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CHAPTER I 

 

PURPOSE AND SPECIFIC AIMS 

 

There are an estimated 13,000 deaths and 18,000 new cases every year for all 

primary malignant brain and central nervous system (CNS) tumors. This translates to an 

age-adjusted incidence rate of about 9 per 100,000 people. Gliomas, primary tumors of 

the supporting tissue of the nervous system, account for 77% of all primary malignant 

brain tumors [1]. The general prescribed treatment for a primary brain malignancy is 

some combination of neurosurgery, chemotherapy and radiation therapy. Image guidance, 

that utilizes a rigid registration between the preoperative magnetic resonance (MR) 

images and physical space of the operating room, is now the standard of care in 

neurosurgical procedures. The fidelity of the image guidance system is known to be 

compromised by the extensively studied phenomenon of brain shift. A considerable body 

of work in literature has focused on solving this problem either through intraoperative 

imaging or by updating preoperative images with mathematical models. The factors that 

affect the magnitude and the direction of tissue deformation cannot be predicted to exact 

precision before the procedure and are often difficult to measure during the procedure. To 

account for this uncertainty, a statistical atlas-based method was described in [2] and was 

used to capture the range of possible solutions. This was work was validated using 

postoperative MR data in [3]. The postoperative MR data encapsulates the general trends 

of deformation of brain tissue under conditions of surgical load. Postoperative MR 

images are typically acquired after a lapse of 24 hours of surgery, during which period a 
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shift recovery is known to occur. As a result, the postoperative measurements are 

typically smaller than what would be observed intraoperatively. Moreover the surgical 

environment is quite dynamic due to active tissue resection and retraction, which affect 

the observed displacements in the region of the craniotomy. The goal of this work was to 

systematically study the differences between the pre-post MR deformation and 

preoperative MR and intraoperative laser range scan (LRS) deformation and devise 

strategies to better adapt the atlas-based model for intraoperative conditions. These goals 

were accomplished through the following specific aims. 

Specific Aim #1:  Improve the subsurface accuracy by incorporating dural septa into the 

atlas-based model. 

a. Develop a strategy to segment the falx cerebri and tentorium cerebelli from MR 

images and incorporate these membrane structures into the brain shift model. 

b. Study the effect on surface and subsurface displacements of incorporating these 

membranes into the atlas-based model. 

c. Systematically study the difference between the pre-post MR deformation and pre 

MR- intraoperative LRS deformation. 

Specific Aim #2: Study strategies to enhance the feasibility of intraoperative 

implementation of the atlas-based method. 

a. Decrease the computational time through automated segmentation of brain tissue 

and the dural septa and compare the shift correction results to manually 

segmented results. 

b. Perform a sensitivity analysis to determine an optimal atlas size and resolution 

while maintaining the fidelity of shift correction results. 
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Specific Aim #3: Simulate the effects of using a retractor during surgery and devise a 

technique for including that information in the model based image update. 

a. Develop an algorithm to update the atlas-based model with local displacements 

occurring due to the use of a retractor device during surgery. 

b. Perform a validation of the above method using simulation and phantom 

experiments. 

Specific Aim #4: Develop a computational tumor growth model to serve as preliminary 

basis for estimation of decompressive stresses associated with tumor resection 

a. Modify the reaction-diffusion equation of tumor growth to account for the 

inhibitory effect of mechanical stress due to the mass effect. 

b. Perform simulation experiments to compute tumor cell concentration and 

resultant stresses and strains for a simplistic one dimensional implementation. 
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CHAPTER II 

 

BACKGROUND 

 

Image guidance found its earliest applications in neurosurgery and today it is the 

standard of care for the surgical treatments of central nervous system neoplasia, epilepsy 

and cerebrovascular disorders. The fidelity of image to physical space registration, that 

drives the neurosurgical image guidance system, is known to be compromised by the 

phenomenon of brain shift, a non-rigid deformation of brain tissue caused by gravity, 

edema, hyperosmotic drugs administered prior to surgery and tissue resection. This 

problem was identified by Kelly et. al. when they observed displacement in metal beads 

implanted in the brain cortex during image guided laser resection of tumors [4, 5]. Hill et. 

al. studied brain tissue deformation between the preoperative MR images and 

intraoperative images after dura opening but before tumor resection and found 

displacements greater than 1 mm [6]. Other systematic studies to characterize this 

deformation were performed with the aid of intraoperative imaging modalities and 

different studies found that the range of deformation for brain tissue could vary from 1cm 

to 2.5 cm from their pre-operative state during surgery [5, 7, 8]. A trained neurosurgeon 

is aware of the misalignment between the surgical field and the preoperative image and 

compensates for it to some extent [9] but it is not always possible to accurately predict 

the amount of shift. 
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Correction of brain shift using intraoperative volumetric imaging 

 Extensive work has been reported in literature to compensate for brain shift using 

various intraoperative imaging techniques— CT, MRI and ultrasound. Lunsford et. al. 

discussed the construction and usage of an operating suite outfitted with an intraoperative 

CT scanner [10]. Images were acquired before, during and after tumor resection to guide 

and evaluate the extent of the resection. Okudera et. al. redesigned the intraoperative CT 

equipment such that the gantry was mobile and the scanner contained a head fixation 

device [11]. This removed the limitation of having to perform the surgery with the head 

placed in the gantry. Each of the two works reported above required a special operating 

room (OR) suite that housed a dedicated CT unit. Installation of multiple units in a big 

hospital could be quite expensive. Butler et. al. overcame that limitation by designing a 

mobile CT unit that could be wheeled to the OR as needed [12]. Despite these 

advancements, the widespread use of intraoperative CT has been hampered by concerns 

for radiation exposure.  

 MRI offers superior soft tissue contrast without the risk of ionizing radiation 

inherent in CT imaging. Acquiring real-time updated MR images during tumor resection 

and other neurosurgical procedures, and using those for guidance has been explored by 

several groups [13-21]. Black et. al. described the construction of a vertical magnet with 

a double doughnut configuration [13]. This provided a vertical spacing for access to the 

site being actively imaged during stereotactically guided biopsy or craniotomy. This 

method had the limitation of confined access to the surgical site. Surgery during active 

imaging in the magnet bore also required use of special non-ferrous instruments. A 

different system described in [17] resolved some of these issues by designing a weak 
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magnet (0.2-tesla) placed in an RF shielded area, which is separate from the operating 

area. The operating table had a head fixation system and could be moved between the two 

areas to operate and image as needed. In this case, only some of the instruments like 

retractors and biopsy cannulas needed to be MR compatible, rest of the instruments could 

be used as usual. This system had its own limitations including the weak field strength 

and additional time spent in patient transit. By contrast, Sutherland et. al. presented a 

system where instead of the patient being moved from surgical area to imaging area, the 

magnet is moved from a storage area to the operating area [18]. Hadani et. al. described a 

compact magnet mounted on transportable gantry that could be stowed away under the 

surgical table when not in use [22]. This system, though more compact than the design of 

Sutherland et. al., as a tradeoff had weaker signal strength and a more limited field of 

view. Installation of a dedicated intraoperative MR unit can be prohibitively expensive, 

especially when adding in the costs of adapting an OR suite to storing and operating the 

imaging equipment and use of non-ferrous surgical instruments. 

 Like MR, ultrasound does not have the risk of ionizing radiation but unlike MR, it 

is a lot more cost efficient and less bulky for placement in the OR. Trobaugh et. al. 

described a method to construct and register 3D ultrasound images to tomographic 

images with a stress towards neurosurgery applications [23]. Comeau et. al. used an 

overlay of 2D ultrasound images on preoperative MR images to give context to the 

structures within the ultrasound images and display the deformation that had taken place 

intraoperatively [24]. Downey et. al. explored the use of 3D ultrasound for guiding 

needles in biopsy [25]. Gobbi et. al. optically tracked the ultrasound probe, created 

visualization of the brain shift and used homologous landmarks to generate a thin plate 



7 

 

spline transform to correct the shift in phantom data [26, 27]. Letteboer et. al. used the 

tracked ultrasound system to measure brain shift intraoperatively before and after dura 

removal in 12 patients [28]. Despite the low cost, the use of ultrasound for delineating 

tumor margins is limited by the low signal to noise ratio.  

 Due to the various limitations associated with each modality, there have been 

difficulties adapting them as means to provide updated information in the OR after shift 

has occurred. Recently, more developments have been made with using the intraoperative 

images as a means to warp the preoperative MR images as opposed to using them directly 

for guidance.  

 

Use of intraoperative volumetric imaging to update preoperative images 

Advances in MRI field have permitted the acquisition of rich information 

preoperatively such as functional imaging, diffusion weighted imaging or angiography. 

Surgical constraints do not permit reacquisition of that data intraoperatively [29]. The 

brain shift literature has shown a general move towards pursuing research to update the 

preoperative images rather than using the intraoperative images directly for guidance. 

Hata et. al. used non-rigid registration between preoperative and intraoperative MR 

images using a mutual information metric [30]. 3D volumetric non-rigid registration does 

not have a closed form solution and can be quite computationally intensive, making it 

unsuitable for use within the surgical timeframe. Biomechanical models using discretized 

methods such as finite element techniques have been explored by many groups for this 

problem. Hagemann et. al. performed a 2D analysis using a linear elastic model driven by 

surface displacements computed using active contours method [31]. They performed 
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analysis on real clinical as well as synthetic data. For clinical data, images were acquired 

preoperatively and postoperatively. Tumor and resection area outlines were manually 

selected by an expert and then a snake algorithm was applied to determine the 

correspondence of the outlines. This correspondence was then used as a boundary 

condition to drive the linear elastic model, which was solved using the Galerkin 

approximation of the finite element method. Ferrant et. al. followed a similar approach in 

3D preoperative and intraoperative (0.5 T magnet) images [32]. They extracted the 

surface of the cortex and the lateral ventricles from the preoperative and intraoperative 

MR images. The boundary surfaces were used with an iterative shape matching algorithm 

to compute the surface displacements. These surface displacements were used as 

boundary conditions in a linear elastic model to obtain the volumetric displacements over 

the entire mesh, which were then interpolated back to the image grid to deform the 

original preoperative image. Wittek et. al. used the non-linear model for large 

displacements to solve the problem [33]. As in the work of Ferrant et. al. the brain 

parenchymal surface, tumor and ventricles were segmented and used to generate a patient 

specific mesh. The displacements on the surface were computed from the use of 

intraoperative imaging and used for computing the displacements over the entire domain. 

Clatz et. al. used a block matching algorithm instead of surface information to drive a 

linear elastic model [34]. Blocks were selected based on their intensity variance and they 

provided subsurface displacement information as well. A hybrid interpolation and 

approximation technique was used to compute the dense displacement field. All of the 

above listed methods require an intraoperative MR scan and as previously discussed, 
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those devices are not widely available in the operating rooms due to high cost of 

operation. 

 

Use of sparse intraoperative data to update preoperative images 

A more cost effective alternative to volumetric intraoperative images is to use 

sparse data, which wouldn’t necessitate the installation of expensive tomographic devices 

in the OR. Stereoscopic cameras and laser range scanners are two devices in this 

category. They have been used by different groups to capture cortical surface data to 

measure intraoperative brain shift. The former involves a pair of charge-couple device 

(CCD) cameras attached to the binocular optics of stereoscopic microscope. A set of 

corresponding points are located between the left and right images and triangulation is 

used from that correspondence to estimate a 3D surface. Skrinjar et. al. and Sun et. al. 

used this technique to compute intraoperative brain shift [35, 36]. The laser range scanner 

(LRS) works on the optical principle of triangulation as well. The surface of interest is 

illuminated with a laser light source and the reflected light is detected by the CCD 

camera, which is located in the scanner. The depth is computed based on the detected 

light pattern and the known geometrical relation between the camera and the laser source. 

Audette et. al. used a laser range scanning device with a non-rigid 2D spline based 

iterative closest point (ICP) algorithm to register the LRS data to the MR cortical data 

[37]. Sinha et. al. used a surface mutual information technique to register the LRS data to 

the MR textured surface [38]. Cao et. al. performed a systematic comparative study of 

different registration techniques to register physical space and preoperative MR image 

space [39]. The authors compared feature point based registration, vessel contour ICP 
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based registration, and the Surface MI method developed in Sinha et. al. [38]. They also 

extended the latter method with an additional constraint of high correspondence 

confidence, and found that overall it provided the most robust registration results. 

Registration between serial LRS images (before and after tumor resection) was studied by 

Sinha et. al. using a non-rigid surface registration technique [40]. This work was 

extended by Ding et. al., who obtained an improvement in mean target registration error 

using a semi-automatic vessel contour registration method [41]. Some of these works 

address subsurface shift by using the sparse surface measurements to drive finite element 

models while some provide updated information through overlays on the surface of the 

MR [36]. Although the largest amount of shift error occurs on the surface, having 

accurate updated subsurface information would be important in surgical decisions to 

delineate the remainder of tumor margin after resection. 

 

Prediction of brain shift using biomechanical models 

The same reasons that make biomechanical models the methodology of choice 

with intraoperative MR, make it a viable avenue to pursue with sparse intraoperative data 

to obtain subsurface shift information. Skrinjar et. al. compared a damped spring mass 

model and a linear elastic model for use in conjunction with their stereoscopic camera 

data, and found that the continuum model was preferable because the spring damping 

model was mesh dependent on model parameters and lacked a good model guidance 

strategy [35]. Warfield et. al. treated the brain tissue as a homogenous linear elastic 

material and drove the model with deformations computed at the surface of the cerebrum 

and lateral ventricles [42]. Bucki et. al. similarly demonstrate the use a displacement 
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driven linear elastic model to correct for shift error [43]. Hu et. al. used a linear 

viscoelastic model to describe the gravity induced brain shift [44]. Joldes et. al. used an 

incompressible non-linear neo-Hookean model [45]. Miller et. al. and Wittek et. al. 

applied the hyperelastic models to address the problem of brain shift [33, 46-48]. 

Although the non-linear models may better reflect the brain tissue mechanics with loads 

similar to that experienced during surgery [49, 50], due to their complexity and 

computational cost, their feasibility of use for model guided surgical system update has 

not been adequately demonstrated. Paulsen et. al. used a biphasic model to describe the 

brain shift in the OR [51, 52]. This model was originally developed by Biot to explain 

soil mechanics by treating it as a porous medium [53]. In a manner similar to the soil 

consolidation, it treats the brain tissue as consisting of two distinct phases. The elastic 

deformations of the solid phase and the pressure gradients of the fluid phase are coupled 

together. Miga et. al. demonstrated the applicability of this work to gravity induced brain 

shift in the OR [54]. This model was purely predictive and the sparse data was used for 

validating the model results. The actual model was driven by simulated forces in the OR 

such as gravity, pressure gradients caused by hyperosmolar medication, edema etc. These 

forces are very challenging to measure intraoperatively and cannot be predicted with 

precision before the surgery. 

 

Use of inverse modeling technique to predict intraoperative brain shift 

In order to account for the uncertainty in intraoperative conditions, atlas-based 

methods have recently been developed [2]. In their work, Dumpuri et. al. built an atlas of 

solutions that accounted for shift caused by gravity, edema, and mannitol with different 
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head orientations, fluid levels, and capillary permeabilities. The inverse solution was then 

reconstructed by minimizing the least squared error between the solutions and the 

measurements made with sparse data. This method was validated with postoperative MR 

data and the predictions were found to work well with the surface and subsurface 

measurements. It was noted that the deformations measured intraoperatively are often 

larger than the postoperative displacements because an estimated 25% shift recovery 

happens in the period between the surgery and time the postoperative scans are 

performed. There is also more variation in the displacements because intraoperatively the 

brain tissue is subjected to forces like resection and retraction. In [2] and [3] the atlas-

based inverse model was developed and the surface and sub-surface accuracy was 

evaluated. In the following sections, strategies to improve the feasibility of intraoperative 

implementation for the atlas-based model will be presented. 
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CHAPTER III 

 

METHODOLOGY 

 

Subsequent to this chapter, a series of studies are performed to test the new 

innovative work that has resulted from this thesis.  Each of these studies share aspects of 

a common framework which has been enhanced through this dissertation.  To provide the 

reader with a complete context of the methodology to include the innovations presented 

in this work, this chapter of the thesis introduces the overall framework and these new 

developments.  The overarching framework steps involved are: image processing, 

geometric model development, biomechanical model realization, parameterization of 

boundary conditions, construction of an inverse approach, and compensation within the 

image-guided surgery platform.  This thesis contributes novel material in the areas of 

geometric model development, analysis of method sensitivity, and biomechanical model 

realization.  In these next sections, we will step-by-step move through the framework 

indicating where the new contributions will be made. 

Image segmentation 

 With respect to the brain shift compensation framework, the approach begins by 

segmentation of the object of interest, i.e. the brain.  The pre-operatively acquired images 

for intraoperative guidance are high resolution T1 weighted MR images. In order to 

construct a geometric model (the next step in the framework), the structures of interest in 

the images must be segmented. The need for anatomic accuracy must be balanced with 

computational efficiency, and for this reason, the structures selected for segmentation are 
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the brain, tumor, and the dural septa.  The segmentation can either be done manually, 

semi-automatically, or automatically. Briefly, the semi-automatic and automatic 

segmentation method for dural septa is described below. 

Semi-automatic segmentation: Falx cerebri and the tentorium cerebelli are the two 

important sub-structures of the dural septa.  In this realization, different segmentation 

techniques were used for each. The falx was segmented manually by drawing on the mid-

sagittal slice of the brain. This is shown in Figure 1 below. 

 

Figure 1 shows the contour of the falx drawn on the brain image slice and the segmented 

falx overlaid with the finite element mesh. The left and the right tentorium were 

segmented separately and this segmentation procedure is shown in Figure 2 below.  

 
Figure 1. Falx segmentation procedure. (a) Manual periphery drawn around falx on 

gadolinium enhanced MRI (b) segmented falx overlaid with the mesh. 
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For each side, a plane that roughly passes through the tentorium region is created, which 

is then manually clipped into a tentorium shaped structure. This clipped plane is then 

morphed into the tentorium shape using the thin plate spline algorithm [55]. The resulting 

surfaces are shown in Figure 2 (e)–(g). 

Automatic segmentation: The automated segmentation algorithm is based on the atlas-

based segmentation approach described in [56]. The segmentation was performed using a 

series of three steps, during which the patient images acquired above are registered to a 

template T1 image of size 256 × 256 × 256 and 1 mm × 1 mm × 1 mm voxel size, for 

which an expertly segmented binary mask and dural septa with method described above 

was available. The steps of the segmentation are described in the schematic below. 

 
Figure 2. Procedure for tentorium segmentation. (a) and (b) show the selection of three points 

used for clipping a plane in the mesh, (c) shows the clipped plane (with those three points) 

overlaid with the mesh and the falx, (d) shows the clipped plane segmented into an 

approximate tentorium shaped structure and (e) shows the segmented plane with the final 

tentorium surface created by morphing the plane in (d) using a thin plate spline algorithm. The 

points on the surface are the target points used to drive the thin plate spline algorithm. (f) 

shows the mesh overlaid with the segmented falx and the tentorium surfaces. The segmented 

brainstem (in blue) and cerebellum (in yellow) are shown for reference, were not modeled 

separately. (g) is the sagittal MRI slices overlaid with the red points of the tentorium surface. 

A good overlap of the points and the hyperintense region indicate the quality of segmentation. 
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The patient image is registered to the template image using a series of two steps: a rigid 

registration and non-rigid registration, resulting in transforms T1 and T2 respectively. 

These transformations are then applied to the pre-segmented image binary mask and 

dural septa template surfaces to provide patient specific structures. 

 In Chapter IV, the manual segmentation of the brain and the semi-automatic 

segmentation of the dural septa will be described and are investigated within the context 

of intraoperative brain shift compensation.  To our knowledge, this is the first 

comprehensive investigation focused at understanding the influence of the dural septa for 

biomechanical model-based techniques in compensation.  In Chapter V, the automatic 

 
Figure 3: The schematic for segmentation of cerebral tissue and dural septa. A rigid 

transformation between an atlas image and patient image (T1) is computed. The 

transformation, T1 is applied to the atlas image and a non-rigid transformation (T2) is 

computed between the rigidly transformed atlas image and the patient image. The computed 

transformations (T1 and T2) are applied to structures derived from the atlas image (binary 

mask and dural septa templates) to obtain the segmentation of patient cerebral tissue and dural 

septa. 
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segmentation algorithm will be described in greater detail. A comparison of these two 

different segmentation methods will also be presented in Chapter V.  To our knowledge, 

this is the first study to evaluate the robustness and sensitivity of an automatic method to 

deploy dural septa. 

Mesh generation 

Once the organ has been segmented form the image volume, the task of 

generating a geometric description for use in numerical integration techniques for partial 

differential equations (e.g. finite element techniques) begins.  Here, brain and tumor 

surfaces were created from the segmented binary masks using the marching cube 

algorithm [57] and smoothed using the Laplacian smoothing function [58]. A mesh 

generating program was used to create a mesh with tetrahedral elements from these 

surfaces [59]. This process is shown in Figure 4 below. 
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The edge length of the element was ~5 mm and refinement was performed around the 

tumor surface. Usually this resulted in ~20,000 nodes and ~100,000 elements. An 

intensity threshold was then used to classify the brain parenchyma elements as being gray 

matter or white matter. 

Overview of the continuum model 

With the geometric model developed specifically for numerical integration 

techniques, the next step in our framework is to select a model that accurately predicts 

how the tissue will deform under various loading conditions specific to neurosurgical 

 
Figure 4: The binary image mask is used to generate the marching cubes surfaces, which 

are then smoothed using a Laplacian function. These surfaces are created for the brain and 

tumor, though the above figure only shows brain surfaces. The brain and the tumor surfaces 

are then appended and used to generate a finite element mesh with the previously 

segmented dural septa. An image intensity threshold is used to classify the elements into 

grey and white matter. The image in second row on far left is a slice of the heterogeneous 

mesh, with blue-falx, cyan-tumor, red-gray matter, green-white matter. 
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tumor resection.  In this work, the poroelastic biphasic model was chosen to simulate the 

brain tissue biomechanics because of its relative simplicity and because it takes into 

account the pressure dynamics of the fluid component. The biphasic model proposed by 

Miga et. al. was used to model the shift deformations [54]. The model was set up in a 

way very similar to that described in Dumpuri et. al. [2]. The equations of biphasic 

consolidation are listed below: 

   
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The term u  is the displacement vector, p is the interstitial pressure, G is the shear 

modulus, ν is the Poisson’s ratio, α is the ratio of fluid volume extracted to volume 

change of the tissue under compression, ρt is the tissue density, ρf is the fluid density, g is 

the gravitational unit vector, 1/S is the amount of fluid that can be forced into a tissue 

under a constant volume, t is the time, kc is the capillary permeability, pc is the non-

homeostatic intracapillary pressure in the event an administered hyperosmotic agent or 

edema event, and k is the hydraulic conductivity. The equation (3.1) describes the solid 

phase of the model, which is described by isotropic linear elastic behavior. The equation 

(3.2) describes the fluid phase of the model, where the pressure gradients are governed by 

Darcy’s law [60]. The material properties were used as stated in Dumpuri et. al. [2] and 

are listed in the table below. 
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Boundary conditions 

While the model of the continuum is critical, the deployment of boundary 

conditions is equally critical.  Following the work by Dumpuri et al. [2], [3], we have 

elected an approach which pre-computes a range of possible brain deformations which is 

subsequently fitted to the intraoperative data.  Central to that strategy is to generate a 

systematic method of varying boundary conditions, i.e. an atlas of deformations.  The 

atlas for this work was constructed for two kinds of deformation: deformation caused by 

gravity, and deformation caused by mannitol - a hyperosmolar drug administered prior to 

surgery to reduce intracranial pressure. The boundary conditions used for building the 

atlases are demonstrated in Figure 5 below. 

TABLE 1 

MATERIAL PROPERTIES 

Symbol Value Units 

Ewhite, Egray 2100 N/m
2 

Etumor 100,000 N/m
2 

ν 0.45 no units 

ρt 1000 kg/m
3 

ρt 1000 kg/m
3
 

g 9.81 m/s
2 

α 1.0 no units 

1/S 0.0 no units 

kwhite 1×10
-10 

m
3
s/kg 

kgray 5×10
-12

 m
3
s/kg 

kc1, white*
 

2.3×10
-9

 Pa/s 

kc2, white* 4.6×10
-9

 Pa/s 

kc3, white* 6.9×10
-9

 Pa/s 

kc1, gray*
 

11.5×10
-9

 Pa/s 

kc2, gray*
 

23.0×10
-9

 Pa/s 

kc3, gray*
 

34.5×10
-9

 Pa/s 

pc -3633 Pa 

*
 These values were used to simulate three different capillary 

permeability values resulting from the administration of mannitol 

and are designed to capture a physiological range. 
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The top row shows the displacement boundary conditions that were solely a function of 

head orientation and would be the same regardless of mannitol or gravity-induced 

deformations.  It reflects the brainstem (blue region) being fixed, i.e. no deformation. The 

region associated with the highest elevation on the brain with respect to the head 

orientation, is designated to be stress free (shown in red). All other nodes on the 

 
 

Figure 5: Boundary conditions for running the model. The columns show three different head 

orientations. The first row shows the displacement boundary conditions, which are same for 

gravity and mannitol atlases. The red region represents the stress free nodes, green region 

represents the slip nodes and blue region is comprised of the fixed brainstem nodes. The next 

three rows represent the pressure boundary conditions for the gravity atlas. The green region 

represents the nodes at atmospheric pressure (Dirichlet conditions) and the blue region 

represents Neumann conditions. The demarcation in this case is determined by the presumed 

level of fluid drainage, and the three different levels were manually designated. The last row 

shows the pressure boundary conditions for the mannitol atlas. The green region represents the 

nodes at atmospheric pressure (Dirichlet conditions) and the blue region represents Neumann 

conditions. The demarcation between the two regions is same as that between the stress free 

and slip nodes for displacement boundary conditions. 
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boundary, including the internal boundaries (the falx cerebri and the tentorium cerebelli), 

are assigned slip boundary conditions, that is, they cannot move in the normal direction, 

but movement in the tangential direction is permitted (shown in green). The demarcation 

between the stress free and slippage region is a function of the head orientation, the 

demarcating plane is perpendicular to the direction of gravity and level is set empirically. 

The next three rows (2,3,4) in Figure 5 show the pressure boundary conditions for gravity 

deformation condition. The highest nodes in this case are designated to be at atmospheric 

pressure (green region) and all other nodes (including the internal boundaries of falx and 

tentorium) are assigned a no-flux pressure condition, that is, there is no pressure gradient 

across these boundaries (blue region). The demarcation between the atmospheric pressure 

and no flux boundary condition is done by the presumed level to which cerebrospinal 

fluid has drained to during the procedure. The mode of deformation is the weight of the 

exposed tissue pulling down on itself. The pressure boundary conditions for mannitol are 

shown in last row. The stress free nodes are assigned to be at atmospheric pressure (green 

region) and all other nodes have a no-flux pressure boundary conditions imposed upon 

them (blue region). The mode of deformation in this case is the interstitial pressure 

drawing the fluid into the leaky capillaries. In order to build the atlas, for each patient, 

different head orientations were used (three of which are represented in the columns of 

Figure 5). Tissue resection was simulated by decoupling nodes belonging to tumor 

material type. For the gravity deformations, different fluid drainage levels were used and 

for mannitol induced deformations, capillary permeability values were varied. The 

number of deformation solutions in the atlas depended on the number of head 

orientations, fluid levels and capillary permeability values. The selection of these 
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numbers was done empirically in the work in Chapter IV, and Chapter V presents an 

extensive sensitivity analysis to determine the atlas size based on these parameters. 

Inverse Model 

Intraoperatively, the atlas that was built above would be used to solve the inverse 

model, driven by sparse data, i.e. LRS data collected during surgery.  By pre-computing 

the solution in this manner, it allows for the rapid solution to intraoperative shift.  To 

guide the selection of the correction, two LRS scans are acquired — one after opening of 

the dura, and another one after tumor resection. The scanner is tracked during the 

acquisition of the textured point clouds and hence the two scans can be easily registered 

to each other by simply putting them in physical space. These two surfaces are registered 

to the MR images using constrained surface mutual information algorithm discussed in 

Cao et. al. [39] or using a simple ICP approach [61]. Homologous points are then selected 

on both the LRS surfaces and these sparse displacements are used to drive the inverse 

model as described next. 

The atlas of displacement solutions computed above are compiled into a matrix E 

that consists of 3N rows and m columns, where N is the number of nodes in the mesh 

(with each node having a displacement solution in the Cartesian x, y, and z directions) 

and m is the number of solutions in an atlas. The sum of squared error between the 

inverse solution and the true solution is defined as following. 

   
T

E E    U U      (3.3) 

In equation (3.3), ɛ is a sum of squared error between the inverse solution ( E  term) and 

the true measured displacements, U . E is the matrix of atlas solutions and   is an m×1 
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vector of weighting coefficients. The weighting coefficients can be obtained by the least 

squared error approach. 

 
1

T TE E E


 U       (3.4) 

Since the displacement data over the entire domain is unknown and only sparse 

measurements are available, the above equation is rewritten as follows: 

 
1

T TM M M


 sparseu      (3.5) 

In equation (3.5), M is the matrix of sparse atlas solutions which is 3ns rows and m 

columns, ns being the number of sparse points or previously computed homologous 

points on the LRS surfaces, where the deformation is known from the tracking of  the 

pre- and post- resection LRS. 
sparseu  is a 3ns vector of those measured displacements. 

Unfortunately, equation (3.5) is an ill-posed problem. The first term in equation (3.5) is 

usually near singular because the number of atlas solutions exceeds that of the number of 

sparse homologous points. This can be resolved by either using a regularization 

parameter or constraining the problem. In a method employed by Clements et. al. [62] the 

Tikhonov regularization method was used to solve a similar problem. The sum of squared 

error residual can be redefined as follows: 

2 2
M    sparseu      (3.6) 

In the above equation, β is the Tikhonov factor. The least squared error can be computed 

as follows: 

 
1

2T TM M I M


  sparseu     (3.7) 

I  is an m×m identity matrix and β
2
 is the Tikhonov factor, which in Joachimowicz et. al. 

[63] is estimated as 
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 2 Ttr M M        (3.8) 

λ is a weighting factor and the second term is the trace of the matrix TM M . The 

Tikhonov factor makes the first term in equation (3.7) in the parenthesis invertible, 

making it possible to solve that equation. 

 A second approach involves constraining the problem and using an optimization 

technique to solve equation (3.5). This technique was used in Dumpuri et. al. [64] and the 

following constrains were implemented to solve the problem. 

2

1

min  s.t. 0 1 and 1
m

i i

i

M  


   sparseu   (3.9) 

The first constraint ensures that all the weighting coefficients are positive. Hence 

if a solution in an atlas deforms in the incorrect direction, the objective function would 

weigh that solution lower instead of assigning a higher negative regression coefficient. 

The second constraint ensures that the solution is always interpolated, and not 

extrapolated. The implementation of the active set method for quadratic programming in 

the Optimization Toolbox of MATLAB® (Mathworks Inc) [65] was used to solve this 

linear constrained least squared error problem.  When comparing the performance of 

approaches associated with (3.8), and (3.9), it was found that while the data fit with the 

former was quite nice, often in regions distant from the craniotomy, the results were less 

satisfying while the latter approach was more consistent and robust. 

 

 



26 

 

Overall pipeline 

With the framework components designated above, the schematic of the entire 

process, beginning from image acquisition to the model update in the OR, is shown in 

Figure 6. 

 

The atlas-based method for brain shift correction shifts a bulk of the computational 

burden pre-operatively. After the MR image acquisition, the image is segmented into the 

brain, tumor and the dural septa and the mesh is constructed. The atlas of deformations is 

then built by perturbing the boundary conditions and the driving conditions. 

Intraoperatively, sparse data is acquired for the craniotomy region using a tracked laser 

 
Figure 6: Schematic showing the overall procedure for model updated image guided 

neurosurgery. The workflow is broadly divided into pre-operative and intra-operative phases. 

Most time intensive steps are done in the pre-operative phase, i.e. image segmentation and 

mesh construction. Boundary conditions for each deformation type and generation of model 

solutions to form the atlas are also done pre-operatively. Some representative displacement 

boundary conditions are shown- with blue region being the fixed brainstem, red is the stress 

free region and green represents the slippage boundary conditions. The dural septa (not shown 

in the figure) are included in the model by assigning them the slippage boundary condition. 

The intraoperative phase consists of sparse data collection (laser range scans), registration of 

those scans to image space and obtaining measured shift through homologous points on the 

pre- and post-resection scans. In the last step, those measurements are used to fit the 

displacement atlas using an inverse model to obtain the final model updated results. 
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range scanner before and after tumor resection. Homologous points are selected on these 

serial scans and used to drive the inverse model to obtain deformation information for the 

entire domain.  

One important novel advance in this thesis is towards taking into account surgical 

retraction forces. Briefly, the integration of retraction into the atlas-based inverse model 

pipeline is described below. 

 

In this case, the pre-operative deformation atlas is built as before. Intraoperatively, before 

the deployment of the retractor, the retractor location is marked with a tracked tool tip, 

and used for estimating the retractor boundary conditions (in the future, this could be 

 
 

Figure 7. Schematic showing the overall workflow. Preoperatively, the deformation atlas is 

computed for gravity. Intraoperatively, first sparse data set is acquired after dura removal 

using a device such as a tracked LRS (measurement marked as LRS I in figure). After the 

location where the retractor will be placed is determined by the surgeon, the location can be 

digitized and used to estimate the retractor boundary conditions and construct a retraction 

model prediction. This can be linearly superposed with the gravity atlas computed pre-

operatively to create an atlas that contains solutions both with and without retraction. After 

retractor deployment, another sparse data set can be acquired. Displacements can be computed 

from the two surfaces through homologous points and used to inversely solve the model. 
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replaced by having a tracked reference on the retractor like any other guidance tool). The 

mesh nodes are split along the retractor plane. The side in contact with the retractor is 

prescribed slip boundary conditions, where the movement in the direction normal to the 

plane is restricted, whereas it is free to move in tangential directions. The other side of 

the retractor is prescribed type II stress free boundary conditions. The retractor solution is 

then appended to the pre-computed deformation atlas. The advantage of the active 

solution of retraction in the OR is that the location of retraction is not known prior to 

surgery and the forward model solution restricts the atlas size. Homologous points on the 

serial laser range scans before and after retraction are then used to drive the inverse 

model. 

Chapter VI will present this new methodology of retraction integration within the 

atlas-based modeling paradigm in greater detail along with validation experiments of the 

technique in simulation and phantom data. As with retraction, the deformations 

associated with resection and tumor debulking are also very challenging.  Chapter VII 

presents a novel yet preliminary work on accounting for resection forces. 
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CHAPTER IV 

 

MANUSCRIPT 1 — Intraoperative Brain Shift Compensation: Accounting for 

Dural Septa 

 

Original manuscript: I. Chen, A. M. Coffey, S. Ding, P. Dumpuri, B. M. Dawant, R. C. 

Thompson, and M. I. Miga, IEEE Trans Biomed Eng, vol. 58 (3), pp. 499-508, Mar, 2011 

 

 

Introduction and Significance of Study 

 Human brain has a complex anatomy, with structures that affect the biomechanics 

under surgical loads. In mathematical modeling, the need for accuracy must be balanced 

with computational efficiency. In this work, a need for modeling the dural septa — the 

falx cerebri and the tentorium is explored and a technique for segmenting and modeling 

these structures is studied. Factors such as head orientation, amount of fluid drainage or 

mannitol administered influence the magnitude and direction of brain shift, but are 

difficult to measure or quantify to exact precision in the operating room. The atlas-based 

modeling method was developed to account for the uncertainties in the intraoperative 

environment and the accuracy of the method was demonstrated with pre- and post-

operative data analysis [2, 3]. In this work, the analysis of the atlas-based method was 

performed with sparse intraoperative data acquired using a tracked laser range scanning 

device. This work presents some critical observations about the difference of behavior 

between pre- and post-operative and pre- and intraoperative brain shift analysis. 
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Abstract 

Biomechanical models that describe soft-tissue deformation provide a relatively 

inexpensive way to correct registration errors in image guided neurosurgical systems 

caused by non-rigid brain shift. Quantifying the factors that cause this deformation to 

sufficient precision is a challenging task.  To circumvent this difficulty, atlas-based 

methods have been developed recently which allow for uncertainty yet still capture the 

first order effects associated with deformation. The inverse solution is driven by sparse 

intraoperative surface measurements, which could bias the reconstruction and affect the 

subsurface accuracy of the model prediction. Studies using intraoperative MR have 

shown that the deformation in the midline, tentorium, and contralateral hemisphere is 

relatively small. The dural septa act as rigid membranes supporting the brain parenchyma 

and compartmentalizing the brain. Accounting for these structures in models may be an 

important key to improving subsurface shift accuracy. A novel method to segment the 

tentorium cerebelli will be described, along with the procedure for modeling the dural 

septa. Results in seven clinical cases show a qualitative improvement in subsurface shift 

accuracy making the predicted deformation more congruous with previous observations 

in literature. The results also suggest a considerably more important role for 

hyperosmotic drug modeling for the intraoperative shift correction environment.  

 

Introduction 

Image guidance found its earliest applications in neurosurgery and it is the 

standard of care today for the surgical treatments of central nervous system neoplasia, 
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epilepsy and cerebrovascular disorders. The fidelity of image to physical space 

registration is central to image guided neuronavigation and is known to be compromised 

by the phenomenon of brain shift, deformation of brain tissue caused by gravity, edema, 

hyperosmotic drugs administered prior to surgery, and tissue resection. Systematic 

studies to characterize this deformation have been performed with the aid of 

intraoperative digitization and have found that the range of deformation for brain tissue 

could vary from 1cm to 2.5 cm from their pre-operative state during surgery [5, 7]. A 

trained neurosurgeon is aware of the misalignment between the surgical field and the 

preoperative image and compensates for it to some extent [9] but guidance systems 

capable of compensation would be very desirable. 

Extensive work has been reported in the literature to compensate for brain shift. 

One strategy is to use intraoperative imaging techniques such as CT [12], MRI [5], and 

ultrasound [28]. Although intraoperative imaging captures a great deal of anatomical 

shift, the wealth of preoperative data cannot be updated during surgery.  As a result the 

brain shift literature has also demonstrated a need for preoperative to intraoperative data 

registration via computational approaches. Hata et. al. used non-rigid registration 

between preoperative and intraoperative MR images with a mutual information metric 

[30]. Biomechanical models using discretized methods (such as finite element 

techniques) have been explored by many groups for this problem. Hagemann et. al. 

performed a 2D analysis using a linear elastic model driven by surface displacements 

computed using active contours method [31]. Ferrant et. al. followed a similar approach 

and extracted the surface of the cortex and ventricles for the preoperative and 

intraoperative MR images and used an iterative shape matching algorithm to compute the 
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surface displacements [32]. Wittek et. al. obtained displacement information from 

intraoperative MR data and obtained volumetric displacement by applying a nonlinear 

model [33]. Clatz et. al. used a block matching algorithm instead of surface information 

to drive their computer-model based approach [34]. It should be noted that all of the 

above listed methods require an intraoperative MR scan, and while all are important 

contributions, those devices are not widely available due to high cost of operation, a cost 

that could represent monetary, radiation exposure (in case of CT), and/or 

cumbersomeness. 

A more cost effective alternative to volumetric intraoperative images is to use 

sparse data, which does not require the installation of expensive tomographic devices in 

the operating room (OR). Stereoscopic cameras and laser range scanners are two devices 

in this category and have been used extensively to capture cortical surface data. The 

former involves a pair of charge-couple device (CCD) cameras attached to the 

stereoscopic microscope. Triangulation is used between corresponding homologous 

points to estimate the surface coordinates.  The latter method involves a laser source and 

CCD camera.  It works by propagation of a laser onto the brain surface and with its 

acquisition via CCD, followed by the triangulation of the range of the surfaces.  The 

method further involves the systematic translation of the laser light and a complete 

surface description of the object of interest can be constructed.  With respect to the stereo 

method, Skrinjar et. al. and Sun et. al. have used this technique to compute and 

compensate for intraoperative brain shift [35, 36]. With the laser range scanner (LRS) 

method, there have been several investigations involving the evaluation of rigid 

registration [37-39] and the measurement of non-rigid brain shift [40, 41]. 
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While methods to measure the cortical surface are improving, having accurate 

updated subsurface information to delineate the remainder of tumor margin prior-to, 

during, and after a resection would dramatically improve the utility of image-guided 

surgery systems.  Interestingly, for the same reasons that make biomechanical models a 

compelling methodology with intraoperative MR data, they are a promising avenue to 

pursue for an intraoperative updating strategy using sparse data. In the past decade, the 

growth in this literature and approach has been quite significant. Sun et. al. used a 

stereoscopic microscope to estimate the 3D cortical surface and registered it to the 

preoperative image for guidance in the OR [36]. Paul et. al. used automatic landmark 

extraction for registering the stereoscopically reconstructed surfaces and computing the 

non-rigid displacements [66]. Dumpuri et. al. used a statistical model driven by sparse 

laser range scan data to correct for brain shift [2]. 

While many approaches are being pursued, the work reflected in this paper uses 

the approach described by Dumpuri et. al. [2]. In this approach, an atlas of solutions that 

accounts for shift caused by gravity, edema, and mannitol with different head orientations 

and capillary permeabilities is computed. As a general characterization, the inverse 

solution is reconstructed by minimizing the least squared error between the solutions and 

the measurements made with sparse data. This method has been validated thus far using 

pre-operative and immediate-postoperative MR data and the predictions were found to 

account for 85% of subsurface shift using surface data only (similar accuracies have been 

found for subsurface predictions) [3]. 

While this work was quite compelling, it still does not represent an assessment of 

the technique during the intraoperative state.  In this study, a modified approach to the 
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atlas correction is investigated within the context of true intraoperative shift correction.  

Results are reported that reflect the difference in the magnitude of deformation occurring 

intraoperatively as opposed to the pre- and post-operative measurements used in the 

Dumpuri et al. study.  While intraoperative MR imaging capabilities are not available at 

our institution, valuable insight into the degradation of an intraoperative updating process 

can be observed when compared to the findings of Dumpuri et al. 

Another important contribution of this paper is studying the sensitivity of brain 

shift compensation to models that include the dural septa.  Briefly, the dura, the 

outermost meningeal layer, reflects inwards in four places in the brain forming the falx 

cerebri, tentorium cerebelli, falx cerebelli and diaphragma sellae. These strong structures 

support the brain parenchyma, preventing large deformation in the contralateral 

hemisphere, hindbrain and midbrain. Our hypothesis is that with sufficient understanding 

of the first order deformation effects in the brain, surface shift measurements in the 

craniotomy region are sufficient to compensate for volumetric shift.  In this work, it is 

suggested that the dural septa are crucial components for accurately predicting subsurface 

shift.  To lend rationale, Ferrant et. al. found that the greatest subsurface error in their 

model lied at the mid-sagittal plane, the location of the rigid membrane, falx cerebri [32]. 

In their approach to correction, a homogeneous elastic model was used with no 

accounting of dural septa.  Similar reports using intraoperative MR have also shown that 

relatively little deformation is observed in the regions around the midline, tentorium and 

contralateral hemisphere [67]. In previous work by Miga et al. [68] the modeling of the 

falx cerebri was described and was utilized in  [2, 3, 69]. However no systematic study 

has been reported that demonstrates the influence of these septa on the performance of 
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intraoperative shift compensation. The goal of this work is to systematically study the 

effect of the dural septa on subsurface brain shift and assess the need to model these 

structures within the context of acquired intraoperative shift data in seven cases. 

 

Methods 

Data acquisition 

Preoperative MR tomograms were acquired for seven patients using a 1.5 T clinical 

scanner a day prior to undergoing tumor surgery. The acquired images were T1 weighted 

and Gadolinium enhanced with voxel size of 1mm × 1mm × 1.2mm. Demographic and 

other intraoperative information is compiled in Table 2. 

 

Patient consent was obtained prior to surgery for this Vanderbilt Institutional Review 

Board approved procedure. After the craniotomy, an optically tracked commercial LRS 

device (RealScan3D USB, 3D Digital Corp, Bethel, CT) was used to obtain cortical 

surface scans immediately after the opening of the dura and after tumor resection.  

TABLE 2: Patient information. Tumor locations L: left or R: right signify the hemisphere, followed 

by the lobe- F: frontal, P: parietal or T: temporal. Tumor pathologies described by the grade 

(ranging from I to IV) and types- olig: oligodendroglioma, astro: astrocytoma, met: metastatic 

tumor, GBM: glioblastoma multiforme. Orientation: IS- refers to rotation about inferior-superior 

axis (eg. IS 90 deg reflects patient’s head parallel to the floor) 

# Age 

(yrs), 

gender 

Tumor 

location 

Tumor 

pathology 

Lesion size 

(cm) 

Craniotomy 

diameter 

(cm) 

Head 

orientation in 

the OR 

1 22,F L,F Gr(II) Olig. 5.2×6.2×6.0 7.7 IS 90 deg 

2 52,M L,F Astro. 4.9×5.6×5.0 8.3 IS 90 deg 

3 58,M L,P Met. 3.7×3.5×4.1 4.7 IS 135 deg 

4 77,M L,T Gr(IV) GBM 3.4×3.6×2.0 5.0 IS 90 deg 

5 75,F L,T Gr(II) GBM 5.0×5.0×5.0 6.1 IS 90 deg 

6 46,M R,T Gr(IV) GBM 3.0×3.0×3.0 4.3 IS 90 deg 

7 27,M L,T Gr(IV) glioma 6.9×4.0×4.0 9.0 IS 90 deg 
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The scanning device shown in Figure 8 records the cortical surface shape and color 

texture of the surface which facilitates the intraoperative measurement of brain shift. This 

has been reported extensively in [39, 40] 

 

Mesh Construction 

Patient specific meshes were created individually from MR images of the patient. 

Brain and tumor surfaces were manually segmented and subsequently processed using 

the marching cube algorithm [57] with a Laplacian smoothing function. [58]. Once the 

surfaces were extracted, a tetrahedral mesh was created [59] that typically consisted of 

approximately 20,000 nodes and 100,000 tetrahedral elements. An image-to-grid 

intensity threshold method was then used to classify the brain parenchyma elements into 

gray and white matter [70]. 

Falx cerebri and the tentorium cerebelli are the two important sub-structures of 

the dural septa and different segmentation techniques were used for each of them. The 

falx was segmented manually and meshed in a manner similar to that described in Miga 

et. al. [68]. Briefly, using the sagittal view of the patient’s image volume, a patient-

 
 

Figure 8. Left- laser range scanner performing a scan during surgery. Right- scanner 

mounted on arm being tracked by camera on right 
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specific plane is created. This plane is then used to split the tetrahedral domain and then 

boundary conditions consistent with the constraint of the falx are applied (discussed in 

greater detail in section II. C). This procedure is shown in Figure 9.  

 

With respect to the tentorium region, the invagination encloses the straight sinus which is 

visualized as a high intensity region in the gadolinium enhanced images. In this region, a 

limited series of points were selected and a 3D thin plate spline algorithm was used to 

morph a plane into a tentorium surface, which was then smoothed. The tentorium 

cerebelli in the contralateral hemisphere was segmented similarly. Those surfaces were 

then used to create tentorium structures in the finite element mesh. This procedure is 

demonstrated in Figure 10 (a)–(e).  

 
Figure 9. Falx segmentation procedure. (a) Manual periphery drawn around falx on 

gadolinium enhanced MRI (b) segmented falx overlaid with the mesh. 



38 

 

 

The quality of the segmentation was assessed visually by overlaying the tentorium points 

on the gadoliunium enhanced images as shown in Figure 10 (g). These overlays suggest 

that the overall patient specific segmenation of the tentorium is representative for 

modeling purposes. 

 

Computational Model and Atlas Generation 

The biphasic model proposed by Paulsen et al. was used to model the shift 

deformations [71]. The model was set up similar to that described in Dumpuri et. al. [2] 

and the details are provided here for completeness. The equations of biphasic 

consolidation are listed below: 

 

 
Figure 10. Procedure for tentorium segmentation. (a) and (b) show the selection of three 

points used for clipping a plane in the mesh, (c) shows the clipped plane (with those three 

points) overlaid with the mesh and the falx, (d) shows the clipped plane segmented into an 

approximate tentorium shaped structure and (e) shows the segmented plane with the final 

tentorium surface created by morphing the plane in (d) using a thin plate spline algorithm. 

The points on the surface are the target points used to drive the thin plate spline algorithm. 

(f) shows the mesh overlaid with the segmented falx and the tentorium surfaces. The 

segmented brainstem (in blue) and cerebellum (in yellow) are shown for reference, were 

not modeled separately. (g) is the sagittal MRI slices overlaid with the red points of the 

tentorium surface. A good overlap of the points and the hyperintense region indicate the 

quality of segmentation. 
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The term u  is the displacement vector, p is the interstitial pressure, G is the shear 

modulus, ν is the Poisson’s ratio, α is the ratio of fluid volume extracted to volume 

change of the tissue under compression, ρt is the tissue density, ρf is the fluid density, g is 

the gravitational unit vector, t is the time, kc is the capillary permeability, pc is the 

intracapillary pressure, and k is the hydraulic conductivity. The material properties were 

similar to the ones used in Dumpuri et. al. [2] and are listed in Table 5 in the Appendix A. 

The collection of deformations computed using different driving conditions for 

the model is termed an atlas. The atlas was constructed for two kinds of deformation: 

deformation caused by gravity and deformation caused by mannitol, a hyperosmolar drug 

administered prior to surgery to reduce intracranial pressure. The boundary conditions 

used for building the atlases are described in [3]. For the above two deformation types, 

three different displacement boundary conditions were used — fixed, stress free, and 

slippage. The brainstem experiences no deformation and is assigned fixed Dirichlet 

boundary conditions. The highest region on the head, according to the head orientation, is 

designated to be stress free. All other nodes on the boundary, including the internal 

boundaries (the dural septa), are assigned slip boundary conditions, that is, they cannot 

move in the normal direction, but movement in the tangential direction is permitted. The 

demarcation between the stress free and slippage region is done according to the head 

orientation, the demarcating plane is perpendicular to the direction of gravity and level is 

set empirically. The pressure boundary conditions were set by the presumed level to 
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which cerebrospinal fluid has drained during the procedure. With respect to our methods, 

multiple fluid drainage levels are included as part of the deformation atlas strategy 

described by Dumpuri et al. in [3]. The nodes exposed to atmospheric pressure are set as 

a Dirichlet boundary condition and the nodes submerged in fluid are subject to Neumann 

boundary conditions, i.e. non-draining surfaces. In order to build the atlas, for each 

patient, 60 different head orientations were used (three of which are represented in the 

columns of Figure 11). Since the entire head is draped except for the craniotomy region, 

it makes it challenging to ascertain the exact head orientation. An approximation of the 

head orientation can be obtained from the surgeon’s pre-operative plan. From that base 

orientation, vectors can be populated around that base orientation to deal with the various 

changes to OR patient configuration (e.g. in our experience, the surgeon can often elect to 

change bed tilt and even roll during a case). Tissue resection was simulated by 

decoupling nodes belonging to tumor material type. For the gravity deformations, three 

different fluid drainage levels were used, counting for mesh with and without tumor 

resection, resulted in 360 solutions. For mannitol induced deformations, three different 

capillary permeability values were used with the 60 head orientations, also resulting in 

360 different solutions in the atlas. This resulted in a combined atlas with 720 gravity and 

mannitol concatenated solutions. In addition, the deformations were further investigated 

with the construction of two atlases for shift compensation use, one that contained the 

dural septa and one that did not. 
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Inverse Model 

Although this is a retrospective study, all the atlas construction work listed above 

would be part of the preoperative planning and would be performed prior to surgery.  

Intraoperatively, the atlas that was built prior to surgery would be used to solve the 

inverse model, driven by sparse data, i.e. LRS data collected during surgery.  Since 

model solutions are performed preoperatively, the intraoperative compensation is very 

fast and takes into account the variability within the OR (e.g. uncertain cerebrospinal 

fluid (CSF) drainage levels, varying head orientations as a patient’s bed is rotated, etc).  

 
Figure 11. Schematic showing the overall procedure for model updated image guided 

neurosurgery. The workflow is broadly divided into pre-operative and intra-operative phases. 

Most time intensive steps are done in the pre-operative phase, i.e. image segmentation and 

mesh construction. Boundary conditions for each deformation type and generation of model 

solutions to form the atlas are also done pre-operatively. Some representative displacement 

boundary conditions are shown- with blue region being the fixed brainstem, red is the stress 

free region and green represents the slippage boundary conditions. The dural septa (not 

shown in the figure) are included in the model by assigning them the slippage boundary 

condition. The intraoperative phase consists of sparse data collection (laser range scans), 

registration of those scans to image space and obtaining measured shift through homologous 

points on the pre- and post-resection scans. In the last step, those measurements are used to 

fit the displacement atlas using an inverse model to obtain the final model updated results. 
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For the correction process, two LRS scans need to be acquired, one after opening of the 

dura and another one after shift has occurred. The scanner is tracked during the 

acquisition of the textured point clouds and hence the two scans can easily be registered 

in the same physical space.  These two surfaces are registered to the preoperative MR 

images using constrained surface mutual information algorithm discussed in Cao et. al. 

[39]. The schematic of the entire process is shown in Figure 4. Homologous points are 

then selected on both the LRS surfaces and these sparse displacements are used to drive 

the inverse model as described below. 

The displacement solutions computed above are compiled into an atlas. Since the 

true deformation over the entire domain is unknown, only sparse comparisons can be 

evaluated. An inverse solution is obtained by the minimization of least squared error 

between the predictions and the measurements. However this would result in an ill-posed 

problem since the number of atlas solutions far exceeds the number of sparse 

homologous points. This can be resolved by constraining the problem as done in [64], 

resulting in the following equation. 

2
min s.t. 0 and 1

1

m
M

i i
i

   


u
sparse


  (4.3)

 

The atlas matrix M consists of 3ns rows and m columns. Here ‘ns’ is the number of 

sparse points or previously computed homologous points on the LRS surfaces, where the 

deformation is known from tracking the pre- and post- resection LRS, with each point 

having a displacement solution in the Cartesian x, y, and z directions. sparseu  is a 3ns 

vector of those measured displacements.   

This method is different than what was reported by Dumpuri et al. in [3] where no 

constraints were applied. The first constraint ensures that all the weighting coefficients 
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are positive. Hence if a solution in an atlas deforms in the incorrect direction, the 

objective function would weigh that solution lower instead of assigning a higher negative 

regression coefficient. The second constraint prevents the solutions from being 

extrapolated, which can cause inaccuracies in the predicted displacements in the far field. 

The implementation of the method of Lagrange multipliers in the Optimization Toolbox 

of MATLAB® (Mathworks Inc) was used to solve this linear optimization problem.  This 

is in contrast to the Dumpuri et al. technique which used a Tikhonov-like regularization 

approach.  While the analysis by Dumpuri et al. using pre- and post-MR data did not 

reflect far-field inaccuracies in the displacements, this was not found to be the case when 

using the larger and more considerable dynamic shift data from the intraoperative 

environment. 

 

Results 

Shift was measured across seven cases through homologously selected points on 

registered pre- and post-resection LRS images. The average and maximum magnitude of 

measured shifts for each of the patients at the homologous points are listed in Table 3. 

For completeness, the measurements of shift as provided by the pre- and post-MR study 

by Dumpuri et al. study [3] are provided for reference. 
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Percentage shift correction was measured using the formulation listed in Dumpuri et. al. 

[2]. 

1 100%
Shift error

Shift correction
Shift magnitude

 
 
 

  

  (4.4) 

In the above equation, shift error is the error in measured and estimated points. The 

average shift correction for the mesh without the inclusion of the dural septa is 68±17% 

and for the mesh with the septa is 75±12%.  

 

TABLE 3: The average and maximum measured intraoperative displacements. The 

measured shift from pre- and post-operative MR analysis from [3] is also listed for 

comparison. The analysis was unavailable for patients 3 and 7. 

# 

Number  of 

measurement 

points 

Intraoperative LRS: average 

shift ± standard deviation 

(maximum) in mm 

Postoperative MR: average 

shift ± standard deviation 

(maximum) in mm from [20] 

1 16 22.9±6.3 (28.9) 8.2±2.2 (12.2) 

2 22 14.3±5.1 (29.1) 9.2±1.3 (11.6) 

3 24 6.8±2.4 (10.5) - 

4 18 8.6±0.6 (9.7) 5.4±0.9 (7.0) 

5 22 13.0±2.1 (15.9) 5.3±0.8 (6.8) 

6 17 8.6±2.0 (13.2) 5.3±0.9 (7.1) 

7 15 8.8±2.0 (12.1) - 

 

 
Figure 12. Shift recoveries for seven patient cases for meshes with and without dural septa. 

Also shown are the shift recoveries obtained for the corresponding pre- and post-operative 

MR data from [3]. That analysis was unavailable for patients 3 and 7. 



45 

 

In order to determine if there was a statistically significant difference in the shift 

corrections predicted by using the mesh with or without the dural septa, paired testing 

was performed. The expected value and variance were unknown due to the small sample 

size, hence Lilliefors test was used to determine whether the distribution was normal 

[72]. The test supported the hypothesis that the intraoperative data for both the models, 

with and without the dural septa, followed a normal distribution (p>0.05) and hence the 

student t-test was used for the paired comparison. The results of the student t-test 

indicated that there was no statistical difference (p>0.05) between the reconstructed atlas 

solutions for the mesh with or without dural septa. 

For completeness, the shift recoveries obtained from the pre- and post-operative 

MR analysis [3] are also shown in Figure 12 for the corresponding patients. That data 

was available for five of the seven cases. The average shift correction across the five 

cases was 85±1%. It is evident that larger shift recovery was obtained with the post-

operative MR data as compared to the intraoperative data. The variance amongst cases 

was also smaller for the post-operative MR data. 

Patient 1 and Patient 3 in Figure 12 were noteworthy for the large difference in 

shift correction between the septa and septa-free models and the smallest shift correction 

overall, respectively. These two patient cases are discussed in greater detail. Whereas the 

average difference in percent shift correction in the remaining six patient cases for the 

mesh with and without the dural septa was 5±3%, the difference in shift correction for the 

Patient 1 was 28%. The average error in magnitude for the measurement points for the 

mesh without dural septa was 11.5±4.9 mm and for the mesh with the septa was 5.4±3.9 

mm. The average angular error was 21.0±11.4° and 7.1±6.2°, respectively. The 
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measurement vectors and the predicted vectors for the two models are shown in Figure 

13.  

 

Though deformation magnitudes (as opposed to the magnitude of the error vector) were 

similar for both cases the angular error was much larger for the mesh without dural septa. 

Patient 3 had the lowest overall shift correction. The average error in magnitude 

for the measurement points for the mesh without septa was 3.4±1.9 mm and for the mesh 

with septa was 3.1±2.2 mm. The average angular error was 31.9±24.9
o
 (maximum of 

96.0
o
), and 25.3±24.8

o
 (maximum of 85.2

o
), respectively. Figure 14(a) shows the overlay 

of the undeformed mesh with the post resection LRS surface and the measured 

displacement vectors on the selected points.  

 
Figure 13. Measured shift vectors (black) and predicted shift vectors (magenta) for the 

concatenated atlas using the method of constraints for above: model without dural septa and 

below: model with dural septa. Vectors are overlaid with the pre-resection (top) and post-

resection (bottom) LRS surfaces. 
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The tumor was located in the parietal lobe and the patient was in prone position in the 

OR, with their head tilted approximately 45° to the dorsal-ventral axis. The selected 

points for shift measurement could be divided into three distinct clusters (marked I, II, 

and III in the figure) based on their location and direction of movement. All three clusters 

were moving towards the center of the resection hole. In the plane that it is being viewed, 

region I points slide along the falx, region II points move downwards towards the bottom 

of the plane and region III almost move inwards into the plane. Figure 14(b) shows the 

predicted vectors for the concatenated atlas for the mesh without septa and Figure 14(c) 

shows the same for the mesh with septa. The movement towards the center of the hole 

was not well modeled with the current boundary conditions and is focus of future work. 

 
Figure 14. (a) The mesh surface overlaid with the post resection LRS and measurement 

vectors. The homologous points are divided into three different regions, I, II and III. Pre-

resection LRS overlaid with the measurement vectors and the predicted vectors for the (b) 

model without dural septa and (c) model with dural septa for the concatenated atlas. 
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The average angular and magnitude error for each of the regions for both models are 

summarized in Table 4. 

 

In general, in both cases, angular error is highest for region III. The applied forces 

(pressure gradients or gravity) to the model pull the tissue downwards while resection 

forces pull the tissue inwards. The latter effect is not captured well by the model. There is 

no statistical difference in the angular error for regions II and III (p>0.05). However, 

region I points have considerably less angular error for the mesh with the dural septa than 

the one without (p<0.05). Region I points are most proximal to the falx, and the sliding 

along the falx plane is captured by the mesh where the falx is accounted for in the model. 

A slice of the model deformed image for each model for Patients 1 and 3 are shown in 

Figure 15.  

TABLE 4: Errors in magnitude and angle for the two models using the method of constraints 

for the concatenated atlas. I, II and III represent the three regions for selected points shown in 

Figure 14(a) 
 Mesh without dural septa Mesh with dural septa 

 Magnitude (mm) Angle (degrees) Magnitude (mm) Angle (degrees) 

I 2.5±0.6 29.2±11.1 1.8±0.6 13.7±8.6 

II 2.9±1.5 13.4±9.9 2.9±2.0 15.1±12.8 

III 6.0±1.9 71.0±19.8 5.8±2.4 66.6±18.9 
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Figure 15(a) and 15(b) show the mesh without and with the septa respectively for Patient 

1. The hyperintense regions in the center of the image represent the sinus enclosed in the 

falx cerebri. For the mesh without the septa, there is considerable movement in the 

position of the falx, whereas the midline stays steady for the mesh with the septa. The 

overall subsurface shift prediction for the mesh with and without the dural septa is 

noticeably different for this case. Figure 15 (c) and  15 (d) shows the images updated 

with the inverse solution for both models respectively for Patient 3. Similar to Patient 1, 

movement is seen along the midline region along falx and the tentorium in the mesh 

without the septa whereas those regions do not move as much where the dural septa were 

modeled. The movement in the midline is greater for Patient 1 without dural septa than 

 
Figure 15. Preoperative image (red) overlaid with model deformed image (green) for the 

model without dural septa, (a) and (c), and the model with dural septa, (b) and (d). (a) and (b) 

are the results for Patient 1 and (c) and (d) are results for Patient 3. 
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Patient 3 without septa because the overall shift is much higher. During surgery the 

vicinity of the tumor would be the region of greatest interest for the surgeon and accuracy 

of the guidance system in that region would be most critical. To examine the difference in 

subsurface shift caused by the introduction of dural septa in the model, color coded 

vector differences in the shift predictions of the tumor boundaries for the two models are 

shown in Figure 16.  

 

Each row shows two different views for a different patient dataset — Patient 2 in top row 

and Patient 4 in bottom row. As seen in Patient 2, the subsurface differences can be as 

large as 9 mm. As is the case for comparison presented in Figure 8, the difference in the 

 

Figure 16. Color coded vector difference in predicted displacements for model with 

and without the dural septa. The top row figures are representation for Patient 2 and 

lower row is representation for Patient 4. Two different camera angles have been shown 

for each patient for better visual clarity. 
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magnitude of shift prediction is higher when overall measured shift was larger. Also, in 

each case, largest magnitude of difference in shift prediction is seen at the bottom of the 

tumor cavity, away from the brain surface. 

 

Discussion 

The fidelity of an intraoperative guidance system in neurosurgery is compromised 

due to shift in the OR caused by various factors such as gravity, hyperosmolar drugs, and 

edema. A considerable body of work in literature has focused on solving this problem 

through intraoperative imaging or updating preoperative images with mathematical 

models. This paper builds upon the previous work of Dumpuri et. al. [2, 3], where an 

atlas of solutions was used in order to compensate for the inherent uncertainty in the OR. 

That work was validated using postoperative MR scans and this work explores some 

differences between postoperative and intraoperative data. A novel model employing the 

two major dural membranes- falx cerebri and tentorium cerebelli was described and 

systematically studied in this work. No statistical difference was observed in the overall 

surface shift correction when comparing the results for the mesh with and without the 

dural septa. However when the dural septa are accounted for in the model the subsurface 

deformations are in greater compliance with the observations made in previous literature. 

This point while subtle is quite important.  The results of our statistical test comparing 

percent surface correction in Figure 12 indicate that the fitting process with or without the 

septa is statistically the same.  This does not say that difference in subsurface shift is 

negligible, in fact quite the contrary in light of Figure 16.  This emphasizes that for our 

hypothesis to be true, in practice, accurate modeling is important.  Based on the literature, 
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Maurer et. al. [67] observed that the deformation was very small in the midline, tentorial, 

and contralateral hemisphere regions and Ferrant et. al. [32] noted that the largest errors 

in model predictions were seen in the midline region. Our dural septa models are 

consistent with these findings. The lack of intraoperative MR data makes it difficult to 

perform a more quantitative comparison of the subsurface shift across all cases. However 

the analyses presented in Figures 14 (b) and 14 (c) and Table 4, as well as the qualitative 

results presented in Figure 16, strongly support the need to account for the septa in the 

model. 

Some interesting differences were observed between the postoperative MR results 

reported by Dumpuri et. al. [3] and the intraoperative results presented in this paper. 

Dumpuri et. al. reported an average shift correction of 85% across 8 patient cases 

(ranging from 83% to 89%). In this work, the average shift correction across 7 patient 

cases was 75% (ranging from 53% to 90%) for the mesh with dural septa. The reason for 

better shift correction in postoperative MR analysis could be the nature of the data. The 

postoperative MR images were acquired a day or two after surgery and some shift 

recovery occurred during that period and thus the measured shift magnitudes presented 

were smaller when compared to the intraoperative measurements presented in this work. 

This can be seen by comparing the magnitude of the measured shift for intraoperative 

LRS data and postoperative MR data in Table 3 that demonstrates recovery ranges 

between 35-65%. The correlation between measured deformation magnitude and shift 

correction was to some extent observed within the intraoperative data as well. The 

inclusion of dural septa in the model has a larger impact on the predicted results if the 

observed shift was larger. For instance, in Figure 15, there was a more dramatic 
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movement along the mid-sagittal region in the case with the larger measured shift. In 

Figure 16 the difference in predicted shift was larger between the model with and without 

the dural septa for the case with larger measured shift as well. The intraoperative data 

also reflects more dynamic interactions such as tissue resection. The postoperative data 

might yield better results because it does not have the irregularities caused by local 

effects nor the considerably larger extent of shift. The cases with the best shift correction 

had the smallest variation within the measurement vectors i.e. they were of similar 

magnitude, moving uniformly in one direction. Patient 3 had a large variability and 

performed poorly with shift correction whereas Patient 4 had a smaller variability in 

measurements and performed quite well with the shift prediction. The results presented 

suggest that more considerable resection holes affect the angular variability of shift and 

provides impetus for a more accurate tissue resection model. Our current strategy to 

simulate tissue resection involves decoupling the tumor nodes in the mesh to reproduce 

the effect of cavity collapse. However qualitative results such as those presented in Table 

4 and Figure 14 indicate the need for a better strategy. In our future work, we plan to 

explore other strategies to better account for resection forces. 

Another interesting difference between the postoperative data and the 

intraoperative data is the contributions from various mechanisms in the atlas. The 

concatenated atlas in the work of Dumpuri et. al. was formed from three different atlases: 

(i) tumor being resected and gravity alone causing the shift, (ii) tumor being resected and 

mannitol alone causing the shift, and (iii) tumor being present and having a swelling 

effect and the rest of the brain parenchyma under the effect of mannitol. The contribution 

of these atlases to the overall solution was 45%, 46% and 9% respectively, with similar 
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distributions being observed across all patients. For the intraoperative data 

reconstructions presented here, the averaged distributions of the weighting coefficients 

between the gravity and mannitol solutions across all solutions are 16% and 84% 

respectively. Figure 17 is an example from 3 patients.  

 

For four of the seven cases, the mannitol solutions exclusively contributed to the 

reconstructed solution. For two cases mannitol solutions were the major contributors and 

for the last case, gravity was the major contributor. Intraoperatively, while more 

variability is illustrated, the reconstructed solutions weigh the mannitol solutions more in 

six of the seven cases than the analysis in [3]. In addition, the magnitude of the regression 

coefficients was comparatively smaller in the gravity atlas. In the OR environment, 

various forces — gravity, mannitol, edema, tissue resection- act concurrently on the brain 

and it is difficult to sequester the contribution of each of these forces individually.  In 

some respect, the results presented here agree with intuition.  Given that mannitol is 

administered just prior to opening the dura in significant dosages to decompress the brain, 

shortly thereafter, tissue manipulation occurs to visualize the tumor, and generation of a 

resection hole and possible collapsing of surrounding tissue then follows, it is not 

surprising that mannitol plays a more considerable role in the regression coefficients, and 

 
Figure 17. Distribution of weighting coefficients for the gravity and mannitol solutions for 

patients 1, 4, and 7 obtained by optimizing the least squared error in intraoperative data. 
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that the variability in these coefficients across patients is much more distributed. The 

Dumpuri et. al. study also reported a contribution from mannitol but not to the degree this 

study does. In this study, the magnitude of deformations intraoperatively could just not be 

matched by a model experiencing CSF drainage only.  This could be due to the manner in 

which it is modeled but the results of a more pronounced reliance on mannitol-based 

regression coefficients for the intraopertive environment is consistent with surgical 

practice and would seem to speak to its influence in the reconstruction. 

 

Conclusions 

A retrospective study of correcting brain shift using sparse intraoperative LRS data to 

drive a finite element model based atlas was presented in this work. The method corrects 

for an average of 75% of the brain shift caused by various factors in the OR.  While 

intraoperative MR imaging was not available, the results were consistent with a pre- and 

post-MR validation study conducted previously.  When comparisons to a previous study 

were made, it was found that the intraoperative data contained far more dynamic 

interactions such as collapse due to tissue resection and considerably larger deformation.  

It was found that guiding shift compensation with surface data only requires a model that 

incorporates neuroanatomical subsurface structures such as the dural septa.  Lastly, to our 

knowledge, the apparent need for the modeling of hyperosmotic drugs to account for 

intraoperative shift is a unique finding by our team.  These results were found within the 

pre- and post-MR analysis by Dumpuri et al. and are further confirmed here for the 

intraoperative environment. 
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Appendix A 

The material properties in equations (1)-(2) are listed below. 

 

 

TABLE 5 

MATERIAL PROPERTIES 

Symbol Value Units 

Ewhite, Egray 2100 N/m2 

Etumor 100,000 N/m2 

ν 0.45 no units 

ρt 1000 kg/m3 

ρt 1000 kg/m3 

g 9.81 m/s2 

α 1.0 no units 

1/S 0.0 no units 

kwhite 1×10-10 m3s/kg 

kgray 5×10-12 m3s/kg 

kc1, white*
 2.3×10-9 Pa/s 

kc2, white* 4.6×10-9 Pa/s 

kc3, white* 6.9×10-9 Pa/s 

kc1, gray*
 11.5×10-9 Pa/s 

kc2, gray*
 23.0×10-9 Pa/s 

kc3, gray*
 34.5×10-9 Pa/s 

pc -3633 Pa 

*
 These values were used to simulate three different capillary permeability 

values resulting from the administration of mannitol and are designed to capture a 

physiological range. 
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CHAPTER V 

 

MANUSCRIPT 2 — Sensitivity analysis and automation for intraoperative 

implementation of the atlas-based method for brain shift correction. 

 

Manuscript in preparation: I. Chen, A. L. Simpson, K. Sun, B. M. Dawant, R. C. 

Thompson, and M. I. Miga, Int J Comput Assist Radiol Surg  

 

 

Introduction and Significance of Study 

In this work, techniques that could potentially reduce the pre-operative 

computational time for creating a patient specific mesh and building the deformation atlas 

are studied. Previous work in Chapter III described a completely manual method for 

segmenting the brain and tumor tissue and a semi-automatic method for the dural septa 

[73]. In this work, an automated segmentation technique is described for segmenting the 

brain and the dural septa, structures that are used to create the finite element mesh. The 

automatic segmentation and shift correction were compared to those using manual 

segmentation and the effect on shift correction is presented. The constituency of the 

deformation atlas was previously determined by empirical testing. Variables in building 

the deformation atlas include head orientation, CSF drainage levels, and capillary 

permeability values. While an ideal atlas would consist of an infinite number of solutions, 

finely sampling every possibility, for computational feasibility a balance must be struck 

in terms of how finely the space must be sampled. For instance, in previous work in 
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Chapter III, 60 head orientations were selected by sweeping a 20° cone around an 

estimated base orientation, with the computational time ranging from 10–18 hours. If 

similar results could be obtained by sampling the space more coarsely, the number of 

solutions and hence the computational time would be reduced. In this work, the effect of 

atlas size and resolution is evaluated systematically by a sensitivity analysis using 

simulation experiments and clinical data. 

 

Abstract 

Purpose: The use of biomechanical models to correct the misregistration due to 

deformation in image guided neurosurgical systems has been a growing area of 

investigation. In previous work, an atlas-based inverse model was developed to account 

for soft-tissue deformations during image-guided surgery. Central to that methodology is 

a considerable amount of pre-computation and planning.  The goal of this work is to 

evaluate techniques that could potentially reduce that burden. 

Methods: Distinct from previous manual techniques, an automated segmentation 

technique is described for the cerebrum and dural septa. The shift correction results using 

this automated segmentation method were compared to those using the manual methods. 

In addition, the extent and distribution of the surgical parameters associated with the 

deformation atlas were investigated by a sensitivity analysis using simulation 

experiments and clinical data.  

Results: The shift correction results did not change significantly using the automated 

method (correction of 73±13%) as compared to the semi-automated method from 

previous work (correction of 76±13%). The results of the sensitivity analysis show that 
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the atlas could be constructed by coarser sampling (six fold reduction) without substantial 

degradation in the shift reconstruction, a decrease in preoperative computational time 

from 13.1±3.5 hours to 2.2±0.6 hours.  

Conclusions: The automated segmentation technique and the findings of the sensitivity 

study have significant impact on the reduction of pre-operative computational time, 

improving the utility of the atlas-based method.  The work in this paper suggests that the 

atlas-based technique can become a ‘time of surgery’ setup procedure rather than a pre-

operative computing strategy. 

 

Introduction 

It is now recognized that intraoperative neurosurgical guidance systems can be  

compromised by non-rigid brain deformations caused by gravitational forces, 

administration of hyperosmotic drugs like mannitol, swelling, resection and retraction 

forces [5, 7]. This is the brain shift problem. The misregistration between physical and 

image space that is associated with this problem usually ranges from 1 to 2.5 cm [5, 7, 

73]. Various techniques to correct for this misregistration span from acquisition of 

volumetric intraoperative images like computed tomography (CT) [12], magnetic 

resonance imaging (MRI) [5], ultrasound [26-28], and  predictive biomechanical 

modeling [2, 32-34, 54].  While several medical centers have adopted the direct usage of 

intraoperative imaging units for guidance, there is still a need to register the wealth of 

preoperative data that cannot be obtained during surgery (e.g. diffusion tensor MR or 

functional MR). Methods to achieve this during the procedure have been forthcoming and 

represent data-rich frameworks [30, 32, 34]. However, concerns like exposure to ionizing 
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radiation for CT and prohibitively high expense for MRI have led others to pursue more 

cost efficient methods using sparse intraoperative imaging devices like stereoscopic 

operating microscopes [36], laser range scanner devices [37, 40], and ultrasound imaging 

[26-28]. These devices provide information at the exposed craniotomy surface, some 

subsurface information in the case of ultrasound, and are often coupled with computer 

models (either biomechanical or interpolative) to provide deformation information in the 

rest of the domain [2, 3, 27, 73]. 

The physical properties that govern the brain tissue deformation have been 

described using different constitutive laws – linear elastic [32, 34], non-linear viscoelastic 

[33], and biphasic [54]. While the complex non-linear model may describe the physical 

interaction of tissue more accurately, the complexity may come at the cost of 

computational time, which may be a hindrance in its implementation in real time. In 

addition, from the systems level perspective, often the error between linear and nonlinear 

models is small compared to the errors associated with tracking and segmentation.  

Nevertheless, regardless of the choice of model, with sparse intraopertive data, there is 

considerable uncertainty in the determination of factors that cause deformation to exact 

precision in the OR. These factors can be the head orientation, level of cerebrospinal fluid 

(CSF) drainage, and the alteration of capillary permeability resulting from administration 

of mannitol. To circumvent these problems, Dumpuri et. al. proposed an atlas-based 

approach where the forward model for deformation was solved for different permutations 

of driving conditions [2]. Minimization of the least squared error between the model 

predictions and the sparse intraoperative measurements provided the final solution. In this 

particular work, the biphasic model based on Biot’s consolidation theory [53] was used to 
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describe the physical behavior of brain tissue. Discretized and solved with the Galerkin 

weighted residual method in finite element analysis, this model was ideally suited for the 

atlas-based approach because of computational simplicity while taking into account the 

role of interstitial pressure driving fluid movement in brain tissue. 

The atlas-based method was validated with pre- and post-operative MR data. The 

atlas-based model provided an average of 85% surface and subsurface shift correction 

[3]. The method was also evaluated with intraoperative data in [73] and the shift 

correction was found to be an average of 75%. The reason for the degradation of 

correction in intraoperative data was the larger magnitude of shift correction and the 

more dynamic interactions like resection forces in the OR, as compared to the post-

operative MR, where the time elapsed after the surgery allowed for shift recovery.  There 

was also a suggestion in [73] that mannitol played a more considerable role in the 

magnitude of deformation whereas it would not have been as pronounced in the Dumpuri 

et al. study [3]. The work presented in [3] and [73] was a retrospective analysis and 

important issues of intraoperative implementation were not addressed in that work. For 

instance, both the works described segmenting the brain and building a patient specific 

mesh from the MRI scans acquired for every patient. In addition, the work in [73] 

suggested the need to model the dural septa, membranous structures like the falx cerebri 

and the tentorium cerebella, that limit the movement of brain in the contra-lateral 

hemisphere and the cerebellar region of the brain. The method of segmentation of the 

brain and the dural septa was a manual and tedious process. While the mesh creation and 

the atlas building computations are done pre-operatively, the time window between 

image acquisition and surgery can be a few hours. For the method to be feasible for 
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clinical implementation, automating the processes to reduce computation time may be 

critical. This paper will look at an automatic segmentation method for the cerebral tissue 

and the dural septa and compare the results to the manual segmentation. 

The atlas of deformations in [3] was formed with gravity, mannitol, and swelling 

driving conditions and consisted of 501 solutions. The results in that paper showed a very 

minor role of swelling in the reconstructed solutions, and the analysis in [73] only 

consisted of gravity and mannitol solutions, with and without tumor resection — a total 

of 720 solutions. While shift reconstruction in the OR using the atlas takes under a 

minute, the pre-operative time required to build the atlas on a parallel cluster ranges from 

10 to 18 hours, depending on the number of solutions. The size of the atlases in the above 

two papers was not extensively analyzed.  One aspect to this paper will be to investigate 

the level of detail used in the atlas-based method within the context of shift prediction 

and determine what resolution of atlas is necessary. Building atlases with fewer solutions 

could have a significant impact on the computation time to construct the atlas. In this 

paper, results of systematic sensitivity studies towards the automation of our 

segmentation approaches and the effects of atlas resolution will be investigated with 

respect to the prediction accuracy of our approach. 

 

Methods 

A semi-automated pipeline that consists of manual image segmentation, semi-

automated dural septa segmentation, mesh generation, atlas building using forward model 

runs of the linear elastic biphasic model, and inverse solution using optimized linear least 

squared error between atlas predictions and sparse measurements was presented in [73]. 
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The first four steps are performed pre-operatively after the patient MRI images are 

acquired. The inverse model is solved intraoperatively after acquisition of sparse serial 

LRS scans before and after tumor resection. The schematic of the process is shown in 

Figure 18 below. 

 

The biphasic consolidation model [53] was used to describe the deformation behavior of 

the tissue. The details about the model, boundary conditions, and material properties are 

shown in Appendix B. The inverse model is solved intraoperatively by an optimized least 

squared minimization between the model predicted displacements and displacements 

 
 

Figure 18. Schematic of the pipeline for model updated image guidance system. The pre-

operative computations are typically performed the day before surgery and take on the 

order of several hours of computation. The intraoperative computations are performed 

during the surgery and provide updated information in real time. 
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measured through homologous point selection in sparse intraoperative data [73]. The 

process of mesh construction and atlas generation is automated, but in [73], the 

segmentation steps were performed manually. The typical MRI image volume acquired 

had 180 slices in that study and the manual segmentation process was tedious and could 

take a few hours. In the following sections an automated segmentation process will be 

described and a comparison between the results of automatic and manual segmentation 

will be presented. 

 

Data 

The data consists of five image sets acquired pre-operatively for patients 

undergoing brain tumor removal surgery shown in Table 6 below.  

 

The scans were acquired using 1.5-T clinical scanner. The voxel size for all patients was 

1 mm × 1 mm × 1.2 mm and each scan consisted of 180 to 190 slices. 

 

Automated Segmentation 

The automated segmentation algorithm is based on the atlas-based segmentation 

approach described in [56]. The segmentation was performed using a series of three steps 

during which the patient images acquired above are registered to a template T1 image of 

TABLE 6: Patient information about cases used in the study. Tumor locations L: left or R: 

right signify the hemisphere, followed by the lobe- F: frontal, P: parietal or T: temporal.   

# Location Age, 

gender 

Lesion size (cm) Average 

measured 

shift (mm) 

# selected 

points 

1 L,F 22F 5.2 x 6.2 x 6.0 23.6 16 

2 L,F 52M 4.9 x 5.6 x 5.0 15.1 22 

3 L,P 58M 3.7 x 3.5 x 4.1 8.5 24 

4 L,T 77M 3.4 x 3.6 x 2.0 9.2 18 

5 L,T 75F 5.0 x 5.0 x 5.0 13.0 22 
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size 256 × 256 × 256 and 1 mm × 1 mm × 1 mm voxel size, for which an expertly 

segmented binary mask was available. The steps of the segmentation are described in the 

schematic below. 

 

The first step consisted of a rigid registration (T1) between the patient image and the 

template atlas image based on the mutual information metric [74]. The second step 

consisted of a non-rigid registration (T2) between the patient image and the transformed 

template image from first step using the adaptive basis algorithm driven with the mutual 

information metric [75]. In the third step, the transformations obtained from the 

registrations (T1 and T2) are applied to the template mask to obtain a segmentation mask 

 
Figure 19. The schematic for segmentation of cerebral tissue and dural septa. A rigid 

transformation between an atlas image and patient image (T1) is computed. The 

transformation, T1 is applied to the atlas image and a non-rigid transformation (T2) is 

computed between the rigidly transformed atlas image and the patient image. The computed 

transformations (T1 and T2) are applied to structures derived from the atlas image (binary 

mask and dural septa templates) to obtain the segmentation of patient cerebral tissue and 

dural septa. 
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for the patient image. A set of template dural membrane structures were also created for 

the template image using the semi-automated method described in [73]. The registration 

transformations (T1 and T2) are also applied automatically to the dural septa structures 

— the falx cerebri and the tentorium cerebelli. The remainder of the tetrahedral mesh 

construction proceeds with the automated algorithm using [59, 70] as described in [73]. 

In addition to the automated segmentation described above, manually created expert 

segmentations were also performed for the structures. The closest point distances 

between the dural septa created by automated segmentation were compared to the 

manually segmented septa. The falx and the left and right tentorium were examined 

separately. In addition the falx was divided into three equally spaced regions — anterior, 

middle, and posterior region — and the closest point distances of these three regions were 

separately analyzed. Lastly, the difference between brain shift compensation results using 

the domains generated from these two different methods was compared. 

 

Sensitivity Analysis  

 The last step in the pre-operative pipeline in Figure 18 for atlas building involves 

constructing the boundary conditions based on the surgical plan and solving the model in 

a forward manner for each of those conditions, as described in greater detail in Appendix 

B. This process, though automated, may be the most time consuming computational step 

depending on the number of conditions for which the model is solved. For instance, in the 

work in [73], two different forces were modeled: gravitational force and force resulting 

from pressure gradients caused by hyperosmolar drugs like mannitol. For gravity, 60 

head orientations were solved using 3 CSF drainage levels, each model solved with and 
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without tumor resection – resulting in 360 solutions. Mannitol conditions were solved 

similarly with an atlas consisting of 360 solutions, resulting in a combined atlas of 720 

solutions. The time for a single forward model solve varies depending on the uniformity 

of element size, the number of elements in the mesh, and hardware utilized. Our software 

has been built for parallel computations using the open-source software resources PETSc 

[76] and MPI [77] and all the computations in [73] were performed with a parallel cluster 

of 12 quad-core 2400 MHz Dual-Core AMD Opteron(tm) Processors. The computations 

were distributed across four of these nodes and building time for an atlas with 720 

solutions ranged from 10 to 18 hours. The following sub-sections will describe sensitivity 

studies using simulations and clinical data in Table 6 to evaluate the effect of atlas size on 

accuracy of the inverse model. 

Simulation experiments 

 The goal of the simulation studies was to evaluate the size and composition of the 

deformation atlas. Since the largest contribution to the atlas size came from the number 

of head orientations, this will be the main parameter studied in the simulation 

experiments. 
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For the simulation experiments, an FEM mesh from case #2 in the clinical cases listed in 

Table 6 was used (Figure 20 (a)). Forward model runs with varying head orientations and 

other forcing conditions are used as ground truth. Sparse data was simulated by selecting 

the displacement solutions for the nodes in the craniotomy region, close to the tumor 

(Figure 20 (b)). In the first experiment, the effect of spatial extent was studied. In Figure 

20 (c), the blue arrows (corresponds to the direction of the gravity vector) show the head 

orientation of each solution in the atlas, the extent of the cone is 20º. The red arrows 

show the head orientations corresponding to the ground truth (i.e. ground truth is the 

simulated results we would like to reconstruct from the atlas of solutions), consist of 

concentric cones ranging from 2.5º to 32.5º to the center, in the increments of 5º. The 

ground truth head orientations that are less than 20º from the center of cone are contained 

in the computed atlas. For solutions where the ground truth orientation was greater than 

20º, the estimate of head orientation would be mis-predicted and would lie outside the 

cone. In the second simulation experiment, the effect of spatial resolution was tested to 

 
Figure 20: (a) Mesh used for the simulation experiments with the dural septa (brown) and the 

tumor (blue) overlaid, (b) The displacement solutions of the forward runs at the craniotomy 

nodes (red) used to simulate sparse data, (c) Spatial extent experiment. Blue shows the head 

orientations in that atlas. Red arrows show the head orientation of the ground truth solutions. 

(d) Spatial resolution experiment. Blue shows the head orientations in the atlas. Each 

orientation was eliminated from the atlas and used as the ground truth solution sequentially. 
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study the effect of the size of the atlas on shift error (Figure 20(d)). Each of the head 

orientations was systematically eliminated from the atlas and used as ground truth. This 

was repeated for six different atlases with different atlas solution sets of varying sparsity 

as shown in Figure 21 with the six atlases designating the number of contained solutions 

as 5, 14, 21, 30, 43, and 59, respectively. 

 

The correction results for every solution in the atlases was evaluated by running the 

inverse model and looking at the shift correction. In addition, the ‘ground truth’ selection 

was never contained explicitly within an atlas being used for correction. 

Clinical data 

The sensitivity of shift correction to number of head orientations, CSF drainage 

levels, and mannitol related capillary permeability values was also evaluated using the 

pre-operative MRI and intraoperative laser range scanner data collected for the five 

clinical cases listed in Table 6. To evaluate the effect of head orientations on clinical 

data, the different head orientations shown in Figure 22 were used to build the atlas. 

 
Figure 21. Head orientations. The number listed on top is the number of head orientations 

in each atlas. The different sized atlases were used to evaluate the effect of spatial 

resolution on the inverse model. 



70 

 

 

The atlas was also built using different fluid levels for gravity and different capillary 

permeability values for mannitol. The inverse model was tested with different numbers of 

fluid levels and capillary permeability values. Three fluid levels/capillary permeability 

was the maximum resolution used (Figure 31, Appendix B). In addition two (highest and 

lowest values) and one (only the highest value) fluid levels/capillary permeability were 

also tested. 

 

Results 

Automated Segmentation 

Five cases in Table 6 were segmented using the automated algorithm as well as 

the manually. The results for automated segmentation of brain were assessed qualitatively 

 
Figure 22: Head orientations. The number listed on top is the number of head 

orientations in each atlas. The different sized atlases were used to evaluate the 

effect of spatial resolution on the inverse model for the clinical data listed in 

Table 6. 
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as well as quantitatively. The occurrence of error for the segmentation of brain tissue was 

based on the visual evaluation of the quality of overlay between the segmentation mask 

and the cerebral tissue in the patient MRI. Slices that contained a visually significant 

misoverlap between the mask and the image were designated to contain error. The 

specific slices containing the segmentation errors were manually edited and the results 

were used for mesh construction and building the atlas. The following figure shows 

selected slices from a completely manual segmentation, automated segmentation and 

after editing the results of the automated segmentation for two cases. 

 

The regions containing error, determined by qualitative evaluation of the overlay between 

the mask and the image, are designated with red arrows in Figure 23 (b) and (e) for two 

cases. Table 7 below lists the total number of slices in each dataset and the number of 

slices for each case that contained segmentation error. 

 
Figure 23. The top rows shows the segmentation results for patient #2 and the bottom 

row shows the segmentation results for patient #4. (a) and (d) show the results of 

manual segmentation. (b) and (e) show the results of automated segmentation with red 

arrows indicating the regions of misclassification of brain tissue. (c) and (f) show the 

slices in (b) and (e) after manually editing to correct the misclassified regions. 
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Among the five datasets, for the automated segmentation of the cerebrum tissue, four of 

the cases had several slices containing some misclassified tissue and patient #3 was the 

only case that contained no segmentation error. 

 The results of the automated segmentation of the falx and tentorium were 

evaluated quantitatively as well as qualitatively. Through visual assessment of the dural 

septa, the automated segmentation algorithm provided acceptable results for modeling 

purpose. The segmentation results for the dural septa are shown in the figures below and 

discussed in greater detail. 

TABLE 7: Image size for each dataset and the number of slices in each dataset that got 

misclassified using the automated segmentation method. 

Case # Total 

slices 

# slices with 

segmentation 

errors 

1 180 41 

2 190 47 

3 180 0 

4 180 31 

5 180 13 
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Figure 24. Shows the mesh along with the falx and tentorium segmented using the 

automated segmentation  method. The falx and tentorium are color coded with the closest 

point distance between the automated and manually segmented dural septa (a) – (e) for 

patient 1 – 5 respectively. (f) shows the dural septa created by automated segmentation (blue) 

and manual segmentation (red), (g) shows the automated (blue) and manually segmented 

(red) falx overlaid on the MRI image and (h) shows the automated (blue) and manually 

segmented (red) tentorium overlaid on the MRI image for patient #2. 

 

 
Figure 25. Shows the average closest point distances between the automatically and 

manually segmented dural septa for the five patient cases. The distances for anterior, middle, 

and posterior part of the falx, and right and left tentorium are presented separately. 
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Figures 24 (a) – (e) show the surface of the finite element mesh and the dural septa – the 

falx and tentorium, created using the automated segmentation algorithm. The dural septa 

are color coded with the closest point distance between the septa segmented using the 

automated algorithm and the manual method. Figure 25 shows the average distance 

between the automatically and manually segmented dural septa. The distances for the 

falx, right, and left tentorium are presented separately. In addition, the falx is further 

subdivided into three equally spaced regions—anterior, middle and posterior. The overall 

average distance between the automatically and manually segmented dural septa is 

3.7±1.8 mm. The largest difference in terms of distances is in the anterior region of the 

falx. This is especially pronounced in patient #2, and to some extent in patient #1 and 

patient #4. The automatically (blue) and manually (red) segmented falx for patient #2 are 

shown in Figure 24 (f). The overlay of the falx and the tentorium on the MRI images are 

also shown for the same patient in Figure 24 (g) and Figure 24 (h) respectively. The blue 

lines are the results of the automated segmentation and the red contour is the results of 

manual segmentation. The overlay images also show least overlap between the two 

segmentation methods in the anterior region of the falx. The automated segmentation 

method actually performs better by visual evaluation of the overlay between the 

hyperintense region and falx contour. The tumor pushes the falx away from the centerline 

through mass effect and the manual segmentation of the falx was performed by drawing 

on the contour of the falx in the central sagittal plane and hence does not capture the 

deviation from the plane well, which is captured by the automated method. 

 The figure below shows the percent shift correction after running the inverse 

model using the manual segmentation method and the automated segmentation method. 
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The average shift correction for the five cases using the manual segmentation method is 

76±13% and automated segmentation method is 73±13%. The mean correction was 

slightly lower for the automated segmentation method however a paired student t-test 

indicates that there is no statistical difference (p>0.05) for the shift correction results 

using the two methods. 

 

Sensitivity Analysis 

Simulation Experiments 

The shift correction error for the simulation experiment for studying spatial extent, where 

the ground truth varied from 2.5º from center of the predicted cone of head orientations 

and up to 32.5º angle from the center is shown in the Figure 27 below. The results for 

error between the location of model-predicted and ground truth points was averaged for 

each head orientation that was at the same angle from the center of the cone. 

 
Figure 26: The percent shift correction between the measurements 

and the model predicted deformation for the five cases listed in Table 

6 using the manual and automated segmentation methods. 
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Figure 27 (a) shows the results using the ground truth solutions without resection and 

Figure 27 (b) shows the error where the ground truth results were produced by simulating 

resection. In both the cases, the error is minimal when the actual head orientation is 

contained within the cone of head orientations used to construct the deformation atlas. 

The error increases as the actual head orientation of the ground truth lies outside the 

sampling space of the head orientation angle. It is also a noteworthy point that the overall 

magnitude of error is larger for the case where ground truth simulates tissue resection. 

The following figure shows the results for the simulation experiment to study atlas 

resolution. The mean error and the standard deviation for each of the different sized 

atlases (Figure 21) are shown in the figure below. 

 
Figure 27. Box and whisker plot for error between model prediction and measurements for 

the simulation experiment. The x-axis represents the angle from the center of cone of atlas 

of head orientations and head orientation used to generate the ground truth. The red line 

represents the median, the box represents the twenty fifth and seventy fifth percentiles and 

the whiskers represent the extent of data. (a) shows the errors for ground truth without 

resection and (b) shows the ground truth with resection. 
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Figure 28 shows that though the error is modestly larger for the atlas with the coarser 

resolution and then quickly becomes asymptotic for both surface and subsurface nodes.  

Clinical data 

 The following figure shows the error between model prediction and 

measurements for the five clinical cases listed in Table 6 using atlases built with different 

number of head orientations (Figure 22). 

 
Figure 28. The mean and standard deviation of shift error for atlas of different resolution 

for (a) surface points and (b) subsurface points. 
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The clinical data in Figure 29 follows a similar trend as the simulation experiment results 

in Figure 28, being larger at the coarser resolution and becoming asymptotic at larger 

resolutions with an accompanying decrease in variance. Although the above figure shows 

a maximum atlas size of 59 head orientations, larger sizes (shown in Figure 22) were also 

tested and showed no change. Testing for the effect of altering the number of fluid levels 

and capillary permeability values showed no change in shift correction results for the 

clinical cases. 

 

 

 

 
 

Figure 29. Shift error in mm, plotted for the five different cases, (a–e) correspond to patient 

#1–5. The error was calculated using atlas constructed with different number of head 

orientations, as shown in Figure 21.  
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Discussion 

 The non-rigid deformation of the brain tissue caused by gravitational forces, 

hyperosmotic drugs, resection and retraction forces can result in a significant error, 

affecting the fidelity of the image guidance system in neurosurgery. The past literature 

has described combining the use of sparse intraoperative devices with computational 

models. Our group proposed the atlas-based paradigm to overcome the uncertainty of 

determination of various parameters in the intraoperative environment and we validated 

this method with retrospective studies using postoperative and intraoperative data [3, 73]. 

As we move towards the implementation of this method in real-time in the OR, the 

computational time and efficiency become important factors. This work examines the 

pre-operative pipeline that consists of constructing the patient specific finite element 

mesh and building the deformation atlas. More specifically, an automatic segmentation 

method for the cerebrum and the dural septa was evaluated and the results of sensitivity 

analysis to determine the constitution of the deformation atlas were presented. 

 The automatic segmentation method for the cerebral tissue in the MR images was 

tested on five patient images and four of these datasets contained some error determined 

by visual examination. Since the segmentation method was based on the intensity based 

registration and the template image was a normal brain, anomalies in the images resulted 

in segmentation error. The results for hyperintensity on the surface due to large tumors 

and cerebral atrophy caused localized segmentation errors as demonstrated in Figure 23. 

Patient 2 had a tumor near the surface in the frontal lobe and the automated segmentation 

algorithm is confounded in the vicinity of that region. Patient #4 was a 77 year old male 

and the MRI of the brain shows age related cerebral atrophy. Consequently the automated 



80 

 

algorithm did not perform well near the contours. Patient #3 was the only case where no 

substantial segmentation error was observed because in this case the bulk of tumor was 

beneath the surface. The other four cases, a handful of slices (ranging from 13 to 47 for 

the five cases) required manual editing as opposed to a completely manual segmentation 

method. For a completely manual segmentation of the image with 180 slices, takes an 

average of 2 to 3 hours. The automatic segmentation algorithm took about 15 minutes on 

a 3.2GHz, Intel I7 processor.  Depending on the slices needing manual editing, the total 

time for segmentation, including the automated algorithm and manual editing, takes 30 

minutes to an hour.  

The results for the automatic segmentation of the dural septa are dependent on the 

results from the previous segmentation of cerebrum – it uses the transformations obtained 

from the rigid and non-rigid registration between the template image and the dataset. The 

algorithm produced segmentation results for falx and tentorium that were satisfactory for 

modeling purposes for all five cases. As seen in Figure 26, the automated segmentation 

technique did not significantly change the shift correction. However it is worth noting 

that for patients #1 and #5 the decline in shift correction by using the automatic 

segmentation method was 6% and 9% respectively indicating the effect segmentation 

results can exert on overall shift prediction accuracy. The results of falx segmentation are 

visually more accurate using the automatic segmentation method because the manual 

method in [73] assumed it to be a planar structure, which is invalid when the mass effect 

from the tumor pushes the structure away from the plane. The largest benefit of the 

automatic segmentation for both the cerebrum and the dural septa is the reduction in time. 

As discussed before, the complete manual segmentation of the cerebral tissue takes 2 - 3 
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hours. The semi-automatic segmentation of the dural septa takes an additional 15 - 30 

minutes. Even with manually correcting the segmentation errors for a few slices, the 

computational time ranges from 30 minutes to an hour, giving a time savings of 1.5 to 3 

hours.  

The number of head orientations is the variable that contributes the maximum 

number of solutions to the size of the atlas. Using simulation experiments, spatial extent 

was found to be a more important factor in the shift correction accuracy than the 

resolution. Considerably larger errors were found when the true orientation was outside 

the prediction sample space as shown in Figure 27. Sampling the space more finely does 

not significantly improve the shift correction as seen in both the simulation study (Figure 

28) and the clinical data (Figure 29). At the minimal number of head orientations, the 

error is slightly higher, but the correction error is asymptotic at 20–30 solutions. When 

examining the weighting coefficients from the optimized results across different sized 

atlases, the number of non-zero coefficients ranged from 1–6. This was consistent with 

the variation of information within the atlas. A principal component analysis of the atlas 

of sparse measurement nodes revealed that 3–6 eigenvalues explained 99% of the power 

of the atlas, pointing towards the redundancy of information in very closely sampled 

solutions. This explains the observation that similar precision can be achieved with a 

coarser resolution of the atlas. Using different number of fluid levels and permeability 

values resulted in no change in shift correction results. This could be explained based on 

the constrained optimization method used to reconstruct the inverse model results. As 

shown in Appendix B.4, the optimization method minimizes the least squared error 

between the measurements and predictions with the non-negativity constraint and the 
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summation of all weighting coefficients being less than or equal to one. The fluid levels 

and capillary permeability values control the magnitude of shift, and if the magnitude of 

measurement is smaller than the predictions, then the weighting coefficients interpolate it 

with the appropriate scaling. 

The following figure compares the computation time for building the atlas using 60 head 

orientations and three fluid levels/capillary permeability values as done in [73] and 30 

head orientations and one fluid level/capillary permeability value. 

 

The average time with 60 orientations and three fluid levels/capillary permeability values 

is 13.1±3.5 hours, whereas the average computational time for building the atlas with 30 

head orientations with one fluid level/capillary permeability value is 2.2±0.6 hours. The 

change in shift error by reconstructing the results from these two atlases is minimal but 

the savings in time cost is significant. 

 

 
Figure 30. Computational time to build the pre-operative deformation atlas. The 

times are shown for 60 head orientations and 3 fluid levels as in [3]. This is 

compared to the computational time for a smaller atlas with 30 head orientations 

and 1 fluid level. 



83 

 

Conclusions 

 In the study described above, a limited number of cases were used. While the 

automatic segmentation method only resulted in localized errors, if the patient image is 

sufficiently different from the template image, it is possible for the image intensity based 

segmentation method to fail, which would necessitate manual segmentation of both the 

cerebrum and the dural septa. The automatic segmentation reduces the time of 

computation and cumbersome manual editing, although it does not obviate a review of 

the segmentation. The results of the sensitivity analysis show that the pre-operative 

computational time can be further reduced several-fold by decreasing the sampling 

resolution of the atlas without significantly degrading the shift correction. The time 

window from the time the pre-operative MR images are acquired to the beginning of the 

neurosurgery can vary from a few hours to several days. In the atlas-based inverse model 

paradigm, the bulk of the computational cost is shifted pre-operatively, and therefore it is 

important that those computations be completed within that time window. The findings in 

this study will have important implications in ensuring the completion of pre-operative 

computations within the time constraints for the implementation of the atlas-based 

method in real time. 
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Appendix B 

B.1 Computational Model 

The following coupled equations used to describe the biphasic consolidation model are 

listed below: 
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   (5.2) 

The term u  is the displacement vector, p is the interstitial pressure, G is the shear 

modulus, ν is the Poisson’s ratio, α is the ratio of fluid volume extracted to volume 

change of the tissue under compression, ρt is the tissue density, ρf is the fluid density, g is 

the gravitational unit vector, 1/S is the amount of fluid that can be forced into a tissue 

under a constant volume, t is the time, kc is the capillary permeability, pc is the 

intracapillary pressure, and k is the hydraulic conductivity. The equation (5.1) is the 

mechanical equilibrium equation to describe the solid phase. Equation (5.2) is a 

description of the fluid phase that relates the rate of fluid flow to the pressure gradients in 

accordance with the Darcy’s law. 
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B.2 Boundary Conditions 

The boundary conditions were the same as used in [73], and were used to model gravity 

and mannitol (a hyperosmotic drug) deformation conditions. The following figure shows 

the boundary conditions used for running the model. 

 

For the displacement boundary conditions (shown in the first row), the top red region is 

the stress free region, which is free to move unconstrained. The brainstem region (blue) 

experiences no deformation and is assigned fixed Dirichlet boundary conditions. All 

other nodes on the boundary (green region), including the internal boundaries such as the 

dural septa (not shown in the above figure), are assigned slip boundary conditions, that is, 

they cannot move in the normal direction, but movement in the tangential direction is 

permitted. For the pressure boundary conditions, the nodes exposed to atmospheric 

pressure are set as a Dirichlet boundary condition and the nodes submerged in fluid are 

 
Figure 31. Boundary conditions: for displacement (first row) and pressure (second through 

fourth rows). The displacement boundary conditions are the same for both gravity and 

mannitol. The red regions are designated as stress free, the blue region is fixed, and the 

green region is no-slip condition. In the pressure boundary conditions, the green region is 

fixed atmospheric pressure and the blue region is no-flux pressure region. The second 

through fourth row show two different levels of CSF drainage. The three columns show 

the boundary conditions for different head orientations. 
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subject to Neumann boundary conditions, i.e. non-draining surfaces. The demarcation 

between the two regions is determined based on the level of CSF drainage, and the last 

three rows in Figure 31 show three different fluid drainage levels. 

B.3 Material properties 

The material properties used in the model [73] are listed in the table below. 

 

 

B.4 Inverse Model 

After building the atlas by varying the boundary and driving conditions, the model is 

solved inversely by computing the weighting coefficients α in the equation below.  

2
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  (5.3) 

M is the matrix of sparse atlas solutions which is 3ns rows and m columns, ns being the 

number of sparse points where the deformation is known from intraoperative tracking. 

TABLE 8 

MATERIAL PROPERTIES 

Symbol Value Units 

Ewhite, Egray 2100 N/m
2 

Etumor 100,000 N/m
2 

ν 0.45 no units 

ρt 1000 kg/m
3 

ρt 1000 kg/m
3
 

g 9.81 m/s
2 

α 1.0 no units 

1/S 0.0 no units 

kwhite 1×10
-10 

m
3
s/kg 

kgray 5×10
-12

 m
3
s/kg 

kc1, white*
 

2.3×10
-9

 Pa/s 

kc2, white* 4.6×10
-9

 Pa/s 

kc3, white* 6.9×10
-9

 Pa/s 

kc1, gray*
 

11.5×10
-9

 Pa/s 

kc2, gray*
 

23.0×10
-9

 Pa/s 

kc3, gray*
 

34.5×10
-9

 Pa/s 

pc -3633 Pa 

*
 These values were used to simulate three different capillary 

permeability values resulting from the administration of mannitol 

and are designed to capture a physiological range. 
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sparseu  is an 3ns vector of those measured displacements. The first constraint ensures that 

all the weighting coefficients are positive. Hence if a solution in an atlas deforms in the 

incorrect direction, the objective function would weigh that solution lower instead of 

assigning a higher negative regression coefficient. The second constraint ensures that the 

solution is always interpolated, and not extrapolated. 
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CHAPTER VI 

 

MANUSCRIPT 3 — Integrating retraction modeling into an atlas-based framework 

for brain shift prediction. 

 

Manuscript in preparation: I. Chen, R. E. Ong, A. L. Simpson, K. Sun, R. C. Thompson, 

and M. I. Miga, IEEE Trans Biomed Eng 

 

 

Introduction and Significance of Study 

 Specific intraoperative forces like resection and retraction influence the brain shift 

related tissue deformation. In the previous work in Chapter IV and Chapter V, these 

forces were not accounted for in the model. In the clinical data presented in that work, 

retractor was not used during surgery. Though the use of retractor is often avoided due to 

the risk of brain contusion or infarction, sometimes the use is necessary to explore the 

deep sub-surface tumor tissue. The premise of the atlas-based method is pre-computation, 

but the challenge with integrating retraction into that framework is that pre-computation 

might not feasible because the exact location of the retractor cannot predicted before the 

surgery. The viable solution to model retraction using the atlas-based framework would 

have to involve some active model solving during surgery. This work presents a method 

to integrate the retraction modeling with the atlas-based framework for brain shift using 

an intraoperative active-solve component.  

  



89 

 

Abstract 

In recent work, an atlas-based statistical model for brain shift prediction which 

accounts for uncertainty in the intraoperative environment has been proposed. Previous 

work reported in literature using this technique did not account for local deformation 

caused by surgical retraction. It is challenging to precisely localize the retractor location 

prior to surgery and the retractor is often moved in the course of the procedure. This work 

proposes a technique that involves computing the retractor deformation in the operating 

room through a forward model solve and linearly superposing the solution with the pre-

computed deformation atlas. As a result, the new method takes advantage of the atlas-

based framework’s accounting for uncertainties while also incorporating the effects of 

retraction with minimal intraoperative computing. This new approach was tested using 

simulation and phantom experiments. The results demonstrate a more accurate capturing 

of local retractor effects while not compromising the more distributed deformation 

effects. 

 

Introduction 

Brain shift induced misregistration is a well-studied problem in image-guided 

neurosurgery literature. This shift is a non-rigid brain tissue deformation that occurs due 

to gravity, hyperosmotic drugs, resection, and retraction forces [5, 7]. It has been known 

to cause misalignment errors between image and physical space in the range of 1 to 2.5 

cm [5, 7, 73]. The techniques for shift compensation either involve intraoperative 

imaging or predictive computational modeling. The usage of volumetric imaging 
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modalities like MRI [5], CT [12] and ultrasound [26-28] for the estimation and correction 

of brain shift has been previously demonstrated. Cumbersomeness, necessity of non-

ferromagnetic instruments, cost, exposure to radiation, and limited soft-tissue contrast are 

some of the concerns that have hindered the wide scale application of these modalities for 

shift compensation.  

An alternative to these methods is to use computational modeling methods, such 

as finite element analysis. These predictive models are often coupled with intraoperative 

imaging data to provide an efficient compensation strategy. The imaging technique could 

be a traditional volumetric modality such as MRI, where the intraoperative image 

provides the driving conditions for the computational models. Clatz et. al. [34] and 

Wittek et. al. [33] used this strategy, combining intraoperative information from MRI 

images with a  linear elastic model and a nonlinear model, respectively. In addition to full 

volumetric imaging, some work using partial volume imaging techniques with 3D 

ultrasound for shift correction has also been reported [26-28].  Alternatively, sparse 

intraoperative information can be supplied by modalities that are more cost effective, 

such as stereoscopic cameras [35, 36] or laser range scanner (LRS) devices [2, 37, 38, 

40]. Unlike tomographic imaging devices, these modalities only provide information 

about the exposed brain surface during craniotomy. This sparse information cannot 

sufficiently constrain the forward-run of a biomechanical model without prior 

information or assumptions. The magnitude and direction of brain shift depends on 

variety of factors, such as head orientation, amount of fluid drainage, and pressure 

gradients caused by hyperosmotic drugs. These factors are difficult to predict or quantify 

to an exact precision during the surgery. To circumvent this challenge, Dumpuri et. al. 
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used an atlas-based framework [2, 3]. In this work, the authors chose Biot’s consolidation 

model [53] to describe the constitutive mechanics of brain tissue. An atlas of forward-run 

model solutions is constructed with a variety of different driving conditions, such as head 

orientations and fluid drainage levels. Sparse information, computed as homologous 

points from either intraoperative LRS or post-operative MR, are then used to inversely 

solve the model through minimization of least mean squared error between the 

measurements and atlas predictions. 

The work by Dumpuri et. al. was validated with clinical data in which no tissue 

retraction was performed. As a result accounting for retraction forces in their atlas was 

not necessary. Tissue retraction during neurosurgery is known to be associated with brain 

contusion or infarction but sometimes it may be necessary for adequate exposure, 

especially in tumor resection surgeries where the tumor is located deep beneath the 

surface [78, 79]. In [3], Dumpuri et. al. validated the atlas-based method with pre- and 

post-operative MR data and found a shift correction of 85% (ranging from 83% to 89%) 

in their clinical data.  In contrast to Dumpuri et al.’s study, a similar analysis of the atlas-

based method was investigated within the context of intraoperative data.  The results of 

that study reduced the average shift recovery to 75% (ranging from 53% to 90%) which 

is likely due to the more extensive amount of shift that occurs intraoperatively [73]. The 

post-operative MR data acquired for the Dumpuri et al. study was acquired 24-48 hours 

after surgery, after the cranium was closed and some shift recovery had occurred. While 

retraction was not investigated in these studies, and it is not used to the same extent by 

surgeons; nevertheless, it does represent a standard mechanical event that is needed 
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during tumor resection therapy and its incorporation into compensation frameworks is 

needed.  

In previous literature, Platenik et. al. [80] performed a study to quantify the 

performance of the modeling of tissue retraction first proposed by Miga et al. in [81]. 

Using Biot’s consolidation model and Dirichlet boundary conditions of known retractor 

displacement (measured from a CT) along the tissue surface in contact with the retractor, 

the authors evaluated the performance of their predictive technique in porcine 

experiments. Their modeling technique recaptured 75-80% of shift caused by retraction, 

measured through stainless steel beads embedded in pig brain. Sun et. al. expanded this 

work to include retractor tracking information from stereoscopic microscopy images and 

demonstrated a 75% shift recapture as well [82]. These works are however, purely 

predictive models that do not resolve the uncertainties of the intraoperative environment.  

Local displacement caused by tissue retraction occurs in conjunction with the 

other shift inducing factors like gravitational forces and hyperosmotic drugs. A viable 

solution for this problem may be by integrating the retraction forces into the pre-

operative deformation atlas. One of the aspects that make the implementation of this 

approach challenging is that it is difficult to know the precise location of the retractor 

prior to surgery. The surgeon often varies the retractor location, depth and extent as 

he/she exposes tissue during surgery. 
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Figure 32 shows three different retractor locations and depths during the course of a 

single surgery. This provides the motivation for integrating retraction modeling as an 

active component into the atlas-based framework. Thus, the retraction component of 

deformation would not be pre-computed prior to surgery, but computed based on tracking 

the location of the retractor intraoperatively. In this paper, an approach is investigated 

that combines the pre-operative atlas with a component of forward solving capability in 

the intraoperative system to compensate for retraction. Simulation and phantom 

experiments are used to evaluate this retraction modeling approach. 

 

Methods 

Computational framework 

Constitutive model. The constitutive properties of brain tissue in the past has been 

described by different models – linear elastic [34], non-linear [33], biphasic consolidation 

model [2] etc.  Wittek et. al. compared three models of varying complexity – linear 

elastic, hyperelastic and hyperviscoelastic and found that they performed comparably for 

predicting brain shift deformation magnitudes [83]. As we are using a single phase tissue-

like material in our phantoms, and given that elastic models are a reasonably good shift-

 
Figure 32. Retractor locations at different time points during a neurosurgery. 
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correction model, in this work a linear elastic model has been adopted. The primary goal 

of this work is to study the feasibility of integrating retraction modeling into an atlas-

based system, where the choice of particular constitutive laws may be less important. 

Secondly, the method is evaluated with simulation and phantom experiments to 

understand its predictive fidelity. The linear elastic model is described by the following 

equation: 

  
1 2

G
G

t f
 



 
        

  
u u g  (6.1) 

In the above equation, G is the shear modulus (1050 N/m
2
), u is the displacement vector, 

ν is the Poisson’s ratio (0.45), ρt is tissue density (1000 kg/m
3
), ρf the fluid density (1000 

kg/m
3
), and g is the gravitational vector. 

While it has been suggested that hyperosmotic drugs like mannitol may have a 

substantial role in intraoperative brain tissue deformation [3], in this work only 

gravitational forces will be studied in conjunction with retraction related deformation. 

The right hand side in equation (6.1) represents an approximation to the effect of 

buoyancy force changes caused by drainage of fluid (such as cerebrospinal fluid in 

neurosurgery). Thus the amount of deformation would depend on the amount of fluid 

drained and the orientation.  

Atlas construction and inverse model. An atlas of deformations can be constructed by 

varying the boundary conditions (depending on head orientation) and forces (depending 

on the amount of fluid drained). For a hemispherical shape used in the simulation and 

phantom experiments in following sections, the base is fixed with Dirichlet boundary 

condition and the remaining surface is given stress free Neumann boundary condition. 

Using the sparse intraoperative data, from a laser range scan for instance, the atlas can be 
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inversely solved to give a volumetric deformation field. If the atlas solutions exceed the 

sparsely available data, it results in an ill-posed problem. Constraints such as those 

utilized in [73] can be used to circumvent that problem as shown in the equation below: 

 
2
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i i
i

   


u
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  (6.2) 

In the above equation, M is the atlas of deformations with ns×3 rows and m columns, 

where ns is the number of sparse intraoperative measurements and m is the number of 

atlas model solutions. α is a vector of weighting coefficients that is the variable being 

optimized in this equation and usparse is the ns×3 vector of measurements. The equation 

above was solved with an implementation of the active set method for quadratic 

programming in the Optimization Toolbox of MATLAB® (Mathworks Inc) [65]. 

Integration of retraction. The basic technique for modeling retraction forces will be 

similar to that of [80], where the mesh is split by duplicating the nodes at the tissue-

retractor interface [81]. The generalized schematic of the workflow is shown in Figure 33 

below. 
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After building the displacement atlas pre-operatively as in [73], intraoperativley, serial 

laser range scans would be acquired after opening the dura and after retractor 

deployment. The location of the retractor-tissue interface can be localized in the mesh 

intraoperatively by digitizing the retractor with a tracked tool tip. The side in contact with 

the retractor is prescribed fixed displacement along the direction normal to the retractor 

plane and free to move in the tangential directions. The other side has stress free 

boundary conditions and is free to move in all degrees of freedom. This model would be 

solved for localized deformations caused by retraction and then appended to the original 

 
 

Figure 33. Schematic showing the overall workflow. Preoperatively, the deformation 

atlas is computed for gravity. Intraoperatively, first sparse data set is acquired after dura 

removal using a device such as a tracked LRS (measurement marked as LRS I in figure). 

After the location where the retractor will be placed is determined by the surgeon, the 

location can be digitized and used to estimate the retractor boundary conditions and 

construct a retraction model prediction. This can be linearly superposed with the gravity 

atlas computed pre-operatively to create an atlas that contains solutions both with and 

without retraction. After retractor deployment, another sparse data set can be acquired. 

Displacements can be computed from the two surfaces through homologous points and 

used to inversely solve the model. 
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atlas. Though the main component of retraction deformation is in a direction normal to 

the retractor surface, to account for retractor slippage, the vector along which fixed 

displacement was prescribed, was perturbed within a 10º angle to build a retraction atlas. 

The inverse model was solved in the following manner. 

2
min s.t. 0,  1, 1

1 1

rm nm
M

i i j
i j m

  


    
  

u
sparse



  (6.3)

 

In the above, M is new atlas that has m gravity and nr retractor solutions. The least 

squared error is minimized subject to the constraints that the weighting coefficients for all 

gravity solutions sum to less than or equal to one as well as the weighting coefficients for 

all retraction solutions sum to less than or equal to one. The homologous points from the 

serial laser range scans (usparse in equation (6.3)) are used as measurement points to 

inversely solve the model by minimization of least squared error. 

 

Experimental evaluation 

The method described above was evaluated with simulation as well as phantom 

experiments that are described in the section below. 

Simulation experiments. The performance of the model would depend on the accuracy 

of tracking the retractor location in the OR. The goal of the simulation experiments is to 

study the effect of error introduced into the system through tracking inaccuracies. A 

hemispherical surface with ~2.1 L volume was created using VTK (Kitware Inc.) and 

then made into a tetrahedral mesh with 4.5 mm element size, resulting in ~100,000 

elements and ~20,000 nodes. A gold standard solution was then created by deforming the 
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mesh using gravity and retraction boundary conditions simultaneously with the linear 

elastic model, as shown in Figure 34. 

 

Based on intraoperative procedure information, a 1.5 cm retraction is simulated for the 

gold standard solution. A “pre-operative atlas” that only contains gravity deformation 

solutions was then created using different orientations and fluid drainage levels. 13 

orientations and 1 fluid level were used to create the atlas consisting of 13 solutions, to 

which retraction solutions were appended.  

Upon completion of the atlas, a series of simulations to understand the effects of 

localization and rotational errors was conducted.  More specifically, the location of the 

retractor plane was perturbed by translating or rotating it from its true location and a 

forward model for retraction was solved by retracting it a distance of various retraction 

amounts and angles from the original. Nine different retractor plane perturbations were 

used – ±0.5cm, ±1cm, ±15º, ±30º and the original plane. The inverse model was driven 

by a set of points contained in a circular patch of radius 4 cm, centered at the retractor 

location on the boundary. The shift prediction error was computed at the surface points 

used to drive the atlas as well as subsurface points located 6 cm radially around the 

 
Figure 34. (a) Original undeformed mesh overlaid with the retractor plane and points on the 

surface used to run the inverse model. (b) Deformed solution created with simultaneous 

application of retraction and gravity boundary conditions color coded with deformation 

magnitude indicated on colorbar in mm units, used as gold standard to evaluate simulation 

results. 
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retractor location. In addition, the results were compared to an inverse solution using the 

preoperative atlas with gravity forces only. 

Phantom experiments. Polyvinyl alcohol cryogel (PVAc) material was molded into a 

hemispherical shape of volume ~1.2 L. Surface and sub-surface glass beads were 

embedded that could be tracked in a CT scanner (Figure 35 (a)). The bottom of the 

phantom was then fixed to a platform in a container and filled with water. The water level 

could be controlled with a spigot on the side (Figure 35 (b)). The top of the container was 

fixed a retractor assembly, with which the PVAc phantom could be retracted to desired 

displacements (Figure 35 (c)). In addition to the acquisition of the CT scans, the location 

of the glass beads on the phantom was also localized using NDI Polaris Spectra
®
 (Figure 

35 (d)) and passively tracked tool tip (Figure 35 (e)). 

 

 

 
Figure 35. (a) PVAc phantom embedded with glass beads that can be tracked in a CT image. 

(b) Phantom fixed to the platform in the container, filled with water, being imaged in CT 

scanner. The water level is controlled with the spigot on the side. (c) The retraction assembly 

consists of a flat surface used as a retractor, which is fixed to the top of the container. (d) NDI 

Polaris Spectra
® 

camera used for tracking (e) passively tracked tool used to localize the 

location of glass beads on the phantom surface. 



100 

 

Four serial CT scans were acquired: (1) phantom completely submerged in water in an 

undeformed state, (2) after some water has been drained, (3) after placing the retractor 

and (4) after performing the actual retraction. 

 

The setup was not moved during the scans, so all the images were co-localized in the 

same space. The undeformed state image was segmented from CT images of the setup 

and used to construct a finite element mesh. The location of the retractor in the mesh was 

obtained from the third scan (Figure 36 (c)) and used to split the nodes along that plane. 

A deformation atlas containing gravity solutions and superposed retractor solutions was 

constructed and markers on the surface were used to run the inverse model. The 

retraction modeling technique was evaluated with five phantom datasets, with the 

tracking performed for three of the five cases. 

 

 

 
Figure 36. CT images acquired at different time points- (a) undeformed image, (b) after water 

drainage, (c) after retractor is placed and (d) after retractor is deployed. 



101 

 

Results 

Simulation experiments. The percent shift correction at the surface and subsurface 

points for the gravity atlas alone and the joint atlas containing gravity and superposed 

retraction solutions is shown in Figure 37 below. 

 

The mean shift correction is typically higher for most cases for both the surface and sub-

surface points using the superposed retraction atlas. Since the percent correction for the 

points don’t fall into a normal distribution, as determined by the Kolmogorov-Smirnov 

test (p<0.05), the correction for each of the solutions that incorporate retraction was 

compared to the solution from gravity atlas alone using the Wilcoxon rank sum test. With 

a p<0.05 significance, the shift correction results for the retraction solutions are different 

than the ones with gravity alone, except for the case where the retractor plane was moved 

-0.5 cm, where the null hypothesis could not be rejected. 

Phantom experiments. The atlas-based modeling technique with the gravity atlas alone 

and retraction superposed atlas were compared with the five phantom datasets. The 

 
Figure 37. The left graph shows the percent shift correction at the surface points for the 

atlas with gravity alone and with superposed retraction solutions with various 

displacements and orientation. The graph on right shows the data for subsurface points. 

The numbers on the x-axis show the various perturbations of the retractor plane as 

discussed in section 2.2, with ‘0’ being the unperturbed location. 



102 

 

number of markers and the measured displacements for each dataset is shown in the table 

below. 

 

The percent shift correction is defined as percent of difference between predicted and 

measured shift as compared to measured shift.  For the five phantom datasets, it is 

reported at the surface points (which were used to constrain the least squared error 

solution) and subsurface points, using the gravity atlas and the superposed retraction atlas 

in the following figure.  

 

The percent shift correction data computed using the different atlases does not fall into a 

standardized normal distribution, as determined by the Kolmogorov-Smirnov test 

(p<0.05). Using the Wilcoxon rank sum test, for the surface points, the superposed 

retraction atlas significantly (p<0.05) improved the shift correction results for all datasets 

TABLE 9. Number of markers and measured displacements for the five phantom datasets. 

 

 Surface Sub-surface  

# # 

markers 

Average 

measured 

displacement 

(mm) 

Maximum 

measured 

displacement 

(mm) 

# 

markers 

Average 

measured 

displacement 

(mm) 

Maximum 

measured 

displacement 

(mm) 

Tracking 

available 

1 10 12.9±4.0 17.5 6 7.4±2.6 11.3 No 

2 14 8.8±2.5 13.1 12 5.9±2.0 9.5 No 

3 15 18.0±1.6 21.2 10 15.0±2.9 20.2 Yes 

4 12 23.1±0.6 23.7 11 16.3±3.5 20.0 Yes 

5 12 23.1±2.4 27.6 11 13.2±5.6 26.9 Yes 
 

 
Figure 38. The % shift correction for surface and sub-surface points for the five phantom 

datasets in Table 9 using the gravity atlas and the superposed retraction atlas. 
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except for dataset #4. For the subsurface points, there is a significant (p<0.05) increase in 

shift correction for the first three datasets, while there is no statistical change in the last 

two datasets.  

The superposed retraction atlas contained both gravity solutions alone as well as 

retraction solutions. The following figure shows the proportion of the contribution of 

gravity and retraction solutions for the results reconstructed with the superposed 

retraction atlas. 

 

The measured displacement magnitudes at the embedded markers after fluid drainage and 

after retraction for the five datasets are shown below. 

 
Figure 39.  Percentage of contribution from different atlases to the solution 

reconstructed from the superposed retraction atlas. 



104 

 

 

It is important to note that the displacement after retraction is a cumulative magnitude of 

both drainage and retraction applied in succession. The deformation caused by gravity is 

relatively small for the first two datasets, and the contribution of retraction to the overall 

deformation is larger. This is reflected in the percentage of retraction solutions picked 

from the superposed atlas for the first two datasets in Figure 39. The contribution by 

retraction is smaller in the last three datasets, and this trend is also reflected in the 

proportion of the weighting coefficients in the superposed atlas, as shown in Figure 39. 

 

Discussion 

The non-rigid deformation of brain tissue during surgery causes substantial error 

in the image guidance system. Usage of predictive computational models have shown 

promise because of cost efficiency and adaptability to wide range of data. The atlas-based 

 
Figure 40. Measured displacements at embedded surface bead markers after fluid drainage 

and after retraction for the five datasets. 
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method for brain shift correction was developed to account for uncertainties in the 

intraoperative environment that affected the characteristic of deformation but was 

difficult to determine to exact precision during surgery. The papers published in the past 

using the atlas-based method do not account for some intraoperative forces such as 

resection and retraction [3, 73]. The work presented in this paper presents a method to 

integrate retraction modeling in the atlas-based framework. The simulation experiments 

demonstrated that the average percent shift correction obtained for surface and subsurface 

points is improved if retraction forces are accounted for in the model, even in the case of 

gross retractor alignment issues. This is interesting in that even if the retractor 

displacement is grossly incorrect, coefficient combinations are generated from the atlas 

technique to compensate for this gross tracking inaccuracy.  

The results of the phantom experiments (Figure 38) showed a significant 

improvement for surface shift correction four out of five datasets. Through the use of the 

superposed retraction atlas, the first two datasets, the overall average shift correction 

improved by 57–59%, the third dataset showed an improvement by 27%, the fourth 

dataset showed no change, and the fifth dataset showed an improvement by 4%. The 

subsurface points mirrored this trend. The difference between different degrees of 

improvement of shift correction in different datasets can be explained by the nature of 

displacements. As shown in Figure 40, the magnitude of gravity displacement is smaller 

in the first two cases compared to the other cases. The following figure shows the gravity, 

retraction, and combined gravity and retraction measurements for datasets #2 and #3. 
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The gravity deformation is almost in the vertical direction whereas the retraction 

deformation is nearly horizontal in Figure 41. Due to the relative magnitudes of the two 

forces in datasets #2 and #3, the combined deformation is weighted towards the 

horizontal direction for dataset #2 and the vertical direction for dataset #3. The gravity 

atlas is formed by tilting the phantom orientation around the vertical direction. Due to the 

more dominant gravitational component in dataset #3, the gravity atlas corrects for a 

larger extent in dataset #3 than dataset #2, which has a more dominant retraction 

component. This is demonstrated in the figure below. 

 
Figure 41. Measurements for deformations caused by gravity, retraction and combined 

forces for datasets #2 and #3. The red surface is the retractor. 



107 

 

 

Figure 42 illustrates the gravity atlas performing very poorly for dataset #2 because of the 

dominant retractor component and performing moderately better for dataset #3 because 

the gravity component is more comparable in magnitude to the retractor component. The 

superposed retractor atlas performs comparably in both the datasets. This same reason 

explains why dataset #5 only experienced a 4% shift correction improvement with the 

superposed retractor atlas, as seen in Figure 40, the contribution of gravity deformation 

was much larger. The following figure shows the displacement measurement and model 

predictions at individual surface markers for phantom dataset #3. 

 
Figure 42. The measured vectors (blue) and the predicted vectors (red) using the gravity atlas 

and the superposed retractor atlas for datasets #2 and #3. 
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When looking at the overall pattern of displacements, the gravity atlas produces more 

uniform deformations, which do not account for the local variations locally in a smaller 

sub-region caused by retraction forces. The local variations are better captured by the 

atlas that contains retractor solutions.  

 Lastly, the results for phantom dataset #4 showed no change from the use of 

superposed retractor atlas vs the gravity atlas and merit some additional examination. The 

following figure shows the deformation caused by retraction alone for dataset #4 and the 

correction for a forward model solve of retraction boundary conditions. 

 
Figure 43.  Comparison of the measured displacement with the prediction made using 

gravity atlas alone and retractor superposed gravity atlas in x (top left), y (top right), z 

(bottom left) directions and overall magnitude (bottom right) for phantom dataset #3. 
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The retractor moved from right to left direction, the markers on the right side of retractor 

experienced very small amount of deformation. This pattern was anomalous as compared 

to the other datasets and could be due to experimental error in the way the phantom was 

made or difference in the experimental setup. The retractor model prediction did not 

perform well in this case, and as a result, the use of the superposed retractor atlas did not 

cause any improvement. 

There are several sources of error in the proposed method including the 

localization or tracking error. The location of the retractor in the phantom was determined 

by localizing the retractor plane and the mesh was split along the corresponding nodes in 

the undeformed state. However when the retractor plane is localized, the fluid drainage 

has already occurred. An assumption was also made that the direction of retraction was 

normal to this recorded surface, however the slipping or sliding of retractor would also 

result in some error. This was countered to some degree by building the retractor atlas 

through perturbation of the angle of retractor normal, as described previously. The effect 

of this error on the model prediction was small and this was supported by the simulation 

 
Figure 44. The deformation caused by retraction for dataset #4 and the model prediction 

using the forward solve of retractor boundary conditions. 
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experiment results in Figure 37. Optical tracking was also integrated into the phantom 

experiment and results (shown in Appendix C) were comparable to localization in the 

images. The PVAc phantom experimental setup was unconstrained except being fixed at 

the base, whereas the behavior of the brain tissue in a constrained cranial space might be 

different. Another potential weakness that was not addressed in this work was that in a 

clinical setting, the size of the exposed craniotomy may be relatively small and the 

retractor may conceal features for homologous point analysis. In future work, this method 

of modeling retraction will be explored in clinical setting using the optical tracking setup. 

 

Conclusions 

In this paper, a method to integrate retraction modeling into the atlas-based 

framework to compensate for brain shift in the OR was presented and evaluated with 

simulation and phantom studies. The atlas-based framework of brain shift computation 

accounts for the uncertainties in the intraoperative environment by pre-computing the 

deformations through different perturbations of boundary conditions and applied forces. 

This work presents a novel yet simple way to integrate retraction into the atlas-based 

brain shift computation framework.  The method is completely compatible with OR 

workflow and minimally cumbersome.  While this work does not incorporate all surgical 

variables, the goal of this work was to study the feasibility of the integration of retraction 

modeling by active solving and linear superposition. The preliminary results presented 

here indicate this approach to be a promising avenue to pursue. 
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Appendix C 

The previous results presented were computed exclusively using the CT images. In the 

experiment, in addition to the CT data, the location of the embedded markers was also 

recorded using optical tracking that is typically available during surgery. The tracked data 

were registered to the CT images using fixed fiducials. The table below shows the 

fiducial registration error (FRE) and the target registration error (TRE) for the markers. 

 

The tracking data was only available for the phantom datasets #3–5. The errors listed are 

a composite of both the localization error of the markers in the image and the registration 

error. The shift correction results obtained using the tracking data is shown in the figure 

below. 

TABLE 10: FRE and TRE for the registration between image and physical space. The FRE was computed 

using the rigid markers fixed to the assembly and the TRE was computed using the surface markers. 

 

Dataset # # fiducial 

markers 

FRE (mm) # target 

markers 

TRE (mm) 

3 6 0.6±0.2 15 1.8±0.7 

4 5 0.7±0.5 12 1.9±1.3 

5 8 0.7±1.7 12 1.9±1.0 
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Comparing these results to the shift correction results obtained using data from the 

images for phantom datasets #3–5, the values are comparable and follow a similar trend. 

 

 

 
Figure 45. Shift correction results using tracking data for phantom datasets #3–5 
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CHAPTER VII 

 

MANUSCRIPT 4 — Preliminary work towards computational tumor growth model 

of a space occupying lesion for estimation of stresses associated with resection 

 

Original manuscript: I. Garg, M. I. Miga, “Preliminary investigation of the inhibitory 

effects of mechanical stress in tumor growth” SPIE Medical Imaging 2008: Visualization, 

Image-Guided Procedures, and Modeling, vol. 6918, 2008 

 

 

Introduction and Significance of Study 

The results shown in Chapter IV indicated that local resection forces acting on 

tissue during surgery are not well accounted for in the current model. In the work 

presented above, resection was modeled by decoupling the tumor nodes from the mesh 

and effectively employing a stress free boundary condition on the resection cavity. In our 

experience, often the behavior of the tissue is similar to the Figure 46 which  shows a pre- 

and post- resection LRS in a typical case.  Here we see that the displacement vectors 

move not only in the direction of gravity, but also inward towards the center of the 

resection cavity. 
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Some preliminary work was directed toward this in [84], in that work, the new surface 

created by tumor node deletion was prescribed a spatially heterogeneous decompressive 

stress boundary condition to attempt to partially collapse and debulk the tissue. At the 

sub-cortical base the stresses were normal to the surface and around the perimeter walls, 

non-uniform stresses were directed radially towards the center. The values of applied 

stress were determined through empirical testing with data. While this is an interesting 

strategy, perhaps a better approach could be generated if the tumor growth process could 

be simulated such that decompressive effects could be parameterized as part of the 

deformation atlas.  In order to gain a better understanding of the decompressive effect, it 

would be important to understand the strain stored in tissue generated through the mass 

effect of tumor growth. Developing a tumor growth simulation model might provide 

more insight into this interaction. This study is a preliminary realization of a one 

dimensional tumor growth model in an effort to understand the compressive stresses 

 
Figure 46: Pre- and post-resection LRS overlaid with the displacements between the 

homologous points 



115 

 

generated by the tumor mass effect, which perhaps in the future could be used to model 

tumor resection more appropriately.  

Abstract 

In the past years different models have been formulated to explain the growth of 

gliomas in the brain. The most accepted model is based on a reaction-diffusion equation 

that describes the growth of the tumor as two separate components- a proliferative 

component and an invasive component. While many improvements have been made to 

this basic model, the work exploring the factors that naturally inhibit growth is 

insufficient. It is known that stress fields affect the growth of normal tissue. Due to the 

rigid skull surrounding the brain, mechanical stress might be an important factor in 

inhibiting the growth of gliomas. A realistic model of glioma growth would have to take 

that inhibitory effect into account. In this work a mathematical model based on the 

reaction-diffusion equation was used to describe tumor growth, and the affect of 

mechanical stresses caused by the mass effect of tumor cells was studied. An initial 

tumor cell concentration with a Gaussian distribution was assumed and tumor growth was 

simulated for two cases- one where growth was solely governed by the reaction-diffusion 

equation and second where mechanical stress inhibits growth by affecting the diffusivity. 

All the simulations were performed using the finite difference method. The results of 

simulations show that the proposed mechanism of inhibition could have a significant 

affect on tumor growth predictions. This could have implications for varied applications 

in the imaging field that use growth models, such as registration and model updated 

surgery. 
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Introduction 

There are an estimated 13,000 deaths and 18,000 new cases every year for all 

primary malignant brain and central nervous system (CNS) tumors. This translates to an 

age-adjusted incidence rate of about 9 per 100,000 people. Gliomas, primary tumors of 

the supporting tissue of the nervous system, account for 77% of all primary malignant 

brain tumors [1]. Histologically gliomas are classified as astrocytomas or 

oligodendrogliomas and pathologically they are subclassified by grades depending on the 

proliferative potency of the tumor. Clinically the most common presentation of glioma 

are seizures, headache, mental change and hemiparesis [85]. The differential diagnosis of 

brain neoplasm is made based on history and exam. The confirmation of diagnosis is 

typically obtained by some imaging modality, gadolinium enhanced magnetic resonance 

imaging (MRI) being the current standard. The prognosis depends on the age of the 

patient at diagnosis and the histologic tumor type. In a 2005 report the Central Brain 

Tumor Registry of the United States (CBTRUS) reported that glioblastoma (the highest 

grade glioma) accounted for ~62% of the 20,974 cases of glioma in a period from 1998 to 

2002 [86]. In general less than 30% of patients under 45 survive for more than 2 years. 

For patients over 65 that survival rate dips to an even bleaker ~2% [1]. In the recent past, 

research efforts to combat this deadly disease have been tremendous in fields ranging 

from epidemiology, biomedical engineering, genetics to molecular biology. 

Epidemiology studies study the patterns of glioma prevalence in the society to devise 

better screening. The engineering aspect is focused on new chemotherapy agents and 

surgical advances such as intraoperative image guidance. Basic sciences aim to answer 

fundamental questions about the mechanism of glioma initiation and growth, which could 



117 

 

contribute to better screening as well as therapy. Animal models and in vitro techniques 

have been indispensable for all this research and have aided the testing of mechanistic 

hypothesis and potential of chemo-therapeutic agents. 

Mathematical modeling can also be a valuable tool to understand various factors 

that initiate, promote, and inhibit tumor growth. Tumor growth has been historically 

described by an exponential model, a Gompertz model or a logistic model. The 

aggressive invasion of healthy tissue makes gliomas unique. Glioma growth has been 

mathematically described in literature by a reaction-diffusion model [87, 88]. This model 

describes the rate of change of tumor cell concentration as a contribution of two 

components: proliferation and invasion. The proliferative component is typically 

described by a constant growth rate, leading to exponential growth. The invasive 

component is described by passive Fickian diffusion. Gliomas are known to invade white 

matter more aggressively than grey matter and Swanson et. al. accounted for this 

heterogeneous behavior by assigning a higher diffusion coefficient to white matter than 

gray matter (factor of 2-100) [87]. Several studies extending the reaction-diffusion model 

have since been published. Jbabdi et. al. used diffusion tensor imaging (DTI) for 

increased accuracy of anisotropic diffusivity [89]. Clatz et. al., in addition to using 

anisotropy information from DTI, also coupled the diffusion to mechanics and studied the 

deformation caused by glioma growth [90]. 

In vitro techniques when combined with mathematical models can become even 

more powerful tools for analysis. Stein et. al. successfully combined these techniques and 

provided quantitative comparisons between theory and experiment for glioblastoma 

growth mechanism [91]. In a landmark experimental paper Helminger et. al. 
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demonstrated that multicelluar tumor spheroids cultivated in mechanically resistant 

matrix grow until a threshold level of stress is attained [92]. Several studies describing 

mathematical models for the results presented in the paper have been published since [93, 

94]. These studies use a system of coupled equations describing tumor cell concentration, 

nutrient concentration, and mechanical stress to model the phenomenon seen in vitro. 

Ambrosi et. al. use a non-linear elastic model [93], and Roose et. al. used a linear 

poroelasticity model [94]. In each case, the stress modulates tumor concentration via a 

coupling relationship. 

There is a dichotomy in the literature of mathematical modeling of gliomas 

between models formulated for in vitro multicellular tumor spheroids and in vivo animal 

or human tumors. The mathematical models for latter tend to be more simplistic with 

fewer parameters such as the reaction-diffusion model with a proliferation constant and a 

diffusion constant. The models for explaining in vitro growth tend to be more complex 

and have a lot more parameters. Those parameters might be evaluated more easily for the 

in vitro models, however the increase in number of unknown parameters for macroscopic 

tumors in human subjects decreases simulation tractability. Ultimately in vitro tumor 

models provide understanding of basic growth and inhibitory mechanisms which, under 

careful consideration of those effects, can then be applied to macroscopic scales. Whereas 

multicellular tumor spheroids grow to a size of several micrometers, in vivo tumors (and 

gliomas) have a minimum threshold radius of a few millimeters for detection in common 

imaging modalities.  Whereas every finding in vitro tumors may not be directly 

applicable to tumors some of the findings deserve to be examined in that light. The 

inhibitory effect of stress for glioma growth might be a significant factor since it grows in 
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the confined space of the cranium. The goal of this paper is to attempt to bridge the gap 

between these two areas by formulating a simplistic mathematical model for macroscopic 

glioma growth that accounts for the inhibitory effect of mechanical stress. In the 

following sections the mathematical model will be introduced, its implementation will be 

discussed, and the results of simulation experiments using the model will be presented. 

 

Methods 

Mathematical Model 

The evolution of tumor cell concentration, c, is modeled by a reaction-diffusion 

equation similar to [87] as shown below, 

)()( cfcD
t

c





   (7.1) 

where D is the diffusion coefficient. The first term on the right hand side is the invasive 

component and represents the spreading of tumor driven by the concentration gradient. 

The second term represents the proliferative component represented as some function of 

the cell concentration. In our simulations, the proliferation is modeled by a logistic 

growth law, i.e. 

cccf )1()(       (7.2) 

α and β are proliferation components in logistic growth. This represents an initial 

exponential growth which slows down eventually as the nutrients are consumed. This is 

physiologically consistent as brain parenchyma has a maximum carrying capacity for 

tumor cells, which has been shown to be around 3.5×10
4
 cells/mm

3
 [95]. 
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 The mechanical equilibrium equation describing the stresses in the system is 

shown below, 

0 extf     (7.3) 

Here σ is the stress tensor and fext is the sum of external forces acting on the system. The 

material was modeled as a linear elastic system. Details about the constitutive equations 

can be found in the appendix. 

 The inhibitory effect on growth by stress was implemented by coupling the 

diffusion coefficient to stress by an exponential decay relationship shown here, 

kDeD '      (7.4) 

where D' is the spatially varying diffusion coefficient and D is invariant diffusion 

constant, k is a scaling constant and in the above equation   represents a yield stress 

such as Von Mises stress in this case. It is being hypothesized that the mechanical stress 

inhibits glioma growth by affecting its diffusion coefficient. Gliomas are characterized by 

an aggressive invasion of parenchyma and a decrease in diffusivity of tumor cells would 

physiologically produce the observable effect of increase in cell density over time. To 

this effect an exponential decay relationship was used between the yield stress and 

diffusion coefficient and the choice was made because of simplicity. 

 

Implementation 

 Three different implementations of the basic model presented above were 

devised. An initial concentration with a normal distribution was used and equation (7.1) 

was solved with Neumann boundary conditions of zero flux.  In the first implementation, 

there was no coupling between the diffusion coefficient and stress i.e. cell concentration 
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depended on the reaction-diffusion equation (equation (7.1)) only. This implementation 

will be referred to as ‘Model 1’. In the other two implementations the diffusion 

coefficients were coupled to stress by equation (7.4), but the way the mechanical 

equilibrium equations were implemented differ. In the second implementation cell 

concentration gradients contribute to the external forces, i.e. 

cfext        (7.5) 

Here λ is a scaling constant. Dirichlet condition of zero displacement was used at outer 

boundary because tumor cannot diffuse across the skull. Stress free conditions were used 

on the inner boundary. This model will be referred to as ‘Model 2’. This model is similar 

to approach proposed in [90] to calculate stresses. In the third implementation the 

mechanical equilibrium was driven by displacements of the tumor front. It was assumed 

that the mechanical stress does not start to inhibit tumor growth until a certain threshold 

size is reached. Equation (7.3) is solved with Dirichlet conditions at both the inner and 

outer boundaries. At the inner boundary the displacement is given by the difference in the 

position of the tumor front at that time step and the threshold size. At the outer boundary 

zero displacement is used as in ‘Model 2’. This implementation of the model will be 

referred to as ‘Model 3’. It’s worthwhile to note here that the mechanical domain in 

‘Model 3’ only consists of the portion of the tumor cell domain that excludes the 

threshold tumor size. In the following simulations, the results of these three models will 

be compared to each other. 
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Simulation Experiments 

All the implementations were simulated using the finite difference approach in 

MATLAB. The time dependant equation (7.1) was solved with an explicit Euler scheme. 

The parameter values used for the simulations are tabulated in Table 11. 

 

Some of these values were drawn from literature and others were determined by 

numerical experimentation. For instance the value of diffusion coefficient is quite similar 

to the value used in [88]. A higher proliferation rate than [88] was used in this case 

because the value used in that paper caused a sharp drop in cell concentration in the 

beginning due to high diffusion and low proliferation rate. The mechanical properties of 

brain tissue i.e. the Young’s modulus and Poisson’s ratio were found in [2]. 

 

Results 

The tumor cell concentration profiles obtained with the reaction-diffusion model 

using the logistic growth term are shown in Figure 47. 

TABLE 11: Parameter values used for model simulations 

Parameter Symbol Value 

Diffusion coefficient D 0.001 cm
2
/day 

Logistic growth parameter α 1 day
-1 

Logistic growth parameter β 0.05 day
-1 

Young’s modulus E 2100 Pa 

Poisson’s ratio υ 0.45 
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The figure shows tumor cell concentration profiles at four different time points. The cell 

concentrations in the figure are scaled between values of 0 and 1. The logistic growth 

caps the concentration at a certain maximum value. This approach, in our opinion, has a 

slight advantage over an implementation such as [90] where the exponential growth term 

is used and the cell concentration is manually constrained in the software beyond a 

certain maximum value. The concentration profiles follow travelling wave type solutions. 

It is worth pointing out that the peak concentration falls initially (100 days) while there’s 

a greater spatial spread of the tumor. As the model progresses in time, the peak value is 

regained. This could be because of the choice of parameters. Initially the diffusion is 

dominant which spreads the tumor cells across the domain. Then as proliferation catches 

up, the peak concentration rises again while the tumor cells continue to invade healthy 

parenchyma. 

 The tumor cell concentration profiles obtained by the three models at different 

time points are shown in Figure 48. 

 
Figure 47. Traveling wave solutions for the reaction-diffusion equation (equation(7.1)) for 

tumor cell concentration. The concentration is normalized between a value of 0 and 1. The 

concentration distribution at 4 different time points is shown. 
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The panel (a) shows the initial tumor cell concentration, which was common to all three 

models. Panels (b) through (d) show the tumor cell concentrations at 200, 300, and 400 

days respectively as predicted by the three models. In each case Model 1, the simple 

reaction-diffusion model predicts the highest invasiveness for the tumor, followed by 

Model 3 and Model 2. At 200 days the concentration profiles predicted by Model 2 and 

Model 3 are relatively similar, but they diverge at future time points. The inhibitory effect 

in Model 2 is the greatest in part because in Model 3 it is assumed that the tumor grows 

freely without any effect of mechanical inhibition until it reaches a certain threshold size. 

In Model 2 stresses exert an inhibitory effect on growth from the beginning of model 

propagation. However, even when accounting for a quicker start, the rate of invasion is 

slower for Model 2. The stresses and thus the diffusion coefficients are dependent on the 

 
Figure 48. Comparison of the concentration profiles over time for three models. M1 

refers to Model 2, M2 to Model 2 and M3 to Model 3. (a) shows the initial cell 

concentration and (b–d) shows the cell concentrations predicted by the models at 200, 

300, and 400 days respectively. 
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choice of ‘k’ in equation (7.4) and λ in equation (7.5) in Model 2. In Model 3, the 

diffusion coefficients are dependent only on ‘k’. ‘k’ was kept consistent between the 

simulations for Model 2 and Model 3. As in [90], λ was an empirically determined 

parameter and its choice would explain the discrepancy in observed tumor profiles for 

Model 2 and Model 3. 

 The resulting radial displacements, radial stresses, and angular stresses for the 

three models are shown in Figure 49, Figure 50, and Figure 51 respectively. 

 

 
Figure 49. (a) and (b) show the brain tissue displacement in the radial direction for Model 

1. In (a) the displacement was calculated by driving the mechanical equilibrium equation 

by the tumor cell concentration gradient and in (b) they were calculated by driving the 

mechanical equilibrium equation by the tumor front displacement. (c) and (d) show the 

results of radial displacements calculated by Model 2 and Model 3. 
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Figure 50. (a) and (b) show the radial stress in the brain tissue for Model 1. In (a) the 

radial stress was calculated by driving the mechanical equilibrium equation by the 

tumor cell concentration gradient and in (b) it was calculated by driving the 

mechanical equilibrium equation by the tumor front displacement. (c) and (d) show the 

results of radial stess calculated by Model 2 and Model 3. 
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In each case panels (a) and (b) show the results predicted by Model 1. Results for panel 

(a) were computed by driving the mechanical equilibrium equation with tumor cell 

concentration gradients (similar to Model 2). In panel (b) the results were computed by 

driving the mechanical equilibrium equation by tumor front displacements (similar to 

Model 3). Panels (c) and (d) show the results obtained from Model 2 and Model 3 

respectively. As clarification, the difference between the first two panels and the last two 

panels is that for each case in (a) and (b) diffusion coefficients were not coupled to stress. 

The values predicted by all three models are on the same order of magnitude. Comparing 

the first two panels to the last two, the magnitudes of all three quantities are highest for 

Model 1. When comparing the displacements in Figure 49 (a) to Figure 49 (b) the 

displacements predicted by Model 1 are greater than Model 2 at 100, 200, and 300 days. 

 
Figure 51. (a) and (b) show the angular stress in the brain tissue for Model 1. In (a) the 

angular stress was calculated by driving the mechanical equilibrium equation by the 

tumor cell concentration gradient and in (b) it was calculated by driving the mechanical 

equilibrium equation by the tumor front displacement. (c) and (d) show the results of 

angular stress calculated by Model 2 and Model 3. 
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The dip in the displacements at 400 days for Model 1 (Figure 39 (a)) is unexpected since 

all other curves indicate an increase in displacement values as the model progresses in 

time. However, the results viewed in confluence with cell concentration gradients at the 

respective time points explain the dip. Initially there are larger concentration gradients in 

the inner portion of the domain and towards the exterior the gradient is very small. As the 

model progresses in time the cell concentration in the interior part of the domain level off 

due to logistic growth. Thus the cell concentration gradient is lowest close to the inner 

and outer boundary and highest in between. These gradients acting as an external force to 

drive mechanical equilibrium explain the observed results. The peaks in radial 

displacement curves in Figure 49 (a) and (b) correspond to the position of the highest cell 

concentration gradient at that time point. Radial displacements in Figure 49 (c) and (d) 

obtained from Model 1 and Model 3 respectively show consistently increasing 

displacements as model propagates in time, with lower displacement at each time point 

for Model 3. The radial stresses (Figure 50) are compressive in most of the domain which 

is expected since tumor growth would create a mass effect, pushing the healthy tissue 

closer to rigid skull boundary. Closer to the inner boundary the stresses are tensile. The 

tensile component is much stronger in Model 2 than Model 3. The value of compressive 

component of stress is quite similar in magnitude for all models. The angular stresses 

(Figure 51) in all cases are tensile. This trend is also expected since healthy brain 

parenchyma is modeled as a nearly incompressible material (Poisson’s ratio of 0.45). 

Thus if the tissue is being compressed radially, it would experience stretching in the 

angular direction. 
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Discussion 

The goal of this work was to assess the applicability of knowledge gained from in 

vitro tumor growth models to human glioma growth. In the past in vitro studies have 

shown that mechanical stress can have an inhibitory effect on tumor growth. Due to the 

growth of gliomas in the confined cranium space, that effect may be significant enough to 

be incorporated into macroscopic growth models. The results in [92] indicated that 

mechanical stress did not affect proliferation rates but decreased the rate of apoptosis and 

that led to a compaction of cells, which was supported by an observable increase in cell 

density in case of stress inhibited tumors. It was hypothesized that the mechanical stress 

inhibits glioma growth by affecting its invasiveness, which in the reaction-diffusion 

growth model is represented by a Fickian diffusion. More experimental work would be 

needed to formulate an appropriate relation that would be physiologically consistent. It is 

known that gliomas invade white matter more aggressively than grey matter and 

anisotropic diffusion coefficients have been used previously in literature to account for 

those differences. The work presented in this paper used a spatially variant diffusivity 

that was only affected by mechanical stress caused by tumor growth. However 

heterogeneous diffusion coefficients for gray and white matter would be relatively 

straightforward to integrate into this model framework. The brain parenchyma was 

assumed to have a linear elastic response to stress but different material properties can be 

modeled by changing the constitutive relationships. This model also assumes no 

intervening therapy but that can be modeled by modifying the reaction diffusion equation 

as in [88]. In Model 3 a minimum threshold size of 1 cm was assumed before it starts 

exerting an inhibitory affect. A more appropriate value would have to be experimentally 
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determined. While some parameter values were used from literature where they were 

available, all published models are unique and have their own set of assumptions. At 

times it was difficult to directly make use of those values and appropriate measures had 

to be determined by numerical experimentation. Since this was a preliminary 

investigation all the results presented in this paper are computational simulations and the 

next natural step would be use of the model to validate in vivo measures such as 

displacements caused by tumors in the brain parenchyma. 

 The computational simulations presented in this work show that stress could 

potentially have a significant effect on tumor growth. Two different implementations of a 

model where stress exerts an inhibitory effect on tumor growth were presented in this 

paper. In the Results sections part of the domain was clipped in presenting the results of 

Model 2 in Figures 49–51. This was done to ease the direct comparison of results from 

the two models because the stress acts on two slightly different domains. The 

displacements and radial stresses for the entire domain for Model 2 at one time point are 

shown in Figure 52. 

 

 
Figure 52. The (a) radial displacement and (b) radial stress for a time point in Model 2. 

As seen in panel (b), there is a strong tensile component of radial stress. 
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Part of the domain is in tension and while it is difficult to see due to scaling, the 

remainder is under compressive stresses (see panel (b)). The tensile effects are not 

consistent with physiological tumor growth. In that respect Model 3 might be a better 

choice. In the implementation of Model 3, the stress does not start to act or affect the 

growth until it reaches a certain threshold value. This is consistent with the finding in 

[92] that tumor spheroids grow in the mechanically resistant matrix until a growth-

inhibitory threshold level of stress was attained. Also it is easier to directly use tumor 

front displacements to drive the mechanical model than empirically determining an 

indirect coupling factor for stress and concentration gradient, i.e. λ in equation (7.5). The 

change in tumor radius as predicted by the three models is shown in Figure 53. Model 2 

and Model 3 predict a slower tumor growth than Model 1. These curves qualitatively 

resemble the initial part of results shown in [9] with a few notable differences. Since this 

model is applicable to tumor on the order of 1 cm, and spheroids grow to the order of 

micrometers the scale for tumor size and growth time is very different. The plateau 

effects of growth at longer times are not seen in the results in Figure 53. 

 

 
Figure 53. Change in tumor size as predicted by the three models over time. 
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That could be because of the aforementioned differences in medium of growth, temporal 

and spatial scales of tumor growth, or different tumor cell lines. The increase in tumor 

radius in 6 months as predicted by Models 1, 2 and 3 are 2 cm, 6 mm and 8mm 

respectively. As a comparison to a macroscopic glioma growth model an average tumor 

boundary displacement of 3 mm was reported in the same time period in [90]. The 

discrepancy could result from the choice of parameters. While all three models predict 

higher tumor boundary displacement than what is reported in [90], values predicted by 

Models 2 and 3 are much closer to the reported displacement. 

 

Conclusions 

 There might be some benefit to integrating the insights gained from in vitro tumor 

growth models into macroscopic models for glioma growth. While the mathematical 

models for in vitro models afford the advantage of controlling and knowing more 

parameters and thus can be constructed with a greater degree of complexity for fine 

tuning such is not the case for macroscopic growth models. However it was demonstrated 

in this work that it might be worthwhile exploring some of the findings on that 

microscopic scale and applying them to macroscopic scale. The purpose of this study was 

a preliminary investigation into observing the inhibitory effects of stress and inferring 

general trends about the tumor growth. The simplicity provided by a single spatial 

dimension aids in a better understanding before a more complicated model can be 

pursued. Accurate macroscopic models of brain tumor growth could be used in many 

applications. For example, statistical atlases of brain function can be used in surgical 
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guidance to prevent the surgical invasion of important functional areas of the brain (e.g. 

motor cortex).  Often, these atlases are based on “normal” brains.  Understanding the 

movement of these statistical distributions of functional areas in response to disease 

growth may be very important for improving a patient’s quality of life post-surgical 

outcome.  In addition, recent findings have indicated that significant swelling of the brain 

can occur from the very initiation of tumor resective therapy.  To improve guidance 

systems, it may be advantageous to correlate the degree of swelling with an accurate 

biomechanical model of disease growth.  In so doing, important information for 

preoperative planning could be derived as well as the potential for guidance correction 

during the earliest stages of surgery. 
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Appendix D 

The appendix lists the details of the implementation of some aspects of the model. 

The model was implemented in polar coordinates. Equation (7.1) expanded out in polar 

coordinates is shown below. 
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The equation (7.3) written for polar coordinates when fext is zero is shown below in 

matrix form. 
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For an axially symmetric problem, this equation reduces to the following [96]. 
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The constitutive equations for the linear, elastic, homogenous, and isotropic material for 

plane strain in polar coordinates are shown below. 
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In the equations above E is the Young’s modulus of elasticity and υ is the Poisson’s ratio. 

Since the terms σrθ and σθr don’t appear in equation (7.8), the remaining terms can be 

used to solve the equations for stresses in terms of strain. 
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The definitions of strain terms are shown below. 
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Thus strains were expressed in the form of displacements and the displacements were 

solved for in equation (7.8). The displacements obtained were then used to obtain the 

angular and radial stresses as expressed in equation (7.10). 
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CHAPTER VIII 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 This dissertation presented studies that evaluated the atlas-based method of brain 

shift correction for better adaptation to intraoperative neurosurgical conditions.  Brain 

shift, the non-rigid deformation of the brain tissue due to intraoperative factors like 

gravitational forces, hyperosmotics drugs like mannitol, resection and retraction can 

cause an error ranging from 1–2.5 cm in the image guidance system [5, 7]. Work done in 

previous literature to address this problem has included volumetric and sparse 

intraoperative imaging and mathematical modeling, the two often working 

synergistically. The obstacle with intraoperative uncertainty in finding the precise 

parameters to run the mathematical models have been overcome with the atlas-based 

inverse modeling approach, where using some prior knowledge, various perturbations of 

the modeling parameters are used to build an atlas of deformation and then inversely 

solved using sparse intraoperative measurements [2, 3]. This prior work was developed 

using pre- and post-operative MR data analysis, which validated the basic framework, 

however still left several avenues for adaptation to intraoperative conditions. Chapter IV 

presented a novel study where the pre- and post-operative data was compared to the pre- 

and intraoperative shift analysis and some critical differences were found in the nature of 

data, providing insights for avenues of development. This chapter also studied the 

importance of modeling the dural septa, subsurface structures that could potentially alter 

both surface and sub-surface shift correction results. Chapter V evaluated the atlas-based 
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model from a system implementation perspective. Minimizing user interaction, 

automation of the pipeline, and decrease in overall computational time would be not only 

be desirable, but also important to make the method feasible for fitting the time window 

between the acquisition of pre-operative imaging data and the beginning of surgery. To 

advance these aims, the chapter presented methods to automate the segmentation of the 

brain and the dural septa for the purposes of construction of the finite element mesh. 

Sensitivity analysis was also presented in this chapter that showed that similar accuracy 

of results could be obtained by sampling the deformation atlas more coarsely, 

dramatically decreasing the computational time. Prior work in the atlas-based literature 

accounted for factors such as gravity, mannitol and swelling, however did not account for 

intraoperative forces of resection and retraction. One of the problems with integrating 

retraction with the atlas-based approach is that exact location of retraction is not known 

prior to surgery. Chapter VI presented a method that combined the pre-computed atlas 

with a component of intraoperative active model solving to account for retraction induced 

deformation. This work was only tested with simulation and phantom experiments, future 

work would include clinical testing. Accounting for tissue resection in the atlas-based 

method is a challenging problem because the decompressive forces that cause tissue 

shrinkage are difficult to compute empirically. The compressive stresses are a function of 

the mass effect exerted by the tumor growth and Chapter VII presented preliminary work 

at an effort to understand the mechanical stress associated with tumor growth to a better 

extent. This work presented a tumor growth model in 1D. Future work would extend this 

model to 3D, include ways to test the model and devise a way to integrate the predicted 

stresses from the growth model into the atlas-based framework for resection modeling. 
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There are many other avenues for the pursuit of improvement of methodology. For 

instance currently, manually selected homologous points on pre- and post-resection LRS 

are used to drive the inverse model. The selection of homologous points is a challenging 

task. The LRS can only image the brain visible in the craniotomy region. Surgical 

resection and other deforming forces in the OR not only produce a sag in the direction 

normal to the surface but also cause tissue to slide out of the craniotomy region and new 

tissue to slide into the region. The presence of the resection hole causes the removal of 

vessels from the visible region of the scan. Pooling of blood and reflection of light off the 

surface further compounds the difficulty of establishing correspondence between the 

points on the pre- and post-resection LRS. For future work, it would be important to 

perform some sensitivity studies to establish the minimal number of corresponding points 

needed for the inverse model reconstruction. Also, if instead of a handful of manually 

selected homologous points between the pre- and post-resection LRS, the point 

correspondence was known for the entire craniotomy region then a greater degree of 

known correspondence would yield better results when used to drive the inverse model. 

Recent work in literature has extended techniques that now provide better 

correspondence between serial laser range scans and the Appendix E presents some 

challenges and a potential approach of how this new knowledge can be applied for 

solving the inverse model. This work is in no way a perfect solution and is indeed limited 

in scope to addressing the many challenges that confront the problems in neurosurgical 

image guidance. Placing this work in the context of other recent developments from our 

research group [97-99], the results presented in this work provides important conclusions 



139 

 

to advance the goal of implementation of an efficient and cost-effective brain shift 

correction strategy for the neurosurgical image guidance.  
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Appendix E 

Currently, manually selected homologous points on pre and post resection LRS 

are used to drive the inverse model. For the clinical data presented in the previous 

section, the number of selected points has ranged from 15 to 24. If instead of a handful of 

manually selected homologous points between the pre- and post-resection LRS, the point 

correspondence was known for the entire craniotomy region then a greater degree of 

known correspondence would yield better results when used to drive the inverse model. 

The work of Ding et. al. has focused on establishing correspondence between the entire 

pre- and post-resection LRS field by using interpolation techniques [41, 100, 101]. The 

LRS device acquires the 3D point clouds and the 2D digital images, the correspondence 

between which is known due to device calibration. The work in [100] introduced the 

feature based technique to register pre- and post- resection point clouds by registering the 

2D images. This process is shown in the following figure. 
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The vessels used for performing the registration were manually segmented. Because the 

success of model updated image guided surgery is contingent on the feasibility of the 

method to work within the time constraints of the OR, efforts were made to automate the 

establishment of vessel correspondence between the images. The methodology described 

in [41] uses a semi-automated method for finding correspondence between vessels on the 

two LRS scans. In this work, instead of designating the entire length of the vessels 

manually, only the starting and the ending points of the vessels are manually specified 

and length of the vessel is automatically found using a minimal cost function on images 

enhanced using a vesselness filter [102]. An example of the vessel map computed 

between two images is shown in Figure 55 below. 

 
Figure 54. Registration procedure between the pre- and post- resection LRS textured point 

clouds outlined in [100]. The images on top are the 2D images with manually segmented 

vessel contours. After correspondence between the 2D images is established, it is applied to 

the 3D point clouds using the known correspondence between them. 
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Registration results with sub-milimetric target registration error were reported with this 

semi-automated method of correspondence. Further attempts at automating this technique 

are described in [101, 103], where the goal is to reduce the manual designation of points 

only to one set of images. Hence, only the points in the pre-resection LRS are manually 

designated and the corresponding points in the post-resection LRS are found by using an 

automated method of projection. The tumor resection drastically alters the topography of 

the surfaces, which presents a considerable challenge for this method of establishing 

point correspondence. If serial images could be acquired through the resection process, 

the gradation of deformation between the intermediate images would ease the problems 

of the registration process. However continuous acquisition of laser range scans would 

pose a serious intrusion into the surgical procedure. Hence the work in [101, 103] uses 

serial images acquired from the video stream of the surgical microscope and proposes 

registering the beginning and the end of the sequence to the pre- and post- resection LRS 

images respectively. 

A vessel based registration followed by a spline interpolation yields much higher 

correspondence than manually selected homologous points that are currently used to 

 
Figure 55. Semi-automatic method of establishing vessel correspondence between 

pre- and post- resection images as described in [41]. The image on left shows the pre-

resection LRS with the starting and ending points marked in yellow and white 

respectively and the image of right shows the vessel maps obtained. 
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drive the data. The inverse model is solved with a least squares minimization approach as 

was discussed in section C.2.1. The least mean square minimization problem is shown 

below. 

 
2

min -M
sparse

α u      (8.1) 

In equation (8.1) above, M is an 3Ns×m atlas of solutions, where m is the number of atlas 

solutions and Ns is the number of sparse points where displacement is known, 3Ns 

represents the displacements in the three coordinates, α is the vector of weighting 

coefficients and usparse is the vector of sparse measurements. The components expanded 

out can be written as follows 
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 (8.2) 

In the above equation, dxij, dyij, and dzij are the displacements in x, y, and z direction at 

the ‘i
th

’ sparse node of the mesh in the ‘j
th

’ solution in the atlas, αj is the weighting 

coefficient for the ‘j
th

’ solution in the atlas and uxi, uyi, and uzi are the measured 

displacements in the x, y, and z directions at the ‘i
th

’ sparse node in the mesh. We 

hypothesize that the expansion of the M matrix and the usparse vector would condition the 

inverse problem better. To test this hypothesis, the denser displacement field obtained by 

interpolation techniques would be integrated into equation (8.2). First a point-to-point 

mapping must be established between the LRS surface and the brain mesh. The LRS 

surfaces have much higher point density than the corresponding craniotomy region on the 

surface of the brain mesh. The LRS surface points can be down sampled and a closest 
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point matching can establish correspondence between LRS surface points and mesh 

surface nodes since they are both in image space through a surface mutual information 

registration.  

The success of an interpolation technique depends on a relatively even 

distribution of the known quantities to be interpolated across the domain. If the 

homologous points are localized in one region of the image, the interpolation results on 

the regions with extremely sparse data could potentially have greater errors. This problem 

is represented conceptually in the figure below. 

 

Figure 56 (a) shows an ideal distribution of homologous points around the resection 

cavity. During the acquisition of the serial microscope video images, instruments 

occasionally block the view of the vessels. Though the method has shown considerable 

robustness to small periodic obstructions, a bigger problem is posed by the discontinuous 

use of the microscope through the procedure, resulting in more drastic changes in the 

discontinuous frames, which would confound the automated point finding method. Figure 

 
Figure 56. Conceptual representation of the problem of interpolation. The line on top 

represents the pre-resection LRS and the line on the bottom represents the post-resection 

LRS. (a) Shows a relatively ideal distribution of corresponding points, (b) shows a 

potential distribution where no corresponding points are found in the right hand side part 

of the surfaces. The interpolation errors would be much higher in the right hand side of 

the image because of the lack of data in that region. 
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56 (b) shows a potential biased point correspondence found due to the above described 

problems, where the homologous points are localized on one side of the surfaces. The 

resultant error of fitting a spline would be much higher on the right hand side because of 

the lack of point correspondence in that region. Since the interpolated displacements 

would outnumber the points with known correspondence, the points would have to be 

weighted appropriately to avoid biasing the results. This could be done by rewriting the 

least squares minimization problem as follows. 

   min - -
T

M W Msparse sparseα u α u
   (8.3) 

In the above equation W is a weighting matrix, where the homologous measurement 

points could have a higher weight and the interpolated displacements could be assigned a 

lower weight. The weighting coefficients, α, could be solved by directly computing or 

obtaining a solution through constrained optimization of the following equation. 

 
1

T TM WM M W


 sparseu
    (8.4) 

A potential choice for the weighting matrix is the inverse of the covariance of the vector 

being estimated [104], which in this case would be the residual error. 

1[ ( )]W Cov r       (8.5), 

where  -r M sparseα u     (8.6) 

Thus in order to establish a weighting matrix, a prior estimate of the covariance of the 

residuals must be made. The error due to interpolation will be larger if the point lies 

farther from the corresponding features. An empirical relation between target registration 

error and distance from known feature can be established by data fitting. The error 

established from that relationship can then be used for estimating the covariance matrix 
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in equation (8.5). In the work of Ding et. al. [41], registration results were obtained 

through semi-automatic vessel segmentation algorithm. Since the vessels were selected 

semi-automatically, there is a good distribution of vessels through the surface. In order to 

simulate a scenario where fewer vessel features are available, a smaller subset of the 

corresponding vessel contours can be used for the registration and interpolation. The 

remaining corresponding vessels can be used as novel targets. The empirical registration 

between target registration error and distance from known features can then be 

established by data fitting, which can then be use used to construct an appropriate 

weighting matrix. The shift correction error resulting from this approach would be 

compared to an algorithm with simple least square minimization of all distances as well 

as to the simple homologous point approach. 
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