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CHAPTER I 

INTRODUCTION 

 

ABSTRACT 

We introduce vanadium dioxide (VO2), a binary strongly-correlated metal oxide that 

changes phase from semiconductor to metal in response to stimuli like temperature, 

electric field or doping. We discuss the details of its structure and electronic behavior and 

the physics behind its phase transition, as far as it is understood from theoretical and 

experimental studies conducted in the last fifty years. We also review the growth 

processes of VO2 thin films and nanoparticles, introduce the concept of epitaxy all of 

which are essential backgrounds for the rest of the dissertation. We end this chapter with 

a roadmap for the rest of the dissertation. 

1.1 MOTIVATION: TECHNOLOGICAL AND SCIENTIFIC SIGNIFICANCE 

Vanadium dioxide (VO2), a strongly correlated oxide with its first-order metal-insulator 

transition a little above room temperature, has been well-studied over the last fifty years 

but its complex physics is less than well understood. This ―smart‖ material is 

technologically very attractive for its thermal switching at 67C, alterable by doping, its 

ultrafast (~ 100fs) switching abilities when excited by a laser and also its potential for 

electric-field induced switching. The details of the physics of this phase transition will be 

discussed in section 1.2. To understand the challenges that this oxide poses, not only its 

physics, but the challenges involved in fabrication should also be understood. A review 

of the growth processes commonly employed in making VO2 is presented in section 1.3. 

To take advantage of the huge technological potential that the multifunctionalities of the 

strongly-correlated materials, such as VO2, has to offer, three things need to be addressed 

– 1) most of the applications involve materials in form of thin films, hence the quality of 

these films, dependence on growth conditions and defects involved in growth are 

important to know and understand; 2) the physics of the phase transition has to be well-
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understood for reliable and consistent device performances, and 3) there has to be an 

understanding of how to modify the phase transition to suit specific technological needs. 

In this dissertation we have addressed these three issues in the following ways. First, 

epitaxial thin film growth is the single most important factor in attempting to address all 

of the above stated issues. We have introduced epitaxy in section 1.4 of this chapter. Our 

efforts at epitaxial growth on various single-crystalline substrates over varied deposition 

conditions have shown that we can have oriented films in both smooth and nano-

structured morphologies with switching hysteretic performances changing accordingly 

(Chapter 2). These have specific advantages and disadvantages pertaining to specific 

technological needs for example, integration in devices might need smoother surfaces 

whereas sensor applications involve higher surface areas, where nanostructured films 

might be more desirable. We have shown that room-temperature epitaxial films are of 

smoother morphology and better performance than their high-temperature grown 

counterparts which should considerably influence the current state-of-the-art (Chapter 3). 

To address and understand the physics of the coupled phase transition in VO2, we have 

independently studied the structural and electronic hystereses. On comparing and 

correlating their evolution on the temperature (or energy) scale we have found them to be 

non-congruent (Chapter 4). Note here that epitaxial films help immensely in studying 

structural transitions. 

Tailoring phase transitions to fit specific technological needs is another important aspect 

that can be done using doping. Doping to achieve specific functionality is a commonly 

used technique in the semiconductor world, and Chapter 5 is an example showing how 

doping VO2 reduces its femtosecond switching threshold. This work not only helps us 

address the issue of lower fluence (or energy) requirement in case of ultrafast switching, 

but also helps us understand how the physics of phase transition is being modified. It can 

also provide insight into tailoring of the switching-off time of VO2, which is extremely 

important from both physics and technological aspects. 

From the applications perspective, integration of the two technologically very important 

materials – Si and VO2 has been demonstrated in chapter 6 to enhance the optical 
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response of Si-based optoelectronics, ensuring smaller device footprint, lower power 

consumption and more robust device performances. This hybrid device has the potential 

for operating at higher speeds than provided by current technology, by utilizing the 

ultrafast switching of VO2. 

1.2 VANADIUM DIOXIDE : A REVIEW 

In strongly correlated electron systems, observed electronic and structural behavior 

results from the complex interplay between multiple, sometimes competing degrees-of-

freedom and as a result these materials exhibit a variety of unusual behaviors, such as 

high-temperature superconductivity, colossal magnetoresistance, exotic magnetic, charge 

and orbital ordering, and insulator-to-metal transitions. Vanadium dioxide is a prototype 

strongly-correlated material that has been widely-studied by theoretical and experimental 

condensed-matter and materials community for more than half a century. 

 

 

Figure 1.1: Hysteresis curves showing change in resistance (left) and  

reflection (right) as a function of temperature during phase transition in VO2. 

 

In 1959, Morin
1
 observed that bulk vanadium dioxide crystals exhibit a reversible 

semiconductor-to-metal transition (SMT) at a critical temperature of about 68
o
C with 

change in resistivity and near-infrared transmission spanning several orders of 

magnitude. Being a transition-metal oxide with narrow d-electron bands, this strongly 

correlated electron system is extremely sensitive to small changes in extrinsic parameters 
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such as temperature, pressure, or doping. In bulk crystals, the change in resistivity is of 

order ~10
3
-10

5
, with a hysteresis width of ~1

o
C, as seen in figure 1.1. In thin films, on the 

other hand, hysteresis widths may be in the range of 10
o
-15

o
C, whereas in nanostructures 

it might be as broad as ~30 – 35
o
C. 

 

1.2.1  Physical and electronic structure of VO2 

The subtle interplay between atomic structure, charge, spin and orbital dynamics is 

responsible for the phase transition observed in VO2. A delicate balance of cooperative 

interactions of the crystal structure and electronic degrees of freedom drives it into a 

critical regime where it undergoes a first-order transition from a low-temperature 

semiconducting phase to a high temperature metallic phase at Tc = 340K. In this case, 

changes in the electronic band structure are associated with atomic rearrangement 

between a high-T, more symmetric tetragonal/rutile (P42/mnm) phase to low-T less 

symmetric monoclinic (P21/c) phase due to dimerization of the V atoms.
2
 The 

characteristic feature of this monoclinic phase is the presence of the cation-cation pairs 

along the am = 2cr axis, leading to the doubling of the unit cell, alternate V-V separations 

being 2.65Å and 3.12Å rather than the regular 2.87Å spacing in the tetragonal phase (see 

figure 1.2). This is accompanied by a slight tilting with respect to the cr-axis to give one 

shortest vanadium-oxygen separation Rvo = 1.76Å perpendicular to the cr axis, the other 

cation-anion distances being ~ 2Å. The displacement of a cation toward one or more 

anions is characteristic of a ferroelectric distortion. Thus the driving mechanism 

responsible for this transition is an anti-ferroelectric one. 
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Figure 1.2: Schematic representation of lattices of the two structural 

phases of VO2 along directions where their symmetries are most evident. 

Left: Monoclinic (M1) VO2.  Right: Tetragonal or rutile (R) VO2. Smaller 

spheres denote the vanadium ions, which are surrounded by six oxygen 

ions (bigger spheres).  VB and OB are atoms in the plane of the paper, 

whereas VA, OA point in to the plane of the paper and VC, OC out of the 

plane of the paper respectively. Unit cells are marked in green. Courtesy: 

Dr. Bin Wang, Vanderbilt University. 
 

The electronic structure of VO2 was explained qualitatively long ago by Goodenough.
2
 In 

the rutile structure (space group P42/mnm), the V atoms are surrounded by O octahedra 

forming an edge-sharing chain along the c axis. The d-levels of the V ions are split into 

lower lying t2g states and eg states (see figures 1.3 and 1.4). The latter lie higher in energy 

and are empty. The tetragonal crystal field splits the t2g multiplet into an a1g (dII) state and 

an e


g (*) doublet. The a1g orbitals are directed along the c axis, with strong bonding of 

the V-V pair along this direction. In the monoclinic phase (space group P21/c), the 

dimerization and tilting of the V-V pairs result in two important effects. First, the a1g 
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band is split into a lower-energy bonding combination and a higher-energy antibonding 

one. Second, the Vd-Op antibonding e


g states are pushed higher in energy, due to the 

tilting of the pairs increasing the overlap of these states with O states. Thus, in this 

picture, the single d electron occupies the a1g-bonding combination, resulting in a 

(Peierls-like) band gap. 

 

Figure 1.3: d-electron band splitting by crystal fields and their orbitals. 

The number in the parentheses is the number of degeneracy.
2
 

 

 

 

Figure 1.4: Schematic electronic energy bands of VO2.
2
 

 

1.2.2  Mott vs Peierls transition controversy 

Whether the structural changes are solely responsible for the insulating nature of the low-

T phase, or whether correlation effects also play a role, has been a subject of much 

debate.
3-10

 The strong dimerization, as well as the fact that this phase is nonmagnetic, 
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suggests that VO2 might be a typical case of a Peierls insulator. However, pioneering 

experimental work by Pouget et al
11, 12

 showed that minute amounts of Cr substitutions, 

as well as uniaxial stress applied to pure VO2 lead to a new phase (M2) in which only 

half of the V-atoms dimerize, while the other half forms chains of equally spaced atoms 

behaving as spin-1/2 Heisenberg chains. That this phase is also insulating strongly 

suggests that the physics of VO2 is very close to that of a Mott-Hubbard insulator. 

Zylbersztejn and Mott,
13

 Sommers and Doniach,
14

 and Rice et al
15

 suggested that 

Coulomb repulsion indeed plays a major role in opening the gap. The table 1.1 below 

compares and contrasts the Peierls and Mott aspect of this phase transition. 

The controversy regarding the driving mechanism of this phase transition still continues 

unabated as can be seen from the recent works of Tselev et al
16

 and Booth et al
17

 claiming 

that the phase transition is purely lattice symmetry-driven, whereas strong evidence is 

presented in favor of a Mott transition in works of Qazilbash et al
18

 and Kim et al.
19

 

Table 1.1: Comparison of similarities and differences between the VO2 

SMT and classical metal-insulator mechanisms: a) Peierls mechanism: 

increased of unit cell opens up a bandgap. (b) Mott-Hubbard Interactions: 

electron-electron interactions may enhance gap opening. 

 

 

Features of 

VO2 transition 
Peierls Transition Mott-Hubbard Interactions 

consistent 

with:  

 

o Doubling of unit cell. 

o Pairing of metal atoms 

o Large lattice transition 

latent heat 

o Existence of M2 phase  

o Narrowing of d-bands 

o Ultrafast phase transition 

 

inconsistent 

with: 

o Large bandgap (0.7eV) 

o Conductivity jump 10
-2

-10
-3 

times smaller than experiment 

o 



dTc

dP
 0  

o Structural change 

o Phonon softening 

o 



dTc

dP
 0  
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1.2.3 Applications of VO2 

VO2 belongs to the class of ―smart materials‖, which generally react to temperature 

variations, electric or magnetic fields and/or pressure variations and have capabilities of 

sensing, actuating and switching, relying on an intrinsic property of the material.  Thin 

films and nanoparticles of VO2 tend to survive the stress generated during repeated cycles 

of phase transition better than bulk crystals and are therefore suited for many device 

applications. The large change in resistivity and transmittance/reflectivity during the 

semiconductor-to-metal (SMT) transition for VO2 occurs closer to room temperature than 

any other commonly-known compound and can also be conveniently depressed to about 

room temperature by doping.
20

 

The metal-insulator transition in VO2 has triggered numerous suggestions and their 

subsequent realizations for technological applications.  These include thermally activated 

VO2 thin films and nanoparticles for optical switching
21-23

 and beam limiting;
24

 resistive 

switching,
25

 thermal relays and energy management devices such as solar cells and smart 

window coatings; and sensors and actuators.
26-34

 It is also being used in optical 

computing, variable reflectivity mirrors, light modulators, holographic recording media, 

high-speed solid-state optical displays and in a variety of other modulation, polarization 

and control functions such as real-time coherent optical data processors and fast, random 

access scan laser.
35, 36

 VO2 has also been used as the channel layer in field-effect 

transistors in effort to produce Mott transisitors.
37, 38

 VO2 thin films also have potential 

applications in the millimeter-wave and microwave portions of the electromagnetic 

spectrum.
39, 40

 Applications for VO2 nanoparticles, with their plasmonic response in the 

vicinity of the near-infrared communications wavelengths,
41, 42

 ferroelasticity and 

negative mechanical stiffness,
43

 have an even greater range of potential applications that 

are only beginning to be explored. VO2 single-crystalline nanobeams have lately opened 

up a whole new possibility of using switching nanowires with enhanced mechanical 

strength and stress-resistance.
44

 A gas sensor application utilizing the metal-insulator 

transition in VO2 has also been realized recently.
45
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1.2.4  Past and recent developments in theory 

In case of any strongly correlated oxide, theoretical calculations are complicated by the 

varied structure, chemistry, defects and impurities present, preventing theorists from 

accurately capturing the subtle correlation among structure and electronic properties of 

these materials. In case of VO2, its monoclinic geometry with pairing and tilting of 

vanadium atoms complicates any attempt at calculation further. Density functional theory 

being a 0K theory, by itself cannot predict the bandgap of any system, but electronic 

structure calculations based on density functional theory within the local density 

approximation (DFT-LDA) have provided some support for the qualitative description of 

VO2 in terms of molecular orbitals.
46

 Molecular dynamics calculations by Wentzcovitch 

et al
47

 with variable cell shape successfully found the M1 structure to have the lowest 

total energy, with structural parameters in reasonable agreement with experiment.  DFT-

LDA calculations fail, however, to produce the opening of the band gap: the top of the 

bonding dII band is found to overlap slightly with the bottom of the * band, and only for 

a hypothetical structure with larger dimerizations would the band gap open up. Hence, 

only a theoretical treatment in which structural aspects as well as correlations within V-V 

pairs are taken into account on equal footing can capture the underlying mechanism for 

the metal-insulator transition in VO2.  

Dynamical mean-field theory (DMFT)
48

 successfully fulfilled this requirement by 

mapping the many-body lattice problem onto a single-site problem using the Anderson 

impurity model. This simplifies the spatial dependence of the correlations among 

electrons and yet accounts fully for their dynamics, i.e., takes into account the local 

quantum fluctuations that were missing in the static mean-field treatments like the 

Hartree-Fock approximation. DMFT provides a quantum analog of the classical mean-

field theory and satisfactorily describes the Mott metal-insulator transition. It directly 

addresses the competition between kinetic energy and correlation energy – that is, the 

wave-like and particle-like character of electrons in the solid. It successfully reproduces 

the qualitative features of the phase diagram for strongly correlated systems such as 

vanadium oxide and nickel selenium sulfide. DMFT could perfectly reproduce the phase 

transition characteristics for pure Mott transition in V2O3. 
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As an extension of DMFT, the electronic structure of VO2 was successfully reproduced 

by Biermann et al
49

 using a cluster extension of dynamical mean-field theory (C-DMFT) 

in combination with DFT-LDA calculations within the recently developed Nth-order 

muffin-tin orbital (NMTO) implementation. This allowed for a consistent description of 

both the metallic R phase and the insulating M1 phase and the calculation of a finite band 

gap which was not achieved in earlier works. Very recently the effect of stress on the 

phase transition features has been studied within the DMFT framework,
50

 and reverse 

Monte Carlo calculations have been used to model the structural evolution in the region 

of strong correlation to capture the coexistence of metallic and insulating domains during 

the first order phase transition.
51

 The latter calculations do not support the existence of an 

intermediate structural state during the phase transition. 

1.2.5  Recent experimental results 

Phase transitions in VO2 have been primarily been induced in two different ways: 

temperature-induced and photo-induced, the former one being an adiabatic and latter 

being a non-equilibrium preparation of the phase transition. 

Adiabatic and non-equilibrium preparation of the metallic state 

Electronic transitions occur on a time scale of femtoseconds, because of their low mass 

and interactions via Coulombic forces, which act almost instantaneously. Electron-

electron collisions then bring them to a Fermi-Dirac equilibrium distribution, and 

attribute a temperature Te to the electrons in the system, in around tens of femtoseconds. 

Ions, on the other hand, due to their higher mass take longer to respond to any impulse 

received and only vibrate about their mean positions in a regular lattice arrangement with 

vibrational frequencies in the far-infrared regime. Their characteristic response time is of 

the order of picoseconds. So collisions with excited electrons ascribe a temperature of Ti 

to the ions in few picoseconds, and after tens of picoseconds the whole lattice settles to a 

mean equilibrium temperature <T> (when Ti = Te). 
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During thermally-induced phase transitions, we adiabatically reach a condition of phase 

transition, in which the changes in temperature are brought about slowly enough to have 

the thermal equilibrium of the system re-instated at each step, i.e. more than tens of 

picoseconds of intervals are maintained. To understand the cause and effect relationship 

between the electronic correlations and the structural transition, and which of these is 

primarily responsible for the phase transition in VO2, we need to induce the phase 

transition in a non-equilibrium situation, for example, by hole-doping during a 

photoinduced phase transition and probe the transition with femtosecond resolution. Thus 

ultrafast optical preparation of the non-equilibrium metallic state and probing 

measurements in the femtosecond regime is another way that can provide useful insight 

into the VO2 phase transition puzzle.   

Thermal induction of the phase transition has been the most common and popular method 

till date. All of the early work on VO2 was done by thermally inducing the phase 

transition and also recent developments
18, 19, 52, 53

 have shed light on VO2 phase transition 

mechanism with the first work underscoring the Mott signature of the transition, whereas 

the others provided a means to interrogate the evolution of the structural and the 

electronic phase transitions. 

Ultrafast optical measurements with visible and THz probes and X-ray diffraction 

measurements of photoinduced phase transition in VO2 have been done
54-58

 to 

demonstrate the direct measurement of a femtosecond solid-solid phase transition and the 

combined measurements of electronic and structural dynamics during phase transition. It 

has been observed that, at high degree of electronic excitation, transition has been 

indicated by optical and X-ray data to occur over a macroscopic volume within 100fs or 

less. This renders VO2 highly suitable for ultrafast switching applications. Lysenko et al
59

 

have studied the effect of substrate and film morphology on the ultrafast switching and 

relaxation times. They have also studied the contributions of the non-thermal electronic 

vs phonon-induced thermal components of the light-induced phase transition depending 

on laser fluence.
60

 Also, according to ultrafast investigations by Hilton et al,
61

 Kim et al
62

 

and Jepsen et al
63

 there exists a mixture of phases (metallic domains alongside insulating 

domains) well below transition threshold, and both Maxwell-Garnett and Bruggeman 
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effective medium theories have been applied to model the macroscopic, effective 

dielectric properties of VO2 thin films and nanoparticles in vicinity of transition where 

composite phases coexist. Another interesting aspect that has been reported in the 

photoinduced phase transition of VO2 thin films covering metal nanoparticles is that the 

changes in dielectric function, changes the position of the surface plasmon resonance and 

thus the plasmon-photon coupling.
64

  

Electric-field induced switching of VO2 has also been investigated by a large number of 

groups,
23, 65-69

 and is important because of its technological as well as its physics 

implications. Electric-field (E-field) induced switching of VO2 underscores the Mott-

driven nature of the phase transition and makes VO2 a strong candidate for the realization 

of Mott transistors. One of the advantages of a field effect transistor (FET) with VO2 is 

that the issue of RC-limitation to the transit time that limits the performance of 

conventional FETs is no longer relevant in this case.
66

 The field-induced switching in 

VO2 has been plagued with controversies regarding the actual cause of the switching: that 

is, if the Joule heating due to the current flowing through the VO2 and not the carrier 

injection is the driving mechanism of the phase transition.
70, 71

 But recently, a Raman 

demonstration of the gate-field-induced switching of VO2,
72

 with no current flowing 

through it, has proved that pure E-field induction of phase transition in VO2 is possible.  

The potential for two and three terminal devices based on E-field induced switching of 

VO2 is still an active area of study.
73, 74

 A recent study
37

 have found that, materials 

synthesis, especially the VO2/gate dielectric interface, plays an immensely important role 

in the response to the gate voltage, and thus controls the functioning of such electrically-

controlled  devices. 

1.2.6  Other phases of VO2 

 

1.2.6.1 Past developments 

The discussion in this subsection is largely based on the seminal paper by Volker Eyert.
46

 

The understanding of VO2 and the metal-insulator transition is even more complicated 

due to the presence of additional phases of this material. They appear on application of 
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uniaxial stress or on doping of VO2 with small amounts of Cr, Fe, Al, or Ga of the order 

of few percent.
11, 12

 The phase diagram of Cr doped VO2 as given by Pouget and 

Launois
12

 is shown in figure 1.5. Later, a similar phase diagram was also reported for 

V1−xAlxO2 by Ghedira et al
75, 76

. According to Fig. 1.5, Cr-doped VO2 enters, on cooling, 

the monoclinic M2 phase in a first order metal-insulator transition.  

 

 

Figure 1.5: Phase diagram of VO2 showing its structural evolution.
46

 
 

On further lowering of the temperature, transition to the triclinic T phase occurs, which, 

for chromium concentrations smaller than 0.015, is followed by a first order transition to 

the monoclinic M1 phase. According to X-ray measurements by Marezio et al
77

, each of 

the three low-temperature phases shows a particular distortion pattern of the atomic 

arrangement especially of the characteristic vanadium chains. The T phase, alternatively 

also called the M3 phase has also been observed and well-characterized by several 

groups.
78-80

 Whereas in the M1 phase both the metal-metal pairing and the zigzag-type 

lateral displacement are observed on each chain, in the M2 phase only half of the chains 

dimerize and the zigzag-type deviations are reserved to the other half of the chains (see 

figure 1.6). Finally, the T phase is intermediate, as those chains, that in the M2 phase 
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dimerize, gradually start to tilt, whereas the zigzag chains start to dimerize until 

distortions in both chains are identical and eventually the M1 phase is reached. Hence, 

the T and M1 phases can be regarded as superpositions of two M2-type displacements 

with unequal and equal weights, respectively. The role of the latter displacement pattern 

as the ―fundamental‖ one may be understood from the symmetry considerations 

presented by Pouget et al as well as by Paquet and Leroux-Hugon.
8, 81

 According to these 

ideas the pairing on one chain is intimately connected with the zigzag-type displacement 

on the neighbouring chains: If the vanadium atoms pair on one chain, the atoms on the 

neighbouring chains, which from the outset are vertically displaced by half the rutile c 

axis, move off the chain axis towards the apical oxygen atom whose V neighbours of the 

first sublattice have pulled apart. For this reason, the zigzag-like displacement may be 

viewed as being coupled to the metal-metal pairing along the rutile c axis. D‘Haenens et 

al found from ESR data, that the chromium atoms enter as substitutional Cr
3+

 ions on the 

zigzag-type chains.
82, 83

 

The M2 to T transition was viewed as a bonding or dimerization transition of a linear 

Heisenberg chain. This interpretation was confirmed by the observed decrease of the 

magnetic susceptibility at the transition, which is accompanied by an increase of the 

electrical conductivity by a factor of two. From the existence of well localized 3d 

electrons at the V
4+

 sites, Pouget et al concluded that the results should be interpreted in 

terms of a Mott-Hubbard-type picture. In doing so, they attributed the insulating gap to 

electronic correlations. 

Later on, Pouget et al demonstrated that both the M2 and T phases could be likewise 

stabilized by applying uniaxial stress along either the [110] or the    ̅   direction in 

stoichiometric VO2 samples.
12

 Such uniaxial stress can be viewed as suppressing the 

zigzag-type displacements on those chains, which have their tilting along the direction of 

the applied stress, while the respective other chains are not affected. However, from the 

above symmetry considerations it follows that, as a consequence of the reduced tilt on 

one half of the chains, the pairing on the other chains will be also reduced.  
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Figure 1.6: Schematic structure of M2 phase of VO2. Courtesy: Dr. Bin 

Wang, Vanderbilt University 
 

Pouget et al pointed out that the critical uniaxial stress for appearance of the M2 phase is 

so small that the free energies of the M1 and M2 phases in pure VO2 must be extremely 

close at temperatures just below the metal-insulator transition. These authors also pointed 

to the fact that, although the M2 and T phases involve substantial changes in the 

vanadium atom positions, they could be stabilized by impurity concentrations as low as 

0.2%. According to them the M2 and the T phases therefore must be interpreted as 

alternative phases of pure VO2 whose free energies are only slightly higher than that of 

the M1 phase of the pure material. As a consequence, the M2 phase was regarded as a 

metastable modification of the M1 phase. In contrast, the T phase appears as a 

transitional state, which displays characteristics of both monoclinic phases.  

The discovery of the M2 phase with its two different types of vanadium chains was 

difficult to reconcile with the theoretical approaches which had explained the insulating 

ground state as originating from crystal structure distortions with a predominant influence 
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of either the pairing or the zigzag-type displacement. Furthermore, from the presence of 

localized 3d electrons on the zigzag chains and the  antiferromagnetic ordering of the 

local moments within non-interacting linear Heisenberg chains many authors concluded 

that band theory were unable to correctly describe the physics of the M2 and, hence, also 

of the M1 phase. Instead, electronic correlations were regarded as essential and localized 

models based on Mott interpretation became necessary. Yet an explanation of the physics 

of VO2 purely in terms of a Mott-Hubbard-type picture turned out to be difficult in view 

of the complex structural changes at the metal-insulator transition, which lead to the same 

crystal structures as those of the neighbouring metallic transition-metal dioxides. 

As Rice et al
15

 have pointed out, discussion of the monoclinic M2 phase of VO2 is 

essential for a comprehensive understanding of the physics of the metal-insulator 

transition. The efforts of Eyert in capturing the underlying physics for all these states in 

VO2 is notable in this case.
46

 

1.2.6.2  Recent Developments: VO2 nano single-crystals 

The ability to synthesize VO2 in the form of single-crystalline nanobeams and nano- and 

microcrystals
84, 85

 ushered in a new era with measurements and studies being conducted 

to uncover a number of previously unknown aspects of the metal-insulator transition in 

bulk or thin films. This one-dimensional form of VO2, confined in space to smaller than 

the characteristic domain size, provided a much simplified, elegant platform to study the 

fundamental physics of the complex phase transition of VO2 because of the absence of 

the domain structure, characteristic of thin films.  Nanobeams have superior mechanical 

properties due to absence of defects and much higher stress tolerance. In polycrystalline 

thin films, mutual interaction of constituent crystallites affect and convolute the nature of 

the MIT. Strain in thin epitaxial films are redistributed by possible presence of misfit 

dislocations and grain boundaries, resulting in microscopic domains limiting the phase 

space accessible in experiments and also complicate the interpretation of results. These 

problems are absent in one-dimensional nanowire configuration thus providing a much 

broader scope for fundamental physics interrogation. 
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Investigation of the phase transition in such a quasi-one-dimensional geometry has led to 

observation of alternately striped metal and insulator phases,
84

 supercooling of the 

metallic state by almost 50
o
C,

86
 evidence for both the Mott

86
 and Peierls

38
 character of 

transition and many such interesting phenomena. Figure 1.7 shows long suspended 

nanobeams between gold contacts showing buckling and the evolution of metal-insulator 

transition in these single-domain structures. 

 

Figure 1.7: Stripes of insulating and metallic phases observed in strained 

VO2 nanobeams undergoing phase transition, after Wei et al
86

 

 

But the most exciting, unanimous observation from different groups has been the 

observation of the M2 phase as an intermediate phase during transition which can be 

stabilized by stress, as observed by Pouget et al. Zhang et al
38

 performed simultaneous 

Raman and electrical resistivity measurements to extract the temperature dependent 

resistivity of the M2 phase. Their study also provided evidence in support of a Mott-

driven transition by creating metallic M2 and M1 phase, paving the way for design of 

Mott field-effect transistors, without structural phase transition. Jones et al,
87

 also with 

help of Raman and scattering-scanning near field optical microscopy (s-SNOM) studied 

the influence of the competition between the R, M1 and M2 phase in the MIT in presence 

of external substrate-induced stress. Taking advantage of the higher yield strengths of the 

nanobeams, Cao et al
88

 performed simultaneous micro-XRD and resistivity 

measurements to map the stress-temperature phase diagram for the different competing 

phases, in a phase space that is an order of magnitude broader than  what could be 

achieved previously in the bulk without fracturing.  They observed that, under tensile 

stress, the M2 phase self-organizes into twinned superlattices and can be transformed 

reversibly to the R or M1 phases by varying temperature or stress (see figure 1.8). Micro-

XRD, micro-Raman and polarized-light microscopy coupled with Ginzberg-Landau 
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formalism used by Tselev et al
16

 showed that the competition between the M1 and M2 

states is purely lattice-symmetry-driven and M2 does not have a special role as an 

intermediate phase in MIT; it is rather purely stress-induced. 

 

 

Figure 1.8: Observation of the M1, M2 and R phase stripes in strained 

VO2 nanobeams, as measured by Cao et al
44

 
 

Recent reports of an intermediate M2 phase in thin films of VO2 during phase transition 

have also been made by Okimura et al.
52

 They observe a third Gaussian peak is required 

to fit their temperature-variable XRD data near transition, which fit the description of 

M2. Booth et al have reported on the production of substrate-dependent pure phase M2-

VO2 and M1-VO2.  

 

1.3 A REVIEW IN VO2 THIN FILMS AND NANOPARTICLES SYNTHESIS 

Growing pure phase VO2 thin films and nanoparticles is a challenge that needs to be 

overcome for studying and applying its phase transition properties. A brief review of the 

most common fabrication techniques for VO2 synthesis is provided in this section. 
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1.3.1  The phase diagram for VO2 

In addition to vanadium dioxide (VO2), vanadium sesquioxide (V2O3) and vanadium 

pentoxide (V2O5) also exhibit metal-insulator transitions at critical temperatures specific 

to their stoichiometric phases. But, as the phase diagram of Figure 1.9 shows, there are 

nearly twenty other stable vanadium oxide phases, such as VO, V6O13, V3O5, V4O7 etc. 

which have no interesting phase transitions but whose phase diagrams are similar to those 

of VO2 and V2O3, and the existence of these competing oxide phases offers particular 

challenge to the growth of both bulk and thin films of VO2.
89, 90

  Nevertheless, VO2 

depositions have been done using numerous techniques such as reactive evaporation, 

several sputtering methods, metal-organic chemical vapor deposition (MOCVD), pulsed 

laser deposition (PLD), sol-gel deposition, etc. In this section we will concentrate on the 

five techniques most commonly used nowadays for the fabrication of VO2 thin films, 

nanoparticles and nanobeams – sputtering, pulsed laser deposition (PLD), chemical vapor 

deposition (CVD), sol-gel and physical vapor transport techniques.   

 

 

Figure 1.7: Phase diagram for the vanadium oxygen system.
91
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In passing it should also be noted that techniques such as reactive evaporation have also 

been extensively employed 
92-97

 to obtain high-quality VO2 films. Also, ion implantation 

was used by Lopez et al in order to stoichiometrically co-implant vanadium and oxygen 

in the near-surface region of fused silica
98

 and alumina
99, 100

 substrates. The ion-

implanted samples were used in the discovery of size-effects, including greatly enhanced 

hysteresis, in the structural phase transition of VO2 nanoparticles.
101-103

 

 

1.3.2  Chemical Vapor Deposition 

Chemical vapor deposition (CVD) is a common industrial process for depositing high-

quality and high-performance thin films. In a typical CVD process, the wafer (substrate) 

is exposed to one or more volatile precursors, which react and/or decompose on the 

substrate surface to produce the desired deposit. Frequently, volatile byproducts are also 

produced, which are removed by gas flow through the reaction chamber. In case of VO2, 

most of the time the process has organometallic precursors, and is therefore often called 

organometallic chemical vapor deposition (OMCVD) or metal-organic chemical vapor 

deposition (MOCVD).  

The first deposition technique used for the deposition of VO2 thin films appears to have 

been chemical vapor deposition CVD, and after half a century it is still used extensively.  

Koide and Takei in 1966 had grown bulk single crystals of VO2 by CVD 
104

, and grew 

thin films of VO2 a year later by the same method.
105

 They introduced fumes of vanadium 

oxychloride (VOCl3) carried by N2 gas into the growth chamber, which was then 

hydrolyzed on the surface of rutile substrates to give epitaxial VO2 films.   In 1968, 

MacChesney, Potter and Guggenheim
106

 used CO2 instead of N2, to carry VOCl3, and 

V2O5 was formed on single crystal sapphire substrates. This V2O5 was then reduced to 

VO2 by annealing between 500
o
 and 550

o
C, with appropriate oxygen partial pressures, in 

a controlled atmosphere containing a mixture of CO and CO2. These same researchers 

were the first ones to have elucidated the phase diagram for the vanadium-oxygen 

system. Thin film VO2 preparation on various substrates by the pyrolysis of vanadium 

acetylacetonate (C5H7O2)4V in a controlled atmosphere with appropriate mixtures of 
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nitrogen and oxygen was accomplished in 1972 by another group.
107

The reaction used by 

them is as follows: 

  

They concluded that the composition of the gas carrier was the main factor determining 

the film composition. Vanadyl tri-isopropoxide (VO(OC3H7) 3) based CVD was first 

tried, in open atmosphere, by C.B. Greenberg in 1983,
108

 and VO2 films were made with 

and without post-annealing on glass substrates. 

CVD continues to be one of the most convenient ways of making VO2, using one of the 

above pre-cursors. Also, VCl4 and water have been used as precursors by Manning et al 

in 2002
29

 to make intelligent window coatings with VO2.  Maruyama and Ikuta in 

1993,
109

 first demonstrated atmospheric-pressure CVD (APCVD) from vanadium(III) 

acetylacetonate and deposited polycrystalline VO2 films on fused quartz and sapphire 

single crystals.   

 

 

Figure 1.8: (a) MacChesney and Guggenheim‘s CVD apparatus, (b) CVD 

apparatus based on VCl4 and water precursors after Manning et al, (c) Low-

pressure CVD apparatus as described by Sahana et al 

 

Manning et al
110-112

 have also investigated APCVD in quite details for various purposes, 

and have successfully demonstrated doping of VO2 with W, Ti, Mo and Nb.  High quality 

epitaxial VO2 films were grown on sapphire substrates using low-pressure CVD by 

Zhang et al in 1994,
113

 and the substrate and film orientations were studied.  Also, in 

2001-2002, CVD of VO2 was performed under low-pressure (LPCVD) by Sahana et 

al,
114, 115

 and variation in phase transition characteristics were demonstrated in terms of 

5 7 2 4( ) heat

xC H O V VO gases 
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the observed film microstructure. Figures 1.10(a), (b) and (c) show three different 

implementations of the CVD technique as it has evolved. 

Recently, aerosol-assisted (AA) CVD has been demonstrated for deposition of VO2 on 

glass.
116, 117

 In this technique, the pre-cursor (vanadium(III) acetylcetonate and vanadyl 

(IV) acetylacetonate) is dispersed in a solvent and an aerosol of the solution is generated 

ultrasonically. The precursor is transported to the substrate through aerosol droplets 

transported by a carrier gas. The advantage of AACVD over APCVD is that the precursor 

does not need to be volatile, but just soluble in one of the solvents suitable for aerosol 

formation.   

 

1.3.3  Sol-Gel Technique 

The sol-gel method has been widely employed for depositing VO2 films because of its 

many advantages, such as low cost, large area deposition, and the ease of metal-doping.  

The sol-gel process is a wet-chemical technique for the fabrication of materials (typically 

a metal oxide) starting from a chemical solution containing colloidal precursors (sol). 

Typical precursors are metal alkoxides and metal chlorides, which undergo hydrolysis 

and polycondensation reactions to form a colloid, a system composed of solid particles 

(size ranging from 1 nm to 1 μm) immersed in a solvent. The sol then evolves towards 

the formation of an inorganic network containing a liquid phase (gel). Formation of a 

metal oxide involves connecting the metal centers with oxo (M-O-M) or hydroxo (M-

OH-M) bridges, thereby generating metal-oxo or metal-hydroxo polymers in solution, 

which is then deposited on a substrate or cast in a specific container or used to synthesize 

powders. A drying process serves to remove the liquid phase from the gel thus forming a 

porous material, and then a thermal treatment (annealing) may be performed in order to 

favor further crystallization and enhance mechanical properties. 

The precursor sol in case of VO2 is generally deposited on the desired substrate to form a 

film (e.g. by dip-coating or spin-coating). The sol-gel approach is an inherently low-

temperature technique that allows for the fine control on the product‘s chemical 

composition, as even small quantities of dopants, can be introduced in the sol and end up 
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finely dispersed in the final product. Hence sol-gel has been widely used to dope VO2 

with other metals, such as tungsten or niobium, to change its transition temperature.  

The method as applied to VO2 generally consists of a spin coating with a solution of 

vanadium isopropoxide, VO(OC3H7)3 diluted in an alcohol, (e.g., ethanol or isopropanol), 

and then a subsequent annealing process in a reducing atmosphere. C.B. Greenberg 

introduced this process for making VO2 as the gelation-hydrolysis method.
108

 It has since 

been found that using the equivalent n-propoxide vanadium compound gives VO2 also, 

and it is likely that a wide variety of organometallics and solvents can be used, since the 

final oxidation state of the vanadium ion depends on the pyrolysis conditions rather than 

the starting material. 

 

Figure 1.9: SEM images of vanadium oxide films grown on (a) Al2O3 

    ̅    and (b) Al2O3     ̅   substrates by sol-gel method.
118
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Another novel method — the inorganic sol-gel method — using V2O5 as the precursor 

was demonstrated by Dachuan et al.
119

  According to Livage et al
120, 121

 vanadium oxide 

gels can be synthesized either via the acidification of aqueous solutions of vanadates, for 

e.g. NaVO3 or via the hydrolysis of vanadium oxo-alkoxides, VO(OR)3. Application-

oriented VO2 films have been made using sol-gel process by several groups
120, 122-130

. 

Recently, Chae et al
118, 131

 have demonstrated a simplified annealing process, where after 

using the sol-gel deposition; they formed VO2 by annealing in a low pressure of oxygen 

only without a reducing gas, as was required in all of the above processes. Figure 1.11 

show the SEMs of their films, as-deposited and after annealing at two different 

temperatures. 

1.3.4  Sputtering 

Sputtering, in its many forms, is the most common physical vapor deposition process
132

 

for growing vanadium dioxide thin films.  Vanadium dioxide thin films were first grown 

by reactive sputtering in 1967 by Fuls, Hensler and Ross of the Bell Telephone 

Laboratories.
133

 They made their films by reactive ion-beam sputtering of a vanadium 

target in an argon-oxygen atmosphere. Other enhanced sputtering methods used to 

facilitate the deposition process include RF and DC sputtering and magnetron sputtering. 

The advantages of sputtering processes are film uniformity, scalability to larger substrate 

sizes and efficiency of deposition compared to the other methods. 

The simplest form of sputtering involves a diode sputtering by energetic ions (usually 

argon ions) from a gas-discharge plasma bombarding a target that forms the cathode for 

the discharge. Target atoms bombard the substrate (the anode), forming a coating. There 

may be three fundamental diode sputtering arrangements, which utilize a DC discharge, a 

capacitive radio frequency (RF) discharge, and either a DC or a capacitive RF discharges 

plus a planar magnetron. Figure 1.12(a) shows the essential arrangement for DC sputter 

deposition, while Figure 1.12(b) shows an RF sputter arrangement with a capacitive, 

parallel plate discharge, which yields substantially higher RF current. It uses a blocking 

capacitor to set the DC bias and an impedance-matching network for coupling to the 

reactive load posed by the plasma.  RF sputtering apparatus operates at lower voltage and 
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lower sputtering gas pressures while producing higher deposition rates and, most 

importantly, sputtering of an electrically insulating target becomes possible.
134, 135

 

 

 

Figure 1.10: Schematic of (a) a DC sputtering apparatus, (b) an RF 

sputtering apparatus and (c) a magnetron sputtering apparatus
135

 
 

Most contemporary high deposition-rate sources are now based on magnetron sputtering, 

developed in the 1970s.  These sources feature a magnetically assisted discharge, in 

which a permanent magnet defines lines of magnetic flux perpendicular to the applied 

electric field from the DC or RF source, and is thus parallel to the surface of the target. 

The magnetic field concentrates and intensifies the plasma, in the space immediately 

above the target, by trapping of electrons near the target surface. This magnetron effect 

results in enhanced ion bombardment by the Ar ions, and thus much higher sputtering 

rates for both DC and RF discharges.  Figure 1.12 (c) is the schematic of a typical 

magnetron sputtering system. 

After the first experiments in VO2 deposition by reactive sputtering, and further analysis 

of those samples by Rozgonyi and Hensler,
136, 137

 both RF and DC reactive sputtering 

were studied by Duchene et al.
138

  Similar results were obtained in both cases, but since 

RF sputtering was more suitable for depositing insulating oxides and had the above 

mentioned advantages over DC sputtering, it became the preferred method for VO2 

deposition. To standardize the fabrication of VO2 thin films by sputter deposition, 

numerous studies have detailed the influence of sputter deposition parameters, like 

temperature, oxygen partial pressure, plasma emission ratio of oxygen and vanadium, etc. 

on the structure, optical and electrical properties of the deposited VO2. Worth mentioning 

amongst these are the works of Chain, Jin et al, Razavi et al, and others. 
139-151

 Guinneton 

et al also deposited nanocrystalline VO2 using RF sputtering.
152, 153
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Inductively-coupled plasma-assisted (ICP) sputtering was reported by Okimura et al in 

2005 
154, 155

 to have produced single phase crystalline VO2 without any residual V2O5 or 

V3O7. Annealing effects on VO2 thin films deposited by reactive sputtering were also 

studied in detail by Fu et al.
156

 Novel methods of making better quality VO2 thin films by 

sputter deposition are still being tried by groups in recent publications, showing that this 

is still an active area of research, which promises an even better fabrication technique for 

VO2 thin films in the future.
157

 For example, Gurvitch et al
158

 indicated a precursor 

oxidation process, where sputter deposited precursor V films were oxidized in situ, in the 

deposition chamber itself to produce high quality VO2 thin films having switching 

characteristics close to bulk single crystals of VO2. VO2 films for self-lubricating 

applications were produced using reactive DC magnetron sputter-ion plating physical 

vapor deposition (MSIP-PVD) by Lugscheider et al in 2001.
159

 

1.3.5  Pulsed Laser Deposition 

Pulsed Laser Deposition (PLD), another physical vapor deposition technique, is a 

comparatively recent inclusion in the world of thin film depositions, and is especially 

suited for oxide growth. In PLD a high power pulsed laser beam is focused on a target of 

the desired composition inside a vacuum chamber. Material vaporized from the target is 

deposited as a thin film on a substrate, for example Si wafer, facing the target. This 

process can occur in ultra high vacuum or in the presence of a background gas, such as 

oxygen which is commonly used when depositing oxides. In recent times it has probably 

become the most popular technique for VO2 thin film and nanoparticle fabrication, 

especially for prototyping.  Figure 1.13 shows the schematic of a typical PLD 

configuration. 

While the basic experimental configuration is simple compared to many other deposition 

techniques, the laser-target interaction phenomenology and film growth are quite 

complex. When the laser pulse is absorbed by the target, energy is first converted to 

electronic excitation and then into thermal, chemical and mechanical energy, resulting in 

evaporation, ablation, plasma formation and even exfoliation. The ejected species expand 

into the surrounding vacuum in the form of a plume containing many energetic species 
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including atoms, molecules, electrons, ions, clusters, particulates and molten globules, 

before depositing on the substrate.
160, 161

 

 

 

Figure 1.11: A schematic for a typical experimental arrangement for the 

pulsed laser deposition technique 
 

Pulsed laser ablation as a deposition technique was realized in the late 1980s, and it was 

first used for VO2 deposition by Singh et al in 1993.
162

 They used a KrF pulsed excimer 

laser (248 nm) to ablate a metallic vanadium target in ultrahigh vacuum deposition 

chamber with Ar and O2 (10:1) atmosphere of 100-200 mTorr, and a substrate 

temperature of about ~500
o
C. The partial oxygen pressure was found to be critical in 

preparation of the pure VO2 phase, for as many as thirteen different phases ranging from 

V4O toV2O5 could exist in the system. The as-deposited samples were annealed for about 

an hour at the same temperature and pressure to obtain the VO2 that switched.  Soon 

after, Kim and Kwok in 1994
163

 reported that they were successful in depositing high 

quality VO2 films on sapphire by PLD at high temperature without post-annealing. Maaza 

et al, in 1999
164

 was the first to claim room temperature growth of VO2 by PLD, and the 

as-deposited films showed rather sharp phase transitions at around 70
o
C, though it has not 

yet been reproduced by any other group.  PLD of VO2 thin films has been done on variety 

of substrates, including silicon, glass, sapphire, fused silica and quartz. 
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In 2004, Suh et al
165

 described the effect of nucleation and growth of VO2 nanoparticles 

and thin films on the SMT, where the films and nanoparticles were grown by PLD. They 

showed that the width and shape of the hysteresis cycle is determined by the competing 

effects of crystallinity and grain size.  Recently, in-situ studies of the initial growth phase 

of vanadium dioxide films using synchrotron-based X-ray diffraction were reported in 

detail by Pauli et al.
166

 They showed that films grown at room temperature are basically 

amorphous and only crystallize into the VO2 phase upon thermal annealing in a 

background of O2, with the nano-sized islands sometimes having a preferential 

orientation depending on the match with the substrate crystallography.  This leads us to 

the discussion of hetero-epitaxial growth of VO2 on substrates which have good lattice 

match with that of VO2 thin films.   

Studies and manipulations of properties of films of VO2 deposited by laser ablation is still 

an area of active research.
167, 168

  More of these efforts will be discussed in details in the 

Chapters 2 and 5.  

1.3.6  Physical Vapor Transport 

Very recently physical vapor transport process have been employed to make single-

crystalline VO2 nanowires or nanobeams and even microbeams, on which some very 

interesting physics observations have been made, for example the M2 phase stabilization, 

etc. as discussed in section 1.2.6.2.  In physical vapor transport, generally, bulk VO2 

powder is placed in a quartz boat in the center of a horizontal tube furnace, and 

temperature (T), pressure (P), evaporation time (t), and argon carrier gas flow rate (kflow) 

are controlled to obtain the desired product. The reaction product is collected on a 

substrate downstream from the starting material. Optimum reaction conditions resulting 

in growth of VO2 nanowires are achieved in the range T = 900-1100 °C, P = 12-13 Torr, t 

= 5 h, and kflow ~ 3 sccm. The reliable production of nanowires requires a careful choice 

of substrate surface.
84

 It was reported that the greatest nanowire density is achieved on a 

Si3N4 substrate whereas SiO2 substrates support very low densities of long wires. This 

process has been used and perfected by the Cobden, Wu and Tselev groups.
16, 86, 169
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Ordered arrays of VO2 nanoparticles were made with the help of FIB lithography and 

PLD, and their optical properties were studied by Lopez et al in 2004.
103

 These arrays 

presented novel size-dependences for transition temperatures and optical resonances,
103

 

which were attributed mainly to VO2 mesoscale optical properties. Figure 1.14 shows an 

array of VO2 nanoparticles deposited by PLD and patterned using conventional FIB 

lithography. Recently, rod-shaped microcrystals and hexagon-shaped nanocrystals of 

VO2 have been produced through one step hydrothermal synthesis.
170

 As a demonstration 

of their potential use, the researchers also demonstrated the VO2 nanocrystals to infiltrate 

opaline lattices of polystyrene beads to generate technologically popular inverse opals. 

Another high-yield two-step process, which yielded high-purity VO2 was also reported by 

Booth et al.
171

 

 

Figure 1.12: Section of a 100 m x 100 m array of VO2 nanoparticles 

made by focused ion-beam lithography followed by pulsed laser 

deposition.
103

 

 

1.4 EPITAXY 

Epitaxy of VO2 thin films forms the backbone of this dissertation. Hence we review a few 

salient features of epitaxy in this section. 
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1.4.1  Introduction to epitaxy 

The term epitaxy (Greek; epi ―above‖ and taxis ―in an ordered manner‖) describes an 

ordered crystalline growth on a single-crystalline substrate.  Epitaxial films may be 

grown from gaseous or liquid precursors. Because the substrate acts as a seed crystal, the 

deposited film takes on a lattice structure and orientation identical to those of the 

substrate. This is different from other thin-film deposition methods which deposit 

polycrystalline or amorphous films, even on single-crystal substrates. If a film is 

deposited on a substrate of the same composition, the process is called homoepitaxy; 

otherwise it is called heteroepitaxy. Homoepitaxy is used for growing a thin single-

crystalline film on top of the bulk substrate and also for fabricating layers with different 

doping levels. 

Heteroepitaxy is a kind of epitaxy performed with materials that are different from each 

other. In heteroepitaxy, a crystalline film grows on a crystalline substrate or film of 

another material. This technology is very important in thin-film materials science and 

semiconductor field because it is often applied to growing crystalline films of materials 

of which single crystals cannot be obtained and to fabricating integrated crystalline layers 

of different materials. Figure 1.15 demonstrates heteroepitaxy in film-substrate systems 

with different crystallographic symmetries. 

While homoepitaxy and homoepitaxial layers (appropriately doped) became the basis for 

present day microelectronics, the heteroepitaxy and heteroepitaxial structures, much more 

difficult to grow to high perfection, have created present-day semiconductor 

optoelectronics and opened the way to development for tomorrow‘s nanoscale 

electronics. 
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Figure 1.13: Examples of interfacial atomic arrangements in epitaxial 

film-substrate systems of different crystallographic symmetry. Black dots 

represent substrate atoms while empty circles stand for overgrowth 

atoms.
172

 

 

1.4.2  Classic mechanisms of epitaxy 

The discussion to follow is based on some of the discussions in the book on Epitaxy by 

M. A. Herman.
172

 Epitaxy occurs only when the film and substrate lattice planes have 

networks of identical or quasi-identical form and of closely similar spacings. 

Experimental data indicated that epitaxy occurs if the lattice misfit, defined as 

corresponding network spacings (lattice constants) in the substrate and the film 

respectively, is not larger than 15%.
173

 During epitaxy, for few monolayers of film 

deposited, the lattice periods of the film is changed to ensure complete matching at the 

interface (pseudomorphism). For thicker films the natural lattice periods are preserved in 

epitaxy (commensurateness) and the differences in the periods are compensated by the 

appearance of misfit dislocations. Either of these happens depending on the topography 

and the symmetry of the substrates and deposition parameters. 

The  growth  process  of thin  epitaxial films is essentially the  same  as that of bulk  

crystals,  except  for  the  influence  of the  substrate at  the  initial stages.  This  influence  

comes  from  the  misfit  and  thermal stress, from  the defects  appearing at  the  crystal-

film interface and  from  the  chemical  interactions between the  film and  the  substrate 

including segregation of the  substrate elements towards the film surface. Refer to figure 
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1.16 for a schematic representation of strained and relaxed heteroepitaxial growth on a 

chosen substrate. Five possible modes of crystal growth are commonly distinguished in 

epitaxy. These  are: the  Volmer-Weber mode (VW-mode),   the   Frank-van  der  Merwe  

mode   (FM-mode),  the   Stranski­ Krastanov mode  (SK-mode), the  columnar growth 

mode  (CG-mode), and the  step  flow mode  (SF-mode). The  mode  by which  the  

epitaxial film grows depends upon  the  lattice misfit  between  substrate and  film,  the  

supersaturation (the  flux)  of the  crystallizing phase,  the  growth  temperature and  the 

adhesion energy. 

 

 

Figure 1.14: Schematic illustrations of (a) strained and (b) relaxed 

epitaxial layers of a lattice mismatched heterostructure, as well as (c) 

strained and relaxed unit cells.
172
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The five most frequently occurring modes are illustrated schematically in figure 1.17. In 

the VW-mode, or island growth mode, small clusters are nucleated directly on the 

substrate surface and then grow into islands of the condensed phase.  This  happens 

when the  atoms, or molecules,  of the  deposit are  more  strongly bound to  each  other  

than to  the  substrate. This  mode  is displayed  by many  systems of metals growing  

on insulators, including many metals  on alkali  halides,  graphite and  other  layer  

compounds such  as mica. 

 

Figure 1.15: Schematic representation of five epitaxial growth modes 

most frequently occurring on flat surfaces of substrate crystals. (a) Layer-

by-layer or Franf-van der Merwe (FM-mode); (b) step-flow (SF-mode); 

(c) laper plus island or Stranski-Krastanov (SK-mode); (d) island or 

Volmer-Weber (VW-mode); (e) columnar growth mode (CG-mode) . 

represents the coverage in monolayers.
172

 
 

The FM-mode displays the opposite characteristics. Because  the  atoms are more 

strongly bound  to the substrate than  to each other, the first atoms to condense form  a 

complete monolayer on the surface, which  then becomes  covered with  a somewhat 

less tightly bound  second  layer.  Provided the  decrease in binding strength  is  

monotonic toward   the  value  for  a  bulk  crystal of  the deposit, the  layer  growth 

mode  is obtained. This  growth  mode  is observed in the  case of adsorbed gases,  

such  as several  rare  gases  on graphite and  on several  metals, in some  metal-metal 

systems, and  in semiconductor growth on semiconductors. 

The S K -mode, or layer plus island growth mode, is an "intermediate" case of the two 

growth modes discussed above. After forming the first monolayer, or a few 
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monolayers, subsequent layer growth becomes unfavorable and islands are formed on 

top of this intermediate layer. There  are several  possible  reasons  for this  mode to 

occur and  almost  any factor which  disturbs the  monotonic decrease in  binding 

energy  characteristic  for layer-by-layer growth   may  be  the  cause . It occurs  

especially in cases when  the  interface energy  is high  (allowing  for initial layer-by-

layer growth) and  the  strain energy  of the  film is also high (making reduction of the  

strain energy  by islanding favorable). In the InAs/GaAs material system the SK­ 

mode leads, for example, to formation of dot arrays on the substrate surface 

[GaAs(100)],  as an  energetically metastable system with a preferred island  size. 

The  fifth  growth   mode,  the  CG-mode, shows  some  similarities to  the SK  and  

VW  modes,  however,  it  is fundamentally  different because in both these modes, 

when the film thickens, the condensed phase islands characteristic to these modes 

tend to merge and to cover the whole substrate surface.  Although the  grown  film 

may  exhibit variations in its  thickness and have structural defects  at  the  interfaces 

where adjacent islands merge, it  forms  a connected structure  in which  the  density 

of the  film is a continuous function of the  position. In contrast, films grown by the 

CG-mode usually thicken without the merger of columns. As a  result, columns 

usually  remain separated  throughout the  growth   process  of the  film,  and  the 

films  grown  in  this  way  are  easily  fractured.   The  CG-mode occurs where  low  

atomic   mobility over  the  substrate  surface leads  to  the  formation  of  highly  

defective  atomic   columns of  the  deposited material on  the substrate. 

Three factors are important from the point of view of the mutual relation between the 

substrate and the heteroepilayer. Lattice constant matching, or mismatch,  is  the  first,   

crystallographic orientation of  the  substrate is  the second,  and surface  geometry,  or 

surface  reconstruction, is the  third. The crucial problems of heteroepitaxy are, 

however, related to lattice mismatch which is the major factor in determining the critical 

thickness of the epitaxial film that can be grown pseudomorphically, as will be discussed 

in the following section. 
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1.4.3 Critical thickness 

The following treatment is after that in the web-version of Sergey Smirnov‘s 

dissertation.
174

 The basic principle of strained-layer pseudomorphic epitaxy is that a 

certain amount of elastic strain can be accommodated by any material without generating 

dislocations or defects. It takes energy to accommodate an epitaxial layer of lattice-

mismatched material. The energy depends on both the thickness and the size of the lattice 

mismatch. It also requires energy to create a dislocation that will relieve the lattice 

mismatch strain. If the thickness of the epitaxial layer is kept small enough to maintain 

the elastic strain energy below the energy of dislocation formation, the strained-layer 

structure will be thermodynamically stable against dislocation formation. The unstrained 

state of the lattice-mismatched layer is energetically most favorable, but the strained 

structure is stable against transformation to the unstrained state by the energy barrier 

associated with the generation of enough dislocations to relieve the strain. 

A fundamental assumption underlying many of the critical thickness calculations is the a 

priori assumption that the equilibrium configuration of the strain induced dislocations is 

that of a regular, non-interacting, rectangular array. Critical layer thicknesses are then 

computed by requiring that the total strain energy per unit area εT be a minimum with 

respect to the in-plane strain e. 
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 evaluated at |e| = f, where f is the mismatch between the film and the substrate. Here εT is 

defined as a sum       
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of the homogeneous strain energy density εH : 
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and the areal energy density of the dislocation εD : 
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Here G is the shear modulus, h is the film thickness, El the energy per unit length of a 

given dislocation line, and p is the spacing between the dislocations in the assumed 

rectangular array. It should be noted that El is independent of the in-plane strain e in the 

film and in fact εD only depends on the strain in the film through of the strain-dependence 

of the effective interfacial width p. The spacing between dislocations in the array is given 

by 
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where b is the magnitude of Burgers vector. Equations (3)-(5) in conjuction with the 

mechanical equilibrium condition (1) yield the following equation for the critical 

thickness hc: 
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It is assumed that dislocation formation requires in a dislocation formation energy εD. As 

the thickness of a film approaches its critical value, some fraction of the homogeneous 

strain energy εH will be used to supply this dislocation formation energy. 

One of the main goals of current research in the field of highly strained 

heterostructures is to increase the transition thickness hc below which layer-by-layer 

growth can be maintained. A reasonable way to avoid  the  formation of 3D  islands   

is  to  use  kinetic   limitations  to  prevent the  substrate/epilayer system from  

reaching equilibrium. In  other  words,  the  mass  transport at  the  substrate surface,   

and  thus  the  surface  diffusion length should  be  reduced. Usually, the surface 

diffusion length is reduced by lowering the growth temperature. However, this in turn 

may have a deleterious effect on the device quality of the epitaxially grown 

material. Another approach, which seems to be very promising, is the use of 

surfactants that kinetically inhibits the formation of islands.  

Since we will be dealing with VO2 epitaxy in the next few chapters, we have calculated 

using equation (1.6), the critical thicknesses for pseudomorphic epitaxial VO2 films with 

lattice mismatches relevant to our chosen substrates. With the Burgers vector B chosen to 

be ~ 0.3 nm, of the same order as the lattice constant and  = 0.2, as assumed by Guiton 

et al, for a mismatch factor of f = 0.008, we get that hc = 11.5 nm. With increasing f, hc 

continuously decreases to atomic dimensions of 0.5 nm for f = 0.06. The range of 

mismatches investigated here pertains to those occurring in case of growth on TiO2 

planes where the mismatch is in the range of ~0.85% - 1% and in case of growth on 

various sapphire planes with lattice mismatches close to 5%.  
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1.5 CONTENTS OF THIS DISSERTATION 

This dissertation in the next few chapters will give an overview of studies in VO2 growth, 

physics behind the phase transition and an application. Chapter 2 will discuss the 

epitaxial VO2 film growth efforts on a six different substrates. Chapter 3 is a systematic 

study of the dependence of film morphology and phase transition behavior of films on 

different process parameters for example temperature and laser power. Chapter 4 will be 

a discussion of the physics of correlation between the structural and electronic transition 

of VO2. Chapter 5 is a transition showing how doping of VO2 films can not only help us 

with better applications of VO2 but also facilitate our understanding and control over the 

complex VO2 phase transition. Chapter 6 deals with an application of VO2 in the field of 

Si-nanophotonics to improve the state-of-the-art by using the metal-insulator transition in 

VO2. We will conclude with summary and future directions for VO2 studies in Chapter 7. 
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CHAPTER II 

EPITAXIAL VO2: FABRICATION AND CHARACTERIZATION 

 

ABSTRACT 

We start this chapter with recapitulation of the work that has been done previously in 

growing epitaxial thin films of VO2. Then we discuss in-detail the fabrication and 

characterization of epitaxial VO2 films on three different planes of sapphire and three 

planes of TiO2, that were grown using the pulsed laser deposition system at Vanderbilt. 

We discuss the effect of substrate-surface treatment on epitaxy and conclude with 

evidences of switching in ultrathin epitaxial films of VO2. 

 

2.1         EXISTING LITERATURE ON VO2 EPITAXY 

Fabrication of high-quality VO2 thin films is crucial for technologies that capitalize on 

the IMT. It is well known that film microstructure,
175

 the  film-substrate interface
176

 and 

localized strain
50, 133

 can all affect the hysteretic response of this first-order phase 

transition. Epitaxial films are generally expected to produce spatially homogeneous films 

with phase transition behavior close to that of bulk crystals, as the defined 

crystallographic growth direction(s) lead to more consistent and efficient performance in 

devices.    

The process of making high-quality, defect-free,  thin film samples of VO2 is complicated 

not only by the presence of oxygen defects, but also by the narrow temperature-pressure 

window in phase space for stoichiometric VO2, due to multiple valence states of 

vanadium. Note also that, when grown directly at high temperature or annealed after 

being grown at room temperature, the film crystallizes as stoichiometric, tetragonal VO2, 

and transitions to monoclinic form only during cooling, involving considerable stress-

driven rearrangement giving rise to a variety of defects and dislocations. 
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The substrate plays an important role in the quality of the epitaxial films and their 

microstructures, because of the existence of lattice mismatch – the differences from either 

lattice constant or angle of the lattice vectors between substrate and grown film.  Usually 

same crystallographic crystal is chosen as the substrate, as that reduces the angle 

mismatch to zero, thereby largely reducing the lattice misfit, which is then only 

determined by the difference in lattice constants. But in some cases, it is hard to choose a 

same crystallographic crystal for the substrate, as for the monoclinic VO2 crystal system. 

VO2 is monoclinic at room temperature, with lattice angles of  =  = 90
o
 and  = 122.6

o
, 

making it pseudohexagonal and rendering hexagonal sapphire a preferred substrate for 

epitaxial thin film growth. 

Sapphire, the single-crystal form of Al2O3 , especially the R-cut plane ( 0112 ) and the C-

cut plane (0001) of Al2O3, has been the preferred substrate for epitaxial growth of VO2 

due to its easy availability, stability at high temperatures, and less reactivity with the 

oxides. It was used in early days of VO2 deposition by CVD by MacChesne (1968),
106

 

and remained popular in the process of growing epitaxial VO2 by different sputtering 

methods,
177

 sol-gel methods,
118, 131

 PLD technique
175

 and others like Activated Reactive 

Evaporation (ARE).
92

 But, the very first researchers Koide and Takei (1967)
105

 to grow 

VO2 thin films, by means of CVD, reported the growth of epitaxial VO2 single crystal 

films on rutile crystals. Also, Rozgonyi and Hensler in 1968,
136

 reported the growth of 

textured VO2 films on sapphire, by reactive sputtering. 

Epitaxial films of VO2 on sapphire were deposited by reactive sputtering and 

characterized by Rogers et al
178

in 1991 followed by the work of Jin et al
142, 143

 on VO2 

and W-doped VO2 epitaxial films by magnetron sputtering. Singh et al in 1993
162

  first 

showed that strongly oriented and single-phase VO2 with (200) planes parallel to the R-

cut sapphire substrate can be grown using PLD. Their films exhibited a bulk-like 

transition width of 2K, and resistivity change of 3x10
4
. 

Zhang et al
113

 produced epitaxial VO2 films on sapphire in 1994 using MOCVD and 

studied the orientation relationships of substrate and film in detail.  Garry et al in 2004
179

 

attempted epitaxial growth of VO2 on both R- and C- sapphire planes , and found that 
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VO2 films on R-planes exhibit a sharper electrical transition at a lower temperature than 

those deposited on C-plane; optical transmission of those films also confirmed the 

electrical results. 

In the last few years, a lot of work has been devoted to understanding the structural 

properties of VO2 on Al2O3, and includes quite a few publications from the group of 

Z.P.Wu and H.Naramoto.
176, 180, 181

 Notably, in 2001, Muraoka et al
182

 reported epitaxial 

growth of VO2 on TiO2 (001) and (110) planes, where the lattice mismatch is ~0.85%, 

and showed that the transition temperature of the deposited epitaxial VO2 films had a 

strong dependence on the substrate orientation. Also, ultrathin films of VO2 grown 

epitaxially on TiO2 by PLD was reported by Nagashima et al in 2006,
183

 and effect of 

strain on switching properties was observed. Anisotropy of dielectric properties of VO2 

films on TiO2 (011) substrates was also studied by Lu et al.
184, 185

 

Recently the group of J. Narayan has pioneered the use of different kinds of buffer layers 

to grow epitaxial VO2 thin films.
186-188

 The buffer layers range from the typical Mott 

insulator NiO, tetragonal yttrium-stabilized zirconia to ZnO and antiferromagnetic Cr2O3. 

 

2.2    TOOLS USED FOR FABRICATION AND CHARACTERIZATION 

In this section, a brief discussion of the tools primarily used for the synthesis and 

characterization of epitaxial VO2 thin films will be provided. 

2.2.1  Pulsed Laser Deposition 

Pulsed laser deposition (PLD) is an application of laser ablation, the generic process of 

laser-induced material removal, to the growth of thin films from elemental or compound 

targets. A powerful laser beam impinges on the target material, undergoes absorption, 

and vaporizes a thin surface region. One of the most common PLD lasers, and the one 

used in this work, is the krypton fluoride (KrF) excimer (excited dimer) laser operating at 

an ultraviolet (UV) wavelength of  = 248 nm (5 eV). Short-wavelength photons are 

strongly absorbed by most materials and have sufficient energy to induce photochemical 

reactions and break molecular bonds. For an in-detail description and discussion of the 
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pulsed laser deposition technique, please consult the referenced Ph.D. dissertations.
64, 189

 

PLD is the primary fabrication technique for all our thin films that will be discussed in 

this dissertation. 

2.2.2  X-ray Diffraction 

XRD is a powerful non-destructive technique for the characterization of crystallinity of 

materials. It provides the information on the structure, phase, preferred crystal orientation 

(texture) and other structural parameters, such as average grain size, strain and crystal 

defects.  

When a monochromatic X-ray beam with wavelength λ, on the order of lattice spacing d, 

is projected onto a crystalline material at an angle θ, X-ray diffraction peaks are produced 

by constructive interference of monochromatic beam scattered from each set of lattice 

planes at specific angles. Constructive interference gives the diffraction peaks according 

to Bragg‘s law,  

                                                                                                                         (2.1) 

By varying the angle θ, the Bragg‘s law condition is satisfied by different d-spacings in 

polycrystalline materials. Plotting the angular position and intensities of the resultant 

diffracted peaks of radiation produces a pattern, characteristic of the material. The full 

width at half maximum (FWHM) of the peak, Δ (2θ) (in radians), is a measure of the 

grain size d in a polycrystalline film or the mosaic blocks in an epitaxial layer, as 

described by Scherrer‘s formula: 

                                                                
     

 (  )    
       (2.2) 

In case of epitaxial or strained films, the broadening of the peaks is not only a function of 

the size distribution of the grains, but also the residual strain in the films.  

Figure 2.1 shows the schematic representation of a standard Bragg-Brentano 

diffractometer, with the Cu K
α 

(λ= 0.15418 nm) source and a scintillation detector. In the 

most frequently used θ-2θ or -2 scan, for structural characterization, the detector 
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rotates twice as fast and in the same direction around the diffractometer axis as the 

sample. In θ-2θ scans, the reflections from the planes parallel to the substrate surface are 

detected helping to determine the orientation along the growth direction of a (epitaxial or 

polycrystalline) films with respect to the substrate.  

 

Figure 2.1:  Schematic Representation of Bragg-Brentano 

Diffractometer.
190

 
 

Reciprocal space mapping measurements are also performed with XRD for structural 

analysis. It is generally performed using an Eulerian cradle four-circle diffractometer, 

allowing access to a large volume of reciprocal space. A schematic of the four-circle 

geometry is shown in figure 2.2. The horizontal plane H is defined by the incident and 

diffracted beams;  is defined as the angle between the sample surface and plane H and 

=0 when they are parallel. We have performed x-ray reciprocal space maps of 

symmetric Bragg reflection measurements using fixed  and varying  about the 2 

value of a known peak.  
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Figure 2.2: Schematic of a four-circle X-ray diffractometer.
191

 
 

Preferred orientation is best described by means of a Pole Figure. A pole figure is a 

graphical representation of the orientation of objects in space. Pole figures in the form 

of stereographic projections are used to represent the orientation distribution of 

lattice planes in crystallography and texture analysis in materials science.  

If we consider a plane of the object, the orientation of the plane can be given by its 

normal line. The intersection of the normal line and the sphere is the pole. The orientation 

of the object is fully determined by the use of poles of two planes that are not parallel. A 

pole figure is a stereographic projection which shows the variation in pole density with 

pole orientation for a selected set of crystal planes. This method of describing texture was 

first used by the German metallurgist Wever in 1924.  

2.2.3  Atomic Force Microscopy 

In an atomic force microscope (AFM) an atomically sharp tip is scanned over a surface 

with feedback mechanisms that enable the piezo-electric scanners to maintain the tip at a 

constant force (to obtain height information), or height (to obtain force information) 

above the sample surface.
190, 192

 Tips are typically made from Si3N4
 
or Si, and extended 

down from the end of a cantilever. The nanoscope AFM head employs an optical 

detection system in which the tip is attached to the underside of a reflective cantilever. A 

diode laser is focused onto the back of a reflective cantilever. As the tip scans the surface 

of the sample, moving up and down with the contour of the surface, the laser beam is 
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deflected off the attached cantilever into a dual element photodiode.The photodetector 

measures the difference in light intensities between the upper and lower photodetectors, 

and then converts to voltage signal. Feedback from the photodiode difference signal, 

through software control from the computer, enables the tip to maintain either a constant 

force or constant height above the sample.  

In this work, the primary purpose of using AFM was to study the topography of the 

sample surfaces and quantitatively measure surface roughness (RMS or average surface 

roughness). Also, the AFM has scanners that are used to translate either the sample under 

the cantilever or the cantilever over the sample. By scanning in both directions, the local 

height of the sample is measured. Three dimensional topographical maps of the surface 

are then constructed by plotting the local sample height versus horizontal probe-tip 

position. Figure 2.3 shows a schematic of how an atomic force microscope functions. 

 

 

 

Figure 2.3: Schematic of an atomic force microscope.
190

 

 

 

2.2.4  Transmission Electron Microscopy 

The following discussion is adapted from the open source wikipedia article named 

Transmission Electron Microscopy
193

 and the book by Williams and Carter.
194
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Transmission electron microscopy (TEM) is a microscopy- technique in which a beam 

of electrons is transmitted through an ultra thin specimen, interacting with the specimen 

as it passes through. An image is formed from the interaction of the electrons transmitted 

through the specimen; the image is magnified and focused onto an imaging device, such 

as a fluorescent screen, on a layer of photographic film, or on the sensor of a CCD 

camera. 

TEMs are capable of imaging at a significantly higher resolution than visible light 

microscopes, owing to the small de Broglie wavelength of electrons. This is the biggest 

advantage of electron microscopes in general, allowing one to view finer details — even 

as small as a single column of atoms, which is four orders of magnitude smaller than the 

smallest resolvable object in a light microscope, making them indispensable in 

nanophysics and nanotechnology. The first TEM was built by Max Knoll and Ernst 

Ruska in 1931. 

Electrons are usually generated in an electron microscope by a process known 

as thermionic emission from a filament, usually tungsten, or alternatively by field-

electron emission. The electrons are then accelerated by an electric potential and focused 

by electrostatic and electromagnetic lenses onto the sample. The transmitted beam 

contains information about electron density, phase and periodicity and is used to form an 

image. Figure 2.4 is a schematic of the essential components of a transmission electron 

microscope. 

From the top down, the TEM consists of an emission source, which may be 

a tungsten filament, or a lanthanum hexaboride (LaB6) source.  By connecting this gun to 

a high voltage source (typically ~100-300 kV) the gun emits electrons either 

by thermionic or field-electron emission into the vacuum. Once extracted, the upper 

lenses of the TEM allow for the formation of the electron probe to the desired size and 

location for later interaction with the sample. 
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Figure 2.4: Schematic of a transmission electron microscope. 
193

 

 
 

Manipulation of the electron beam is performed using two physical effects. The use of 

magnetic fields allows for the formation of a magnetic lens of variable focusing power, 

the lens shape originating due to the distribution of magnetic flux. 

Additionally, electrostatic fields cause the electrons to be deflected through a constant 

angle. Coupling of two deflections in opposing directions with a small intermediate gap 

allows for the formation of a shift in the beam path, this being used in TEM for beam 

shifting, and is extremely important to STEM. The optical configuration of a TEM can be 

rapidly changed, unlike that for an optical microscope, as lenses in the beam path can be 

enabled, have their strength changed, or be disabled entirely simply by rapid electrical 

switching, the speed of which is limited by effects such as the magnetic hysteresis of the 

lenses. 
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Imaging methods in TEM utilize the information contained in the electron waves 

interacting during transmission through the sample to form an image. A set of projector 

lenses assist in the correct positioning of this electron wave distribution onto the viewing 

system. The observed intensity of the image, I, assuming sufficiently high quality of 

imaging device, can be approximated as proportional to the time-averaged amplitude of 

the electron wavefunctions, where the wave which form the exit-electron-beam is 

denoted by . 

                                                  ( )  
 

     
∫      

  

  
                                                 (2.3) 

Different imaging methods therefore attempt to modify the electron waves exiting the 

sample in a form that is useful to obtain information with regards to the sample, or beam 

itself. From the previous equation, it can be deduced that the observed image depends not 

only on the amplitude of the beam, but also on the phase of the electrons, although phase 

effects may often be ignored at lower magnifications.  

Higher resolution imaging requires thinner samples and higher energies of incident 

electrons. When the sample is thin enough it can safely be assumed, that it no longer 

absorbs electrons, via a Beer's law effect, instead the sample can be modeled as an object 

that does not change the amplitude of the incoming electron wavefunction, rather 

modifies the phase of the incoming wave; this model is known as a pure phase object. 

Thus for sufficiently thin specimens phase effects dominate the image, complicating 

analysis of the observed intensities. 

Contrast formation in the TEM depends greatly on the mode of operation. Complex 

imaging techniques, which utilise the unique ability to change lens strength or to 

deactivate a lens, allow for many operating modes. Aberration-corrected lenses in recent 

times have greatly enhanced the ability to resolve and obtain more useful information 

from TEM imaging. 

Bright field 

The most common mode of operation for a TEM is the bright-field imaging mode. In this 

mode the contrast formation, when considered classically, is formed directly by occlusion 
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and absorption of electrons in the sample. Thicker regions of the sample, or regions with 

higher atomic numbers appear dark, while regions with no sample in the beam path 

appear bright  – hence the term "bright field". The image is in effect assumed to be a 

simple two-dimensional projection of the sample down the optic axis, and to a first 

approximation may be modeled via Beer's law.  

Diffraction contrast and dark-field 

Samples can exhibit diffraction contrast, whereby the electron beam undergoes Bragg 

scattering, which in the case of a crystalline sample, disperses electrons into discrete 

locations in the back focal plane. By placement of apertures in the back focal plane, i.e. 

the objective aperture, the desired Bragg reflections can be selected (or excluded), thus 

only parts of the sample that are causing the electrons to scatter to the selected reflections 

will end up projected onto the imaging apparatus. If the reflections that are selected do 

not include the unscattered beam (which appear at the focal point of the lens), then the 

image will appear dark wherever no sample scattering to the selected peak is present. 

This is known as a dark-field image. 

TEMs are also equipped with specimen holders that allow the user to tilt the specimen 

through a range of angles in order to obtain specific diffraction conditions, and apertures 

placed above the specimen allow the user to select electrons necessary for the purpose. 

High-resolution TEM or Phase contrast microscopy 

Crystal structure can also be investigated by high resolution transmission electron 

microscopy (HRTEM), also known as phase contrast microscopy. Image formation is 

given by the complex modulus of the wave function of incoming electron beams. As 

such, the image is not only dependent on the number of electrons hitting the screen, but 

also on the phase of the waves, making direct interpretation of phase contrast images 

more complex. However this effect can be used to an advantage, as it can be manipulated 

to provide more information about the sample, such as by complex phase 

retrieval techniques. When passing through a sample of uniform thickness, differences in 

phase of an electron wave is caused by specimen interaction. This phase difference is 

converted to contrast for image formation by comparison with a reference wave. 
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Selected Area Diffraction 

By adjusting the magnetic lenses such that the back focal plane of the lens rather than the 

imaging plane is placed on the imaging screen a diffraction pattern can be generated. For 

crystalline samples, this produces an image that consists of a pattern of dots in the case of 

a single crystal, or a series of rings in case of a polycrystalline material. For the single 

crystal case the diffraction pattern is dependent upon the orientation of the specimen and 

the structure of the sample. This selected area electron diffraction (SAED) pattern 

provides information about the space group symmetries in the crystal and the crystal's 

orientation to the beam path. This is typically done without utilizing any information but 

the position at which the diffraction spots appear and the observed image symmetries. 

Z-contrast STEM 

Scanning Transmission Electron microscopy (STEM) is a type of aberration-corrected 

transmission electron microscopy (TEM) and is distinguished from conventional 

transmission electron microscopes by focusing the electron beam into a narrow spot 

which is scanned or rastered over the sample. 

The rastering of the beam across the sample makes these microscopes suitable for 

analysis techniques such as mapping by energy dispersive X-ray (EDX) spectroscopy, 

electron energy loss spectroscopy (EELS) and annular dark-field (ADF) imaging. These 

signals can be obtained simultaneously, allowing direct correlation of image and 

quantitative data. 

By using a STEM and a high-angle detector, it is possible to form atomic resolution 

images where the contrast is directly related to the atomic number (Z-contrast image). 

The directly interpretable Z-contrast image makes STEM imaging with a high-angle 

detector appealing. This is in contrast to the conventional high resolution electron 

microscopy technique, which uses phase-contrast, and therefore produces results which 

need interpretation by simulation. Figure 2.5 shows the basic differences between the 

operations of a TEM and an STEM. 
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Figure 2.5:  Comparison of  TEM and STEM imaging conditions.
194

  

Electron Energy Loss Spectroscopy (EELS) 

In electron energy loss spectroscopy (EELS) a material is exposed to a beam 

of electrons with a known, narrow range of kinetic energies. Some of the electrons 

undergo inelastic scattering, which means that they lose energy and have their paths 

slightly and randomly deflected. The amount of energy loss can be measured using 

an electron spectrometer and interpreted in terms of what caused the energy loss. Inelastic 

interactions include phonon excitations, inter- and intra- band 

transitions,  plasmon excitations, inner shell ionizations, and Čerenkov radiation. The 

inner-shell ionizations are particularly useful for detecting the elemental composition of a 
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material. Looking at a wide range of energy losses, one can determine the types of atoms, 

and the numbers of atoms of each type, interacting with the electron beam. The scattering 

angle (the deflection of the electron path) can also be measured, giving information about 

the dispersion relation of the material that caused the inelastic scattering. Figure 2.6 

shows typical EELS data on our epitaxially-grown VO2 films and compared to existing 

literature. 

 

Figure 2.6: VO2 EELS data obtained from our epitaxial films compared to 

existing literature. Courtesy: Felipe Rivera, Brigham Young University. 

 

2.2.5  Scanning Electron Microscopy 

The following discussion is along the lines of discussion found in MS thesis of Felipe 

Rivera.
195

 The Scanning Electron Microscope (SEM) is a tool that allows for the imaging 

of micro and nanoscale objects with the use of electron beam, just as in case of 

transmission electron microscopy. The creation, acceleration and focusing of the electron 

beam in the scanning electron microscope is usually achieved in a similar way as 

discussed above for TEM. The electron beam then passes through a set of scanning or 

deflector coils that cause the beam to raster so that it may scan the sample (hence the 

name Scanning Electron Microscope). The beam is then allowed to interact with the 

sample and an image is formed by the interactions that take place between the electron-

beam and the sample as the beam is scanned. 
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The interactions between the electrons and the sample allow for a rich amount of 

information that might be obtained in the SEM like in the case of TEM. Secondary 

electrons, backscattered electrons, characteristic X-rays, Auger electrons, and visible 

light are some of the results of the interaction during the scanning process. Depending on 

the detectors available, the SEM can be used to obtain a wealth of information regarding 

the specimen. Typically, the image is formed by using a secondary electron detector but 

more information can be extracted depending on the type of detector being used. 

Under a typical imaging mode (secondary electron detector), the surface of the specimen 

is imaged without any other data collected. Another useful aspect of the SEM under 

imaging mode is the ability to tilt the specimen. Imaging a surface where the electron 

beam is normal to the thin film is commonly called a ―plan-view.‖ Imaging where the 

sample is placed so that beam is parallel to the films is commonly referred to as a ―cross-

sectional view.‖ Tilts in the specimen anywhere between a plan and a cross-sectional 

view is referred to as tilted views
195

. For a thin film, imaging the surface at different 

angles can give information regarding the morphology of the thin film, as well as an 

estimate of the surface roughness. A tilted sample is required in order to obtain Electron 

Back-Scattered Diffraction (EBSD) patterns, and to perform Orientation Imaging 

Microscopy (OIM) analysis. 

Electron Back-Scattered Diffraction and Orientation Imaging Microscopy 

As the electron beam interacts with the sample, the electrons in the beam scatter in all 

directions (but mainly in the direction of the beam). If the sample is crystalline, then 

several of the scattered electrons inside the sample will find themselves in the Bragg 

condition. These electrons will scatter multiple times while remaining in the Bragg 

condition. This creates a ―channeling‖ effect that allows electrons to escape the sample 

creating observable contrast.  

These multiple scattering events (along with the radial symmetry rising from having 

electrons scattered in all directions) creates Kossel cones (see figure 2.7). Since most of 

the electrons that enter the sample scatter in the forward direction a tilted sample provides 
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the benefit of having a larger number of the scattered electrons close to the surface and 

able to exit the sample.
196

  

 

Figure 2.7: Kossel cone: Created by all electrons scattering under Bragg 

condition.
195

 

The intersection of the Kossel cone with the Ewald sphere creates the condition necessary 

to observe a set of Kikuchi lines. Figure 2.8 shows a diagram of the Kossel cones, the 

(hkl) plane they represent, and the observed Kikuchi lines. Since the Kikuchi lines are 

formed by the intersection of a plane with a cone, they are conic sections (in this case, 

hyperbolas). However, since the angle between the plane and the Kossel cone is small, 

the Kikuchi bands look like lines. 

 

 

Figure 2.8: Kikuchi lines: the intersections of the Kossel cones with the 

phosphor screen.
195
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A full Electron Back-Scattered Diffraction (EBSD) pattern is formed by all the Kikuchi 

lines that intersect the phosphor screen (see figure 2.9). A full Orientation Imaging 

Micrograph (OIM) can then be obtained. This is done by letting the software collect 

EBSD patterns while a scan of the surface is being performed. 

By this method, a map of the surface is created where individual grains are selected by 

sections of the scan having the same orientation. This method helps determine orientation 

of the grains in the surface, misorientations between grains, and grain sizes. The 

attainable resolution depends on factors such as the beam size, scan parameters, and 

quality of the sample.  

 

 

 

Figure 2.9: OIM: Kikuchi patterns are recorded and indexed 

simultaneously with the imaging scan.
195

 

 

Electron Back-Scattered Diffraction (EBSD) patterns may also be simulated as they 

depend on the structure of the material being observed. Since EBSD is a diffraction 

technique, it can be used to index different crystallographic structures. The software 
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available for OIM uses these calculated diffraction patterns to compare them with 

obtained EBSD patterns. Some of the characteristics that are used for indexing the 

patterns include the angle between bands, distance among zones, and number of zones 

seen in the pattern. As observed from various calculations and experiments,
195

 the change 

in symmetry of VO2 yields some missing bands, but otherwise, the monoclinic and rutile 

VO2 patterns are rather similar. 

 

2.3        EPITAXIAL VO2: GROWTH AND CHARACTERIZATION 
 

Efforts at epitaxy at Vanderbilt started with trying to grow films on different planes of 

sapphire, or single-crystalline Al2O3, the advantages of which as a substrate have been 

stated earlier in section 2.1. This comparatively cheaper substrate was used to standardize 

the recipe for epitaxial growth. On the other hand, the lattice mismatches of sapphire and 

VO2 are quite large. In spite of that, the fabrication and characterizations of epitaxial VO2 

films on sapphire helped our understanding about VO2 epitaxy immensely and hence we 

will report in detail these characterization efforts in section 2.3.1. We then also tried to 

grow epitaxial VO2 on different planes of single-crystalline rutile TiO2, which have 

smaller mismatches because the lattice matches very closely with the high-temperature 

rutile phase of VO2. In the section 2.3.2, we will describe the epitaxy on different planes 

of TiO2 and their characterizations using different microscopy and diffraction techniques 

and also optical characterizations. 

2.3.1  VO2  on  C-cut , A-cut and R-cut sapphire 

The lattice planes of the C-cut (    ), A-cut (   ̅ ) and R-cut (  ̅  ) sapphire have 

been illustrated on the left-hand figures in figure 2.10, superposed with the unit cells of 

the VO2 planes that epitaxially grow on top of them. The individual out-of-plane 

orientations of VO2 are also schematically represented in the right-hand figures.   
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Figure 2.10: From top to bottom, schematic of lattice planes of C-, A- and 

R- cut sapphire used as substrates (left)  and the corresponding planes of 

VO2 film (right) that grow on top. The purple spheres indicate Al, grey 

spheres indicate V and red spheres correspond to oxygen atoms. The blue 

dotted lines are the VO2 unit cells superposed on top of sapphire unit cells 

(black). Courtesy: Dr. Bin Wang, Vanderbilt University. 
 

Note that R-cut has the closest lattice match with the VO2 plane that orients itself on it 

whereas the match is worst in case of film on a-cut sapphire. 

The following cleaning and deposition steps were found to yield good-quality epitaxial 

VO2 on the chosen substrates: 

1) Clean substrate: Ultrasonication for 5 minutes in solvents (TCE, acetone, 

methanol/IPA, deionized water)  
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2) Deposit VO2 by PLD: V-metal target; 385 mJ pulses focused to ~0.3 cm
2
 on target 

surface; 5 cm target-to-substrate distance; 50 mtorr O2; substrate temperature : 500
o
C. 

When viewed in transmission against white light, a ―switchable" VO2 should appear dark 

golden-yellow to greyish-yellow, depending on thickness, roughness, etc. 

To test for good-quality VO2 material we performed the optical switching 

characterization in the vicinity of 340 K. The sharpness, contrast, and hysteresis of the IR 

transmission across the metal-insulator transition are directly related to the morphology 

and strain in the film. The transmission setup we used has the following components: (i) 

fiber-coupled light source, either an IR laser at  = 1330 nm or a white-light tungsten-

halogen lamp (a 3000K blackbody); (ii) mechanical chopper connected to a lock-in 

amplifier through a frequency generator; (iii) beamsplitter and CCD camera for visual 

inspection of the interrogated area via reflected and scattered light from the sample 

surface; (iv) one focusing and one collection low-magnification micro-objectives, with 

the sample in-between; (v) pinhole aperture (0.5 mm) for stray-light rejection; (vi) 

Thorlabs PDA10CS InGaAs IR detector with responsivity (amp/watt) greater than 10 % 

for  = 700-1800 nm; (vii) lock-in amplifier, with input signals from the chopper and the 

detector, and output of amplified and filtered DC signal proportional to the intensity of 

the transmitted light. The sample with the film to be interrogated is mounted on a copper 

sample holder with a center hole for transmission and heated and cooled by a Peltier 

thermoelectric element. The temperatures are measured by a precision thermocouple (K-

type calibrated from Omega Engineering, Inc.) in contact with the copper sample holder. 

 

2.3.1.1  Epitaxial VO2 on C-cut (0001) sapphire 

The films grown on C-plane of sapphire have been characterized by white-light 

transmission measurements, X-ray diffraction (-2 scans and reciprocal space mapping), 

SEM (regular, EBSD and OIM) and TEM (regular, HRTEM, SAED/FFT), AFM, etc.. 

We give a brief description and implication of each of them below. 
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Figure 2.11: SEMs on thin (left) and thick (right) films of VO2 on C-

sapphire 

Figure 2.11 shows the SEM of a thin (~35nm) and thick (~80nm) VO2 film grown on 

(0001) sapphire grown following the high-temperature recipe. In the thinner film the six-

fold symmetry of the film as it grows on sapphire is evident. Typical transmission 

hystereses obtained from these thin and thick epitaxial films on C-sapphire are shown in 

figure 2.12.  

 

Figure 2.12: White-light transmission hystereses on thin (left) and thick 

(right) epitaxial VO2 films on C-sapphire 
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The transition temperatures (Tc) and hystersis widths (H) for the thin and thick films 

were measured to be Tcthin = 69.5 C, Tcthick =  70 C and Hthin = 9 C, Hthick = 6 C. 

The out-of-plane and in-plane epitaxy of films grown on c-sapphire were determined 

using regular -2 scans (as shown in figure 2.13) from which it is evident that (010) 

VO2 grows out-of-plane on (0001) sapphire. The reciprocal space map (RSM) in figure 

2.14 shows the RSM as -2 rocking curves; these could equally well be plotted as kx vs 

ky plots. The intensities at specific positions on the RSM show that the film is epitaxial 

and specifies the in-plane epitaxial relationship between the film and the substrate where 

the center peak is the sapphire (116) peak and the triplet film peak corresponds to the 

(220) M1-VO2. Thus (220) of M1-VO2 aligns itself with (116) of sapphire. 

 

Figure 2.13:  -2 X-ray diffraction of a typical epitaxial VO2 film on C-

sapphire 
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Figure 2.14: XRD reciprocal space map of epitaxial VO2 film on C-

sapphire about (116) direction of Al2O3 

 

 

 

Figure 2.15: Atomic force microscopy image of epitaxial VO2 film on C-

sapphire 

Atomic force microscopy on these films (figure 2.15), over 2.5 m
2
 area show that a film 

of 80 nm nominal thickness has about 23.5 nm RMS roughness.  The autocovariance was 
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measured to be ~536 nm
2
, which gives a measure of the lateral correlation length or long-

range surface roughness parallel to the surface. 

 

Figure 2.16: (a) TEM and (b) HRTEM of the VO2-Al2O3 interface, and 

(c) energy dispersive spectroscopic scan taken across the interface 
 

Our high-temperature growth recipe results in films that follow the island-growth mode 

with the pyramids being evident in the AFM in figure 2.15 as well as TEM in figure 

2.16(a).  Figure 2.16(b) is a high-resolution TEM (HRTEM) image of the interface 

between C-cut sapphire and VO2 film on top of it. Evidently, this HRTEM and energy-

dispersive spectroscopic measurement (figure 2.16 (c)) reveals an interdiffusion or buffer 

layer near each grain where Al, V and O are all present in non-stoichiometric proportions.  
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This interdiffusion layer exhibits a lattice spacing of 2.24 Å, a value in between that of 

the C-plane of sapphire (2.16 Å) and the (020) plane of VO2 (2.42 Å). The Fast Fourier 

Transform (FFT) pattern (figure 2.17) taken across film-substrate interface show that the 

film is epitaxial, having definite in-plane orientation with respect to the substrate as the 

diffraction spots from the film, the interdiffusion layer (in HT-grown VO2 only), and 

substrate line up or almost overlap. 

 

Figure 2.17: Fast Fourier transform image acquired across the film-

substrate interface of epitaxial VO2 on C-sapphire 
 

Below is a Z-STEM picture of the interface of a VO2 film on C-sapphire (figure 2.18). 

Since the vanadium atoms have large atomic mass compared to that of oxygen only the V 

columns are visible in the VO2 film whereas both Al and O atoms are seen in the alumina 

substrate.  

An EELS spectrum (figure 2.19) taken across the film-substrate interface shows that near 

the interface a V2O3 signal is obtained rather than VO2, indicating that the VO2 bonds to 

the Al2O3 surface through a V2O3 layer. 
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Figure 2.18: Z-contrast Scanning Transmission Electron Microscopy 

image of the VO2-C-sapphire interface. Courtesy: Dr. Gerd Duscher, Oak 

Ridge National Laboratory. 

 

Figure 2.19: Electron energy loss spectra of the VO2-C-sapphire interface. 

Courtesy: Dr. Gerd Duscher, Oak Ridge National Laboratory. 
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The electron backscattered diffraction (EBSD) pattern shown in figure 2.20, shows that 

(0001) of sapphire and (010) of VO2 lines up exactly thus verifying the out-of-plane 

orientation of our films on C-sapphire. 

 

 

Figure 2.20: Indexed EBSD pattern showing the Kikuchi lines obtained 

on the substrate (left) and on the epitaxial VO2 film (right) growing on C-

sapphire. Courtesy: Felipe Rivera, Brigham Young University. 

 

Orientation imaging microscopy (OIM) was also performed on the VO2 films on c-

sapphire in their high-temperature tetragonal phase, and the figures below represent the 

pole figures obtained (figure 2.21). We already know that (010) plane of VO2 orients out-

of-plane on c-sapphire. From the pole figures we see that (001) of VO2 lies in the plane 

because its signature is observed only at a tilt angle of 90
o
 from the normal direction 

implying that it is completely in-plane. The (110) signatures appear at 45
o
 out-of-plane, 

consistent with the above results. For a schematic of the normal direction, transverse 

direction and reference direction refer back to figure 2.9. 
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Figure 2.21: Orientation Imaging microscopy pole figures of the C-

sapphire substrate (left) and the VO2 film(right) showing the epitaxial 

relationship between the film and the substrate.Courtesy: Felipe Rivera, 

Brigham Young University. 
 

2.3.1.2 Epitaxial VO2 on A-cut (  ̅  ) sapphire 
 

Following similar lines of characterization as for the epitaxial VO2 film on c-cut sapphire 

, now we report on the epitaxy on A-cut sapphire, that is, the (  ̅  ) plane of sapphire. In 

the following figure 2.22 we see the typical SEM of a thin and a thick film of VO2 on A-

sapphire. 

 

Figure 2.22: SEM of thin (left) and thick (right) epitaxial VO2 films on A-

sapphire 
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 Atomic force microscopy image on one such film (figure 2.23), over 2.5 m
2
 area show 

that a film of about 50 nm nominal thickness has about 12nm RMS roughness.  The 

autocovariance was measured to be ~514 nm
2
, giving a measure of the lateral correlation 

length or long-range surface roughness parallel to the surface. 

 

 

Figure 2.23: AFM image of a 35-40 nm thick epitaxial VO2 film on A-

sapphire 
 

Typical white light transmission hystereses on a thin (~40 nm) and a thick (~80 nm) film 

on A-sapphire are presented in figure 2.24. 
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Figure 2.24: Typical transmission hystereses of thin (left) and thick (right) 

epitaxial VO2 films on A-sapphire 
 

The transition temperatures (Tc) and hystersis widths (H) for the thin and thick films 

were measured to be Tcthin = 66.5 C, Tcthick =  70 C and Hthin = 9 C, Hthick = 8 C. 

The out-of-plane orientation of films on A-sapphire obtained using XRD is shown in 

figure 2.25. 

 

Figure 2.25: -2 XRD spectrum of a typical epitaxial VO2 film on A-

sapphire 
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OIM maps of VO2 on A-sapphire gives the complete orientation information of the films 

as is evident from figure 2.26. 

 

Figure 2.26: Orientation imaging microscopy images of VO2 film (left) 

and A-sapphire (right) completely specifying the orientation of the film on 

the substrate as shown in the schematic in the middle. Courtesy: Felipe 

Rivera, Brigham Young University. 
 

 

2.3.1.3  Epitaxial VO2 on R-cut (  ̅  ) sapphire 

For epitaxial VO2 films grown on R-sapphire, figure 2.27 represents the SEM 

morphologies of very thin films in early growth stages to thick continuous films. The 

AFM image of a typical film of intermediate thickness is shown in figure 2.28. Over 2.5 

m
2
 area, the film of about 80 nm nominal thickness has about 14.2 nm RMS roughness 

and an autocovariance of ~224 nm
2
; for the thinner ~40nm thick film , RMS roughness of 

7.5 nm and ~59 nm
2
 autocovariance were recorded. 
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Figure 2.27: SEM morphologies of epitaxial VO2 films on R-sapphire as 

thickness increase from left to right 

 

 

Figure 2.28: AFM image of the thinnest film on R-sapphire showing 

similar out-of-plane tendencies like films on C-sapphire in the early 

growth stages 
 

Typical transmission hystereses of a thin and a thick epitaxial film on R-sapphire are 

shown in figure 2.29. The kink observed in the cooling curve of the hystersis for the 

thinner film is consistently present in all such films prepared and is attributable to the 

presence of two distinct sizes of grains, transitioning at two different temperatures.
197
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Transition temperatures (Tc) and hystersis widths (H) for thin and thick films were 

measured to be Tcthin = 67 C, Tcthick = 60 C and Hthin = 19 C, Hthick = 2 C.  

 

Figure 2.29: Transmission hystereses of thin (left) and thick (right) 

epitaxial VO2 films on R-sapphire 
 

The out-of-plane orientation of a film on R-sapphire is the same as that on A-sapphire as 

seen in figure 2.30, where (200) is again the out-of-plane orientation the VO2 film as in 

the case of growth on A-sapphire. 

 

Figure 2.30: -2 XRD spectrum giving the out-of-plane orientation of an 

epitaxial VO2 film on R-sapphire 
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The TEMs below (figure 2.31) show the columnar growth of VO2 grains on R-sapphire 

and figure 2.32 shows a clean interface with no evidence of intermixing as in case of C-

sapphire. 

 

Figure 2.31:  TEMs of the VO2-R-sapphire interface showing rectangular 

columnar growth of the VO2 grains 

 

 

Figure 2.32: HRTEM of the VO2-R-sapphire interface showing a clean 

interface 
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Figure 2.33:  OIM pole figure of R-sapphire (left) and VO2 (right) 

growing on top of it indicating the epitaxial preference. Courtesy: Felipe 

Rivera, Brigham Young University. 
 

As is evident from the OIM pole figures in figure 2.33, the epitaxial orientation 

preference of the VO2 films on sapphire substrates is that -- (010) of VO2 always aligns 

with the (0001) direction of sapphire, be it out-of-plane like in case of C-sapphire or in-

plane like in case of A and R-sapphire. 

 

2.3.2  Epitaxy on different planes of TiO2 

Ti is a neighboring element of V in the periodic table. Its most stable oxide, rutile TiO2 

has a unit cell with lattice parameters closest to that of VO2 as well. We have grown VO2 

on these very low (<1%) mismatch substrates – the three different planes of TiO2 – (001), 

(110) and (100). Figure 2.34 shows the unit cell matching of the respective TiO2 substrate 

planes and the VO2 film planes that grow on top. 

Note that two unit cells of TiO2 (001) fit almost perfectly with the VO2 ( ̅  ) unit cell 

and four unit cells of TiO2 (110) fit almost exactly with VO2 (011) unit cell whereas even 

the match between TiO2 (100) and VO2 (010) though not perfect is pretty small to allow 

nice epitaxial growth. 

 

 



 

 74 

 

Figure 2.34: Schematic representation of the TiO2 substrate planes and the 

respective VO2 planes that grow on top of them. Courtesy: Dr. Bin Wang, 

Vanderbilt University 

 

 

2.3.2.1  Epitaxial VO2 on TiO2 (001) 

The probable interfacial bonding of VO2 on top of TiO2 (001) is schematically 

represented in figure 2.35. 
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Figure 2.35: Schematic of the idealized interface bonding for VO2 on top 

of TiO2 (001). Courtesy: Dr. Bin Wang, Vanderbilt University. 
 

Following the same lines as above the films on TiO2 have also been characterized using 

SEM, AFM, white light transmission measurements, XRD, OIM, etc. Figures 2.36-2.39 

give the morphology and hysteresis behavior of such films. 

 

 

Figure 2.36: SEM morphologies of thin (left) and thick (right) epitaxial 

VO2 films on TiO2 (001) 

 

The transition temperatures (Tc) and hystersis widths (H) for the thin and thick VO2 

films on TiO2 were measured to be Tcthin = 52.5 C, Tcthick =  58.5 C and Hthin = 6 C, 

Hthick = 3.5 C. 
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Figure 2.37: Transmission hystereses of thin (left) and thick (right) 

epitaxial VO2 films on TiO2 (001) 
 

 

 

Figure 2.38: AFM images of thin (left) and thick (right) epitaxial VO2 

films on TiO2 (001) 

 

Atomic force microscopy on these films (figure 2.38), over 2.5 m
2
 area show that a film 

of about 80 nm nominal thickness has about 16 nm RMS roughness and an 

autocovariance of about ~270 nm
2
 and a film of about ~200 nm thickness has ~39 nm 

RMS roughness and autocovariance of ~ 1258 nm
2
. 

 

To determine the epitaxial relationship between the film and the substrate, a regular -2 

XRD as in figure 2.39 was obtained. For in-plane epitaxial orientation information, figure 
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2.40 was obtained at a tilt angle of  = 42.5
o
 for (111) direction of TiO2 and close to it a 

(012) monoclinic peak is obtained which corresponds to the (111) plane of rutile VO2. 

This indicates that during growth the (111) direction of VO2 prefers to orient itself with 

the (111) direction of VO2. This trend was observed for growth on all the three planes of 

TiO2. 

 

Figure 2.39: -2 XRD on epitaxial VO2 on TiO2 showing a preferential 

orientation of ( ̅  ) of VO2 on TiO2 (001) 
 

 

Figure 2.40: XRD at   = 42.5
o
 for (111) plane of TiO2, with a VO2 (012) 

peak close to it showing the preferential orientation  
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The OIM pole figures (in figure 2.41) of the film (left) and substrate (right) shows the 

complete epitaxial relationship of an epitaxial VO2 film on TiO2. 

 

Figure 2.41: OIM pole figures of the film (left) and substrate (right) 

giving the complete orientation of the VO2 film on TiO2 (001), as shown 

in the middle. Courtesy: Felipe Rivera, Brigham Young University. 
 

2.3.2.2  Epitaxial VO2 on TiO2 (110) 
 

The match of the (011) VO2 that grows on top of (110) TiO2 has a near-perfect interface 

as seen in figure 2.42. 

 

Figure 2.42: Schematic of the idealized interface of (011) VO2 that grows 

on top of TiO2 (110). Courtesy: Dr. Bin Wang, Vanderbilt University. 
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Figures 2.43-2.46 show the surface morphology and hysteresis behavior of thin and thick 

epitaxial VO2 film on TiO2(110). 

 

Figure 2.43: SEM images of thin (left) and thick (right) epitaxial VO2 

films growing on TiO2(110) 

 

Figure 2.44: Transmission hystereses of thin (left) and thick (right) 

epitaxial VO2 films growing on TiO2(110) 
 

The transition temperatures (Tc) and hystersis widths (H) for the thin and thick films 

were measured to be Tcthin = 69.5 C, Tcthick =  68.5 C and Hthin = 5 C, Hthick = 6 C. 
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Figure 2.45: AFM image of a thin epitaxial film of VO2 on TiO2(110) 
 

 

Figure 2.46: A two-dimensional AFM image on the same film as in figure 

2.46 showing the roughness of these films to be about ~2.5 nm 

A thin film of ~ 40 nm nominal thickness has an RMS roughness of ~ 1.4 nm with an 

autocovariance of ~ 5 nm
2
 whereas a thicker film close to ~ 80 nm thickness has 
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roughness of 2.6 nm RMS roughness with autocovariance of 17.4 nm
2
, as shown in figure 

2.46. 

Regular -2 XRD scan showing that the (011) M1-VO2 grows out-of-plane on 

TiO2(110) is shown in figure 2.47. 

 

Figure 2.47: -2 XRD of VO2 on TiO2 (110) showing that the (011) 

plane of VO2 grows out-of-plane 

 

Tilting by  = 47.5
o 

 to find the (111) peak of TiO2, we also find the  (012) peak of M1-

VO2 which corresponds to the (111) of rutile-VO2, hence again showing the in case of 

TiO2 the epitaxial growth prefers alignment along the (111) direction (see figure 2.48).  
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Figure 2.48: XRD at  = 47.5
o
 for (111) plane of TiO2, with a VO2 (012) 

peak close to it showing the preferential orientation  
 

A partial -scan of 180 degrees was performed about the (012) M1-peak and only a 

single peak was found indicating that it has a two-fold symmetry along this direction 

(figure 2.49). 

 

Figure 2.49: XRD - 180 degree -scan about the (012) M1 peak of VO2 

showing that only one (012) is present reflecting the two-fold symmetry of 

the monoclinic geometry 
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2.3.2.3  Epitaxial VO2 on TiO2(100) 

VO2 on TiO2 (100) was found to grow with the (010) out-of-plane direction. Taking that 

into account here is a schematic of the interface between VO2 on TiO2 (100) (figure 

2.50). 

 

Figure 2.50: Schematic representation of the idealized interface between 

VO2 (010) and TiO2 (100). Courtesy: Dr. Bin Wang, Vanderbilt University 
 

Figures 2.51-2.53 show the morphologies and hysteretic behavior of the epitaxial VO2 

film on TiO2 (100). 

 

Figure 2.51: SEM morphology of a thin epitaxial VO2 in its early growth 

phase on TiO2 (100) 
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Figure 2.52: Typical transmission hysteresis of a thin epitaxial VO2 film 

on TiO2 (100) 

The transition temperature (Tc) and hystersis width (H) for the typical epitaxial film was 

measured to be Tc = 67.5 C, and H = 7 C. 

 

 

Figure 2.53: AFM image of a thin epitaxial VO2 film in its early growth 

phase on TiO2 (100) 
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AFM image on one such film (figure 2.53), over 2.5 m
2
 area show that a film of about 

80 nm nominal thickness has about 12.5 nm RMS roughness and an autocovariance of 

about ~232 nm
2
. 

 A typical -2 scan reveals the out-of-plane growth direction of VO2 on TiO2(100), as 

shown in figure 2.54. The (010) VO2 grows out-of-plane as indicated in the figure 2.54. 

 

 

Figure 2.54: -2 XRD scan of epitaxial VO2 on TiO2 (100) indicating 

(010) of VO2 grows out-of-plane 

 

2.3.3  Effect of oxygen plasma cleaning of substrates on epitaxy 
 

There is an observable difference in morphologies of films grown epitaxially on 

substrates that are oxygen-plasma cleaned prior to deposition compared to the ones which 

are not as shown in figures 2.55 -2.61 for various substrates. An oxygen plasma cleaning 

consists of exposing the organically cleaned substrates to an oxygen plasma for 30 

minutes just before deposition.  
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Figure 2.55: SEM morphologies of films grown on pristine (left) and 

oxygen-plasma-treated (right) C-sapphire substrates of almost similar 

thicknesses 

 

 

Figure 2.56: Transmission hystereses of films grown on pristine (left) and 

oxygen-plasma-treated (right) C-sapphire substrates of almost similar 

thicknesses 
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Figure 2.57: SEM images of films grown on pristine (left) and oxygen-

plasma-treated (right) R-sapphire substrates of almost similar thicknesses 

 

 

 

Figure 2.58: Transmission hystereses of films grown on pristine (left) and 

oxygen-plasma-treated (right) R-sapphire substrates of almost similar 

thicknesses 
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Figure 2.59: SEM morphologies of films grown on pristine (left) and 

oxygen-plasma-treated (right) TiO2(001) substrates of almost similar 

thicknesses 

 

 

Figure 2.60: Transmission hystereses of films grown on pristine (left) and 

oxygen-plasma-treated (right) TiO2 (001) substrates of almost similar 

thicknesses 
 

We note here that when exposed to atmosphere, even Al or Ti terminated planes of 

substrates satisfy most of their dangling bonds with ambient oxygen, but cleaning with 

oxygen plasma ensures the oxygen termination of all exposed bonds. Probably this 

promotes more directional and sharply-defined faceted growth and hence the observed 

differences in morphologies. 
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2.3.4  Switching of ultrathin epitaxial films 

As has been observed in literature several times, VO2 films thinner than 20 nm are not 

known to switch, but here we have observed switching in ultrathin films (5 and 10 nm 

nominal thicknesses) of epitaxial VO2 on c-sapphire and TiO2 (001), as shown in figures 

2.61-2.66. 

 

 

Figure 2.61: SEM image and transmission hysteresis of a 10 nm epitaxial 

VO2 film on C-sapphire 

 

 

Figure 2.62: SEM image and transmission hysteresis of a 5 nm epitaxial 

VO2 film on C-sapphire 
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Figure 2.63: AFM image of a 5 nm epitaxial VO2 film on C-sapphire 

 

 

 

Figure 2.64: SEM image and transmission hysteresis of a 10 nm epitaxial 

VO2 film on TiO2 (001) 
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Figure 2.65: SEM image and transmission hysteresis of a 5 nm epitaxial 

VO2 film on TiO2 (001) 

 

 

 

Figure 2.66: AFM image of a 5 nm epitaxial VO2 film on TiO2 (001) 
 

We note here that even though the equivalent mass thicknesses are 5 nm and 10 nm, the 

actual thicknesses of the isolated grains are quite a bit larger, for example ~50 nm thick, 

and hence we have a sparse collection of isolated, switchable VO2 grains giving us the 

transmission hysterses observed. Also, note here that these are directly grown at high-

temperatures and not deposited and annealed in two steps, in the latter case it becomes a 

lot harder to anneal very low volumes of deposited amorphous film. 
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CHAPTER III 

EFFECT OF DEPOSITION PARAMETERS ON EPITAXY 

 

ABSTRACT 

Vanadium dioxide (VO2) in bulk, thin film and nanostructured forms exhibits an 

insulator-to-metal transition accompanied by structural reorganization, induced by 

temperature, light, electric fields, doping or strain. We have grown epitaxial films of VO2 

on c-plane (0001) of sapphire using two different procedures involving (1) room-

temperature growth followed by annealing and (2) direct high-temperature growth. Strain 

at film-substrate interface due to growth at different temperatures leads to interesting 

differences in morphologies and transition characteristics. Observations indicate that 

contrary to conventional wisdom, the room-temperature grown films have smoother 

morphologies and better switching performances, consistent with the observed behavior 

of epitaxially-grown conventional semiconductors. We observe similar effects in 

epitaxial films on other substrates as well. We have also discussed the effect of laser 

parameters on epitaxy in the last section. 

 

3.1       EFFECT OF SUBSTRATE TEMPERATURE  DURING  DEPOSITION  

3.1.1  On epitaxially-grown VO2 on C-cut sapphire 

Fabrication of high-quality thin films is crucial for technologies that capitalize on the 

IMT. It is well known that film microstructure,
175

 the  film-substrate interface
176

 and 

localized strain
50

 can all affect the hysteretic response of this first-order phase transition. 

Moreover, the process of making high-quality, defect-free,  thin film samples of VO2 is 

complicated not only by the presence of oxygen defects, but also by the narrow 

temperature-pressure window in phase space for stoichiometric VO2, due to multiple 

valence states of vanadium. Epitaxial films are generally expected to produce spatially 

homogeneous films with phase transition behavior close to that of bulk crystals, as the 

defined crystallographic growth direction(s) lead to more consistent and efficient 
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performance in devices.  Epitaxial films are conventionally grown at higher temperatures, 

to facilitate better surface kinetics during growth process. In this letter, by following the 

very early stages of thin film growth, and comparing morphologies and switching 

response of epitaxial VO2 films synthesized at two different temperatures, we observe 

that the lower-temperature process produces thin films of superior quality.   

Here we will first discuss growth of epitaxial VO2 on C-cut sapphire. Refer to figure 3.1 

for the schematic of the probable interfacial atomic arrangement of VO2 on Al2O3. 

Evidently the unit cell of VO2 along (010) direction is pretty large compared to that of 

VO2 and thus should lead to a huge compressive strain in case of pseudomorphic 

epitaxial growth. In fact, this clearly indicates why the critical thickness of VO2 film on 

sapphire is extremely small and hence instead of a single crystal growth, we obtain many 

single crystals disjoint from one another but oriented along the same direction. 

 

Figure 3.1: Schematic of a probable interface between VO2 (010) and 

(0001) plane of sapphire.  The V atoms are in green, Al atoms in pink, O 

atoms from sapphire in light blue and O atoms from VO2 in dark blue. The 

lower left V atom has been placed at the strained position and the upper 

left one shows the distortion that has to occur in the lattice for the V atom 

to be in the right interfacial bonding conditions. Courtesy: Dr. Bin Wang, 

Vanderbilt University. 
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We fabricated, epitaxial VO2 films of 80 nm nominal thicknesses on c-cut sapphire using 

two different processes: (1) RT-growth process: 99.99% pure vanadium metal target was 

pulsed laser ablated at room temperature in a background of 10 mTorr of oxygen, with a 

target-substrate distance of 8 cm, to produce an amorphous, oxygen-deficient film of 

VO1.7. Subsequent annealing of this sub-stoichiometric film in 250 mTorr of oxygen at 

450
o
C for 45 minutes yielded stoichiometric, crystalline VO2. (2) HT-growth process: 

Similar pulsed laser deposition at high temperature (~500
o
C), with a background gas 

pressure of 50 mTorr oxygen and a target-substrate distance of 5 cm.  

The stoichiometry and crystallinity of the films were determined by Rutherford back 

scattering (RBS) and powder X-ray diffraction (XRD). XRDs of both the films show 

(010) out-of-plane orientation on C-plane of sapphire [a typical XRD is shown in figure 

2.13]. The epitaxial character of the films was confirmed by reciprocal space mapping 

using a PANalytical X‘pert Pro MRD and images acquired in the HF 3300 transmission 

electron microscope (TEM).  The metal-insulator transition in both RT and HT VO2 thin 

films was observed by measuring the infrared transmission using a mechanically chopped 

white light source (3000 K blackbody) and an InGaAs detector; the chopped signal 

(frequency 190 Hz) was fed as the reference to a lock-in amplifier that recorded the 

signal from the detector. The films were heated and cooled during optical 

characterization by a Peltier thermoelectric element. The temperature was measured with 

a precision thermocouple in thermal contact with the VO2 surface.  

The TEMs in figures 3.2(a) and (b) show the smoother morphology of the RT-grown film 

compared to the HT-grown film. 
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Figure 3.2: TEMs of (a) RT-grown and (b) HT-grown films. High 

resolution TEMs of the film-substrate interface for (c) RT-grown film and 

(d) HT-grown film. SAED patterns along film-substrate interface (e) along 

<100> zone axis of RT-grown film and (f) along <010> zone axis on HT-

grown film, showing that the film diffraction pattern follows the substrate 

lattice diffraction pattern very closely 

 

Atomic force microscopy on these films [figure 3.3], over 2.5 m
2
 area show that the 

roughness of the RT-grown films is about 4.5 nm, compared to about 23.5 nm roughness 

for HT grown films, for nominal film thicknesses of 80nm.  The autocovariance for HT 
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grown films was measured to be ~536 nm
2
, whereas for RT-grown films it was 29 nm

2
, 

this gives a measure of the lateral correlation length or long-range roughness parallel to 

the surface. This is also evident from fig.3.2(b) for HT films showing non-contiguous, 

single-crystalline pyramidal nanoparticles, separated by wide, deep valleys in contrast to 

the continuous RT-grown film [figure 3.2(a)].   

 

Figure 3.3: AFM images of the HT-grown (left) and RT-grown films 

(right) on C-sapphire 
 

Figures 3.2 (c) and (d) are high-resolution TEM of grains and grain boundaries in RT-

grown and HT-grown films respectively. For RT-grown films, neighboring grains form a 

clean interface with the substrate. In the HT-grown films, on the other hand, as discussed 

previously, the HRTEM and energy-dispersive spectroscopic measurement reveals an 

interdiffusion or buffer layer near each grain where Al, V and O are all present in non-

stoichiometric proportions.  This interdiffusion layer exhibits a lattice spacing of 2.24 Å, 
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a value in between that of the c-plane of sapphire (2.16 Å) and the (020) plane of VO2 

(2.42 Å). The selected area electron diffraction patterns taken across film-substrate 

interfaces in figures 3.2(e) and (f) show that both RT-grown and HT-grown films are 

epitaxial, having definite in-plane orientation with respect to the substrate as the 

diffraction spots from the film, the interdiffusion layer (in HT-grown VO2 only), and 

substrate line up or almost overlap. 

Figure 3.4 shows the STEM bright field images of RT and HT grown film-substrate 

interfaces. It is clearly evident that the RT grown films exhibit a columnar growth 

whereas the HT grown films follow an island-like growth mode making them more rough 

compared to their RT grown counterparts. 

 

 

 

Figure 3.4: Bright field STEM images of RT-grown (left) and HT-grown 

(right) films 
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Figure 3.5: XRD RSM and PHI scans on RT and HT-grown films. (a) 

Line diagram demonstrating slight orientational difference between (220) 

and (022) of VO2 with respect to (116) direction of sapphire. Reciprocal 

space maps on (b) RT grown and (c) HT grown sample about the (116) 

axis of sapphire, indicating the in-plane orientations with respect to the 

substrate. scans about (022) peak of VO2 [and (220) peak in the inset] 

for (e) RT-grown and (f) HT-grown films confirming the slight differences 

in orientation of the two films. 
 

Monoclinic VO2 is pseudohexagonal, the angle between the (220) and (022) planes of 

VO2 being approximately 58.5˚ instead of 60˚ as in the perfect hexagonal lattice of Al2O3 

[figure 3.5(a)]. To investigate the in-plane epitaxy of these two films, reciprocal space 

maps (RSMs) and scans were measured. Figures 3.5(b) and (c) show the RSMs as -

2 rocking curves; these could equally well be plotted as kx vs ky plots.  The scans — 

rotations about the axis normal to the sample surface, keeping the 2 and tilt angle of the 

sample fixed for a certain set of diffraction planes — are shown in figures 3.5(d) and 

(e)] for the RT-grown and HT-grown films respectively.   

For the RT-grown sample, the scan about the (022) peak [figure 3.5(d)] shows that the 

(022) peak is aligned with the (1106) peak of sapphire and a pair of (220) peaks [figure 

3.5(d) inset] are generated on either side of it by twinning. This is confirmed by the RSM 
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[figure 3.5(b)] where the two (220) peaks are observed at 1.5 degrees from each other as 

expected for the 58.5
o
 angle between the (022) and (220) planes. 

For the HT-grown sample, the (022) peak is not aligned with the (1106) of sapphire but is 

rather at a ~2
o
 offset on either side of (1106) sapphire [figure 3.5(e)]. These (022) peaks 

in turn give rise to a pair of (220) peaks on either side and hence causes the triplets to 

appear in (220) scans [figure 5(e) inset] with the central peak twice as intense as the 

satellites. This is confirmed by the appearance of three (220) peaks in the RSM as well 

[figure 3.5(c)] with the most-intense central peak having satellite peaks at 3
o
 on either 

side accounting for the 1.5
o
 twinning on either side of the (022) planes.  

This difference in alignment and morphology is observed in several films, making it 

likely that growth parameters, in particular, growth temperature, rather than some other 

parameter such as substrate miscut, controls the epitaxial alignment. Note also that, when 

grown directly at high temperature, the film grows as stoichiometric, tetragonal VO2, and 

transitions to monoclinic form only during cooling, involving considerable stress-driven 

rearrangement, whereas during room temperature growth, it first grows as a smooth film 

subsequently crystallizing to stoichiometric VO2 during anneal.  

 

Figure 3.6: White light transmission hystereses for RT-grown (red) and 

HT-grown (black) epitaxial VO2  films 



 

 100 

 

These differences in morphologies, residual strains and orientation of the films lead to the 

distinctive IMT characteristics seen in the transmission curves in figure 3.6. As is evident 

from the figure, the RT-grown films in general have a lower critical temperature and 

higher contrast than the HT-grown films. The asymmetry in hysteresis evident in the HT-

grown film can be attributed to the stress in the film.
197

 The hysteresis features of these 

films are compared in Table 1.
175

The comparison is done on the basis of ten films of both 

kinds varying from thicknesses 50 – 100 nm for RT grown films and 40 – 100 nm for HT 

grown films. With increasing thickness, the trend observed in both kinds of films is that 

the critical temperature (Tc) and hysteresis width (H) decreases and slope of transition 

(T) and transition amplitude (A) increases, as expected. 

Table 3.1: Comparison of transition characteristics, viz., critical 

temperature (Tc), hysteresis width (H), slope of transition (T) and 

transition amplitude (A) for RT and HT grown films. 

 

Hysteresis parameters RT-grown film HT-grown film 

Tc (64.9 1.46)
o
C (67.8 2.0)

o
C 

H (2.4 1.2) 
o
C (9.8 2.3)

 o
C 

T (0.045 0.005)/
o
C (0.018 0.003) /

o
C 

A 0.53 0.05 0.29 0.06 

Theorists have only recently begun to study the effects of strain on the phase-transition 

characteristics of VO2.
9
 However, earlier Tersoff et al had observed that strained epitaxial 

layers can relax by two competing mechanisms depending on substrate mismatch and 

film-growth temperature.
198

 Thermally-activated strain-induced surface modulation, 

generically known as ―roughening,‖ has an activation barrier  that scales with misfit as 


-4

.  Hence for large misfits, roughening, in form of sharp grooves or pits, allows for 

easier nucleation of dislocations than by the modified Frank-Read mechanism in which 

nucleation occurs at defects, by ―multiplication‖ of preexisting smaller misfit 

dislocations.  
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Figure 3.7: HRTEM of a pyramidal pit formed in a thick epitaxial HT-

grown VO2 film on C-sapphire 
 

Nucleation of dislocations via surface roughening, kinetically favored at large misfits, 

was demonstrated both theoretically and experimentally in the growth of SiGe on Si and 

InGaAs on GaAs. Calculations showed that the appearance of islands or pits had a nearly 

equivalent cost in energy, with pit formation being favored when higher-order terms were 

taken into account. But if nucleation occurs before the film is thick enough to support 

pits, islands form instead. For thick epitaxial films we have observed with HRTEM and 

energy dispersive spectroscopy, the formation of triangular-shaped pits as well, as shown 

in figure 3.7. But the formation of islands at the early stages seems more common in case 

of HT growth. In SiGe films with large substrate mismatches, the film roughens before 

reaching equilibrium critical thickness required to nucleate dislocations. Even after the 

film grows thicker and dislocations form, the roughness remains evident. We observe the 
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exact analog of this in case of HT-grown VO2 on C-cut sapphire substrates, where sharp, 

faceted islands grow because of thermal activation and a large misfit with the substrate.  

Surface roughness is undesirable especially in electronic or optical applications; hence 

this comparison of HT- and RT-growth leads to the conclusion that the latter is the 

preferred growth condition for epitaxial films of VO2 on C-cut sapphire.  Not only does 

RT growth involves fewer complications in achieving perfect stoichiometry, the RT 

grown films on C-cut sapphire are epitaxial, continuous and smoother than the HT grown 

films, switching at lower temperatures. Hence, the RT grown epitaxial films may well be 

the more suitable ones for applications given their smooth morphology, higher optical 

contrast and and lower transition temperatures.  

3.1.2  On other substrates – A-, R- sapphire, TiO2 (001) and TiO2 (110) 

In this section we will illustrate some similar effects observed in epitaxial films on the 

other substrates for example, A-sapphire, R-sapphire, TiO2 (001) and TiO2 (110). Most of 

the hystereses are plotted for films with similar thicknesses. 

 

 

Figure 3.8: SEM morphologies for HT-grown (left) and RT-grown (right) 

films of similar thicknesses on A-sapphire 
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Figure 3.9: Transmission hystereses for HT-grown (left) and RT-grown 

(right) films of similar thicknesses on A-sapphire 

 

 

 

Figure 3.10: SEM morphologies for HT-grown (left) and RT-grown 

(right) films of similar thicknesses on R-sapphire 
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Figure 3.11: Transmission hysterses for HT-grown (left) and RT-grown 

(right) films of similar thicknesses on R-sapphire 
 

Note here that the kink present in the cooling side of the curve for HT-grown film is not 

observed in case of the RT-grown sample. In case of HT-growth, possibly during the 

deposition process itself, two very different-sized island grains nucleate and form. In case 

of RT-growth, a smooth amorphous film grows first and later during annealing, 

crystallizes in conformity with the substrate template but the kinetics of crystal formation 

is different and does not result in the same kind of island growth as in case of HT 

process. 
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Figure 3.12: SEM morphologies or HT-grown (left) and RT-grown (right) 

films of similar thicknesses on TiO2 (001) 
 

 

Figure 3.13: Transmission hystereses for HT-grown (left) and RT-grown 

(right) films of similar thicknesses on TiO2 (001) 
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Figure 3.14: SEM morphologies for HT-grown (left) and RT-grown 

(right) films of similar thicknesses on TiO2 (110) 
 

 

Figure 3.15: Transmission hystereses for HT-grown (left) and RT-grown 

(right) films of similar thicknesses on TiO2 (110) 
 

Practically no difference is observed in the hysteretic behavior of HT and RT-grown 

films on TiO2 (110). 
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3.2       EFFECT OF LASER PARAMETERS ON EPITAXY 

3.2.1  Effect of repetition rate of laser pulses 

The effect of laser pulse repetition rate on film growth is discussed in this section. The 

morphologies are indistinguishable in the SEM, hence we discuss only the hysteresis 

differences for films of similar thicknesses here. 

 

 

Figure 3.16: Transmission hystereses behavior for HT-grown VO2 films 

on C-sapphire as laser repetition rate is decreased 
 

 

Figure 3.17: Transmission hystereses behavior for HT-grown VO2 films 

on A-sapphire as laser repetition rate is decreased 
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Figure 3.18: Transmission hystereses behavior for HT-grown VO2 films 

on R-sapphire as laser repetition rate is decreased 
 

From the figures 3.16 – 3.18, we observe that 10 Hz is probably close to the optimum 

repetition rate for films grown on A-cut and R-cut sapphire as it corresponds to 

narrowest, bulk-like hysteretic behavior, whereas for C-cut sapphire 5 Hz  seemed to 

work best. 

3.2.2  Effect of laser pulse energy 

A small variation in the laser pulse energy resulted in considerable differences in the 

hystereses behavior of HT-grown films on C and R-sapphire as shown in figures 3.19 and 

3.20. 
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Figure 3.19: Transmission hystereses of HT-grown films grown with two 

different laser pulse energies on C-sapphire 
 

 

Figure 3.20: Transmission hystereses of HT-grown films grown with two 

different laser pulse energies on R-sapphire 
 

The hysteretic behavior of the film on R-sapphire at pulse energy of 415 mJ has the kink 

in the cooling cycle at a different temperature from the film deposited with laser energy 

of 385 mJ, indicating that a size variation in the VO2 grain growth occurs with differing 

laser pulse energies. 
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CHAPTER IV 

NEW INSIGHTS INTO STRUCTURAL AND ELECTRONIC PHASE 

TRANSITIONS IN VO2 
 

ABSTRACT 

The multifunctional properties of vanadium dioxide (VO2) arise from coupled first-order 

phase transitions:  an insulator-to-metal transition (IMT) and a structural phase transition 

(SPT) from monoclinic to tetragonal. The characteristic signatures of the IMT and SPT 

are the hysteresis loops that track the phase transition from nucleation and growth of the 

new phase to stabilization at macroscopic length scales. A long-standing question about 

the mechanism of the phase transition is how the almost-simultaneous electronic and 

structural transitions are related. Here we report independent measurements of the IMT 

and SPT hystereses in epitaxial VO2 films with differing morphologies. We show that the 

hystereses are not congruent, that the structural change requires more energy to reach 

completion, and that these results are independent of nanoscale morphology, so that the 

non-congruence is an intrinsic property of the VO2 phase transition. This experimental 

result is supported by effective-medium calculations of the dielectric function 

incorporating the measured volume fractions of the monoclinic and tetragonal states. The 

results are consistent with the existence of an intermediate metallic state in which the 

electron-electron correlations characteristic of the monoclinic state begin to disappear 

before the transition to the tetragonal structural state. Synchrotron measurements and 

evidence for an intermediate structure are also presented at the end of the chapter. 

4.1  NON-CONGRUENCE OF THERMALLY-INDUCED STRUCTURAL AND 

ELECTRONIC TRANSITIONS  IN  VANADIUM DIOXIDE 

4.1.1  Introduction 

Vanadium dioxide (VO2) exhibits an insulator-to-metal transition (IMT) at ~67
o
C with 

abrupt changes in transport and optical properties, coupled to structural phase transition 

(SPT) from monoclinic (M1) to tetragonal (R). The complex physics of the VO2 phase 

transition has long been debated, as discussed in Chapter 1. Unlike other strongly 
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correlated materials
199

 exhibiting an IMT, such as V2O3
200, 201

 or manganites
202

, where 

phase transitions are satisfactorily explained by Mott mechanism alone, the IMT in VO2 

is complicated by an accompanying spin-Peierls instability
49

 that leads via strong 

electron-phonon coupling to the formation of spin-singlet states that incorporate the 

bonding-antibonding splitting of the 



d
x2y2  bands.  

A critical question, so far unanswered, is whether the structural and electronic phase 

transitions in VO2 occur congruently. For non-equilibrium phase transformations in thin 

VO2 films, induced by ultrashort laser pulses, it was reported that the electronic IMT 

leads the SPT,
62

 and that the SPT presents a kinetic bottleneck for the transition.
58

  It was 

also observed that for the shortest attainable excitation pulses, a coherent phonon 

associated with a breathing mode of the VO2 lattice appears simultaneously with the 

IMT.
57

 Ultrafast electron diffraction measurements on single-crystal VO2 excited by 

femtosecond near-IR laser pulses demonstrated the existence of transitional structural 

states with lifetimes up to hundreds of picoseconds 
203

.   

On the other hand, in the case of adiabatic, thermally induced phase transitions, 

Qazilbash et al
18

 have recently reported an intermediate electronic state characterized by 

strongly correlated metallic nanopuddles with properties distinct from those of the high-

temperature tetragonal metal.  Intermediate structural states of monoclinic M2 and 

triclinic T phases 
11, 12, 204

 in doped or uniaxially stressed VO2 in bulk single crystals have 

also been reported. A recent study by Okimura et al
52

 of temperature-dependent XRD on 

thin VO2 films on sapphire (0001) substrates suggests the possibility that the M2 structure 

may be an intermediate state during phase transition.  Micro-X-ray diffraction studies
19

 of 

epitaxial VO2 on (1010) sapphire substrate have shown evidence for the existence of a 

monoclinic metallic phase.  Taken together, these observations indicate the possibility of 

local energy minima other than the M1 and R phases in the region of strong correlation.  

An important complement to these previous experiments is a direct comparison of the the 

characteristic hysteretic signatures of the IMT and SPT.  In this experiment, we used 

near-IR transmission to measure the IMT hysteresis through the phase transition on well-

characterized epitaxial thin films of VO2 on (0001) sapphire; on the same samples, we 
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then employed high-temperature X-ray diffraction (HTXRD) to follow hysteresis in the 

SPT, and from these measurements extracted the relative monoclinic fraction as a 

function of temperature. To complete the analysis, we then calculated the dielectric 

function of VO2 in the region of strong correlation using Bruggeman effective medium 

theory. We observe that the dielectric function calculated on the basis of structural phase 

is not consistent with the optical signature of the electronic transition:  the hysteresis in 

the SPT is always wider than the hysteresis of the IMT. This inconsistency may imply the 

existence of an intermediate electronic state. 

Our results are demonstrated over macroscopic areas of two types of epitaxial films: 

continuous epitaxial VO2 (CE VO2) and noncontiguous epitaxial VO2 (NCE VO2) films 

grown on c-cut (0001) sapphire having quite distinct nanoscale morphologies, suggesting 

that the differences between the structural and electronic phase transitions is not a local or 

dimensional effect, but can be viewed as inherent to the materials physics underlying the 

VO2 phase transition. The measured differences in the energy required to complete the 

IMT vs the SPT may correspond to the existence of two correlation lengths in the region 

of strong correlation, as proposed by Pergament.
9
 

4.1.2  Experimental details 

CE and NCE VO2 films approximately 80±10 nm thick on c-cut (0001) sapphire 

substrates were grown following two different protocols. The continuous epitaxial (CE) 

VO2 films were produced in two steps. First, a 99.99% pure vanadium metal target was 

ablated at room-temperature in a background of 10mTorr of oxygen, following a standard 

recipe for pulsed laser deposition (PLD). A second step of annealing the amorphous, sub-

stoichiometric film in 250mTorr of oxygen and 450
o
C, for 30-45 minutes yields 

stoichiometric, single-phase, crystalline VO2 . The non-contiguous epitaxial (NCE) films 

were grown in a one-step PLD process at high temperature (~500
o
C), using the same 

target with a background gas pressure of 50 mTorr oxygen and a target-substrate distance 

of 5 cm. 

The epitaxial nature of both films was confirmed by reciprocal space mapping (RSM) 

using the PANalytical X‘pert Pro MRD at the Center for Nanophase Materials Science 
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(CNMS) and the transmission electron microscopy (TEM) using the HF 3300 TEM; at 

the SHaRE facility both located at Oak Ridge National Laboratory (ORNL). These RSMs 

and TEMs are shown in figure 4.1 (c) - (f). The morphological differences in the CE and 

NCE films are evident from the comparison of the two SEMs respectively in figures 4.1 

(a) and (b) and TEMs in figures (c) and (d). The CE film grown at room temperature with 

subsequent annealing has a smoother surface than the discrete, pyramid-like structure of 

the NCE film grown at high temperature. But both films are epitaxial — that is, both have 

a definite orientational relationship to the substrate — as evident from the reciprocal 

space maps shown in figures (e) and (f). 

Epitaxial films are more uniform in orientation and morphology over macroscopic length 

scales and exhibit more bulk-like phase transition behavior, typified by narrower, sharper 

hystereses.
175

 Epitaxial growth thus minimizes strain and morphological inhomogeneities 

characteristic of polycrystalline thin films and use volume-averaged optical 

measurements in different ranges of the electromagnetic spectrum —  that is, XRD and 

infrared transmission — over the same spot of the films to draw inferences about their 

phase transition characteristics. Moreover, epitaxial films produce X-ray or electron 

diffraction patterns with spot patterns rather than concentric rings typical of randomly-

oriented polycrystalline, allowing extraction of significantly more detailed structural 

information. 

The electronic component of the metal-insulator transition was tracked by measuring the 

transmission from a white-light source (3000 K blackbody, give manufacturer and model 

number) during heating/cooling, using an InGaAs detector (950-1600nm, make and 

model) coupled to a lock-in amplifier. The films were heated and cooled by a Peltier 

thermoelectric heater. The temperature was measured with a precision thermocouple in 

thermal contact with the VO2 surface. 
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Figure 4.1: (a), (b) Top-view SEM, (c), (d) cross-sectional TEM and (e), 

(f) X-ray diffraction reciprocal space map of typical CE-VO2 and NCE-

VO2 films respectively. 

The in-situ high-temperature XRD data for tracking the structural transition were 

collected using a different two-axis XRD instrument (PANalytical X'Pert Pro MPD) with 

Anton Paar XRK900 Reaction Chamber also at the Center for Nanophase Materials 

Science (CNMS) at ORNL. The ratio of areas under XRD peaks corresponding to 

different phases of a single material gives the ratio of the volumes of each phase present 
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in the multi-phase film. The areas were calculated after subtracting the background, then 

filtering out the Cu-K2 peaks and applying a Pseudo-Voigt profile fitting method using 

the X‘pert High Score Plus software.  The results are shown in figure 4.2.  

 

Figure 4.2: A typical spectrum at 71
o
C during the phase transition of the 

NCE-film and its profile fitting for calculation of area under the curve. 

The blue curve shows the fit  to our experimental data (red curve) by the 

Voigt profile fitting method to calculate the area under individual peaks. 

The green baseline denotes the background. 

 

4.1.3  Experimental results 

During the transition, we tracked the evolution of the monoclinic (040) peak for VO2, 

located at 86.05˚ on the 2axis, for the CE VO2 film; the corresponding tetragonal peak 

is located at 85.73˚. Figure 4.3(a) shows the isoline 3D view of the X-ray spectra 

indicating the way the selected VO2 peak shifts during the entire monoclinic-tetragonal-

monoclinic transition.  The superposition of the 2spectra for the five temperatures over 

which almost the entire transition is completed is shown in figure 4.3(b). Starting at 69
o
C, 

the area under the monoclinic peak decreases as the tetragonal fraction in the film grows; 

evidently both phases coexist in almost equal fractions at 71
o
C, and the film is almost 

entirely tetragonal at 73
o
C. The slight shift in peak position during the transition can be 

attributed to the thermal expansion of the sample holder, substrate and the VO2 lattice. 

Figure 4.3(c) shows the monoclinic fraction in the sample at each temperature, calculated 
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from the XRD peak areas as a function of temperature. White light transmission 

measurements of the MIT [figure 4.3(d)] in this film show narrow, high-contrast 

hysteresis similar to those of bulk VO2. This is the signature of the insulator-metal 

transition, the electronic component of the phase transition.  

 

Figure 4.3: HTXRD measurements on CE VO2 on c-sapphire: (a) 

Evolution of the reversible structural phase transition (monoclinic-

tetragonal-monoclinic) as a function of temperature, (b) evolution of the 

monoclinic and tetragonal peaks between 69
o
C and 73

o
C, and (c) 

hysteresis in the monoclinic fraction as a function of temperature and (d) 

hysteresis in the white light optical transmission as a function of 

temperature measured on the same sample. 
 

Figures 4.4(a) and (b) illustrate the corresponding SPT and transmission hystereses. 

respectively, observed for NCE-VO2 films on c-cut sapphire.  
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Figure 4.4: HTXRD measurements on NCE VO2 on c-sapphire: (a) 

Hysteresis of the monoclinic phase as a function of temperature and (b) 

optical transmission hysteresis as a function of temperature taken on the 

same sample. 
 

The hysteresis width is a more fundamental quantity than the onset temperature of phase 

transition, because absolute temperature comparisons might be convoluted with 

systematic errors and minor variations in thermometry for the two thermocouples 

employed. Thus in Table 1 we compare the hysteresis widths, which shows that for 

epitaxial films with very different nanoscale morphologies on c-sapphire, the SPT 

hysteresis width is about 2.5 times that of the IMT hysteresis within an error range of 

±10%.  To ascertain whether or not this ratio is a constant over other epitaxial VO2 films, 

will involve more such measurements on epitaxial films on other substrates.  For 

example, hysteresis measurements on a different plane of sapphire, or a different 

substrate altogether, such as TiO2, can be expected to generate very different film-

substrate strain affecting the SPT. 
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Table 4.1: IMT and SPT hysteresis width comparison 

 

VO2 film 
IMT hysteresis width       

H IMT (in 
o
C) 

SPT hysteresis width HSPT 

(in 
o
C) 

HSPT /H IMT 

CE-VO2 4.83 13 2.69 

NCE-VO2 2.49 6 2.41 

 

4.1.4  Modeling results 

To provide a way of interpreting our experimental data and have a comparison basis for 

the two seemingly different quantities — the experimentally measured monoclinic 

fraction and normalized transmission intensity — we model here the structural data to 

yield the evolution of the dielectric function, assuming that only the structural change 

was responsible for it.  We then compare with the measured change in dielectric function 

by superposing it on the infrared transmission hysteresis.   

The phase transition in semiconducting VO2 is initiated at nucleation sites from which 

metallic domains then evolve up to and beyond the transition temperature. In the strong 

correlation region near the transition temperature, semiconducting and metallic domains 

coexist, and this spatial inhomogeneity strongly influences the effective dielectric 

properties of the film. We use Bruggeman effective medium theory (EMT)
205

 to model 

the optical properties of VO2 thin films
206

 
207

 rather than Maxwell Garnett EMT 
208

 
63

, 

since the latter assumes a small volume fraction of metallic inclusions. The effective 

dielectric constant in the Bruggeman theory for ellipsoidal inclusions is given by: 

                        



f
˜ m   ˜ eff  

˜ m  
1q

q
˜ eff  

 1 f 
˜ i   ˜ eff  

˜ i  
1q

q
˜ eff  

 0                        (4.1) 

so that  

    



eff 
˜ m f q  ˜ i f  q1  ˜ i f  q1  ˜ m f q  

2
 4 1q q ˜ m ˜ i

2 1q            

(4.2) 
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where 



˜ i  and 



˜ m  are the wavelength-dependent dielectric constants in the insulating and 

metallic states of VO2 respectively 
209

, f is the metallic volume fraction obtained from the 

XRD peak areas, and q is a shape-dependent depolarization factor for the inclusions. The 

metallic fraction f was calculated from the experimentally-obtained HTXRD spectra. The 

depolarization or shape-factor is taken to be continuously varying from 0.2-0.5 assuming 

nearly spherical metallic regions at low concentrations and thin, flat disks at higher 

concentrations relative to overall film thickness.
210

 

Figure 4.5 (a) and (b) show respectively the evolutions of the real and imaginary parts of 

the dielectric function spectra for a typical NCE-VO2 film as it goes through the 

thermally-induced insulator-to-metal transition, as calculated following the above 

procedure. From the dielectric function components we calculate the refractive indices 

(n) and the absorption co-efficients (k) for each film using the equations:   

   

   21212

2

2

11
2

1
 n      (4.3) 

 

   21212

2

2

11
2

1
 k      (4.4) 

Note that the real and imaginary parts of the dielectric function, and thus n and , evolve 

with temperature in opposite ways, making VO2 a lossy metal in its high temperature 

state. Figure 4.5 (c) shows the evolution of the reflection co-efficient R of the VO2 film 

as given by the equation:  

 

                                          

2 2

2 2

( 1)

( 1)

n k
R

n k

 


 
                                                             (4.5)   
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Figure 4.5. For NCE-VO2, (a) real and (b) imaginary parts of the 

dielectric function as a function of temperature extracted from Ref. 33 

using a Bruggeman mean-field model parametrized by the HTXRD 

measurements. (c) The reflectivity spectrum for varying temperatures 

calculated from (a) and (b). The arrows indicate the trends in the evolution 

of the dielectric functions as a function of temperature. 

  

Figure 4.6 shows the real (n) and imaginary (k) parts of the refractive index of both NCE 

VO2 and CE VO2 films calculated using equation (2), and the modeled transmission using 

equation (3). The transmission calculated from the Bruggeman model is, 

                                                
    41 1z kz

BT R e R e      
                                    

(4.6) 

where R is the reflection coefficient (calculated from n and k),  is the absorption 

coefficient, both being functions of wavelength , and z is the thickness of the film, set to  

90 nm in our calculations. Cross-sections of the n, k spectra for specific wavelengths are 

shown in the figures 4.5(a, b) and (d, e) [black continuous lines] to make the temperature 

hystereses in n and k values evident over the entire spectrum. The hystereses are more  
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Figure 4.6: Top four panels:  Three-dimensional plots of (a) real (n) and 

(b) imaginary (k) part of the effective refractive index in CE VO2 and 

same in (d) and (e) respectively for NCE VO2 extracted from HTXRD 

data by means of Bruggeman EMT analysis, as a function of temperature.  

The n, k hysteresis loops with higher contrasts are observed as one move 

towards the infrared. Bottom two panels: Superposition of the 

transmission hystereses, modeled (blue) and experimental (magenta) for 

(c) CE and (f) NCE VO2. 

pronounced in the infra-red region of the spectrum as expected. Superimposed on the 

calculated transmission [figure 4.5(c) and (f)] are the measured data from figure 4.3(d) 
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and 4.4(d), respectively to allow comparison of the hystereses for the MIT (measured 

optically) and the SPT calculated from the Bruggeman analysis. 

4.1.5  Discussion 

Comparison of the measured hystereses [Figures 4.3(c),(d) and 4.4(c),(d)] for both CE 

and NCE VO2 films shows that the electronic (Mott) transition is completed with less 

thermal energy than the structural phase transition.  The hystereses in dielectric functions 

extracted from a mean-field calculation of the monoclinic-to-tetragonal transitions are 

also wider than the measured IMT hysteresis, and thus consistent with this picture 

[Figures 4.5(c) and (f)].  Thus, we infer that the intermediate metallic state with its higher 

reflectivity appears before the signature of the stable rutile structure, as observed by 

Qazilbash et al
18

 but this inference is now supported by the complementary structural 

measurement (XRD) and modeling of the SPT.  Kim et al,
19

 in µ-XRD studies on a 

nanofabricated epitaxial VO2 channel on (1010) sapphire, combined with an electrical 

transport measurement, had likewise concluded that a monoclinic, correlated-metal 

(MCM) phase precedes the rutile phase. Our results, on the other hand were based on 

volume-averaged XRD and optical measurements made on the same spot in epitaxial 

films on a different plane of sapphire, namely (0001), thus with completely different 

lattice mismatches and strains from those in the Kim samples. Our experimental results 

combined with modeling of the dielectric function lead to a conclusion similar to that of 

Kim et al.
19

  This suggests that we are justified in generalizing these results as an intrinsic 

feature of VO2 phase transitions, which might well extend to other strongly-correlated 

oxides. 

  Using similar fabrication and measurement procedures, Okimura et al
52

 have recently 

inferred the presence of the M2 intermediate phase by fitting the measured asymmetric X-

ray diffraction peaks.  As they have noted, the M2 phase could be stabilized by strain in 

the fabricated film.  However, the M2 is known to be an insulating phase, and our 

experiments show that the transitional phase is metallic instead. The search for 

intermediate metallic structures would be of general significance for the physics of phase 

transitions, just as the discovery of the insulating M2 phase helped to establish the Mott 

character of VO2 phase transitions.  In the present measurements, the IMT hysteresis is 
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narrower than the SPT hysteresis in both the heating and cooling cycles.  Therefore these 

new results leave open the possibility that the Mott transition can be partially or fully 

completed without a change of structure.   

It is also possible that an intermediate crystal structure offers more freedom to electrons 

leading to this metallic character. Our experimental results hint at a dual character of the 

phase transition, as proposed by Pergament.
9
 The duality is defined by two correlation 

lengths that correspond respectively to the Mott-Hubbard and Peierls contributions to the 

physics of the phase transition.  The longer of the two correlation lengths is associated 

with the disappearance of the strong correlations in the monoclinic phase.   

Starting with the Mott criterion:  

 

    

 

                                                            (4.7) 

 

Pergament deduced the correlation length of a Mott insulator to be  

 

  
    

(   )
 
  

                                                   (4.8) 

Unlike in conventional semiconductors, band gap          for VO2, as    = 0.7 eV 

whereas     = 0.03 eV for VO2. 

Assuming  =   , one gets the correlation length to be ~2   and with  =    , the 

correlation length comes out to be ~18 .  

Thus according to to Pergament, the transition in VO2 from a metal ( = 0,   → ∞) to a 

semiconductor/insulator (=  ,   = R), with decreasing temperature, might be occurring 

through an intermediate (transient) state with      and   =  1 = 15–20 Å. Once the 

modulation in the electronic configuration occurs, a Peierls-like distortion of the crystal 

structure accompanies by doubling of the lattice period along the c-direction. This 

structural transition then, in turn, results in the stabilization of the insulating state with 

  = 1eV and complete localization of electrons on vanadium atoms. Thus the 
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intermediate state can be considered as a state in which the electrons are localized only 

partially.  

We then can summarize this as: the structural change constitutes a bottleneck; and the 

driving force for completing the phase transition is the electron correlation produced by 

the Mott-Hubbard contribution.  In our thermally driven, adiabatic phase transition, we 

thus see a trend similar to that observed when the phase transition is induced by ultrafast 

laser excitation,
58

 causing rapid renormalization of the band gap and the excitation of a 

coherent phonon associated with vibrations of the oxygen octahedra.    

To summarize, we observe that, as had been suggested by Kim et al,
19, 62

 our results also 

indicate that it is possible that the VO2 phase transition indeed undergoes a Mott 

transition between the M2 insulator phase and the MCM phase, while the ultimate 

structural transition from the M1 to the R phase occurs around it. 

4.2     SYNCHROTRON EXPERIMENTS 

In order to look for a structural correlate of this above-mentioned intermediate transient 

state during the phase transition, we planned further experiments in the synchrotron 

facility at the Swiss Light Source, Villigen, Switzerland. The Materials Science Beamline 

(X04SA) in the Swiss Light Source (SLS) has a unique facility for growing thin films in a 

PLD/XRD ultrahigh vacuum chamber mounted on a five-circle surface diffractometer for 

in situ characterization using the tunable X-ray beam from the SLS, as seen in figure 4.7.  
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Figure 4.7: Swiss Light Source Synchrotron Facility 

 

A short description of the SLS XRD is as follows: 

The Newport (2+3)-circle diffractometer is shown schematically in Figure 4.8.  The 

naming conventions for the instrument circles follow those used by Vlieg.
211

 The 

diffractometer provides two degrees of freedom for the sample motion and three for the 

detector. The γ and δ-circle are used to position the detector in the direction of the 

diffracted x-ray beam, kout, while the ν-axis rotation allows the detector and the slit 

system attached to it to turn around kout.  

For a (2+3)-type instrument, the two sample circles are fully decoupled from the detector 

circles. For our experiment we used the vertical geometry (blue, dark shade in Fig. 4.8), 

the sample surface plane is vertical, and hence its surface normal direction lies in the 

horizontal plane. The grazing incidence angle of the synchrotron beam onto the surface is 

adjusted using the α-circle, while ωv provides the azimuthal sample rotation around the 

surface normal.
212
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Figure 4.8: The five-circle X-ray diffractometer 

 

Six additional sample degrees of freedom (three translations and three rotations) are 

provided by a hexapod, mounted onto the ωv sample circle. The three linear motions are 

used to bring the sample center into coincidence with the diffractometer center. The 

sample surface normal is accurately aligned with the diffractometer‘s azimuthal sample 

rotation axis (ωv) using the hexapod rotations. All measurements and angle calculations 

require this coincidence of sample surface normal and azimuthal rotation axis, so once 

the sample is accurately aligned, the hexapod positions are fixed for the rest of the exper-

iment.  

The spectra are collected using a two-dimensional pixilated CCD camera, the horizontal 

axis of which corresponds to  and vertical to . The conversion from pixel coordinates to 

reciprocal space positions is discussed in detail on the SLS website. The angle-resolved 

scattering pattern on the detector is transformed into a curved two-dimensional slice 

through reciprocal space. In general, the  corresponds to the in-plane 2 and the  

corresponds to the out-of-plane 2 implying that any change in the dimensions of the unit 

cell in-plane would be reflected on the horizontal axis and out-of-plane on the vertical 

axis. 
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Our intent was to conduct a systematic study of the effect of strain on structural transition 

of films grown epitaxially on different planes of sapphire and TiO2 in conjunction with 

infrared reflection measurements, so as to have simultaneous structural and electronic 

phase transition information. This would have helped us understand the effect of strain on 

SPT and how it affects the electronic transition in turn and thus the effect of strain on the 

entire phase transition physics. During our experiments we observed some 

inconsistencies in temperature measurements and optical data acquisition, rendering some 

of the acquired data unusable.   

Figure 4.9 shows the monoclinic to rutile transition in a 50 nm VO2 film on glass. Since 

the film is polycrystalline, Bragg diffraction conditions are fulfilled for all random 

directions and hence the diffraction pattern consists of rings which are manifested as lines 

in two dimensions.  

 

 

Figure 4.9: Monoclinic to rutile transition in a 50 nm VO2 film on glass. 

On the other hand , in case of epitaxial films on sapphire, for example we observe spots 

instead of lines , because of a preferred direction in which the film grows.  
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In figure 4.10, we present three snapshots of the structural phase transition of a 50 nm 

VO2 film on c-cut sapphire. For the temperature-dependent XRD measurements an 

increase in frame numbers correspond to a monotonic increase in temperature during the 

heating cycle of the phase transition.  

 

 

Figure 4.10: Evolution of the transient M2 phase as a function of 

temperature during phase transition 
 

In Figure 4.10(a) the peak at the top left corresponds to the (002) M1-VO2 peak. At the 

initiation of the phase transition a faint peak to the right of the figure appears, which does 

not correspond to any known M1-VO2 peak, and grows in intensity as we come close to 

the transition temperature as seen in Figure 4.10(b). As we cross over to the other side of 

the transition temperature the (002) M1-VO2 peak disappears and the (200) rutile-VO2 

peak appears in the bottom right (Figure 4.10(c)), the peak to the left still remains before 

vanishing completely only at a considerably higher temperature compared to the M1-VO2 

peak. This behavior of the ―unknown‖ peak matches perfectly with the behavior of M2-

VO2 as described by Pouget et al and Eyert et al and described in Figure 1.6 in Chapter 1. 

This leads us to conclude that our ―unknown‖ peak corresponds to an M2-VO2 peak, thus 

giving us direct evidence of the M2-VO2 transient phase in course of structural phase 

transition in epi-VO2 films on c-sapphire. Figure 4.11 summarizes the discussion above 

for another M1-VO2 peak, (   ̅), which has no corresponding tetragonal peak when it 

transition. In this figure, the y-axis corresponds to the frame numbers for acquired data, 

which corresponds to the evolution of a specific peak in position and intensity as the 
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temperature is increased from below to above transition temperature and then cooled 

back below Tc. The (   ̅) peak at 70-pixel should have vanished gradually and 

reappeared back during cooling, but instead a new peak, not corresponding to any known 

peak of M1-VO2 transiently appeared and shifted from the (   ̅) peak, grew in intensity 

and then disappeared abruptly above the transition temperature. During cooling also, it 

appeared transiently before the (   ̅) peak grew in intensity and regained its room 

temperature position and intensity. 

 

Figure 4.11: Evolution of a VO2 peak (green peak to the left, at 70 pixel) 

as the temperature is increased from below to above the transition 

temperature Tc and then decreased back to below Tc. The 70-pixel peak 

corresponds to (   ̅)  peak of M1-VO2 and should disappear above 67 , 

but we see a second peak , not corresponding to an M1-VO2 peak, at ~40 

pixel, coming into transient existence just near Tc both during heating and 

cooling phases, thus giving evidence for a transient structure during SPT.  

A hint of the same transitional M2 state is also seen in a 10 nm VO2 film on C-sapphire 

as shown in figure 4.12.  
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Figure 4.12: The same transitional M2 state is also seen in a 10 nm VO2 

film on C-sapphire. 
 

Figure 4.13 shows the evolution of the signal from an M1-VO2 peak near the film-

substrate interface for the same 10 nm VO2 film on C-sapphire. 

 

 

Figure 4.13: The evolution of the signal from an M1-VO2 peak near the 

film-substrate interface for the same 10 nm VO2 film on C-sapphire. 

CONCLUSION 

Our experiments demonstrate that the non-congruence of the structural and electronic 

phase transitions in VO2 is a fundamental property of this material, independent of 
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dimensionality and morphology.  This is a critical finding, given that a large share of the 

many potential applications envisaged for VO2 necessarily involves thin-film devices. 

Moreover, the evolution of the SPT, coupled with modeling by an appropriate effective-

medium theory to yield information on the evolving dielectric function, can reveal both 

correlations and differences between the electronic and structural signatures of solid-solid 

phase transitions.  For example, doping alters the electronic signature of the metal-

insulator transition in VO2;
213

 measurements like those described here can show whether 

or not these changes in electronic response have structural correlates.  These results also 

contribute to deeper understanding of phase transitions found in other Magneli phases of 

Ti-O and V-O systems.
90

 Indeed, as interest grows in understanding strongly correlated 

materials at the micro- and nano-scales, clarifying the relationship of evolving structural 

and electronic features of the phase transitions is imperative. Synchrotron measurements 

on epitaxial films have the ability to track structural intermediates during phase 

transitions, and more careful experiments can help uncover the structural pathways and 

components in the convoluted phase transition mechanism of vanadium dioxide.
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CHAPTER V 

TUNGSTEN DOPING OF VANADIUM DIOXIDE THIN FILMS 

 

ABSTRACT 

In this chapter we initially review the work by other groups that has been done in doping VO2 

with tungsten (W). This is followed by a discussion of our results involving the effect of 

deposition parameters on W-incorporation in VO2 films. In the next section, we provide the first 

evidence from high-resolution transmission electron-microscopy that W occupies substitutional 

sites in epitaxial VO2 films grown on (0001) sapphire substrates.  The substitutional character of 

the W defect plays a critical role in the metal-insulator transition when it is induced by an 

ultrafast laser pulse.  In particular, we demonstrate that both the transient response in the first 

few picoseconds after excitation and the longer-term evolution of the phase transition are 

determined by the injection of extra electrons into the conduction band from the dopant atoms. If 

the threshold fluence can be lowered/tailored to modify the ultrafast response of VO2, it would 

be desirable for various applications ranging from switches and sensors to optoelectronics in 

telecommunications frequencies. In conclusion, we discuss the effect of W-doping on the 

thermally-induced structural phase transition of doped films. 

 

5.1         EXISTING LITERATURE ON W-DOPING 

The transition temperature Tc of approximately 67˚C for VO2 is too high for many practical 

applications. Doping can lower the transition temperature, Tc significantly, and hence doping of 

VO2 has been tried extensively for a long time to make it suitable for many important 

applications. Various dopants — W, Ti, F, Mo, Nb, Cr ,Li, Al — have been used to manipulate 

Tc. Earlier successful attempts at doping were made by many groups
22, 108, 122, 214-218

 and they 

demonstrated that control of Tc make VO2 films more suitable for a wide variety of applications. 
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The doping process is comparatively easier in CVD and sol-gel techniques, but has also been 

achieved with the help of co-sputtering, and use of multiple targets or metal-doped targets in 

pulsed laser deposition. The reported transition temperature-shifts on doping with different types 

of dopants have been quite significant (Table 1). But in some cases, with the decrease of Tc, the 

electrical and optical properties were degraded as well.  

 

Table 5.1: The effect of doping VO2 with various concentrations of different 

dopant atoms and their effect on the transition temperature 

 

 

Dopant Concentration in atomic % 
Transition temperature 

decreases by 

Tungsten(W)
22

 1.0 22
o
-28

o
C 

Molybdenum(Mo) 1.5
219

, 1.0
22

 35
o
C

219
, 11

o
C

22
 

Niobium(Nb)
22, 122

 1.0 8
o
C 

 

In order to understand the cause of this degradation and find a solution to this issue, it is 

necessary to study the structural characteristics of the films before and after doping. Apart from 

the fact that dopant atoms supply extra charge carriers, it is also important to find the lattice 

locations of dopant atoms, that is, whether they enter the network or remain in the interstitial and 

induce stress release or form defect centers.  This was studied in epitaxially-grown VO2 by Wu et 

al in 1999,
219

 who doped VO2 with Mo and concluded that Mo is a substitutional dopant, which 

decreased Tc, and simultaneously reduced the sharpness of transitions. They concluded that since 

intrinsic VO2 thin film is n-type, any acceptor doping will compensate for undoped n-type 

intrinsic VO2, thereby lowering its transition temperature but without compromising its phase 

transition characteristics.  

Livage et al in 1998
126

 using sol-gel deposition demonstrated an extensive tailoring of the Tc and 

switching properties of VO2 films by doping them with cations like W
6+

, Nb
5+

, Ti
4+

,Cr
3+

,Al
3+

, in 

varied proportions, and found that the transition temperature was reduced when doped with high-

valence atoms (W
6+

), whereas the transition temperature was elevated when the VO2 doped with 
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lower valence atoms such as Al
3+

 and Cr
3+

.  Manning et al
110, 112

 also demonstrated successfully 

doping VO2 with tungsten and other cations such as  Mo and Nb using the CVD process. 

It was shown by Jin et al
220-222

 initially by ion-implantation and later by magnetron sputtering 

,and subsequently also by Soltani et al
168

 in PLD, that Tc can be reduced  by W-doping in proper 

proportions in films. More such efforts from several other research groups resulted in 

publications like Binions et al,
116, 223

 Cavanna et al,
224

 Piccirillo et al,
117

 Beteille et al,
225

 and 

others.  

Recently, co-doping has also been attempted. Burkhardt et al
226, 227

 were the first to try tungsten 

and fluorine co-doping by sputtering; they observed that the two doping elements act 

independently of each other, so that their conjugated influence on phase transition is the 

superposition of the respective influence of each element. Takahashi et al
228

 investigated both 

W-Mo and W-Ti co-doping by the sol-gel deposition technique, and the interaction of W and Ti 

was found to be stronger than that between W and Mo. The advantage of W-Ti co-doping is that 

it permits one to control and to tailor the transition behavior, such as smoothing gradient and 

reducing optical and electrical hysteresis. This was also demonstrated by Soltani et al
213

 in 2004.   

Before concluding this section, we will discuss a very recent finding by Booth et al.
17

 With the 

help of X-ray absorption fine structure spectrometry of W-doped VO2 films they showed that 

significant expansion occurs along the [110] and [  ̅ ] directions  across the phase transition 

from low to high temperature. This distortion breaks the bonds between Peierls-paired vanadium 

ions and therefore might be one of the mechanisms by which tungsten doping lowers the 

transition temperature and enthalpy. From their results, Booth et al
17

 draw an important 

conclusion, namely, that the phase transition in VO2 is essentially structurally-driven. 

5.2         EFFECT OF DEPOSITION PARAMETERS ON W-INCORPORATION 

Recently, we have attempted to do W-doping of epitaxial films of VO2 grown on sapphire and 

TiO2 substrates. We have achieved tungsten doping following recipes similar to the high-

temperature and room-temperature growth recipes described in Section 3.1.1 with just the V 

metal target replaced with W-V alloy metal targets of different proportions.  Figure 5.1, shows 
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the changes in morphologies that occur due to doping in HT-grown film on A-sapphire, RT-

grown film on C-sapphire and HT-grown film on TiO2(001) substrates respectively. 

 

Figure 5.1: Morphology differences in undoped (left) and doped (right) VO2 

films grown on various substrates 

 

5.2.1 Effect of Temperature 
 

In this section, we discuss the noticeable effect that the temperature of the substrate during 

deposition has on W-incorporation in the films. Figures 5.2-5.4 show the differences in transition 

temperatures due to differing W-incorporations at different deposition temperatures. 
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Figure 5.2: HT- (left) and RT- (right) grown W-doped films on C-sapphire 

 

 

Figure 5.3: HT- (left) and RT- (right) grown W-doped VO2 films on A-sapphire 
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Figure 5.4: HT- (left) and RT- (right) grown W-doped VO2 films on R-sapphire 
 

According to Rutherford backscattering spectroscopy, the atomic percentages of W present in 

HT and RT grown films on C-sapphire are 0.66% and 0.34% respectively. In HT and RT grown 

films on R-sapphire, the concentrations were found to be 1.64% and 0.95% respectively. This 

indicates that higher substrate temperature definitely facilitates more W-incorporation in the 

films, but that dopant incorporation is also substrate dependent. 

 

5.2.2 Effect of substrate 
 

It has been observed that films grown under the same conditions on different substrates during 

the same deposition run yield differing W-doping levels as is evident from figures 5.5 and 5.6. 
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Figure 5.5: HT-grown W-doped films grown under the same deposition condition 

on C-sapphire and A-sapphire 

 

 

Figure 5.6: RT-grown W-doped films grown under the same deposition 

conditions on C-sapphire and glass 
 

RBS studies on the HT-grown films on C-sapphire and A-sapphire yielded 0.66 and 0.71 atomic 

per cent of W, respectively, whereas the RT-grown films on C-sapphire and glass exhibited 

concentrations of 0.34 and 0.21 atomic per cent of W, respectively. 

 

5.2.3 Effect of target-to-substrate distance 
 

Contrary to conventional wisdom, as we vary the target-to-substrate distance we observe that, as 

the the distance grows, W incorporation increases. This is evident from both figures 5.7 and 5.8. 
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It is possible that the opportunity a tungsten ion has to interact with the oxygen background plays 

a role and it is the state of oxidation of tungsten that determines its incorporation in VO2 film. 

 

Figure 5.7: Effect of varying the target-to-substrate distance in RT-grown films 

on C-sapphire 

 

 

Figure 5.8: Effect of varying target-to-substrate distance in RT grown films on 

glass 
 

The variation in switching contrast of the films in figure 5.8 is due to the difference in 

thicknesses of the films. 

 

 

5.2.4  Tungsten doping in epitaxial VO2 films on TiO2 

Ti and V are neighboring elements on the periodic table, which renders the peaks from these two 

elements very difficult to resolve and analyze using the Rutherford backscattering technique. 

Therefore it is difficult to calculate relative proportions of V and W present in these W-doped 
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VO2 samples on TiO2 substrates. Hence RBS data does not exist for the W-doped VO2 films 

grown on the different TiO2 substrates.  

Figures 5.9-5.11 show the effect of increasing W-doping in epitaxial VO2 films on TiO2 (001), 

(110) and (100) respectively, where (a) always corresponds to the hysteresis of an undoped film. 

 

 

Figure 5.9: Hystereses of W-doped epitaxial VO2 films on  TiO2 (001) as W-

doping increases from (b) through (d).  (a) corresponds to the hystersis in an 

undoped film.  
 

Note that with the highest concentration of W, there is almost no switching, indicating that the 

doped film is metallic even at room temperature. In Figure 5.10, the hysteresis loop narrows with 

increasing W-concentration until the loop completely closes and there is no hysteresis. 
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Figure 5.10: Hystereses of W-doped epitaxial VO2 films on TiO2 (110) as W-

doping increases progressively in (b) and (c). (a)  corresponds to an undoped film 

 

 

Figure 5.11: Hysteresis of (a) undoped and (b) W-doped VO2 film on TiO2 (100) 

 

 

5.3       EFFECT OF W-DOPING ON THERMAL AND NON-THERMAL PHASE 

TRANSITIONS 

 

5.3.1 Introduction  

Understanding, controlling and tuning the VO2 phase transition is important both for the intrinsic 

physics as well as for technological applications. Doping is the parameter that helps us tune the 

width, slope and critical temperature of the hysteresis loops, and acts as a probe to inspect the 

precise mechanism of the phase transition. We have studied both the thermal and photo-induced 

phase transitions of doped VO2 to see the tuning of the energy requirements due to presence of 

the extra charge carriers donated by the dopant atoms. 
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Doping VO2 to understand its electronic properties — a technique that has been critical to our 

understanding of electronic structure and dynamics in studies of group IV and III-V 

semiconductors — apparently has not been applied to this strongly-correlated semiconductor.  

Only by understanding the physics involved in the phase transition, will it be possible to tune the 

thermal and non-thermal phase transition features, such as the critical temperature, width and 

slope of hysteresis in case of thermal switching as well as the threshold fluence and relaxation 

time for optical switching.  

In the case of thermally-induced phase transitions in undoped VO2 films, the modification of 

hysteresis features due to substrate and film morphology has been studied in detail,
175

 and 

analogous effects were studied for photo-induced phase transitions by Lysenko et al.
59, 60

 But 

having an active element like precisely-controlled doping, to vary the critical temperature and 

contrast of switching more accurately and widely is advantageous for several conceivable 

reasons. Similarly, if the threshold fluence (energy requirement) can be tailored (lowered) to 

modify the ultrafast optical response of VO2, it would be desirable for various applications 

ranging from optical switches, ultrafast sensors to high-speed optoelectronics in 

telecommunications frequencies. Apart from the lower power consumption advantage, it would 

provide us more insight regarding the path along which this ultrafast phase transition occurs and 

can be modified, for example if effecting a switch will be possible without causing the structural 

change, and if the switch-off response of VO2 can be tuned or not.  

Doping is used to modify the phase transition,by changing the lattice and electronic structure and 

their subtle balance in VO2. In this work, we have studied the mechanism of the phase transition 

in this altered system by inducing the PT by both temperature and photo-induction. Here the 

effect of doping has been studied using a combination of atomic-resolution microscopy, time-

resolved ultrafast measurements and DFT-calculations, with the goal of understanding, 

controlling and tuning the phase transition. The atomically-resolved Z-STEM coupled with 

EELS spectra helped us determine the location of dopant atoms in the VO2 lattice. For the first 

time, DFT-based calculations are reported for W-doped VO2, showing the relative stability of the 

M1 and R phases before and after doping and accurately predicting the change in transition 

temperature. The optically-induced PT study, with ultrafast pump-probe of varying pump-

fluences show that doped-VO2 switch at substantially lower fluences, indicating that W dopant 
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provides additional conduction-band electrons, thus accounting for softening of the insulating 

state analogous to the effect of temperature in case of Hilton et al.
61

  

5.3.2 Characterization of the films 

W-doped VO2 was grown using the pulsed laser deposition system using a 2 wt % W-doped V 

target to grow W0.006 V0.994O2 films on the C (0001) plane of sapphire.  Figure 5.12 compares the 

morphologies of undoped and doped VO2 grown on the C-sapphire, and shows the transmission 

hysteresis for each case.  For the above mentioned percentage of doping, the transition 

temperature was altered from ~67˚C to ~48˚C. 

 

Figure 5.12: SEM images of (a) undoped and (b) doped VO2 and the white light 

transmission hystereses on (c) undoped and (d) doped VO2 films on C-sapphire 

Figure 5.13 (a) shows the RBS spectra of the W-doped sample on C-sapphire from which the 

ratio of the area under the peaks of W and V yields the doping level of the sample. Figure 

5.13(b) is the XRD of the doped sample and shows no W peak, indicating that the W is either 

distributed randomly in interstitial sites or occupies substitutional positions in the VO2 lattice.  

Thus, apart from the sapphire substrate peak, the XRD spectrum shows only the (010) family of 

VO2 peaks and the sapphire substrate peak. 
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Figure 5.13: (a) Rutherford Backscattering spectrum on W-VO2 film. The area 

under the W and V peaks give the relative concentrations. (b) -2 XRD spectrum 

on the doped film shows no W peak 

In order to experimentally determine where the W atoms are to be found, aberration-corrected 

atomic number contrast scanning transmission electron microscopy (Z-STEM) measurements 

were taken in combination with electron energy loss spectroscopy (EELS). Figure 5.14 the W 

ions (brighter spots due to higher Z = 74 compared Z = 23 of V) evidently show up in the 

column for V ions in the lattice.    

 

Figure 5.14: Z-contrast STEM image of W-doped VO2 showing in conjunction 

with EELS that W substitutes V atomic sites (where, the brightest atomic site in 

Z-STEM and the highest EELS peak is observed). Courtesy: Dr. Gerd Duscher,  

Oak Ridge National Laboratory 



 

 145 

5.3.3 Ultrafast pump-probe measurements 

We apply optical pump-probe technique to investigate the light-induced phase transition in both 

the undoped and W-doped VO2 thin film samples. The transient optical transmission was 

measured on a femtosecond and picosecond time scale by a delayed probe. Fig. 5.15 depicts the 

experimental setup where the femtosecond laser system (Quantronix) was applied as a light 

source. Mode locked pulses from the Ti::Sapphire 86 MHz laser oscillator was amplified by a 

regenerative amplifier at repetition rate of 1 KHz and a pulse duration of ~150 fs duration with 

the central wavelength at 800 nm. The output pulse was split into pump (~95%) and probe (~5%) 

beams. The pump, after passing through the optical delay line, was focused on the sample 

surface using a spherical mirror to a beam spot size of ~90 m. The energy of the output pulse 

before splitting was varied using neutral density filters such that the probe energy was always at 

5 % of the total output. 

 

 

Figure 5.15: Schematic of our ultrafast pump-probe experimental set-up 

 

The normal-incidence transmission measurements were recorded for various pump energies (and 

for the two thin film samples) and the results are shown in Figure 5.16. A subpicosecond 

insulator to metal transition is evident in the abrupt changes in the optical properties of the two 

films. The response comprises not only an ultrafast instantaneous change in the transmission 
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measurement, but also a slow component which is in the hundreds of the picoseconds range. This 

slow component is associated with the recovery process which typically lasts up to hundreds of 

nanoseconds.
60

 

 

Figure 5.16: Ultrafast response of the VO2 transmission in (a) and (b) undoped 

and (c) and (d) doped VO2 films respectively plotted on two different time scales 

According to Kubler et al,
57

 the strong correlation between the two binding electrons of each V-

V dimer can be reinstated on sub-picosecond, for lower fluence or much longer (~ns) timescale, 

for a higher fluence compared to a threshold excitation.   

Dimerization is broken with W replacing one of the vanadium atoms in the pair, resulting in 

softening of the insulating state and hence lowering the energy required to switch doped VO2. 

Also, from the discussion above it seems that, less energy dumped into the system might lead to 

faster recovery because more V-V dimers can be kept intact even when the phase transition has 

been achieved on the electronic scale, especially with contribution of the extra carriers coming 
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from W and the dimerization already destroyed by W-incorporation. Hence we speculate that 

with W-doping, ultrafast switching of VO2 might have lower contrast but possibly the 

modulation in conductivity can be accomplished substantially faster, because of faster relaxation 

times. It will be interesting to see how future broadband THz conductivity measurements on 

doped VO2 films of varying dopant concentrations (and also, varied dopants with different 

carrier contributions) contribute towards our better understanding of this phenomenon. 

5.3.4  First-principles density-functional calculations 

First-principles density functional theory calculations have been performed by Dr. Weidong Luo 

of the Pantelides group to study the relative stability of the low-temperature monoclinic phase 

(M1 phase) and the high-temperature rutile phase (R phase) of VO2 before and after W 

substitution. Density functional theory
229

 was employed within the non-spin-polarized, 

generalized-gradient approximation
230

 plus Hubbard U (GGA+U)
231

  approach and the projector 

augmented-wave method as implemented in VASP.
232-234

 All calculations were carried out with a 

plane-wave cutoff energy of 500 eV. The Hubbard parameter and exchange interaction are 

chosen to be U=4.0 eV, and J=0.7 eV. For undoped VO2, the unit cell of the monoclinic phase 

contains four V atoms and eight O atoms. The primitive unit cell of the rutile phase has 

tetragonal symmetry, which contains only two V atoms and four O atoms. For better 

convergence of the total energy difference with the monoclinic phase, a double unit cell, 

consistent in size and shape with the unit cell of the monoclinic phase, is used for the 

calculations of the rutile phase. An 8×8×8 k-point grid is generated using the Monkhorst-Pack 

scheme. The structures are relaxed so that the residual forces on all atoms are smaller than 5×10
-3

 

eV/Å.  

The theoretical crystal structures of undoped monoclinic and rutile phases are in good agreement 

with experiment. The calculated M1 phase lattice parameters are a = 5.68 Å, b = 4.61 Å, c = 5.45 

Å, with monoclinic angle β = 122.1
o
, which are in excellent agreement with experimental 

structure: a = 5.7529 Å, b = 4.5263 Å, c = 5.3825 Å, and β = 122.602
o
. In the rutile structure, the 

relaxed structure from the calculations corresponds to lattice parameters of a = 4.64 Å, c = 2.80 

Å, in good agreement with experimental values of a = 4.554 Å, c = 2.8557 Å. The calculated V-

V distance in the rutile phase is 2.86 Å, while the alternating short and long V-V distances in the 

low-temperature monoclinic phase become 2.53 Å and 3.18 Å, respectively. These V-V 
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distances are in good agreement with the experimental values as introduced in chapter 1. The 

total energy of the monoclinic phase is calculated to be lower than the rutile phase by 96.9 meV 

per VO2 unit, which is consistent with the stability of the monoclinic phase at low temperature. 

The effects of W substitution doping are also investigated by employing a supercell containing 

96 atoms with formula WV31O64 to compute the total energies of the W-doped monoclinic and 

rutile phases. This supercell corresponds to a W doping concentration of 3.125%. 

The supercell sizes and atomic positions are optimized for both the monoclinic and  rutile phases. 

The total energy of the monoclinic phase is lower than the rutile phase, consistent with the 

stability of the monoclinic phase at low temperature even with the W-doping. The total energy 

difference between the two structures from the calculations is 74.4 meV per W1/32V31/32O2 unit, 

which is smaller compared to the undoped VO2. This result shows that W doping stabilizes the 

high-temperature rutile phase relative to the low-temperature monoclinic phase, consistent with 

the observed reduction of transition temperatures in W-doped VO2 samples. 

Assuming the change of entropy between the monoclinic phase and the rutile phase at the phase 

transition remains the same between the undoped VO2 and the W-doped VO2, the phase 

transition temperature 1,cT  of the doped material can be estimated
235

 as: 1
,1 ,0

0
c c

E
T T

E





  where 

0,cT is the transition temperature of the undoped material, 0E  and 1E  are the total energy 

differences between the M1 and R phases in the undoped and the W-doped materials, 

respectively. An estimated transition temperature of 261 K is obtained for the WV31O64 material 

using the calculated total energy differences and the experimental transition temperature of 340 

K in undoped VO2. The reduction of transition temperature in VO2 with W doping is equivalent 

to 25 K per 1% W doping, which is in excellent agreement with the accepted
236

 and our 

experimentally observed reduction of 27 K per atomic percent of W doping.  The success of this 

first-principle calculations in predicting the shift in transition temperature with a pre-specified 

percentage of doping has been demonstrated for the first time here. It is also significant from the 

perspective of further technological advancements aiming to exploit W-doping to precisely tailor 

VO2 transition temperature. 
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5.4       EFFECT OF TUNGSTEN DOPING ON STRUCTURAL PHASE TRANSITION 

Temperature-variable X-ray diffraction has been employed to study the effects of W-doping on 

the structural phase transition, as was done for undoped epitaxial VO2 in chapter 4.  Figure 5.19 

gives the isoline views of the two transitions in case of undoped and doped films respectively. 

We note that compared to undoped VO2 evolving between two discrete structures with peaks 

occurring at two discrete positions, in case of W-VO2 the monoclinic peak gradually and 

smoothly shifts to the tetragonal peak position as it is heated and vice versa during cooling.  

 

 

Figure 5.16: Three-dimensional isoline view of the evolution of monoclic-rutile-

monoclinic phase transition in undoped (left) and doped (right) VO2 films. Note 

the smooth, gradual change in doped vs a more abrupt change in undoped VO2 
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CHAPTER VI 

ULTRAFAST, COMPACT HYBRID SI: VO2 OPTICAL MODULATOR 

 

ABSTRACT 

As interconnect densities rise, a transition from electrical to optical interconnects becomes 

imperative because of the inherent limitations of copper with respect to loss, speed and crosstalk. 

Si-based optical modulators are CMOS-compatible and therefore are the leading replacement 

candidates. We demonstrate modulation of a Si-based ring resonator coated with vanadium-

dioxide (VO2) as a first step toward achieving compact silicon-compatible optical modulators 

operating at THz speeds. VO2 undergoes a metal-insulator transition (MIT) near 67
o
C, with 

abrupt changes in its dielectric function that are maximized near 1.5 m wavelength. We 

fabricated 3 µm diameter ring resonators coupled to 5 mm nanotapered waveguides on SOI 

substrates and coated the rings with 60nm of VO2 in a dual-layer lithography process. Thermal 

induction of the MIT produced a wavelength shift  at a carrier wavelength of 1337 

nm, and a modal effective index change due solely to VO2 switching nVO2 ≈ -0.053. With its 

low Q-factor and correspondingly shorter cavity lifetime, the VO2-silicon hybrid ring resonator 

is expected to support extremely compact, optically switchable and more robust devices. Finite-

difference time-domain simulations supporting our experimental results are also presented. 

 

6.1      INTRODUCTION TO SI OPTICAL MODULATORS 

 

Within the next decade, it is likely that optical interconnects will replace some traditional 

electrical interconnects in mainstream microelectronics applications. The leading candidate 

technology is silicon photonics, and the most important element of such interconnects is the 

optical modulator. Modulators have been improved dramatically in recent years, with a notable 

increase in bandwidth from the megahertz to the gigahertz regime, but demands of optical 

interconnects technology are significant
237, 238

, and many questions remain unanswered as to 

whether silicon can meet the required performance metrics. Minimizing metrics such as the 

device footprint and energy requirement per bit, while also maximizing bandwidth and 
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modulation depth, is non-trivial. All of this must be achieved within an acceptable thermal 

tolerance and optical spectral width using CMOS-compatible fabrication processes. 

The many application areas for optical interconnects range from high-performance computing 

and data centers down to mobile-to-server interconnects and desktop computers. The dominant 

application for silicon photonics is in optical interconnect technology, and this now is an urgent 

requirement for the industry because recent bandwidth improvements in electronic interconnects 

have only been achieved at the expense of increased latency and power consumption
237

. Other 

applications that may benefit from the success of silicon photonics include environmental 

monitoring, biological and chemical sensing, medical and military applications, and astronomy.  

Optical interconnects could bring several major advantages over their electrical counterparts, by 

allowing optimization of the chip layout while retaining high data rates. They can also introduce 

some of the more conventional advantages of optical technology, such as the reduction of 

electromagnetic interference, cable length and cable weight, and optimized cooling. Finally, they 

may save energy and allow interconnect densities to be reduced.  

According to Reed et al:
238

 ―The ultimate physical manifestation of the silicon photonic device 

would be as part of an optoelectronic integrated circuit formed monolithically in silicon, which 

would combine photonic functionality and electronic intelligence in a seamlessly integrated 

design. Although components continue to be developed, interim solutions such as hybrid 

combinations of different materials aim to fulfill the functions that silicon is currently unable to 

deliver.‖ 

This Si optical modulator has been realized in both monolithic and hybrid forms.  

6.1.1 Optical Modulation 

Optical modulation is one of the main required functionalities for any optical interconnect 

solution. An optical source can be either directly or externally modulated. External modulation 

offers several advantages over direct modulation. For example, the optical source can be 

relatively inexpensive and its operation does not need to be compromised by direct modulation, 

modulation speeds can be higher, and optical isolation and wavelength stabilization need to be 

performed only once for the entire system
239

. Furthermore, a single light source can feed multiple 
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channels via individual modulators, thus reducing the total power budget of the system. An 

optical modulator is a device that is used to modulate or vary the fundamental characteristics of a 

light beam propagating either in free space or in an optical waveguide. These devices can alter 

different beam parameters, allowing them to be categorized as either amplitude, phase or 

polarization modulators. In addition, modulators can be also classified as either electro-refractive 

or electro-absorptive. 

6.1.1.1 Modulation in silicon 

Applying an electric field to a material may change its real and imaginary refractive indices. A 

change in the real part of the refractive index (Δn) with an applied electric field is known as 

electro-refraction, whereas a change in the imaginary part of the refractive index (Δα) is known 

as electro-absorption. The primary electric field effects that are traditionally useful in 

semiconductor materials for causing either electro-absorption or electro-refraction are the Kerr 

effect and the Franz–Keldysh effect. However, it has been shown that these are weak in pure 

silicon at the telecommunications wavelengths of 1.3 μm and 1.55 μm;
240, 241

 alternative methods 

are therefore required to achieve modulation in silicon. One option is thermal modulation owing 

to the large thermo-optic coefficient of silicon, but this is too slow for the high frequencies 

required by modern telecommunications applications.
242

 More recently, attempts have been made 

to investigate alternative modulation mechanisms in other materials potentially compatible with 

silicon technology, to achieve more efficient modulation.  

The most common method of achieving modulation in silicon devices so far has been to exploit 

the plasma dispersion effect, in which the concentration of free charges in silicon changes the 

real and imaginary parts of the refractive index.
241

 Soref and Bennett
240

 evaluated changes in the 

refractive index Δn from experimentally produced absorption curves for a wide range of electron 

and hole densities, over a wide range of wavelengths. They also quantified changes in both the 

refractive index and absorption,
240

 and produced the following expressions to evaluate changes 

in the carrier densities in silicon at a wavelength of 1.55 μm: 

                
 

0.8–22 –18

e h e h     8.8  10     8.5  10   n n n n n              
                

(6.1) 

                  
–18 –18

e h e h     8.5  10     6.0  10   n n              
              

(6.2) 
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where Δne and Δnh are changes in refractive index resulting from changes in the free-electron 

and free-hole carrier concentrations, respectively, and Δαe and Δαh are the changes in absorption 

resulting from changes in the free-electron and free-hole carrier concentrations, However, this is 

accompanied by a detrimental change in intensity due to the absorption of free carriers.
243

 

Electrical manipulation of the charge density interacting with the propagating light is achievable 

through mechanisms such as carrier injection, accumulation or depletion.  

The process of changing refractive index and inducing absorption directly modulates the 

intensity of a propagating mode. There are two ways to convert a change in refractive index into 

intensity modulation. First, the refractive index change can be used to shift the relative phase of 

two propagating waves such that they interfere either constructively or destructively, as is the 

case for a Mach–Zehnder interferometer (MZI). Second, including a resonant structure in the 

device allows the refractive-index change induced in the modulator to change the resonance 

condition, thus allowing the device to be switched between on- and off –resonance states at any 

given wavelength.  

6.1.2  Figures of merit 

There are several figures of merit that are used to characterize a modulator, including its 

modulation speed and depth, optical bandwidth, insertion loss, area efficiency (footprint) and 

power consumption. The modulation speed or bandwidth is one of the most important figures of 

merit for an optical modulator. Modulation bandwidth is usually defined by the spread in 

frequency at which the modulation is reduced to 50% of its maximum value. The speed of a 

modulator is commonly characterized by its ability to carry data without significant distortion at 

a certain rate. High modulation speeds are required for applications in which high data rates are 

required, but for applications like sensing only relatively moderate modulation speeds are 

sufficient.  

Modulation depth — also known as the extinction ratio — is defined as the ratio of Imax, the 

intensity transmitted when the modulator is adjusted for maximum transmission, to Imin, the 

intensity transmitted when the modulator is adjusted for minimum transmission. It is quoted in 
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decibels and expressed as 10.log(Imax/Imin). A large modulation depth is useful for long 

transmission distances, good bit error rates and high receiver sensitivity.  

Insertion loss takes into account the optical power that is lost when the modulator is added to a 

photonic circuit. It is a passive loss that comprises reflection, absorption and mode-coupling 

losses, and is significant because it contributes the overall end-to-end losses in the system and 

therefore sets a limit for the receiver sensitivity that needs to be used. There has been a trend in 

silicon photonics to move to smaller, submicrometer waveguides (mostly in an attempt to reduce 

device size and increase performance). This move has been coupled with an increase in loss that 

mainly results from coupling and greater modal interaction with sidewall roughness.  

Power consumption — the energy expended in producing each bit of data — is particularly 

important. If the power consumption of optical interconnects have to be lower than their 

electrical interconnect counterparts, then the optical modulators will need to reach power 

consumptions of less than 1 pJ bit
–1

. Electro-optic modulators are promising from the point of 

power consumption because of their resonant behavior.  

Another important feature of a device is its footprint. MZI-based modulators tend to require a 

long interaction length (millimeters) for a complete transition between a maximum and a 

minimum of the optical transmission. This hinders high-speed performance and results in greater 

insertion loss, cost and power consumption. The footprints of resonant devices, on the other 

hand, are typically much smaller. This discussion might therefore imply that modulators 

incorporated into resonant structures are superior to those based on MZIs.  

However, there are other factors such as optical bandwidth. This refers to the useful operational 

wavelength range of a device. Resonant-structure-based modulators tend to function over a 

relatively narrow band compared with MZI-based devices.  Narrowband devices are limited in 

their applications, and their main shortcoming is their high sensitivity to typical fabrication 

tolerances and temperature variations. High sensitivity to fabrication tolerance can have a 

significant effect on device operation; in ring resonators, for example, the resonant frequency 

shifts by approximately 0.25 nm for every nanometer increase in the average width of the ring 

waveguide. Achieving the right resonant wavelength can therefore be challenging using the 130 

nm CMOS generation, as three standard deviations of the fabrication tolerance is 40 nm. Electro-
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absorption modulators, on the other hand, are likely to be much less temperature-sensitive than 

resonator refractive devices. 

6.2  SI: VO2 HYBRID OPTICAL MODULATORS 

6.2.1 Introduction  

As discussed above, Si optical modulators have many benefits for integration with 

microelectronic devices but do not offer ideal parameters
244-248

 for operating at high speeds with 

large bandwidths, small footprint and low power consumption, thus motivating a search for 

hybrid materials combinations that could satisfy these requirements.
249, 250

 
251-254

 

Here we report on a Si-based hybrid optical modulator incorporating vanadium dioxide (VO2) as 

the silicon-compatible optical switching element. Using the sub-picosecond optically induced 

metal-insulator transition in vanadium dioxide, the intrinsic limitations of silicon optical 

response (of order GHz)
255-258

 can be overcome while maintaining compatibility with silicon 

microelectronics architectures.  

As discussed earlier as well, the change from monoclinic to tetragonal crystal structure in VO2 

and the corresponding change in dielectric function is shown in figure 6.1(a) and (b).  Vanadium 

dioxide is also readily fabricated on silicon substrates and its phase transition gives rise to an 

abrupt change in its refractive index (~1.96-3.25) in the near infrared, as can be seen from figure 

6.1(c), rendering this material appropriate for integration with silicon-based ring resonators at 

telecommunications frequencies. As we shall show, the hybrid Si-VO2 ring resonator has the 

potential to operate at THz speeds, with large effective refractive index changes for smaller size 

and greater modulation depth, lower Q-factors for shorter cavity lifetimes, wide free spectral 

range, and low power consumption. 

A recent paper has proposed that intensity modulation with speeds up to 1 THz may be feasible 

with a hybrid polymer-silicon waveguide structure based on the all-optical Kerr effect
259

. The 

hybrid Si-VO2 ring-resonator structure, on the other hand, has the potential to operate at even 

higher speeds, by directly utilizing the ultra-fast switching capabilities of VO2. In this manner, 

the hybrid Si-VO2 ring resonator structure should bring about an order of magnitude 

improvement in the speed of Si-based modulators. 
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Figure 6.1: Atomic structure of VO2 in its (a) high-temperature, metallic, 

tetragonal (rutile) phase, (b) low-temperature, semiconducting, monoclinic phase, 

(c) refractive index of VO2 as a function of wavelength in the two phases (After 

Verleur et al
209

). 

Xu et al
255

 used resonant cavities to enhance the sensitivity of silicon photonics to small changes 

in refractive index and simultaneously enable high-speed operation. In a p-i-n configuration, 

utilizing the weak electro-optic (Kerr) effect in Si to induce the refractive index change in the Si 

ring, they demonstrated modulators 12 m in diameter operating at GHz speeds.  

We effected a much larger change in refractive index by covering the rings with VO2 to obtain a 

larger modulation in frequency/wavelength following the relation 2 R n m     where m is an 

integer and the ring resonator has radius R. Given the large n induced by the VO2, the hybrid 

Si-VO2 modulator does not require as large a ring radius as the all-Si device and thus will have 
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an even smaller footprint. A natural consequence of the smaller ring radius is an increase in the 

free-spectral range (FSR), which frees up optical bandwidth and increases the number of optical 

channels that can be carried in the same photonic conduit. Furthermore, because the achievable 

index contrast of VO2 is much larger than that of silicon, the resonator does not require sharp 

resonances (i.e. large Q-factors) to obtain good modulation depths, and thus is inherently less 

sensitive to small environmental fluctuations such as changes in ambient temperature or 

humidity. 

Briggs et al
260

 recently used VO2 as an in-line absorption modulator for waveguides, and 

appropriately suggested that the ultra-low power consumption of such structures would enable 

their application in compact photonic devices.  While this structure has the potential for large 

modulation depths, as well as low power consumption and high-speed operation, modulation 

occurs roughly independent of wavelength, and is thus ineffective for multiplexing or performing 

add/drop filtering operations. Additionally, the substantial VO2 coverages required for larger 

modulation depths lead to significant attenuation of transmitted signals even in the ―ON‖ state. 

The ring resonator configuration, on the other hand, modulates optical signals by means of the 

large change in the real part of the refractive index that accompanies the phase transition in VO2. 

Thus it can be easily adapted into a multiplexed routing system for routing specific wavelengths 

of light on-chip in a simple add/drop configuration.
261

 Furthermore, the ability to define different 

fractional coverages of VO2 coating on the ring naturally promotes highly tunable and flexible 

configurations while maintaining minimal optical attenuation in the ―ON‖ state. 

Although many of the above advantages of using VO2 will be evident only when the phase 

transition is optically induced on an ultrafast time scale, we present here a proof-of-principle 

study demonstrating that the thermal switching of VO2 on top of the rings leads to considerable 

modulation in resonance frequency; this was achieved for rings of  

~ 3 m diameter, which are, from an areal standpoint, more than an order of magnitude more 

compact than those demonstrated by Xu et al.
255

   

Figure 6.2 shows our proposed Si/VO2 hybrid optical modulator. Light is coupled evanescently 

from a bus ridge waveguide to ring resonator fabricated using electron beam lithography on a 

silicon-on-insulator (SOI) substrate.  A thin cover layer of VO2 is deposited on the ring using 
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pulsed laser deposition.  When the temperature of the VO2 is changed to 67
o
C or an optical pulse 

is applied to the VO2, the effective index of the resonator mode is changed based on modulation 

of the VO2 index as indicated by our FDTD simulations. Thus, tuning the refractive index of 

VO2 directly modulates the transmitted intensity of light passing through the device.  

 

 

Figure 6.2 Schematic of (a) proposed device; (b) cross section of the vanadium 

dioxide covered ring. 

 

6.2.2 Simulations of Si-VO2 ring resonator modulator performance 

Finite-difference time-domain simulations shown in figure 6.3 demonstrate the feasibility of our 

proposed structure. The simulated transmission [figure 6.3(a)] and electric field profiles [figure 

6.3(b) and (c)] of a waveguide coupled to a ring resonator (non-optimized design) show that 

when light is coupled into the resonator at the normalized probe frequency ~0.2337 there is 

almost no light transmitted through the modulator. From figure 6.3(a) we observe that, when the 

effective index of the ring is reduced by approximately 0.01, the resonator is detuned from the 

probe frequency and the transmitted output intensity significantly increases. If a 20nm VO2 layer 

is switched completely from the semiconducting to metallic state, we expect a modal index 
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change on the order of 0.1.  Thus from simulated transmission results we see that a change in 

refractive index of 0.01 shifts the resonance by 0.75%, i.e., a shift in wavelength of 12nm near 

 = 1550nm is expected. Our simulated electric field distribution at resonance frequency and 

detuned from it by n = 0.01 is shown in figure 6.3(b) and (c). The parameters of the hybrid ring 

resonator structure were optimized to ensure maximum output-intensity contrast from the 

modulator. 

 

 

Figure 6.3 Simulated (a) normalized transmission spectra demonstrating detuning 

of the resonator from the probe wavelength (dashed line); (b) and (c) Electric field 

profiles at the probe wavelength corresponding to on and off resonance conditions 

respectively. 

 

6.2.3 Experimental Details 

The Si-VO2 ring resonator structure described in figure 6.2 was fabricated on a silicon-on-

insulator (SOI) substrate with 250nm thick Si or device layer and buried silicon dioxide layer of 



 

 160 

1 m thickness. The fabrication of the devices involved two steps of lithography as pictorially 

depicted in figure 6.4.  

 

Figure 6.4: Schematic for the two-step lithography used to make the VO2-covered 

ring resonators. 

In the first step of lithography, we spin-coated 400nm of ZEP on our SOI wafer, and exposed it 

to the electron beam using the JEOL JBX-9300-100 kV electron beam lithography system with a 

special pattern to expose trenches surrounding our desired waveguides and rings. After 

developing and removing the exposed areas of ZEP, we performed a shallow reactive ion etch 

with a C4F8/SF6/Ar mixture to etch the Si in the trenches, using the unexposed ZEP as our mask 

to protect our ring and waveguide. After etching off 250nm of Si, we removed the excess ZEP by 

oxygen plasma clean using the same RIE machine manufactured by Trion. This gave us our 

250nm thick Si ring and waveguide devices on the buried oxide.  Now to cover only the rings 

and not the waveguides with VO2, a second layer of 400nm of ZEP was again spin coated and 

patterned with the Raith eLiNE electron beam lithography tool for squares on top of the rings.  

The same developing procedure as above is then followed by depositing VOx using the pulsed 

laser deposition system. To deposit VOx, a 99.99% pure vanadium metal target was ablated at 



 

 161 

room-temperature in a background of 10mTorr of oxygen, following a standard recipe for pulsed 

laser deposition (PLD) in a high vacuum chamber (Epion PLD-3000) using a KrF excimer laser 

(Lambda Physik CompEx 201 laser, λ = 248nm, pulse repetition rate 25Hz, fluence ~2 J/cm
2
). 

The target–to substrate distance was set at ~8 cm. This initial deposition produced an amorphous, 

oxygen-deficient film of VO1.7 on the rings. 

To keep VOx from being affected by oxygen plasma, the ZEP in this step was chemically lifted-

off using remover PG, acetone and deionized water. The deposited VO1.7 was then annealed at a 

high temperature of 450
o
C and 250 mTorr of oxygen for about 45 minutes to give stoichiometric, 

crystalline and switching VO2. Control samples of plain thin films of VO2 were simultaneously 

made to test the switching characteristics of the deposited VO2 and a typical switching hysteresis 

was obtained as shown in figure 6.5. 

 

 

Figure 6.5: Hysteresis in transmission through a control sample of VO2 

demonstrating good quality of the deposited film. 

Measurements were performed using an optical measurement system, as depicted in the 

schematic and the photograph in figure 6.6. Strip waveguides were made to bring the 
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input/output signal to the edges of the chip, which are cleaved before measurement. Cleaving 

through the waveguides provides a clean edge to minimize reflections. The sample was mounted 

on a brass carrier, which sits on a Y-Z stage for positioning. Tapered fibers carrying light in/out 

of the device are aligned on either side of the chip, mounted on XYZ stages with piezoelectric 

actuators for accurate positioning. A broadband LED source (Agilent 83437A) was used to 

provide an input spectrum ranging from 1200-1700 nm, suitable for the designed wavelength 

ranges of interest. The resulting transmission spectrum was measured by an optical spectrum 

analyzer (Agilent 86140B), in order to locate resonances in our patterned devices. 

 

 

Figure 6.6 (a): Schematic of the optical set-up for observing the resonances; (b) 

Photograph of the actual set-up 

6.2.4  Experimental Results and Discussions 

Using the dual-layer e-beam lithography procedure described in the previous section, we made 

ring resonators with rings of 3 different inner diameters – 3 m, 5 m and 10 m, each coupled 

to 5 mm long waveguides at a distance of ~ 125 nm. One of the prototypical devices with the 

smallest ring diameter is shown in figure 6.7. The resultant gap is smaller than the intended gap 

of 200 nm because the etching procedure did not provide the level of anisotropy expected, but it 

still allowed for coupling of evanescent waves between the waveguide and the ring. The 
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waveguides were 450 nm wide with nanotapers on both sides to 200 nm over the last 500 m to 

facilitate better coupling to the input and output.  

 

 

Figure 6.7: Scanning electron micrograph (SEM) of one of the fabricated devices 

with the smallest ring diameter of 3 m, after the first step of lithography. 

A second layer of squares was patterned on the rings and 60 nm of VO2 was used to coat each of 

the rings and the final structure is as shown in figure 6.8 for three rings of three different sizes.   

 

 

Figure 6.8: SEMs of the rings with three different inner diameters covered with 

VO2. 

In order to demonstrate proof-of-concept switching capabilities for the Si/VO2 hybrid ring 

resonator, we measured the spectral characteristics at temperatures above and below the 
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switching point of VO2.  To accomplish this, the whole chip was heated using a thermoelectric 

Peltier element attached to the bottom of the chip as shown in the schematic and photograph in 

figure 6.7.  Measurements were taken after the sample reached thermal equilibrium.  Due to 

thermal fluctuations, maintaining good coupling was difficult at a high temperature (74
o
C).  This 

introduced additional noise and insertion losses into the measurement. 

Figure 6.9 shows the optical transmission of the Si-VO2 hybrid ring resonator at room 

temperature, for TE polarized light. The spectrum is characterized by resonances with a free-

spectral range of ~52 nm, which is comparable to previous reports of Si resonators of similar 

dimensions
262

. Experimental Q-factors were found to be in the 10
2
-10

3
 range, which corresponds 

to cavity photon lifetimes  as low as 100 fs (which is ultimately required to 

enable THz optical switching in a resonant device).  At room temperature, we monitored the 

most prominent resonance at wavelength ~1337 nm.  After heating the sample to 74
o
C to initiate 

the insulator-to-metal transition in VO2, the resonance blue-shifted to ~1325 nm due to the 

reduced refractive index of the metallic VO2 cladding layer: .  Notably 

however, this blue shift competes with the thermo-optic (TO) effect in silicon (Δn/ΔT ≈ 1.86×10
-

4
 /°C)

263
, which will red-shift resonances under a temperature increase

261
. The overall effective 

index change is represented by , where we know the effective index change 

from the VO2 on the partially covered ring is larger than the opposing effective index change 

from the TO effect due to the blue-shift of the resonance.  
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Figure 6.9: Resonances measured at room temperature using the 3 m rings 

covered with VO2, and the shift in 1337 nm resonance observed with VO2 below 

and above transition temperature. 

Optical or electrical initiation of the VO2 insulator-to-metal transition could dramatically reduce 

the net temperature change and therefore minimize or eliminate the competing silicon thermo-

optic effect altogether. The transition temperature and the shape of the hysteresis in VO2 can also 

be altered by doping, as discussed in chapter 5. Such optimization strategies can be used to 

minimize the thermo-optic effect in silicon and maximize the modulation at resonance by 

reducing the transition temperature of VO2 without degrading refractive-index contrast. Note 

here that optically inducing the phase transition in VO2 will minimize the thermo-optic issue. 

6.2.5  Simulations and Analysis 

In order to estimate the change in neff due to solely to VO2 modulation, we must consider both 

the fractional coverage of VO2 on the ring as well as the competing thermo-optic effect in 

silicon. Thus, we employ the equation:  

                                
 2 2n / n =  f / neff eff TO VO VO effn n   

                                 (6.3) 

where ΔnTO denotes change in effective index due solely to the thermo-optic effect, ΔnVO2 

denotes the change in effective index due to VO2 modulation, and fVO2 represents the fractional 

coverage of VO2 on the ring. A straightforward estimate of ΔnTO can be determined by 
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combining our 52
o
C increase in temperature and silicon‘s well-established thermo-optic 

response, n/T ≈ 1.86 x 10
-4 

/
 o

C 
263

, thus yielding a red-shifting thermo-optic contribution to 

the effective index ΔnTO ≈ 0.01. A theoretical estimate for neff in the denominator of the right-

hand side is determined by simulating our experimentally fabricated structure using the beam 

propagation method (RSoft BeamPROP). Note that for the simulation, we are limited to the 

assumption that VO2 is only on the top of the ring and does not cover the sides or bottom, as is 

the case in the experiment. Considering 3.21 as the real component of the refractive indices of 

the VO2 layer in the semiconducting state, we find the effective modal index to be 2.80, as 

shown in figure 2.8. Experimentally, we know  = neff/neff = -0.009, and thus can rearrange 

equation 6.3 to approximate the value of nVO2 ≈-0.053.  

 

Figure 6.10: Electric field power distribution of the quasi-TE mode in the VO2-

cladded silicon ring at a wavelength ~1330nm for VO2 in the semiconducting 

state.   

For improved understanding and in order to demonstrate the tunability of our hybrid Si-VO2 

device with respect to varying VO2 coverage, we calculate the expected variation in neff for 

thermal modulation of a VO2 covered ring resonator, as shown in figure 6.12. In this calculation 

we assume ΔnVO2 ≈ -0.053 to illustrate the interplay between the thermo-optic effect and the 

fractional VO2 coverage. Due to the competing contributions of ΔnTO (strictly positive) and fVO2 

ΔnVO2 (strictly negative) to the average effective index of the ring, there is a minimum fractional 

VO2 coverage that is required to produce a net blue shift in the resonance position. For example, 

when performing thermal modulation from 25°C to 75°C, a net blue shift in the resonance 

position is only expected for fractional coverage greater than ~1/5. This ‗cut-off coverage‘ is 

naturally influenced by the magnitude of the thermo-optic effect, or net temperature change ΔT, 

experienced during switching. In particular we note that it can be decreased if the required 
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temperature change is reduced, for example by doping the VO2 so that it switches closer to room 

temperature.   

 

Figure 6.11: Expected change in the average effective modal index as a function 

of VO2 coverage on a ring resonator. 

 

CONCLUSION 

The hybrid Si-VO2 ring resonator design portends a new class of Si-based optical modulators 

that are substantially smaller than the state-of-the-art devices based on the electro-optic effect in 

Si. The resonant cavities in the hybrid structures have lower Q-factors, thus leading the way to 

more stable and faster devices. The flexibility of the Si-VO2 device is further enhanced by the 

fact that the fractional VO2-area coverage on the rings can be varied to induce wavelength shifts 

at different resonant frequencies.  Moreover, coating the rings with W-doped VO2 could reduce 

the thermal or electrical energy required to switch the VO2 film, potentially reducing the power 

requirements even further for hybrid ring resonators based on W-doped VO2.  Finally, the 

smaller slope of the hysteretic response in doped VO2 films compared to the abrupt phase change 

in undoped films can be accommodated in analog as well as digital designs. 
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Our ultimate goal is to demonstrate not only decreased size, but also enhanced speed of these Si-

optical modulators by optically inducing the ultrafast phase transition in VO2. Successful 

achievement of this next step would lead to a compact, low-power, ultrafast optical modulator 

well suited for chip-scale optoelectronic integration.  The hybrid Si-VO2 ring resonator thus has 

the potential to be a key building block for next-generation computers and communication 

networks.  However, a key challenge will be to demonstrate that the required fluence for all-

optical switching is sufficiently small that very fast recovery times can also be achieved.  
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CHAPTER VII 

SUMMARY AND CONCLUSION 

 
 

In this dissertation we began with a review of our present understanding about the physics of the 

phase transition in vanadium dioxide. The most prominent unresolved question about the 

mechanism of phase transition in VO2 remains the perennial ‗Mott vs Peierls‘ controversy. In 

attempting to answer these questions, it became increasingly clear that the issues of fabrication 

and characterization of epitaxial VO2 on various substrates, and the effect of various deposition 

parameters on the growth of these films, would have to be addressed.    

An important focus of the dissertation has therefore been to understand and develop pulsed-laser 

deposition processes that produce epitaxial VO2 films on sapphire and titania.  This led directly 

to an experiment in which the complex physics of the VO2 phase transition was addressed by 

independently measuring the structural and electronic phase transitions as a function of 

temperature.  These experiments showed that the hysteresis widths that are the defining signature 

of the transitions are different, implying that the insulator-to-metal and structural phase 

transitions are non-congruent.  These results also suggest both conclusions and avenues for 

further investigation: 

o Since the IMT develops before the SPT to the rutile phase is complete, these 

experiments may constitute further evidence for the existence of a strongly correlated 

metal phase that still has the tetragonal structure. 

o Ultrafast experiments of our collaborators show that the laser-induced insulator-

metal transition drives a coherent phonon associated with the SPT, indicating that the 

laser- and thermally-induced phase transitions are consistent. 

o Given that the energy required to induce the IMT is less than that required to 

complete the SPT, is it possible to switch VO2 on a femtosecond time scale without 

incurring the penalty of a long relaxation time to the initial state? 

Doping has been used to engineer VO2 thin films for applications ranging from thermal 

management films to sensors.  Here we have demonstrated with ultrafast pump-probe 
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measurements that doping of epitaxial VO2 films lowers the fluence requirement for switching. 

These experiments raise the following possibilities that remain to be investigated: 

o The lowering of the threshold for the ultrafast laser induction of the phase transition 

by doping suggests that the next steps should be to measure the dependence of the 

threshold on dopant concentration. 

o Is it possible that the lowering of the threshold for the IMT is sufficient to metallize 

the VO2 in a transient so short that recovery time is also shortened to the picosecond 

regime? 

o What are the effects of other dopants on the ultrafast dynamics (both on and off 

switching) of the phase transition, especially if these dopants (such as Cr) stabilize 

the M2 phase? 

By systematically investigating the effect of various deposition parameters on dopant 

incorporation in both epitaxial and poly-crystalline films, this work has set the stage for these 

further explorations.   

The last chapter of this dissertation was devoted to a novel application of VO2 in an optical 

modulator, the ring resonator. In a proof-of-principle study, we showed that by thermal switching 

of the VO2 cover layer of the hybrid silicon ring resonator, the size of the resonator and its 

photon cavity lifetime can be reduced to a level consistent with THz switching.  This implies that 

hybrid Si:VO2 ring resonators can go well beyond the current state-of-the-art in Si photonics.  

Fulfilling this potential will require all-optical, THz switching, of such devices in the 

telecommunications frequency range of around 1300 and 1550 nm, relying on the large dielectric 

contrast of VO2 in that wavelength regime.  Major challenges in meeting these goals include: 

o Demonstrating optical switching by directly coupling pump light into the VO2 

component of the photonic structures by waveguide rather than free-space optics; 

o Modifying the nanosecond switching-off time for VO2, to make it a truly ultrafast 

switching material, and the optical modulator a THz modulator. This might be done 

by doping VO2 or by applying a bias to sweep away the extra charge carriers created 

to make it metallic. 
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o Showing that switching can be accomplished by lasers and at intensities that would 

typically be available in on-chip photon sources rather than by external lasers as at 

present; and 

o Developing techniques for measuring the output of circuits operating at THz speeds. 

Our demonstration of the application of VO2 to the technologically critical Si optical modulator 

is definitely just the beginning of the exploration and extension of the potentials of this Si:VO2 

hybrid combination to the other important components essential to the realization of a complete 

set of optical interconnects like Mach-Zehnder interferometers (MZI) and nonlinear directional 

couplers (NLDC). 

Two additional areas of investigation suggest themselves that apply to all of the questions raised 

here.  The first is simulating the behavior of plasmonic and photonic devices that incorporate 

VO2 in their structures.  The second is related to is, and it is the experimental determination of 

the dielectric functions of undoped and doped VO2 films, grown epitaxially or in polycrystalline 

form, in both semiconducting and metallic phases. The static dielectric functions will need to be 

measured ellipsometrically, while the dynamical changes in the dielectric function can be 

measured using ultrafast pump-probe ellipsometry. Meeting both of these challenges is a 

formidable task, but one that has been made easier by the results achieved in this dissertation. 
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