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Abstract
Deep learning has been used successfully in su-
pervised classification tasks in order to learn com-
plex patterns. The purpose of the study is to ap-
ply this machine learning technique to classify-
ing images of brains with different types of tu-
mors: meningioma, glioma, and pituitary. The
image dataset contains 233 patients with a total
of 3064 brain images with either meningioma,
glioma, or pituitary tumors. The images are T1-
weighted contrast enhanced MRI (CE-MRI) im-
ages of either axial (transverse plane), coronal
(frontal plane), or sagittal (lateral plane) planes.
This research focuses on the axial images, and
expands upon this dataset with the addition of
axial images of brains without tumors in order
to increase the number of images provided to the
neural network. Training neural networks over
this data has proven to be accurate in its classi-
fications an average five-fold cross validation of
91.43%.

1. Introduction
Patient diagnosis relies on a doctor’s manual evaluation of
a patient and his or her test results. With no automated
tools to help with a doctor’s diagnosis and limited number
of available doctors, not only is there a higher risk of mis-
diagnosis but also an increase in wait time for patients to
be seen. Doctors must take the time to manually review
test results and images rather than spending time with the
patient. In order to improve patient care, enhanced medi-
cal technology in the form of automated tools is necessary
to increase doctor efficiency and decrease patient time in
hospitals and time toward recovery.

The purpose of this research is to develop automated meth-
ods to aid doctors in diagnosis in order to prevent misdi-
agnosis and decrease patient wait time. In particular, this
research achieves this automation through the classification
of brain tumor types from patient brain images. Images

require a doctor to examine multiple image slices to de-
termine health issues which takes time away from more
complex diagnoses. Our goal is to confidentally identify
brain cancer types to reduce doctor burden, leaving the
most complex diagnoses to them.

Previous research has developed specialized methods for
automated brain tumor classification. Cheng et. al.1 has
created a brain tumor dataset containing T1-weighted contrast-
enhanced images from 233 patients with three brain tu-
mor types: meningioma, glioma, and pituitary. Addition-
ally, the dataset has a variation of types of images: ax-
ial, coronal, and sagittal. Examples of these images can
be seen in Figure 1. In their work, Cheng et. al. used
image dilation and ring-forming subregions on tumor re-
gions to increase accuracies of classifying brain tumors to
up to 91.28% using a Bag of Words (BoW) model. In ad-
dition to BoW they also applied intensity histogram and
gray level co-occurrence matrix (GLCM) with less accurate
results1. This research improves on previously presented
results using a more general method of neural networks and
by adding images of brains without tumors.

Three main types of NNs have been researched: fully con-
nected NNs (FCNNs), convolutional NNs (CNNs), and re-
current NNs (RNNs). For this study, CNNs are primarily
used given that the inputs are images, though FCNNs are
also examined. Though there have been prior attempts to
apply machine learning to medical data such as the example
above, there are a lack of tools utilizing modern advances
in neural networks (NNs). While extensive research has
successfully applied these techniques to recognizing pat-
terns in non-medical images2, the proposed research ap-
plies them to medical images which there is a lack of avail-
able datasets. Furthermore, applying neural networks to
medical images has implications of faster and more precise
diagnoses.

By including images of brains without tumors, neural net-
works can better learn the structure of a brain and take
steps towards differentiating brains with and without tu-
mors. More generally, this differentiates physiological struc-
tures through deep learning. Applying neural networks to
medical images has implications of faster and more precise
diagnoses automatically, and this research introduces neu-
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ral networks into the medical field where it has little current
use. The main contributions of this paper are as follows:

• Create a more generalized method for brain tumor clas-
sification using deep learning

• Analyze the application of tumorless brain images on
brain tumor classification

• Empirically evaluate neural networks on the given datasets
with per image accuracy and per patient accuracy.

2. Related Work
A public brain tumor dataset was created from Nanfang
Hospital, Guangzhou, China, and General Hospital, Tian-
jing Medical University, China from 2005 to 2012 and was
used in Cheng et. al. 20151 to classify brain tumors in these
images. Three previous approaches were used to analyze
this dataset: intensity histogram, gray level co-occurence
matrix (GLCM), and bag-of-words (BoW). Rather than only
using the tumor region, Cheng et. al. augmented the tumor
region by image dilation in order to enhance the surround-
ing tissue which could offer insights into the tumor type.
Augmentation continued by using increasing ring forma-
tions helped by the image dilation and created by com-
mon normalized Euclidean distances in order to use spatial
pyramid matching (SPM) to discover local features through
computing histograms. In BoW, the local features are then
extracted through dictionary construction and historgram
representation, which are then fed into a feature vector to
be trained on a classifier. Out of all three methods, BoW
gave the highest classification accuracy with 91.28%. Yet,
this classification method is highly specialized, requiring

zooming into the tumor or region of interest and knowl-
edge of tumor existence. On the contrary, neural networks
are generalizable and can discover local features from im-
age input alone.

Neural networks and its generalizability has only appeared
in recent years. After its rejection in the 1990’s, deep learn-
ing came back into favor when Hinton et. al.8 in 2006 in-
troduced the method of pre-training hidden layers one at
a time through unsupervised learning of restricted Boltz-
mann machines (RBMs). This demonstrated an effective
method of training neural networks through greedily stack-
ing RBMs. Since then the field of deep learning has ex-
panded and produced more efficient methods of training
neural networks and quickly became the state of the art.
Examples of modern neural networks are shown in Figure
2.

While originally introduced into the public in 1998 by Le-
Cun et. al.3, convolutional neural networks gained popu-
larity when in 2012 Krizhevsky et. al.2 designed a win-
ning convolutional neural network for the ImageNet com-
petition and performed considerably better than the previ-
ous state of the art model. The computer vision commu-
nity adopted neural networks as the state of the art after
this competition, realizing the potential convolutional neu-
ral networks have on classification of images. Since 2012,
convolutional neural networks have dominated other classi-
fication competitions, including the Galaxy Zoo Challenge
that occurred from 2013 to 2014. Dieleman et. al.7 intro-
duced how data augmentation can greatly increase dataset
size through transformations, rotations, and translations of
images. This in turn prevented overfitting and more gener-
alized learning.

Preventing overfitting in neural networks has been a main
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(A)

(B)

Figure 2. (A) A standard fully connected neural network where each layer’s node is connected to each node from the
previous layer5. (B) A convolutional neural network connecting a covolutional layer to a pooling layer7.

focus for much research, and in 2014 Srivastava et. al.5 in-
troduced dropout as a simple way to prevent co-adaptation
of neurons. Dropout randomly drops neuron connections
with a given probability, causing neuron units to become
more independent rather than relying on other neurons to
detect features. Similar in nature, maxout layers were de-
signed to work in conjunction with dropout. Created by
Goodfellow et. al.9, maxout layers are equivalent to the
standard feed-forward multilayer perceptron neural network,
yet it uses a new activation function named the maxout unit.
This unit takes the maximum linear activation for that unit.

In addition to overfitting, deep learning research has cre-
ated faster ways to train neural networks. Glorot et. al.12

revealed rectified linear units (ReLUs) performed much faster
in supervised training of deep neural networks as compared
to logistic sigmoid neurons and performed equal if not bet-
ter than the hyperbolic tangent. This is due to ReLUs non-
linear nature where it creates sparse representations which
work well for naturally sparse data. While ReLUs repre-
sent a change in nonlinearty application to improve learn-
ing, Nesterov’s momentum13 is a form of momentum up-
date that has been adapted to neural networks. Nesterov’s
momentum takes the gradient at a future location following
the the momentum from previous updates that has directed
updates in a particular direction. This differs from stan-

dard momentum where the gradient is taken at the current
location.

Neural network research has recently started to combine
with medical research though still in its infancy stages. While
prior research has shown promising results10,14, only re-
cently has access to large quantities of medical data begun
to surface. Many of the concepts and ideas from past re-
search in neural networks are directly applied to this study.

3. Model
Convolutional neural networks is a type of neural network
designed specifically for images and have been shown to
perform well in classifying various supervised learning tasks3.
There have been several variations of convolutional neu-
ral networks created with commonalities in structure, in-
cluding the use and ordering of convolutional, pooling, and
dense layers.

3.1. Convolutional Neural Network

Convolutional neural networks were created with the as-
sumption that nearby inputs are highly related to one an-
other. In the case with images, the values are pixels, and
pixels next to each other in images have a strong correlation
with each rather than pixels further away in distance. With
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this assumption in mind, convolutional neural networks fo-
cus on local regions of the images in order to extrapolate
local features from these subregions. This extrapolation of
local features is performed in the convolutional layers.

As there is an increase in convolutional layers, these local
features build upon one another to form higher-order fea-
tures, combining to understand what the image is in its en-
tirety. Extrapolating local features to higher order features
is called using local receptive fields where a neuron in the
convolutional layer takes in a particular k x j subregion of
the image. In order for each neuron in the convolutional
layer to take in various blocks of k x j pixels, convolutional
layers can add in stride, which will shift the k x j pixels
over by some given stride. For the best convolutional neu-
ral networks used in this research, a stride of 1 is used and
values for k and j are 5 and 5 respectively. This implies that
k x j pixel subregions can overlap with each other, which
depending on the size of the stride, can typically help since
nearby pixels are related in value.

Max-pooling layers are often paired with convolutional lay-
ers in order to reduce dimensionality in the neural network
and augment pixel values slightly so as to make the layer
insensitive to small changes in pixel values. Max-pooling
is a type of subsampling or pooling layers which produce
smaller images from there inputs by taking the max value
over a k x j subregion to represent the entire subregion in
the newly produced image. Common values of k and j are 2
and 3, and the best convolutional neural network from this
research currently use k = 2 and j = 2 in order to cut the
dimensionality to one-fourth of the size at each use. While
averaging is another function used in pooling layers, each
pooling layer used in this research applies the max func-
tion.

Convolutional and max-pooling layers in neural networks
are often fed into fully connected or dense layers (i.e. all
neurons in a layer are connected to each neuron in the fol-
lowing layer). Since fully connected layers have full con-
nections to all activations in the previous layer, fully con-
nected layers perform high-level reasoning in the neural
network. For each neuron in every layer besides pooling
layers, a nonlinearity function is applied in the convolu-
tional neural network, otherwise layers could be collapsed
into one since applying linear functions can be substituted
with applying just one linear function. The nonlinear func-
tion used in this case is the rectified linear units which have
proven to increase performance in neural networks4.

The last layer in the neural network is a softmax layer of
size 3 or 4 neurons which is used to determine classifica-
tion probabilites. These neurons represent the probabilities
of an image belonging to a particular category; three neu-
rons are for the three types of brain tumors and the fourth
optional neuron is for brains without tumors.

4. Algorithms and Implementation
Several algorithms are utilized in the construction of a neu-
ral network ranging from updating weights to calculating
loss or error. This section will review the various algo-
rithms incorporated into convolutional neural network and
the specifics on implementing the layers mentioned in the
previous section.

4.1. Forward Pass

Convolutional neural networks is a type of feedforward neu-
ral networks in which a forward pass of training is com-
puted with no loops in neuron connections; the next layers
must only be connected to previous layers. When moving
to a convolutional or fully connected layer, a set of weights
and bias is applied to all of the connected neurons from
the previous layer in order to sum them together. This can
be seen as applying a certain weight to a certain pixel and
adding a bias. This formula can be seen below for a certain
neuron i for a certain convolutional or fully connected layer
l receiving input.

ali =

n∑
j=1

W l
ijxj + bi

In this formula, j represents the certain input into neuron
i. The nonlinearity ReLU is then applied to this sum ali to
give neuron i in layer l its new value of zli.

zli = max(0, ali)

These two formulas are applied to every neuron in a con-
volutional or fully connected layer in order to obtain each
neuron’s value respectively. For max-pooling layers, the
max function is applied over certain k x j subregions in
order to get the max value as an output, and this is ap-
plied over the entire input keeping note of the given stride.
The last layer contains the softmax function instead of the
ReLU function in order to assign probabilities of the image
being a certain type of tumor.

zli =
ea

l
i∑

k e
al
k

The denominator represents the sum of all output neurons.
This will give the predictions for an image by choosing the
highest probability. In order to learn from these probabil-
ities, first the loss or error of the predictions is calculated.
To calculate loss, these convolutional neural networks use
the categorical cross-entropy loss function.

L =
∑
j

tj log(pj)

In the above formula, t represents the target label, and p
represents the prediction probability for the target label from
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our calculated predictions from the neural network. Given
this summed error, an average categorical cross-entropy
loss is calculated by dividing by the total number of ex-
amples in training m.

1

m
L

In addition to categorical cross-entropy, it is common to
add regularization to the loss in order to prevent weights
from increasing too far in magnitude which is prone to
overfitting. In this neural network, weight decay uses L1
normalization.

R =
λ

m

∑
w

|w|

In the above formula, w represents the weights in the neural
network, m is the number of training examples, and lambda
is the regularization contant / strength. The regularization
constant is a hyperparameter which can vary based on the
design of the convolutional neural network. In this convo-
lutional neural network, a regularization strength of 10−4

is currently used. This regularization is combined with the
categorical cross-entropy to give the overall cost function.

C =
1

m
L+R =

1

m

∑
j

tj log(pj) +
λ

m

∑
w

|w|

4.2. Backwards pass

Neural networks now can use backpropagation to update
weights and biases by propagating this error backwards
through the neural network. This is propagated back until
the inputs are reached, and the backpropagation has reached
all parameter weights W and biases b, during which they
are updated in order to minimize the overall cost. In or-
der to change the parameters in a direction that minimizes
the cost function, partial derivatives are used with respect
to each parameter, starting with the partial derivative of the
cost function with respect to weights and bias.

∂C

∂W l
,
∂C

∂bl

In the above formula, l is the current layer (the last layer).
The partial derivatives are used to update the weights con-
nected to the last layer containing the softmax function. In
order to continue to update previous layers weights and bi-
ases, the chain rule is applied from the current layer to the
previous layer. This is done by finding the partial deriva-
tive with respect to the current layer zl. Multipling this by
the partial derivative of the previous layer with respect to

its weights, biases, and its previous layer is shown below.

∂C

∂W l−1
=
∂C

∂zl
∂zl

∂W l−1

∂C

∂bl−1
=
∂C

∂zl
∂zl

∂bl−1

∂C

∂zl−1
=
∂C

∂zl
∂zl

∂zl−1

This can be computed for any layer l by continuation of
backpropagation. Now the gradient for each parameter can
be used to update the parameters by using Nesterov’s momentum6.

p̂l = pl + µvl

vl = µvl − λ∂C
∂pl

pl+ = vl

In the above equations, p represents a parameter, l is the
layer, p̂ is the look ahead in Nesterov’s momentum, and µ
is a hyperparameter momentum constant whose common
values include [0.5, 0.9, 0.95, 0.99] (in this research µ is
0.9). With this new set of weights and biases that were
just updated, the neural network has just completed one
epoch, which consists of one forward and one backward
iteration. Neural networks train through multiple epochs,
and, for this research, 100 and 500 epochs are used to train
the neural networks.

5. Approach
In this section, we describe the various brain image datasets
and our approach to practically training our convolutional
neural networks. We first describe the images in the brain
tumor dataset and the brains without tumors dataset. We
then describe processing and augmentation of images in or-
der to gain more training data. Lastly, we discuss how the
transformation of images is played into the software devel-
opment.

5.1. Data

As stated previously, the brain tumor dataset contains 3064
T1-weighted contrast-enhanced images with images cate-
gorized into three sets: axial, coronal, and sagittal images.
These represent the various planes images of the brain are
scanned; they correlate with the transverse plane, frontal
plane, or lateral plane planes respectively. There are 994
axial images, 1045 coronal images, and 1025 sagittal im-
ages where each image contained an original size of 512 x
512 in pixels. Furthermore out of all of the images, there
were 708 slices of meningioma, 1425 slices of glioma, and
930 slices of pituitary tumors. These images originated
from 233 patients, so many of the images are from the same
patient.
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In order to avoid confusing the convolutional neural net-
work with three different planes of the brain that could have
the same label, the images were separated into the three
planes, and this paper focuses on the axial images due to
the availability of tumorless brain images that were in the
axial plane. This left us with a final brain tumor dataset of
191 patients and 989 images. Out of these images, we have
208 meningioma, 492 glioma, and 289 pituitary tumor im-
ages. The tumorless brains dataset contains 3120 axial 256
x 256 images from 625 patients where each patient is rep-
resented by 5 images that were randomly selected across
the splices from their brain scans.

5.2. Preprocessing

Image data was preprocessed in several forms. Preprocess-
ing included imitating previous research using a neural net-
work or typical image preprocessing for neural networks
which focuses only on the images themselves. Each form
of preprocessing is described below.

5.2.1. VANILLA DATA PREPROCESSING

Brain tumor images were originally formatted as int16, and
tumorless brain images were formatted as float32. In order
to compare the two, each was scaled to a range of 0 to 255.

5.2.2. IMAGE AND LOCATION

This preprocessing applies only to the brain tumor dataset.
The brain tumor dataset provided the tumor location for
each image as a set of points that described the tumor bound-
aries. In order to provide this to a neural network, the max-
imum and minimum boundary point in the x and y direc-
tions were determined.

5.2.3. TUMOR ZOOM

Rather than provide the neural network the maximum and
minimum boundary points in the x and y directions, these
values were used in order to zoom into the tumor region of
each brain scan. In order for each image to have a consis-
tent size, the minimum box needed to contain every tumor
was determined. To find this box, we found the mimum
width and height needed to contain each tumor. The width
was determined via the difference between the minimum
x and maximum x, and the height was determiend via the
difference between the minimum y and maximum y. This
preprocessing was based on the note from Cheng et. al.1,
stating how the tissue surrounding the tumor can give in-
sight into tumor type.

5.3. Image Transformation

Large image sizes has implications towards not only neural
network training time but also memory issues. Original

brain tumor images are 512 x 512 which creates memory
problems when loading all of the images into the neural
network. To prevent this issue, images were downsized to
various sizes. While several image sizes were tested, we
mainly discuss the polar ends of the downsizing since they
performed the best in areas regarding accuracy and training
time performance.

5.3.1. LARGE IMAGE SIZE

Large image sizes consisted of images scaled to 256 x 256.
This required brain tumor images to downsize from 512 x
512 while tumorless brain tumors remained the same size.

5.3.2. SMALL IMAGE SIZE

Similarly to Dieleman et. al.7, brain tumor and tumorless
brain images were given as a large size of 512 x 512 and
256 x 256 respectively. While 512 x 512 images were too
large of a memory requirement for our neural networks to
handle, 256 x 256 images were small enough to run tests,
though the speed of training was very high. In order to
speed up training, images were cropped and shrunk. All
images were resized to 512 x 512 and subsequently cropped
to 412 x 412 by removing 50 pixels from each side. These
pixels were majority unimportant, not withholding any in-
formation regarding the brain itself and holding constant
pixel values of 0. Since all brain images were equally cen-
tered in their images, only minor portions of the edges of
the brain images were affected. Images were then reduced
to 69 x 69 in size by downscaling. This increased training
speed by a factor of 10. A small image size of 64 x 64 was
created as well by downsizing from the original size of 512
x 512 with similar increases in training speed.

5.4. Counteracting Overfitting

Convolutional neural networks have a high number of learn-
able parameters; the cutting edge neural networks have mil-
lions of learnable parameters relying on a large number of
images in order to train. With the limited dataset from the
brain tumor images, our neural networks were at a high
risk of overfitting. Overfitting can occur when neural net-
works’ weights memorize training data rather than gener-
alize the input to learn patterns in the data. This can often
happen due to small datasets. We applied several methods
that prevent overfitting including data augmentation, regu-
larization through dropout, and parameter sharing implied
through rotations and transformations of images mentioned
below.

Like many images, brain tumor image classifications are
invariant under translations, transformations, scaling, and
rotations. This allows for several forms of data augmenta-
tion to be exploited. Data augmentation has proven useful
in expanding small datasets7 to prevent overfitting. In a set
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of the tests run on the images, several forms of data aug-
mentation were applied.

1. Rotation: Images were rotated with an angle between
0° and 360° that was randomly taken from a normal
distribution.

2. Shift: Images were randomly shifted -4 to 4 pixels
left or right and up or down7. These minor shifts were
taken from a normal distribute and kept brains in the
center of the image but changed the location of the
brains enough to avoid memorization of location in an
image rather than relative to the brain itself.

3. Scaling: Images were randomly rescaled using the
scaling between 1.3−1 and 1.3 from Dieleman et. a.l.7

4. Mirror: Each image was mirrored across its y-axis
(horizontally) with a probability of 0.5.

After these initial transformations, further augmentation was
performed in order to increase the size of the training set
each round. Each image was rotated 0° and 45° and flipped
horizontally to create four images. These four images were
then cropped to a size of 45 x 45 taking the four corners of
the images as edges to produce 16 different images. The
above data augmentation was run on the training data ev-
ery epoch of training in order to constantly introduce new
images to the neural network every iteration. This augmen-
tation affected training time very little. We will call this
processing step CO for counteracting overfitting.

5.4.1. CROP AVERAGING

Following Krizhevsky et. al.2, another form of data aug-
mentation was implemented during training for 256 x 256
images, in which images were downscaled to 224 x 224
and five random patches of 196 x 196 were extracted from
each training of these images in order to increase training
data. When testing occurred, five 196 x 196 patches of each
test image downscaled to 224 x 224 were extracted, one
for each corner of the image and one for the center. The
softmax probabilities for each of these images were then
averaged together to give averaged softmax probabilties.

5.5. Network construction

A variety of neural networks were constructed based on the
preprocessing of image data. Each is described in detail in
this section.

5.5.1. CONVOLUTIONAL NEURAL NETWORK

This neural network represents taking only images as input.
While many combinations of layers were tested, the best
combination for this neural network was the following.

• Convolutional Layer with 64 filters of size 5 x 5 and
stride of 1

• Max-pooling Layer with pool and stride size 2 x 2

• Convolutional Layer with 64 filters of size 5 x 5 and
stride of 1

• Max-pooling Layer with pool and stride size 2 x 2

• Fully Connected Layer with 800 neurons

• Fully Connected Layer with 800 neurons

• Softmax Layer with 3 or 4 neurons depending on brain
tumor only in training or tumorless brain inclusion in
training respectively

Each layer besides max-pooling applied the nonlinearity
ReLU, and each of the last three layers applied dropout to
help in regularization and overfitting. We will refer to this
neural network as CNN from now on in this paper.

5.5.2. FULLY CONNECTED NEURAL NETWORK

This neural network represents taking only images as input
as well, but it does not utilize any convolutional or max-
pooling layers. This network consisted of the following
layers.

• Fully Connected Layer with 800 neurons

• Fully Connected Layer with 800 neurons

• Softmax Layer with 3 or 4 neurons depending on brain
tumor only in training or tumorless brain inclusion in
training respectively

Dropout and ReLUs were applied to each of these layers as
well. We will refer to this neural network as FCNN from
now on in this paper.

5.5.3. CONCATENATION OF CONVOLUTIONAL AND
FULLY CONNECTED INPUT LAYERS

This neural network represents providing more information
than one image input. There are two version of the neural
network. Each version has a neural network synonymous
to CNN from above. However, a second input layer exists
representing the same image input or the maximum and
minimum x and y to represent the location of the tumor.
These have their own neural network path that eventually
concatenates with the CNN from before. This second neu-
ral network path consists of the following layers:

• Fully Connected Layer with 800 neurons

• Fully Connected Layer with 800 neurons
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Table 1. Average Five-Fold Cross Validation Test Accuracies with Brain Tumor Images Only
Model Details Per Image Accuracy Per Patient Accuracy

Image Size Preprocessing Network Epochs Last Best Best-PD Last Best Best-PD
256 x 256 Vanilla CNN 100 89.95 90.26 89.69 91.43 89.52 91.43
256 x 256 Vanilla FCNN 100 87.30 87.32 87.46 86.67 85.71 86.67
256 x 256 Vanilla ConcatNN 100 84.62 86.09 84.30 86.67 86.67 87.62
256 x 256 Tumor Locations ConcatNN 100 85.66 85.96 85.80 87.62 87.62 89.52
207 x 312 Tumor Zoomed CNN 100 88.99 88.16 88.99 88.57 88.57 88.57

69 x 69 Vanilla CNN 100 81.70 82.46 81.44 79.05 82.86 79.05
45 x 45 CO CNN 500 83.67 81.72 82.75 81.90 84.76 85.71
64 x 64 Vanilla CNN 100 83.83 84.52 82.10 82.86 82.86 82.86
64 x 64 Vanilla FCNN 100 80.86 80.43 81.30 77.14 76.19 77.14

196 x 196 Crop Averaging CNN 100 86.77 87.65 88.16 82.86 83.81 84.76

Table 2. Average Five-Fold Cross Validation Test Accuracies with Brain Tumor and Tumorless Brain Images
Model Details Per Image Accuracy Per Patient Accuracy

Image Size Preprocessing Network Epochs Last Best Best-PD Last Best Best-PD
256 x 256 Vanilla CNN 100 88.59 89.13 88.78 85.71 89.52 88.57

64 x 64 Vanilla CNN 100 85.06 82.69 83.21 84.76 82.86 84.76
64 x 64 Vanilla FCNN 100 84.51 86.30 84.05 82.86 84.76 81.90

The last layer of this path and the last fully connected layer
from CNN were then concatenated together and connected
to one last fully connected layer with 800 neurons before
reaching the softmax layer from CNN. We will refer to this
neural network as ConcatNN from now on in this paper.

5.6. Random Forests

Random Forests were created in 2001 by Breiman11, and
they are a combination of tree predictors where trees are de-
pendent on randomly sampled independent vectors. Each
tree is given features with minor amounts of perturbation in
order inject noise in the data, and noise is further injected
in the model level through randomization of attributes to
split decisions on. While random forests are not neural net-
works, they have become a common technique in machine
learning research in the medical field. Two separate predic-
tion tests were conducted, one using only the brain tumor
dataset and another using both the brain tumor datset and
the tumorless brain dataset.

5.7. Training

For each of the preprocessed datasets, patients were ran-
domly placed into three sets for training, validation, and
test with 149, 21, and 21 patients respectively. A patient
represents all of a patients images; this avoids mixing pa-
tient data in both training and test which allows for eas-
ier predictions since patient images are similar in structure.
The mean picture from training was subtracted from train,
validation, and test in order to centralize the data. An exam-
ple mean picture can be seen in Figure 3. This was found
to produce higher accuracies than cases without subtrac-
tion of the mean picture. Training data was used during the
training of the neural networks in which train data was used

for updating weights while validation data gave a glimpse
into how the neural network was improving over time. Af-
ter the training phase was completed, the test data was then
used to see how well the neural networks predicted types
of tumors from new images.

A variety of hyperparameters are available to alter. We list
the hyperparameters that produced the highest accuracies.

• Regularization constant: 0.014

• Learning rate: 0.0001

• Momentum constant: 0.9

• Batch size: 4 for non-augmented datasets, 128 for
augmented datasets

• Epochs: 100 (and one 500) which was compensation
between accuracy and training time

5.7.1. DECAYING LEARNING RATE

Rather than maintain a constant learning rate, a decaying
learning rate was attempted in order to increase accuracies
by decreasing the learning rate over time. However, each
case of the decaying learning rate had significantly worse
accuracies than without them.

5.7.2. ACCURACY METRICS

Three different models were computed during validation in
order to evaluate model performance on test data.

• Last: The trained model after the last epoch.

• Best: The model at the point of the best validation
accuracy calculating per image accuracies.
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• Best-PD: The model at the point of the best patient
diagnosis validation accuracy calculating per patient
accuracies.

For each of the above models, per image and per patient
accuracies were applied to evaluate test performance. The
results from the test evaluations are shown in Table 1 and
2.

6. Results
The accuracies for the conducted tests can be seen in Table
1 and Table 2. From these accuracies we can see the Vanilla
CNN with image size 256 x 256 using the tumor brain
dataset only has the highest accuracy at 91.43%. Further-
more, per patient accuracies proved consistent with per im-
age accuracies, implying consistent predictions across pa-
tient images. Even with the extra compute time through the
increase in epochs seen in CO FCNN with image size 45 x
45, the larger size images trained neural networks more ac-
curately, producing 8% higher results. The weights from
the top neural network’s first convolutional layer can be
seen in Figure 4. Minor structures representing low level
features can be seen from each of these 5 x 5 weight re-
gions. In order to further compare these models, the loss
and accuracy history for training and validation sets were
plotted for each model with five-fold cross validation (Fig-
ures 11 - 20). While the loss histories show the 256 x 256
images had overfitting over time due to lack of examples,
their accuracies showed to consistantly be in a higher range
than smaller images.

When looking specifically at the precision at k for these
models (Figures 5 - 10), nearly all models remained above
a 90%. Precision at k uses the top k predictions with the
highest probabilities over all images. This represents the
images neural networks were most confident in classify-
ing. Having 90% accuracy consistently implies the predic-
tions with the highest probabilities were often correct for
any neural network. A particular note is that any model us-
ing 256 x 256 images had a precision of 1.0 from k = 1 to
20. Feeding larger images into the neural network ensured
higher sucess of classification for a model’s top predictions.

When comparing neural networks that used tumorless brain
datasets and neural networks that did not, there were mixed
results. For images of smaller size, adding tumorless brains
tied or increased accuracies up to 2%. However for images
of larger size, tumorless brains appeared to produce slightly
less accuracies.

Analyzing the Vanilla CNN 256 x 256 for Brain Tumors
Only neural network which performed the best overall in
per image accuracy and in per patient accuracy, we look
into the confidence, precision, and sensitivity in Tables 3 -
6. As seen from Figure 5, Vanilla CNN 256 x 256 earned

a perfect score for average precision at k for k equals 1 to
20. In Table 3 and 4 we continue to increase k for each
cross validation until the neural network has an incorrect
prediction for per image and per patient accuracies respec-
tively. For per image accuracy, the neural network averages
reaching well over half of the test images before predict-
ing an incorrect tumor type, with the best cross validation
reaching 90% of images. For per patient accuracy, the neu-
ral network averages reaching over half of test patients as
well, with the best cross validation predicting 100% of the
patients correctly.

To see how the Vanilla CNN 256 x 256 for Brain Tumors
Only neural network performs on each tumor type, we break
down the tumor types into meningioma, glioma, and pitu-
itary to evaluate the precision and recall for the Best model
for per image accuracy and the Last model for per patient
accuracy since these performed the best in their respective
accuracy measure. These results can be seen in Tables 5
and 6 respectively. These two models performed the best in
their respective accuracies. In Table 5, we can see menin-
gioma tumors were the most difficult to predict with an av-
erage of 0.84 precesion and 0.74 recall, while glioma and
pituitary had precision and recall in the mid-90%s. In Table
6, tumor type precision and recall is approximately equal
for averages with 93%, 93%, and 91% for meningioma,
glioma, and pituitary tumors respectively.

Lastly, random forest was run on both the brain tumor dataset
only and with tumorless brain images. The former and lat-
ter gained averages close to 90% consistantly with cons-
derable speed up as compared to training neural networks.
Using tumorless brain images did not affect the accuracies.

7. Conclusion and Future Work
Convolutional neural networks are the state of the art in
computer vision, and introducing them into the medical
field could greatly improve current practices of diagnos-
ing patients. Training convolutional neural networks to de-
tect types of tumors in brain images improves classification
accuracy and provides initial steps into introducing deep
learning into medicine. Not only does this method produce
equal and better results when compared to Cheng et. al.’s
initial work, but neural networks also utilize a more general
methodology requiring only an image to understand brain
tumor types. Furthermore, the accuracy per patient metric
consistently remained at the levels of per image accuracy
results, implying the neural network is providing consistent
predictions for patient images.

Future work can add upon this research by exploring neural
networks that train on coronal and sagittal images. Further-
more, combining patient images across planes can not only
increase dataset size but also provide further insights into
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Figure 3. The average axial image across a training set.

Figure 4. The 64 filters learned in the first convolutional layer of the best-performing neural network.
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Figure 5. Average precision at k, where k ranges from 1 to 20, for Last models for per image accuracy. Vanilla CNN and
Vanilla FCNN for 256 x 256 images and Crop Averaging for 196 x 196 images received perfect scores for k = 1 to 20.

Figure 6. Average precision at k, where k ranges from 1 to 20, for Best models for per image accuracy. Vanilla CNN and
Vanilla FCNN for 256 x 256 images and Crop Averaging for 196 x 196 images received perfect scores for k = 1 to 20.
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Figure 7. Average precision at k, where k ranges from 1 to 20, for Best-PD models for per image accuracy. Vanilla CNN
and Vanilla FCNN for 256 x 256 images and Crop Averaging for 196 x 196 images received perfect scores for k = 1 to 20.

Figure 8. Average precision at k, where k ranges from 1 to 20, for Last models with tumorless brain images for per image
accuracy. Vanilla CNN for 256 x 256 images received a perfect score for k = 1 to 20.
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Figure 9. Average precision at k, where k ranges from 1 to 20, for Best models with tumorless brain images for per image
accuracy. Vanilla CNN for 256 x 256 images received a perfect score for k = 1 to 20.

Figure 10. Average precision at k, where k ranges from 1 to 20, for Best-PD models with tumorless brain images for per
image accuracy. Vanilla CNN for 256 x 256 images received a perfect score for k = 1 to 20.
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Figure 11. Loss and accuracy history for Vanilla FCNN with 256 x 256 images. The top graph represents loss over time,
the middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy over time.

Figure 12. Loss and accuracy history for Vanilla CNN with 69 x 69 images. The top graph represents loss over time, the
middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy over time.
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Figure 13. Loss and accuracy history for CO CNN with 45 x 45 images. The top graph represents loss over time, the
middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy over time.

Figure 14. Loss and accuracy history for Vanilla CNN with 64 x 64 images. The top graph represents loss over time, the
middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy over time.
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Figure 15. Loss and accuracy history for Vanilla CNN with 256 x 256 images. The top graph represents loss over time,
the middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy over time.

Figure 16. Loss and accuracy history for Vanilla FCNN with 64 x 64 images. The top graph represents loss over time, the
middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy over time.
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Figure 17. Loss and accuracy history for Vanilla ConcatCNN with 256 x 256 images. The top graph represents loss over
time, the middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy

over time.

Figure 18. Loss and accuracy history for Tumor Locations ConcatCNN with 256 x 256 images. The top graph represents
loss over time, the middle graph represents per image accuracy over time, and the bottom graph represents per patient

accuracy over time.



Deep Learning for Brain Tumor Classification

Figure 19. Loss and accuracy history for Tumor Zoomed CNN with 207 x 312 images. The top graph represents loss over
time, the middle graph represents per image accuracy over time, and the bottom graph represents per patient accuracy

over time. This model was trained on validation data.

Figure 20. Loss and accuracy history for Crop Averaging CNN with 196 x 196 images. The top graph represents loss
over time, the middle graph represents per image accuracy over time, and the bottom graph represents per patient

accuracy over time.
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Table 3.
Number Correctly Predicted Per Image in Order of

Confidence Until Incorect Prediction for 256 x 256 Vanilla CNN
Cross Validations Number of Images Last Best Best-PD

1 82 53 56 35
2 111 23 22 23
3 126 81 75 84
4 119 107 110 106
5 110 86 66 63

Average1 109.6 70 65.8 61.8

1Averaged over Five-Fold Cross Validation.

Table 4.
Number Correctly Predicted Per Patient in Order of

Confidence Until Incorect Prediction for 256 x 256 Vanilla CNN
Cross Validations Samples Last Best Best-PD

1 21 11 12 8
2 21 1 9 1
3 21 18 18 18
4 21 21 21 21
5 21 10 7 9

Average1 21 13.4 12.2 11.4

1Averaged over Five-Fold Cross Validation.

Table 5. Precision and Recall for Vanilla CNN 256 x 256 Best Per Image Model2

Tumor Type Cross Validations Precision Recall F1-Score Support

Meningioma

1 1.00 0.75 0.86 20
2 0.84 0.62 0.71 34
3 0.57 0.62 0.59 13
4 1.00 0.88 0.94 26
5 0.57 0.86 0.69 14

Avg / Total1 0.84 0.74 0.78 107

Glioma

1 1.00 1.00 1.00 23
2 0.80 0.93 0.86 55
3 1.00 0.92 0.96 78
4 0.93 1.00 0.96 41
5 0.92 0.88 0.90 76

Avg / Total1 0.93 0.93 0.93 273

Pituitary

1 0.89 1.00 0.94 39
2 1.00 1.00 1.00 22
3 0.82 0.91 0.86 35
4 1.00 1.00 1.00 52
5 1.00 0.80 0.89 20

Avg / Total1 0.94 0.96 0.94 168

1Averaged over Five-Fold Cross Validation. 2 Best Per Image Model represents the Best model using the per image accuracy.
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Table 6. Precision and Recall for Vanilla CNN 256 x 256 Last Per Patient Model2

Tumor Type Cross Validations Precision Recall F1-Score Support

Meningioma

1 1.00 0.57 0.73 7
2 0.88 0.88 0.88 8
3 0.75 0.75 0.75 4
4 1.00 1.00 1.00 5
5 1.00 0.83 0.91 6

Average1 0.93 0.80 0.85 30

Glioma

1 1.00 1.00 1.00 4
2 0.88 0.88 0.88 8
3 1.00 1.00 1.00 10
4 1.00 1.00 1.00 6
5 0.85 1.00 0.92 11

Average1 0.93 0.98 0.95 39

Pituitary

1 0.77 1.00 0.87 10
2 1.00 1.00 1.00 5
3 0.86 0.86 0.86 7
4 1.00 1.00 1.00 10
5 1.00 0.75 0.86 4

Average1 0.91 0.94 0.92 35

1Averaged over Five-Fold Cross Validation. 2 Last Per Patient Model represents the Last model using the per patient accuracy.

tumor type that is difficult to view from only one plane.
This can particularly improve meningioma tumors which
caused neural networks the most difficult in classifying.
Lastly, decreasing image size improved efficiency of train-
ing neural networks greatly. Improving performance on
smaller images can have great benefits in training and as-
sisting doctors in treatment of patients. Dealing with noisy,
smaller images can help generalize neural networks to un-
derstand more complex brain images which in turn can help
doctors in their diagnosis.
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