
AIDING THE DEPLOYMENT AND CONFIGURATION OF COMPONENT

MIDDLEWARE IN DISTRIBURED, REAL-TIME AND EMBEDDED SYSTEMS

by

Stoyan G. Paunov

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2006

Nashville, Tennessee

Approved:

Dr. Douglas C. Schmidt

Dr. Aniruddha Gokhale

 ii

ACKNOWLEDGEMENTS

I would like to thank Dr. Douglas C. Schmidt, who is my advisor, for his insightful ideas,

encouragement and guidance. I further want to thank Dr. Schmidt for his major

contribution to my professional growth and for my newly acquired insights into our field

as it stands today and where it is likely to go in the future.

I would also like to thank my mother Zoya, my father Georgi and my sister Elena for

their support and belief in me through the years. Finally, I would like to thank Vanderbilt

University and the Institute of Software Integrated Systems (ISIS) for providing the

setting for my work and for supporting my efforts morally and financially.

 iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS.. ii

LIST OF FIGURES .. v

ABBREVIATIONS ... vi

Chapter

I INTRODUCTION... 1

 1.1 Component Middleware ... 1

 1.2 Real-time CORBA Component Model (RT CCM): .. 2

 1.3 Thesis Focus: Filling some deployment and configuration gaps 4

 1.4 Case Study: The DARPA Multi-Layer Resource Manager Project 5

II A COMPONENT REPOSITORY ... 8

 2.1 Problem Description... 8

 2.2 Context: Use of RepoMan in the MLRM Architecture...................................... 9

 2.3 Design of RepoMan ... 10

 2.3.1 Structure of RepoMan .. 11

 2.3.2 Functionality of RepoMan.. 13

 2.4 Resolving RepoMan Design Challenges.. 15

 Challenge 1: Effectively Integrating CORBA with an HTTP Server 15

 Challenge 2: Lowering the Cost of Data Movement and XML Parsing 17

 Challenge 3: Organizing and Managing Data ... 19

 Challenge 4: Managing the Complexity of PackageConfiguration Elements 21

 Challenge 5: Scalable Implementation and Lightweight Synchronization 23

 2.5 Lessons Learned ... 24

III CONFIGURING COMPONENT MIDDLEWARE FOR QoS.............................. 26

 3.1 QoS Configuration and evaluation challenges ... 26

 3.2 QoS Configuration Challenges in the context of the MLRM 28

 3.3 Overview of QoSPML ... 30

 3.3.1 Motivation .. 30

 iv

 3.3.2 Structure of QoSPML... 32

 3.3.3 Functionality of QoSPML .. 32

 3.4 Resolving ARMS MLRM Challenges with QoSPML..................................... 36

 3.4.1 Configuring Infrastructure and Application Components for QoS 36

 3.4.2 Meeting the QoS Needs of the Various MLRM Subsystems................. 37

 3.4.3 Using MDD Tools to Generate XML Metadata..................................... 38

 3.4.4 Managing and Refining the System Configuration Space...................... 39

 3.5 Benefits of MDD tools to the component-based ARMS applications 40

APPENDIX A... 43

REFERENCES ... 44

 v

LIST OF FIGURES

Page

Figure 1: Component-based Architecture of the ARMS MLRM 6

Figure 2: The RepoMan Architecture ... 11

Figure 3: RepoMan in Action ... 16

Figure 4: Evaluating the QoS of a Shipboard Computing Enterprise DRE System......... 27

Figure 5: GME Metamodel of QoSPML .. 33

Figure 6: QoS Configuration Snippet of a Model and its Interpretation 35

 vi

ABBREVIATIONS

API – Application Programming Interface

ARMS – Adaptive and Reflective Management System

CIAO – Component Integrated ACE ORB

CCM – CORBA Component Model

D&C – Deployment and Configuration

DOC – Distributed Object Computing

DRE – Distributed, Real-time and Embedded

DSML – Domain Specific Modeling Language

MDD – Model-Driven Development

MLRM – Multi-Layer Resource Manager

QoS – Quality of Service

QoSPML – Quality of Service Policy Modeling Language

TSCE – Total Ship Computing Environment

 1

CHAPTER I

INTRODUCTION

1.1 Component Middleware

Historically distributed systems were developed atop of operating systems and protocols.

These traditional methods were however replaced by stacks of middleware technologies –

a shift largely triggered by the necessity to achieve systematic reuse of existing

architectural and design principles in order to avoid reinventing and reimplementing core

distributed infrastructure capabilities and services and decrease development time. The

most recent wave of middleware technologies offers higher-level abstractions, such as

component models (for example the CORBA Component Model (CCM) and J2EE), web

services (such as SOAP), and model-driven middleware (e.g. Cadena and CoSMIC) [26].

Component middleware aims to address deficiencies of previous middleware

technologies by (1) clearly defining the unit of reusability in the form of a component,

which includes supported interfaces and functional requirements and capabilities (2)

offering standard application assembly mechanisms, (3) providing standard deployment,

life-cycle management and configuration mechanisms in the context of a component

application server, (4) integrating standard services into the infrastructure and (5)

enabling the dynamic evolution and upgrade of deployed components.

In large-scale distributed real-time and embedded (DRE) systems, such as shipboard

computing environments, inventory tracking systems, and intelligence, surveillance and

 2

reconnaissance systems, component middleware can make the software more flexible by

separating application functionality from system lifecycle activities, such as component

deployment and configuration [2]. These DRE systems have stringent quality of service

(QoS) requirements such as the low latency and jitter expected in conventional real-time

and embedded systems, as well as the high throughput, scalability, and reliability

expected in conventional enterprise distributed systems. Ordinary component middleware

technologies, such as J2EE and .NET, do not provide real-time QoS support and are

therefore not well-suited for the task of developing DRE systems. QoS-enabled

middleware, such as the Component-Integrated ACE ORB (CIAO) [23], Qedo, and

PRiSm, have emerged to address these limitations by marrying the flexibility of

component middleware with the predictability of Real-time CORBA [2]. All of them are

implementations of the CORBA Component Model (CCM) [14] supporting Real-time

CORBA [15].

1.2 Real-time CORBA Component Model (RT CCM):

The general CCM contains a number of standard features such as (1) a component server,

which is a generic server process for hosting component implementations and enabling

them to access common middleware services and runtime policies, (2) a component

implementation framework, which automates the implementation of many component

features, (3) component packaging tools, which compose implementation and

configuration artifacts into deployable assemblies, and (4) component deployment and

configuration tools, which automate the deployment and configuration of applications

 3

[25]. Real-time CCM combines these mechanisms with Real-time CORBA mechanisms

such, as thread pools and priority preservation policies, to enable the configuration of

application components in DRE systems for end-to-end QoS.

Real-time CCM implementations, such as CIAO, provide an effective way to organize

software into loosely-coupled reusable components and export their functionality by

means of one or more interfaces. An interface is an implementation-independent contract

specifying the operations that can be performed on a reusable unit of code, along with

their input/output parameters and return type. Components can form relationships with

other components by means of standard interfaces named ports, including (1) facets that

expose a piece of functionality that the component offers, (2) receptacles that indicate

dependencies on functionality provided via facets by other components, and (3) event

sources and sinks that enable publish/subscribe event-driven communication between

components.

Real-time CCM also provides mechanisms for aggregating related monolithic

components into component assemblies by connecting together their ports. Component

implementations are bundled into packages that contain (1) binary implementations of

the encapsulated components, possibly for multiple programming languages, operating

systems, and hardware platforms, and (2) XML metadata that describes the contents of

the package, including the interfaces, requirements and capabilities of individual

components and how they are connected to form an assembly. Packages in Real-time

CCM are created by a component packager, which is an actor that wraps multiple

 4

implementations of the same component interface into a component package and ensures

its consistency.

1.3 Thesis Focus: Filling some deployment and configuration gaps

Although component middleware technologies solve many of the problems associated

with previous generations of inflexible, monolithic, functionally-designed, and “stove-

piped” enterprise DRE systems, they also introduce new challenges associated with the

higher flexibility and configurability of the system, the manageability of the large number

of deployment and configuration artifacts and the evolution of the system in response to

improved understanding of the domain or feedback from testing and emulation of end-to-

end QoS performance. The rest of this document discusses some of these challenges and

shows how they are solved in the context of the DARPA Adaptive and Reflective

Management System’s (ARMS) Multi-Layer Resource Manager (MLRM) [20] project.

The MLRM architecture is discussed next. Chapter II then discusses how component

repositories can be used to address many of the newly arisen deployment and

configuration complexities. Chapter III concentrates on some of the complexities

associated with configuring component middleware for QoS and shows how Model-

Driven Development (MDD) technologies can be applied to mitigate the problem.

 5

1.4 Case Study: The DARPA Multi-Layer Resource Manager Project

The work described in this thesis was motivated by our experience with the DARPA

ARMS MLRM framework for naval shipboard computing systems and the challenges

encountered while developing and evaluating it.

The MLRM services developed in ARMS are designed to support total ship computing

environments (TSCEs), which form the basis for next-generation naval programs. A

TSCE is a coordinated grid of computers that manage many aspects of a ship's power,

navigation, command and control, and tactical operations. To make TSCE an effective

platform requires coordinated MLRM services that can support multiple QoS

requirements, such as survivability, predictability, security, and efficient resource

utilization.

The ARMS MLRM integrates multiple resource management and control algorithms

based on the CIAO [23] Lightweight CORBA Component Model (CCM) [14] and Real-

time CORBA [15] mechanisms for (re)deploying and (re)configuring application

components in DRE systems. As shown in Figure 1, the ARMS MLRM top domain layer

contains infrastructure components that interact with the mission manager of TSCE by

receiving command and policy inputs and passing them to the resource pool layer. The

resource pool layer is an abstraction for a set of computer nodes managed by a pool

manager. The pool manager is an infrastructure component that interacts with the

resource allocator in the resource pool layer to run algorithms that deploy application

components to various nodes within a resource pool. The actual computing resources

reside in the third layer called the resource layer, which has infrastructure components

 6

called node provisioners that receive commands to spawn applications in every node

from a pool manager. The application string manager is an infrastructure component

that controls the resource utilization for a group of applications through the node

provisioners. The ARMS MLRM services have hundreds of different types and instances

of infrastructure components written in ~300,000 lines of C++ code and residing in ~750

files developed by different teams at different locations.

Figure 1: Component-based Architecture of the ARMS MLRM

The component-based MLRM infrastructure for a TSCE is designed to support the

highly heterogeneous environment in which long-lived shipboard computing systems

operate. For example, the TSCE that provides the operational context for the ARMS

MLRM services is designed to support different versions of (1) component middleware,

such as CIAO and OpenCCM, (2) general-purpose operating systems, such as Linux and

Solaris, (3) real-time operating systems, such as VxWorks and LynxOS, (4) hardware

 7

chipsets, such as x86, PowerPC, and SPARC processors, (5) a wide range of high-speed

wired interconnects, such as Gigabit Ethernet and VME backplanes, and (6) different

transport protocols, such as TCP/IP and SCTP [16], [17].

 8

CHAPTER II

A COMPONENT REPOSITORY

2.1 Problem Description

Although component-based enterprise DRE systems help address the problems with prior

generations of systems, they introduce a number of new challenges, such as the need to

shield component behavior, deployment, and configuration logic from the complexities of

heterogeneous hardware/software environments and runtime failure recovery. Due to

these heterogeneity and reliability requirements, enterprise DRE systems often need to

defer the installation of software onto target nodes until late in the life-cycle, e.g., at

startup or run-time. Moreover, to cope with the continually evolving environments in

which they run, these systems need mechanisms, such as online software upgrades and

component reconfiguration/redeployment services, to provide the right implementation

under the right circumstances.

A promising way to address these new challenges is to create component repository

managers that (1) keep track of software implementation artifacts and configuration

metadata in heterogeneous environments and (2) facilitate the online upgrades,

reconfiguration and redeployment of components. Developing repository managers for

enterprise DRE systems is however hard. Key challenges include the need to support

 9

cross-platform portability, ensure efficiency, responsiveness and scalability, and enable

dynamic updates within time constraints.

This chapter discusses the design and implementation of RepoMan, which is an

implementation of the OMG CCM Repository Manager specification [13] tailored to the

needs of enterprise DRE systems. In particular, RepoMan optimizes its CPU and I/O

usage to provide fast/predictable access to component data for enterprise DRE systems

with a range of QoS requirements. The RepoMan C++ framework contains ~5,300 lines

of code in over 45 classes. It has been bundled with the CIAO open-source imple-

mentation of Real-time CCM [17].

2.2 Context: Use of RepoMan in the MLRM Architecture

The scale, complexity, and longevity of TSCEs necessitates that their components be

organized and accessed in a common and standard manner. RepoMan provides this func-

tionality for ARMS and helps ensure the continuous availability of components and their

associated metadata throughout the system lifetime. For example, RepoMan is used

during initial system deployment when MLRM resource allocators instruct node provi-

sioners to spawn a specific set of applications. The node provisioners contact RepoMan

to download the component implementations they need to deploy via CIAO’s

implementation of the OMG D&C specification [2], which standardizes many aspects of

deployment and configuration for component-based distributed systems, including

component configuration, component assembly, component packaging, package

configuration/deployment, and target domain resource management. RepoMan is also

 10

used at runtime to update component implementations dynamically, e.g., in response to

battle damage or to handle changing workload levels.

A particularly important function of the resource allocation and control algorithms in

the ARMS MLRM is the (re)deployment and (re)configuration of components based on

their operational context. For example, the TSCE can switch from crew entertainment

mode to ship defense mode, which necessitates updating and/or migrating many

computing services. RepoMan provides mechanisms to retrieve the configuration data

associated with specific component implementations and enables the dynamic updating

of various configuration parameters. Resource allocators and node provisoners

communicate with RepoMan to choose the best available implementations and to ensure

that these implementations conform to the characteristics of each node’s hardware, OS,

middleware, and programming language(s), which can be highly diverse.

2.3 Design of RepoMan

RepoMan is designed to enable software developers and enterprise DRE systems to (1)

organize various offline and online configurations of component packages (which include

component implementations and their associated metadata, known as Pack-

ageConfiguration, that describe the contents of a component package by encapsulating

the interface definitions of the components, their requirements and capabilities, their im-

plementation descriptions, and their dependencies on other implementation artifacts), (2)

resolve references to component implementations at deployment time, (3) retrieve

metadata information to configure the components properly, (4) reconfigure the compo-

 11

nent implementations within a package by updating their associated metadata, and (5)

dynamically update components at run-time. This section describes how the structure and

functionality of RepoMan supports these capabilities.

Figure 2: The RepoMan Architecture

2.3.1 Structure of RepoMan

Figure 2 illustrates the RepoMan architecture, which consists of a CORBA object

encapsulating ~15 classes implementing different aspects of its functionality and a

collocated HTTP server encapsulating over 30 classes. The CORBA object supports a

 12

standard set of operations (shown as abbreviations in Figure 2) that enable applications

and other CCM services to manipulate data in the repository, retrieve configuration meta-

data in the form of PackageConfigurations, and update component configurations. The

collocated HTTP server enables the retrieval of implementation artifacts, which typically

consist of dynamic link libraries (DLLs).

One way to design a component repository would be to just use an HTTP server to

provide access to component packages. Although this approach is simple to implement,

it does not scale well because (1) it requires clients to download entire packages to obtain

their contents, which is inefficient, and (2) each client would need explicit knowledge of

how to parse the metadata in a component package, which would needlessly complicate

client code. RepoMan alleviates these drawbacks by serving as a mediator [4] that

handles package content organization and metadata manipulation to provide a standard

way of storing, locating, and querying the available component packages and the

relationships among them. By centralizing PackageConfiguration parsing, RepoMan also

simplifies client code. Section 2.3.4 describes an optimization technique that shows how

metadata parsing centralization allows RepoMan to parse metadata only once per com-

ponent package. In contrast, using a simple HTTP server would require parsing the

metadata many times, i.e., once at every client instance location, so RepoMan’s design is

much more efficient and scalable.

RepoMan helps minimize unnecessary CPU and network processing by using

PackageConfigurations as an intermediary step between clients and the HTTP server.

This design helps developers and administrators determine if an implementation meets

 13

their requirements before downloading the actual binaries. For example, if a client is

unsure which implementation is best suited to its needs, it can (1) retrieve the

PackageConfiguration metadata that describes the properties of a specific component, (2)

analyze that metadata to determine which implementation is appropriate, and (3) then

download just the desired component implementation(s). This capability is particularly

useful in enterprise DRE systems, such as TSCEs, where online upgrades change the set

of available components during the lifetime of the system.

2.3.2 Functionality of RepoMan

The CCM Repository Manager maintains a collection of PackageConfiguration elements,

each named with a universally unique identifier (UUID). The descriptive power of

PackageConfigutations enhances RepoMan’s flexibility, e.g., by encapsulating the

location of artifacts that implement a component. This encapsulation allows RepoMan to

act as a component discovery service, thereby alleviating the need for client applications

to hard-code information about component implementation locations. It also provides a

standard way to access components. RepoMan provides the following operations that can

be invoked by clients:

Installation. Developers or administrative applications can install a component

package under a particular name, e.g., “NodeProvisioner.” The installPackage()

operation installs the package either from a specified location on the local disk or from a

remote location accessible via HTTP. The metadata in the package is parsed and the

encapsulated PackageConfiguration is associated with the installation name. Rather than

 14

installing a package directly, a PackageConfiguration can also be installed via the

createPackage() operation, where the installed PackageConfiguration refers to an

external package whose location is interpreted via a base location. RepoMan is re-

sponsible for resolving all references to external packages. Both operations ensure the

uniqueness of the installation names, raising exceptions if this precondition is violated.

Deletion. The inverse of the install operations is the deletePackage() operation,

which is used to remove component packages from the repository. If the specified name

does not exist in the repository an exception is raised.

Retrieving configuration data. Available PackageConfigurations can be retrieved by

name or by UUID at any time. If the PackageConfiguration corresponding to the

supplied name is not currently in the repository, RepoMan raises an exception.

Querying the contents. If a client has no prior knowledge of the existence of any

specific installation, it can retrieve all available ones by name or by type. Every

component conforms to a specific interface described by Component Interface

Descriptors, which are identified by their UUIDs and specify the operations that can be

performed on the component, along with their input/output parameters and return type.

RepoMan can return all installation names that implement a specific type of interface.

Clients can also request a list of all component types an instance of RepoMan is

managing.

Retrieving implementations. The CCM Repository Manager standard specifies that

component implementations are retrieved via HTTP. Upon installation, RepoMan

 15

updates the PackageConfiguration describing the package to reflect the correct locations

of implementation artifacts so that they are accessible via the collocated HTTP server.

2.4 Resolving RepoMan Design Challenges

Although the CCM specification defines the interface and the functionality of the

Repository Manager service, it does not prescribe any design details. We were therefore

faced with a number of design challenges when implementing RepoMan. This section

describes the key design challenges we encountered, presents our solutions, and outlines

how we applied these solutions to the TSCE applications supported by the ARMS

MLRM.

Challenge 1: Effectively Integrating CORBA with an HTTP Server

Context. As described in Section 2.2.1 and shown in Figure 3, RepoMan’s architecture

has (1) a CORBA object that installs/removes packages in the repository and provides

component configuration data and (2) an HTTP server that provides access to the

implementation artifacts.

Problem ���� Effectively integrating CORBA with an HTTP server. One approach to

integrate CORBA and an HTTP server would enable them to communicate via a shared

memory segment, but this would tightly couple the HTTP server with the CORBA

implementation and preclude the use of other web servers. Another approach would be to

extend the interface of the RepoMan to support HTTP, but this would require

 16

implementing HTTP as a pluggable protocol under CORBA, which is complicated, non-

portable, and also precludes the use of other ORBs and web servers.

Figure 3: RepoMan in Action

Solution ���� Loose coupling between the CORBA object and the HTTP server.

RepoMan’s CORBA object and HTTP server are collocated on the same host, but have

no explicit knowledge of each other and share no internal state information. Instead, they

use a loosely coupled relationship that shares a common filesystem. The document root

of the HTTP server points to the directory where the RepoMan caches copies of

 17

component packages. Packages are also uncompressed in that directory at installation to

avoid complicating the logic of the HTTP server with request filters (httpd.apache.org)

and to minimize data movement, as discussed in Challenge 2.

Challenge 3 explains how we preserve the consistency within the package hierarchy.

RepoMan updates the component metadata at runtime, so the locations of implementation

artifacts point to the HTTP server. Clients can therefore first retrieve and process the

metadata from RepoMan and then obtain the right implementation artifacts from the

HTTP server, as shown in the center of Figure 3.

RepoMan’s approach is flexible and enables the use of multiple web server implemen-

tations. By default, RepoMan uses the JAWS web server [8] since it is bundled with the

CIAO release. We can easily replace JAWS with the ubiquitous Apache web server,

however, without affecting the CORBA portion of RepoMan.

Applying the solution to the ARMS case study. When the MLRM’s node provisioners

receive a command to spawn a specific component they match the requester’s operational

needs (e.g., operating system and hardware platform) with the available component im-

plementations available from RepoMan. Once a node provisioner finds a match, it uses

the address stored in the location field of the corresponding PackageConfiguration to

request the implementation from RepoMan’s HTTP server, which sends the corre-

sponding artifact to the node provisioner enabling it to perform the deployment.

Challenge 2: Lowering the Cost of Data Movement and XML Parsing

Context. Component packages in CCM are files archived with the ZIP algorithm [3],

which conform to a specific structure, and have a *.cpk extension. The most common

 18

RepoMan operation requested by clients – getPackageByName(), as shown in the

bottom left corner of Figure 3 – is used to return a PackageConfiguration. The

information conveyed by the PackageConfiguration is initially only present in the XML

metadata descriptors enclosed in the package. It is therefore necessary for RepoMan to

parse these descriptor files to populate the in-memory PackageConfiguration before its

contents can be marshaled and sent to the clients. RepoMan uses the XERCES XML

parsing library since it is robust and performs comprehensive schema validations.

Problem ���� Lowering the cost of data movement and XML parsing. Manipulating

component packages requires a considerable amount of processing to move data to/from

disk and perform XML parsing. For example, manipulating CCM metadata in a com-

ponent package involves loading the zip’d package contents into memory, uncompressing

them, and then writing them back to disk again because XERCES cannot parse XML

from memory directly. XERCES will then parse the uncompressed files to extract the

relevant information (e.g., the interface type supported by the component or the names of

the implementation artifacts), and load it into an equivalent C++ data structure that

RepoMan uses to manipulate the data in memory and to transport it to clients across the

network.

Solution ���� Minimizing data movement and XML parsing to improve CPU and I/O

usage. Uncompressing packages (see Challenge 1) avoids on-access decompression and

unnecessary data movement. To further decrease data movement and to minimize XML

metadata parsing, the RepoMan employs the Memento pattern [4], which externalizes

and records the internal state of an object at an important stage of its lifecycle to enable

 19

its later restoration. We used the standard OMG Common Data Representation (CDR)

format (which is a portable data (de)marshaling format defined by the CORBA specifica-

tion [14]) to externalize the contents of the in-memory PackageConfiguration element at

installation time after XERCES had validated the correctness of the parsed data and the

PackageConfiguration had been populated. The result is illustrated in Figure 2. This

optimization eliminates any subsequent XML parsing and enables RepoMan to load

PackageConfigurations on-demand and forward them to clients, thereby minimizing

CPU and I/O processing considerably and significantly improving the response time of

package lookup operations.

Applying the solution to the ARMS case study. The operational context of a TSCE

evolves continuously, e.g., it needs to satisfy changing mission requirements and adapt to

transient overload and permanent battle damage. Such changes provoke a reaction in the

control algorithms that drive the dynamic update or the partial or complete redeployment

of the system. Minimizing data movement and XML parsing overhead (1) improves the

responsiveness of the RepoMan and allows it to collaborate faster with clients (such as

the ARMS MLRM and TSCE applications) and (2) helps reduce the costs associated with

redeploying and updating the system, thereby enabling more CPU and I/O processing to

be spent performing mission tasks and meeting system deadlines.

Challenge 3: Organizing and Managing Data

Context. The package location specified at installation time is either a path in the local

filesystem or an HTTP URL pointing to a remote file. As discussed in Challenge 2, when

 20

RepoMan installs component packages in the repository it caches them locally to

minimize subsequent access time and to ensure their availability.

Problem ���� Organizing and managing package data. In order to function properly,

RepoMan requires that the files that it manipulates (i.e., the component packages, the

implementation artifacts, and the externalized PackageConfigurations) remain consistent

across accesses. It was therefore necessary to provide the right degree of separation

among files associated with different installations. It was also necessary to enable access,

traversal, and clean-up of installed files. The lack of standard file system access

application programming interfaces (APIs) among different operating systems makes this

hard, however, because we need to ensure that RepoMan’s code remains portable across

OS platforms.

Solution ���� Ensure consistency by basing file system organization on the operational

semantics. RepoMan structures the package organization hierarchy by leveraging the fact

that installation names are unique within the repository. When a package is installed,

RepoMan caches its contents in accordance with the configured “install path” and names

the cached version based on the installation string and not the original filename. As dis-

cussed in Challenge 1 and Challenge 2, RepoMan decompresses component packages

and caches them locally at installation time in a directory whose name also corresponds

to the installation name. This design separates different packages and avoids clashes

among files enclosed in the packages that have equivalent names. Due to the uniqueness

of installation names which it ensures, RepoMan can guarantee that none of the local data

will be overwritten accidentally by future installations.

 21

We avoid the problem of non-standard file system access APIs by replicating the

layout of the component package on disk (Figure 2). This design allows RepoMan to use

the package layout rather than a filesystem API to guide it through subsequent clean-up

of packages upon deletion. It also ensures the portability of RepoMan’s file system access

and traversal code.

Applying the solution to the ARMS case study. As discussed in Section 1.4, the

ARMS MLRM is designed to support different general-purpose and real-time operation

systems running atop diverse hardware. By using the internal package layout to guide

RepoMan through its access, traversal, and clean-up operations, we avoid using any non-

portable file system APIs and ensure that RepoMan can be compiled and deployed in any

ARMS MLRM target environment.

Challenge 4: Managing the Complexity of PackageConfiguration Elements

Context. A key task of RepoMan is to update the location field of the implementation

artifacts so that they can be retrieved via the collocated HTTP server, as depicted by

Figure 3. This task requires RepoMan to navigate through the PackageConfiguration

element all the way down to the implementation artifacts, which are “leaves in the im-

plementation tree” encapsulated by the PackageConfiguration. The structure of the

implementation tree is very flexible and allows the recursive specification of component

assemblies by composing them from interconnected smaller monolithic and/or assembly-

based components.

Problem ���� Managing the complexity of PackageConfiguration elements. The

PackageConfiguration element encapsulates a description of the deployment

 22

requirements for the component, the properties used to configure the component, as well

as the recursive description of the component implementation tree that may consist of

multiple monolithic and assembly-based components along with the description of their

interconnection. The PackageConfiguration is therefore one of the most complex

elements in the OMG CCM specification. For example, in the case of assembly-based

components the field disclosing the location of any one of the artifacts implementing it is

at least 11 levels deep! Updating the locations of the implementation artifacts can

therefore be tedious and error-prone to program using a naïve design.

Solution ���� Use the Visitor pattern to manage the complexity of the

PackageConfiguration. To manage the complexity of traversing and updating

PackageConfigurations, we used the Visitor pattern [4], which separates the structure of

a collection of objects from the algorithms applied to the objects. The Visitor pattern

helps manipulate complicated PackageConfiguration hierarchies because it separates the

parsing and control logic for every node in the hierarchy into separate methods, which

allow RepoMan to perform its tasks one step at a time. The Visitor pattern is well suited

for the recursive nature of the component implementation hierarchies targeted by the

location updating procedure.

Applying the solution to the ARMS case study. The Visitor-based approach we used

helps ensure that RepoMan correctly updates the location of all underlying

implementation artifacts. This design is important for the MLRM because components in

the same package usually belong to the same application and not updating the location

field of a particular component can cause a deployment failure for the TSCE.

 23

Challenge 5: Scalable Implementation and Lightweight Synchronization

Context. As Figure 3 illustrates, the RepoMan can be accessed by many clients in and

enterprise DRE system, often under strenuous conditions, such as during the TSCE

recovery process after nodes in a data center have failed.

Problem ���� Providing a scalable implementation and ensuring correct

synchronization and low response time. Minimizing the response time of RepoMan is

hard because it can receive different requests from multiple clients simultaneously.

Although multi-threading is commonly used to improve application response time, it also

yields several design problems, such as selecting the appropriate concurrency model, e.g.,

thread-per-request vs. thread pool. Although a thread-per-request model can potentially

adapt better to increasing demand, it can also exhaust the system resources in response to

bursty client requests. While a thread pool model can be used instead to prevent the latter

scenario, this model is not as adaptive. Another design problem involves selecting the

synchronization mechanisms to prevent race conditions when multiple threads are

accessing shared resources. Since synchronization mechanisms incur mutual exclusion

overhead and can severely limit the opportunity for concurrent operation of multiple

threads due to their sequential processing enforcement nature, their use should be limited

only where they are absolutely needed.

Solution ���� Use a variable-size thread pool with lightweight synchronization.

RepoMan uses a thread pool to prevent bursty clients from depleting system resources.

The size of RepoMan’s thread pool is configurable at startup since the number of

spawned threads depends on the characteristics of the target host on which it is deployed.

 24

RepoMan uses three hash tables to store its internal state information, such as

associations of installation names with package contents on disk. We avoid synchronizing

each operation performed by RepoMan in its entirety by only synchronizing access to

these hash tables. This lightweight synchronization design is more efficient than the alter-

natives (such as the Monitor Object or Active Object patterns [21]) by limiting the

concurrent access to a fraction of the code and allowing multiple threads to handle the

same type of requests from different clients concurrently.

Applying the solution to the ARMS case study. RepoMan is a key part of the

(re)deployment and (re)configuration activities performed by the ARMS MLRM. Using a

multi-threading and lightweight synchronization design along with the optimizations

discussed in Challenge 2, helped us minimize RepoMan’s response time, thereby

contributing to the minimization of the overall cost of redeployment, reconfiguration, and

component update activities.

2.5 Lessons Learned

We discussed the design challenges faced when developing and applying RepoMan to a

shipboard computing enterprise DRE system and showed how our solutions help resolve

these challenges. The following are lessons learned during our work on RepoMan and its

application to the ARMS Multi-Layer Resource Manager (MLRM):

• Building enterprise DRE systems whose operational semantics change frequently

necessitates the dynamic update of components and requires a component repository

 25

to enable the automated (re)deployment and (re)configuration of heterogeneous com-

ponents throughout the system.

• The CCM Repository Manager specification strikes an effective balance between

flexibility and efficiency by keeping client code considerably simpler and supporting

dynamic updates and system (re)deployment and (re)configuration.

• Applying software patterns to RepoMan helped ensure that its design uses the best

practices associated with solving some recurring problems and leveraged the ex-

perience of experienced developers. Patterns applied to RepoMan include Iterator,

Memento, Null object, and Visitor in the COBRA object and Bridge, Service

Configurator, Singleton, Strategy, Wrapper Facade in the HTTP server.

• Amortizing certain costs over lifetime of RepoMan helped to improve its

performance. Although externalizing the PackageConfiguration slows down the

installation, it enabled us to optimize the performance over the lifetime of the system

since subsequent retrieval operations are much more frequent than initial installation

operations.

The implementation of RepoMan is open-source and can be downloaded along with the

CIAO Real-time CCM middleware.

 26

CHAPTER III

CONFIGURING COMPONENT MIDDLEWARE FOR QoS

3.1 QoS Configuration and evaluation challenges

A particularly vexing problem facing researchers and developers of large and layered

enterprise DRE systems, such as major defense, aerospace, and commercial programs, is

that the inadequacies of system architectures may not be ascertained until years into

development. At the heart of this problem is the serialized phasing of layered system de-

velopment, in which the application components are not created until after their un-

derlying system infrastructure components. A side effect of serialized phasing is that

design flaws that affect system QoS are not discovered until late in the lifecycle because

the implementations, configurations, and deployments of infrastructure components are

often not tested adequately under realistic workloads.

[22] describes an interesting component workload emulation approach which can be

used to exercise the infrastructure middleware much before application components are

complete. We used this technology in the context of the ARMS MLRM to conduct “what

if” scenario analysis in order to figure out how well the implementations, configurations,

and deployments of infrastructure components will satisfy key system QoS properties,

such as the maximum number of clients the system can handle before it saturates and the

effects of average and worst-case response time for various workloads. Figure 4 shows

 27

the stages in the component workload emulation approach. The feedback gained in the

process is used as basis for system reconfiguration and improvement.

Figure 4: Evaluating the QoS of a Shipboard Computing Enterprise DRE System

While evaluating and reconfiguring the QoS characteristics of the ARMS MLRM

services we encountered a number of challenges which are discussed in the following

section. To address these problems we leveraged some model-driven development

 28

(MDD) methodologies [10] and created a higher level Quality of Service Policy Modeling

Language (QoSPML) in order to raise the level of abstraction and shield the

(re)configuration developers from the accidental complexities associated with component

middleware QoS provisioning [16].

3.2 QoS Configuration Challenges in the context of the MLRM

We encountered the following challenges while developing, evaluating and configuring

the ARMS MLRM services to meet their QoS requirements.

Challenge 1: Using standard Real-time CORBA APIs to configure the QoS of

ARMS components. One way to ensure that ARMS application and MLRM infrastruc-

ture components exhibit the necessary QoS properties is to tightly couple the necessary

QoS mechanisms into them imperatively. While this approach is common, it requires that

developers be intimately familiar with Real-time CORBA to handle its accidental

complexities. Moreover, hand-coding QoS properties into components imperatively can

yield convoluted and inflexible implementations that are hard to evolve.

Challenge 2: Ensuring the right granularity of QoS. The ARMS application and

infrastructure components have diverse characteristics and QoS requirements including,

but not limited to, high throughput of continuously refreshed data, hard real-time

deadlines associated with periodic processing, well-defined computational paths

traversing multiple components, soft real-time processing of many tasks, and operator

display and control requirements. Specifying the right granularity of QoS for these

components imperatively using Real-time CORBA APIs is hard.

 29

Challenge 3: Managing large scale system configurations. In enterprise DRE

systems like ARMS with many components, manually tracking every configuration for

every component and assembly of components is hard. Hand-coding QoS properties into

component implementations provides a way to track component configurations, but

makes it hard for developers to review component specifications quickly. Even worse, if

testing and benchmarking yields weak points in the system design, or functional

requirements change, developers must manually read the code, find all relevant code

snippets, and update each accordingly to reconfigure the necessary components, which is

tedious and error-prone.

Challenge 4: Using metadata to configure components for QoS and to define

behavioral components. Many middleware platforms, such as EJB, CCM, and .NET,

have chosen XML as their configuration language since it enables different (1)

application developers to create interoperable subsystems and (2) middleware developers

to evolve different layers of their frameworks independently. Although XML is expres-

sive, it is hard to manually read and write due to its accidental complexities. For example,

although its elements are organized in a hierarchical form specified by the schema to

which they conform, XML documents have a flat structure, are highly verbose, and lack

intuitive relationships to the domain they represent. Evolving and debugging XML code

manually is therefore extremely cumbersome, which makes it hard to reuse XML-based

configurations.

Challenge 5: Refining system QoS properties. Enterprise DRE systems inevitably

evolve due to changing functional requirements and specifications, deeper understanding

 30

of the domain, or hardware/software platform refresh. As a result, the associated QoS

properties defined for a particular version of the system must also evolve. Hand-coding

QoS properties therefore creates systems that scale poorly and fail to evolve rapidly to

reflect new requirements and specifications.

The next section shows how we developed and applied a MDD tool to address these

challenges.

3.3 Overview of QoSPML

Although component-based DRE systems are more flexible and easier to develop, a new

level of complexities has surfaced, such as the automatic configuration of application and

infrastructure QoS policies. A promising way to address these complexities is to use

MDD tools to create Domain Specific Modeling Languages (DSMLs) that automate key

portions of QoS-enabled component middleware configuration, deployment, and

evaluation. The following sections describe QoSPML which is a DSML developed using

the Generic Modeling Environment (GME) [12] to model Real-time CORBA policies and

to enable the automatic generation of configuration metadata.

3.3.1 Motivation

Standard distributed object computing (DOC) middleware provides application

programming interfaces (APIs) that developers use to configure infrastructure and

application components imperatively to provide predictability, satisfy timing constraints,

 31

and preserve prioritized access to shared resources. Standards-compliant [15] Real-time

CORBA DOC middleware provides standard APIs and policies that allow enterprise

DRE systems to configure and control various resources, such as (1) processor resources

via priority mechanisms, thread pools, and synchronizers, for real-time applications with

fixed priorities, (2) communication resources via protocol properties and explicit

bindings to server objects using priority bands and private connections, and (3) memory

resources via bounding the size of request buffers and thread pools.

The standard APIs for programming QoS policies in Real-time CORBA, however, are

complicated. Moreover, the imperative model for programming these features requires

application developers to have detailed knowledge of the underlying semantics and

implementation in order to configure these policies correctly. Over the past several years,

however, QoS-enabled component middleware, such as CIAO [23], Qedo [18], and Prism

[19], has evolved to support QoS configuration via standard XML descriptors that are

specified declaratively and processed automatically by the middleware deployment and

configuration runtime environments [2].

Although using XML descriptors to configure the QoS properties of the system reduces

the amount of code written imperatively, it also introduces new complexities, such as ver-

bose syntax, lack of readability at scale, and a high degree of accidental complexity and

fallibility. QoSPML was developed to alleviate these complexities and to enable the

seamless configuration of key QoS properties of Real-time CCM [23] components.

 32

3.3.2 Structure of QoSPML

The Real-time CORBA specification provides many QoS policies for controlling appli-

cation behavior. To comply with the standards, and as illustrated in Figure 5, the follow-

ing QoS policy types can be modeled in QoSPML: a priority model policy, a thread pool

policy, and a connection policy. QoSPML organizes policies into logical groups named

policy sets, which enable the specification of alternative configurations in the same QoS

model. The connection and thread pool policies are modeled as references to actual

resources to permit resource sharing among separate policy sets. For example, the same

thread pool policy can be shared between two different policy sets, while both policy sets

define a different connection and priority policy.

3.3.3 Functionality of QoSPML

QoSPML enables developers of enterprise DRE systems to specify and control the

following Real-time CORBA QoS policies via visual models:

Propagation of priorities: Real-time CORBA defines two ways to propagate end-to-

end priorities: server-declared and client-propagated. In the server-declared model the

priority at which requests run is determined by the server, whereas in the client-

propagated model the server honors the request priority assigned by the client. These

priority propagation schemes are modeled in the PriorityModelPolicy element. The type

of propagation scheme is selected via the PriorityModel enumeration attribute and the

priority is specified with the priority attribute.

 33

Figure 5: GME Metamodel of QoSPML

Specification of threading model: Each ThreadPool model encapsulates data that

specifies the properties of a thread pool in Real-time CORBA. For example, developers

can set the stack size associated with the thread pool, allow/disallow request buffering

and set the maximum number of requests to be buffered and the corresponding buffer

size. A thread pool has a set number of pre-spawned static threads and up to a maximum

limit of dynamic threads spawned on-demand only if all static threads are in use.

QoSPML supports two types of thread pools: (1) the SimpleThreadPool model, which

has a single priority lane and allows lower priority client-propagated requests to exhaust

all the static and dynamic threads and starve higher priority requests and (2) the

ThreadPoolWithLanes model, which creates multiple lanes for different priorities to

 34

prevent lower priority client-propagated requests from exhausting all pool’s threads. If

thread borrowing is enabled, higher priority requests can temporarily promote a thread

from a lower priority pool to run the request at the higher priority.

Specification of connection bands: Another Real-time CORBA feature supported by

QoSPML is banded connections, which are specified by the BandedConnections policy

element. These connections are logically divided into ConnectionBands, which have a

low and high attribute for specifying the range of priorities of the requests traveling on

that band.

Constraint-Checking and Model Interpretation: The GME in which QoSPML was

developed provides a powerful constraint-checking mechanism which can be utilized by

tool developers in order to ensure the correctness of the models created with their tools.

GME synthesizes the basic constraints based on the DSML structure and allow the

manual specification of further constraints which cannot be automatically deduced.

Another important capability that GME provides is the ability to develop and associate

model interpreters with a particular tool. The model interpreter can access and manipulate

the in-memory representations of models created by the particular DSML which it is able

to interpret. This allows the model interpreter to do anything from model-transformations

to code or configuration generation. In the case of QoSPML, we extract the information

captured by the models and map it to a semantically equivalent XML document.

Advantages: Figure 6 illustrates portions of an example QoS configuration using

QoSPML. The highlighted region in the figure illustrates the priority model policy and

defines references to the connection bands and the thread pool with lanes elements. The

 35

XML below shows a snippet of the generated via model interpretation configuration

metadata.

QoSPML addresses the challenges discussed in Section 3.1. In particular, it allows

developers to avoid writing applications that use the convoluted Real-time CORBA

imperative APIs directly, while still providing control over QoS policies. QoSPML also

enables application developers and performance engineers to provision the QoS of

applications in enterprise DRE systems via higher-level models that QoSPML converts

automatically into lower-level Real-time CORBA QoS policies expressed using XML.

Figure 6: QoS Configuration Snippet of a Model and its Interpretation

 36

3.4 Resolving ARMS MLRM Challenges with QoSPML

We now examine how the QoSPML DSML described in the previous section can be

applied to address the challenges discussed in Section 3.1 which arose when developing,

evolving, and evaluating the ARMS MLRM case study for shipboard computing

enterprise DRE systems.

3.4.1 Configuring Infrastructure and Application Components for QoS

Challenge 1 in Section 3.1 described the difficulties associated with writing applications

using the Real-time CORBA API imperatively. QoSPML provides a more scalable and

robust approach to configuring the QoS properties of the CCM components being

developed, or reused, by enabling developers to specify these properties declaratively and

visually. Developers use QoSPML to specify the QoS policies that determine the

threading, connection, and priority propagation mechanisms used for a particular

component and group these policies into policy sets. The specified mechanisms are

modeled in terms of the actual system resources that implement them, which makes it

possible for different policy sets to share the same instance of a resource at the

middleware layer. QoSPML also enables developers to verify the correctness of their

models by providing constraint checking mechanisms embedded in the language. The

QoS models can be interpreted by means of a model interpreter that generates correct

metadata descriptors understood by the Real-time CCM middleware runtime.

In the context of ARMS, QoSPML facilitates the seamless configuration of

components for QoS in each layer of MLRM because it allows application developers to

 37

bypass the tedious tasks of hard-coding the Real-time CORBA code or hand-crafting the

XML descriptors that can be used to describe the QoS configuration.

3.4.2 Meeting the QoS Needs of the Various MLRM Subsystems

Challenge 2 in Section 3.1 discussed the diversity of services and QoS requirements

supported by the ARMS MLRM infrastructure. Each of these QoS requirements is hard

to achieve separately and even harder to achieve in combination. Fortunately, QoSPML

detaches configuration developers from the inherent complexities of the configuration

code and allows them to concentrate on the general logic of the application components.

In the context of ARMS, a major cause of missed deadlines is priority inversions,

where lower priority requests access a resource at the expense of higher priority requests.

Priority inversions must be prevented or bounded since they can cause the ARMS

applications to miss their deadlines. QoSPML’s ThreadPoolWithLanes element can be

used in conjunction with the BandedConnection and the PriorityModelPolicy elements to

configure MLRM properly and reduce priority inversions.

The ThreadPoolWithLanes feature of QoSPML can be used to meet some of the QoS

needs of ARMS. By using this feature, the MLRM will be configured so that lower

priority requests cannot exhaust threads allocated for higher priority requests when a

request is executed. Long-running requests in MLRM can also exhaust the maximum

number of static threads, causing the system to miss deadlines. QoSPML therefore allows

ARMS MLRM developers to specify the maximum number of dynamically spawned

threads to better manage long running requests and periodic high loads.

 38

The BandedConnection element in QoSPML allows MLRM developers to control

network resources effectively by separating lower and higher priority requests so they do

not share the same multiplexed connection. In multiplexed connections, requests are

queued and serviced on a FIFO basis, where low priority requests could be scheduled

first. By using priority bands, developers can partition the communication links between

application and MLRM components based on a range of priority values. This QoS policy

ensures that low priority requests travel on separate paths from high priority requests,

therefore preventing priority inversions. A beneficial side-effect of this partitioning

mechanism is that it decreases latency and improves response time.

It is also important to ensure the portability of priorities in cases when ARMS

application and MLRM component run atop different OS platforms with different priority

ranges. Once the necessary priority mappings have been defined, QoSPML’s

PriorityModelPolicy feature can be used to preserve the end-to-end priorities and to

define the priority propagation scheme used to configure Real-time CORBA policies. As

discussed in Section 3.2.3, there are currently two types of policies: server declared and

client propagated.

3.4.3 Using MDD Tools to Generate XML Metadata

Challenge 4 in Section 3.1 described the complexities introduced by applying XML

metadata to configure DRE systems. We used QoSPML to bypass the XML coding nec-

essary to configure application and middleware components declaratively, which raised

the level of abstraction by means of a visual DSML. We used this MDD tools to formally

 39

model the configuration space and enable the automatic generation of configuration code.

QoSPML therefore allows developers to concentrate on the actual design of the enterprise

DRE system, while shielding them from the accidental complexities of the configuration

artifacts. It also makes rapid (re)configuration possible, thus allowing developers to

evolve the system more conveniently.

In the context of ARMS, we had initially used validation tools, such as XML SPY, to

verify the syntactic correctness of the XML metadata against the schema to which it con-

forms. Unfortunately, these validation tools miss many problems with handcrafted XML.

In contrast, QoSPML provides a more effective solution because it uses GME’s powerful

constraint-checking facility to ensure that models are correct-by-construction. The

generated XML descriptors are therefore also correct as long as the output of the

QoSPML interpreter conforms to the XML schema that describes the documents.

3.4.4 Managing and Refining the System Configuration Space

Challenge 3 in Section 3.1 described how managing a large amount of XML metadata is

cumbersome and that extracting information from it requires significant effort. Likewise,

challenge 5 in Section 3.1 discussed that it is even harder to modify XML-based

configuration files in response to (1) changing system requirements, (2) better under-

standing of the QoS needs to the application, or (3) uncovered design weaknesses. For

example, even a single typo in an XML file can compromise the document structure and

cause the parsers to fail, which makes handcrafted XML files extremely hard to manage

and evolve.

 40

In the context of ARMS, by using QoSPML developers no longer have to deal with

XML metadata directly. Instead, they can use visual models to perform their tasks from a

domain-centric perspective. After making the necessary changes to the system con-

figuration, they can regenerate the descriptors quickly and correctly, which scales much

better for enterprise DRE systems like ARMS.

3.5 Benefits of MDD tools to the component-based ARMS applications

This chapter focused on the experience gained while integrating and applying the

QoSPML DSML to the DARPA ARMS MLRM services for naval shipboard computing

enterprise DRE systems. The benefits observed by applying our DSML to the com-

ponent-based ARMS applications and infrastructure services thus far include:

• Using highly configurable component middleware, such as CIAO [23] and DAnCE

[2], enhances software development quality and productivity. Unfortunately it also

introduces extra complexities, which are hard to handle in an ad hoc manner for

enterprise DRE systems.

• Using DSMLs can expedites application development and system QoS configuration

by providing proper integration of MDD tools with the underlying component

middleware infrastructure. In the ARMS MLRM case study, the QoSPML DSML

was used to simplify the evaluation of many different system configurations and

facilitate QoS-related “what if” scenarios prior to the integration or even the

development phase. QoSPML also plays an important role in enterprise DRE system

 41

evolution because it provides a way to evaluate alternative system configurations

visually and empirically.

• QoSPML can help to reduce the learning curve for the end users. For example, in the

ARMS MLRM case study, application developers needed little knowledge of the

Real-time CORBA QoS policy APIs and the CIAO XML descriptors that declara-

tively configure these policies in Real-time CCM. Instead, they used the higher-level

models of QoS policy provisioning mechanisms provided by QoSPML.

Although our use of MDD technologies solves many hard problems encountered in the

ARMS program, it also leaves room for some improvement and future work:

• Despite the fact that QoSPML facilitates the QoS configuration of enterprise DRE

systems based on Real-time CORBA, developers are still faced with the question of

what constitutes a “good” configuration.

• Although MDD removes many complexities associated with handcrafted solutions,

developers are still faced with the challenge of evolving existing models when the re-

spective domain evolves. Although model evolution tools, such as GREAT [9], exist

they are hard to use and only provide partially automated solutions.

This experience motivates further research on automated QoS configuration and

deployment techniques to uncover effective heuristics to guide us in the complicated

process of enterprise DRE system evaluation-driven QoS configuration, as well as further

research on model migration to simplify the process evolving DSMLs as the

understanding of their respective domains matures.

 42

The GME open-source domain-specific modeling framework can be downloaded from

www.isis.vanderbilt.edu/projects/GME. QoSPML was integrated with the open-source

Component Synthesis with Model Integrated Computing (CoSMIC) tool chain and is

available at www.dre.vanderbilt.edu/cosmic.

 43

APPENDIX A

REPOMAN AND QOSPML ON THE WEB

http://www.cs.wustl.edu/~schmidt/CIAO.html

RepoMan is available as part of the Component Integrated ACE ORB (CIAO). For

instructions on how to download and install CIAO please follow the link above.

http://www.dre.vanderbilt.edu/cosmic/

QoSPML has been integrated in the Component Synthesis with Model Integrated

Computing (CoSMIC) tool chain and can be found under the RTConfig worksheet in

CoSMIC. To download and install CoSMIC and obtain QoSPML go to the link above.

http://www.isis.vanderbilt.edu/projects/GME/

The Generic Modeling Environment is the meta-modeling environment used to develop

both QoSPML and CoSMIC. You can learn more about GME by visiting the website

above.

 44

REFERENCES

[1] ARMS DARPA Website, dtsn.darpa.mil/ixodarpatech/ixo_FeatureDetail.asp?id=6,

Jan 2006.

[2] Deng, G., Balasubramanian, J., Otte, W., Schmidt, D. and Gokhale, A. (2005, Nov),

“DAnCE: A QoS-enabled Component Deployment and Conguration Engine,” Pro-

ceedings of the 3rd Working Conference on Component Deployment. Grenoble,

France.

[3] Deutsch, P, “DEFLATE Compressed Data Format Specification version 1.3”,

Network Working Group, RFC 1951.

[4] Gamma, E., Helm, R., Johnson, R., and Vlissides J., “Design Patterns Elements of

Reusable Object-Oriented Software,” Addison-Wesley, 1994.

[5] Gokhale, A., Balasubramanian, K., Balasubramanian, J., Krishna, A., Edwards, G.,

Deng, G., Turkay, E., Parsons, J. , and Schmidt, D. (2005). “Model Driven Mid-

dleware: A New Paradigm for Deploying and Provisioning Distributed Real-time and

Embedded Applications,” The Journal of Science of Computer Programming: Special

Issue on Model Driven Architecture. [in press].

[6] Grassi, V., Mirandola, R., and Sabetta, A., “From Design to Analysis Models: A

Kernel Language for Performance and Reliability Analysis of Component-based

Systems,” Fifth International Workshop on Software and Performance, Jul 2005.

[7] Harel, D., “Statecharts: A Visual Formalism for Complex Systems”, Science of

Computer Programming, 1987.

[8] Hu, J., Pyarali, I., and Schmidt, D., ``The Object-Oriented Design and Performance of

JAWS: A High-performance Web Server Optimized for High-speed Networks,'' The

Parallel and Distributed Computing Practices journal, special issue on Distributed

Object-Oriented Systems, Vol. 3, No. 1, March 2000.

[9] Karsai G. and Agrawal A. and Shi F. and Sprinkle J., “On the use of Graph

Transformations in the Formal Specification of Computer-Based Systems,” Pro-

ceedings of IEEE TC-ECBS and IFIP10.1 Joint Workshop on Formal Specifications of

Computer-Based Systems, Huntsville, AL, Apr 2003.

[10] Karsai, G., Sztipanovits, J., Ledeczi, A. and Bapty, T. “Model-Integrated Develop-

ment of Embedded Software,” Proceedings of the IEEE, Jan 2003.

 45

[11] Krishna, A., Turkay, E., Gokhale, A., and Schmidt, D., “Model-Driven Techniques

for Evaluating the QoS of Middleware Configurations for DRE Systems”, 11th IEEE

Real-Time and Embedded Technology and Applications Symposium, Mar 2005.

[12] Ledeczi, A., Maroti, M., Karsai G., and Nordstrom G., “Metaprogrammable Toolkit

for Model-Integrated Computing", Proceedings of the IEEE International Conference

on the Engineering of Computer-Based Systems Conference, Mar 1999.

[13] Object Management Group: Deployment and Configuration Adopted Submission,

OMG Document ptc/03-07-08 edn. (2003).

[14] Object Group Management (2003, May), Light Weight CORBA Component Model

Revised Submission, Ed. OMG Document realtime/03-05-05.

[15] Object Management Group (2002, Aug). Real-time CORBA Specification. Ed.

OMG Document formal/02-08-02.

[16] Paunov, S., Hill, J., Schmidt, D., Baker, S., Slaby, J., “Domain-Specific Modeling

Languages for Configuring and Evaluating Enterprise DRE System Quality of

Service,” Proceedings of the 13
th

 Annual IEEE International Conference on the

Engineering of Computer Based Systems, Potsdam, Germany, 2006.

[17] Paunov, S., Schmidt, D., “RepoMan: A Component Repository Manager for

Enterprise Distributed Real-time and Embedded Systems,” Proceedings of the

44
th

Association of Computing Machinery (ACM) Southeast Conference, Melbourne,

Florida, USA, 2006.

 [18] Ritter, T., Born, M., Unterschutz, T., and Weis, T., “A QoS Metamodel and its

Realization in a CORBA Component Infrastructure,” Proceedings of the 36th Hawaii

International Conference on System Sciences, Honolulu, Hawaii, Jan 2003.

[19] Roll, W. “Towards Model-Based and CCM-Based Applications for Real-Time

Systems,” Proceedings of the International Symposium on Object-Oriented Real-time

Distributed Computing (ISORC), IEEE/IFIP, Hakodate, Hokkaido, Japan, May 2003.

[20] Schmidt, D., Schantz, R., Masters, M., Cross, J., Sharp, D., and DiPalma L.,

“Towards Adaptive and Reflective Middleware for Network-Centric Combat

Systems,” CrossTalk, November, 2001.

[21] Schmidt, D., Stal, M., Rohert, H., and Buschmann, F., Pattern-Oriented Software

Architecture: Patterns for Networked and Concurrent Objects, Wiley and Sons, 2000.

 46

[22] Slaby, J., Baker, S., Hill, J., Schmidt, D., “Applying System Execution Modeling

Tools to Evaluate Enterprise Distributed Real-time and Embedded System QoS,” ISIS

Technical Report ISIS-05-604, Oct 2005.

 [23] Wang, N. and Gill, C. (2003, Jan), “Improving Real-time System Configuration via

a QoS-aware CORBA Component Model,” Hawaii International Conference on

System Sciences, Software Technology Track, Distributed Object and Component-

based Software Systems. Minitrack, HICSS 2003.

[24] Ye, J., Loyall, J., Shapiro, R., Schantz, R., Neema, S., Abdelwahed, S., Mahadevan,

N., Koets, M., Varner, D., “Model-Based Approach to Designing QoS Adaptive

Applications”, 25
th

 International Real-Time Systems Symposium, May 2004.

[25] Natarajan, B., Schmidt, D., and Vinoski, S., The CORBA Component Model Part 3:

The CCM Container Architecture and Component Implementation Framework, C/C++

Users Journal, September, 2004.

[26] Schmidt, D. and Vinoski, S., Object Interconnections: The CORBA Component

Model: Part 1, Evolving Towards Component Middleware, C/C++ Users Journal,

February, 2004.

