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CHAPTER |

INTRODUCTION

The goal of this work was to improve computer graphics by better understanding
how internal rendering parameters affect the visual perception of animation. The scope
of the work was constrained to the perception of object motion in animated sequences,
specifically the motion blur effect that is generated to mimic the shutter and exposure of
a film camera. Although this motion blur occurs as a natural consequence in real-world
cameras due to the nonzero time needed for the image to be fully exposed, it is
generated artificially in computer graphics in order to make the generated animation
appear more realistic. There are a large number of techniques for artificially creating the
motion blur effect, and the techniques greatly depend on the type of rendering that is
being used to create the images. In this work, we limited the scope of our examination
of motion blur to ray-traced rendering. We examine in detail the perceptual aspects of
different techniques for generating ray-traced motion blur via experiments designed to

isolate the various parameters in order to determine their effectiveness.

Problem Motivation

The process of producing computer-rendered animations is composed of
rendering individual frames, with each frame corresponding to a certain time in the
animated sequence. In a real-world camera, each frame of a captured video is produced

by opening the camera shutter for a short duration of time. During this duration, moving
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objects will be blurred in the frame because their position within the frame changes as

the film is exposed.

In computer graphics, the approach to rendering is to sample a mathematical
description of a scene (containing objects, lights, materials, etc.) to yield a color for each
pixel in the frame. In general, as the sampling density increases, the quality of the
resultant image increases, including the appearance of the computer-generated motion
blur. In this work, we set out to provide a foundation for ways to generate motion blur
efficiently from a perceptual standpoint; in other words, we hope to provide insight into
answering the following question: “Given a certain resource budget, what is the best way

to produce ray-traced motion blur such that the perceptual quality is highest?”

Another motivation for this work arises from the scarcity of unbiased evaluation of
the factors we were interested in testing, and this scarcity is more pronounced when
approaching the evaluation from a perceptual standpoint, rather than a mathematical or
analytical standpoint. We feel as though the field of computer graphics has had a long
period of flourishing inventions and novel algorithms without enough unbiased
comparisons between the known methods, and we hope that this work can act as one

piece of the puzzle toward correcting this balance.

Contributions

This work aims to contribute to the understanding of perception in computer
graphics. Within the area of motion blur rendering, there are numerous challenges
related to the process by which the sampling is performed, and some of these
challenges have no clear optimal solutions. Our work’s main contribution is perceptual

evaluation of various approaches to these challenges via user experiments.
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In particular, we constrain the definition of perceptual quality to noise in the
image (Figure 1). Although the amount of noise can be exactly determined via
techniques that compare an image to its maximum-quality counterpart, these techniques
do not adequately capture the human perception of that noise. Similarly, prior work has
(Mitchell, 1991) approached the problem of finding an optimal sampling pattern from a
signal processing point of view. Our work attempts to find the cutoff beyond which the
noise is not readily detectable to a human, in a variety of different scenarios. By
comparing those cutoffs across the various settings used to perform the rendering, we

are able to determine which parameters have the largest impact on perceptual quality.

Figure 1: The appearance of noise due to undersampling in a ray-traced scene.

Outline

In Chaprer 2, we provide background knowledge relevant to this work, which
includes discussions of ray tracing, sampling, and motion blur. Chapter 3 presents a
detailed description of the renderer used to produce the animations that were played

during the user experiments. In Chapter 4, we will provide an overview of the design of



our experiments, followed by the results and analyses of those experiments in Chapter

5. Our concluding remarks are presented in Chapter 6.



CHAPTER Il

BACKGROUND

This chapter discusses relevant topics that provide context for our experiments.
We begin by broadly discussing rendering in computer graphics as well as various
aspects of ray tracing. We then describe how the motion blur effect is produced in ray
tracing through simulation of a camera shutter. Finally, we discuss details of the

sampling strategies we investigated.

Rendering and Ray Tracing

Fundamentally, the process of rendering in computer graphics is the procedure by
which the mathematical description of the scene is converted into an image (Catmull,

1974). The scene description may contain many different attributes, such as:

- Geometric objects including their location, material properties, and size.

- Parameters for the virtual camera including orientation, field of view, and

location.

- Descriptions of light sources, ranging from the type of light (e.g., point light,

directional light, ambient light) to color and intensity.

The goal of the renderer is to take a given scene description and produce an image

according to that description as efficiently and accurately as possible. In animated



sequences such as film, the rendering process is repeated for each image in the
sequence due to the fact that changes in geometry (e.g., moving characters or objects)

or the camera will alter the image to be produced.

The task of rendering has two approaches that are commonly used today, namely

rasterization (Foley, 1982) and ray tracing (Whitted, 1980).

Rasterization

In rasterization, the scene geometry is processed in bulk by iterating over the
objects and projecting them onto the virtual camera film. The projection can be
accomplished efficiently through the use of matrix multiplication with the geometric data.
Modern graphics processing hardware has evolved to be incredibly fast at performing
this task, making rasterization is suitable for interactive rendering applications (Foley,

1982) such as video games.

In order to render scene geometry to the screen, geometric objects are first pre-
sorted by depth from the camera. The geometry is then rendered from furthest to closest
from the point of view of the camera, projecting and shading each polygon onto the

image space from the viewpoint of the virtual camera.

A major drawback of rasterization is the lack of more physically correct effects
such as reflections and shadows. When a particular triangle of a mesh is being
processed, these effects are difficult to perform because that triangle has no knowledge
of its context in the environment. Therefore, such effects are often simulated with
approximations that may not be physically correct. For example, reflections are often
approximated by rendering an intermediate image from the point of view of the object,
then mapping this image onto the object as a texture. However, the drawbacks of
processing scene geometry independently are also what make rasterization so fast; with

6



a limited need to reference other information about the scene, a single geometric object

can be fed through the pipeline very quickly without unexpected interruptions.

In a rasterizing renderer for a video game, in order to maintain high performance
even on modern hardware, the sampling strategy for the pixels in the image is largely
homogeneous from pixel to pixel. As such, the renderer often has limited control over the
specific samples that are generated for the color calculation of the pixel. However, new
approaches such as stochastic rasterization (Akenine, 2007; McGuire, 2010) have
potential to allow for much more control over the samples, thereby enabling a broad
range of effects seen in distribution ray tracing that were previously much more difficult

to simulate.

Ray Tracing

Ray tracing is a natural extension to an algorithm known as ray casting (Roth,
1982). In ray casting, the scene remains resident in memory and the algorithm instead
iterates over the pixels in the image to be produced, casting a ray from the virtual
camera into the scene to see what the ray intersects. The closest object to the camera

that the ray intersects is the one that is used for calculating the color of that sample.
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Figure 2: Overview of the ray tracing algorithm. Shadow rays are cast from shading points toward
light sources. If a shadow ray intersects another object along the way, then the point is in shadow.

Ray tracing improves upon ray casting by allowing the above principle to be
applied recursively (Whitted, 1980). Whereas effects such as reflections and shadows
are difficult to implement in rasterization, they are trivial to implement in ray tracing
(Figure 2). After the initial “primary ray” is cast from the camera into the scene and the
closest intersection is found, a “secondary ray” is cast from the intersection point for
each of these effects. For example, in order to determine whether the intersection point
is in light or shadow, a secondary ray is cast toward the light source. If this secondary
ray intersects any geometric object along the way, then the point is in shadow. Similarly,
reflections can be simulated by casting a secondary ray whose direction is calculated by
reflecting the incoming primary ray across the normal vector of the surface at the point of
intersection. The returned color from the secondary reflection ray is used in calculating

the shading of the initial intersection point. As such, ray tracing is an inherently recursive



procedure and this necessitates that the recursion depth should be limited in order to

prevent performance pitfalls.

Fundamentally, one the biggest advantages of ray tracing over rasterization is
the flexibility of the algorithm, but the reasons for that flexibility also affect the algorithm’s
speed in practice. Not only is it easier to implement physically correct effects such as
those discussed above, but the algorithm yields much more control over the sampling
strategy, since the sampling locations are chosen entirely in the high-level rendering
code rather than as part of the graphics pipeline. This additional control proves to be

very useful in the context of the sampling strategies we evaluated.

An additional consideration in implementing an efficient ray tracer is the traversal
through the scene objects. For example, it does not make sense for a ray to perform an
intersection check against every object in the scene, especially if those objects are not
anywhere near the ray. For this reason, a number of acceleration structures have been
developed that allow for a ray to perform this scene traversal in a much more intelligent
manner (Kay, 1986; Amanatides, 1987). The acceleration structures fall into two main
categories: enveloping the scene objects in bounding volumes, and subdividing the
scene space into smaller partitions. We are primarily concerned with the first approach.
In this approach, simple bounding volumes (e.g., boxes) enclose the scene geometry as
well as other bounding volumes. A hierarchical tree of bounding volumes is formed, with
larger bounding volumes at the root of the tree and objects as leaves. This tree is
constructed such that nearby geometry objects are relatively close to one-another in the
tree. The idea behind this layout is that a ray can quickly perform an intersection test
against an entire potion of the scene simply by performing an intersection test against its

respective bounding volume.



Motion Blur

The notion of motion blur arises from simulating the shutter of a camera.
However, this is not the only type of camera effect that can be artificially simulated.
Representations of different camera effects, such as shutter and focal length fall under
different camera models. A simple ray tracer employs a very basic camera model due to
its computational simplicity. One of the simplest camera models, without any motion blur
or focal length effects, is the instantaneous-exposure pinhole camera. This model is
unrealistic because a physical camera may have a finite, but nonzero exposure length

as well as a finite, but nonzero aperture.

Simulating the lens aperture of a physical camera in distribution ray tracing is
achieved by modifying the start locations and directions of the primary rays, assuming
the starting points occur on a virtual lens (rather than a single point, as in the pinhole
model) and that the rays intersect a focal plane at some distance from the camera that is
in maximum focus (Cook, 1984). Objects closer or further away than this focal length will
be blurred, since the incoming rays no longer intersect at the same point, thereby
creating a depth-of-field effect. This effect is outside the scope of this work, even though

it is a necessary component of creating a physically accurate camera model.

In a pinhole camera model, each frame of an animated sequence will capture the
appearance and positions of the scene objects at the precise time values for those
frames, even though this is not possible with a physical camera due to the nonzero time
needed for the incoming light to properly expose the film or digital sensor. This exposure
time creates a blurring effect, since a scene object will have moved in the window of time
during which the camera shutter is open. With instantaneous exposure, an animated

sequence of images will suffer from temporal aliasing (Korein, 1983), in which objects
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appear to jump from location to location, rather than smoothly moving between locations.
An example of temporal aliasing is the wagon-wheel effect, in which a rotating object can

appear to be stationary or rotating in the reverse direction if the sampling rate is too low.

The simple solution to this issue in ray tracing is to simulate the camera exposure
time directly by using many samples per pixel that are distributed throughout time
(Korein, 1983; Cook, 1984). The time for each ray is selected according to the virtual
camera shutter window, and that time is saved in local data that is kept for each ray.
During scene traversal, this saved ray time is used to perform intersection tests. When
the scene is being traversed for a particular ray, objects are moved to their respective
positions based on the time of the incoming ray. As will be discussed in Chapter 3,
several optimizations take place in order to prevent severe performance degradation
during this step. The ray time is also copied from the primary ray to any secondary rays

that are generated by the primary ray intersection, such as shadow or reflection rays.

In this way, some fraction of the rays may intersect a moving object, while the
remaining rays miss the object. Combining the returned sample colors into one estimate
of the pixel color via the use of an accumulation buffer will cause the object to appear

blurred in the final result (Haeberli, 1990).

In order to fully mitigate the effects of temporal aliasing, the samples are
distributed across the shutter window randomly, rather than at regular intervals. Jittered
sampling is an essential feature for implementing motion blur in ray tracing because of

the very noticeable strobing effects that occur without its use (Figure 3).
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Figure 3: From left to right, 4 non-jittered samples, 8 non-jittered samples, and jittered sampling.

Sampling

So far, we have only discussed concepts related to the mitigation of temporal
aliasing. Another type of aliasing that has large impacts on the perception of image
quality is spatial aliasing (Mitchell, 1987). Whereas in temporal aliasing the issue arises
from poor sampling throughout the time axis, spatial aliasing is caused by poor sampling
in the sub-pixel region. Similar to the approach for temporal aliasing, the effects of
spatial aliasing can be mitigated by using more samples per pixel that are distributed
throughout the sub-pixel region. A basic ray tracer without motion blur may fire one ray
per pixel from the center of the pixel, but this choice is arbitrary; the top-left corner can
be chosen, or the origin of the ray can be randomized for each pixel. Although this latter
option may seem unintuitive at first, it is based on the fact that random noise is much

less objectionable to the human visual system than aliasing (Cook, 1986).

Based on these three dimensions (two values u,v for the sub-pixel coordinate,
and one value t for time), we initialize each primary ray with an origin and direction. The
spatial coordinates are initialized in the range [0, 1) representing their position within the
pixel, and the time value for the ray lies in the interval in which the virtual camera shutter

is open for the frame being rendered. Given we are not simulating lens aperture in this
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work, the origin for every ray will be the camera eye point adjusted by the time for that
ray and the velocity of the camera. If the camera is not moving, then all rays will have
the same origin, regardless of their respective time values. The direction of a ray is
calculated by finding the vector between the camera eye point and the desired sampling
location on the virtual image plane. This sampling location is determined by combining

the row and column of the pixel with the individual ray’s sub-pixel coordinate.

A core issue lies in how to distribute the samples spatially and temporally, and
this is one of the key questions that this work seeks to address. In our case, the
sampling region forms a cube, but more complex rendering schemes may require
additional dimensions for sampling, such as distributing ray origins over the virtual
camera lens to form depth of field. In stochastic sampling (Cook, 1986), it is suggested
that the values for the different dimensions should be uncorrelated so as to ensure that
the samples do not bunch up or leave large gaps unsampled. This idea has been
studied from a variety of perspectives including in quasi-Monte Carlo sampling methods

(Kollig, 2002).

Point Sets for Sampling

We now discuss the approaches to solving the sampling problem that we explore
in this work, namely stratified Monte Carlo sampling, Poisson disk sampling, and quasi-
Monte Carlo sampling via the Hammersley sequence. All three approaches attempt to
improve upon the standard Monte Carlo method, in which the high-dimensional
illumination integral for rendering (Kajiya, 1986) is evaluated stochastically using point
samples. By choosing the locations of those point samples more intelligently, these
methods reduce the amount of noise in the rendered image, which makes rendering

more efficient.
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In stratified Monte Carlo sampling — also called jittered grid sampling (Cook,
1986) — the sampling region is partitioned into evenly-sized grid cells, with one grid cell
for each sample. The samples are then randomly distributed within their respective grid
cells. Since we consider three sampling dimensions in this work, the grid cells are small

cubes.

We also explore Poisson Disk sampling, in which samples are distributed
randomly across the entire region with the restriction that there is a guaranteed minimum
distance between any two sampling points. This distribution approximates the
distribution of photoreceptors in the retina (Yellott, 1983) and has very nice blue-noise
properties due to its band-limited nature (Mitchell, 1987; Lagae 2006). However, without
an intelligent algorithm (Dunbar, 2006) these sampling points can be computationally
intensive to calculate for a large number of samples due to the fact that neighboring

samples must be checked to ensure that the distance restriction is upheld.

The last sampling distribution we explore is the Hammersley sequence, which is
a deterministic, quasi-Monte Carlo method designed to have low discrepancy (Pharr,
2004). Although there are varying precise definitions of discrepancy, the main idea is as
follows. If one partitions the pixel space into sub-regions and then samples the pixel
using a particular strategy, ideally the ratio of samples contained in a certain sub-region
to the total number of samples should be very near the ratio of the volume of that sub-
region to the total volume of the pixel (Shirley, 1991). Therefore, discrepancy refers to
the maximum error over all possible ways to divide the region into sub-regions. The
Hammersley sequence is defined using the radical inverse. Pharr and Humphreys
(2004) cleanly describe the formulation of the Hammersley sequence using the radical
inverse. The radical inverse construction is based on the fact that any positive integer n

can be expressed in a base b with a sequence of digits dm...d2d; uniquely determined by:
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n= Z dibi_l.
i=1

The radical inverse function @&, in base b converts a nonnegative integer n to a
floating-point value in [0, 1) by reflecting these digits about the decimal point:

®,(n) =0.d,d, ... dpy.

The Hammersley sequence is defined for a set of N samples in an n-dimensional

space by the following (note that the bases bi must all be relatively prime):

xi = (£, @5, (0, 25,00, ..., 5,()).

Hammersley Poisson Disk Stratified Monte Carlo

Figure 4: Projecting the three-dimensional sampling points onto two dimensions.

One interesting aspect of these point sets is their behavior when projecting the
three-dimensional points onto two dimensions. Figure 4 shows the appearance of the
three point sets when the time dimension is ignored from a set of 125 samples. While
the Hammersley point set remains well-distributed, both other point sets exhibit clumping
behavior, since the third dimension was dropped. This behavior can alter the
performance of the point sets in regards to strictly spatial anti-aliasing (e.g., in a scene
with no motion, the time of each sample is irrelevant). Our work seeks to provide insight

into whether this performance difference matters from a perceptual standpoint.
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Figure 5 provides an overview of the appearance of the three different sampling
methods at three sampling densities. Upon close inspection, the strong specular streaks
have slightly less noise with the Hammersley set than the other two methods, with the
effect most noticeable at 64 samples per pixel. The reflections appear less granulated,
and we hypothesize that this will make the motion blur appear smoother. However, the
difference is very subtle and our work intends to provide evidence into whether the

difference is noticeable in animation rather than static images.
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Hammersley Stratified Monte-Carlo Poisson Disk

64 Samples/Pixel 8 Samples/Pixel

216 Samples/Pixel

Figure 5: The appearance of motion blur with three different point sets and three sampling levels.

Spatial Filtering and Reconstruction Techniques

From these samples, we must estimate a color for the pixel based on the colors
returned by the samples during the ray tracing procedure, which involves the use of a
reconstruction filter (Netravali, 1988). A simple approach is to simply average all of the

colors (i.e., a box filter spanning the entire pixel), but this approach assumes that each
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sample has equal importance to the final result, which may result in poor image quality.
Another filter kernel is the two-dimensional Gaussian, which allows for samples closer to
the center of the pixel to be weighted more highly, while the weights of all other samples
decrease toward the edges. In practice it is often beneficial to use reconstruction filters
larger than one pixel, which has two advantages. The first advantage is that sample
values are able to be shared across multiple pixel color calculations, and the second
advantage is that including a larger area in the color calculation makes edges appear

slightly smoother (Figure 6).

Figure 6: Unmodified (left) and Gaussian-warped (right) sampling.

In the work by Ernst (2006), the authors describe ways in which the “weighting”
approach is unsatisfactory. Even when using a filter larger than one pixel and sharing
samples between adjacent pixels, many of those samples will have a very low weight

during reconstruction, making the overall use of the samples inefficient.

18



.
05f 05 H M

05F 1 05F . " G

-1 05 0 05 1 1:5 2 -1 05 0 05 1 15 2

Figure 7: 125-point Hammersley set unmodified (left) and Gaussian-warped (right)

An alternative approach is filter importance sampling (Ernst, 2006), in which the
sample locations are warped according to the reconstruction filter kernel prior to ray
tracing. In doing so, samples are not shared between adjacent pixels and no weighting is
applied during the color calculation. Figure 7 shows the effect of applying a two-
dimensional Gaussian warping procedure to the Hammersley point set using the Box-

Muller transform (Box, 1958).

Given two independent random variables Xo and Yo uniformly distributed over (0, 1],
X; =+/—2InX,cos(2nY,)
Y; =./—2InX,sin(2rY,),

where Xs and Yg are independent random variables with a normal distribution of standard

deviation 1.

Since the samples are altered in location rather than weighted, the contributions

of all samples toward the pixel color calculation are equal.

Temporal Filtering Kernels
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Similar to the spatial warping techniques, we also employ warping on the
temporal axis of each time sample. We restrict the temporal warping to keep the time
values within the same range of values as the unmodified distribution. We explore two
time filters (Figure 8), namely the truncated box filter and the triangle filter. The result of

applying each filter to a regularly-spaced set of points is shown in Figure 9.

L L L L L L L L L L L L
0 02 0.4 06 08 1 0 02 0.4 06 08 1

Figure 8: Truncated box filter (left) and triangle filter (right)

| | | 1 | |
1) 02 0.4 06 08 1

Figure 9: The effect of warping regularly-spaced points in the interval [0, 1] with the truncated box
filter (middle) and triangle filter (bottom)

The truncated box filter is a commonly used filter for motion blur due to being
very easy to implement. Our truncated box filter has a value of O for the first and last
25% of the shutter window. This compresses the motion blur to occur during the middle

50% of each frame’s shutter time.

20



The triangle (or tent) filter is not as commonly used, but has the property that
samples are more concentrated in the center of the shutter window, with a gradual
decline to O toward the edges of the window. We explore this time filter because the
resulting blur may appear more natural, since the blur edges (and specular highlights)

appear smoother (Figure 10).

Figure 10: The appearance of motion blur with a truncated box filter (left) and a triangle filter (right)

Related Work

There is prior work in sampling methods relevant to this work. In filter importance
sampling (Ernst, 2006), a method of sampling is described in which the reconstruction
filter is used to warp the sampling locations prior to ray tracing traversal for improved
image quality. In quasi-Monte Carlo sampling (Keller, 1998; Kollig, 2002), the quality of
numerical integration tasks such as sampling in ray tracing is improved via deterministic
methods such as the Hammersley sequence. The development of stochastic
rasterization (Akenine, 2007; McGuire, 2010) has also created new opportunities for

more intelligent sampling in rasterization as well.
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Analyzing sampling patterns has been approached in a variety of ways. The
effects of aliasing on motion perception has been studied, (Colletta, 1990). The problem
of determining optimal sampling patterns has been approached via blue-noise spectral
analysis (Cook, 1986; Mitchell, 1991; Lagae 2006). Efficient tiling patterns have been
explored (Cohen, 2003) that solve issues with aliasing artifacts between pixels. Lastly,
the Poisson-disk sampling pattern was determined to correspond to the arrangement of

photoreceptors on a retina (Yellott, 1983).

For motion blur, new efficient methods exist that require substantially fewer
samples than standard distribution ray tracing (Hachisuka, 2008; Egan, 2009). There are
also methods for generating motion blur under globally-illuminated conditions
(Cammarano, 2002) and for computing shading and visibility separately to reduce noise
(Sung, 2002). Motion blur can also be computed in the image space rather than using
full distribution ray tracing, but with much faster computation times (Potmesil, 1983; Max,
1985). The application of distribution ray tracing in interactive settings has also been

explored, including the use of ray-traced motion blur (Boulos, 2006).
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CHAPTER llI

RAY TRACER IMPLEMENTATION

This chapter presents the technical details of our ray tracer. We will discuss the
high-level goals we set out to achieve in constructing this ray tracer, followed by details

of certain aspects of our implementation.

Motivation and Goals

The first step in addressing the issue of rendering for this project was to identify
the primary constraints on which our choice of renderer would depend. These

constraints are outlined below:

- Due to the high number of combinations of rendering parameters, there would be
many videos to generate. Therefore the renderer needed to support batch
rendering capabilities or be flexible enough to allow for a straightforward batch
rendering implementation. Also, the renderer needed to be fast enough to allow

the large number of videos to be generated in a reasonable amount of time.

- Given that additional more advanced rendering features (soft shadows, depth of
field, etc.) would require additional dimensionality when generating the point sets
for sampling, we decided that limiting the dimensionality to three (namely u, v, t in

the pixel space) would allow for the effects of motion blur to be tested in a more
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isolated and controlled fashion. Therefore, the renderer did not have to support

advanced effects, such as global illumination.

- A high degree of control over the sampling procedures of the renderer would be
required in order to implement the different rendering parameters we were
interested in evaluating. Therefore, the renderer needed to support the use of

multiple point sets, time filters, and sampling levels.

When evaluating a variety of options to satisfy these constraints, we concluded
that traditional commercial rendering offerings either did not provide sufficient flexibility
for the features we needed to implement or the flexibility was too cumbersome to use
effectively. Conversely, many open-source implementations focused on different areas
of ray tracing (such as photorealistic rendering) that were not necessarily relevant to our
project, in addition to being too slow for being able to render a large number of videos in

a reasonable time frame.

Given these conclusions, we decided to create our own ray tracer. We decided to

write our ray tracer on top of the NVIDIA OptiX SDK (Parker, 2010).

OptiX is a general-purpose ray tracing engine that maps highly-parallel ray
tracing tasks onto NVIDIA CUDA-based GPU architectures. NVIDIA CUDA is a parallel
computing architecture that simplifies the task of writing highly-parallel code for NVIDIA
GPUs by providing a high-level parallel programming API that is accessible through
C/C++ as well as many other programming languages. OptiX provides an additional
layer of abstraction on top of CUDA through the use of a just-in-time compiler that
generates CUDA kernels based on user-supplied programs for ray generation, material

shading, object intersection, and scene traversal.
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Compared to traditional CPU architectures that may have 4-8 complex cores,
GPUs take the opposite approach by using upwards of 400 very simple execution cores.
Although CPUs may feature complex branch prediction, pipeline reordering, and other
tasks that improve single-thread performance, GPUs sacrifice single-thread performance
in favor of performance boosts for massively-parallel tasks. This approach is well-suited

for tasks such as ray tracing.

Our reasons for choosing OptiX were as follows:

- GPU acceleration provided substantial rendering speed increases, which allows
us to generate more videos in less time. This speed increase was more
pronounced by the fact that our rendering needs did not involve more complex
effects like indirect illumination or ambient occlusion, and therefore the thread

execution divergence would be fairly minimal.

- We had prior experience writing code for OptiX.

- The OptiX SDK provided substantial pre-built functionality that we needed, such

as high-performance acceleration structures and an .OBJ model loader.

- The flexibility of custom ray generation code in OptiX allowed us to implement all
of the flexibility needed in terms of multiple point sets, time filters, and sampling

densities.

Implementation Walkthrough

Given that the OptiX SDK is a generalized ray tracing framework, rather than a

complete renderer, it provided only a starting point for the remainder of our
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implementation. Figure 11 shows an overview of the operational structure of our system.
The OptiX SDK contains samples for performing simple ray tracing with no motion blur,
but our ray tracer required additional functionality not present in the SDK by default. The
ray generation program needed to be modified to distribute samples temporally and
retrieve sampling locations from a pre-generated sampling buffer. The intersection and
bounding-box calculation programs for geometric objects needed to alter the location of
the geometry based on the time window. The Context and Scene Graph (including
acceleration structures) are built-in OptiX classes for facilitating transfer between the
CPU and GPU as well as allowing efficient representation of the scene on the GPU. All
host code was written for this project except for the random number generator, which

uses a Mersenne Twister implementation (Matsumoto, 1998).

e
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Figure 11: Overview of system design
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We will now walk through a high-level overview of the execution of a batch

rendering job by the system. The job description (Figure 12) contains seven lines.

Plane_scene

8

1 8 27 64 125 216 343 512

3

hammersley stratifiedmc poisson
2

box triangle

Figure 12: An example job description for rendering the plane scene

The first line gives the name of the job, for logging purposes. The next line gives
the number of sampling levels to test, followed by a line containing those sampling
levels. Similarly, the next two lines give the number of point sets followed by the point
sets to test, and the two lines after that give the number of time filters followed by the
time filters to test. In this way, the user has precise control over the batches of frame

sequences that the renderer generates.
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material

materialname plane_material
diffusecolor 0.6 0.85 1.0
specularcolor 0.3 0.3 0.3
ambientcolor 0.05 0.05 0.05
fresnelminimum 0.3
fresnelmaximum 1.0
fresnelexponent 2.0

end

object

type model

materialname plane_material
modelfilename models/B-727-200.0bj
scale 13

location O 0 420

velocity -1000 0 O

end

camera
location 400 375 800
locationvelocity -600 0 O
lookat 300 350 O

up 010

upvelocity 0 0 0.005
lookatvelocity -800 10 O
fov 50

end

settings

starttime -12.5

frametime 0.12

numframes 210

sizex 768

sizey 768
ambientlightcolor 0.7 0.9 1.0
maxdepth 4

pointset hammersley
numsamples 64

timefilter triangle
envmap data/CedarCity.hdr
scenename planescene

end

Figure 13: A few blocks used in the description of the plane scene. Note that the full scene
description contains blocks for lighting and other scene information.

The batch job manager interprets the job description and creates the different
combinations of rendering parameters that are to be fed into the renderer. For each

different combination specified implicitly in the job description, the batch job manager
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generates a scene description (Figure 13), which contains all of the information that the
renderer needs in order to render a sequence of frames for a given scene and rendering
parameters. The scene description is composed of blocks, which each contain
information about a different part of the scene. There are seven types of blocks used in
the scene description format for this system: Group, Light, Material, Object, Object
instance, Camera, and Settings. There may be many groups, lights, materials, objects,
and object instances in a scene, but a scene description can only have one Camera

block and one Settings block.

After the scene description is generated, it is passed into the scene loader. This
class creates an OptiX context and then reads the scene description, setting fields in the
context appropriately. The scene graph is initially empty, and is populated based on the
scene description during loading. Not every node created during loading refers to a
geometry object. In addition to the intermediate nodes created for managing geometry
groups, intermediate nodes are also created for performing ray transforms. These

transform nodes and their use will be discussed in more detail in the following section.

After the scene loader creates the OptiX context appropriately, the context is
passed to the main renderer host code. This code is responsible for creating and
initializing necessary OptiX structures (such as buffers to transfer data between the host
and device) as well as initiating the ray-tracing procedure for every frame. The host code
also generates the appropriate point set based on the scene description. Given that
generating a unique point set for each pixel is prohibitively slow (especially for the
Poisson set), this point set is either generated once for each frame or once for the entire
frame sequence, depending on the configuration. In addition to generating the point set,
the host code also generates a buffer of random seeds that is used to shift/rotate the

sample points for each pixel. This random shift means that each pixel uses a different
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sampling pattern even though only one point set was generated. The random seeds are

generated using a Mersenne Twister (Matsumoto, 1998).

With all the necessary support structures created, the first frame of the scene can
be rendered. Our renderer utilizes an accumulation buffer approach to combining the
sample values into a color estimate for the pixel. In this approach, each frame of the final
rendered sequence is composed of N intermediate frames in a render process with N
samples per pixel. Each intermediate frame is rendered using only one sample per pixel,
and the results are accumulated over time until the necessary number of samples has
been reached. At this point, the result buffer is written to disk as the final rendered frame

and the process repeats for the subsequent frame.

Implementation Details

Transform Nodes in Scene Graph

As previously mentioned, we insert transform nodes in the scene graph for
geometry objects and groups. These transform nodes are used in two ways, namely for

geometry instancing and reducing the size of bounding boxes.

Geometry instancing refers to the ability for a renderer to create a virtual copy of
a geometry object in a different location without duplicating the model information in
memory. In order to create an instance of another object without recreating the object
from scratch, a transform node (with the appropriate offsets specified) is created with a
reference to the object as one of its children. During ray traversal both the transform

node and the object itself are visited, creating two apparent versions of the same object.
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The use of transform nodes make motion blur rendering more efficient in ray
tracing based on the fact that a geometry object must have a bounding box that
encompasses all possible locations that the object can have during rendering (otherwise,
some of the rays will miss the object when they should have hit). Rather than having one
large bounding box for the whole sequence, a smaller bounding box is used for each
frame along with a transform node to place that bounding box in the correct location. The
locations of these transform nodes are updated for each frame based on the velocity of
their children. This additional cost is greatly outweighed by the speed increases afforded
by smaller bounding boxes, due to the fact that a very large number of ray hit/miss
calculations are performed for a single frame, and a ray hit or miss can be determined

much more quickly when the bounding volume hierarchy can be traversed efficiently.

Sampling and Warping

The usage of the generated point sets was described at a high level in the

previous section. Figure 14 shows the device code used to perform the following steps:

Retrieve seeds generated in the host code based on the pixel location.

- Convert seeds into floating point numbers in the interval [0, 1).

- Retrieve the point set sampling location based on the current accumulation frame
count. This count is reset for each rendered frame of the final sequence, and

increments for each intermediate frame.

- Shift the three coordinates of the point set sample by the three floating point

numbers, ensuring that they wrap around.
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operation. Generating a unique point set for each pixel is too expensive (especially for
the Poisson Disk set), and reusing the same set for all pixels without any modification

will result in visible artifacts (Figure 15), and such aliasing artifacts are considered more

// need three random
unsigned int seedl
unsigned int seed2?
unsigned int seed3

seeds to shift point set

rnd_seeds[ launch_index ].x;
rnd_seeds[ launch_index ].y;
rnd_seeds[ launch_index ].z;

// Xy z =u Vv t respectively

float xShift = rnd(seedl);
float yShift = rnd(seed2);
float zShift = rnd(seed3);

float3 curPoint = point_set[accum_frame];

float x
float y
float z

X += xShift;
if (x >= 1.0F)
X -= 1.0F;

y += yShift;
if (y >= 1.0F)
y -= 1.0F;

z += zShift;
if (z >= 1.0
z -= 1.0F;

curPoint.x;
curPoint.y;
curPoint.z;

Figure 14: Device code used to retrieve and shift sampling locations for each pixel

This process allows for one point set to be used for the entire rendering

perceptually objectionable than noise (Cook, 1986).
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Figure 15: Aliasing artifacts that result from reusing the same pattern for all pixels (left) versus
randomly shifting the point set (right) at 8 samples per pixel.

Other approaches exist to reducing aliasing with pre-generated point sets, such
as using a Wang tiling pattern (Cohen, 2003). Our approach is simple to implement and
requires very little additional computational overhead during run-time, while also

ensuring that the tiling artifacts are not present.

We also apply a two-dimensional Gaussian warp to the spatial position of the
sample, followed by another warp to the temporal position of the sample. Although the
spatial warping remained constant throughout our work, we explored the use of two
reconstruction filters for the temporal axis, namely a truncated box filter and a triangle
filter, as discussed in Chapter 2. Under the sample weighting approach, the value from
the filter can be multiplied directly by the value of the sample after scene traversal, but
with the warping approach it is necessary to multiply the sample position by the inverse
cumulative distribution function of the reconstruction filter prior to traversal so that the

warped ray direction is used.
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__device__ void inverseGaussian2D(float& x, float& y)
{
float tempx
float tempy = y;
= (sgrtf( -2.0*log(tempx) )*cos( 2.0*M_PIf*tempy )/2.0F)+0.5F;
= (sgrtf( -2.0*log(tempx) )*sin( 2.0*M_PIlf*tempy )/2.0F)+0.5F;

X3

__device__ void inverseTruncatedBox(float& x)

= (0.5F*x) + 0.25F;

__device__ void inverseTriangle(float& x)

if (x <= 0.5F)
= 0.5F * sqrt(2.0f*x);
else
= 0.5F * (-sqrt(-(2.0F*x)+2) + 2);
}

Figure 16: Device code used to perform warping operations on an input parameter.

Figure 16 shows our implementation of the two-dimensional Gaussian warp

based on the Box-Muller transform (Box, 1958), as well as functions to warp a parameter

value according to the truncated box and triangle filters.

Discussion

Many of the methods described in this chapter, such as sample set generation

and warping, would have been too cumbersome to implement into a commercial

renderer, and too constrained for many open source implementations. Since this ray

tracer's primary objective was rendering a large number of ray-traced sequences with

motion blur, there were a few key goals that the ray tracer needed to meet, including fast

batch-controlled rendering and sufficient control to implement the various sampling

strategies. A custom ray tracer built using OptiX proved to be a wise choice due to the

degree to which it satisfied these goals.

34



CHAPTER IV

EXPERIMENTAL DESIGN

This chapter discusses the goals of this work in terms of experimental
measurement. We also discuss our experimental methodology, as well as practical

details of our experimental design.

Our primary experimental goal was to determine the relationship between three
different variables (scene type, sampling level, and sampling method) and the perception
of noise. The reasoning for this goal is to use the insights gleaned from experimental
data to make recommendations on perceptually efficient motion blur generation.
Although there is prior work in the area of optimal sampling patterns (Mitchell, 1987) and
in the area motion perception as a whole (Coletta, 1990), this issue is a challenging

issue for multiple reasons:

- The perception of noise changes from person to person based on visual acuity
and other factors.

- The design of sampling patterns, reconstruction filters, etc. is often considered
more of an art due to the fact that purely mathematical techniques to analyze

their optimality do not necessarily indicate perceptual quality.

Due to the relative lack of analysis from the perceptual standpoint in this area, we
decided that we would approach this problem using experimental results from user trials.
A number of problems in computer graphics such as the design of piecewise cubic

reconstruction filters (Netravali, 1998) have been approached in this way.
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Methodology

Our primary analytical tool for measuring perceptual noise is the just-noticeable
difference. The just-noticeable difference (hereafter abbreviated as JND) refers to the
point at which the subject is able to reliably distinguish two stimuli as being different
(Green, 1966). We measure the JND across two parameters, namely scene type and the
sampling method. In this way, we are able to determine the effect of those parameters

on the perception of noise in the final result.

Each stimulus presented to the subject was a pair of two videos shown side by
side. One pair contained videos that were identical, rendered at the highest sampling
density (512 samples per pixel) to act as a ground truth. The other pair contained one
video at ground truth and another video with the test sampling density. The subjects
were then queried to determine which of the two pairs contained the different videos,
and told to guess if they did not know the correct answer. As such, subjects are more
readily able to answer correctly when the test sampling density is low, since it appears to
have much more noise compared to the ground truth version directly next to it. As the

test sampling density increases, this difference becomes more difficult to determine.

Measuring the JND requires a large number of queries to the subject in order to
adequately estimate the psychometric function, and there are a variety of methods for
performing this task. The simple approach used in this work is the method of constant
stimuli (Green, 1966). For each combination of scene and sampling method, we query
the subject at every test sampling level equally, but in a randomized order. We used
eight total sampling densities for testing, namely {1, 8, 27, 64, 125, 216, 343, 512}
samples per pixel. These values correspond to the first eight perfect cubes. We chose

perfect cubes as the interval due to limiting the dimensionality of our sampling region to
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three, and the Stratified Monte Carlo method in particular requires that the number of
samples per dimension be a whole number in order to properly subdivide the pixel
region into sub-cubes of equal size. These intervals correspond to an equal sampling
density in all three dimensions (u,v,t) of the pixel. Future work may address varying the
sampling density between spatial and temporal sampling to determine their effects on
the perceptual quality of motion blur individually, or sampling spatial dimensions

individually to determine the relationship of perceptual quality to direction of motion.

The three sampling methods, discussed in detail in Chapter 2, are the
Hammersley deterministic point set, the Stratified Monte Carlo point set, and the Poisson
Disk point set. Since our work uses a three-dimensional sampling region, the Poisson
Disk set is more accurately termed a Poisson Sphere set due to the minimum distance
restriction creating a sphere around a given point in which no other samples may

appear.

Scenes

During an initial pilot study phase using four scenes, we noticed that three of the
scenes exhibited similar subject responses, while the fourth scene displayed very
different behavior. This clustering was due to the fact that the three scenes with similar
responses had a lack of strong specular highlights, which were highly prevalent in the
fourth scene. As such, we restricted our choice to only two scenes, one with strong
specular highlights and one without. The Plane scene (Figure 17) contains mostly diffuse
surfaces with some specular reflections, while the Spheres scene (Figure 18) has many
more fast-moving reflective surfaces closer to the camera, thereby creating a large

number of strong specular highlights.
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Figure 18: Four frames from the spheres scene animation

Both scenes use high dynamic range (HDR) environment maps for the
background texture. Specular highlights are more pronounced under high dynamic range
rendering conditions, since the environment map may contain any floating point value,
and a large discrepancy between adjacent samples may result. One factor we were
interested in testing is the magnitude by which this difference has an impact on the

perceptual appearance of noise.

The experimental model follows a repeated measures within-subject design. The
order of the different individual stimuli is randomized for each subject in terms of the
scenes, point sets, and sampling levels tested. This is done to make it difficult for the

subject to predict or find patterns in the stimuli.
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Practical Details

Twelve subjects were shown stimuli corresponding to each combination of two
scenes, eight sampling levels, and three sampling methods. The truncated box time filter
was used for these stimuli. This yields a total of 48 different combinations per subject.
Each combination was tested four times. As a result, the value for each combination for
a particular subject will either be 0, 0.25, 0.5, 0.75, or 1, and this value represents the
percentage of time that the subject was able to correctly discern the difference in the
stimuli for that combination. Therefore we expect to see values close to 1 for low
sampling levels, and values close to 0.5 for high sampling levels as the correctness of
their answers approaches random chance. Across all 12 subjects, a particular

combination is tested a total of 48 times.

We choose the value of 0.75 as our JND threshold, since it corresponds to the
halfway point between being able to decipher the difference 100% of the time and

random chance.

The total experiment runtime per subject was limited to two hours, and on
average the subjects completed all trials within an hour and 45 minutes. The subjects
were allowed to take short breaks at regular intervals throughout this time to reduce

fatigue.

The experiment code, written in MATLAB, performed the ordering randomization
and data gathering procedures along with launching the video player for each stimulus.
The video player needed to be advanced enough to play two videos side by side in a
synchronized fashion, while also being configurable enough to initiate playback
automatically and hide window decorations. We used RV (Tweak Software, San

Francisco, CA) since it satisfied these goals.
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The monitor was a Dell U2311H, which features a 23-inch diagonal display size
with resolution of 1920x1080 along with an IPS display panel for improved color
reproduction, wider viewing angles, and reduced ghosting. Ghosting in particular was an
important aspect of the monitor for this project, since it blurs nearby frames of animated
video, which conflicts with the very factors we were attempting to test. Ghosting is a
byproduct of high display response time, which is a measurement of how quickly the
panel pixels can change from one color to another. Compared to the IPS panel, other
panel types (TN and PVA) did not provide as adequate of a balance between color

reproduction, viewing angles, and response time.

The videos themselves were 768x768 pixels, and were displayed in the RV video
player at 1:1 pixel scaling to avoid the impacts of any resampling. The videos were
preloaded into memory for each stimulus and shown in uncompressed format to avoid

any color banding or compression artifacts.
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CHAPTER V

EXPERIMENTAL RESULTS

This chapter presents the results of our experiments. The relationship between
the JND and the scene will be shown, followed by the relationship between the JND and
the point set used for sampling. In both cases, the JND is determined by the point at
which the psychometric function intersects the horizontal line for the threshold, which is
p = 0.75. Additionally, for each graph error bars represent the standard error of the mean
to indicate the range of variation of each calculated data point. We then present an

analysis of the results.

Scene Dependence

This section shows how the JND depends on the scene shown. We previously

discussed the two scenes used for testing, and the rationale for their selection.

We will now present graphs for each scene showing the probability of correctly
identifying the different videos as a function of the sampling level. Figure 19 is the graph
for the plane scene, and Figure 20 is the graph for the spheres scene. The dashed red
line shows our JND threshold (p = 0.75) and the dashed green line shows the random
chance level (p = 0.5). The error bars shown represent the standard error of the mean

for N =12 trials.
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Figure 19: Psychometric function for plane scene. Error bars show standard error of the mean.
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Figure 20: Psychometric function for spheres scene. Error bars show standard error of the mean.
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It is immediately visible that the JND appears higher in the spheres scene than
the plane scene, based on the intersection of the psychometric function with our JND
threshold. This intersection occurs at roughly 40 samples per pixel in the Plane scene,
and at roughly 100 samples per pixel in the Spheres scene. We will perform an analysis

of this difference later in this chapter.

Point Set Dependence

This section shows how the JND depends on the point set used for sampling. In

Chapter 2, we discussed the three point sets tested, and the rationale for their selection.

We will now present graphs for each point set showing the probability of correctly
identifying the different videos as a function of the sampling level. Figure 21 presents the
Hammersley point set, Figure 22 presents the Stratified Monte Carlo point set, and
Figure 23 presents the Poisson point set. The error bars shown represent the standard

error of the mean for N=12 trials.
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Figure 21: Psychometric function for Hammersley point set.
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Figure 22: Psychometric function for Stratified Monte Carlo point set.
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Figure 23: Psychometric function for Poisson Disk point set.

Unlike the scene dependence, the relationship between point set and JND
appears weak. We will discuss this more fully later in the following section. Additionally,
there is an anomaly with the Stratified Monte Carlo point set at 216 samples per pixel,
and upon further investigation we were unable to discern any reason for this either in the
MATLAB experiment code or in the video rendering process. Therefore we are unsure
whether the anomaly would decrease with additional trials or if there is an underlying
cause for its existence. In either case, the anomaly appears at a higher sampling density
than the area containing the JND for all scenes and point sets, so our analysis will not be

substantially impacted by its presence.
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Analysis

We now present the above results in an overlaid fashion in order to see the
graphs of the different techniques at once. Figure 24 shows all of the scenes, while
Figure 25 shows all of the point sets.

All Scenes
1 T T

Plane Scene
- Spheres Scene

0.9

0.8

e
~

Probability
o
(o]

0.5

0.4r —

03r —

| 1 | | | I |
1 8 27 64 125 216 343
Number of samples

Figure 24: Psychometric functions for both scenes.
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Figure 25: Psychometric functions for all three point sets.

We perform t-tests in order to calculate statistical significance of the data, both
across scenes (Table 1) and across point sets (Table 2). We use the three data points
near the JND level, namely 27, 64, and 125 samples per pixel (abbreviated as spp). We
also include 216 samples per pixel in Table 1 to test the anomaly described in the

previous section.

Table 1: Results of t-tests for determining statistical significance between scenes

Test Results of t test
(Degrees of Freedom = 29) p value | tvalue | Significant (p = 0.05)
Plane Scene vs. Spheres Scene, 27 spp 0.0027 | -3.275 Yes
Plane Scene vs. Spheres Scene, 64 spp | 0.000025 | -5.000 Yes
Plane Scene vs. Spheres Scene, 125spp | 0.1296 | -1.560 No
Plane Scene vs. Spheres Scene, 216 spp | 0.0477 2.067 Yes
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Table 2: Results of t-tests for determining statistical significance between point sets

Test Results of t test
(Degrees of Freedom = 19) p value | tvalue | Significant (p = 0.05)

Hammersley vs. Stratified Monte Carlo, 27 spp | 0.2141 | -1.285 No
Hammersley vs. Stratified Monte Carlo, 64 spp | 0.2492 | -1.189 No
Hammersley vs. Stratified Monte Carlo, 125 spp | 0.5190 | -0.6571 No
Hammersley vs. Poisson, 27 spp 0.8252 | -0.2239 No
Hammersley vs. Poisson, 64 spp 0.6810 | -0.4175 No
Hammersley vs. Poisson, 125 spp 0.8805 | -0.1523 No
Stratified Monte Carlo vs. Poisson, 27 spp 0.4194 | 0.8254 No
Stratified Monte Carlo vs. Poisson, 64 spp 0.2967 | 1.073 No
Stratified Monte Carlo vs. Poisson, 125 spp 0.6513 | 0.4592 No

The statistical tests indicate that the scene has a greater impact on JND than the
point set. The JND for the plane scene occurs close to halfway between 27 and 64
samples per pixel, while the JND for the spheres scene occurs close to 125 samples per
pixel. We found no statistically significant difference between point sets, with the JND for
all three point sets occurring between 64 and 125 samples per pixel. In order for a
particular point set to be more perceptually efficient, the probability of distinguishability
would have to decrease more quickly as sampling density increases, thereby indicating
that it performs more closely to ground truth at a particular sampling density than other
point sets. The p-values for the statistical tests indicate that the Hammersley and
Poisson sampling methods exhibited the most similar performance out of any two of the
three point sets. However, the differences between the sampling methods are small
enough that a larger number of user trials would be needed to prove any statistical

significance.
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CHAPTER VI

CONCLUSION

This work explored the perception of motion blur in distribution ray tracing
through the use of experimental trials designed to isolate various techniques for
generating motion blur in order to determine their effectiveness. Our experimental trials
tested the perception of motion blur under two scenes and three sampling patterns used
for sub-pixel sampling. Our results indicate that the choice of scene, and in particular the
presence of strong specular highlights, has a larger impact on the visibility of noise than
the choice of sampling pattern. The just-noticeable difference of noise is determined to
be roughly 40 samples per pixel for primarily diffuse scenes, and roughly 100 samples
per pixel for scenes with strong specular highlights and HDR rendering. Although pre-
examination of the rendered images yielded a hypothesis that the Hammersley point set
produces the least motion blur noise, we were unable to find a statistically significant

difference beyond a slight correlation to confirm this hypothesis.

Contributions and Future Work

This work’s main contribution is a perceptual evaluation of various approaches to
ray-traced motion blur. We performed this evaluation by finding the just-noticeable
difference of noise detectable by humans in various settings, with different scenes and

point sets used for rendering. This work contributes to the understanding of human
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perception of object motion by giving estimates of the sampling densities required to

achieve low perceptual noise under these different situations.

There is a variety of future work related to this project, such as testing additional
sampling point sets (especially in the realm of quasi-Monte Carlo sampling). Although
we implemented the box and triangle time filters into our renderer, the experiments
discussed in this work did not seek to identify which time filter produced more
perceptually pleasing motion blur. Additionally, we assumed in this work that the (u,v,t)
sub-pixel dimensions should be sampled with equal density. Future work should address
whether spatial or temporal anti-aliasing has a larger impact on the perceptual quality of
the result. Furthermore, although we constrained the dimensionality of our point set to
three, there is a large potential in exploring adding additional dimensions (for depth-of-
field, global illumination, area lights, etc.) and performing similar experiments to

determine perceptually optimal sampling techniques under such conditions.
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