbitrary, we obtain the desired estimate (250). �

Remark. Observe that in the case k = d, i.e. in the case when the quadratic part of

Taylor polynomial is a positive definite form, we obtain the idefinite form 00. However, all

arguments will hold true if we set 00 = 1. Therefore, in the case k = d we have the following

result.

Lemma 40. Let f ∈ C2(D), and D = [0, 1]d ⊂ R
d. In addition, assume that at every point

x the quadratic form
d
∑

i=1

∂2f

∂x2
i

(x)h2
i has the signature (d, 0). Let also |H(f ;x)| ≥ C+ > 0

for all x ∈ D and a positive continuous weight function Ω(x) be given. Then

lim sup
N→∞

N
2
d ‖f − s(f,�∗

N )‖∞,Ω ≤ d

8

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

. (250)

V.3 Error of near interpolation of C2 functions defined on [0, 1]d. Estimate

from below.

Let mN , nN
i , DN

i etc. be as defined in the previous section.

Proof of Theorem 13: To obtain the estimate from below we shall consider an arbi-

trary sequence of box partitions {�N}∞N=1 which satisfies (213). This assumption implies

that for all N large enough there exists lN and DN
lN

that completely contains an element

RN
lN

∈ �N .

For each such N and lN , set

fN,lN (x) :=
d
∑

i=1

AN,l
i,i x2

i .

Observe that

‖f − s(f,�N )‖L∞,Ω(RN
lN

) ≥ ‖fN,lN − s(fN,lN , �N )‖L∞,Ω(RN
lN

) − 2‖f − fN,lN ‖L∞,Ω(RN
lN

).
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By Lemma 37 we have

‖fN,lN − s(fN,iN , �N )‖L∞,Ω(RN
lN

) ≥ (1 − ε)
1

8
k

k
d (d − k)1−

k
d

(

1

md
NnN

l

√

|H(xN
l )|
) 2

d

Ω(xN
l ).

By the definition of nN
lN

we have that for all N large enough

1

8
k

k
d (d − k)1−

k
d
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1

md
NnN

l

√

|H(xN
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) 2

d
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=
1

8
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k
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k
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1
2 Ω(xN

l )
d
2

√

|H(xN
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2
d

Ω(xN
l )

>
k

k
d (d − k)1−

k
d

8N
2
d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

.

Hence, for all N large enough we obtain

‖fN − s(fN , �N )‖∞,Ω > (1 − ε)
k

k
d (d − k)1−

k
d

8N
2
d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

.

On the other hand

‖f − fN,iN ‖L∞,Ω(RN
iN

) ≤ ‖Ω‖∞
ε

N
2
d

due to the choice of mN . Hence, we obtain that for all large enough N

‖f − s(f,�N )‖∞,Ω ≥ (1 − c2ε)
k

k
d (d − k)1−

k
d

8N
2
d

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

with some positive constant c2. Therefore,

lim inf
N→∞

‖f − s(f,�N )‖∞,Ω

k
k
d (d−k)1−

k
d

8N
2
d

(

∫

D |H(f ;x)| 12 Ω(x)
d
2 dx

) 2
d

≥ 1.

This completes the proof of the lemma. �

Analogously, the following statement can be proved.
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Lemma 41. Let f ∈ C2(D), and D = [0, 1]d ⊂ R
d. In addition, assume that at every point

x the quadratic form
d
∑

i=1

∂2f

∂x2
i

(x)h2
i has the signature (d, 0). Let also |H(f ;x)| ≥ C+ > 0

for all x ∈ D and let a positive continuous weight function Ω(x) be given. Then for any

sequences of box partitions {�N} which satisfies (213) we have

lim inf
N→∞

N
2
d ‖f − s(f,�N )‖∞,Ω ≥ d

8

(∫

D
|H(f ;x)| 12 Ω(x)

d
2 dx

) 2
d

. (251)
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CHAPTER VI

BIQUADRATIC SPLINES

A popular interpolation scheme on rectangles consists of piecewise polynomials of degree 3

whose restriction to the edges are quadratic polynomials, i.e. functions of the type

ax2y + bxy2 + cx2 + dxy + ey2 + fx + gy + h.

There are eight parameters or eight degrees of freedom. They can be used to interpolate a

given function at the vertices of the rectangle and at the midpoints of the sides (see Figure

9). Using the language of finite element methods, this element is called the eight node

element or the serendipity element.

Using this space of biquadratic polynomials to interpolate a given C3 function we shall

ask the same question as before: what are the exact asymptotics of the optimal error of

interpolation the given function on the rectangular grid with sides parallel to the coordinate

axes? We shall also provide a construction of the sequence of partitions which will provide

the asymptotically optimal error.

Let P3 be the set of biquadratic polynomials, i.e. functions of the type

p(x, y) = ax2y + bxy2 + cx2 + dxy + ey2 + fx + gy + h, a, b, c, d ∈ R.

Figure 9: Interpolation scheme which uses biquadratic splines
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Given a partition �N (D) define the space QS0
1(�N ) of bilinear splines to be

QS0
1(�N ) := {f ∈ C(D) : ∀i = 1, ..., N ∃ p ∈ P3 s.t. f |Ri

= p|Ri
}.

Note that the bilinear spline s(f,�N ) is uniquely defined by its values at the vertices of

the rectangular partition.

Let s(f,�N ) ∈ QS0
1(�N ) denote a spline which interpolates the function f at all vertices

of the partition �N except for o(N) of them.

Now let f ∈ C3(D), D = [0, 1]2, and the number of rectangles N ∈ N be fixed. Define

the error of optimal interpolation of the function f by the continuous piecewise bilinear

function s(f,�N ) ∈ QS0
1(�N ) to be

RN (f, Lp,Ω, QS0
1(�N )) := inf

�N

‖f − s(f,�N )‖p,Ω, (252)

where inf is taken over all rectangular partitions of D containing N rectangles. The main

goal of this chapter is to investigate the asymptotics of the optimal error RN (f, Lp,Ω, QS0
1(�N )).

The following two theorems give the answer to this question.

Theorem 14. Let f ∈ C3(D), D = [0, 1]2, and |H(f ; x, y)| := |fxxxfyyy(x, y)| ≥ C+ > 0

for all (x, y) ∈ D. Let also positive continuous weight function Ω(x, y) be given. Then for

any 1 ≤ p ≤ ∞ in the case of interpolation by biquadratic splines on rectangular partition

with sides parallel to the coordinate axes we have

lim sup
N→∞

N
3
2 ‖f−s(f,�N )‖p,Ω ≤

M±
p (1 + o(1))

6

(∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

) 3
2
+ 1

p

,

(253)

where

M±
p = min

R

Lp − error of biquadratic interpolation of x3 ± y3 on rectangle R

|R|
3
2
+ 1

p

. (254)

Theorem 15. Let f ∈ C3(D), D = [0, 1]2, and |H(f ; x, y)| := |fxxxfyyy(x, y)| ≥ C+ > 0

for all (x, y) ∈ D. Let also positive continuous weight function Ω(x, y) be given. Then for
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any 1 ≤ p ≤ ∞ and for any sequence of rectangular partitions {�N}∞N=1 satisfying

sup
N

√
N max

R∈4N

diam(R) < ∞, (255)

we have

lim inf
N→∞

N
3
2 ‖f−s(f,�N )‖p,Ω ≥

M±
p (1 + o(1))

6

(∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

)
3
2
+ 1

p

.

(256)

To prove these theorems we need to investigate the question of biquadratic interpolation

of cubic functions of the type

Q(x, y) = Ax3 + By3. (257)

Remark. Observe that it is enough to solve the interpolation problem for the cubic

functions of the type (257) since the terms x2y and xy2 belong to the biquadratic interpolant.

It is not hard to check that the interpolant to the function Q(x, y) on the rectangle

R = [−h1, h2] × [−h2, h2] is

IQ,R(x, y) = Ah2
1x + Bh2

2y. (258)

Moreover, observe that the error of interpolation of cubic functions on a rectangle does

not depend on a shift of this rectangle. More precisely, we have the following simple lemma.

Lemma 42. For the given cubic function

Q(x, y) = Ax3 + By3 (259)

and an arbitrary rectangle R, the error (in any Lp norm) of biquadratic interpolation on R

and HR, where HR is obtained from R by linear transformation

H : x′ = x + a, y′ = y + b, (260)

is the same.
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Proof: In new coordinates, function (259) looks like

Q(x′, y′) = A(x′ − a)3 + B(y′ − b)3 = A(x′)3 + B(y′)3 + L(x′, y′), (261)

where

L(x′, y′) = −3a(x′)2 + 3a2x′ − 3b(y′)2 + 3b2y′ − b3 − a3

is a quadratic function and, hence, can be regarded as a part of the interpolant.

Since coefficients next to the terms containing x and x′, y and y′ are the same, the errors

of interpolation by biquadratic splines on R and HR are the same in any metric. �

We shall need a solution to the following extremal problem : minimize the ratio

Lp − error of interpolation of Q(x, y) on R

|R|
3
2
+ 1

p

. (262)

The solution to this problem in the case of Ax3 + By3 with AB > 0 will be given in

Section VI.1.1 (the case of the uniform norm), Section VI.1.2 (the case of the L1 norm) and

Section VI.1.3 (the case of the L2 norm).

The solution in the case of Ax3 −By3 with AB > 0 will be given in Section VI.2.1 (the

case of uniform norm) and Section VI.2.2 (the case of L2 norm).

VI.1 Interpolation of cubic functions Ax3 + By3 with AB > 0 by biquadratic

splines.

VI.1.1 The uniform norm.

Let IQ,R(x, y) denote the biquadratic spline which interpolates the cubic function Q(x, y)

at the vertices and at the midpoints of the sides of the rectangle R. Set also

dQ,R,∞ := max
(x,y)∈R

|Q(x, y) − IQ,R(x, y)|, (263)
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and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R for which

dQ,R,∞
|R|3/2

→ min, (264)

and find the minimum of this ratio.

By Lemma 42, it is enough to consider the error of interpolation on the symmetric

rectangle R = [−h1, h1] × [−h2, h2] centered at the origin, since any other rectangle can be

brought to this form by a linear transformation (shift).

The following lemma gives the answer to problem (264).

Lemma 43. Let the function

Q(x, y) = Ax3 + By3

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,∞
|R|3/2

≥ 1

2

√
AB. (265)

Moreover, equality is obtained for rectangles with 3
√

Ah1 = 3
√

Bh2 and only for them.

Proof: As we already mentioned, the interpolant to the function Q(x, y) on the rectangle

R has the form

IQ,R(x, y) = Ah2
1x + Bh2

2y.

In addition, note that because of the symmetry the L∞-error in the uniform norm on the

rectangle R is the same as the error on [0, h1] × [0, h2].

Denote the difference between the function Q(x, y) and the interpolant TQ,R(x, y) by

δ(x, y) := Ax3 + By3 − Ah2
1x − Bh2

2y. (266)

Taking partial derivatives of δ(x, y) with respect to x and y we obtain that this function

has a critical point at
(

h1
3√3

, h2
3√3

)

. The value of the difference (266) at this point is

∣

∣

∣

∣

δ

(

h1
3
√

3
,

h2
3
√

3

)∣

∣

∣

∣

=
2

33/2

(

Ah3
1 + Bh3

2

)

.
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In addition, observe that on the boundary of [0, h1] × [0, h2] we have

δ(x, h2) = Ax3 − Ah2
1x, and δ(h1, y) = By3 − Bh2

2y

and, hence, maximal values are obtained at the points

(

h1
3
√

3
, h2

)

,

(

h1,
h2
3
√

3

)

respectively, and are equal to

∣

∣

∣

∣

δ

(

h1
3
√

3
, h2

)∣

∣

∣

∣

=
2

3
√

3
Ah3

1 and

∣

∣

∣

∣

δ

(

h1,
h2
3
√

3

)∣

∣

∣

∣

=
2

3
√

3
Bh3

2.

Obviously,

∣

∣

∣

∣

δ

(

h1
3
√

3
,

h2
3
√

3

)∣

∣

∣

∣

≥
∣

∣

∣

∣

δ

(

h1
3
√

3
, h2

)∣

∣

∣

∣

and

∣

∣

∣

∣

δ

(

h1
3
√

3
,

h2
3
√

3

)∣

∣

∣

∣

≥
∣

∣

∣

∣

δ

(

h1,
h2
3
√

3

)∣

∣

∣

∣

.

Therefore, in the case of the uniform norm, extremal problem (264) can be rewritten as

follows. Find

d := min
h1,h2

{

2

33/2

(

Ah3
1 + Bh3

2

)

}

(267)

under the condition that the area of the rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. It

is easy to see that this minimum will be attained when 3
√

Ah1 = 3
√

Bh2. From this fact and

from the condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/6 √
S, h2 =

(

A

B

)1/6 √
S. (268)

Plugging this back into the expression for error (267) gives us the minimal value for the

error over the rectangle of area S:

d =
4

3
√

3

√
ABS3/2.
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Therefore, for the error on the whole R (recall that |R| = 4S) we have

dQ,R,∞
|R|3/2

=
1

6
√

3

√
AB (269)

which gives the solution to problem (264) and completes the proof of the lemma. �

Remark. The previous lemma gives

M+
∞ =

1

6
√

3
. (270)

VI.1.2 The L1 norm.

Let again IQ,R(x, y) denote the biquadratic spline which interpolates the cubic function

Q(x, y) at the vertices of the rectangle R. Let also

dQ,R,1 :=

∫

R

∫

|Q(x, y) − TQ,R(x, y)|dxdy, (271)

and let |R| denote the area of the rectangle R. According to (262) for p = 1, the problem

is to characterize those rectangles R which minimize the ratio

dQ,R,1

|R|5/2
→ min, (272)

and find the minimum of it.

The following lemma gives the answer to this problem. Clearly, again it is enough to

consider the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2]

centered at the origin, since any other rectangle can be brought to this form by a linear

transformation (shift).

Lemma 44. Let the function

Q(x, y) = Ax3 + By3

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,1

|R|5/2
≥ 1

16

√
AB. (273)
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Moreover, equality is obtained for rectangles with 3
√

Ah1 = 3
√

Bh2 and only for them.

Proof: As we already mentioned, the interpolant on the rectangle R is

IQ,R(x, y) = Ah2
1x + Bh2

2y.

In the case of L1 norm, extremal problem (272) can be rewritten as follows: find

d := min
h1,h2

∫ h1

0

∫ h2

0

∣

∣Ax3 + By3 − Ah2
1x − Bh2

2y
∣

∣ dxdy (274)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. We

have

∫ h1

0

∫ h2

0
|Ax3 + By3 − Ah2

1x − Bh2
2y|dxdy =

∫ h1

0

∫ h2

0
(Ah2

1x + Bh2
2y − Ax3 − By3)dxdy

=
1

4
(Ah3

1 + Bh3
2)h1h2.

Hence, we have to minimize function 1
4(Ah3

1 + Bh3
2)h1h2 under the condition h1h2 = S. To

that end, we shall use the method of Lagrange multipliers. Let us consider the function

L(h1, h2) =
1

4
(Ah3

1 + Bh3
2)h1h2 − λh1h2

and its partial derivatives

∂

∂h1
L =

3

4
Ah3

1h2 +
1

4
h2(Ah3

1 + Bh3
2) − λh2,

∂

∂h2
L =

3

4
Bh1h

3
2 +

1

4
h1(Ah3

1 + Bh3
2) − λh1.

Setting the derivatives equal to zero we see that the minimum is attained when

Ah3
1 = Bh3

2.

Taking into consideration this fact, together with the condition h1h2 = S, we can find h1
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and h2:

h1 =

(

B

A

)1/6 √
S, h2 =

(

A

B

)1/6 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d =
1

2

√
ABS5/2.

Note that |R| = 4S. Therefore, for the error on the whole R we have

dQ,R,1

|R|5/2
=

1

16

√
AB (275)

which gives solution to (272) and completes the proof of the lemma. �

Remark. The previous lemma gives

M+
1 =

1

16
. (276)

VI.1.3 The L2 norm.

Let again IQ,R(x, y) denote the biquadratic spline which interpolates the cubic function

Q(x, y) at the vertices of the rectangle R. Let also

dQ,R,2 :=

∫

R

∫

(Q(x, y) − IQ,R(x, y))2dxdy, (277)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,2

|R|2 → min, (278)

and find the minimum of it.

The following lemma gives the answer to this problem (again it is enough to consider

the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2] centered at

the origin).
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Lemma 45. Let the function

Q(x, y) = Ax3 + By3 (279)

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,2

|R|2 ≥
√

11

90

√
AB (280)

Moreover, equality is obtained for rectangles with 3
√

Ah1 = 3
√

Bh2 and only for them.

Proof: As we mentioned before, the interpolant to Q(x, y) in (279) on the rectangle R

is

IQ,R(x, y) = Ah2
1x + Bh2

2y.

In the case of L2 norm, extremal problem (278) can be rewritten as follows. Find

d2 := min
h1,h2

∫ h1

0

∫ h2

0

(

Ax3 + By3 − Ah2
1x − Bh2

2y
)2

dxdy (281)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. We

have

∫ h1

0

∫ h2

0

(

Ax3 + By3 − Ah2
1x − Bh2

2y
)2

dxdy =
1

840
h1h2

(

64A2h6
1 + 105ABh3

1h
3
2 + 64B2h6

2

)

.

Hence, we have to minimize the function

1

840
h1h2

(

64A2h6
1 + 105ABh3

1h
3
2 + 64B2h6

2

)

under the condition h1h2 = S. Considering the corresponding Lagrangian and partial

derivatives with respect to h1 and h2, we obtain

1

840
h1h2

(

384A2h5
1 + 315ABh2

1h
3
2

)

+
1

840
h2

(

64A2h6
1 + 105ABh3

1h
3
2 + 64B2h6

2

)

− λh2 = 0,

1

840
h1h2

(

315ABh3
1h

3
2 + 384B2h6

2

)

+
1

840
h1

(

64A2h6
1 + 105ABh3

1h
3
2 + 64B2h6

2

)

− λh1 = 0,

and, it is easy to check that the minimum is attained for 3
√

Ah1 = 3
√

Bh2. From here and

139



condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/6 √
S, h2 =

(

A

B

)1/6 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d2 =
233

840
ABS4.

Therefore, for the error on the whole R (recall that |R| = 4S) we have

dQ,R,2

|R|2 =

√

233

53760

√
AB (282)

which gives solution to (278) and completes the proof of the lemma. �

Remark. The previous lemma gives

M+
2 =

√

233

53760
. (283)

VI.2 Interpolation of cubic functions Ax3 − By3 with AB > 0 by biquadratic

splines.

VI.2.1 The L∞-norm.

Let IQ,R(x, y) denote the biquadratic spline which interpolates the cubic function

Q(x, y) = Ax3 − By3

at the vertices of the rectangle R. Set also

dQ,R,∞ := max
(x,y)∈R

|Q(x, y) − IQ,R(x, y)|, (284)
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and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,∞
|R|3/2

→ min, (285)

and find the minimum of it.

By Lemma 42, it is enough to consider the error of interpolation on the symmetric

rectangle R = [−h1, h1] × [−h2, h2] centered at the origin, since any other rectangle can be

brought to this one by a linear transformation (shift).

The following lemma gives the answer to problem (285).

Lemma 46. Let the quadratic form

Q(x, y) = Ax2 − By2

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,∞
|R|3/2

≥ 1

12
√

3

√
AB. (286)

Moreover, equality is obtained for rectangles with
√

Ah1 =
√

Bh2 and only for them.

Proof: It is easy to see that the interpolant to the function Q(x, y) on a rectangle R is

IQ,R(x, y) = Ah2
1x − Bh2

2y.

In addition, note that the error in the uniform norm on R is the same as the error on

[0, h2] × [0, h1].

Denote the difference between function Q(x, y) and interpolant IQ,R(x, y) by

δ(x, y) := Ax3 − By3 − Ah2
1x + Bh2

2y. (287)

Taking the derivatives of δ(x, y) with respect to x and y and setting them equal to zero,

we obtain that the point
(

h1√
3
, h2√

3

)

is a critical point of this function inside the rectangle
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[0, h2] × [0, h1]. The value of difference (287) at this point is

∣

∣

∣

∣

δ

(

h1√
3
,

h2√
3

)∣

∣

∣

∣

=
2

3
√

3

∣

∣Bh3
2 − Ah3

1

∣

∣ .

Also observe that on the boundary of [0, h2] × [0, h1] we have

δ(x, h2) = δ(x, 0) = Ax3 − Ah2
1x,

δ(h1, y) = δ(0, y) = −By3 + Bh2
2y.

Hence, the maximal values are

∣

∣

∣

∣

δ

(

h1√
3
, h2

)∣

∣

∣

∣

=
2

3
√

3
Ah3

1

∣

∣

∣

∣

δ

(

h1,
h2√

3

)∣

∣

∣

∣

=
2

3
√

3
Bh3

2.

Therefore, in the case of the uniform norm the extremal problem (285) can be rewritten as

follows. Find

d := min
h1,h2

max

{

2

3
√

3

∣

∣Bh3
2 − Ah3

1

∣

∣ ,
2

3
√

3
Ah3

1,
2

3
√

3
Bh3

2

}

(288)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. It is

easy to see that this minimum will be attained when 3
√

Ah1 = 3
√

Bh2. From here and the

condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/6 √
S, h2 =

(

A

B

)1/6 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d =
2

3
√

3

√
ABS

3
2 .

Therefore, for the error on the whole R we have

dQ,R,∞

|R| 32
=

1

12
√

3

√
AB (289)
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which gives solution to (285) and completes the proof of the lemma. �

Remark. The previous lemma gives

M−
∞ =

1

12
√

3
. (290)

VI.2.2 The L2 norm.

Let again IQ,R(x, y) denote the biquadratic spline which interpolates the cubic function

Q(x, y) = Ax3 − By3

with AB > 0 at the vertices and at the midpoints of the rectangle R. Let also

dQ,R,2 :=

∫

R

∫

(Q(x, y) − IQ,R(x, y))2dxdy, (291)

and let |R| denote the area of the rectangle R. The problem is to characterize those

rectangles R which minimize the ratio

dQ,R,2

|R|2 → min, (292)

and find the minimum of it.

The following lemma gives the answer to this problem (again it is enough to consider

the error of interpolation on the symmetric rectangle R = [−h1, h1] × [−h2, h2] centered at

the origin).

Lemma 47. Let the function

Q(x, y) = Ax3 − By3

with AB > 0 be given. For an arbitrary rectangle R = [−h1, h1] × [−h2, h2] we have

dQ,R,2

|R|2 ≥
√

23

53760

√
AB. (293)

Moreover, the equality is obtained for rectangles with 3
√

Ah1 = 3
√

Bh2 and only for them.
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Proof: As we mentioned before, the interpolant on the rectangle R is

IQ,R(x, y) = Ah2
1x − Bh2

2y.

In the case of L2 norm, extremal problem (292) can be rewritten as follows. Find

d2 := min
h1,h2

∫ h1

0

∫ h2

0

(

Ax3 − By3 − Ah2
1x + Bh2

2y
)2

dxdy (294)

under the condition that the area of rectangle [0, h1] × [0, h2] is fixed, i.e. h1h2 = S. We

have

∫ h1

0

∫ h2

0

(

Ax3 − By3 − Ah2
1x + Bh2

2y
)2

dxdy =
1

840
h1h2

(

64A2h6
1 − 105ABh3

1h
3
2 + 64B2h6

2

)

.

Hence, we have to minimize the function

1

840
h1h2

(

64A2h6
1 − 105ABh3

1h
3
2 + 64B2h6

2

)

under the condition h1h2 = S. Considering the corresponding Lagrangian and setting its

partial derivatives with respect to h1 and h2 equal to zero, we obtain

1

840
h1h2

(

384A2h5
1 − 315ABh2

1h
3
2

)

+
1

840
h2

(

64A2h6
1 − 105ABh3

1h
3
2 + 64B2h6

2

)

− λh2 = 0

1

840
h1h2

(

−315ABh3
1h

3
2 + 384B2h6

2

)

+
1

840
h1

(

64A2h6
1 − 105ABh3

1h
3
2 + 64B2h6

2

)

− λh1 = 0

and, it is easy to check that the minimum is attained for 3
√

Ah1 = 3
√

Bh2. From here and

the condition h1h2 = S we can find h1 and h2:

h1 =

(

B

A

)1/6 √
S, h2 =

(

A

B

)1/6 √
S.

Plugging this back into the expression for the error gives the minimal value for the error

over the rectangle of area S:

d2 =
23

840
ABS4.
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Therefore, for the error on the whole R (recall that |R| = 4S) we have

dQ,R,2

|R|2 =

√

23

53760

√
AB (295)

which gives the solution to (292) and completes the proof of the lemma. �

Remark. The previous lemma gives

M+
2 =

√

23

53760
. (296)

VI.3 Estimate of the deviation of the third degree Taylor polynomial for C3

functions.

Let us define the modulus of continuity of f ∈ C3(D) as follows

ω(f, δ) := sup{|f(x, y) − f(x′, y′)| : |x − x′| ≤ δ, |y − y′| ≤ δ, (x, y), (x′, y′) ∈ D}. (297)

Set

ω1(δ) := ω(fxxx, δ), ω2(δ) := ω(fxxy, δ),

ω3(δ) := ω(fxyy, δ), ω4(δ) := ω(fyyy, δ)

and

ω(δ) := max{ω1(δ), ω2(δ), ω3(δ), ω4(δ)}. (298)

Lemma 48. Let f ∈ C3(D). If P3(x, y) denotes the Taylor polynomial of third degree for f

at the center of a square Dh with side length equal to h, then we have the following estimate

|f(x, y) − P3(x, y)| ≤ h3

6
ω

(

h

2

)

, (299)

where ω(t) is defined at (298).

Proof: The Taylor formula for f ∈ C3(D) about point (x0, y0) with remainder in the

Lagrange form is

f(x, y) = P2(x, y) + R2(x, y), (300)
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where

P2(x, y) = f(x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + fxx(x0, y0)
(x − x0)

2

2

+fxy(x0, y0)(x − x0)(y − y0) + fyy(x0, y0)
(y − y0)

2

2

and

R2(x, y) =
1

3!
fxxx(x0 + θ(x − x0), y0 + θ(y − y0))(x − x0)

3

+
1

2
fxxy(x0 + θ(x − x0), y0 + θ(y − y0))(x − x0)

2(y − y0)

+
1

2
fxyy(x0 + θ(x − x0), y0 + θ(y − y0))(x − x0)(y − y0)

2

+
1

3!
fyyy(x0 + θ(x − x0), y0 + θ(y − y0))(y − y0)

3 (301)

with θ ∈ (0, 1). We add and subtract the term

1

3!
fxxx(x0, y0)(x − x0)

3 +
1

2
fxxy(x0, y0)(x − x0)

2(y − y0)

+
1

2
fxyy(x0, y0)(x − x0)(y − y0)

2 +
1

3!
fyyy(x0, y0)(y − y0)

3 (302)

to the right-hand side of (301). Then (300) can be rewritten as

f(x, y) = P3(x, y) + R3(x, y),

where

P3(x, y) = P2(x, y) +
1

3!
fxxx(x0, y0)(x − x0)

3 +
1

2
fxxy(x0, y0)(x − x0)

2(y − y0)

+
1

2
fxyy(x0, y0)(x − x0)(y − y0)

2 +
1

3!
fyyy(x0, y0)(y − y0)

3, (303)
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and

R3(x, y) =
(x − x0)

3

3!
(fxxx(x0 + θ(x − x0), y0 + θ(y − y0)) − fxxx(x0, y0))

+
(x − x0)

2(y − y0)

2
(fxxy(x0 + θ(x − x0), y0 + θ(y − y0)) − fxxy(x0, y0))

+
(x − x0)(y − y0)

2

2
(fxyy(x0 + θ(x − x0), y0 + θ(y − y0)) − fxyy(x0, y0))

+
(y − y0)

3

3!
(fyyy(x0 + θ(x − x0), y0 + θ(y − y0)) − fyyy(x0, y0)) . (304)

By (298) and the triangle inequality we obtain the estimate

|R3(x, y)| ≤ (x − x0)
3

3!
ω(max{|x0 + θ(x − x0)|, |y0 + θ(y − y0)|})

+
(x − x0)

2(y − y0)

2
ω(max{|x0 + θ(x − x0)|, |y0 + θ(y − y0)|})

+
(x − x0)(y − y0)

2

2
ω(max{|x0 + θ(x − x0)|, |y0 + θ(y − y0)|})

+
(y − y0)

3

3!
ω(max{|x0 + θ(x − x0)|, |y0 + θ(y − y0)|}). (305)

In other words, for every (x, y) from the square Dh centered at (x0, y0) with the side length

equal to h we obtain the estimate

|f(x, y) − P3(x, y)| ≤ h3

6
ω

(

h

2

)

. (306)

�

Corollary. Under the assumptions of the theorem we have

‖f − P3‖p
Lp(D) =

∫ h

0

∫ h

0
(f(x, y) − P3(x, y))p dxdy ≤ h2‖f − P3‖p

L∞(D)

and, hence,

‖f − P3‖p ≤ h
3+ 2

p

6
ω

(

h

2

)

. (307)
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VI.4 Error of biquadratic interpolation of C3 functions defined on [0, 1]2. Esti-

mate from above.

Proof of Theorem 14: For the fixed ε ∈ (0, 1) and for every N ∈ N we define

mN := min

{

m > 0 :
1

6m
2 3

2
+ 1

p

ω

(

1

2m

)

≤ ε

N
3
2

}

, (308)

where ω(δ) is the function defined in (298).

Observe that clearly for mN defined in (308) it is true that mN → ∞ as N → ∞. In

addition,

N
3
2

m
3+ 2

p

N

→ ∞, N → ∞, (309)

i.e. mN = o

(

N
3

2(3+ 2
p )

)

as N → ∞.

Indeed, by the definition of mN for all large enough N we have

N
3
2

m
3+ 2

p

N

= 6
(mN − 1)

3+ 2
p

m
3+ 2

p

N

1

ω
(

1
2(mN−1)

)

1

6

N
3
2

(mN − 1)
3+ 2

p

ω

(

1

2(mN − 1)

)

≥ ε6
(mN − 1)

3+ 2
p

m
3+ 2

p

N

1

ω
(

1
2(mN−1)

) → ∞, as N → ∞,

since
(

mN−1
mN

)3+ 2
p → 1 and ω

(

1
2(mN−1)

)

→ 0 as N → ∞. Hence, (309) is proved.

Divide the unit square [0, 1]× [0, 1] into squares with side length equal to 1
mN

and denote

the resulting squares by DN
i , i = 1, . . . , m2

N . Next we take the center point (xN
i , yN

i ) in each

square DN
i and set

AN
i :=

1

6
fxxx(xN

i , yN
i ), BN

i :=
1

6
fyyy(x

N
i , yN

i ).

Note that

|H(xN
i , yN

i )| := |H(f ; xN
i , yN

i )| = 6|AN
i BN

i | ≥ C+, ∀i = 1, . . . , m2
N . (310)
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Set

nN
i :=

















N(1 − ε)|H(xN
i , yN

i )|
p

3p+2 Ω(xN
i , yN

i )
2

3p+2

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

3p+2 Ω(xN
j , yN

j )
2

3p+2

















, i = 1, ..., m2
N . (311)

The nN
i , i = 1, . . . , m2

N , are determined by minimizing the sum of the errors of the

interpolation of piecewise quadratic functions on each region subject to the condition the

total number of rectangles is N .

Observe that all nN
i → ∞ when N → ∞.

Having the number of rectangles nN
i on each region DN

i , i = 1, ..., m2
N , we construct a

partition �
∗
N (DN

i ) of DN
i in the following way. Let hN

i,1 and hN
i,2 be the linear sizes of the

optimal rectangle on DN
i , i.e. the one which solves the problem

Lp − error of biquadratic interpolation of AN
i x3 ± BN

i y3 on R

|R|
3
2
+ 1

p

. (312)

Observe that due to Lemmas 44-47 we can provide explicit formulas for hN
i,1 and hN

i,2 in

the cases p = 1, 2,∞

hN
i,1 =

(

BN
i

AN
i

)1/6
1

mN

√

nN
i

, hN
i,2 =

(

AN
i

BN
i

)1/6
1

mN

√

nN
i

, i = 1, ..., m2
N . (313)

Most likely these formulae will provide the optimal parameters for all other values of p as

well.

The intersection of the lattice

[khN
i,1, (k + 1)hN

i,1] × [lhN
i,2, (l + 1)hN

i,2], k, l ∈ Z, (314)

with DN
i gives us the partition �

∗
N (DN

i ) of DN
i , i = 1, ..., m2

N .

Define the biquadratic spline on each element of the partition obtained by interpolating

the original function f(x, y) at the eight points as shown on Figure 9.

By fN denote the piecewise cubic function constructed in the following way. On DN
1 we
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set fN to be AN
1 x3 + BN

1 y3. Then for i > 1 on DN
i \ ∪i−1

j=1D
N
j we set

fN (x, y) := AN
i x3 + BN

i y3.

If a function f is such that fxxxfyyy > 0 for all (x, y) ∈ D then all BN
i > 0, i = 1, . . . , m2

N .

If a function f is such that fxxxfyyy < 0 for all (x, y) ∈ D then all BN
i < 0, i = 1, . . . , m2

N .

Observe that

‖f − s(f,�∗
N )‖p,Ω ≤ 2‖f − fN‖p,Ω + ‖fN − s(fN , �∗

N )‖p,Ω.

Let us estimate each term. First of all, by Lemma 48 and the definition of mN we have

‖f − fN‖p,Ω ≤ ‖Ω‖
1
p
∞

2m
3+ 2

p

N

ω

(

1

2mN

)

≤ ε

N
3
2

‖Ω‖
1
p
∞.

Let us estimate the second term now. It is clear that for two embedded rectangles the error

of linear interpolation of a quadratic function with |H(f ; x, y)| ≥ C+ > 0 will be greater on

the larger rectangle. Therefore, we shall estimate this error on rectangles that do not have

an intersection with the boundary.

Let us take a rectangle RN
i ∈ �

∗
N (DN

i ) that does not have common points with the

boundary of DN
i . By Lemmas 44-47, for every (x, y) ∈ RN

i we have

|fN (x, y) − s(fN , �∗
N ; x, y)|p ≤

(

M±
p

6

)p

|H(xN
i , yN

i )|p/2 1

(m2
NnN

i )
3
2
p+1

.

Hence, the p-power of the error on the whole D is bounded by

|fN (x, y)−s(fN , �∗
N ; x, y)|pΩ(x, y) ≤

(

M±
p

6

)p m2
N
∑

i=1

nN
i Ω(xN

i , yN
i )|H(xN

i , yN
i )|p/2 1

(m2
NnN

i )
3
2
p+1

.

By the definition of nN
i and by (54), for all large enough N , for all i, and for all (x, y) ∈ D,
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we have

|fN (x, y) − s(fN ,�∗
N ;x, y)|pΩ(x, y)

≤
(

M±
p

6

)p
(1 + ε)

m
2( 3

2 p+1)

N

m2
N
∑

i=1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )

















m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2( 3
2

p+1) Ω(xN
j , yN

j )
1

3
2

p+1

N(1 − ε)|H(xN
i , yN

i )|
p

2( 3
2

p+1) Ω(xN
i , yN

i )
1

3
2

p+1

















3
2 p

≤
(

M±
p

6

)p
(1 + 2ε)

N
3
2 pm

2( 3
2 p+1)

N





m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2( 3
2

p+1) Ω(xN
j , yN

j )
1

3
2

p+1





3
2 p+1

.

Since this estimate does not depend on x and y, we obtain that

‖fN − s(fN , �∗
N )‖p,Ω ≤

(1 + 2ε)M±
p

6N
3
2





1

m2
N

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2( 3
2 p+1) Ω(xN

j , yN
j )

1
3
2 p+1





3
2
+ 1

p

.

Note that since H(f ; x, y) and Ω(x, y) are Riemann integrable

1

m2
N

m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2( 3
2 p+1) Ω(xN

j , yN
j )

1
3
2 p+1 (315)

=

m2
N
∑

j=1

|DN
j ||H(xN

j , yN
j )|

p

2( 3
2 p+1) Ω(xN

j , yN
j )

1
3
2 p+1 →

∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

as N → ∞. Hence, for all N large enough we obtain

‖fN − s(fN , �∗
N )‖p,Ω <

M±
p

6N
3
2

1 + 2ε

1 − ε

(∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

) 3
2
+ 1

p

.

Therefore,

‖f −s(f,�∗
N )‖p,Ω <

2ε

N
3
2

‖Ω‖
1
p
∞ +

M±
p

6N
3
2

1 + 2ε

1 − ε

(∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

) 3
2
+ 1

p

.

Because ε > 0 is arbitrary, we obtain the desired estimate. �
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VI.5 Error of biquadratic interpolation of C3 functions defined on [0, 1]2. Esti-

mate from below.

Let mN , nN
i , DN

i etc. be as defined in the previous section. We shall also restart the

numbering of constants.

Proof of Theorem 15: To obtain the estimate from below we shall consider an arbi-

trary sequence of partitions {�N}∞N=1 satisfying (255).

For the fixed ε > 0 denote by DN
i (ε) the square congruent to DN

i with side length equal

to 1−ε
m2

N

. Assumption (22) implies that for all large enough N and for any ε > 0 there exists

a rectangle RN
iN

which lies completely in DN
i (ε).

For each such N and iN , set

fN,iN (x, y) := AN
iN

x3 + BN
iN

y3.

If the function f is such that (fxxxfyyy)(x, y) > 0 for all (x, y) ∈ D then all BN
i > 0,

i = 1, . . . , m2
N . If the function f is such that (fxxxfyyy)(x, y) < 0 for all (x, y) ∈ D then all

BN
i < 0, i = 1, . . . , m2

N .

Observe that

‖f − s(f,�N )‖Lp,Ω(RN
iN

) ≥ ‖fN,iN − s(fN,iN , �N )‖Lp,Ω(RN
iN

) − 2‖f − fN,iN ‖Lp,Ω(RN
iN

).

By Lemmas 44-47 we have

‖fN,iN − s(fN,iN , �N )‖p

Lp,Ω(RN
iN

)
≥

(1 − ε)(M±
p )p

6p(m2
NnN

iN
)

3
2
p+1

|H(xN
iN

, yN
iN

)|p/2
Ω(xN

iN
, yN

iN
).

By the definition of M±
p , (315), and by the definition of nN

iN
we have that for all N large
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enough the error on the whole region DN
i

m2
N
∑

i=1

(1 − ε)(M±
p )p

(m2
NnN

iN
)

3
2 p+1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )nN

iN

≥ (1 − ε)
(M±

p )p

m
2( 3

2 p+1)

N

m2
N
∑

i=1

|H(xN
i , yN

i )|p/2
Ω(xN

i , yN
i )

















m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2( 3
2

p+1) Ω(xN
j , yN

j )
1

3
2

p+1

N(1 − ε)|H(xN
i , yN

i )|
p

2( 3
2

p+1) Ω(xN
i , yN

i )
1

3
2

p+1

















3
2 p

=
(M±

p )p(1 − ε)

(1 − ε)
3
2 pN

3
2 pm

2( 3
2 p+1)

N





m2
N
∑

j=1

|H(xN
j , yN

j )|
p

2( 3
2

p+1) Ω(xN
j , yN

j )
1

3
2

p+1





3
2 p+1

>
(M±

p )p

N
3
2 p

(∫

D

|H(f ;x, y)|
p

2( 3
2

p+1) Ω(x, y)
1

3
2

p+1 dxdy

)
3
2 p+1

.

Hence, for all N large enough we obtain

‖fN − s(fN , �∗
N )‖p,Ω >

M±
p

6N
3
2

(1 − ε)

(∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

) 3
2
+ 1

p

.

On the other hand

‖f − fN,iN ‖Lp,Ω(RN
iN

) ≤ ‖f − fN,iN ‖Lp,Ω(DN
iN

) ≤
‖Ω‖

1
p
∞

6m
2( 3

2
+ 1

p
)

N

ω

(

1

2mN

)

≤ ε

N
3
2

‖Ω‖
1
p
∞

due to the choice of mN . Hence, we obtain that for all large enough N

‖f − s(f,�N )‖p,Ω ≥ (1 − c2ε)
M±

p

6N
3
2

(∫

D
|H(f ; x, y)|

p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

) 3
2
+ 1

p

with some positive constant c2. Therefore,

lim inf
N→∞

‖f − s(f,�N )‖p,Ω

M±
p

6N
3
2

(

∫

D |H(f ; x, y)|
p

2( 3
2 p+1) Ω(x, y)

1
3
2 p+1 dxdy

) 3
2
+ 1

p

≥ 1.

This completes the proof of the theorem. �

Similarly (with obvious corresponding changes) the following lemmas can be proved.

Lemma 49. Let f ∈ C3(D) and |H(f ; x, y)| ≥ C+ > 0 for all (x, y) ∈ D. Let also positive
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continuous weight function Ω(x, y) be given. Then

lim sup
N→∞

N
3
2 ‖f − s(f,�N )‖∞,Ω ≤ M±

∞
6

(∫

D
|H(f ; x, y)| 13 Ω(x, y)

2
3 dxdy

) 3
2

, (316)

where M±
∞ is as in (270) and (290).

Lemma 50. Let f ∈ C3(D) and |H(f ; x, y)| ≥ C+ > 0 for all (x, y) ∈ D. Let also positive

continuous weight function Ω(x, y) be given. Then for any sequence of rectangular partitions

which satisfies (255) we have

lim inf
N→∞

N
3
2 ‖f − s(f,�N )‖∞,Ω ≥ M±

∞
6

(∫

D
|H(f ; x, y)| 13 Ω(x, y)

2
3 dxdy

) 3
2

, (317)

where M±
∞ is as in (270) and (290).
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CHAPTER VII

CONCLUDING REMARKS

In this dissertation we investigate the asympotic behavior of the Lp-error of interpolation

and near interpolation of functions (bivariate and multivariate) by various classes of splines

(linear, multilinear, biquadratic). The proofs of results obtained lead to algorithms for the

construction of asymptotically optimal sequences of partitions (triangulations or rectangular

partitions, respectively).

The results obtained as well as the algorithms based on them might find interesting

applications in computational geometry, the problems of approximation of convex bodies

by polytopes, computer-aided geometric design, etc.

As a next step it would be interesting to try to use techniques similar to those devel-

oped to obtain the exact asymptotics of the error in different norms for higher order splines

(quadratic, cubic, etc.) and other types of splines (best approximating splines, best one-

sided approximating splines etc.) in arbitrary dimensions, and to develop corresponding

algorithms. We are also interested in considering the splines of maximal defect (discon-

tinuous splines) in arbitrary dimensions that might have interesting applications in edge

detection problems.

Because of the numerous applications, it would be interesting to write such algorithms

for scattered data and for parametric surfaces. As an idea, we could use a least squares

fit instead of the quadratic part of the Taylor polynomial at the stage of intermediate

approximation if we have scattered data (as opposed to the continuous function).

We also plan to investigate other (different from those considered) interpolation schemes

due to numerous applications in finite element methods for numerical solutions of PDE’s.
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