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CHAPTER I 

 

INTRODUCTION 

 

1.1 Component Middleware 

Historically distributed systems were developed atop of operating systems and protocols. 

These traditional methods were however replaced by stacks of middleware technologies – 

a shift largely triggered by the necessity to achieve systematic reuse of existing 

architectural and design principles in order to avoid reinventing and reimplementing core 

distributed infrastructure capabilities and services and decrease development time. The 

most recent wave of middleware technologies offers higher-level abstractions, such as 

component models (for example the CORBA Component Model (CCM) and J2EE), web 

services (such as SOAP), and model-driven middleware (e.g. Cadena and CoSMIC) [26]. 

Component middleware aims to address deficiencies of previous middleware 

technologies by (1) clearly defining the unit of reusability in the form of a component, 

which includes supported interfaces and functional requirements and capabilities (2) 

offering standard application assembly mechanisms, (3) providing standard deployment, 

life-cycle management and configuration mechanisms in the context of a component 

application server, (4) integrating standard services into the infrastructure and (5) 

enabling the dynamic evolution and upgrade of deployed components. 

In large-scale distributed real-time and embedded (DRE) systems, such as shipboard 

computing environments, inventory tracking systems, and intelligence, surveillance and 
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reconnaissance systems, component middleware can make the software more flexible by 

separating application functionality from system lifecycle activities, such as component 

deployment and configuration [2]. These DRE systems have stringent quality of service 

(QoS) requirements such as the low latency and jitter expected in conventional real-time 

and embedded systems, as well as the high throughput, scalability, and reliability 

expected in conventional enterprise distributed systems. Ordinary component middleware 

technologies, such as J2EE and .NET, do not provide real-time QoS support and are 

therefore not well-suited for the task of developing DRE systems. QoS-enabled 

middleware, such as the Component-Integrated ACE ORB (CIAO) [23], Qedo, and 

PRiSm, have emerged to address these limitations by marrying the flexibility of 

component middleware with the predictability of Real-time CORBA [2]. All of them are 

implementations of the CORBA Component Model (CCM) [14] supporting Real-time 

CORBA [15]. 

 

1.2 Real-time CORBA Component Model (RT CCM): 

The general CCM contains a number of standard features such as (1) a component server, 

which is a generic server process for hosting component implementations and enabling 

them to access common middleware services and runtime policies, (2) a component 

implementation framework, which automates the implementation of many component 

features, (3) component packaging tools, which compose implementation and 

configuration artifacts into deployable assemblies, and (4) component deployment and 

configuration tools, which automate the deployment and configuration of applications 
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[25].  Real-time CCM combines these mechanisms with Real-time CORBA mechanisms 

such, as thread pools and priority preservation policies, to enable the configuration of 

application components in DRE systems for end-to-end QoS.  

Real-time CCM implementations, such as CIAO, provide an effective way to organize 

software into loosely-coupled reusable components and export their functionality by 

means of one or more interfaces. An interface is an implementation-independent contract 

specifying the operations that can be performed on a reusable unit of code, along with 

their input/output parameters and return type. Components can form relationships with 

other components by means of standard interfaces named ports, including (1) facets that 

expose a piece of functionality that the component offers, (2) receptacles that indicate 

dependencies on functionality provided via facets by other components, and (3) event 

sources and sinks that enable publish/subscribe event-driven communication between 

components.  

Real-time CCM also provides mechanisms for aggregating related monolithic 

components into component assemblies by connecting together their ports. Component 

implementations are bundled into packages that contain (1) binary implementations of 

the encapsulated components, possibly for multiple programming languages, operating 

systems, and hardware platforms, and (2) XML metadata that describes the contents of 

the package, including the interfaces, requirements and capabilities of individual 

components and how they are connected to form an assembly. Packages in Real-time 

CCM are created by a component packager, which is an actor that wraps multiple 
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implementations of the same component interface into a component package and ensures 

its consistency. 

 

1.3 Thesis Focus: Filling some deployment and configuration gaps 

Although component middleware technologies solve many of the problems associated 

with previous generations of inflexible, monolithic, functionally-designed, and “stove-

piped” enterprise DRE systems, they also introduce new challenges associated with the 

higher flexibility and configurability of the system, the manageability of the large number 

of deployment and configuration artifacts and the evolution of the system in response to 

improved understanding of the domain or feedback from testing and emulation of end-to-

end QoS performance. The rest of this document discusses some of these challenges and 

shows how they are solved in the context of the DARPA Adaptive and Reflective 

Management System’s (ARMS) Multi-Layer Resource Manager (MLRM) [20] project. 

The MLRM architecture is discussed next. Chapter II then discusses how component 

repositories can be used to address many of the newly arisen deployment and 

configuration complexities. Chapter III concentrates on some of the complexities 

associated with configuring component middleware for QoS and shows how Model-

Driven Development (MDD) technologies can be applied to mitigate the problem. 
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1.4 Case Study: The DARPA Multi-Layer Resource Manager Project 

The work described in this thesis was motivated by our experience with the DARPA 

ARMS MLRM framework for naval shipboard computing systems and the challenges 

encountered while developing and evaluating it.  

The MLRM services developed in ARMS are designed to support total ship computing 

environments (TSCEs), which form the basis for next-generation naval programs.  A 

TSCE is a coordinated grid of computers that manage many aspects of a ship's power, 

navigation, command and control, and tactical operations.  To make TSCE an effective 

platform requires coordinated MLRM services that can support multiple QoS 

requirements, such as survivability, predictability, security, and efficient resource 

utilization. 

The ARMS MLRM integrates multiple resource management and control algorithms 

based on the CIAO [23] Lightweight CORBA Component Model (CCM) [14] and Real-

time CORBA [15] mechanisms for (re)deploying and (re)configuring application 

components in DRE systems. As shown in Figure 1, the ARMS MLRM top domain layer 

contains infrastructure components that interact with the mission manager of TSCE by 

receiving command and policy inputs and passing them to the resource pool layer. The 

resource pool layer is an abstraction for a set of computer nodes managed by a pool 

manager. The pool manager is an infrastructure component that interacts with the 

resource allocator in the resource pool layer to run algorithms that deploy application 

components to various nodes within a resource pool. The actual computing resources 

reside in the third layer called the resource layer, which has infrastructure components 
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called node provisioners that receive commands to spawn applications in every node 

from a pool manager.  The application string manager is an infrastructure component 

that controls the resource utilization for a group of applications through the node 

provisioners.  The ARMS MLRM services have hundreds of different types and instances 

of infrastructure components written in ~300,000 lines of C++ code and residing in ~750 

files developed by different teams at different locations. 

 

 

Figure 1: Component-based Architecture of the ARMS MLRM 

 

The component-based MLRM infrastructure for a TSCE is designed to support the 

highly heterogeneous environment in which long-lived shipboard computing systems 

operate.  For example, the TSCE that provides the operational context for the ARMS 

MLRM services is designed to support different versions of (1) component middleware, 

such as CIAO and OpenCCM, (2) general-purpose operating systems, such as Linux and 

Solaris, (3) real-time operating systems, such as VxWorks and LynxOS, (4) hardware 



 

 7 

chipsets, such as x86, PowerPC, and SPARC processors, (5) a wide range of high-speed 

wired interconnects, such as Gigabit Ethernet and VME backplanes, and (6) different 

transport protocols, such as TCP/IP and SCTP [16], [17]. 
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CHAPTER II 

 

A COMPONENT REPOSITORY 

 

2.1 Problem Description 

Although component-based enterprise DRE systems help address the problems with prior 

generations of systems, they introduce a number of new challenges, such as the need to 

shield component behavior, deployment, and configuration logic from the complexities of 

heterogeneous hardware/software environments and runtime failure recovery. Due to 

these heterogeneity and reliability requirements, enterprise DRE systems often need to 

defer the installation of software onto target nodes until late in the life-cycle, e.g., at 

startup or run-time. Moreover, to cope with the continually evolving environments in 

which they run, these systems need mechanisms, such as online software upgrades and 

component reconfiguration/redeployment services, to provide the right implementation 

under the right circumstances.  

A promising way to address these new challenges is to create component repository 

managers that (1) keep track of software implementation artifacts and configuration 

metadata in heterogeneous environments and (2) facilitate the online upgrades, 

reconfiguration and redeployment of components. Developing repository managers for 

enterprise DRE systems is however hard.  Key challenges include the need to support 
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cross-platform portability, ensure efficiency, responsiveness and scalability, and enable 

dynamic updates within time constraints.  

This chapter discusses the design and implementation of RepoMan, which is an 

implementation of the OMG CCM Repository Manager specification [13] tailored to the 

needs of enterprise DRE systems. In particular, RepoMan optimizes its CPU and I/O 

usage to provide fast/predictable access to component data for enterprise DRE systems 

with a range of QoS requirements. The RepoMan C++ framework contains ~5,300 lines 

of code in over 45 classes. It has been bundled with the CIAO open-source imple-

mentation of Real-time CCM [17]. 

 

2.2 Context: Use of RepoMan in the MLRM Architecture 

The scale, complexity, and longevity of TSCEs necessitates that their components be 

organized and accessed in a common and standard manner. RepoMan provides this func-

tionality for ARMS and helps ensure the continuous availability of components and their 

associated metadata throughout the system lifetime. For example, RepoMan is used 

during initial system deployment when MLRM resource allocators instruct node provi-

sioners to spawn a specific set of applications. The node provisioners contact RepoMan 

to download the component implementations they need to deploy via CIAO’s 

implementation of the OMG D&C specification [2], which standardizes many aspects of 

deployment and configuration for component-based distributed systems, including 

component configuration, component assembly, component packaging, package 

configuration/deployment, and target domain resource management. RepoMan is also 
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used at runtime to update component implementations dynamically, e.g., in response to 

battle damage or to handle changing workload levels.  

A particularly important function of the resource allocation and control algorithms in 

the ARMS MLRM is the (re)deployment and (re)configuration of components based on 

their operational context. For example, the TSCE can switch from crew entertainment 

mode to ship defense mode, which necessitates updating and/or migrating many 

computing services. RepoMan provides mechanisms to retrieve the configuration data 

associated with specific component implementations and enables the dynamic updating 

of various configuration parameters. Resource allocators and node provisoners 

communicate with RepoMan to choose the best available implementations and to ensure 

that these implementations conform to the characteristics of each node’s hardware, OS, 

middleware, and programming language(s), which can be highly diverse. 

 

2.3 Design of RepoMan 

RepoMan is designed to enable software developers and enterprise DRE systems to (1) 

organize various offline and online configurations of component packages (which include 

component implementations and their associated metadata, known as Pack-

ageConfiguration, that describe the contents of a component package by encapsulating 

the interface definitions of the components, their requirements and capabilities, their im-

plementation descriptions, and their dependencies on other implementation artifacts), (2) 

resolve references to component implementations at deployment time, (3) retrieve 

metadata information to configure the components properly, (4) reconfigure the compo-
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nent implementations within a package by updating their associated metadata, and (5) 

dynamically update components at run-time. This section describes how the structure and 

functionality of RepoMan supports these capabilities. 

 

 

Figure 2: The RepoMan Architecture 

 

2.3.1 Structure of RepoMan 

Figure 2 illustrates the RepoMan architecture, which consists of a CORBA object 

encapsulating ~15 classes implementing different aspects of its functionality and a 

collocated HTTP server encapsulating over 30 classes. The CORBA object supports a 
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standard set of operations (shown as abbreviations in Figure 2) that enable applications 

and other CCM services to manipulate data in the repository, retrieve configuration meta-

data in the form of PackageConfigurations, and update component configurations. The 

collocated HTTP server enables the retrieval of implementation artifacts, which typically 

consist of dynamic link libraries (DLLs).  

One way to design a component repository would be to just use an HTTP server to 

provide access to component packages.  Although this approach is simple to implement, 

it does not scale well because (1) it requires clients to download entire packages to obtain 

their contents, which is inefficient, and (2) each client would need explicit knowledge of 

how to parse the metadata in a component package, which would needlessly complicate 

client code. RepoMan alleviates these drawbacks by serving as a mediator [4] that 

handles package content organization and metadata manipulation to provide a standard 

way of storing, locating, and querying the available component packages and the 

relationships among them. By centralizing PackageConfiguration parsing, RepoMan also 

simplifies client code. Section 2.3.4 describes an optimization technique that shows how 

metadata parsing centralization allows RepoMan to parse metadata only once per com-

ponent package. In contrast, using a simple HTTP server would require parsing the 

metadata many times, i.e., once at every client instance location, so RepoMan’s design is 

much more efficient and scalable.  

RepoMan helps minimize unnecessary CPU and network processing by using 

PackageConfigurations as an intermediary step between clients and the HTTP server. 

This design helps developers and administrators determine if an implementation meets 
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their requirements before downloading the actual binaries. For example, if a client is 

unsure which implementation is best suited to its needs, it can (1) retrieve the 

PackageConfiguration metadata that describes the properties of a specific component, (2) 

analyze that metadata to determine which implementation is appropriate, and (3) then 

download just the desired component implementation(s). This capability is particularly 

useful in enterprise DRE systems, such as TSCEs, where online upgrades change the set 

of available components during the lifetime of the system. 

 

2.3.2 Functionality of RepoMan 

The CCM Repository Manager maintains a collection of PackageConfiguration elements, 

each named with a universally unique identifier (UUID). The descriptive power of 

PackageConfigutations enhances RepoMan’s flexibility, e.g., by encapsulating the 

location of artifacts that implement a component. This encapsulation allows RepoMan to 

act as a component discovery service, thereby alleviating the need for client applications 

to hard-code information about component implementation locations.  It also provides a 

standard way to access components. RepoMan provides the following operations that can 

be invoked by clients: 

Installation. Developers or administrative applications can install a component 

package under a particular name, e.g., “NodeProvisioner.” The installPackage() 

operation installs the package either from a specified location on the local disk or from a 

remote location accessible via HTTP. The metadata in the package is parsed and the 

encapsulated PackageConfiguration is associated with the installation name. Rather than 
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installing a package directly, a PackageConfiguration can also be installed via the 

createPackage() operation, where the installed PackageConfiguration refers to an 

external package whose location is interpreted via a base location. RepoMan is re-

sponsible for resolving all references to external packages. Both operations ensure the 

uniqueness of the installation names, raising exceptions if this precondition is violated. 

Deletion. The inverse of the install operations is the deletePackage() operation, 

which is used to remove component packages from the repository. If the specified name 

does not exist in the repository an exception is raised. 

Retrieving configuration data. Available PackageConfigurations can be retrieved by 

name or by UUID at any time. If the PackageConfiguration corresponding to the 

supplied name is not currently in the repository, RepoMan raises an exception.  

Querying the contents. If a client has no prior knowledge of the existence of any 

specific installation, it can retrieve all available ones by name or by type. Every 

component conforms to a specific interface described by Component Interface 

Descriptors, which are identified by their UUIDs and specify the operations that can be 

performed on the component, along with their input/output parameters and return type. 

RepoMan can return all installation names that implement a specific type of interface. 

Clients can also request a list of all component types an instance of RepoMan is 

managing. 

Retrieving implementations. The CCM Repository Manager standard specifies that 

component implementations are retrieved via HTTP. Upon installation, RepoMan 
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updates the PackageConfiguration describing the package to reflect the correct locations 

of implementation artifacts so that they are accessible via the collocated HTTP server. 

 

2.4 Resolving RepoMan Design Challenges  

Although the CCM specification defines the interface and the functionality of the 

Repository Manager service, it does not prescribe any design details. We were therefore 

faced with a number of design challenges when implementing RepoMan. This section 

describes the key design challenges we encountered, presents our solutions, and outlines 

how we applied these solutions to the TSCE applications supported by the ARMS 

MLRM. 

Challenge 1: Effectively Integrating CORBA with an HTTP Server 

Context. As described in Section 2.2.1 and shown in Figure 3, RepoMan’s architecture 

has (1) a CORBA object that installs/removes packages in the repository and provides 

component configuration data and (2) an HTTP server that provides access to the 

implementation artifacts.  

Problem ���� Effectively integrating CORBA with an HTTP server. One approach to 

integrate CORBA and an HTTP server would enable them to communicate via a shared 

memory segment, but this would tightly couple the HTTP server with the CORBA 

implementation and preclude the use of other web servers. Another approach would be to 

extend the interface of the RepoMan to support HTTP, but this would require 
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implementing HTTP as a pluggable protocol under CORBA, which is complicated, non-

portable, and also precludes the use of other ORBs and web servers.  

 

 

Figure 3: RepoMan in Action 

 

Solution ���� Loose coupling between the CORBA object and the HTTP server. 

RepoMan’s CORBA object and HTTP server are collocated on the same host, but have 

no explicit knowledge of each other and share no internal state information. Instead, they 

use a loosely coupled relationship that shares a common filesystem. The document root 

of the HTTP server points to the directory where the RepoMan caches copies of 
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component packages. Packages are also uncompressed in that directory at installation to 

avoid complicating the logic of the HTTP server with request filters (httpd.apache.org) 

and to minimize data movement, as discussed in Challenge 2. 

Challenge 3 explains how we preserve the consistency within the package hierarchy. 

RepoMan updates the component metadata at runtime, so the locations of implementation 

artifacts point to the HTTP server. Clients can therefore first retrieve and process the 

metadata from RepoMan and then obtain the right implementation artifacts from the 

HTTP server, as shown in the center of Figure 3. 

RepoMan’s approach is flexible and enables the use of multiple web server implemen-

tations. By default, RepoMan uses the JAWS web server [8] since it is bundled with the 

CIAO release. We can easily replace JAWS with the ubiquitous Apache web server, 

however, without affecting the CORBA portion of RepoMan.  

Applying the solution to the ARMS case study. When the MLRM’s node provisioners 

receive a command to spawn a specific component they match the requester’s operational 

needs (e.g., operating system and hardware platform) with the available component im-

plementations available from RepoMan. Once a node provisioner finds a match, it uses 

the address stored in the location field of the corresponding PackageConfiguration to 

request the implementation from RepoMan’s HTTP server, which sends the corre-

sponding artifact to the node provisioner enabling it to perform the deployment. 

Challenge 2: Lowering the Cost of Data Movement and XML Parsing 

Context. Component packages in CCM are files archived with the ZIP algorithm [3], 

which conform to a specific structure, and have a *.cpk extension. The most common 
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RepoMan operation requested by clients – getPackageByName(), as shown in the 

bottom left corner of Figure 3 – is used to return a PackageConfiguration. The 

information conveyed by the PackageConfiguration is initially only present in the XML 

metadata descriptors enclosed in the package. It is therefore necessary for RepoMan to 

parse these descriptor files to populate the in-memory PackageConfiguration before its 

contents can be marshaled and sent to the clients. RepoMan uses the XERCES XML 

parsing library since it is robust and performs comprehensive schema validations. 

Problem ���� Lowering the cost of data movement and XML parsing. Manipulating 

component packages requires a considerable amount of processing to move data to/from 

disk and perform XML parsing. For example, manipulating CCM metadata in a com-

ponent package involves loading the zip’d package contents into memory, uncompressing 

them, and then writing them back to disk again because XERCES cannot parse XML 

from memory directly. XERCES will then parse the uncompressed files to extract the 

relevant information (e.g., the interface type supported by the component or the names of 

the implementation artifacts), and load it into an equivalent C++ data structure that 

RepoMan uses to manipulate the data in memory and to transport it to clients across the 

network.   

Solution ���� Minimizing data movement and XML parsing to improve CPU and I/O 

usage. Uncompressing packages (see Challenge 1) avoids on-access decompression and 

unnecessary data movement. To further decrease data movement and to minimize XML 

metadata parsing, the RepoMan employs the Memento pattern [4], which externalizes 

and records the internal state of an object at an important stage of its lifecycle to enable 
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its later restoration. We used the standard OMG Common Data Representation (CDR) 

format (which is a portable data (de)marshaling format defined by the CORBA specifica-

tion [14]) to externalize the contents of the in-memory PackageConfiguration element at 

installation time after XERCES had validated the correctness of the parsed data and the 

PackageConfiguration had been populated. The result is illustrated in Figure 2. This 

optimization eliminates any subsequent XML parsing and enables RepoMan to load 

PackageConfigurations on-demand and forward them to clients, thereby minimizing 

CPU and I/O processing considerably and significantly improving the response time of 

package lookup operations. 

Applying the solution to the ARMS case study. The operational context of a TSCE 

evolves continuously, e.g., it needs to satisfy changing mission requirements and adapt to 

transient overload and permanent battle damage. Such changes provoke a reaction in the 

control algorithms that drive the dynamic update or the partial or complete redeployment 

of the system. Minimizing data movement and XML parsing overhead (1) improves the 

responsiveness of the RepoMan and allows it to collaborate faster with clients (such as 

the ARMS MLRM and TSCE applications) and (2) helps reduce the costs associated with 

redeploying and updating the system, thereby enabling more CPU and I/O processing to 

be spent performing mission tasks and meeting system deadlines.   

Challenge 3: Organizing and Managing Data  

Context. The package location specified at installation time is either a path in the local 

filesystem or an HTTP URL pointing to a remote file. As discussed in Challenge 2, when 
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RepoMan installs component packages in the repository it caches them locally to 

minimize subsequent access time and to ensure their availability. 

Problem ���� Organizing and managing package data. In order to function properly, 

RepoMan requires that the files that it manipulates (i.e., the component packages, the 

implementation artifacts, and the externalized PackageConfigurations) remain consistent 

across accesses.  It was therefore necessary to provide the right degree of separation 

among files associated with different installations. It was also necessary to enable access, 

traversal, and clean-up of installed files. The lack of standard file system access 

application programming interfaces (APIs) among different operating systems makes this 

hard, however, because we need to ensure that RepoMan’s code remains portable across 

OS platforms. 

Solution ���� Ensure consistency by basing file system organization on the operational 

semantics. RepoMan structures the package organization hierarchy by leveraging the fact 

that installation names are unique within the repository. When a package is installed, 

RepoMan caches its contents in accordance with the configured “install path” and names 

the cached version based on the installation string and not the original filename. As dis-

cussed in Challenge 1 and Challenge 2, RepoMan decompresses component packages 

and caches them locally at installation time in a directory whose name also corresponds 

to the installation name. This design separates different packages and avoids clashes 

among files enclosed in the packages that have equivalent names. Due to the uniqueness 

of installation names which it ensures, RepoMan can guarantee that none of the local data 

will be overwritten accidentally by future installations. 
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We avoid the problem of non-standard file system access APIs by replicating the 

layout of the component package on disk (Figure 2). This design allows RepoMan to use 

the package layout rather than a filesystem API to guide it through subsequent clean-up 

of packages upon deletion. It also ensures the portability of RepoMan’s file system access 

and traversal code. 

Applying the solution to the ARMS case study. As discussed in Section 1.4, the 

ARMS MLRM is designed to support different general-purpose and real-time operation 

systems running atop diverse hardware. By using the internal package layout to guide 

RepoMan through its access, traversal, and clean-up operations, we avoid using any non-

portable file system APIs and ensure that RepoMan can be compiled and deployed in any 

ARMS MLRM target environment.  

Challenge 4: Managing the Complexity of PackageConfiguration Elements 

Context. A key task of RepoMan is to update the location field of the implementation 

artifacts so that they can be retrieved via the collocated HTTP server, as depicted by 

Figure 3. This task requires RepoMan to navigate through the PackageConfiguration 

element all the way down to the implementation artifacts, which are “leaves in the im-

plementation tree” encapsulated by the PackageConfiguration. The structure of the 

implementation tree is very flexible and allows the recursive specification of component 

assemblies by composing them from interconnected smaller monolithic and/or assembly-

based components. 

Problem ���� Managing the complexity of PackageConfiguration elements. The 

PackageConfiguration element encapsulates a description of the deployment 
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requirements for the component, the properties used to configure the component, as well 

as the recursive description of the component implementation tree that may consist of 

multiple monolithic and assembly-based components along with the description of their 

interconnection. The PackageConfiguration is therefore one of the most complex 

elements in the OMG CCM specification. For example, in the case of assembly-based 

components the field disclosing the location of any one of the artifacts implementing it is 

at least 11 levels deep! Updating the locations of the implementation artifacts can 

therefore be tedious and error-prone to program using a naïve design.  

Solution ���� Use the Visitor pattern to manage the complexity of the 

PackageConfiguration. To manage the complexity of traversing and updating 

PackageConfigurations, we used the Visitor pattern [4], which separates the structure of 

a collection of objects from the algorithms applied to the objects. The Visitor pattern 

helps manipulate complicated PackageConfiguration hierarchies because it separates the 

parsing and control logic for every node in the hierarchy into separate methods, which 

allow RepoMan to perform its tasks one step at a time. The Visitor pattern is well suited 

for the recursive nature of the component implementation hierarchies targeted by the 

location updating procedure. 

Applying the solution to the ARMS case study. The Visitor-based approach we used 

helps ensure that RepoMan correctly updates the location of all underlying 

implementation artifacts. This design is important for the MLRM because components in 

the same package usually belong to the same application and not updating the location 

field of a particular component can cause a deployment failure for the TSCE. 
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Challenge 5: Scalable Implementation and Lightweight Synchronization 

Context. As Figure 3 illustrates, the RepoMan can be accessed by many clients in and 

enterprise DRE system, often under strenuous conditions, such as during the TSCE 

recovery process after nodes in a data center have failed.  

Problem ���� Providing a scalable implementation and ensuring correct 

synchronization and low response time. Minimizing the response time of RepoMan is 

hard because it can receive different requests from multiple clients simultaneously. 

Although multi-threading is commonly used to improve application response time, it also 

yields several design problems, such as selecting the appropriate concurrency model, e.g., 

thread-per-request vs. thread pool. Although a thread-per-request model can potentially 

adapt better to increasing demand, it can also exhaust the system resources in response to 

bursty client requests. While a thread pool model can be used instead to prevent the latter 

scenario, this model is not as adaptive. Another design problem involves selecting the 

synchronization mechanisms to prevent race conditions when multiple threads are 

accessing shared resources. Since synchronization mechanisms incur mutual exclusion 

overhead and can severely limit the opportunity for concurrent operation of multiple 

threads due to their sequential processing enforcement nature, their use should be limited 

only where they are absolutely needed.  

Solution ���� Use a variable-size thread pool with lightweight synchronization. 

RepoMan uses a thread pool to prevent bursty clients from depleting system resources. 

The size of RepoMan’s thread pool is configurable at startup since the number of 

spawned threads depends on the characteristics of the target host on which it is deployed. 
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RepoMan uses three hash tables to store its internal state information, such as 

associations of installation names with package contents on disk. We avoid synchronizing 

each operation performed by RepoMan in its entirety by only synchronizing access to 

these hash tables. This lightweight synchronization design is more efficient than the alter-

natives (such as the Monitor Object or Active Object patterns [21]) by limiting the 

concurrent access to a fraction of the code and allowing multiple threads to handle the 

same type of requests from different clients concurrently.  

Applying the solution to the ARMS case study. RepoMan is a key part of the 

(re)deployment and (re)configuration activities performed by the ARMS MLRM. Using a 

multi-threading and lightweight synchronization design along with the optimizations 

discussed in Challenge 2, helped us minimize RepoMan’s response time, thereby 

contributing to the minimization of the overall cost of redeployment, reconfiguration, and 

component update activities. 

 

2.5 Lessons Learned  

We discussed the design challenges faced when developing and applying RepoMan to a 

shipboard computing enterprise DRE system and showed how our solutions help resolve 

these challenges. The following are lessons learned during our work on RepoMan and its 

application to the ARMS Multi-Layer Resource Manager (MLRM): 

• Building enterprise DRE systems whose operational semantics change frequently 

necessitates the dynamic update of components and requires a component repository 
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to enable the automated (re)deployment and (re)configuration of heterogeneous com-

ponents throughout the system. 

• The CCM Repository Manager specification strikes an effective balance between 

flexibility and efficiency by keeping client code considerably simpler and supporting 

dynamic updates and system (re)deployment and (re)configuration. 

• Applying software patterns to RepoMan helped ensure that its design uses the best 

practices associated with solving some recurring problems and leveraged the ex-

perience of experienced developers.  Patterns applied to RepoMan include Iterator, 

Memento, Null object, and Visitor in the COBRA object and Bridge, Service 

Configurator, Singleton, Strategy, Wrapper Facade in the HTTP server. 

• Amortizing certain costs over lifetime of RepoMan helped to improve its 

performance. Although externalizing the PackageConfiguration slows down the 

installation, it enabled us to optimize the performance over the lifetime of the system 

since subsequent retrieval operations are much more frequent than initial installation 

operations. 

The implementation of RepoMan is open-source and can be downloaded along with the 

CIAO Real-time CCM middleware. 
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CHAPTER III 

 

CONFIGURING COMPONENT MIDDLEWARE FOR QoS 

 

3.1 QoS Configuration and evaluation challenges 

A particularly vexing problem facing researchers and developers of large and layered 

enterprise DRE systems, such as major defense, aerospace, and commercial programs, is 

that the inadequacies of system architectures may not be ascertained until years into 

development. At the heart of this problem is the serialized phasing of layered system de-

velopment, in which the application components are not created until after their un-

derlying system infrastructure components. A side effect of serialized phasing is that 

design flaws that affect system QoS are not discovered until late in the lifecycle because 

the implementations, configurations, and deployments of infrastructure components are 

often not tested adequately under realistic workloads. 

[22] describes an interesting component workload emulation approach which can be 

used to exercise the infrastructure middleware much before application components are 

complete. We used this technology in the context of the ARMS MLRM to conduct “what 

if” scenario analysis in order to figure out how well the implementations, configurations, 

and deployments of infrastructure components will satisfy key system QoS properties, 

such as the maximum number of clients the system can handle before it saturates and the 

effects of average and worst-case response time for various workloads. Figure 4 shows 
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the stages in the component workload emulation approach. The feedback gained in the 

process is used as basis for system reconfiguration and improvement.  

 

 

Figure 4: Evaluating the QoS of a Shipboard Computing Enterprise DRE System 

 

While evaluating and reconfiguring the QoS characteristics of the ARMS MLRM 

services we encountered a number of challenges which are discussed in the following 

section. To address these problems we leveraged some model-driven development 
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(MDD) methodologies [10] and created a higher level Quality of Service Policy Modeling 

Language (QoSPML) in order to raise the level of abstraction and shield the 

(re)configuration developers from the accidental complexities associated with component 

middleware QoS provisioning [16]. 

 

3.2 QoS Configuration Challenges in the context of the MLRM 

We encountered the following challenges while developing, evaluating and configuring 

the ARMS MLRM services to meet their QoS requirements. 

Challenge 1: Using standard Real-time CORBA APIs to configure the QoS of 

ARMS components. One way to ensure that ARMS application and MLRM infrastruc-

ture components exhibit the necessary QoS properties is to tightly couple the necessary 

QoS mechanisms into them imperatively. While this approach is common, it requires that 

developers be intimately familiar with Real-time CORBA to handle its accidental 

complexities. Moreover, hand-coding QoS properties into components imperatively can 

yield convoluted and inflexible implementations that are hard to evolve. 

Challenge 2: Ensuring the right granularity of QoS. The ARMS application and 

infrastructure components have diverse characteristics and QoS requirements including, 

but not limited to, high throughput of continuously refreshed data, hard real-time 

deadlines associated with periodic processing, well-defined computational paths 

traversing multiple components, soft real-time processing of many tasks, and operator 

display and control requirements. Specifying the right granularity of QoS for these 

components imperatively using Real-time CORBA APIs is hard. 
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Challenge 3: Managing large scale system configurations. In enterprise DRE 

systems like ARMS with many components, manually tracking every configuration for 

every component and assembly of components is hard. Hand-coding QoS properties into 

component implementations provides a way to track component configurations, but 

makes it hard for developers to review component specifications quickly. Even worse, if 

testing and benchmarking yields weak points in the system design, or functional 

requirements change, developers must manually read the code, find all relevant code 

snippets, and update each accordingly to reconfigure the necessary components, which is 

tedious and error-prone. 

Challenge 4: Using metadata to configure components for QoS and to define 

behavioral components. Many middleware platforms, such as EJB, CCM, and .NET, 

have chosen XML as their configuration language since it enables different (1) 

application developers to create interoperable subsystems and (2) middleware developers 

to evolve different layers of their frameworks independently. Although XML is expres-

sive, it is hard to manually read and write due to its accidental complexities. For example, 

although its elements are organized in a hierarchical form specified by the schema to 

which they conform, XML documents have a flat structure, are highly verbose, and lack 

intuitive relationships to the domain they represent. Evolving and debugging XML code 

manually is therefore extremely cumbersome, which makes it hard to reuse XML-based 

configurations. 

Challenge 5: Refining system QoS properties. Enterprise DRE systems inevitably 

evolve due to changing functional requirements and specifications, deeper understanding 
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of the domain, or hardware/software platform refresh. As a result, the associated QoS 

properties defined for a particular version of the system must also evolve. Hand-coding 

QoS properties therefore creates systems that scale poorly and fail to evolve rapidly to 

reflect new requirements and specifications. 

The next section shows how we developed and applied a MDD tool to address these 

challenges. 

 

3.3 Overview of QoSPML 

Although component-based DRE systems are more flexible and easier to develop, a new 

level of complexities has surfaced, such as the automatic configuration of application and 

infrastructure QoS policies. A promising way to address these complexities is to use 

MDD tools to create Domain Specific Modeling Languages (DSMLs) that automate key 

portions of QoS-enabled component middleware configuration, deployment, and 

evaluation. The following sections describe QoSPML which is a DSML developed using 

the Generic Modeling Environment (GME) [12] to model Real-time CORBA policies and 

to enable the automatic generation of configuration metadata. 

 

3.3.1 Motivation 

Standard distributed object computing (DOC) middleware provides application 

programming interfaces (APIs) that developers use to configure infrastructure and 

application components imperatively to provide predictability, satisfy timing constraints, 
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and preserve prioritized access to shared resources. Standards-compliant [15] Real-time 

CORBA DOC middleware provides standard APIs and policies that allow enterprise 

DRE systems to configure and control various resources, such as (1) processor resources 

via priority mechanisms, thread pools, and synchronizers, for real-time applications with 

fixed priorities, (2) communication resources via protocol properties and explicit 

bindings to server objects using priority bands and private connections, and (3) memory 

resources via bounding the size of request buffers and thread pools.  

The standard APIs for programming QoS policies in Real-time CORBA, however, are 

complicated. Moreover, the imperative model for programming these features requires 

application developers to have detailed knowledge of the underlying semantics and 

implementation in order to configure these policies correctly. Over the past several years, 

however, QoS-enabled component middleware, such as CIAO [23], Qedo [18], and Prism 

[19], has evolved to support QoS configuration via standard XML descriptors that are 

specified declaratively and processed automatically by the middleware deployment and 

configuration runtime environments [2].  

Although using XML descriptors to configure the QoS properties of the system reduces 

the amount of code written imperatively, it also introduces new complexities, such as ver-

bose syntax, lack of readability at scale, and a high degree of accidental complexity and 

fallibility. QoSPML was developed to alleviate these complexities and to enable the 

seamless configuration of key QoS properties of Real-time CCM [23] components.   
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3.3.2 Structure of QoSPML  

The Real-time CORBA specification provides many QoS policies for controlling appli-

cation behavior. To comply with the standards, and as illustrated in Figure 5, the follow-

ing QoS policy types can be modeled in QoSPML: a priority model policy, a thread pool 

policy, and a connection policy. QoSPML organizes policies into logical groups named 

policy sets, which enable the specification of alternative configurations in the same QoS 

model. The connection and thread pool policies are modeled as references to actual 

resources to permit resource sharing among separate policy sets. For example, the same 

thread pool policy can be shared between two different policy sets, while both policy sets 

define a different connection and priority policy. 

 

3.3.3 Functionality of QoSPML 

QoSPML enables developers of enterprise DRE systems to specify and control the 

following Real-time CORBA QoS policies via visual models:  

Propagation of priorities: Real-time CORBA defines two ways to propagate end-to-

end priorities: server-declared and client-propagated. In the server-declared model the 

priority at which requests run is determined by the server, whereas in the client-

propagated model the server honors the request priority assigned by the client. These 

priority propagation schemes are modeled in the PriorityModelPolicy element. The type 

of propagation scheme is selected via the PriorityModel enumeration attribute and the 

priority is specified with the priority attribute.  
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Figure 5: GME Metamodel of QoSPML 

 

Specification of threading model: Each ThreadPool model encapsulates data that 

specifies the properties of a thread pool in Real-time CORBA. For example, developers 

can set the stack size associated with the thread pool, allow/disallow request buffering 

and set the maximum number of requests to be buffered and the corresponding buffer 

size. A thread pool has a set number of pre-spawned static threads and up to a maximum 

limit of dynamic threads spawned on-demand only if all static threads are in use. 

QoSPML supports two types of thread pools: (1) the SimpleThreadPool model, which 

has a single priority lane and allows lower priority client-propagated requests to exhaust 

all the static and dynamic threads and starve higher priority requests and (2) the 

ThreadPoolWithLanes model, which creates multiple lanes for different priorities to 
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prevent lower priority client-propagated requests from exhausting all pool’s threads. If 

thread borrowing is enabled, higher priority requests can temporarily promote a thread 

from a lower priority pool to run the request at the higher priority. 

Specification of connection bands: Another Real-time CORBA feature supported by 

QoSPML is banded connections, which are specified by the BandedConnections policy 

element. These connections are logically divided into ConnectionBands, which have a 

low and high attribute for specifying the range of priorities of the requests traveling on 

that band. 

Constraint-Checking and Model Interpretation: The GME in which QoSPML was 

developed provides a powerful constraint-checking mechanism which can be utilized by 

tool developers in order to ensure the correctness of the models created with their tools. 

GME synthesizes the basic constraints based on the DSML structure and allow the 

manual specification of further constraints which cannot be automatically deduced. 

Another important capability that GME provides is the ability to develop and associate 

model interpreters with a particular tool. The model interpreter can access and manipulate 

the in-memory representations of models created by the particular DSML which it is able 

to interpret. This allows the model interpreter to do anything from model-transformations 

to code or configuration generation. In the case of QoSPML, we extract the information 

captured by the models and map it to a semantically equivalent XML document.  

Advantages: Figure 6 illustrates portions of an example QoS configuration using 

QoSPML. The highlighted region in the figure illustrates the priority model policy and 

defines references to the connection bands and the thread pool with lanes elements. The 
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XML below shows a snippet of the generated via model interpretation configuration 

metadata. 

QoSPML addresses the challenges discussed in Section 3.1. In particular, it allows 

developers to avoid writing applications that use the convoluted Real-time CORBA 

imperative APIs directly, while still providing control over QoS policies. QoSPML also 

enables application developers and performance engineers to provision the QoS of 

applications in enterprise DRE systems via higher-level models that QoSPML converts 

automatically into lower-level Real-time CORBA QoS policies expressed using XML. 

 

 

Figure 6: QoS Configuration Snippet of a Model and its Interpretation 
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3.4 Resolving ARMS MLRM Challenges with QoSPML 

We now examine how the QoSPML DSML described in the previous section can be 

applied to address the challenges discussed in Section 3.1 which arose when developing, 

evolving, and evaluating the ARMS MLRM case study for shipboard computing 

enterprise DRE systems. 

 

3.4.1 Configuring Infrastructure and Application Components for QoS 

Challenge 1 in Section 3.1 described the difficulties associated with writing applications 

using the Real-time CORBA API imperatively. QoSPML provides a more scalable and 

robust approach to configuring the QoS properties of the CCM components being 

developed, or reused, by enabling developers to specify these properties declaratively and 

visually. Developers use QoSPML to specify the QoS policies that determine the 

threading, connection, and priority propagation mechanisms used for a particular 

component and group these policies into policy sets. The specified mechanisms are 

modeled in terms of the actual system resources that implement them, which makes it 

possible for different policy sets to share the same instance of a resource at the 

middleware layer.  QoSPML also enables developers to verify the correctness of their 

models by providing constraint checking mechanisms embedded in the language. The 

QoS models can be interpreted by means of a model interpreter that generates correct 

metadata descriptors understood by the Real-time CCM middleware runtime.  

In the context of ARMS, QoSPML facilitates the seamless configuration of 

components for QoS in each layer of MLRM because it allows application developers to 
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bypass the tedious tasks of hard-coding the Real-time CORBA code or hand-crafting the 

XML descriptors that can be used to describe the QoS configuration. 

 

3.4.2 Meeting the QoS Needs of the Various MLRM Subsystems 

Challenge 2 in Section 3.1 discussed the diversity of services and QoS requirements 

supported by the ARMS MLRM infrastructure. Each of these QoS requirements is hard 

to achieve separately and even harder to achieve in combination. Fortunately, QoSPML 

detaches configuration developers from the inherent complexities of the configuration 

code and allows them to concentrate on the general logic of the application components.  

In the context of ARMS, a major cause of missed deadlines is priority inversions, 

where lower priority requests access a resource at the expense of higher priority requests. 

Priority inversions must be prevented or bounded since they can cause the ARMS 

applications to miss their deadlines. QoSPML’s ThreadPoolWithLanes element can be 

used in conjunction with the BandedConnection and the PriorityModelPolicy elements to 

configure MLRM properly and reduce priority inversions. 

The ThreadPoolWithLanes feature of QoSPML can be used to meet some of the QoS 

needs of ARMS. By using this feature, the MLRM will be configured so that lower 

priority requests cannot exhaust threads allocated for higher priority requests when a 

request is executed. Long-running requests in MLRM can also exhaust the maximum 

number of static threads, causing the system to miss deadlines. QoSPML therefore allows 

ARMS MLRM developers to specify the maximum number of dynamically spawned 

threads to better manage long running requests and periodic high loads. 
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The BandedConnection element in QoSPML allows MLRM developers to control 

network resources effectively by separating lower and higher priority requests so they do 

not share the same multiplexed connection. In multiplexed connections, requests are 

queued and serviced on a FIFO basis, where low priority requests could be scheduled 

first. By using priority bands, developers can partition the communication links between 

application and MLRM components based on a range of priority values. This QoS policy 

ensures that low priority requests travel on separate paths from high priority requests, 

therefore preventing priority inversions. A beneficial side-effect of this partitioning 

mechanism is that it decreases latency and improves response time. 

It is also important to ensure the portability of priorities in cases when ARMS 

application and MLRM component run atop different OS platforms with different priority 

ranges. Once the necessary priority mappings have been defined, QoSPML’s 

PriorityModelPolicy feature can be used to preserve the end-to-end priorities and to 

define the priority propagation scheme used to configure Real-time CORBA policies. As 

discussed in Section 3.2.3, there are currently two types of policies: server declared and 

client propagated.  

 

3.4.3 Using MDD Tools to Generate XML Metadata 

Challenge 4 in Section 3.1 described the complexities introduced by applying XML 

metadata to configure DRE systems. We used QoSPML to bypass the XML coding nec-

essary to configure application and middleware components declaratively, which raised 

the level of abstraction by means of a visual DSML. We used this MDD tools to formally 
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model the configuration space and enable the automatic generation of configuration code. 

QoSPML therefore allows developers to concentrate on the actual design of the enterprise 

DRE system, while shielding them from the accidental complexities of the configuration 

artifacts. It also makes rapid (re)configuration possible, thus allowing developers to 

evolve the system more conveniently. 

In the context of ARMS, we had initially used validation tools, such as XML SPY, to 

verify the syntactic correctness of the XML metadata against the schema to which it con-

forms. Unfortunately, these validation tools miss many problems with handcrafted XML. 

In contrast, QoSPML provides a more effective solution because it uses GME’s powerful 

constraint-checking facility to ensure that models are correct-by-construction. The 

generated XML descriptors are therefore also correct as long as the output of the 

QoSPML interpreter conforms to the XML schema that describes the documents. 

 

3.4.4 Managing and Refining the System Configuration Space 

Challenge 3 in Section 3.1 described how managing a large amount of XML metadata is 

cumbersome and that extracting information from it requires significant effort. Likewise, 

challenge 5 in Section 3.1 discussed that it is even harder to modify XML-based 

configuration files in response to (1) changing system requirements, (2) better under-

standing of the QoS needs to the application, or (3) uncovered design weaknesses. For 

example, even a single typo in an XML file can compromise the document structure and 

cause the parsers to fail, which makes handcrafted XML files extremely hard to manage 

and evolve. 
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In the context of ARMS, by using QoSPML developers no longer have to deal with 

XML metadata directly. Instead, they can use visual models to perform their tasks from a 

domain-centric perspective. After making the necessary changes to the system con-

figuration, they can regenerate the descriptors quickly and correctly, which scales much 

better for enterprise DRE systems like ARMS. 

 

3.5 Benefits of MDD tools to the component-based ARMS applications 

This chapter focused on the experience gained while integrating and applying the 

QoSPML DSML to the DARPA ARMS MLRM services for naval shipboard computing 

enterprise DRE systems. The benefits observed by applying our DSML to the com-

ponent-based ARMS applications and infrastructure services thus far include: 

• Using highly configurable component middleware, such as CIAO [23] and DAnCE 

[2], enhances software development quality and productivity. Unfortunately it also 

introduces extra complexities, which are hard to handle in an ad hoc manner for 

enterprise DRE systems. 

• Using DSMLs can expedites application development and system QoS configuration 

by providing proper integration of MDD tools with the underlying component 

middleware infrastructure. In the ARMS MLRM case study, the QoSPML DSML 

was used to simplify the evaluation of many different system configurations and 

facilitate QoS-related “what if” scenarios prior to the integration or even the 

development phase. QoSPML also plays an important role in enterprise DRE system 
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evolution because it provides a way to evaluate alternative system configurations 

visually and empirically. 

• QoSPML can help to reduce the learning curve for the end users. For example, in the 

ARMS MLRM case study, application developers needed little knowledge of the 

Real-time CORBA QoS policy APIs and the CIAO XML descriptors that declara-

tively configure these policies in Real-time CCM. Instead, they used the higher-level 

models of QoS policy provisioning mechanisms provided by QoSPML. 

Although our use of MDD technologies solves many hard problems encountered in the 

ARMS program, it also leaves room for some improvement and future work: 

• Despite the fact that QoSPML facilitates the QoS configuration of enterprise DRE 

systems based on Real-time CORBA, developers are still faced with the question of 

what constitutes a “good” configuration.  

• Although MDD removes many complexities associated with handcrafted solutions, 

developers are still faced with the challenge of evolving existing models when the re-

spective domain evolves. Although model evolution tools, such as GREAT [9], exist 

they are hard to use and only provide partially automated solutions. 

This experience motivates further research on automated QoS configuration and 

deployment techniques to uncover effective heuristics to guide us in the complicated 

process of enterprise DRE system evaluation-driven QoS configuration, as well as further 

research on model migration to simplify the process evolving DSMLs as the 

understanding of their respective domains matures. 
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The GME open-source domain-specific modeling framework can be downloaded from 

www.isis.vanderbilt.edu/projects/GME. QoSPML was integrated with the open-source 

Component Synthesis with Model Integrated Computing (CoSMIC) tool chain and is 

available at www.dre.vanderbilt.edu/cosmic. 
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APPENDIX A 

 

REPOMAN AND QOSPML ON THE WEB 

 

 

http://www.cs.wustl.edu/~schmidt/CIAO.html 

RepoMan is available as part of the Component Integrated ACE ORB (CIAO). For 

instructions on how to download and install CIAO please follow the link above. 

 

 

http://www.dre.vanderbilt.edu/cosmic/ 

QoSPML has been integrated in the Component Synthesis with Model Integrated 

Computing (CoSMIC) tool chain and can be found under the RTConfig worksheet in 

CoSMIC. To download and install CoSMIC and obtain QoSPML go to the link above. 

 

 

http://www.isis.vanderbilt.edu/projects/GME/ 

The Generic Modeling Environment is the meta-modeling environment used to develop 

both QoSPML and CoSMIC. You can learn more about GME by visiting the website 

above. 
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