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ABSTRACT 
 
 

The systematic investigation of susceptibility-induced contrast in MRI is important to improve 
our understanding of the influence of tissue microstructure on dynamic susceptibility contrast 
(DSC)-MRI derived perfusion data. The Finite Perturber Method (FPM) has previously been 
used to investigate susceptibility contrast in MRI arising from arbitrarily shaped structures. 
However, the FPM has low computational efficiency in simulating water diffusion, especially for 
complex three-dimensional structures that mimic tissue. In this work, an improved computational 
approach that combines the FPM with a matrix-based finite difference method (FDM), termed 
the Finite Perturber Finite Difference Method  (FPFDM), was developed to more efficiently 
investigate the biophysical basis of DSC-MRI data and its sensitivity to vascular geometry and 
contrast agent (CA) distribution within tissue. The application of the FPFDM to the 
physiological and physical conditions encountered in a typical DSC-MRI brain tumor study 
enabled the derivation of a new DSC-MRI metric, termed the Transverse Relaxivity at Tracer 
Equilibrium (TRATE), which we propose specifically reports on tumor cellular properties. 
Computational FPFDM studies revealed that TRATE depends on cellular density, size, shape and 
spatial distribution. To validate the in vivo sensitivity of TRATE it was evaluated in two animal 
brain tumor models, the 9L and C6, which have varying cellular characteristics. The TRATE 
values were also compared to measures of the apparent diffusion coefficient (ADC), the CA 
transfer constant (Ktrans), the extravascular extracellular volume fraction (ve) and histological 
data. The TRATE values in 9L tumors were significantly higher than those in C6 tumors, a 
finding that reflects the histologically confirmed higher cell density in 9L tumors and lower 
cellular density. A voxel-wise comparison of TRATE with ADC, ve, and Ktrans maps showed low 
spatial correlation, indicating it is providing unique and complementary information on tumor 
status. In summary, the studies described herein highlight the value of pairing computational and 
experimental advancements in order to enhance our characterization of DSC-MRI contrast 
mechanisms and how such mechanisms can be leveraged to derive new non-invasive metrics for 
evaluating brain tumors. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
Magnetic Resonance Imaging (MRI) is a non-ionizing medical imaging tool that has become a 
prominent imaging technique in radiological practice. The use of MRI in the field of medical 
imaging was not introduced until the 1970s when it was shown that normal and abnormal tissue 
exhibit different signal intensities (1). Compared to other medical imaging modalities, MRI has 
an outstanding ability to differentiate soft tissues and provides an abundance of anatomical, 
physiological and functional information. Since its conception there as been considerable 
progress in MRI, including development of efficient methods for data acquisition, and the use of 
higher magnetic fields and advanced radiofrequency coil design for human imaging. These 
advances has transformed MRI from experimental studies of specimens within laboratories to a 
major diagnostic tool in clinical practice, such as for the detection of tumors and strokes, as well 
as a powerful tool for many research studies, such as studies of brain structure and function in 
neuroscience. Despite the remarkable progress in MRI methodologies, the complex nature of MR 
signal has limited our understanding of what physical, physiological and pulse sequence factors 
affect MR signal changes in various situations. This study attempts to investigate the biophysical 
basis of signal changes observed in a specific MRI technique known as Dynamic Susceptibility 
Contrast Magnetic Resonance Imaging (DSC-MRI).  

The passage of highly paramagnetic (e.g., Gd-DTPA or Dy-DTPA) or superparamagnetic  
(e.g., magnetized iron oxide particles) contrast agents (CA) through brain tissue induces a 
measurable drop in T2- or T2

*-weighted MR signal (2) that forms the basis for DSC-MRI. When 
combined with appropriate kinetic models, DSC-MRI can be used to measure hemodynamic 
parameters quantitatively, such as blood flow (BF), blood volume (BV) and mean transit time 
(MTT) (3). This imaging approach relies upon MR signal relaxation enhancement created by 
CA-induced susceptibility differences between tissue compartments, such as blood vessels and 
the surrounding extravascular space. The assessment of tumor perfusion parameters using DSC-
MRI has proven to be useful for characterizing tumor grade (4-10) and treatment response (11-
15). Despite its increased use in brain tumor and stroke patients, accurate calculation of perfusion 
parameters using DSC-MRI relies on two assumptions: 1) a linear relationship, with a spatially 
uniform rate constant termed the vascular susceptibility calibration factor (kp), exists between 
CA concentration and the measured transverse relaxation rate change (16); and 2) the blood-
brain barrier (BBB) is intact, so that contrast agent remains intravascular and can be treated as a 
nondiffusible tracer (3). However, heterogeneous distributions of blood vessels within tissue and 
the dependence of susceptibility field gradients on vascular geometry may yield spatially variant 
kp values across tissue. Furthermore, leakage of contrast agent in tumors with BBB disruption 
causes additional T1 and T2

* shortening with subsequent distortion of DSC-MRI signal profiles 
(17-21). Improved characterization of these potential confounding factors could shed new 
insights into the biophysical basis of DSC-MRI signals and direct future improvements in 
acquisition and post-processing strategies. Because of the complex heterogeneous nature of 
biological tissues and their widely different composition, which can be further complicated by 
disease, the relationship between observed MR signal changes and specific underlying causes are 
not well understood. However, a better understanding of the relation between relevant 
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parameters and measured signal variations in tissues can be achieved through realistic computer 
simulations. This is the rationale behind the work presented in this thesis.  

The first part of this work is devoted to develop and validate an efficient computational 
approach to estimate the intravascular and extravascular magnetic field perturbations induced by 
magnetic susceptibility variation between arbitrary shaped mesoscopic scale compartments, and 
also the associated spin echo (SE) and gradient echo (GE) transverse relaxation rate 
enhancement. The subsequent part of this thesis utilizes the validated computational tool to 
investigate the influence of vascular and cellular morphology as well as physiological and pulse 
sequence parameters on DSC-MRI signals using simulated three-dimensional tissue structures. 

This thesis is organized as follows: 
A brief overview of NMR focusing on experimental and theoretical concepts crucial to 

understand the subsequent research topics is presented in chapter 2. 
Chapter 3 proposes an efficient computational approach called the Finite Perturber Finite 

Difference Method (FPFDM), as a tool for modeling susceptibility based contrast mechanisms. 
The accuracy of the proposed tool is validated by comparison with previous traditional Monte 
Carlo methods. In addition to its potential applications, the advantages and limitations of the 
FPFDM in contrast to previous methods are discussed in detail.  

Chapter 4 presents the results of computational studies of the influence of vascular 
morphology on susceptibility induced DSC-MRI signal changes. The computational studies are 
carried out using fractal tree based three-dimensional vascular models. In addition, kp values are 
characterized for vascular structures obtained from micro-CT based renal angiograms. The 
results show marked kp heterogeneity across vascular networks, suggesting that the assumption 
of a constant kp for all tissue types could affect DSC-MRI derived perfusion parameters.  

Chapter 5 investigates the dependence of extravascular T2
* effects on cellular features. 

Computational results, obtained using tissue structures composed of randomly distributed 
ellipsoids around fractal tree based vascular network, show that DSC-MRI data acquired in the 
presence of contrast agent leakage are highly sensitive to variations in cellular features.  

Chapter 6 proposes a new imaging biomarker that may be used to evaluate brain tumor 
cytoarchitecture. The combination of multi-echo DSC-MRI acquisition method to 
simultaneously quantify the changes in T1 and T2

*, and analytical gradient-correction model were 
used to enable the estimation of the Transverse Relaxivity at Tracer Equilibrium (TRATE). To 
validate the sensitivity of TRATE to tumor cellular features we employ realistic biophysical 
simulations and compare its characteristics in two animal brain tumor models that are known to 
have histologically different cellular properties. We also present initial results of TRATE data in 
a glioma patient. The TRATE maps are spatially compared to parameters traditionally derived 
from DSC-MRI, Dynamic Contrast Enhanced (DCE)-MRI and Diffusion Weighted Imaging 
(DWI) in order to preliminarily assess its potential to provide unique sensitivity to 
microstructural features not assessed with these techniques. 

Summary of the work presented in this thesis along with future research directions are 
presented in chapter 7.  
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CHAPTER 2 
 
 

FUNDAMENTALS OF MRI 
 
	
  
2.1  A Brief History of NMR and MRI 
 
In 1938, Rabi et al (22) demonstrated that electromagnetic waves with certain frequencies could 
be used to induce transition of magnetically aligned nuclei from one energy state to the other. 
This observation has allowed the measurement of magnetic properties of atomic nuclei using a 
‘resonance’ method, and was the basis for the origin of nuclear magnetic resonance. In 1946, 
Bloch and Purcell advanced the technique for use on liquids and solids. Purcell observed a 
phenomenon he later called ‘nuclear magnetic resonance’ (NMR) by studying the precession of 
nuclear magnetization in a magnetic field with a constant radiofrequency (RF), which resulted a 
strong absorption of radiation as nuclei flipped from the lower to the higher energy state (23). 
Bloch investigated the water in an adjustable magnetic field and, rather than measuring 
absorption, he detected re-emission of resonant radiation using a second coil placed 
perpendicular to the first (24). Although Rabi's work was crucial, both works by Purcell and 
Bloch were a very big leap forward, laying the foundation for the development of modern NMR 
and MRI techniques. In 1950, Hahn discovered the spin echo (25), which is considered the 
beginning of the widespread use of pulsed NMR methods. In 1973, Lauterbur described the use 
of linear magnetic field gradients to spatially localize NMR signals (26). He obtained spectra that 
were actually the projections of an object’s spin density distribution onto the gradient axis. By 
rotating the object in the field, a series of angular projections could be obtained and two-
dimensional MR images were reconstructed using the mathematics of filtered back projection 
developed for computed tomography. Soon after that, Sir Peter Mansfield published an extensive 
paper showing projection images of a human finger, which perhaps was the first MRI of live 
human anatomy (27). In order to speed up the scan acquisition, he also developed an MRI 
protocol called echo planar imaging (EPI) (28), which made fast imaging possible.  

In the forty years since its invention, MRI has continued to grow at an incredible speed with 
significant discoveries in both research and clinical applications. For instance, the realization of 
clinically feasible EPI sequences through improved gradients enabled the development of the 
field of DSC-MRI and enabled the non-invasive assessment of perfusion in normal, ischemic and 
tumor-bearing brain (4,8,9,16). Rapid imaging also enabled the development of functional MRI 
techniques for detecting brain neuronal activation based on the blood oxygenation level 
dependent or BOLD effect (29). Numerous methods have been developed that leverage MRI’s 
sensitivity to the magnetic properties of protons in heterogeneous biological conditions in order 
to assess, for example, water diffusion, metabolic composition, protein content, and proton 
exchange rates. A total of seven outstanding scientists have been awarded Nobel Prizes for their 
major contributions to the discovery and development of NMR and MRI. 
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2.2  Basic Principles of MRI Physics  
	
  
MRI is based on the interaction of nuclear spins with an external magnetic field. In the presence 
of an external magnetic field, B0, the magnetic moment of a spin will precess about the field 
direction with an angular frequency given by the Larmor equation: 
 

ω0 = γB0 (2.1)  

 
where ω0 is called the Larmor frequency and γ is the gyromagnetic ratio. (the hydrogen proton 
has a γ value of 2.675×108 

rad/s/T). A static magnetic field B0 results in a net longitudinal 
equilibrium magnetization, M0, aligned along the B0 direction, which by definition is taken to be 
along the z direction. If another perpendicular radiofrequency (RF) magnetic field (B1) (tuned to 
the Larmor frequency) is applied in a short time (an RF ‘pulse’), spin magnetic moments will be 
‘tipped’ away from the alignment along the B0 direction and towards the transverse plane, in 
which the magnetization will have x and y components Mx and My, as well as Mz along the B0 
direction.  

The magnetization of the system returns to equilibrum through 2 processes: T1 and T2 
relaxation. Relaxation is caused by fluctuations in the local field felt by a magnetic nucleus. If 
this field fluctuates at the appropriate frequency, it induces transitions between spin states, 
causing relaxation. The time for magnetization to recover from the excited state to original 
longitudinal equilibrium state (along B0 direction) is described by T1, which is called longitudinal 
relaxation time or spin-lattice relaxation time. The spin-spin relaxation, which primarily occurs 
as spins exchange energy with each other and lose coherence in the transverse plane, causes the 
transverse magnetization decay and can be described by T2. The equation of motion for the spin 
magnetization in the presence of a magnetic field and with relaxation terms can be expressed by 
the Bloch equation (30) 

 

 

d

M
dt

= γ

M ×

Beff +

1
T1

M 0 −Mz( ) ẑ − 1
T2


M⊥ (2.2)  

	
  	
  
The T1 and T2 relaxation times vary greatly from tissue to tissue and thus provide excellent 

sources of contrast in medical imaging.  In addition to the effects of intrinsic T2 relaxation, 
spatial inhomogeneities in the magnetic field induce additional transverse magnetization decays. 
These magnetic field inhomogeneities arise from hardware limitation to create a perfectly 
homogeneous B0 field, and existence of susceptibility inhomogeneities within the object being 
imaged. The presence of field inhomogeneities cause spins to precess at different rates and lose 
their phase coherence. This leads to a transverse relaxation time called T2

*, which can be 
significantly shorter than T2.  

The random Brownian motion of the spins has been shown to contribute to the attenuation of 
the observed spin echo signal (25). To incorporate this self-diffusion effects Torrey developed a 
continuum description based on the magnetization diffusion equation and Bloch equation, which 
was subsequently named as the Bloch-Torrey equation. For the transverse magnetization of 
interest, the Bloch-Torrey equation can be written as 
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∂

M⊥

∂t
= −iγ g(r ,t).r( )


M⊥ −


M⊥

T2
+∇ D


M⊥( )−∇V . M⊥, (2.3)  

 
where M⊥  is the transverse magnetization, D is diffusion coefficient, g(r,t)=∇B(r,t) is the 
applied magnetic gradient, v is the velocity of the fluid flow. 
 
 
2.3  MR Signal Detection  
	
  
The time-varying transverse magnetization induces an electromotive force (emf) in a receiver 
coil wrapped around the sample. However, the signal measured in the coil, which is known as 
the free induction decay (FID), is from the whole sample. In order to acquire MR images, it is 
necessary to implement a technique, which applies spatially dependent fields (linearly dependent 
with a constant gradient) to encode signals. Appling field gradient along x direction yields a 
spatially dependent Larmor frequency as ω(x)=γ(Gx+B), which leads to different spins 
precessing at different rates. The resulting detected MR signal will then be a superposition of 
many frequencies, and can be expressed as 
 

S(t)= ρ(x)exp(iφ)dx, (2.4)∫  

 
where ρ(x) is density of transverse magnetization precessing at ω(x) and φ represents the phase, 
which is given by 
 

φ(x,t)= −γx G( ′t )d ′t (2.5)
0

t

∫  

	
  
The signal in Eq. (2.4) can be written as 
	
  

S(k)= ρ(x)exp(−i2π kx)dx (2.6)∫  

	
  
where	
  	
  
	
  

k = − γ
2π

G( ′t )d ′t (2.7)
0

t

∫  

	
  
It is clear from Eq. (2.6) shows that the MR signal is the Fourier transform of the spin density of 
the sample. By systematically manipulating the gradient fields, a grid of points in k space can be 
covered and a series of corresponding signal points can be obtained. An image of the sample spin 
density can easily be obtained using inverse fast Fourier transform of measured signals. This 
brief description underlines the basic principle of MRI.  
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2.4  Basic Principles of DSC-MRI 
 
 
2.4.1  Susceptibility Based Contrast  
 
Susceptibility induced contrast is an important source of contrast in MRI. When a system 
composed of objects with different susceptibilities is immersed in a uniform static magnetic 
field, the boundaries between the objects cause distortion of the static field. These field 
perturbations facilitates the loss of spin phase coherence and contributes to T2

* relaxation. 
Example sources of susceptibility contrast in the body include blood vessels, bone marrow, and 
air bubbles. To alter the susceptibility of blood in the body, paramagnetic or superparamagnetic   
contrast agents are sometimes injected into the bloodstream. As a result a significant transverse 
relaxation occurs in the vicinity of contrast agent containing vessels. MR signal measured during 
the passage of the CA through the body exhibits substantial signal drop in areas with high blood 
volume and blood flow. Alternatively, in addition to exogenous CA injected to change blood 
vessel susceptibility, the susceptibility difference between oxygenated and deoxygenated blood 
can be used as a naturally occurring susceptibility contrast mechanism.  When blood flow in a 
tissue of interest increases, oxygenated blood (diamagnetic) replaces deoxygenated blood (highly 
paramagnetic). This leads to a decrease in field perturbation hence an increase in signal. The 
nature of the susceptibility contrast mechanism has made blood a useful source of contrast 
because it can be used as a marker to indicate hemodynamic properties of tissue. 

  
 

2.4.2  Perfusion Measurement Using DSC-MRI  
 
DSC-MRI utilizes very rapid imaging (most commonly T2

* weighted gradient-echo echo planar 
imaging, GE-EPI) to capture the first pass of intravenously injected paramagnetic CA. The time 
evolution of the MRI signal from such a sequence can be written as  
 

S(t)=
S0 1− e

−TR
T1(t )⎛

⎝
⎜

⎞
⎠
⎟e

−TE
T2
* (t ) sin(α)

1− e
−TR

T1(t ) cos(α)
(2.8)  

 
where S0  is a constant describing the scanner gain and proton density, TR is the repetition time, 
TE is the echo time, α is the flip angle, and  T1(t) and T2

*(t) are tissue longitudinal and transverse 
relaxation times, respectively, shortened by the CA.    

Assuming appropriate pulse sequence parameter choice and negligible blood signal 
contribution to the overall tissue MRI signal, signal changes due to changes in longitudinal 
relaxation rate, ΔR1(t) = 1/T1(t), can be eliminated. The transverse relaxation rate, ΔR2

*(t) = 
1/T2

*(t), is then computed using: 
 

ΔR2
*(t)= −1

TE
ln S(t)

S(0)
⎛
⎝
⎜

⎞
⎠
⎟ (2.9)  

 
where S(0) is the baseline signal acquired before CA injection.        
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Quantification of perfusion parameters is achieved by comparison of CA concentration time 
course in both a the tissue of interest and a feeding artery. In practice, the tissue CA 
concentration (Ct(t)) is measured indirectly via the associated increase in the transverse 
relaxation rate. It is assumed that the underlying dependence is linear and has the same form and 
magnitude in both the tissue and the arterial voxel.  Using a uniform vascular susceptibility 
calibration factor (kp) the tissue CA concentration can be expressed as  
 

Ct (t)=
−1
kpTE

ln S(t)
S(0)

⎛
⎝
⎜

⎞
⎠
⎟ (2.10)  

	
  
In common DSC-MRI practice the relative cerebral blood volume (rCBV) is estimated using 

the ratio of the areas under the tissue and arterial concentration time curves (3,31-33):  
 

rCBV =
Ct (τ )dτ

0

∞

∫

Ca (τ )dτ
0

∞

∫
(2.11)  

 
In order to calculate blood flow using tracer kinetic theory, first DSC-MRI estimates of the 
temporal shapes of the input concentration into the voxel and the tissue concentration curve are 
required. The input concentration time curve is different for every voxel. The most common 
approach is to measure the contrast agent concentration curve in a large feeding artery and then 
to apply this arterial input function (Ca(t)) to all of the voxels in the brain. The tissue 
concentration curve is determined by a combination of the blood flow, Ca(t) and the inherent 
tissue properties. The property of the tissue is modeled using s a “residue function,” R(t), which 
describe the fraction of tracer remaining in the voxel at time t after injection. Using the residue 
function the relationship between the tissue concentration and Ca(t) is  given  by the well-known 
convolution equation (33-35): 
 

 
Ct (t)=CBF iCa ⊗ R(t) (2.12) 	
  

 
where ⊗ is the convolution operator, CBF is the cerebral blood flow, and the product CBF R(t) is 
called the tissue impulse response function. In order to derive CBF from Eq. (2.12), the tissue 
impulse response function has to be determined by a deconvolution technique. Several 
deconvolution techniques such as, methods that utilize the properties of the Fourier transform 
(35), a well accepted matrices based approach known as singular value decomposition (SVD) 
and also parametric deconvolution methods which assume a shape for the residue function (34), 
has been used to solve for the tissue impulse response function. After deconvolution, since the 
initial value of residue function is 1 by definition, R(0)=1, CBF is commonly determined as the 
initial height of the tissue impulse response function. The detail mathematics basis of these 
deconvolution techniques and their respective advantage and drawbacks are beyond the scope of 
this research topic.  
	
  	
  	
  	
  The mean transit time (MTT) is calculated based on the central volume theorem (33),  
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MTT = CBV
CBF

(2.13) 	
  

 
Hemodynamic parameters quantified using DSC-MRI technique as described above has 

proven to be useful for characterizing tumor grade and treatment response (4-15). Nevertheless, 
the common assumption that kp values are spatially uniform for all tissue types could lead to 
either an overestimated or underestimated perfusion parameters depending on the relative kp 
variation between the reference region, where Ca(t) is measured, and the tissue of interest, where 
Ct(t) is measured (36). Chapter 4 is dedicated to utilize the FPFDM to investigate the extent of kp 
variation across tissue models, as well as its relation with structural parameters and influence on 
DSC-MRI derived blood volume fraction.  

Furthermore calculation of perfusion parameters relies on the concept of tracer kinetic 
theory, which assumes that contrast agent remains within the compartment of interest so that it 
can be treated as a nondiffusible tracer (3). This assumption is valid in normal tissue where the 
blood-brain barrier (BBB) is generally intact. However, in tumors with BBB disruption the 
leakage of contrast agent causes undesirable additional T1 and T2

* shortening with subsequent 
distortion of DSC-MRI signal profiles, which result in unreliable perfusion measures if left 
uncorrected (17-21). It has been sufficiently shown that T1 extravasation effects can be 
minimized with the application of a preloading dose of contrast agent (8) or by using multiecho 
methods (37). The focus of Chapter 5 is quantifying T2

* leakage effects and understanding its 
relation with physical and physiological features of the extravascular space. Chapter 6 exploits 
the unpleasant contribution of T2

* leakage effects to extract a new imaging biomarker to 
characterize tumor cellularity.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 



	
   9	
  

CHAPTER 3 
	
  
	
  

AN EFFICIENT COMPUTATIONAL APPROACH TO CHARACTERIZE DSC-MRI 
SIGNALS ARISING FROM THREE-DIMENSIONAL HETEROGENEOUS TISSUE 

STRUCTURES 
	
  
	
  
3.1  Overview 
 
Chapters 1 and 2 have presented basic overview of susceptibility contrast mechanism and DSC-
MRI. Despite the success of DSC-MRI technique to estimates of perfusion parameters in order to 
assess tumor grade and treatment response, there are many difficulties to overcome in order to 
achieve an accurate and robust calculation of perfusion parameters. These challenges range from 
optimization of data acquisition to data post processing and interpretations (38). DSC-MRI 
derived perfusion parameters are often confounded due to an assumed relationship between 
contrast agent concentration and measured transverse relaxation rate change, and leakage of 
contrast agent into the extravascular space. Understanding the relation between DSC-MRI signal 
and the complex morphological and physiological tissue parameters could help to optimize data 
acquisition techniques as well as improve the reliability of perfusion calculations. Therefore, to 
better understand the biophysical basis of DSC-MRI signal in biological tissues with more 
complex morphologies, it is necessary to develop an efficient computational tool capable of 
simulating DSC-MRI signal in realistic tissue structures.  

In order to better understand susceptibility-based image contrast, several theoretical (39-43) 
and computational models using fixed perturber geometry (e.g., cylinders or spheres) (43-50) 
have been proposed. To address the limited ability of these computational models to represent 
the complex vascular morphologies in both normal brain and tumors, Pathak et al introduced the 
Finite Perturber Method (FPM) for simulating susceptibility-based contrast for arbitrary 
microvessel geometries (51) and evaluating differences in kp for normal brain and tumor (36). 
The FPM uses estimated magnetic field perturbations to calculate MR signal by simulating 
proton diffusion and phase accumulation using the conventional time consuming Monte Carlo 
methods.  

For realistic complex tissues, the MC method needs to track the diffusion of a large number 
of spins to capture complex structural features, which in turn can increase the computation time.  
As an alternative, the Bloch-Torrey partial differential equation describing the transverse 
magnetization can be directly solved using finite difference methods (FDM). This approach has 
been previously shown to improve the computational efficiency of such simulations (52,53) and 
used to explore water diffusion in MRI and to aid the interpretation of diffusion-weighted 
imaging measures and their dependence on the morphology of biological structures such as those 
found in tumors. 

The aim of the research presented in this chapter is to evaluate the combination of the finite 
pertuber and finite difference methods, termed the FPFDM, as a tool for modeling susceptibility 
based contrast mechanisms. Such an approach leverages the strengths of the FPM, for computing 
magnetic field perturbations for arbitrarily shaped structures, and the FDM, for efficiently 
computing the resulting MRI signal evolution. The accuracy of the FPFDM is validated by 
comparison to traditional Monte Carlo methods. In the following chapters the potential of the 
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FPFDM to compute DSC-MRI signals arising from realistic three-dimensional cellular and 
vascular models is exploited to investigate the influence of vascular morphology, contrast agent 
kinetics and extravasation on DSC-MRI signals. 

 
 

3.2  The Finite Perturber Finite Difference Method (FPFDM) 
	
  
In this section, we first describe the method to compute magnetic field perturbations induced by 
susceptibility differences between arbitrary shaped tissue compartments. We then describe the 
calculation of the associated MR signal evolution.    
 
 
3.2.1  Computation of Magnetic Field Perturbations Using the FPM 
 
The magnetic field perturbations induced by susceptibility variations within tissue structures 
were computed using the FPM (51). To calculate the magnetic field shift at a given point, the 
FPM breaks the structure into numerous small cubic perturbers (finite pertubers) and the 
contribution to the magnetic field shift due to each perturber is calculated independently. The 
total magnetic field shift is then evaluated as the sum of the magnetic field shifts from all of the 
perturbers. As a computational input the FPM requires: a tabular listing of the tissue structure, 
the B0 field components, and the susceptibility difference (Δχ) between tissue compartments. 

The first step in FPM is to sample the 3D tissue volume with N3 cubic voxels. The resulting 
array is then represented using a binary function V(x,y,z) indicating whether a given point/voxel 
within the tissue volume lies inside or outside a specific compartment ( cellular or vascular), i.e.: 

 

V (x, y, z)=
1, if (x, y, z) is inside simulated compartments
0, if (x, y, z) is outside simulated compartments

⎧
⎨
⎪

⎩⎪
                 (3.1)   

 
The magnetic field shift arising from a single finite cubic perturber at point P(x,y,z) is 

approximated by the magnetic field shift of a sphere embedded within the cube weighted by a 
volume factor 6/π, and is given by:  

 

ΔBcube(x, y, z)=
6
π
Δχ
3
R3

r3
(3cos2θ −1)B0 (3.2)

  
where R is the radius of the sphere equivalent to one-half the size of the cube, ∆χ is the 
susceptibility difference between tissue compartments, and r and θ indicate the distance from the 
center of the cube and the angle with respect to B0 of the magnetic field calculation point, 
respectively. The volume-weighting factor (6/π) is used to compensate for the unoccupied space 
left by the sphere at each corner of the cube.  

The total magnetic field perturbation arising from the entire compartment of interest, can be 
calculated by integrating Eq. (3.2) over the entire tissue volume: 
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ΔB(x, y, z)= V (ζ ,η,ξ )ΔBcube(x −ζ , y−η, z−ξ )dζ dηdξ
volume
∫ (3.3)  

Eq. (3.3) represents a 3D convolution of the tissue structure with the finite perturber field shift, 
suggesting the use of the convolution theorem to achieve a computationally efficient means of 
calculating the magnetic field perturbation map arising from the entire tissue structure. Taking 
the Fourier transform of Eq. (3.3) and making use of the convolution theorem one finds: 

	
  

ΔB(x, y, z)=ℑ−1 ℑ{ V (x, y, z)}{ ℑ ΔBcube{ (x, y, z)}} (3.4) 	
  

 
Equation (3.4) illustrates, performing a point-wise multiplication of the 3D fast Fourier transform 
of the tissue structure and the magnetic field arising from a single finite perturber followed by 
inverse Fourier transform of the resulting 3D function yields the magnetic field perturbation map 
arising from the entire tissue structure. 

 
 
3.2.2  Computation of MR Signal Using the FDM 
 
Estimation of the MR signal relaxation induced by the inhomogeneous field gradients requires 
simulation of proton diffusion. To track the Brownian motion of thousands of protons over a 
large number of time steps and calculate their phase accumulation, a Monte Carlo (MC) 
simulation is frequently used (43-49,51). The MC method is potentially time consuming for 
complex tissue structures because in order to accurately calculate the phase distribution it must 
track a large number of spins that encounter tissue boundaries during their random walks. An 
alternative approach is to directly solve the Bloch-Torrey partial differential equation using the 
FDM (52). The FDM discretizes the tissue sample to a spatial grid and updates the magnetization 
at each grid point over a series of time steps. To increase the computational efficiency and 
eliminate edge effects encountered with traditional FD methods an improved matrix-based FDM 
with a revised periodic boundary condition has been previously developed (53). For tissue 
structures sampled with N3 voxels the discretized solution of the Bloch-Torrey equation for 
transverse magnetization (M) using the matrix-based FDM is described by:   
 

M (t +Δt)=Φ(t)⊗ (I + A)M (t), (3.5)  

 
A is an N3 × N3 diffusion transition matrix containing the tissue structural information given in 
terms of the jump probabilities (probability that a spin starts at one grid point and diffuses to 
another grid point after a time interval ∆t), I is an identity matrix with the same size of A, and ⊗ 
represents element-by-element vector multiplication.  The Φ(t) term is a 1 × N3 vector containing 
the phase accumulation and relaxation for each voxel at each time step and is given by: 

 

 

Φ(t)= [exp(−iγΔB1(t)Δt −Δt /T2,1),,exp(−iγΔBk (t)Δt −Δt /T2,k ),,

exp(−iγΔB
N 3
(t)Δt −Δt /T

2,N 3
)] (3.6)
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where γ is the proton gyromagnetic ratio (267.5 × 106 rad s-1 T-1), ∆t  is the simulation time step,  
the subscript k indicates a spatial index, ΔBk (t)   is the field perturbation at point k, and T2,k is the 
transverse relaxation time at location k within the simulation grid. When a GE sequence is used 
T2,k represent the  intrinsic  tissue T2

*, and  in the case of SE it represents the intrinsic  T2. In 
general, the jump probability from simulation grid a to b is described by:  

 

sa→b =

Da→bΔt
Δxa→b

2 if a ≡ b

2Δt
Δxa→b

2 .
DaDbPmcf cbΔxa→b

Dacac f PmΔxa→b +2DacaDbcb +Dbcbcf PmΔxa→b

if a ≠ b

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

(3.7)  

 
where Da→b  is the diffusion coefficient if a and b are within the same compartment, Δxa→b is the 
distance between simulation grid a and b, Pm is the permeability of the membrane when a and b 
are in different compartments, cf is the free concentration of water. The explicit form of the 1D 
transition matrix can be found in (53).  The MR signal normalized to the initial magnetization M0 
is estimated by summing the magnetizations over all grid points at a particular t and is given by: 
 

S(t)= 1
M 0 M (t)

k=1

N 3

∑ (3.8)  

 
The associated spin echo and gradient echo change in transverse relaxation rates are then 
calculated at a particular echo time t = TE using:  
 

ΔR2,ΔR2
* = − lnS(TE)

TE
(3.9)  

 
For spin echo imaging, the phase was inverted at t = TE/2. This model is designed to handle 
cases where the three tissue compartments within a voxel can have different intrinsic transverse 
relaxation times. By updating T2,k in equation 5, for each grid point at each simulation time step, 
the total transverse relaxation, which includes the microscopic and mesoscopic relaxation effects, 
can also be calculated. The decay of signal from large static perturbers is known not to be 
exponential (e.g. diffusion in a static linear field gradient) but a simple exponential fit is a good 
approximation for realistic cases, and other functions can be easily fit. All simulations were 
performed in the Matlab environment (Mathworks, Natick, MA) running on Intel Core 2 Duo at 
2.66GHz and 4GB of RAM processors. For clarity, the computational steps involved to obtain 
the final results using the FPFDM are illustrated in Fig 3.1.   
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3.3  Monte Carlo Method  
	
  
To demonstrate the computational accuracy of the FPFDM computed MR signals were compared 
with those obtained from MC method. Monte Carlo method, which is based on the first 
principles, uses computer-generated random numbers to simulate the random processes. In this 
case MC method is used to model proton diffusion within a magnetically heterogeneous medium 
and calculate the associated MR signal relaxation. Here MC technique is described briefly, at 
time t = 0 thousands of particles (spins) are initially placed at random locations within the 
simulation space. Then, after allowing each proton to diffuse randomly for a time Δt, the new 
location for each proton is updated using:  
 

rj (t +Δt)= rj (t)+ 6DjΔt ′r , (3.10)  

 
Where rj(t) is the position of jth particle at time t, Dj is the intrinsic diffusion coefficient at the 
location of the jth particle, Δt is simulation time step, and rʹ′ is a unit vector in an arbitrary 
direction. The phase accumulated by the jth particle after diffusing for time t is calculated using: 
 

φ j (t)= γΔB(rj (kΔt)Δt
k=1

t /Δt

∑ (3.11)  

 
Where γ is proton gyromagnetic ratio, ΔB(r(t)) is magnetic field perturbation calculated at 
location r(t) using the FPM . The MR signal is finally calculated by summing the accumulated 
phase shift across N diffusing protons: 
 

S(t)= 1
n

exp(iφ j
j=1

n

∑ (t)) (3.12)  
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Figure 3.1: Computational steps involved in the FPFDM. This figure illustrates the steps 
involved in computing the susceptibility induced transverse relaxation rates for a 3D tissue 
structure using the FPFDM: (a) The tissue structure is V(x,y,z). (b) The 3D Fourier transform of 
(a). (c) The magnetic field from the cubic finite perturber. (d) The 3D Fourier transform of 
ΔBcube(x, y, z) . (e) The point-wise multiplication of (b) and (d) in the Fourier domain. (f) The 
magnetic field shift due to the vascular structure computed as the 3D inverse Fourier transform 
of (e) or the convolution of (a) and (c). (g), (h) and (i) are the phase accumulation, the 
magnetization and the diffusion transition matrix, respectively. These are used to compute the 
magnetization in (j). (k) The computed MR signal.  (l) The transverse relaxation rates associated 
with an arbitrarily shaped tissue structure. 
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3.4  Validation of the FPM  
 
The accuracy of the FPM to calculate field perturbation has been tested using simple geometries 
with known theoretical field perturbations (51). In this section example validation of our version 
of the adopted FPM is presented by comparing the computational results with analytical 
solutions for cylindrical perturbers. For a long cylinder oriented along the y-axis and immersed 
in a region of constant magnetic field B0 in the z-axis (see Fig. 3.2a), the theoretical field shift 
along the z-axis and the x-axis normalized to the applied magnetic field B0 and the susceptibility 
difference (Δχ) is given by (30): 
 

ΔBz,x
ΔχB0

=

−1
6 ρ < R

± 12
R2

ρ2
ρ ≥ R

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(3.13)  

 
Where ρ is the distance to the point of interest and R is the radius of the cylinder. As seen from 
Eq. (3.10) while the field shift is constant in side the cylinder, outside it falls with 1/ρ2 as we go 
away from the axis of the cylinder with positive field shifts in the direction parallel to the applied 
field (z-axis) and negative shift along x-axis. Figure 3.2 shows the excellent agreement between 
the magnetic field perturbations computed from theory and the FPM performed using 1283 

simulation grids. Example 2D map through the magnetic field perturbation shows the dipole 
nature of the field shift as expected. In general, increasing the number of simulation grids 
minimizes the small difference at the edge of the cylinder between the two field perturbations.  
 
 
3.5  Validation of the FPFDM  
	
  
For validation, FPFDM and Monte Carlo based MRI signals were computed and compared for 
models consisting of randomly orientated cylinders and packed spheres. The dependence of 
gradient-echo (∆R2

*) and spin-echo (∆R2) relaxivity on perturber (vessel) size has previously 
been characterized using Monte Carlo techniques (45). To replicate these findings we created 10 
different structures composed of approximately 40 randomly distributed cylinders for each vessel 
radius taken between 1µm and 100µm, each with total cylinder volume fraction equal to 2% of 
the simulation cube. Using the previously reported simulation parameters (45,51) (susceptibility 
difference Δχ = 10-7

, cylinder volume fraction (Vp) = 2%, B0
 = 1.5T, water diffusion coefficient D 

= 10-5 cm2/s, simulation time step Δt = 0.2 ms, GE TE = 60 ms and SE TE = 100 ms), we 
computed the vessel size dependence of ∆R2

* and ∆R2 averaged over all cylinder arrangements. 
The computed ∆R2

* and ∆R2 values show negligible changes as the number of averaged 
structures increases beyond 10. As shown in Fig. 3.3a, there is excellent agreement between the 
FPFDM results and those obtained in the Monte Carlo-based comparison studies, which used 
analytical expressions (45) and FPM (51) for field perturbation calculations.  

To compare the computational efficiency of the FPFDM with that of the MC method, we 
computed ∆R2

* values using both techniques. For each technique ∆R2
* values were computed for 
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18 radii using a TE = 60 ms and Δt = 0.2 ms. The computation time for the FPFDM was 
approximately 140 seconds per structure. Using 1000 randomly distributed spins, the 
computation time for the MC method was approximately 220 seconds per structure. Table 3.1 
summarizes the simulation parameters used in the MC and FPFDM along with the respective 
computational times to generate ∆R2

* values for 18 cylinder radii.  
 

 

 

 
 
Figure 3.2: Validation of the FPM. (a) Illustration of the magnetic field and cylinder 
orientation. (b) 2D slice through the normalized magnetic field perturbation along a plane 
parallel to the XZ-plane. (c-d) FPM computed magnetic field shifts (blue) versus field shifts 
predicted by theory (red), and the difference between the two (black) plotted along the x-axis (c), 
and z-axis (d), respectively. 
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Table 3.1: Parameters used in MC and FPFDM simulations along with total computing times to 
calculate ∆R2

* values for 18 cylinder radii.  
 

Parameters Meaning Value 
TE  Echo time 60 ms 
Δt Simulation time step 0.2 ms  
Δχ Susceptibility difference  10-7 
B0 Static magnetic field 1.5 T 
Vp Cylinder volume fraction  2% 
D Water diffusion coefficient  10-5 cm2/s 
Ns Number of spins used in MC method  1000 
TimeMC Computing time for MC method  220 s 
TimeFPFDM Computing time for FPFDM 140 s 

 
 
To further validate the accuracy of the FPFDM we also computed ∆R2

*
 for simulated 3D 

cellular models consisting of packed spheres. Two packing conditions were considered:  
randomly distributed spheres and sphere packing on FCC gird. For each model, the sphere size 
was fixed at 9 µm radius corresponding to an approximate pertuber size where the SE relaxivity 
peaks and the GE relaxivity reaches plateau (45).  The ∆R2

* dependence on cell (sphere) volume 
fraction for the FPFDM was compared to that for the MC method (45) using similar simulation 
parameters. Fig. 3.3b compares the volume fraction dependence of ∆R2

* for each of the two 
sphere packing techniques computed by both the MC and FPFDM, using Δχ = 5×10-8, B0

 =1.5T, 
D = 10-5 cm2/s, Δt = 0.2 ms, GE TE = 40 ms, and simulation universe size = (0.5 mm)3. The 
FPFDM results were obtained by averaging the MR signal for 5 different sphere distributions for 
each packing and sphere volume fraction using a simulation grid size of 1283.  In contrast, the 
MC method involves tracking 15,000 random walks for each cell volume fraction and the 
redistribution of the spheres prior to each random walk. The FPFDM results are in excellent 
agreement to those produced from the MC methodology.  

To investigate the convergence of the FPFDM for randomly distributed structures such as 
those used above, ∆R2

* values obtained from (45) for vessel sizes of 10 µm and 15 µm were 
compared to the FPFDM results as a function of the number of structures used for averaging. 
Fig. 3.3c shows the percentage difference between the MC and FPFDM derived ∆R2

* values. For 
both vessel sizes the computed FPFDM ∆R2

* values converge to the corresponding reported 
values (45,51) to within 7% with only five structure averages. This percentage difference 
decreases to 0.8% as the number of averaged structures increases to 30. 
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Figure 3.3: Validation of the FPFDM. (a) FPFDM replicates the characteristic vessel size 
dependence of ∆R2

*and ∆R2 as has been previously shown with MC methods. (b) A comparison 
of computed ∆R2

* values as a function of sphere volume fraction and packing arrangement using 
MC (filled symbols) and FPFDM (open symbols) techniques, with excellent agreement between 
the two methods. (c) The computed ∆R2

* percentage difference between MC and FPFDM 
decreases as the number of FPFDM structures used for averaging increases.  
 
 
3.6  Modeling First-pass DSC-MRI Data in Brain Tumors using the FPFDM 
	
  
To demonstrate the potential of the FPFDM to simulate DSC-MRI signals arising from the 
dynamic passage of contrast agent through the vascular and extravascular spaces, such as would 
occur in brain tumors with a breakdown of the blood brain barrier, we used the GE signal 
equation given in Eq. (2.8).  The simplified form of the post-contrast to pre-contrast signal ratio 
can be written as:  
 

 

S(t)
S(0)

=
1− exp −TR i R10( ) i cosα

1− exp −TR i R10( )( ) i exp −TE i R20
*( )

⎡
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The  first term in Eq. (3.14) is a constant that depends on pre-contrast tissue properties and 
imaging sequence parameters.While the first term can be calculated with relevant choice of pulse 
sequence parameters and the pre-contrast tissue longitudinal (R10 = 1/T10) and transverse (R20

* = 
1/ T20

*) relaxation rates from previous studies, calculation of the second term in Eq. (3.14) 
requires the time evolution of the longitudinal (R1(t) = 1/T1(t)) and transverse (R2

*(t) = 1/ T2
*(t)) 

relaxation rates caused by CA injection. Assuming a fast water exchange between the 
compartments the R1(t) can be expressed as (54,55): 
 

R1(t)= r1.Ct (t)+ R10, (3.15)  

 
where r1 is the CA T1 relaxivity and Ct(t)  is the tissue CA concentration and is estimated by the 
weighted average of the concentrations in the extravascular extracellular space (EES), vascular 
space and the intracellular space. Assuming the CA does not penetrate into the cells Ct(t) takes 
the form:  
  

 Ct (t)= veCe(t)+ vpCp (t), (3.16)  

 
where ve, Ce, vp, Cp represent the volume fractions and CA concentrations of the EES and 
vascular space, respectively.  

In addition to microscopic interaction effect, which can be described in a similar fashion as 
the longitudinal relaxation rate, the tissue transverse relaxation also depends on mesoscopic scale 
interactions. These additional effects arises due to susceptibility variation in the order vessel and 
cell sizes (56).  Consequently, the tissue transverse relaxation rate can be expressed by:   

 
R2
*(t)= R2

micro(t)+ R2
meso(t)+ R20

* , (3.17)  

 
where R20

* is the tissue  pre-contrast transverse relaxation rate. The microscopic term is 
calculated using: 
 

R2
micro(t)= r2.Ct (t), (3.18)  

 
where r2 is the CA T2 relaxivity and Ct(t) is calculated using Eq. (3.16).   

The mesoscopic relaxation rate has been shown to significantly depend on the geometry of 
the host tissue compartments (45,57-59).  The qualitative and quantitative relationship between 
the mesoscopic effects and various tissue morphological parameters is the subject of Chapters 4 
and 5. In this section the FPFDM is used to estimate this effect, which in turn allow us to 
calculate the DSC-MRI signal using Eq. (3.14).  

To demonstrate the feasibility of using the FPFDM as a tool to simulate DSC-MRI signals in 
the presence of contrast agent extravasation and demonstrate the influence of extravascular 
features on DSC-MRI, we used two sample tissue structures composed of 60% cells and 4% 
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blood vessels. The two different tissue structures were constructed by packing ellipsoids with 
radii of 5µm and 15µm around a fixed fractal-based vascular network. The motivation for using 
ellipsoid and fractal based tissue structures along with details of their construction will be 
described in the next chapters. Sample arterial input function (AIF) with a criterion that is often 
observed in DSC-MRI studies was generated as previously described (60).  The vascular (Cp) 
and EES (Ce) CA concentration time curves were computed using the pharmacokinetic two 
compartmental model described by Brix et al (61). The relevant input physiological, pulse 
sequence and physical parameters (e.g. blood flow, blood volume, contrast agent transfer 
coefficient, T1, T2, etc) were selected from values measured in previous MRI, PET and CT brain 
tumor studies as previously described (17). All concentration time curves were sampled using 
150 time points for a total of 9 minutes and converted to susceptibility difference between 
compartments using Δχ = χm. [CA], where [CA] is compartmental CA concentration and χm is 
the CA molar susceptibility (0.027×10-6 mM-1) (62).  

Fig. 3.4a shows a sample 3D volume rendering of such a tissue structure, which contains 
ellipsoids of mean axis radii 15µm and vascular network with vessel size ranging from 5µm to 
45 µm.  The simulated Cp and Ce time curves are shown in (Fig. 3.4b). Fig. 3.4c shows a 
representative 2D slice through the computed magnetic field perturbations at a particular time. 

 
  

 
 

 
Figure 3.4: Example simulation with realistic tissue structure and contrast agent kinetics. 
(a) Sample tissue structure composed of ellipsoids packed around fractal tree based vascular 
network. (b) Simulated Cp and Ce curves derived using 2-compartment model. (c) Example 2D 
map through the magnetic field perturbation computed at time t=300 sec.  

 
 
The simulated Cp and Ce curves along with model tissue structure, in Fig. 3.4, were used as 

an input to compute the dynamic DSC-MRI signal. Fig. 3.5 shows the GE post-contrast to pre-
contrast DSC-MRI signal ratio time curves (S/S0), both in the presence (KTrans = 0.2 min-1) and 
absence (KTrans = 0 min-1) of contrast agent extravasation. Fig. 3.5a-c show the time series for the 
tissue structure composed of ellipsoids with a 5µm mean radii, at pre-contrast longitudinal 
relaxation times values of T10 = 500 ms, T10 = 1000 ms and T10 = 1500 ms, respectively. The 
corresponding time series for the tissue structures modeled with 15µm cellular radii are shown in 
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(Fig. 3.5d-f).  The following input parameters were used to compute the DSC-MRI signal: B0
 

=3T, D = 1.3×10-5 cm2/s, Δt = 0.2 ms, TE = 50 ms, TR = 1500 ms, flip angle α = 90o, pre-
contrast transverse relaxation time T20

* = 50ms. The CA T1 and T2 relaxivity values, r1 and r2, 
were set to 3.9 and 5.3 mM-1s-1, respectively (63). The compartmental membrane water 
permeability values were set at Pm = 0, to model restricted water diffusion. For a fixed cell 
volume fraction, the simulated time series demonstrate a marked cell size dependency. In 
general, for both tissue structures, as T10 increases from 500 ms to 1500 ms the influence of T1 
leakage effects becomes more substantial, as indicated by the increased signal recovery. For the 
small cell size structure, the T1 leakage effects eventually result in a signal overshot from 
baseline (e.g. Fig. 3.5c). However, the structure constructed with larger cell sizes is dominated 
by T2

* leakage effects (as apparent from the low signal recovery well after the CA’s first pass) 
even at T10 = 1500 ms (Fig. 3.5f). The simulation time to compute the signal for 150 time points, 
for 3 T10 values, 2 contrast agent leakage conditions and 2 tissue structures was approximately 
240 mins.    
 
 

 
 
 
Figure 3.5: FPFDM derived DSC-MRI signals in the presence of CA leakage. The GE post-
contrast to pre-contrast DSC-MRI signal ratio (S/S0), both in the presence (KTrans = 0.2 min-1) and 
absence (KTrans = 0 min-1) of CA leakage at pre-contrast T1 values of T10 = 500 ms, T10 = 1000 ms 
and T10 = 1500 ms, for tissue structures constructed using ellipsoids with mean radii of 5µm (a-c) 
and 15µm (d-f), respectively. The (S/S0) values were computed using input parameters of B0

 

=3T, D = 1.3×10-5 cm2/s, Δt = 0.2 ms, TE = 50 ms TR = 1500 ms, α = 90o, T20
* = 50ms, r1 = 3.9 

mM-1s-1, r2 = 5.3 mM-1s-1 and Pm = 0. 
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3.7  Discussion  
 

The FPFDM is a novel efficient computational tool combining features of the FP and FD 
techniques for calculating susceptibility-induced relaxivity changes for realistic simulated or 
imaging-based 3D vascular and cellular geometries that might be observed in vivo. The FPM can 
compute the induced magnetic fields around arbitrary microvasculature structures without 
necessitating any assumptions about the underlying vessel geometry (51). Although the Fast 
Fourier transform (FFT) improves the computational efficiency of the FPM for computing 
magnetic field perturbations, the application of MC techniques for tracking proton diffusion 
through the tissue in order to derive the resulting relaxivity change reduces its computational 
efficiency. The replacement of the MC component of FPM with matrix-based FDM can increase 
the computational efficiency by computing the evolution of the discretized magnetization 
simultaneously (53). The diffusion transition matrix A is either invariant or requires only partial 
updating for most tissues under consideration, further increasing the computing efficiency of 
matrix-based FDM that also benefit from optimized MATLAB packages for computations 
involving large matrices (53).  

A Gaussian diffusion kernel convolution can also be used to model CA and water diffusion 
(64-66). This approach is computationally more efficient than MC approaches, but limited to 
unrestricted water diffusion. Although non-Gaussian diffusion, a consequence of tissue structure 
that creates diffusion barriers and compartments, could be modeled by adding a kurtosis term to 
the kernel, it is not clear how this will affect the slower diffusion process observed in the 
restricted CA diffusion model (66). Modeling restricted water diffusion using the MC method 
(51) or the Gaussian diffusion kernel approach (64-66) requires either incorporation of elastic 
collisions at membrane boundaries or neglecting proton diffusion steps that involve membrane 
crossing. Unlike the case of unrestricted water diffusion, using these later methods to model 
restricted water diffusion and/or water diffusion in complex tissue with different compartmental 
diffusion coefficients will require additional computations, thereby increasing the overall 
processing time.  Given compartmental diffusion coefficients and membrane permeability 
values, the FPFDM can be used to model restricted water and CA diffusion and water exchange 
across compartments. For the FPFDM, including these additional structural features requires the 
computation of multiple versions of the diffusion transition matrix, A. Since A can be determined 
at the start of the simulation, a library of diffusion transition matrices, for a range of tissue 
structures, can be established to increase the computing efficiency. For example, computing a 
dynamic signal for the same structure only requires loading the transition matrix corresponding 
to the structure once from the library of diffusion transition matrices.  

We validated the FPFDM in two ways. First, we replicated the vessel size dependence of 
ΔR2

* and ΔR2 (Fig. 3.3a) using identical simulation parameters to previously described MC and 
FP techniques (45,51). Next, we found excellent agreement for relaxivity from packed spheres 
across a range of packing densities and packing strategies using traditional MC technique versus 
FPFDM (Fig. 3.3b). The agreement between MC and FPFDM converges as the number of 
structures included in the average for the FPFDM increases (Fig. 3.3c). Unlike MC simulation, 
which tracks a large number of particles in the simulation or, equivalently, runs the same 
simulation many times to obtain an accurate average result, the FPFDM converges to the average 
result with only a few simulation runs. This behavior can be explained in the following way. In 
the MC simulation, a population of particles distributes in the whole system and the particles that 
encounter membranes within the complex tissue are only a small portion of all the particles such 
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that the echo signal does not contain sufficient enough information about the tissue features that 
restrict diffusion. Hence, to solve this problem, more particles are considered in the simulation 
or, equivalently, the same simulation is run many times to obtain an accurate average result. In 
contrast, the FDFDM determines the diffusion transition matrix at the start of the simulation, 
which already contains the tissue structural information and results in a faster convergence of the 
average signal.  

For a simplistic structure containing randomly oriented cylinders with a total of 18 different 
radii, the FPFDM, as compared to MC, reduced the computation time to calculate ΔR2

* values 
from 220 s to 140 s. For complex tissue structures, and under conditions of restricted water 
diffusion, the increase in computational efficiency afforded by the FPFDM will improve even 
further. In such cases, the MC method requires a larger number of spins and additional 
computation steps in order to converge and capture sufficient information about the tissue 
structure (67). In contrast, for these more complex structures, the FPFDM does not require 
additional computing time and is not limited by restricted water diffusion (53).  

Although simulations in this study are based on a simple 2-compartment model, at the 
expense of computational time, the same approach to model water diffusion and exchange can be 
used to model CA diffusion and transport across compartments, yielding a more realistic 
heterogeneous CA distribution within a voxel. This can be achieved by updating CA 
concentration for each voxel/simulation grid at each simulation time step using a CA diffusion 
transition matrix (ACA) calculated using appropriate CA diffusion coefficients and permeability 
across membranes from literature (68,69). For the purposes of this study, we assumed that the 
contrast agent equilibrates within each compartment over the time it takes to acquire each DSC-
MRI image (1 – 2 seconds). Such an assumption is traditionally employed and consistent with 
current DSC-MRI analysis techniques.    

The FPFDM also provides a computationally reasonable approach for simulating DSC-MRI 
derived transverse relaxation rates both in the presence and absence of CA extravasation, and 
restricted water diffusion induced by membrane permeability (Fig. 3.4 and Fig. 3.5).  The results 
shown in Fig. 3.5 demonstrate that contrast agent leakage can lead competing T1 and T2

* effects 
as the CA traverses the extravascular extracellular space. For a given T10, the structure with 
smaller sized cells exhibited higher signal intensity recoveries as compared to that with larger 
sized cells.  The compartmentalization of CA around the larger cells creates stronger magnetic 
field perturbations and greater relaxation rate changes (T2

* effects). In general, as T10 increases, 
T1 leakage effects will be more pronounced and may dominate any T2

* leakage effects, as is the 
case for the smaller-sized cells. In such cases, the characteristic signal overshoot may be 
observed (Fig. 3.5c). For the tissue structure with larger perturber sizes, the signal intensity 
exhibits less recovery due to the presence of substantial T2

* leakage effects (Fig. 3.5d-3.5f). 
Given the clinical importance of DSC-MRI signal recovery characteristics to help differentiate 
among tumor types (70,71), a systematic in silico study of DSC-MRI signal recovery and its 
dependence on physiological, pulse sequence and physical parameters is currently under 
investigation.   

One of the limitations of the FPM is the use of FFT to calculate the spatial convolution of the 
vascular structure with the finite perturber magnetic field perturbation. As demonstrated in (51) 
the resulting field perturbation is equivalent to the field perturbation from a periodic array of the 
tissue structure under consideration. Although realistic tissue structures extend beyond the 
boundary of the simulation space, which introduces a “boundary problem”, we used zero-
padding of the tissue structure to avoid additional field perturbation at the boundaries from the 
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neighboring array. The padding size to eliminate boundary field effects depends on the perturber 
size and the tissue structure.  Here we used a zero-pad size of one-tenth of the simulation box, 
since the field perturbation changes we observed by using higher zero-pad sizes were negligible.  

The FPM was designed to compute the magnetic field changes from a single finite perturber 
convolved with a digitized tissue structure array, and hence this approach cannot be used for 
arbitrary magnetic susceptibility distributions. While methods capable of computing arbitrary 
susceptibility distributions are more comprehensive and should be explored (72,73) , it is 
typically assumed that contrast agent instantaneously distributes within each tissue compartment 
(e.g. intravascular and extravascular extracellular space) at each imaging time point.   
Accordingly, the FPFDM is a practical approach to compute field perturbations arising from 
tissue structure with only a few susceptibility compartments, such as the intravascular, 
intracellular, and extravascular extracellular spaces.  

The sampling of tissue structures at higher resolution increases the computational accuracy of 
the FPM but it comes at the expense of computational time. Such increases in resolution would 
also add to computational time needed to compute the MR signal using the FDM. This is 
particularly true if a need arises to reduce the simulation time step (Δt) due to increased 
resolution or decreased perturber size (Δx), in order to satisfy the constraint that the jump 
probability (see Eq. 3.7) should be ≤ 1⁄6. This is because when the number of spins leaving a 
given node exceeds the number that was present, the FDM becomes unstable (52). With the 
parallel high-performance computing techniques we previously developed (53), we are exploring 
ways to increase the computational efficiency of the FPFDM at higher resolutions so that we can 
more accurately characterize fine tissue microstructure across a broader range of structural 
dimensions (e.g. a few microns up to a hundreds of microns). 
 
 
3.8  Conclusion 
 
The FPFDM is an alternative computational tool for efficiently modeling susceptibility induced 
MR signal relaxation from complex perturber geometries. In general, the proposed FPFDM 
could be used to investigate the influence of realistic tissue microstructure on any susceptibility 
based contrast mechanism such as vessel size imaging, BOLD contrast, single cell imaging, and 
quantitative susceptibility mapping. The proposed method has been used and will continue to be 
utilized to assess the influence of geometrical, morphological and physiological parameters of 
microvessels and cells on susceptibility induced MR relaxation rate changes.  Such studies 
should shed new insights into DSC-MRI contrast mechanisms and enable the systematic 
evaluation of how acquisition and analysis methods influence the measurement of reliable 
perfusion parameters in brain and tumor tissue. 
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CHAPTER 4 
 
 

THE INFLUENCE OF VASCULAR MORPHOLOGY ON DSC-MRI DERIVED BLOOD 
VOLUME MEASUREMENTS IN BRAIN TUMORS 

 
 

A central assumption in all DSC-MRI studies is that a linear relationship, with a spatially 
uniform rate constant, termed the vascular susceptibility calibration factor (kp), exists between 
the CA concentration and the measured transverse relaxation rate change. Given the dependence 
of susceptibility field gradients on vascular geometry, this assumption could significantly impact 
the reliability of DSC-MRI hemodynamic measurements. Tumor vascular structures are known 
to be fundamentally different from normal vasculature (74-76). Whereas vascular networks in 
normal tissue are highly ordered, those found in tumors are abnormally heterogeneous, with a 
large degree of random variation in vessel length, diameter and branching patterns. In this 
computational study, we investigate the influence of vascular morphology on DSC-MRI derived 
blood volume measurements and characterize the vascular susceptibility calibration factor for 
simulated vascular tree networks that replicate structural properties observed in normal and 
tumor tissue. In addition to simulated vascular structures attempts were made to characterize kp 
values for MR size voxels obtained from micro-CT based renal angiograms.  
 
 
4.1  Vascular Network Model  
 
In order to provide a framework that mimics in vivo conditions but also enables the systematic 
investigation of the influence of vascular features on DSC-MRI data we explored the use of 
fractal tree based vascular networks (77,78). Starting with an initial cylindrical segment 
representing an arterial vessel, the vascular tree was created using successive bifurcation into 
smaller daughter segments until a target vascular volume fraction is reached to terminate the 
fractal tree development. At each bifurcation junction the diameter of each daughter vessels was 
calculated using Murray’s law (79). The idea of Murray’s model is based on the principle that 
naturally occurring vascular networks must achieve an optimal arrangement that minimize the 
biological work needed to maintain blood flow. According to Murray’s law, at each junction (Fig 
4.1a) the reduction of parent diameter (D0) to daughter diameters (D1, D2) is given by:  
 

D0
x = D1

x +D2
x , (4.1)  

 
where  x is called the bifurcation exponent.  Large number of studies based on human and animal 
organs has been shown to support the Murray’s power law with scattered values of the exponent 
x ranging from 2 to 3 (78,80-86). For capillaries and small vessels the value of x is shown to be 
close to 3, consequently in this study x is set at 3 and kept constant across tissue (81,87).  

An important morphological parameter that describes the symmetry of the daughter vessels is 
the bifurcation index (λ), calculated using the ratio of the narrower to the wider daughter vessel 
diameters at each junction (λ = D1/D2). Previous experimental studies in animals have shown 
bifurcation index values ranging from 0 to 1 (88,89).  For a given λ and D0, Eq. (4.1) was used to 
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calculate the daughter diameters at each bifurcation node. The ratio of the daughter to parent 
vessel length at a given junction provides another morphological parameter termed the scale 
factor (α = L1/L0 = L2/L0).  Values of α ranging from 0.7 to 0.9 has been observed in previous 
animal studies (89).  

The two branching angles θ1, the angle between a parent and daughter 1, and θ2, the angle 
between daughter 2 and parent (Fig 4.1a), considerably influence the geometry of the vascular 
network. The rotation angles Φ1 and Φ2 are the azimuthal angles of the two daughters with 
respect to the parent cylindrical axis (Fig 4.1a).   

Given the initial feeding artery (L0 and D0) and morphological parameters at each junction 
such as, λ, θ1, θ2, Φ1,Φ2, and α, using Eq. (4.1) the diameter and length of each cylindrical 
segment required to build the target vascular network can be calculated.  The diameters and 
lengths (the spatial coordinates of the two end points) of each building segment are then used to 
construct a binary tissue structure to be used as an input in the FPFDM. Figure 4.1b shows an 
isosurface plot of an example binary tissue structure sampled with 1283 cubes of size 3.9 µm. 

 
 
 

 
 
 

Figure 4.1: Morphological parameters of fractal based vascular network. (a) Illustrates the 
physical parameters used in the vascular model. L0 and D0 represent the parent vessel. (L1, D1, θ1, 
Φ1) and (L2, D2, θ2, Φ2) represent the upper and lower daughter vessels, respectively. (b) Sample 
binary vascular tissue structure constructed using uniform morphological parameters across 
tissue.  
 
 
4.2  The Effects of Vascular Network Heterogeneity on ∆R2 and ∆R2

* 
	
  
To investigate the effect of vascular geometry variation on DSC-MRI derived ∆R2 and ∆R2

* 
values, we used fractal-based tissue models to represent the complex geometries of the 
microvasculature as input to the FPFDM. Fig. 4.2 illustrates the effect of branching angle 
heterogeneity (Δθ) on the CA concentration dependence of ∆R2 and ∆R2

* for typical DSC-MRI 
contrast agent concentrations. For these simulations we generated three different vascular 
networks within a 1 mm3 volume sampled with 1283 voxels. Fig. 4.2a-4.2c shows sample 
vascular trees constructed using homogenous λ, Φ1,Φ2, and α values at each branching node, but 
with increasing heterogeneity in branching angles θ1 and θ2. The model for normal vasculature is 
shown in Fig. 4.2a, with branching angles at each junction chosen randomly from a narrow range 
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of 25°–40°. To represent the tortuous and chaotically organized morphology of tumor vessels, 
the range of branching angle heterogeneity were increased to 25°–80° (Fig. 4.2b) and 25°–140° 
(Fig. 4.2c). Fig. 4.2d shows three orthogonal 2D slices through the body center of the magnetic 
field perturbations computed using the FPM for the vascular structure in Fig 4.2c. Fig. 4.2e and 
4.2f plot the concentration dependence of ∆R2

* and ∆R2 for the three θ heterogeneities (Δθ) 
considered. For these simulations we used, Δχ = χm. [CA], B0 = 4.7T, D = 10-5 cm2/s, Δt = 0.2 
ms, GE TE = 40 ms and SE TE = 80 ms. All simulated vascular structures incorporate vessel 
radii ranging from 12 µm to 80 µm with a 2% target vascular volume fraction (vp). The 
computed relaxation rates were averaged over five different orientations for each simulated 
vascular network. Using the slope of the ∆R2

* dose response curves, kp values ranging from 100-
295 (mM-sec)-1 were obtained. The kp values for the more tumor-like vascular trees (higher Δθ) 
were higher than those in normal trees, up to three fold for this simplified simulation. Similar 
dependency on branching angle with a reduced susceptibility effect was observed for ∆R2 dose 
response curves.  
 
 
4.3  The Effects of Vascular Morphology on DSC-MRI Derived Blood Volume  
 
To investigate the effects of assuming uniform values of kp across voxels when measuring rCBV 
we created tissue structures representing normal and tumor like vascular trees. Normal vascular 
trees were created using a volume fraction of 2.5%, while a range of volume fractions (4%, 8% 
and 12%) were used for tumor structures. For each vascular volume fraction considered here two 
sets of tumor structures were simulated. In the first set of tumor structures, heterogeneity was 
introduced by increasing branching angle variability (choosing θ1 and θ2 randomly from a range 
of 25° to 140°), while bifurcation index heterogeneity (λ taken randomly from a range of 0.5 to 
1) was used to construct the second set of tumor vascular structures. Example 3D rendering of 
tissue structures representing normal and tumor vascular structures modeled using θ and λ 
heterogeneity are shown in Fig. 4.3. In order to compute rCBV for each vascular volume fraction 
a representative Cp time course was simulated as previously described in section (3.6). The 
simulated Cp time course and the tabular tissue structures along with Δχ = χm. Cp, B0 = 3T, D = 
10-5 cm2/s, Δt = 0.2 ms, GE TE = 40 ms were used as an input to the FPFDM to compute the 
corresponding ∆R2

* time courses for each tissue structure. The area under the computed ∆R2
* 

time courses was used to calculate CBV values for the normal and tumor structures. Consistent 
with the common DSC-MRI practice Eq. (2.11), the rCBV values for each tumor tissue is 
computed using the ratio of the tumor to normal tissue CBV values (CBVtum/CBVnor), and 
compared with the actual tumor to normal tissue vp ratios (vp,tum/vp,nor). To determine if 
differences between the computed rCBV values and the actual vp ratios were due to kp variation, 
the kp values for each structure were first normalized to the tissue vp and then computed using the 
slope of a linear regression fit of ∆R2

* versus CA concentration. 
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Figure 4.2: The influence of vascular morphology on ∆R2

* and ∆R2. (a-c) Sample 
microvascular networks simulated using a fractal tree model with increasing branching angle 
heterogeneity. (d) Three orthogonal slices through the magnetic field perturbation at the body 
center for the vascular network in (c). (e-f) Effect of branching angle heterogeneity on the 
concentration dependence of ∆R2

* and ∆R2 computed with FPFDM (B0
 = 4.7T, vp = 2%, GE TE 

= 40 ms, and SE TE = 80 ms). Both ∆R2 and ∆R2
* increase with branching angle heterogeneity. 
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Figure 4.3: Sample normal and tumor like vascular networks. (a) Example normal 
microvascular networks simulated using homogenous morphological parameters. Tumor 
microvasculature modeled using, branching angle heterogeneity (b), and bifurcation index 
heterogeneity (c).  
 
 

The computational results shown in Fig. 4.4 are for tumor tissue structures obtained by 
introducing branching angle heterogeneity. Figure 4.4a shows the computed ∆R2

* time courses 
for three tumor tissue structure and one normal tissue representing a reference region. The 
corresponding computed rCBV values (CBVtum/CBVnor) along with the actual vascular volume 
fraction ratios (vp,tum/vp,nor)  for the three tumor structures are shown in Fig. 4.4b. For all tumor 
tissues, the rCBV overestimates the actual vascular volume fraction ratio and as the tumor 
vascular volume fraction increases the difference between the computed rCBV and the actual 
vascular volume fraction ratio increases from 6.9% to 21.3%. The dose response of the computed 
∆R2

* values for each tissue structure is shown in Fig. 4.4c.  The ratio of the tumor to normal 
tissue vascular susceptibility calibration factors (kp,tum/k p,nor) estimated using a linear fit to the 
data in Fig. 4.4c is greater than 1 for all tumor tissue as shown in Fig. 4.4d. This indicates that 
disparities between normal and tumor tissue branching angles will lead to an overestimation of 
rCBV when a spatially invariant kp value is assumed.   

The corresponding simulation results for tumor tissue structures constructed by increasing 
bifurcation index heterogeneity are shown in Fig. 4.5. Unlike the overestimated rCBV values 
found for branching angle heterogeneity, the, rCBV values computed for tumor structures with 
heterogeneous bifurcation indices underestimate the actual vascular volume fraction ratio and to 
a greater degree, with the differences ranging from 2.7% to 74.3%. As expected the ratio (kp,tum/k 
p,nor) is less than 1 for each tumor tissue, Fig. 4.5d. Whereas a greater distribution of branching 
angles led to an overestimation of rCBV, bifurcation index heterogeneity results in an 
underestimation of rCBV for tumor tissue.  

In general increasing branching angle heterogeneity tended to increase tumor kp values, 
whereas increasing bifurcation index heterogeneity decreased kp, with the latter effect being 
more predominant. It is of note that the difference in normal and tumor kp values for the 
bifurcation index heterogeneity case, with a 12% blood volume fraction, agrees closely with 
previously reported in vivo data in 9L brain tumors (36). 
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Figure 4.4: The influence of branching angle heterogeneity on rCBV. (a) ∆R2
* time courses 

computed for one normal tissue vascular model (2.5%) created by randomly choosing branching 
angles from a narrow range (25o < θ < 40o), and three tumor vascular models (4%, 8%, and 12%) 
created by randomly choosing branching angles from a wider range (25o < θ < 140o), in order to 
increase branching angle heterogeneity. (b) Actual (Vp,tum/Vp,nor) and computed (CBVtum/CBVnor) 
tumor to normal blood volume ratios. The computed blood volume ratios overestimate the actual 
ratios. (c) The linear dependence of ∆R2

* on CA concentration is used to calculate kp values for 
each tissue. (d) The ratio of the tumor to normal tissue vascular susceptibility calibration factors 
(kp,tum/k p,nor) , suggests tissue structures with higher branching angle heterogeneity tends to have 
greater kp values, which  explains the overestimation in (b). All kp estimates are normalized to 
the tissue vp value. 
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Figure 4.5: The influence of bifurcation index heterogeneity on rCBV. (a) ∆R2

* time courses 
computed for one normal tissue vascular model (2.5%) created by using homogenous bifurcation 
index (λ = 1), and three tumor vascular models (4%, 8%, and 12%) created by randomly 
choosing bifurcation index values from (0.5 < λ < 1), in order to increase bifurcation index 
heterogeneity. (b) Actual (Vp,tum/Vp,nor) and computed (CBVtum/CBVnor) tumor to normal blood 
volume ratios. For each tumor tissue the computed blood volumes ratio underestimates the actual 
ratio. (c) The linear dependence of ∆R2

* on CA concentration is used to calculate kp values for 
each tissue. (d) The ratio of the tumor to normal tissue vascular susceptibility calibration factors 
(kp,tum/kp,nor), indicates tissue structures with higher bifurcation index heterogeneity tends to have 
lower kp values, leading to the underestimation observed in (b). All kp estimates are normalized 
to tissue the tissue vp value. 
 
 
4.4  Caracterizing kp Heterogeneity using Image-based Tissue Structures 
	
  

To investigate kp variation across tissue structures and further illustrate the versatility of the 
FPFDM, micro-CT was used to create a three-dimensional rendering of a murine kidney 
vasculature perfused with Microfil (MV-122, Flow Tech). Following perfusion and fixation in 
10% neutral buffered formalin, the kidney was scanned in a microCT50 (Scanco Medical AG, 
Brüttisellen Switzerland). Cross-sectional images of the entire kidney were acquired with an 
isotropic voxel size of 5.0 µm using an energy of 55 kVp, 200 µA intensity, 700 msec sample 
time, and 1000 projections per rotation using the manufacturers 1200 mg HA/ccm beam 
hardening correction algorithm in a 10.24 mm field of view. Using the manufacturer's software, 
we assembled individual slices into a z-stack and contrast-filled vessels were segmented from 
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soft tissue by applying a threshold of 260 mg HA/ccm (determined by calibration against a 
hydroxyapatite phantom) and a three-dimensional Gaussian noise filter with sigma 2.3 and 
support of 4. The resulting binary three-dimensional images of the perfused mouse kidney 
vasculature (1242 slices with 1428 × 1012 matrix size and 5 µm isotropic voxels) were used as 
source data for multiple 1 mm3 vascular models with 2003 finite cubic perturbers, each 5 µm in 
size. The 1 mm3, MR voxel size, vascular models were prepared using in-house Matlab codes 
(Mathworks, Natick, MA) and used as an input for the FPFDM simulation.  

Fig. 4.6 shows the entire extracted kidney vascular structure, with sample MR voxel-sized 
sub-structures and their respective vascular volume fractions. Figs. 4.7a and 4.7b show the 
FPFDM derived SE and GE kp values obtained from the slope of the ∆R2 and ∆R2

* dose response 
curves, respectively. These results are normalized to the vascular fractional volumes and were 
computed using B0

 = 4.7T, D = 10-5 cm2/s, Δt = 0.2 ms, GE TE = 40 ms, SE TE = 80 ms, and a 
clinically relevant range of Δχ values ranging from 0 to 9.4×10-8, corresponding to a Gd-DTPA 
concentration ranging from 0 to 3.5 mM. In general, the SE and GE kp values were highest for 
low vascular volume fractions and tended to decrease as the vascular volume fraction increased, 
with SE and GE kp values ranging from 3.6 - 27.8 and 53.8-174.3 (mM-sec)-1, respectively.  

 
 

4.5  Discussion and Conclusion 
 

In this chapter we describe a fractal tree based approach for generating more realistic, three-
dimensional vascular tissue structures that can be used for the systematic investigation of DSC-
MRI signal dependence on vascular morphology. We computed the contrast agent concentration 
dependence of transverse relaxation rates for vascular trees. Our results demonstrate the 
feasibility of using FPFDM for complex geometries, and suggest that although the generally 
accepted linear relationship between relaxation rate and CA concentration is reasonable, the 
proportionality constant kp depends upon the microvascular geometry, a finding that is consistent 
with previous studies (45,51,90). The higher relaxation rate for vascular structures with greater 
range of branching angles is most likely due to the greater heterogeneity of vessel branch 
orientation with respect to B0 and their larger space occupancy which impacts the frequency 
offset of a larger volume compared to narrow branching angles that pack vessels in a small 
region (Fig. 4.2). This is also consistent with the overestimation of tumor relative blood volume, 
observed when the tumor vascular structure is modeled by introducing branching angle 
heterogeneity compared to the reference region normal tissue (Fig. 4.4). On the other hand, the 
lower kp values for tumor vascular structures with greater bifurcation index heterogeneity (Fig. 
4.5), is most likely due to a larger number of small vessels, which induces smaller relaxation rate 
changes compared to the relatively larger vessels in the normal tissue due diffusion narrowing. 
These preliminary computational results show marked kp heterogeneity across vascular 
networks, suggesting that further work is needed to better characterize the influence of vascular 
heterogeneity on DSC-MRI derived perfusion parameters in brain tumors.  

Traditionally, randomly oriented cylinders were used to investigate the influence of vascular 
properties (e.g. vessel size, vessel volume fraction) on relaxation rates.  Fractal-based vascular 
trees better approximate the microvascular network in vivo, but this complex geometry with 
variable vessel rotation, size distribution, branching angles, and diameters of daughter vessels is 
very difficult to model and require high resolution to achieve structural details. The high 
resolution required to sufficiently capture the fine detail of tissue microvasculature significantly 
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reduce the computing efficiency of the FPFDM. Currently a parallel computing technique to 
decrease the computing time to a feasible level is being investigated. This will allow more 
systematic studies for wide range of morphological, physiological and pulse sequence parameters 
to investigate the preliminary findings presented here.  

 
 

   

 

 
Figure 4.6: Kidney vascular structure extracted from micro-CT. Kidney vasculature 
extracted from micro-CT along with representative MR voxel-sized (1 mm3) microvascular 
models taken from different sections of the kidney vasculature with their respective vascular 
volume fractions. The existence of the bubble-like structures demonstrates the filling of 
glomeruli with Microfil but a higher resolution would be required to differentiate the individual 
capillaries.   
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Figure 4.7: Computed kp values for vascular structure extracted from micro-CT. (a) SE and 
(b) GE kp values as a function of vascular volume fraction computed using the FPFDM for the 
kidney microvascular models (with vascular volume fractions > 0.1%) shown in Fig. 4.5. SE kp 
values ranged from 3.6-27.8 (mM-sec)-1, and GE kp values ranged from 53.8-174.3 (mM-sec)-1. 
Above 5% volume fraction, the GE kp values were relatively constant with a mean value of 
103.3(mM-sec)-1.  
	
  
	
  

The systematic evaluation of fractal-based vascular trees using the FPFDM could shed new 
insights into the relationship between DSC-MRI relaxation rate and vascular geometry. 
Furthermore, the use of fractal trees enables the application of well-established flow models (91-
93) such that contrast agent kinetics and the associated DSC-MRI time series can be considered 
for each vascular structure.  This would enable a more rigorous investigation of DSC-MRI-based 
voxel-wise measures of vessel size, transit time and flow distributions and oxygen extraction. 
Realistic 3D vascular and flow models could then be expanded to incorporate the extravasation 
of contrast agent and its subsequent diffusion around cells in the extravascular space. Such 
expansions would create a powerful framework with which to investigate DSC-MRI and 
susceptibility-based imaging methodologies in brain, tumors and other organs of the body. 

Prior studies have shown the potential and value of incorporating image-based vascular 
structures into susceptibility simulations (64).  Similar to these previous studies we sought to 
demonstrate the versatility of the FPFDM and kp heterogeneity across vascular networks by 
determining the dose-response of relaxation rates for vascular structures derived from ex vivo 
micro-CT scans of perfused kidney vasculature. The dose-response curves from MRI voxel-sized 
regions of the kidney vasculature were used to determine the distribution of vascular 
susceptibility calibration factors, kp, within the kidney. For vascular volume fractions up to 30%, 
kp values were very heterogeneous (Fig. 4.7), with decreased heterogeneity for vascular volume 
fractions greater than 5%. The kp decreased over vascular volume fractions between 0 and 5% 
with a slower decrease above 5%, consistent with a previous study in rodent brain that found 
grey matter kp to be nearly twice that of tumor (36). It should be noted that the kidney 
microvascular structure presented in this study is limited by the spatial resolution of the micro-
CT data. With a 5 mµ resolution individual capillaries could not be resolved and capillary dense 
regions, such as in the glomeruli, present as a single large perturber. The differentiation and 
inclusion of these capillaries will likely influence the overall kp heterogeneity across voxels for 
both SE and GE computations.  For the purposes of this study, this example illustrates the ability 
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of the FPFDM to explore susceptibility contrast and kp heterogeneity in tissue structures acquired 
using ex vivo imaging modalities. As the FPFDM only requires that structures consist of a digital 
format it could accept structural input from any imaging modality (e.g. optical, CT, electron 
microscopy, MRI).  

In conclusion, the preliminary computational results presented herein show marked kp 
heterogeneity across vascular networks, suggesting that the assumption of a constant kp for all 
tissue types could affect DSC-MRI derived perfusion parameters. However, it is encouraging 
that morphological features can both increase and decrease tumor kp values, as this may suggest 
that the net effect in vivo is less substantial than observed herein due to averaging. While kp 
heterogeneity may have little clinical impact on identifying highly vascular tumors it could affect 
the interpretation of serial DSC-MRI data during treatment response. Anti-angiogenic agents are 
known to significantly modify the tumor microvasculature (94,95), which, in turn, could serially 
alter kp values. Further studies are needed to explore such effects and suggest the need to validate 
serial DSC-MRI measurements of tumor hemodynamics. 
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CHAPTER 5 
 
 

MODELING THE EFFECTS OF CONTRAST AGENT EXTRAVASATION ON DSC-
MRI 

 
   

In normal brain regions, the biophysical basis of DSC-MRI signal is well characterized, 
primarily reflecting the underlying contrast agent kinetics and vascular geometry (45).  When the   
BBB is disrupted, as is often in tumor regions, small molecular weight contrast agents, such as 
Gadolinium-Diethylenetriaminepentaacetic Acid (Gd-DTPA) may extravasate, leading to 
dynamic changes in the tissue T1, T2 and T2

* relaxation times. In such cases, DSC-MRI signals 
are more complex and depend on hemodynamics, vascular geometry and permeability, the 
extravascular microstructure and the applied pulse sequence (17-19). When DSC-MRI signals 
are acquired and processed without consideration of CA extravasation, the derived hemodynamic 
parameters are well known to be unreliable (7,8,96).  Several techniques have been proposed and 
employed to correct for T1 and T2

* leakage effects (17,20,21,96-99). We propose that such DSC-
MRI signals are influenced by the extravascular compartmentalization of CA and could 
potentially be used to extract information about the underlying spatial features of tumor cells 
within tissue (e.g. cell density, intercellular distance). The goal of this computational study is to 
investigate the dependence of extravascular T2 and T2

* leakage effects on physical features of 
extravascular space. 

The motivation for exploring whether cellular properties influence DSC-MRI data originates 
from previous reports demonstrating that contrast agent extravasation and compartmentalization 
around cells can induce measurable and dynamic changes in gradient echo acquired signals (17-
19,71). While spheres have been used extensively for evaluating susceptibility-based contrast 
mechanisms they poorly represent in vivo cellular distribution and shape. In particular, packed 
spheres intrinsically provide no means for modeling orientation heterogeneity and are unable to 
achieve cellular densities that approximate those found in vivo. To overcome these limitations we 
explore here the use of randomly packed ellipsoids (100). Modeling cells as ellipsoids enables 
the systematic investigation of several features relevant to DSC-MRI including ellipsoid 
orientation heterogeneity, volume, aspect ratio and higher packing fractions.  

 
 

5.1  The Effects of Cellular Shape, Arrangement and Volume Fraction on ∆R2
*and ∆R2  

 
To investigate the complex susceptibility effects that occur when contrast agent extravasates and 
compartmentalizes around cells, we used the FPFDM to compute the dependence of DSC-MRI 
derived ∆R2

*and ∆R2 leakage effects on structural features of the extravascular space. Three 
dimmenstonal cellular tissue models consisting of packed spheres or ellipsoids of fixed radii (9 
µm) were used to study the effects of cellular shape and volume fraction. In addition to the 
effects of cellular shape and volume fraction, the influence of cellular packing arrangement is 
investigated by comparing results from randomly distributed spheres, closely-packed spheres on 
a face centered cubic (FCC) grid and randomly packed ellipsoids. To model contrast agent 
leakage effects relevant contrast agent levels corresponding to a Δχ value half the peak value of 
single dose Gd-DTPA injection is assumed. Figure 5.1a illustrates the FCC, random sphere and 
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ellipsoid packing models along with the respective representative 2D slices through the 
computed magnetic field perturbations. Figure 5.1b and 5.1c demonstrates the influence of 
cellular packing arrangements, shape and volume fraction on the computed ∆R2

* and ∆R2 values 
for Δχ = 5×10-8, B0

 =1.5T, D = 10-5 cm2/s, simulation time step Δt = 0.2 ms, GE TE = 40 ms and 
SE TE = 80 ms.   

For a given packing arrangement, as cell volume fraction increases, the ∆R2
* and ∆R2 first 

increases and then decreases, reaching a peak value at a certain cell volume fraction which 
depends on cellular shape and arrangement. The highly ordered FCC packing of spheres resulted 
in the smallest relaxivity, reflecting the more homogeneous magnetic field perturbations and 
proton phase distributions. Randomly distributed spheres yielded slightly greater relaxivities 
with a non-linear relationship with packing fraction. Finally, the packed ellipsoids, which better 
approximate cell shape in vivo, enable higher random non-overlapping packing fractions (> 
65%), are less ordered and also yielded a non-linear relationship between relaxivity and cell 
volume fraction. For all cell volume fractions, the ∆R2

* and ∆R2 values associated with the 
ellipsoid-based structures were greater in magnitude than those found with spheres.  

To illustrate the observed dependence of ∆R2
* and ∆R2 on cell volume fraction, we computed 

the standard deviation of the magnetic field perturbation between the simulated grid points 
(ΔBstd) at each cell volume fraction. Figure 5.2 demonstrates that, the computed ∆R2

* and ∆R2 

values are strongly related to ΔBstd.  
 
 

5.2  The Effects of Cellular Spacing and Clustering on ∆R2
*and ∆R2  

 
To further demonstrate the dependence of CA leakage induced T2 and T2

* effects on 
extravascular features, tissue structures composed of fixed vascular structure and variable 
ellipsoid packing are constructed.  To study the effect of cellular spacing, which measures the 
mean separation between a given cell and neighboring cells, tissue structures reflecting variation 
in cellular separation ranging from 21-27 µm are constructed. To study the effect of cellular 
clustering, which estimates the size of an individual colony of cells that make up the 
extravascular space, tissue structures composed cellular cluster of varying sizes ranging from 5% 
to 30% are simulated. Both sets of tissue models are simulated using a fixed vascular volume 
fraction of 6%, cell volume fraction of 30% and cellular size of 9 µm. The resulting tissue 
structures along with the following simulation parameters (B0

 =1.5T, D = 10-5 cm2/s, Δt = 0.2 ms, 
GE TE = 40 ms and SE TE = 80) were used in the FPFDM to compute ∆R2

*and ∆R2 values at 
different Δχ values.  

Figure 5.3a and 5.3b illustrates sample tissue structures composed of fixed vascular tree and 
different cell separation of 21 µm and 27 µm, respectively. Figure 5.3c and 5.3d demonstrates 
the response of ∆R2

* and ∆R2 to changes in cell separation at three Δχ values of 3×10-8, 4×10-8    

and 5×10-8.  For a given Δχ, the ∆R2
* decreases as cell separation increases. This decrease in 

∆R2
* becomes larger at higher Δχ values, at Δχ=5×10-8 the ∆R2

* decreases by 60% as cell 
separation increase from 21 µm to 27 µm. Unlike ∆R2

*, the computed ∆R2 values show a slight 
increase as cell separation increases. While changes are very small at low Δχ, for Δχ=5×10-8 the 
∆R2

 increases by 27% as cell separation increase from 21 µm to 27 µm.  
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Figure 5.1: Dependence of ∆R2

* and ∆R2 on cellular shape, volume fraction and packing 
arrangement. (a) top raw shows example cellular models for FCC sphere packing (left), random 
sphere packing (middle) and random ellipsoid packing (right), bottom raw shows the respective 
2D slice through the associated magnetic field perturbation for each structure calculated at B0

 

=1.5T and Δχ = 5×10-8. Compared to random sphere and ellipsoid packing, the field perturbation 
pattern for FCC packing is a homogenous periodic pattern suggesting that most spins experience 
similar field shifts as they diffuse, hence less phase dispersion. (b, c) The computed ∆R2

* and 
∆R2 dependence on cell shape, volume fraction and packing arrangement. For all packing 
arrangements, the relaxivity increases and then decreases with cell volume fraction. Ellipsoid 
packing yields greater relaxivity than spheres. ∆R2 exhibits qualitatively similar behavior to ∆R2

* 
yet with a reduced magnitude.  
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Figure 5.2: Dependence of ∆R2

*, ∆R2 and ΔBstd on cell volume fraction. The dependence of 
∆R2

*, ∆R2 and ΔBstd on cell volume fraction exhibits a strong similarity suggesting both ∆R2
*, 

∆R2 are mainly determined by ΔBstd.  The ∆R2
* starts to decrease before ΔBstd reaches the 

maximum indicating stronger diffusion averaging at high cell volume fraction compared to less 
dense tissues.  
 

Figure 5.4 illustrates the effect of cluster size variation on the computed ∆R2 and ∆R2
* values. 

Example 3D tissue structures representing 5% and 15% cluster volume fraction are shown in Fig. 
5.4a and 5.4b respectively. Simulation results show that ∆R2

* increases with increasing cluster 
volume, Fig. 5.4c. The variation in ∆R2

* becomes larger at higher Δχ values, for Δχ=5×10-8 the 
∆R2

* increases by 40% as cluster size increase from 5% to 30%.  The computed ∆R2
 values show 

negligible decrease as cluster volume increases, Fig. 5.4d. 
In general, given other parameters are kept constant, cells that are closer together, such as 

may occur when cells are regionally localized within a voxel, yield greater ∆R2
* as compared to 

those that are more homogenously distributed throughout a voxel. While variation is very small 
the overall compactness of cells has an opposite effect on the computed ∆R2 values. 
 
 
5.3  The Effects Ellipsoid Aspect Ratio on ∆R2

*and ∆R2   
	
  
To further illustrate the influence of cellular geometry on DSC-MRI derived T2 and T2

* leakage 
effects we computed the dependence of ∆R2

*and ∆R2 on ellipsoid shapes. In addition to the 
enhanced relaxation rates, the use of ellipsoids allows one to investigate a wide range of cell 
geometries. In order to alter the shape of the ellipsoid we varied the ellipsoid aspect ratio, which 
is the ratio of the smallest to the largest ellipsoid axis, from 0.25 (flat) to 1 (spherical). Using 
model tissue structures reflecting variations in ellipsoid aspect ratio we computed the ∆R2

*and 
∆R2 values for three Δχ and two B0 values, using simulation parametrs of D = 10-5 cm2/s, Δt = 
0.2 ms, GE TE = 40 ms and SE TE = 80. The cell volume fraction, vascular volume fraction and 
cell size constant at 30%, 6% and 9 µm, respectively, were kept constant.  



	
   40	
  

Example tissue structures using ellipsoid aspect ratio of 0.7 and 0.25 are shown in Fig. 5.5a 
and 5.5b, respectively. For a given Δχ and B0 values the computed ∆R2

* values first increase with 
increasing aspect ratio and reaches a peak value near 0.6 before decreasing as ellipsoids become 
more spherical. For Δχ=5×10-8 and B0=1.5T, ∆R2

* increases by 30% as the aspect ratio changes 
from 0.25 to 0.6 (Fig. 5.5c). In general the difference between the computed ∆R2

* values induced 
by changes in aspect ratio become larger for higher field strengths (B0=3T) and large Δχ values,  
(Fig. 5.5d). Though the dependence of the computed ∆R2

 values is similar to ∆R2
* the variation is 

very small (Fig. 5.5e and 5.5f). 
	
  
	
  
 

 
 

 
Figure 5.3: Dependence of ∆R2

* and ∆R2 on cell separation. Example tissue structures 
composed of 6% vascular tree and 30% cell volume fraction for mean cellular separation of 21 
µm (a) and 27 µm (b). The dependence of the computed ∆R2

* (c), and ∆R2 (d), values on cell 
separation calculated at B0

 =1.5T and three Δχ levels. While the decrease in ∆R2
* observed as 

cell separation increases is associated with a decrease in field perturbation variation, the less 
pronounced increase in ∆R2 values is due to an increase in the non reversible diffusion related 
loss of phase coherence.   
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Figure 5.4: Dependence of ∆R2

* and ∆R2 on cell clustering. Example tissue structures 
composed of 6% vascular tree and 30% cell volume fraction with ellipsoids cellular clusters of 
5% (a) and 15% (b). The dependence of the computed ∆R2

* (c), and ∆R2 (d), values on cellular 
cluster size calculated at B0

 =1.5T and three Δχ levels. While the computed ∆R2
* exhibit a 

measurable increase with increasing cluster volume, the changes in ∆R2 values are very small.  
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Figure 5.5: Dependence of ∆R2

* and ∆R2 on ellipsoid aspect ratio.  Example tissue structures 
composed of 6% vascular tree and ellipsoid cells of 30% volume fraction with ellipsoid aspect 
ratio of 0.7 (a) and 0.25 (b). The dependence of ∆R2

* on ellipsoid shapes calculated for three Δχ 
levels at B0

 =1.5T (c) and B0
 =3T (d), shows that ellipsoids with an intermediate aspect ratio 

(0.7) create a larger variation in field perturbations as compared to those that are very flat (0.25). 
(e, f) The corresponding computed values of ∆R2

 exhibit a similar but very small dependence on 
ellipsoid aspect ratio. These effects are greater at higher field strengths. 
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5.4  The Effects of Diffusion and Cell Size on ∆R2
*and ∆R2   

 
To investigate the effect of water diffusion on the observed ∆R2

*and ∆R2 characteristic 
dependence to changes in cell volume fraction, we first computed the dependence of ∆R2

*and 
∆R2 on cell volume fraction at a fixed cell size (9 µm) for variable water diffusion coefficients 
ranging from D=0.5×10-5 cm2/s to D=2.5×10-5 cm2/s. This diffusion coefficient values were 
chosen to encompass the range of MR imaging derived apparent diffusion coefficients of human 
brain tumors (101).  To investigate the dependence of ∆R2

*and ∆R2 on cellular size at different 
cell volume fraction levels (10%-60%), we computed ∆R2

*and ∆R2 for 18 perturber sizes ranging 
from 1-100 µm at a fixed D=10-5 cm2/s.  

Figure 5.6a shows the cell volume fraction dependence of ∆R2
* computed at different D 

values.  For all cell volume fractions considered, the ∆R2
* decreases as D increases, as a 

consequence of the increased effect of motional narrowing. These results also show that the 
difference between ∆R2

* values computed at the slowest diffusion (D = 0.5×10-5 cm2/s) and 
fastest diffusion (D = 2.5×10-5 cm2/s) increase from 30% to 50% as cell density increases from 
7% to 62%. This observation demonstrates that the motional averaging effect becomes more 
significant at higher cell densities. Figure 5.6b shows that the computed ∆R2 dependence on D 
relies on cell volume fraction. For instance, a closer look at the ∆R2 values at lower cell density 
shows the ∆R2

 values first increase, reaching a peak at D = 2×10-5 cm2/s, before decreasing. On 
the other hand, at higher cell density the computed ∆R2 values peaks at a relatively lower 
diffusion cofficent, D = 1×10-5 cm2/s.  

Figure 5.7a and 5.7b shows the expected perturber size dependence of ∆R2
*and ∆R2 over a 

range of cell volume fractions. These results show that the perturber size corresponding to, the 
point where the diffusion independent regime for gradient echo begins and the spin echo 
relaxivity peaks, shifts to the right (larger sizes) as cell volume fraction increases. This indicates 
that at relatively higher cell density (50%-60%), relevant to cellular volume fraction levels 
observed in vivo (102), the ∆R2

*  becomes more sensitive cell size. For instance, for vi=20% a 
change in cell size from 5 µm to 20 µm results ∆R2

* to increases by 25% whereas the same 
cellular size change yields a 45% change in ∆R2

* for vi=60%.  
Both set of computational results (Fig. 5.6 and Fig. 5.7) were carried out using Δχ = 5×10-8, 

B0
 =1.5T, Δt = 0.2 ms, GE TE = 40 ms and SE TE = 80 ms, and taken together demonstrate the 

influence of motional averaging on the cell density dependence of ∆R2
*and ∆R2.  
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Figure 5.6: Dependence of ∆R2

* and ∆R2 on diffusion. The dependence of ∆R2
* (a), and ∆R2  

(b) on cell volume fraction computed at water diffusion values ranging from slow (D=0.5×10-5 

cm2/s) to fast (D=2.5×10-5 cm2/s). For a given cell volume fraction, the ∆R2
* decreases as D 

increases owing to increased motional averaging, but the diffusion induced percentage decrease 
in ∆R2

* depends on cell density. As expected, an increase in D could increase or decrease ∆R2, 
but the diffusion value corresponding to the peak ∆R2 relies on cell density. Results were 
obtained using, cell size=9 µm, Δχ = 5×10-8, B0

 =1.5T, Δt = 0.2 ms, GE TE = 40 ms and SE TE = 
80 ms. 
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Figure 5.7: Dependence of ∆R2
* and ∆R2 on cell size. The cell size dependence of ∆R2

* (a), and 
∆R2  (b) computed at different cell density levels ranging from vi=10% to vi=60%. For all cell 
volume fractions, the characteristic perturber size dependence of ∆R2

* and ∆R2 is attained, but as 
cell density increases the perturber size where ∆R2 peaks and ∆R2

* reaches a plateau shifts to 
larger sizes. These results were computed using, D=10-5 cm2/s, Δχ = 5×10-8, B0

 =1.5T, Δt = 0.2 
ms, GE TE = 40 ms and SE TE = 80 ms.  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
   46	
  

5.5  Discussion and Conclusion 
	
  
Previous reports have shown that T2

* leakage effects influence DSC-MRI data and have 
suggested a link between their presence and tissue cellularity (17,18,66,71,103,104), but, to date, 
their biophysical basis is poorly characterized. In this study, we validate using realistic and 
systematic simulations, that features of extravascular space influence T2 and T2

* leakage effects.   
The FPFDM has the potential for modeling nonstandard geometries that may better mimic 

cells and microvasculature in vivo. We computed relaxivities for simulated 3D cellular models 
consisting of packed spheres and ellipsoids (Fig. 5.1), and found greater relaxivity for packed 
ellipsoids over all volume fractions compared to the sphere packing (Fig. 5.1b and 5.1c). This 
suggests that the additional degree of freedom in spatial orientation for ellipsoids increases field 
perturbation heterogeneity. A critical step towards elucidating the origins of T2 and T2

* leakage 
effects in this study was the use of realistic tissue models and the FPFDM for DSC-MRI signal 
estimation. The use of structures like ellipsoids to mimic cells enables a closer approximation of 
cellular orientation, packing density and spatial heterogeneity. These features are essential for 
approximating the magnitude of T2

* leakage effects observed clinically. In contrast, the use of 
packed spheres as cells leads to more homogenous field perturbations and, consequently, greatly 
underestimate T2 and T2

* leakage effects. 	
  
Simulation results also demonstrate that in addition to cell shape and packing arrangement, 

cell volume fraction influence the computed ΔR2
 and ΔR2

* values. The observed dependence of 
ΔR2

* and ΔR2
 on cell volume fraction (Fig. 5.1b and 5.1c) can be understood by examining the 

cell volume fraction induced changes to the computed local magnetic field perturbation (ΔB) and 
the standard deviation of the magnetic field perturbation between the simulated grid points 
within the voxel (ΔBstd). At low cell volume fractions (e.g. 20%) the addition of cells into the 
structure will increase both the ΔB in the vicinity of the new cell and the ΔBstd. At higher cell 
volume fractions (~45-55%), adding new cells increases ΔB in their vicinity and the ΔBstd will 
reach a peak. Beyond this peak, adding more cells will continue to add perturbation, however, as 
the structure becomes more populated, a higher fraction of the protons will experience similar 
ΔB values, causing the ΔBstd to decrease. The observed ΔR2

* dependence on cell volume fraction 
is consistent with the notion that the standard deviation of the field perturbation determines the 
ΔR2

* rather than the net magnetic field perturbation of the voxel (103). This is further supported 
by the result shown in Fig. 5.2.  The similarity between the ΔBstd and ΔR2

 shows that the 
irreversible relaxation measured by the SE sequence comparably depends on the competing 
effects of field variations and diffusion relaxation mechanisms, which is expected for a system in 
the intermediate relaxation regime, consistent with the values we used for cell size, D, B0

 and Δχ 
(47). The result also shows that ΔR2

* reaches its peak value at slightly lower volume fraction 
(~50%) than ΔBstd, suggesting an increase in motional averaging as cell density increases.  

Computational results presented in Figs. 5.3 and 5.4 reveal DSC-MRI derived T2 and T2
* 

leakage effects depend on cellular separation and cluster size.  The observed dependence of ΔR2
* 

on cell separation and cluster volume is directly associated with the variation of the field 
perturbation between the simulation grids within the simulated voxel (ΔBstd). In general, for a 
given cell volume fraction and cell size, cells that are closely packed (small cellular separation) 
or cells that form a large colony (large cluster volume) create large ΔBstd, thus yield greater ∆R2

*. 
On the contrary, though the changes are very small the computed ∆R2 values are inversely 
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related with cellular compactness. This can be explained by examining the competing effects of 
relaxtion due to local field variations and diffusion mediated susceptibility phase dispersion. For 
the tissue models used in this investigation, although ΔBstd is higher for compactly packed cells 
(small cell separation or large volume cluster) than cell arrangements that are more disperse 
across the voxel (large cell separation or small volume cluster), the 180o refocusing pulse is more 
effective to recover the diffusion mediated loss of phase coherence for compactly packed cells 
than the loosely packed cells. This is mainly due to the nature of the tissue model employed here. 
For practical reasons, as seen from water molecules diffusing in the periphery of a large colony 
of cells, the colony appears as a large perturber resulting a pseudo system in the static dephasing 
regime, yielding small ∆R2 owing to an effective recovery of the static dephasing by the 
formation of an echo.  

Further dependence of T2 and T2
* leakage effects on cellular features is demonstrated using 

ellipsoid shape variation, as determined by the aspect ratio. For a given cell volume fraction and 
size, the computed ∆R2

* values were found to depend on ellipsoid shape, Fig. 5.5.  The observed 
dependence of ∆R2

* on aspect ratio could be understood via close examination of the ellipsoid 
shape and the associated field perturbation. For very flat ellipsoids (small aspect ratio) the spatial 
distortion of the dipole field nature of the field perturbation is large, resulting in the majority of 
spins near the ellipsoid to experience either the positive or the negative field perturbation leading 
to a narrow phase dispersion, thus small ∆R2

*. For ellipsoids with aspect ratio close to 1 (spheres 
and close to spherical shapes), the distortion of the dipole field perturbation is very small, 
resulting in nearby spins experiencing both the positive and the negative field perturbations 
leading to a wider phase dispersion. However, due to the symmetry of the dipole field 
perturbations, tissue structures composed of such shapes experience significant cancelation of 
field perturbation when the negative and the positive poles from neighboring perturbers overlap, 
leading to intermediate ∆R2

* values. The extreme effect of this overlapping between the positive 
and the negative dipole field perturbation explains the very small ∆R2

* values for FCC spherical 
packing. For ellipsoids with intermediate aspect ratios, though the intermediate distortion of the 
dipole field perturbation leads to smaller phase dispersion among nearby spins than would be 
observed for spheres, the lack of cancelation due to overlapping of opposite poles yield larger 
∆R2

* values. These effects become more apparent at stronger fields as shown in Fig. 5.5. While 
the shape dependence is smaller, the ∆R2

 follows a similar trend. 	
  
The results shown in Figs. 5.6 and 5.7 are consistent with previous reports of the 

characteristic pertuber size dependency of relaxation rates. Furthermore, these computational 
results demonstrate the influence of cell density on the strength of the diffusion narrowing 
process. For high cell density, at fixed values of B0, Δχ and cell size, the process of motional 
averaging influences ∆R2

* at relatively lower diffusion values.  Similarly, at fixed values of B0, 
Δχ and D, motional averaging stays significant at relatively larger cell sizes. Consequently, for 
high cell densities, the perturber size where ∆R2 peaks and ∆R2

* reaches a plateau occurs at 
relatively larger cell sizes as compared to lower cell density. This suggests that for 
physiologically relevant tumor cell volume fractions levels (50-60%) observed in vivo (102), 
DSC-MRI derived ∆R2

* values are highly sensitivity to variations in tumor cell size (105).  
In summary, the computational results presented herein support the hypothesis that DSC-

MRI data acquired in the presence of contrast agent leakage are highly sensitive to variations in 
cell density, distribution, geometry and size, suggesting DSC-MRI derived CA leakage effects 
could potentially be used to extract information about the underlying spatial distribution of tumor 
cells within tissue. The upcoming chapter exploits a multi-echo DSC-MRI approach to discern T1 
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and T2
* leakage effects in order to extract a clinically feasible imaging biomarker that could be 

used to characterize the tumor cellular characteristics.  
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CHAPTER 6	
  
 
 

ASSESSING TUMOR CELLULARITY USING MULTI-ECHO DSC-MRI DERIVED 
MEASURES OF THE TRANSVERSE RELAXIVITY AT TRACER EQUILIBRIUM 

(TRATE) 
 

	
  
6.1  Introduction  
 
DSC-MRI derived perfusion parameters have proven useful for assessing tumor grade and 
treatment response. But DSC-MRI signals are ambiguous due to changes in T1 and T2

*-relaxivity 
during tracer extravasation, often resulting in unreliable estimates of perfusion parameters 
(7,8,96). In addition to improving the reliability of DSC-MRI data acquired in the presence of 
CA leakage, there is an increased interest in leveraging the temporal characteristics of such 
signals to estimate additional biological information. Pharmacokinetic modeling of DSC-MRI 
signals in brain tumors has been used to extract CA extravasation rate constants (e.g. Ktrans) and 
the extravascular extracellular volume fraction (ve) (20,99,106-109). The appearance of leakage 
effects on DSC-MRI signals, whether they are predominantly T1 or T2

*-based, has been 
characterized by the Percent Signal Recovery (PSR), a parameter potentially capable of 
differentiating between gliomas, metastasis and lymphomas (71). Recent studies have shown that 
CA leakage-induced T2

* effects are dependent upon the extravascular geometry (17-19,66,104) 
and by quantifying these effects, new imaging biomarkers may be derived (19). Once validated, 
such parameters could improve the characterization of brain tumors.  

Currently, multi-echo DSC-MRI, along with a pre-contrast T1 map, is used to characterize T1 
and T2

* leakage effects, as this enables their simultaneous separation and quantification 
(18,19,99,107).  The dynamic T1 change enables estimation of the tissue CA concentration. 
Combining the CA concentration with the dynamic T2

* changes enables the assessment of the 
tissue CA transverse (T2

*) relaxivity. Recently, Sourbron et al used this approach in colorectal 
cancer xenografts to evaluate the vascular and extravascular CA relaxivity, and found that it 
provided supplementary information on tumor microstructure that is distinct from traditional 
compartmental volume fraction measurements (19). 

In this study, we aimed to evaluate whether multi-echo DSC-MRI derived measures of the 
Transverse Relaxivity at Tracer Equilibrium (TRATE) may be used to evaluate brain tumor 
cytoarchitecture. To validate the sensitivity of TRATE to tumor cellular features we employ 
realistic biophysical simulations and compare its characteristics in two animal brain tumor 
models that are known to have histologically different cellular properties. We also present initial 
results of TRATE data in a glioma patient. The TRATE maps are spatially compared to 
parameters traditionally derived from DSC-MRI, Dynamic Contrast Enhanced (DCE)-MRI and 
Diffusion Weighted Imaging (DWI) in order to preliminarily assess its potential to provide 
unique sensitivity to microstructural features not assessed with these techniques.    
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6.2  Method 
 
 
6.2.1  TRATE: Theory 
	
  
When CA extravasation effects are present, the tissue transverse relaxation rate depends on both 
dipole-dipole microscopic interactions between the CA and water protons and mesoscopic 
effects due to magnetic field perturbation induced by CA compartmentalization within vascular 
walls and around cells. Models have been previously proposed (17-20), that incorporate both 
microscopic and mesoscopic contributions to the measured transverse relaxtion rate change 
(ΔR2

*):  
 

ΔR2
* = r2 veCe + vpCp( )+ r2 p* vp ve Cp −Ce + viCp( )+ r2e* veviCe (6.1)

 
 

Here ve, vi and vp denote volume fractions of the extravascular extracellular space (EES), 
extravascular intracellular space (EIS) and vascular space, respectively. Ce and Cp represent the 
CA concentration of the EES and the vascular space, r2p

* and r2e
* are the effective T2

* relaxivities 
of CA compartmentalized within the vascular space and EES, and r2 is the CA T2 relaxivity.  

This model expresses the tissue CA concentration (Ct) as the sum of individual compartment 
CA concentrations weighted by the corresponding volume fractions (Ct = veCe + vpCp), and 
assumes that the CA does not penetrate into cells and a fast water exchange process. At time 
points well past the first pass of CA, when Ce and Cp are approximately equivalent, Eq. 6.1 can 
be written as: 
 

ΔR2
* = r2 +

vi
vp + ve

vpr2 p
* + ver2e

*( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
Ct (6.2)

 
 

The first bracketed term in Eq. 6.2 can be considered as the effective tissue transverse relaxivity 
at CA equilibrium and will be termed the transverse relaxivity at tracer equilibrium (TRATE) 
hereafter. With this definition, Eq. 6.2 simplifies to:  
 

ΔR2
* =TRATE ×Ct (6.3)  

 
With multi-echo DSC-MRI data and a pre-contrast T1 map the tissue CA concentration and the 
ΔR2

* can be computed using the extracted T1 and T2
* changes, respectively, thereby enabling the 

computation of TRATE.  
 
 
6.2.2  TRATE: Simulation 
	
  
To investigate the dependence of TRATE on tissue vascular and cellular features, simulated 
realistic 3D tissue structures were created using randomly packed ellipsoids around fractal tree 
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based vascular networks, magnetic field perturbations and ΔR2
* were computed using the 

FPFDM as previously described in chapters 3-5.  
For CA concentration levels corresponding to tracer equilibrium, the slope of the computed 

ΔR2
* versus Ct was used to estimate TRATE. To investigate the relative contribution of the 

vascular and extravascular features to TRATE measurements, the signal relaxation was computed 
using tissue models with fixed cellular features and variable vascular volume fractions. 
Furthermore, to evaluate the dependence of ΔR2

* and TRATE on cellular features, such as cell 
volume fraction and cell size, the vascular volume fraction was kept fixed while these features 
were systematically varied.   

Unless mentioned otherwise, all simulation studies were carried out using the following input 
parameters. All input tissue structures consisted of a (0.5 mm)3 3D volume sampled with 1283 
simulation grids. The restricted water diffusion coefficient (D) was set to 1.3×10-3 mm2/s (110) 
and clinically relevant TE and B0 values of 40 ms and 3T were chosen. The susceptibility 
difference between compartments was calculated using Δχ = χm. [CA], where [CA] is 
compartmental CA concentration and χm is the CA molar susceptibility (0.027×10-6 mM-1) (62). 
While the susceptibility-induced relaxation was computed using the FPFDM, the relatively small 
effects of microscopic transverse relaxation were calculated and included using the product of Ct 
and the Gd-DTPA T2 relaxivity (r2 = 4.5 mM-1 s-1 (111)).  
 
 
6.2.3  TRATE: Animal studies  
 
Measures of TRATE were compared in two rodent brain tumor models, C6 glioblastoma (n = 7) 
and 9L gliosarcoma (n = 7). Male Wistar and Fischer rats (Harlan, Indianapolis, IN, USA) were 
inoculated with either 1×105 C6 or 9L cells (American Type Culture Collection, Manassas, VA, 
USA). Prior to all surgical and imaging procedures, animals were immobilized in a stereotactic 
head holder. Anesthesia was induced via a 5%/95% isoflurane/oxygen mixture and maintained 
via a 2%/95% isoflurane/oxygen mixture.  

All experiments were carried out 14–16 days after tumor inoculation and adhered to our 
institution's animal care and use committee policies. Scans were conducted at 4.7T (Agilent) 
with a Doty shielded Litz coil (38 mm ID). A pre-contrast T1 (T10) map was obtained using a 
gradient-echo based multiple flip angle approach with the following parameters: TR = 200 ms, 
TE = 2 ms, FOV = (40 mm)2, slice thickness (ST) = 2.0 mm, matrix = 642, five flip angles (FA) 
(ranging from 12° to 60°), and 4 excitations. A multi-echo fast low angle shot sequence was used 
to acquire DSC-MRI data with a temporal resolution of one image per second for a total duration 
of 17 minutes with: TR=15.625 ms, TE1/TE2=4/8 ms, FOV=(40 mm)2, ST=2.0 mm, FA=9°, and 
matrix=642. After the acquisition of 60 baseline images, a bolus of Gd-DTPA (0.2 mmol kg-1 per 
body weight) was intravenously delivered using a power injector at an infusion rate of 2.4 
ml/min. As described above, the multi-echo DSC-MRI sequence was used to quantify T1 and T2

* 
time series. The pre-contrast T1 maps were combined with the T1-weighted time series to derive 
ΔR1 (112). The last two minutes of the ΔR1 and ΔR2

* time series data were then used to compute 
TRATE using: 

 

Ct =
ΔR1

r1
, and TRATE = ΔR2

*

Ct
(6.4)  
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where r1 is  the Gd-DTPA T1 relaxivity (3.9 mM-1 s-1) (111). 
The reference region pharmacokinetic model was applied to the ΔR1 time series in order to 

compute the DCE-MRI parameters, ve and Ktrans (107,113). Furthermore, DWI was performed to 
estimate ADC maps using a fast spin echo sequence (TR=200 ms, TE=30 ms, FOV=(40 mm)2, 
ST=1.0 mm, matrix=642, four b-values between 0 to 1000 s/mm2, and 4 excitations). To evaluate 
tumor cellularity, all animals were sacrificed after the MRI exams, the tumor tissue dissected and 
fixed in 10% formalin, cut into 5-µm sections and stained with hematoxylin and eosin (H&E). 
The H&E slides were digitally scanned and analyzed to quantify cell density using an Ariol SL-
50 automated scanning microscope. Statistical analysis to evaluate differences in H&E-based cell 
density, ADC and TRATE between the 9L and C6 tumors was performed using Student’s t-test. 
Pearson’s Correlation Coefficients were computed to assess spatial correlations between the 
imaging parameters.  
 
 
6.2.4  TRATE: Clinical study  
 
A patient (64 yo M) with a recurrent high-grade glioma was scanned at 3T (Philips Healthcare, 
Cleveland, OH) using a 32 channel head coil. Multiple FA data was acquired (TR=7.6 ms, 
TE=3.7 ms, FA=2°-20° in 2° increments, FOV=240x240 mm2, ST=5 mm, matrix=962) to 
produce a T10 map.  Next, a multi-echo single-shot EPI acquisition (TR=1.5 s, TE1/TE2=7/31 
ms, FOV=240x240 mm2, ST=5 mm, matrix =962) was performed before, during, and after 
administration of 0.1 mmol/kg Gd-DTPA at an infusion rate of 4 ml/s (followed by a saline 
flush). The scan duration was 7.5 minutes and followed all guidelines set by the Vanderbilt 
University Institutional Review Board. Measures of ΔR2

* and ΔR1 were calculated from the 
multi-echo data for the entire time-course (112). .DSC-MRI perfusion maps were calculated from 
the ΔR2

* measurements and an automated measure of the AIF, using circular SVD-based 
deconvolution (114). Maps of Ktrans, ve and ADC (DW SE-ssEPI, TR=6s, TE=44ms, NEX=2, 
b=100,1000 s/mm2) were also computed. Voxel wise estimates of Ct and TRATE were calculated 
according to Eq. 6.4. 	
  
	
  
	
  
6.3  Results 
	
  
Figure 6.1 shows example FPFDM simulation results, demonstrating the main input and output 
parameters. Fig. 6.1a shows a 3D volume rendering of a sample tissue structure, which contains 
a 60% volume fraction of ellipsoids (average radius 15 µm) and a 6% vascular volume fraction 
with vessel sizes ranging from 5 µm to 45 µm. For illustrative purposes, the two compartment 
pharmacokinetic model described by Brix et al was used to create the Ce and Cp time curves 
(with clinically relevant input parameters) shown in Fig. 6.1b (61). Figure 6.1c shows a 
representative 2D slice through the tissue structure along with magnetic field perturbations 
computed at three time points indicated in Fig. 6.1b. For time points near the peak of Cp, where 
Ce is very small, the field perturbation is dominated by the vascular structure, as indicated by the 
strong field perturbations surrounding the vessels.  As Ce increases, the field perturbation around 
cells starts to emerge and dominates the vascular field perturbation at time points near CA 
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equilibrium, as illustrated by the elevated field perturbations surrounding ellipsoids. The 
resulting ΔR2

* time curve is shown in Fig. 6.1d.  
 
	
  

	
  
	
  
	
  
Figure 6.1: Example FPFDM simulation. (a) Sample tissue structure composed of ellipsoids 
packed around fractal tree based vascular network. (b) Simulated Cp and Ce curves derived using 
2-compartment model. (c) Example 2D map through the tissue structure along with magnetic 
field perturbation computed at three different time points, showing the increasing contribution of 
the cells after the first pass. (d) The time evolution of the ΔR2

* computed at B0
 = 3 T using the Cp 

and Ce curves in (b). 
 

For CA concentration levels similar to tracer equilibrium and a range of relevant cellular and 
vascular volume fractions, Fig. 6.2a shows the computed ΔR2

* values for two tissue structures 
containing only vascular networks (volume fractions of 6% and 9%) and four tissue structures 
containing only packed ellipsoids (volume fractions ranging from 20% to 65%).  At a Δχ value 
of 0.2 × 10-7, corresponding to one fifth the peak susceptibility difference for a 0.1 mmol/kg dose 
of Gd-DTPA, the computed ΔR2

* values for the 45% and 65% cellular phantoms are 78% higher 
than that computed for the phantom containing a 9% vascular volume fraction. In general, this 
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difference increases with increasing susceptibility difference between tissue compartments. Fig. 
6.2b shows ΔR2

* values computed at five different tracer equilibrium concentrations for four 
different tissue structures with fixed cellular packing volume fraction of 55% and varying 
vascular volume fractions ranging from 3% to 12%. At a given tracer equilibrium concentration, 
the computed ΔR2

* values are approximately equivalent for all vascular volume fractions. Across 
vascular volume fractions, a maximum difference of only 4% exists between the computed ΔR2

* 

values, indicating that tissue vascularity has a negligible contribution to the computed ΔR2
* 

values at CA equilibrium, when compared to the effects of CA compartmentalized within the 
EES.  
 
 

 
 
 

Figure 6.2: Comparison of vascular and extravascular induced ∆R2
*. (a) A plot of the dose 

response of ΔR2
* for four cellular and two vascular tissue structures. The computed ΔR2

* values 
for cellular structures are substantially higher than those for the vascular structures. (b) A plot of 
∆R2

* dependence on tracer equilibrium concentration levels, for four tissue structures of fixed 
cellular structure but different vascular networks. At a given equilibrium concentration level the 
difference between the computed ∆R2

* values is negligible, which indicates that at equilibrium 
the cellular features rather than the vascular differences drive the ∆R2

* values. 
  
 

The dependence of ΔR2
* on cellular features (e.g. cell volume fraction, size) is shown in Fig. 

6.3a. For a fixed cellular size, as cell volume fraction increases, the ΔR2
* first increases and then 

decreases, reaching a peak value between a cell volume fraction of 40% and 45%. For a given 
cell volume fraction, increasing the cell size induces larger ΔR2

* values.  The computation in Fig. 
6.3a is carried out at a fixed vascular volume fraction of 6% and equilibrium CA concentration 
corresponding to a Δχ value of 0.5 × 10-7. 

Figure 6.3b shows the dependence of ΔR2
* on tissue CA concentration for two tissue 

structures, both with 6% vascular volume fraction and 55% cellular volume fraction, but 
different cell sizes. As compared to ΔR2

* values computed for the tissue structure with smaller 
cell size  (10 µm), the computed ΔR2

* values for the tissue structure built using larger cell size 
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(20 µm) has higher values at each CA concentration levels, owing to its larger field perturbation 
and a smaller diffusion narrowing process.  

The dose response of ΔR2
* shown in Fig. 6.3b was used to estimate the TRATE parameter 

using the slope of a linear regression fit. Figure 6.3c shows the dependence of TRATE on cell 
size and volume fraction. For both tissue structures, TRATE increases with increasing cell 
volume fraction well up to 60%, unlike the ΔR2

* values, which peaked near 40% cell volume 
fraction. For a given cell density, TRATE is also shown to increase with cell size.   

 
 

 
 
 
Figure 6.3: Dependence of ∆R2

* and TRATE on cell size and volume fraction. (a) A plot of 
∆R2

* dependence on cell volume fraction and size. For a given cell volume fraction ∆R2
* is 

larger for structures with 20 µm ellipsoids as compared to that with 10 µm ellipsoids. For a given 
cell size ∆R2

* is sensitive to changes in cell volume fraction reaching a peak value approximately 
between 35% and 45%. (b) The linear response of ∆R2

* to changes in tissue CA concentration 
for two tissue structures with different cell sizes. (c) The influence of cell volume fraction and 
size on TRATE. Unlike ∆R2

* which peaks near 40% cell volume fraction, TRATE increases up to 
60% cell volume fraction.  
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Example multi-echo DSC-MRI derived ΔR2
* and ΔR1

 time curves for C6 glioblastoma, 9L 
gliosarcoma and normal tissue region of interests (ROI)s are illustrated in Fig. 6.4.  The ΔR1 time 
curves in C6 and 9L tumors and normal tissue are different in both magnitude and shape, 
illustrating the differences between the CA kinetics within these tissues. The derived ΔR2

* time 
series in 9L tumors exhibited substantial and prolonged (out to 15 minutes) T2

* leakage effects. 
In C6 tumors, these effects, while present, were less pronounced, as the ΔR2

* values plateau after 
three minutes. In normal tissue, the ΔR2

* values decrease to nearly pre-contrast levels 
immediately after the peak. 

 
 

 
 
 
Figure 6.4: Example in vivo ∆R2

* and ∆R1 time curves.  Example dual-echo DSC-MRI 
derived ∆R2

* (a), and ∆R1 (b) time curves for the C6 and 9L rat brain tumor ROIs along with a 
representative normal tissue. The 9L tumors exhibit elevated ∆R2

* values that persist until the 
end of the scan. The ∆R2

* values were much lower in C6 tumors. The ∆R1 time curves for C6 
and 9L tumor are markedly different indicating their unique pharmacokinetic characteristics. 
 
 

Figure 6.5 depicts example C6 and 9L, Ktrans, ve, ADC and TRATE maps. Within a given 
tumor, the TRATE values were spatially heterogeneous. In these examples, the TRATE values 
were also markedly higher in the 9L tumors as compared to those in the C6 tumors. The TRATE 
maps exhibited little visual similarity with the other parameters. Across all the rats, the voxel-
wise correlation coefficients, shown in Table 6.1, between TRATE and Ktrans, ve, ADC were low 
(with a maximum r = 0.54) and diverse. 

Sample histologic images from H&E staining indicate that the C6 tumor cell density (Fig. 
6.6a) is lower than that found in the 9L tumors (Fig. 6.6b). Cell nuclei count analysis shows on a 
group result that 9L tumors contain 30% more cells than C6 tumors (Fig. 6.7a). Consistent with 
this histology, ADC values in 9L tumors (0.87×10-3 mm2/s) were significantly lower than those 
found in C6 tumors (1.23×10-3 mm2/s) as shown in Fig. 6.7b. The TRATE values in 9L tumors 
were significantly higher (24.5 mM-1 s-1) than those found in C6 tumors (12.9 mM-1 s-1) as shown 
in Fig. 6.7c. Note that these values of TRATE are substantially larger than the range of T2 
relaxivity values for Gd-DTPA  (3.8-4.5 mM-1 s-1) measured in water and plasma solutions at 
4.7T (111) . 



	
   57	
  

 
 
 
Figure 6.5: Example in vivo parameter maps. A comparison of TRATE maps with Ktrans, ve, 
ADC maps and anatomical post Gd-DTPA T1 weighted images in the C6 and 9L tumors. 
Visually, TRATE maps were dissimilar to the other imaging parameters.   
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Table 6.1: Voxel-wise Pearson’s correlation coefficient (r) between TRATE and ADC, Ktrans and 
ve for each animal included in the study. 
 

Rat # ADC Ktrans ve 
1 -0.34 -0.49 -0.25 
2 0.046 0.33 0.23 
3 -0.18 0.01 -0.01 
4 -0.12 0.18 -0.05 
5 -0.39 0.30 -0.18 
6 0.05 0.17 -0.11 
7 -0.27 -0.06 -0.02 
8 0.06 -0.19 -0.14 
9 -0.27 0.22 -0.42 
10 0.13 0.17 -0.08 
11 0.31 0.54 0.51 
12 -0.04 0.09 -0.03 
13 -0.33 0.38 -0.15 
14 0.01 0.25 -0.00 

 
 

Figure 6.8 shows example multi-echo DSC-MRI data acquired from a ROI in a high-grade 
glioma patient. Similar to the 9L tumors, the derived ΔR2

* time curves exhibit T2
* leakage effects 

as shown in Fig. 6.8a. Immediately after the first pass, the ΔR2
* only decreases by 40% of the 

peak value and then slowly decreases over the course of minutes, consistent with kinetics 
expected for CA extravasation. In contrast, normal tissue ΔR2

* values decrease to nearly 85% of 
the peak value immediately after the peak and quickly plateau near pre-contrast levels. Example 
ΔR1 time curve computed using T10 map and the extrapolated dual-echo data for tumor ROI is 
shown in Fig. 6.8b.  

Figure 6.9 shows the tumor CBF, CBV, ve, ADC and TRATE maps in this patient. As was the 
case in the animal tumor models, TRATE is heterogeneous across the tumor. The correlation 
between TRATE and the other imaging parameters was low (max r = 0.20).  Across the tumor 
ROI the mean TRATE value was 28.8 mM-1 s-1.  
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Figure 6.6: Example histological images. Representative H&E images for the C6 (a), and 9L 
(b) tumors, shows high cell density in 9L tumors.  
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Figure 6.7: In vivo parameter estimates. (a) A group analysis of the cell nuclei count shows 
that 9L tumor types contain approximately 30% more cells than the C6 tumors. (b) The average 
ADC values in 9L tumors are significantly lower than those found in C6 tumors. (c) The average 
TRATE values in 9L tumors were significantly higher than those found in C6 tumors. 
 
 

 
 
 

Figure 6.8: Example clinical dual-echo derived ∆R2
* and ∆R1 time curves. Representative 

dual-echo DSC-MRI derived ∆R2
* and ∆R1 in a patient with a recurrent high-grade glioma. (a) 

The tumor ROI ΔR2
* time curve exhibits prolonged T2

* leakage effects, whereas in normal tissue 
the ΔR2

* values, after the first pass, decrease rapidly to pre-contrast levels. Example ΔR1 time 
curve computed using T10 map and the dual-echo data for tumor ROI is shown in (b). 
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Figure 6.9: Example clinical parameter maps.  Example dual-echo DSC-MRI derived maps of 
tumor blood volume, blood flow, ve, ADC, TRATE along with a post-contrast T1 weighted 
anatomical image in a glioma patient. The TRATE map is heterogeneous across the tumor ROI 
and visually dissimilar to the other parameter maps.  
 
 
6.4  Discussion  

 
In this study, we validate, for the first time, using realistic and systematic simulations and in vivo 
data, that T2

* leakage effects, at CA equilibrium, are primarily influenced by tumor cellular 
characteristics. We also propose a straightforward method to quantify these effects by calculating 
the TRATE parameter, and show that it can be used to differentiate between brain tumors with 
varying cell density. 

A key finding of the computational studies is that at tracer equilibrium the magnetic field 
perturbations are predominantly influenced by CA compartmentalization around cells. During 
the first pass of the agent the greatest field perturbation heterogeneity, as expected, is localized 
around blood vessels. However, at CA equilibrium, the tissue reduces to two effective 
compartments, the intracellular and extracellular space. Consequently, the cellular features 
primarily determine the induced field perturbation. Although the field perturbation created by 
individual cells might be weaker and fall faster than the field perturbation induced by vessels, 
given the high cell volume fraction of tissues, field perturbations induced by densely packed 
cells tends to be highly heterogeneous across the voxel, thereby influencing a large number of 
water protons. Consequently, susceptibility contrast induced parameters, such as TRATE, 
computed long after the first pass of the CA, are expected to depend on the underlying cellular 
features. 
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Simulation results demonstrate that cellular size and volume fraction influence the computed 
ΔR2

* and TRATE values.  For all simulated cell volume fractions, the ΔR2
* values were larger for 

tissue structures packed with larger cells compared to those with smaller cells (Fig. 6.3a). An 
explanation for the observed ΔR2

* on cell size and volume fraction is provided in chapter 5.  
The dependence of ΔR2

* on Ct exhibits a slight deviation from a linear relation (Fig. 6.3b). 
This is consistent with previous studies where a quadratic relation is observed at low CA 
concentration (45). However, using CA concentration values that would be expected at 
equilibrium, 0.1-0.5 mM, a linear regression fit yielded estimates of TRATE with regression 
values higher than 0.99. Unlike the ΔR2

* dependence on cell volume fraction, where the peak 
ΔR2

* occurs at relatively small vi, the computed TRATE values increase with vi beyond 60% and 
is expected to decrease for high vi values (Fig. 6.3c). This shift of the peak to higher vi values 
results from the quantification of Ct as the sum of individual compartment CA concentration 
weighted by the corresponding volume fractions (Ct  = veCe + vpCp ). For a given equilibrium CA 
concentration (Ceq) and vp values, the calculated Ct values, which are equivalent to (1-vi)Ceq, are 
lower for high cell density structures as compared to those with lower cell density, thereby 
increasing TRATE. Although a more stringent systematic simulation study on the relation 
between TRATE and various physical, physiological and pulse sequence parameters is warranted, 
these results demonstrate that TRATE provides a reasonable range of sensitivity to in vivo 
cellular volume fraction levels (102).  

As described above, Sourbron et al recently proposed T2
*- relaxivity contrast imaging (RCI) 

as a means to characterize intra- and extravascular CA relaxivities in vivo (19). In general, 
TRATE imaging may be considered a subset of RCI as it focuses only on measuring CA 
relaxivity at tracer equilibrium rather than over the entire time course. Practically, the assessment 
of TRATE is computationally simpler as it does not rely upon multiple post-processing steps, 
including the extraction of parameters from a DCE-MRI two-compartment exchange model and 
the reliable separation Cp and Ce time curves. This later step highlights a key difference between 
RCI and TRATE. Whereas RCI aims to separate the intra- and extravascular CA relaxivities, 
TRATE, by definition, is the effective tissue CA relaxivity and, thus, only requires measuring the 
tissue CA concentration, which can be directly computed from the ΔR1 time course. In the 
context of a DSC-MRI brain tumor study, the assessment of TRATE does not involve additional 
kinetic modeling and may provide a clinically feasible approach for characterizing tumor 
cellularity.   

Both pre-clinical and clinical multi-echo DSC-MRI datasets exhibited substantial T2
* leakage 

effects well after the first pass of the CA. Given that traditional DSC-MRI exams in brain tumors 
are typically no more than three minutes, this study is likely the first to confirm the presence of 
considerable T2

* effects even out to ten minutes following CA injection.  With single-echo 
acquisition methods, the detection of these T2

* effects is confounded by simultaneous and 
competing changes in T1, which is likely why they are only now being considered as a source of 
new tissue contrast with MRI. It is also important to note that the TRATE values in the brain 
tumors studied here were much greater than the microscopic T2 relaxivity of Gd-DTPA, 
verifying that mesoscopic susceptibility changes across a voxel are the source of the T2

* leakage 
effects.  

Histology and ADC measurements indicate that 9L tumors have a higher cell density than 
that found in C6 tumors.  Consistent with the computational results showing that TRATE 
increases with increasing cell volume fraction, the TRATE values in 9L tumors were significantly 
higher than those in C6 tumors. In addition to the dissimilar TRATE values between the C6 and 
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9L tumor types, there was a lack of spatial correlation between TRATE and ADC, Ktrans or ve, 
indicating that TRATE maps could potentially serve as a new metric with which to evaluate 
tumor tissue.  The dependence of ADC on cell density, however, is well established (115). As 
shown here, TRATE is sensitive to cell density but also upon other physical or physiological 
parameters that could alter the susceptibility induced transverse relaxation rates, such as, ADC, 
cellular size, cellular shape and overall cellular organization (49,103,104).  This complex 
dependence of TRATE likely explains the lack of a spatial correlation between TRATE and ADC. 
Further studies are warranted to investigate the specific differences between the sensitivity of 
TRATE and ADC measurements to tissue cytoarchitecture. 

From Fig. 6.4 it is clear that 9L and C6 tumors exhibit marked differences in their ΔR1 time 
courses, which is indicative of differences in vascular hemodynamics, tissue compartment sizes 
and permeability. Thus, the sensitivity of ΔR2

* measurements alone to tumor cellularity, even at 
CA equilibrium, is likely confounded by heterogeneous and dynamic changes in the tissue CA 
concentration. Because estimates of TRATE incorporate measures of the tissue CA concentration, 
the effect of these differences is minimized. TRATE, therefore, is instead influenced by local CA 
distribution within the EES. This sensitivity is in contrast to other perfusion-based imaging 
metrics such as PSR, which represents a complex combination of tissue microstructure and 
hemodynamic effects including blood flow, blood volume, vascular permeability, cell volume 
fraction and cellular geometry. Fortunately, the use of multiple-echo DSC-MRI, permits the 
separation of many of these factors through estimates of ΔR1 and ΔR2

*, enabling the isolation of 
tissue geometrical factors (e.g cell density and distribution). In addition, the acquisition of 
multiple echoes and calculation of absolute tissue relaxation rates likely makes the method for 
estimating TRATE less sensitive to pulse sequence parameters when compared to metrics such as 
PSR (70). Validation of this point, however, is the subject of future analysis. 

Though pulse sequence parameters, such as echo time, may have nominal influence on the 
estimate of TRATE, the time, after CA injection, during which the measurement is made could be 
significant. Estimation of TRATE relies on the assumption that the distribution of CA is in a state 
of equilibrium between the vascular and extravascular extracellular space. With the use of a two-
compartment pharmacokinetic modeling (61) it can be shown that, for a range of physiological 
parameters relevant to brain cancer, CA equilibrium occurs approximately five to seven minutes 
after CA injection.   For this reason, estimation of TRATE requires a moderately longer DSC-
MRI acquisition time. Additionally, physiological phenomena such as tissue necrosis could also 
influence TRATE measurements. In the case of tumor necrosis, which often occurs in both 
animal and human brain tumors, diffusion of CA into the necrotic region can occur, resulting in 
continuously increasing ΔR1 (116). The estimate of TRATE in these regions may be confounded 
if CA equilibrium is never reached. 

As previously indicated, there do exist limitations on the method for calculating TRATE. 
These limitations, however, are mainly focused on the tissue being analyzed and more 
specifically its vascular permeability. To reiterate, estimations of TRATE require CA 
extravasation out of the vasculature. Though computing a threshold for the amount of CA 
extravasation required is beyond the scope of the work presented here, the change in R1 after 
contrast injection should be many times greater than the standard deviation of the baseline R1 to 
avoid contributions from noise. An example where the ability to estimate TRATE may be 
impeded by insignificant changes in R1 after CA injection is the case of brain tumor treatment 
with an antiangiogenic drug (e.g. bevacizumab). Antiangiogenic agents can nearly restore the 
BBB and essentially eliminate CA extrasvasation (6). TRATE estimates made during this process 
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(i.e. to evaluate treatment-induced changes in tumor cellularity) may be grossly overestimated 
due to the small mean ΔR1, and caution should be used in the interpretation of these results. 
Future studies will seek to establish voxel-wise criteria on when TRATE can be reliably 
measured and its reproducibility. 

In addition to studies aiming to further characterize the biophysical basis of TRATE, there are 
numerous opportunities to explore the clinical role of TRATE measurements.  Given the 
previously shown potential of PSR to differentiate between lymphomas, gliomas and brain 
metastasis based on the presence or absence of T2

* leakage effects (71), it is likely that TRATE 
would show similar differences while at the same time providing a quantitative and pulse 
sequence independent measure.  The sensitivity of TRATE to cell density suggests its potential 
role to assess treatment-induced cytotoxicity, similar to the current use of functional diffusion 
mapping (117). Finally, although TRATE was assessed here using a DSC-MRI acquisition, it 
could just as easily be estimated as part of a multi-echo DCE-MRI study or even a multi-echo, 
post-CA injection steady-state exam. The use of these methods would enable the estimation of 
TRATE, and therefore cytoarchitectural features, at higher resolution and in any tissue in or 
outside the brain using clinically available pulse sequences.  

 
 

6.5  Conclusion 
 

DSC-MRI is commonly used to assess the vascular and hemodynamic status of brain tumors. 
When acquired with multi-echo pulse sequences and pre-contrast T1 maps the studies described 
herein show that, by leveraging T2

* leakage effects, tumor cellular features can also be 
interrogated through the parameter TRATE. The sensitivity of TRATE to tissue cytoarchitecture 
indicate that it could potentially serve as a unique structural signature or "trait" of different types 
of cancers and may be useful as a biomarker of cancer aggressiveness and early treatment 
response.  Results in pre-clinical and clinical brain tumors indicate that TRATE provides unique 
information not present in DCE- and DSC-MRI parameters or DWI based ADC maps. Further 
computational and in vivo studies are needed to systematically characterize the dependency of 
TRATE on cellular geometry (e.g. orientation heterogeneity, shape, spatial distribution), 
establishing its reproducibility and sensitivity to cell density variations in other tumor types and 
during the course of treatment.    
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CHAPTER 7	
  
 
 

CONCLUSION AND FUTURE DIRECTION 
 
 

DSC-MRI derived tumor perfusion parameters such as, CBV, CBF, and MTT has proven to be 
useful for characterizing tumor grade and treatment response. Despite its increased use in brain 
tumor and stroke patients, accurate calculation of perfusion parameters using DSC-MRI relies on 
two assumptions: 1) a linear relationship, with a spatially uniform kp exists between CA 
concentration and the measured ∆R2

*; and 2) the blood-brain barrier (BBB) is intact, so that CA 
remains intravascular and can be treated as a nondiffusible tracer. However, heterogeneous 
distributions of blood vessels within tissue and the dependence of susceptibility field gradients 
on vascular geometry may yield spatially variant kp values across tissue. This is supported by 
several theoretical and experimental studies suggesting the sensitivity of mesoscopic relaxtion on 
vascular geometry (36,45,57-59). Furthermore, DSC-MRI signals acquired in the presence of CA 
extravasation are ambiguous due to additional changes in T1 and T2

* relaxivity (17-21). In this 
dissertation, using an efficient computational approach the biophysical basis of DSC-MRI 
signals has been comprehensively investigated. The major contributions of this thesis include:  
1) Developing and validating an improved computational approach that combines the FPM with 

a matrix-based finite difference method (FDM) termed the Finite Perturber the Finite 
Difference Method  (FPFDM), in order to efficiently investigate the influence of complex 
vascular and extravascular morphological features on susceptibility-induced transverse 
relaxation.  

2) Developing realistic biological tissues models composed of ellipsoids packed around fractal-
tree based vascular networks. The application of vascular network models enabled us to 
evaluate the relation between kp and morphological parameters such as, branching angles, and 
bifurcation index. Modeling cells as ellipsoids enabled a model system that better mimics 
cellular densities found in vivo, the systematic investigation of several features relevant to 
DSC-MRI including ellipsoid orientation heterogeneity, volume, aspect ratio and higher 
packing fractions.  

3) Demonstrating marked kp heterogeneity across vascular networks, which suggests that the 
assumption of a constant kp for all tissue types could affect DSC-MRI derived perfusion 
parameters. Computational results indicate that, compared to normal vascular networks, 
tumor vascular morphological features could lead to increased and decreased kp values 
However, the observed kp heterogeneity suggests treatment induced changes in vascular 
architecture could affect the interpretation of serial DSC-MRI data during treatment 
response. Further studies are needed to explore such effects and suggest the need to validate 
serial DSC-MRI measurements of tumor hemodynamics. 

4) The discovery that DSC-MRI derived T2 and T2
* leakage effects depend on extravascular 

space features such as, cellular size, density, shape, distribution, arrangement and water 
diffusion coefficient. This supports the hypothesis that DSC-MRI derived CA leakage effects 
could potentially be used to extract information about the underlying spatial distribution of 
tumor cells within tissue. 

5) Presenting a new approach to evaluate whether multi-echo DSC-MRI derived measures of 
the Transverse Relaxivity at Tracer Equilibrium (TRATE) may be used to characterize brain 



	
   66	
  

tumor cytoarchitecture. Computational and experimental in vivo studies indicate that TRATE 
depend on cellular features. A voxel-wise comparison of TRATE with ADC, ve, and Ktrans 
maps showed low spatial correlation, indicating that TRATE could potentially serve as a new 
metric with which to evaluate tumor cellularity. 

Although the presented experimental and computational results demonstrates the influence of 
vascular and cellular morphology on DSC-MRI derived transverse relaxation rates, and provides 
a means to characterize the tumor cellularity, there exist a great deal of research to be done to 
exploit and understand susceptibility contrast.  Future studies will include: 
1) The current computation approach does not consider the effects of arbitrary CA distribution 

within a given compartment and water exchange rate. Future studies will investigate the 
effect of water exchange rate and CA distribution on the observed morphological dependence 
of DSC-MRI derived ∆R2

* and TRATE values. 
2) The use of the FPFDM to systematically determine the most robust acquisition and post-

processing schemes for reliable measure of tumor blood flow and blood volume. Contrast 
agent leakage effects still reduce the reliability of DSC-MRI measures of blood flow and 
volume in leaky tumor regions.  To date no study has validated how clinicians should be 
acquiring and processing DSC-MRI data in order to extract measures of these parameters in 
brain tumors.  The FPFDM is ideally suited for this role since we can compare dynamic 
signal changes, for the same vessel architecture with and without permeability, and determine 
which approach is best suited for the clinical environment.  

3) While the FPFDM improved the computational efficiency of the FPM several improvements 
can still be made.  We are currently exploring the use of parallel computing in order to 
minimize computing time for high-resolution tissue structures, which is particularly essential 
to model the fine structural details of vascular network (e.g. densely packed capillaries). 
High-resolution tissue models will improve our ability to study the dependence of DSC-MRI 
derived transverse relaxation rates on abnormal vascular features observed in tumors.  Such 
studies may reveal new methods, as we discovered with TRATE, to non-invasively assess 
morphological characteristics of the tumor vasculature (e.g. vessel tortuosity), providing new 
ways to assess features that are known to correlate with tumor malignancy(118,119). 

Given the potential of imaging parameters like percent signal recovery (PSR)(71), T2
* relaxivity 

contrast imaging (RCI) (19), and TRATE to serve as clinical tools for evaluating the brain tumor 
microenvironment and treatment response, the FPFDM is currently being utilized to investigate 
the influence of physical, physiological and pulse sequence parameters on such emerging 
biomarkers. 

Dynamic susceptibility contrast MRI, as a field, is over 20 years old but the underlying 
contrast mechanisms, applications and biological features it reflects is still evolving.  The studies 
described herein represent significant contributions to the DSC-MRI community, from basic 
science tools that enable us to better characterize the biophysical basis of DSC-MRI to new in 
vivo biomarkers that may be easily extracted from clinically relevant acquisition schemes. Over 
time these studies should lay the groundwork that is necessary to improve the quality and type of 
information extracted from clinical DSC-MRI scans and thereby provide improved methods for 
staging and characterizing brain tumors as well as planning treatments and monitoring response.     
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