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Chapter 1  

 

Introduction and Motivation 

 

Advancements in stem cell biology, material science, chemical engineering, and regenerative 

medicine have come together in recent years to give rise to the field of tissue engineering with a vast 

potential to treat numerous medical conditions. However, a common roadblock holds back most of 

the tissue engineering applications today from being translated in the clinic: the inability to engineer 

vascularized constructs that would anastomose with the host circulation. Blood flow is absolutely 

necessary for the survival of most tissues, and this challenge must be addressed for successful 

translation of tissue engineering. Specifically, two objectives must be met to address this issue. First 

is to engineer biomaterials that are conducive to robust angiogenesis, and the second is to find an 

accessible cell source that would provide the necessary vascular cells for functional vasculature. This 

work aims to address both of these objectives through the following aims: 

 

Aim 1. Characterize ROS-cleavable oligoproline crosslinked polycaprolactone for pro-

angiogenic host response. A reactive oxygen species (ROS)-degradable scaffold was fabricated by 

crosslinking biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-

degradable oligoproline peptide, KP7K. The motivation behind this approach was the hypotheses that 

“smart” biomaterials that can interact with host tissue would encourage better integration via better 

host cell infiltration and angiogenesis, and that implantation would cause localized increase in ROS 

that could be leveraged. We expected that ROS-mediated degradability of our scaffolds would trigger 

favorable host responses with improved cell infiltration and angiogenesis in vivo. 
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Aim 2. Characterize MSC behavior in in situ crosslinkable gelatin-derived hydrogel in 

vitro and in vivo. In order to develop thermally stable gelatin-derived hydrogels for in vivo 

applications, injectable, in situ crosslinkable gelatin hydroxyphenyl propionic acid (GHPA) was 

synthesized. The chemical and mechanical properties of GHPA hydrogels were characterized. This 

work was largely motivated by our earlier findings where MSCs spontaneously differentiated into 

endothelial cells when cultured in GHPA in vitro. Mesenchymal stem cells (MSCs) were embedded 

and cultured in 3D GHPA in vitro over 15 days, and their interactions within GHPA in terms of viability, 

morphological changes, gene expression and protein expression were investigated. Additionally, 

subcutaneously delivered GHPA hydrogels loaded with MSCs were implanted in mice for 2 weeks, 

and MSC engraftment, angiogenesis, and differentiation in vivo were investigated.  

 

Aim 3. Elucidate cell-matrix interactions associated with the gelatin hydrogel that drives 

MSC transdifferentiation to endothelial-like cells and human MSC response. Studies have 

shown the various functions of integrins and their downstream signaling that affect cell proliferation, 

motility, survival, morphology and differentiation. Hence, we first aimed to determine integrin types 

that are responsible for MSC - GHPA interactions.  We then aimed to identify key signaling pathways 

involved in the vasculoconductive function of identified integrin types and their involvement in the 

transdifferentiation process using selective inhibitors against signaling cascade components of 

interest. Defining such signaling pathways will provide new insight into the translational potential of 

gelatin hydrogels as well as provide more basic understanding of MSCs in developmental and 

regenerative contexts. Additionally, in order to further examine the translatability of our platform, we 

applied human patient-derived MSCs (hMSCs) and examined how hMSCs respond to GHPA gel and 

also their angiogenic potential in vivo. 
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Chapter 2 

 

Background 

 

This chapter is taken in part from: 

Lee, Sue Hyun, et al. "Current Progress in Reactive Oxygen Species (ROS)-Responsive 

Materials for Biomedical Applications." Advanced Healthcare Materials 2.6 (2013): 908-915. 

 

2.1 Tissue Engineering for Unmet Clinical Needs 

Donor organ shortage is an aggravating, chronic issue: While the field of medicine has 

experienced magnificent advancements in the last few decades with continuously increasing average 

life expectancy, the demand for organ donors also continues to rise and remains unfulfilled by a large 

margin. In the US, there are on average 79 transplants every day, however, an average of 22 patients 

also pass away from the donor organ shortage every day.[44] In 2013, there were > 120,000 patients 

waitlisted for transplantation but only about 29,000 transplants have been performed, highlighting the 

gravity of donor organ shortage issue, which is expected to worsen in the coming years.[44] In 

addition, the problem is compounded by the fact that organ transplantation has numerous limitations.  

Organ transplantation may not be the best solution: First, organ transplantation requires a long-

term use of immunosuppressive drugs in order to avoid transplant rejection. Continued use of such 

drugs has been shown to increase risks for cardiovascular disease, infection and malignancy.[46] 

Secondly, while immunosuppressive drugs and other improvements in the transplantation techniques 

have proven successful in dramatically improving the short-term graft survival rate – for example, 

renal allograft survival rate for the first 12-month improved from 45% to over 95% - this had minimal 

effect on the long-term graft survival rate, which remains poor.[45] Thus, even if the donor organ 

shortage problem is mitigated, it is likely that a sizable portion of the patients who receive transplants 
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would face significant medical issues over time due to failing transplants as well as other increased 

risks from long-term immunosuppressive drug use. These limitations demonstrate clinically unmet 

needs that may benefit greatly from successful clinical translation of tissue engineering.  

Tissue engineering has started to enter the clinic: With the goal of regenerating functional tissues 

and organs via purposeful engineering of cells and scaffolds, tissue engineering is slowly becoming a 

reality in the clinic in recent years, and significant advancements are greatly anticipated as the 

standard of living and life expectancy continue to improve with an ever increasing clinical need for 

replacement organs. While no FDA-approved tissue engineering applications exists today, few high 

profile, experimental approaches have taken place for patients in various life-threatening conditions. 

Notable examples include 6 trachea implantations led by Dr. Paolo Macchiarini since 2008.[1-6] While 

the details of each surgery vary, new tracheas were made with either a donated trachea or a trachea 

made of synthetic material seeded with patients’ bone marrow-derived mesenchymal stem cells that 

could differentiate into cartilage cells. Recent ethical issues aside, the first two trachea implantations 

remain successful and functional to date, dramatically improving the lives of those patients, while the 

remaining four trachea implantations have eventually resulted in fatal failures. As seen in these 

examples, while there are several challenges that must be overcome, tissue engineering is slowly 

entering the clinic.  

Successful tissue engineering requires vascularization and anastomosis with the host: It is not 

a coincidence that the few aforementioned examples in human patients have been with engineered  

trachea, which is a relatively avascular organ along with other cartilages and cornea.[7,8] Most other 

tissues and organs in human body require extensive vascularization every few microns in order to 

keep the tissues and organs alive and functional through the supply of nutrients and oxygen and 

removal of waste products that circulation affords.[9] This requirement for vascularization is a major 

challenge that applies to most tissue engineering applications, yet without a good solution. This 

challenge has two aspects: first is a structural/material challenge in fabricating an extensive vascular 
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network within a scaffold or finding a material that supports robust angiogenesis, and second is a 

challenge in finding a cell source that provides vascular cells such as the endothelial cells, smooth 

muscle cells and pericytes that are necessary to form and maintain functional vasculature.[8-11] The 

rest of this chapter is devoted to providing background information on these two aspects.  

 

2.2 Engineering Smart Biomaterials 

Smart, stimuli-sensitive biomaterials show promise with new functions: In the field of 

biomaterials, much of recent work has been put into developing materials that exhibit specific 

response to biological parameters under abnormal body conditions and deliver therapeutics in a 

spatially and temporally controlled manner. These materials aim to take advantage of pathological 

conditions that are often identified with local abnormalities in an array of biological parameters, such 

as the pH, temperature, protease activities, or redox balance.[12-14] One such stimulus gaining 

importance of late is reactive oxygen species (ROS), which is implicated in numerous important 

pathophysiological events, such as atherosclerosis, aging, and cancer. It has become apparent not 

only that diverse ROS are overproduced locally in damaged cells and tissues, but that they 

individually and synchronously contribute to many of the abnormalities associated with local 

pathogenesis.  Therefore, advantages of developing ROS-responsive materials extend beyond site-

specific targeting of therapeutic delivery, and potentially include navigating, sensing, and repairing 

damaged parts of the body by programming changes in material properties. As a preliminary proof of 

concept study, we hypothesized that ROS-degradable scaffolds would enable better interaction with 

the surrounding host tissues upon implantation which would cause a localized increase in ROS as 

typically seen in the implantation site and result in better host cell infiltration and angiogenesis, and 

this is the focus of Chapter 3 in this work.  

ROS-degradable biomaterials can be advantageous in vivo: Various stimuli-sensitive biomaterials 

have been developed in recent years and shown promise to offer specific advantages. In particular, a 
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similar approach to develop ROS-degradable tissue engineering scaffolds has shown promise in vivo. 

John Martin et al. has incorporated ROS-degradable poly(thioketal) into poly(ester urethane) and 

implanted porous scaffolds, where dramatically increased cell infiltration was observed for the ROS-

degradable scaffold.[47] However, this study did not investigate the angiogenic potential of such 

scaffolds in vivo. On the other hand, the aforementioned thioketal polymer was initially developed as 

an oral siRNA delivery vehicle to treat various intestinal inflammatory diseases that are accompanied 

by markedly increased ROS levels in the intestine, which allows for site-specific release of siRNA.[48] 

Most studies in the literature so far have employed ROS-sensitive biomaterials for drug delivery 

purposes, which signifies the importance of our work in this dissertation as it is among the first in the 

field that took an advanced technology and applied to tissue engineering.  

Gelatin is promising yet difficult to use in vivo: Gelatin, a form of denatured collagen which is a 

major component of extracellular matrix, can be an ideal material for tissue engineering as it is known 

for its excellent biocompatibility and biodegradability, as well as adhesiveness for cell attachment, 

and the lack of immuno/antigenicity.[15] However, the in vivo application of gelatin has been limited 

thus far due to its low upper critical solution temperature that liquefies gelatin at 37°C and quick 

enzymatic degradation. Accordingly, only few studies so far have aimed at understanding the 

functional aspect of gelatin for stem cell delivery, despite numerous advantages of gelatin for tissue 

engineering.[16] For example, a number of studies have employed Gelfoam which is highly crossed 

gelatin in a sponge form that loses the natural hydrogel-like properties in tissue engineering 

applications.[49,50,52] Interestingly, Chen et al. have used UV-crosslinkable gelatin methacrylate 

hydrogels with endothelial cells and mesenchymal stem cells, where the cells formed extensive 

vascular network in vitro depending on the mechanical properties of the hydrogel with increased 

vascular network formation in softer gels.[51] In this study, mesenchymal stem cells were observed to 

differentiate into perivascular cells, supporting endothelial cells and lumen formation.  

Injectable and in situ crosslinkable gelatin is a promising solution: To address these issues, we 
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have recently developed injectable, in situ-crosslinkable gelatin hydrogels.[17] Conjugation of 

hydroxyphenyl propionic acid to the free amines of gelatin (GHPA) enabled rapid H2O2- and 

horseradish peroxide (HRP)-mediated crosslinking. Such modification allowed the use of gelatin as 

an injectable, thermostable hydrogel with tunable degradation resistance and mechanical properties 

for in vivo applications. GHPA hydrogels demonstrated excellent biocompatibility, tunable mechanical 

properties, and a marked pro-angiogenic effect by promoting endothelial differentiation of MSCs, 

resulting in robust neovasculature formation throughout the implants, as well as favorable 

macrophage responses upon implantation (see Chapters 4 and 5). Another important advantage of 

gelatin-based materials is its non-immuno/antigenicity in vivo, as the harsh gelatin extraction process 

is thought to remove antigenic moieties on intact 3D collagen fibrils.[18,19] In this work, we found that 

this gelatin-derived hydrogel can be considered as an unprecedented injectable biomaterial platform 

that is equipped with the ability to direct endothelial differentiation of bone marrow-derived MSCs both 

in vitro and in vivo via purely material-driven signaling pathways. Such biomaterial-driven stem cell 

differentiation would be preferred to soluble factor-mediated differentiation due to better 

reproducibility, relatively low economic production cost, reduced spatiotemporal variations, minimized 

side effects, and the provision of physical and instructive support for tissue regeneration at the target 

site.  

 

2.3 Stem Cell Therapies and Mesenchymal Stem Cells 

Stem cell therapy falls short of promise in clinical trials: While there continues to be a stream of 

clinical trials utilizing autologous stem cells to treat various vascular/ischemic diseases including 

peripheral artery disease and myocardial infarction, nearly all studies have resulted in disappointing 

outcomes.[20,21] At best, some of the treatments attenuated the disease progression, but eventually 

the degenerative process resumed. Accordingly, there is no evidence of significant revascularization 

or a decreased amputation rate reported from these trials.[20-22] One contributing factor could be that 
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of the typical dose of ~109 cells of bone marrow mononuclear cells (MNCs), less than 2% were 

CD34+/VEGFR2+ and were thought to be the putative endothelial progenitor cells (EPCs).[23] Thus, 

considering the fact that MNCs do not readily become endothelial cells (ECs), most of the therapeutic 

effects were likely derived from the trophic nature of the delivered cells, rather than through direct 

contribution of implanted stem cells to forming new blood vessels (i.e. vasculo/angiogenesis).[24-26] 

Overall, the results from previous studies suggest limited therapeutic benefits to stem cell 

therapies.[27] At least, these clinical trials have shown that the injection of autologous cells did not 

cause a severe immunological response in most patients. 

What are the suspected reasons for failure?: Several common critical challenges have been 

highlighted through these clinical trials testing stem cell-based therapies. First, there is a clear lack of 

stem cell population with demonstrated angio/vasculogenic potential that would directly contribute to 

forming new blood vessles.[21] Additionally, optimization of several factors in the treatment (i.e. at 

which time point in the disease process to deliver cells, route of administration, cell type etc.) may 

result in better therapeutic effects.[21] Yet, the observation that variation in these factors in previous 

studies failed to show a significant therapeutic benefit to treat their target diseases suggests that 

failure of therapeutic efficacy cannot be fully explained by sub-optimization of such factors. Second, 

another widely known issue is the low rate of stem cell survival/engraftment in vivo. For example, in 

animal studies, only 20% of the delivered cells could be located near the injection site 24 hours post-

implantation.[28,29] In the BOOST trial where MNCs were intravenously injected in myocardial 

infarction patients, only 3% of the implanted cells could be found after 30 days.[29] Together, the data 

illustrate disappointingly short-term survival and retention rates of implanted cells in the ischemic 

milieu, which likely results in poor long-term engraftment and limited therapeutic efficacy as 

previously reported. These results signify the inadequate, limited nature of direct cell injection for 

lasting effects and imply the need for better delivery vehicles for successful long-term engraftment of 

delivered stem cells.  
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EPCs are not an optimal cell source: EPCs (often derived from peripheral blood and positive for 

both hematopoietic markers and endothelial lineage markers, i.e. CD34+ and VEGFR2+) represents 

an ideal cell choice for treating vascular/ischemic diseases in theory. They are traditionally directly 

isolated from bone marrow or blood and have shown to differentiate into cells of endothelial 

phenotype and functions.[30] However, EPCs suffer from characteristically rare presence and poor 

proliferative capacity ex vivo, which makes it impossible to obtain sufficient cell mass typically used in 

commercial medical treatment strategies.[31] Additionally, EPCs suffer from poor long-term survival 

both in vitro and in vivo.[32,33] Therefore, in practice, EPCs currently have severe limitations for use in 

stem cell therapies.  

MSCs are a promising candidate cell type for vascular cell therapy: There are several 

advantages to using mesenchymal stem cells (MSCs). One of the most appealing aspects is that 

MSCs are accessible even for adult patients as they are cultured from the adherent, non-

hematopoietic population of the bone marrow.[34] Thanks to their robust proliferation and survival, a 

single clinical dose of 108 of MSCs could be generated within 7 days from roughly 5 ml of bone 

marrow.[28] However, the challenge is in successfully converting MSCs into endothelial cells, a 

process which has not been fully perfected.[34,35] Encouragingly, there are few previous studies that 

have shown MSCs directly contributing to endothelium, smooth muscle cells and even myocytes in 

cardiovascular repair in vivo at low efficiencies.[34] Thus, a significant part of this work (Chapters 4 

and 5) is focused on overcoming the major hurdles of utilizing easily obtained bone marrow MSCs for 

vascular cell therapy by optimizing non-invasive targeted delivery, survival, endothelial potency and 

vasculogenesis of delivered MSCs in vivo.  

 

2.4 Integrins and Downstream Signaling Pathways for Angiogenesis 

Integrins mediate cell-material interactions: Integrins are heterodimeric membrane glycoproteins 

consisting of non-covalent association between an α unit and a β unit. Integrins are receptors for 
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extracellular matrix proteins and immunoglobulin superfamily molecules, thus they are heavily 

involved in cell attachment and cell migration processes. With 18 different α units and 8 β units, 24 

heterodimeric integrin clusters can be formed, each recognizing and binding single or multiple 

ligands.[36] For instance, integrins αvβ3, α5β1, αIIbβ3, αvβ6 and α3β1 bind to arginine-glycine-

aspartic acid (RGD) sequence present in various ligands, and the peptide sequences flanking RGD 

can impart ligand selectivity. On the other hand, some integrins, such as α4β1, can bind vascular cell 

adhesion molecule VCAM-1, and promote cell–cell adhesion.[37]  

Ligated integrins activate intracellular signaling pathways: While integrins do not have intrinsic 

enzymatic/kinase activities to those associated with growth factor receptors, they are capable of 

activating complex intracellular signaling pathways through focal adhesion formation where integrins 

cluster with kinases [e.g., protein kinase B (Akt), extracellular signal-regulated kinase (ERK1/2), focal 

adhesion kinase (FAK/PTK2), p38 mitogen activated protein kinases (MAPK) and tyrosine-protein 

kinase (SRC)], adaptor proteins, signaling intermediates, cytoskeletal proteins, and other signaling 

proteins intracellularly.[38,39] These intracellular signaling activities lead to cell migration/movement 

and morphological changes by providing traction along ECM proteins, as well as by remodeling the 

cytoskeleton. 

Integrin signaling pathways are crucial in endothelial cell functions and angiogenesis: Several 

earlier studies revealed the important roles of integrins and their associated intracellular signaling 

pathways in regulating angiogenesis. For example, overexpression of FAK has shown to promote 

angiogenesis, while deletion of FAK in endothelial cells resulted in defective vasculature development 

and hemorrhage with reduced tubulogenesis and proliferation capacity in vitro.[40,41] These results 

indicate FAK as a key regulatory player in angiogenesis and vascular development. MAPK signaling 

pathways can be activated by both integrins or growth factor receptors, and are actively involved in 

early cardiac/endothelial development.[42] Given these facts, the heavy involvement of integrins in 

angiogenesis has led to multiple clinical trials where integrin inhibitors were tested to limit cancer 
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metastasis/progression by limiting angiogenesis.[43] Therefore, elucidating the integrin signaling 

pathways that drive the pro-vasculogenic material effect of our injectable gelatin hydrogel would 

provide an advanced means to control stem cell fate for future clinical applications, and we explore 

this topic in Chapter 5. 
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Chapter 3 

 

Aim 1: ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic 

host response 

 

This chapter is taken from: 

Lee, Sue Hyun, et al. "ROS-cleavable proline oligomer crosslinking of polycaprolactone for 

pro-angiogenic host response." Journal of Materials Chemistry B 2.41 (2014): 7109-7113. 

 

Abstract: A reactive oxygen species (ROS)-degradable scaffold is fabricated by crosslinking 

biocompatible, hydrolytically-degradable poly(ε-caprolactone) (PCL) with a ROS-degradable 

oligoproline peptide, KP7K. The ROS-mediated degradability triggers favourable host responses of 

the scaffold including improved cell infiltration and angiogenesis in vivo, indicating its unique 

advantages for tissue engineering applications.   

 

3.1 Introduction 

 Recent progress in biomaterial development emphasizes the advanced function that enables 

target-specific therapeutic delivery through a stimuli-responsive structural change in a 

spatiotemporally controlled manner. These materials have been designed to activate the advanced 

functions in response to various physiological parameters, such as pH,2 temperature,3 protease 

activities, and redox balance4 to target a local pathological event in the body. One such biological 

stimulus that is drawing keen attention recently is reactive oxygen species (ROS) which include 

hydroxyl radicals (OH.), hydrogen peroxides (H2O2), peroxynitrites (ONOO-) and superoxides (O2
-) 

among others.5 While low levels of ROS are part of normal cell metabolism, excessive amounts of 
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ROS cause oxidative stress and damage critical components of cells at all levels including DNA,6 

proteins,7 and lipids8 by oxidation. Moreover, chronically increased levels of ROS are present locally 

in cancer,9 atherosclerosis,10 diabetes,11 infections,12 inflammatory diseases,13 and even in the aging 

process14 where ROS levels can be 10- to 100-times the normal levels. For example, in the vicinity of 

activated macrophages that are prevalent in inflammation and implantation sites, the hydrogen 

peroxide concentration can reach 10 – 100 µM.15 Therefore, ROS can be considered as a critical 

parameter indicating local occurrence or progression of such diseases, and ROS-responsive 

materials are needed to enable site-specific delivery of therapeutics and imaging agents as they can 

undergo structural changes (e.g., degradation) and release the payload in response to locally 

overproduced ROS in vivo. 

  Starting with polypropylene sulfide (PPS) developed in 2004, ROS-sensitive materials are still 

relatively new, but have been continuously developed due to the increasing demand for various 

biomedical applications. While numerous other studies focused on designing synthetic polymers that 

rapidly respond to ROS in nanoscale delivery formats 16 17 18, we investigated a peptide oligomer as a 

ROS-responsive unit for long-term tissue engineering applications. Previous studies have shown that 

proteins containing aspartic acid, glutamic acid or proline residues are especially prone to oxidative 

degradation.19 ROS-sensitive degradability of proline residues has demonstrated particular 

promise.20, 21  

  In a previous study, we synthesized proline oligomers as a ROS-cleavable crosslinker and 

extensively characterized its fabrication and response to ROS in vitro.22 In particular, oligoproline 

peptides with 5, 7 or 10 proline residues were tested for ROS-mediated degradation by reacting in 5 

mM H2O2 with 50 µM Cu(II) at 37 °C. All proline residues were cleaved away after 6 days, confirming 

relatively slow ROS-mediated degradation, compared to PPS that degrades in several hours in 

oxidative environments.16    

  Therefore, in the current study, we investigated the potential of using an oligoproline-
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crosslinked poly(ε-caprolactone) (PCL)-based scaffold in an in vivo model for long-term tissue 

engineering applications. PCL was chosen as the base polymer, as it is approved by the Food and 

Drug Administration (FDA) for biomedical applications such as tissue engineering and drug delivery.23 

Furthermore, PCL is known for slow in vivo degradation over several years by hydrolysis of ester 

bonds, thereby providing a material format where we can impart faster-acting ROS-degradability to 

the scaffold. We hypothesized that such ROS-degradability of scaffolds would allow for favorable 

interactions with host cells in vivo where the initial inflammatory host response would degrade the 

implanted scaffold by excess ROS production and encourage cell infiltration into the scaffold, leading 

to improved neovascularization and engraftment within the site of implantation.24 Towards this end, 

first we modified and improved the chemistry involved to efficiently crosslink PCL with ROS-

degradable oligoproline peptides, and studied their chemical and thermal properties as well as their in 

vitro ROS-degradability. Finally, we implanted the scaffolds subcutaneously in mice to test our 

hypothesis for the effect of ROS-degradability of scaffold on host-material interaction with an 

emphasis on vascularization of the implanted scaffold.  

 

3.2 Materials and Methods 

Materials: PCL 70-90K MW, Lithium Diisopropylamide (LDA), tetrahydrofuran (THF),  diethyl ether,  

dichloromethane (DCM), triethylamine (TEA), dimethylformamide (DMF), N-hydroxysuccinimide 

(NHS), N,N’-dicyclohexylcarbodiimide (DCC), KBr, NaCl, lipopolysaccharide (LPS), RIPA buffer were 

used as purchased from Sigma-Aldrich. PEG (2000 MW)-dihydrazide was purchased from Laysan 

Bio, and KP7K peptides were synthesized on PS3 (Protein Technologies). 

Synthesis of PCL-CPCL: In a 500 mL round-bottom flask, 5 g of PCL was dissolved in 400 mL 

anhydrous THF, and 50 mL of 2 M LDA was added dropwise at -78 °C. Then 50 g of dry CO2 gas 

was added into the flask while stirring via subliming dry ice for 50 minutes. After the temperature was 

raised to 0 °C, 20 g of NH4Cl in 100 mL H2O was added to the mixture. PCL-CPCL was filtered, 
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precipitated in cold diethyl ether and dried under vacuum. Chemical composition was determined by 

1H-NMR. Molecular weight properties were determined by gel permeation chromatography against 

PMMA standards (Agilent Technologies) using a Phenogel 10E3A column (Phenomenex Inc.) in THF. 

Synthesis of PCL-(NHS)CPCL: 3 g of 70% PCL-30% CPCL and 2.09 g of NHS were dissolved in 30 

mL of dry DCM. 3.74 g of DCC dissolved in 9 mL DCM was added drop by drop, and the reaction 

continued for 8 hours at 0 °C. After filtration through 2 µm Whatman filter paper, PCL-(NHS)CPCL 

was precipitated in excess of 1:1 mixture of cold ethyl ether and methanol, and dried under vacuum.  

Crosslinking of PCL-(NHS)CPCL and Scaffold Fabrication: 0.8 mmol of PCL-(NHS)CPCL was 

dissolved in 10 mL DCM, and 0.2 mmol of crosslinkers (KP7K or PEG-dihydrazides) dissolved in 10 

mL DCM, 5 mL DMF and 500 µL TEA was added drop by drop. The reaction continued for 8 hours in 

room temp, then precipitated in excess of 1:1 mixture of cold ethyl ether and methanol. After 

dissolving in 10 mL DCM, the mixture was poured over 10 g of NaCl (sieved to 245 – 410 µm) bed in 

a 100 mm Teflon dish. After drying overnight in vacuum, scaffolds were punched with a 6 mm punch, 

NaCl was leached in daily changes of excess H2O over 4 days.  

Fourier Transform Infrared Spectroscopy: 2 mg of polymer scaffold samples and 100 mg of KBr 

were ground and pressed to form pellets. Samples were subjected to FTIR spectroscopy using a 

Bruker PMA 50 spectrophotometer. Scanning was conducted from 4000 to 400 cm−1 with 64 scans 

averaged and 4 cm−1 resolution.  

Swelling Ratio Measurement: Scaffolds were incubated in PBS at 37 °C overnight, and wet masses 

of the scaffolds were measured. Swollen scaffolds were blotted dry to remove excess buffer before 

weighing. Swelling ratio was calculated according to the formula: swelling ratio = (wet mass)/(dry 

mass). 

Gel Content Measurement: 5-10 mg scaffolds were washed three times with 3 mL THF. Remaining 

polymer was dried in vacuum and weighed, and gel content was calculated according to the formula: 

gel content (%) = (remaining polymer mass after washes)/(dry mass before washes) x 100.    
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Differential Scanning Calorimetry: All polymeric scaffolds were analyzed for thermal transitions and 

heat capacity via on a TA Instruments Q2000 DSC. Samples were weighed (2−5 mg) and pressed in 

aluminum sample pans with tops. The measurement procedure included two temperature sweeps 

from −50 to 100 °C at a ramp rate of 10 °C/min. The values from the second sweep were reported 

such that thermal history was erased. 

Dynamic Mechanical Analysis: To determine mechanical properties, rectangular strips (~20mm x 

~4.0mm x ~0.1mm) were loaded onto a tension clamp and subjected to a stress ramp of 1.0 MPa 

min-1 until break at 37 oC using a TA Instruments Q2000 dynamic mechanical analyzer (DMA). 

Oxidation Experiments: To investigate oxidative degradation, scaffolds were incubated in PBS with 

or without 1 mM SIN-1 (Invitrogen) for 28 days at 37 °C. Buffers were changed daily owing to the 

relatively short half-life of SIN-1 in aqueous environments (<10 h). At 30 days post incubation, 

scaffolds were dried in vacuum. 

Cell Studies: For cell studies involving bone marrow-derived macrophages (BMDMs), 4 week old 

C57/bl6 mice were used. Briefly, after euthanasia, femurs and tibia were collected and flushed with 

RPMI 1640 media (Invitrogen), and collected cells were plated on non-tissue culture treated plates in 

RPMI 1640 containing 10% FBS, 1% penicillin-streptomycin, and 20% L929-conditioned DMEM 

medium for 7 days. On day 7, proper differentiation into BMDM was confirmed via immunostaining 

against CD11b and F4/80. Cells were directly seeded onto scaffolds in 24-well plate at a density of 

300,000 cells/cm2, and cultured with or without 50 µg LPS for inflammatory activation with ROS 

overproduction for 7 days. Cells were removed by washing the scaffolds with RIPA buffer and H2O. 

Scanning Electron Microscopy: SEM was performed on a Hitachi S-4200 system. An accelerating 

voltage of 2.5 kV was used for all images. To prepare scaffolds for imaging, scaffolds were sputter-

coated with gold (Cressington Sputter Coater 1080) at a plasma current of 30 mA for 120 s. 

Subcutaneous Implantation: All animal work and related protocols were approved and performed in 

accordance with Vanderbilt IACUC. Wild type C57/bl6 mice were anesthetized with 1.5 L/min oxygen 
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and 1.5% isoflurane on a warm water blanket, and shaved. A small 1.5 cm longitudinal incision was 

made on the ventral side, and scaffolds were inserted into individual subcutaneous pockets. The skin 

incision was closed with sutures. 

H&E Staining and Cell infiltration Analysis: Scaffolds were collected and fixed in 4% 

paraformaldehyde overnight, and embedded in OCT compound (TissueTek) for cryosectioning. 

Sections were then submitted to Vanderbilt Translational Pathology Shared Resources Core for H&E 

staining. Brightfield microscope images were acquired using a Nikon Eclipse Ti microscope (Nikon, 

Japan), and color deconvolution plugin in ImageJ (National Institutes of Health, USA) was used for 

quantifying the density of nuclei in tissue/scaffold sections. 

Perfusion and Microangiography: At 2 weeks post implantation, mice were perfused under heavy, 

near-lethal level of anesthesia with 4% isoflurane in 2 L/min oxygen. First, PBS containing 0.1 mg/ml 

heparin sulfate was injected into the left ventricle to exsanguinate via the cut inferior vena cava. Then 

mice were perfused with PBS containing fluorescent microbeads (Invitrogen) for micro-angiography. 

Micro-angiograms were then acquired using a Zeiss 710 confocal laser microscope. ImageJ (National 

Institutes of Health, USA) was used for all image preparation and analysis, including z-stacking 

fluorescence images.   

Gene Expression Analysis via Quantitative Polymerase Chain Reaction (qRT-PCR): Samples 

were homogenized in Trizol (Invitrogen), and RNA was collected using RNeasy kit (Qiagen). RNA 

concentration and 260/280 ratios were measured on a TECAN M1000 plate reader. RNA was treated 

with DNAse to eliminate genomic contamination, and reverse-transcribed using High Capacity cDNA 

Synthesis Kit (ABiosystems). SYBR Green PCR mix (Biorad) was used for quantitative PCR. Each 

sample containing at least 40 ng cDNA and 500 nM of each primer with annealing temperature at 

55°C was run in technical triplicates, followed by melting curve analysis. Raw data were analyzed 

using CFX Manager (Biorad), and biological replicates from different animals were combined. 

GAPDH expression was used as a reference gene, where the GAPDH expression level divides each 
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gene expression level for normalization. This relative gene expression to GAPDH is then normalized 

to that of the control PCL condition. Primers used in this study include: GAPDH primers 5’ 

TGAAGCAGGCATCTGAGGG 3’ and 5’CGAAGGTGGAAGAGTGGGAG 3’, CD31 primers 5’ 

TCCCTGGGAGGTCG TCCAT 3’ and 5’ GAACAAGGCAGCGGGGTTTA 3’, and VEGFA 5’ 

ATGCGGATCAAACCTCACCA 3’ and 5’ CCGCTCTGAACAAGGCTCAC 3’.  

Statistical Analysis: Results are presented as means ± standard deviation (SD) or standard error 

mean (SEM) as indicated. Comparisons among different conditions were performed via ANOVA, 

followed by Tukey’s HSD test in Prism 6 (Graphpad). For all statistics, p < 0.05 was considered 

statistically significant, and such significance is indicated where appropriate. 

 

3.3 Results and Discussion 

  To incorporate crosslinkers, PCL was functionalized with carboxyl groups (Figure 3.1A).25 The 

ratio of the integral peaks for carboxylated PCL (CPCL) (3.4 and 9.2 ppm) and unmodified PCL (4.1 

ppm) from the 1H-NMR spectrum revealed a molar composition of 70% PCL-30% CPCL. Of note, the 

extent of carboxylation can be varied from 5 - 60% by varying the duration of the reaction (data not 

shown). The molecular weight of 70% PCL-30% CPCL (number-average molecular weight (Mn) = 

95.5 kDa; polydispersity (PDI = Mw/Mn) of 1.40) is comparable to the unmodified starting material,  

 

Figure 3.1 (A) Synthesis and fabrication of porous KP7K or PEG-crosslinked 70%PCL-30%CPCL 
scaffolds with a representative SEM image. (B) ROS-cleavable peptide KP7K 1 and PEG-
dihydrazide (control) crosslinkers. 
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100%PCL (Mn = 87.0 kDa; PDI = 1.28), indicating no significant hydrolysis of polyester chains during 

the reaction with LDA. Figure 3.1B shows the ROS-cleavable KP7K peptide crosslinker and 

poly(ethylene glycol) (PEG)-dihydrazide crosslinker used as a control in this study. 

Dicyclohexylcarbodiimide (DCC)/N-hydroxy-succinimide ester (NHS) was used to crosslink 70% PCL-

30% CPCL with the crosslinkers. Rapid crosslinking was observed as the mixture began gelling 

immediately. 

 We then verified and characterized the crosslinking. Successful crosslinking was first 

confirmed by FTIR, where amide (I) C=O band at ~1620 cm-1 was observed for both PEG-dihydrazide 

and KP7K-crosslinked 70% PCL-30% CPCL, as well as increased absorbance for N-H stretching and 

O-H stretching from water molecules around 3200~3700 cm-1 (Figure 3.2A).26 Next, gel content 

measurement further characterized the degree of crosslinking, where PEG-dihydrazide and KP7K-

crosslinked scaffolds exhibited 73 ± 7.1% and 82 ± 5.9% in gel contents with THF washes, 

respectively, indicating a high degree of crosslinking within these scaffolds. 

  Crosslinking of 70% PCL-30% CPCL with hydrophilic KP7K peptide crosslinkers altered 

physicochemical properties of the scaffolds, as evidenced by the changes in the swelling ratios of the 

scaffolds. When incubated in PBS at 37 °C for 1 day, uncrosslinked 30% CPCL-70% PCL had 

 

Figure 3.2. Characterization of scaffolds. (A) FTIR spec for 70%PCL-30%CPCL crosslinked with 
either KP7K (KP7K X) or PEG-Hz (PEG X). (B) Swelling ratios of porous scaffolds. Error bar= ±1 
SD. (C) Thermal characterization of porous scaffolds by DSC. 
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significantly increased the swelling ratio compared to original PCL, and the highly hydrophilic nature 

of both crosslinkers further increased the swelling ratios of the crosslinked scaffolds (Figure 3.2B). 

Such increases in hydrophilicity are desirable as it may improve cell attachment and infiltration 

compared to hydrophobic 100% PCL in vivo. 27 

  Similarly, the series of modifications made on PCL significantly altered the thermal properties 

(Figure 3.2C). First, carboxylation of PCL resulted in reduced heats of crystallization (ΔHc) and 

melting (ΔHf), as the carboxyl groups disrupted the packing of semi-crystalline PCL chains to some 

degree and resulted in less crystallinity. Then, the crosslinking of KP7K or PEG-dihydrzide with 70% 

PCL-30% CPCL further disrupted the crystallinity of PCL and reduced the polymer chain flexibility, 

resulting in drastic decreases in temperatures of crystallization (Tc) and melting (Tm), as well as in 

ΔHc and ΔHf.28 These changes in the thermal properties resulting from carboxylation and crosslinking 

can significantly influence material properties, which was exhibited in elastic modulus measured by 

dynamic mechanical analysis (DMA). Non-porous, thin films were prepared and measured for their 

elastic moduli in wet conditions at 37 °C. While PCL and 70% PCL-30% CPCL were similar at 77.0 ± 

6.0 MPa and 82.5 ± 4.7 MPa, respectively, both PEG- and KP7K- crosslinked conditions exhibited 

significantly reduced elastic moduli at 22.7 ± 2.7 MPa and 46.4 ± 0.4 MPa (each condition with N=3). 

The drastic decreases in elastic moduli in the crosslinked conditions are congruent with the 

decreases in crystallinity (Tc and ΔHc), caused by crosslinking. Thus, we have shown and proven the 

effects of crosslinking on PCL in several aspects.    

  The ROS-degradability of KP7K-crosslinked scaffold was demonstrated by changes in thermal 

properties (Fig. 3.3A). Scaffolds were incubated in PBS at 37 °C with or without daily changes of 1 

mM SIN-1 for 30 days which degrades into superoxides and nitric oxides to form peroxynitrites. 29 

Most notably, the Tc value of the KP7K-crosslinked scaffold increased significantly with SIN-1 

treatment compared to the ones of day 0 and PBS only condition on day 30, as radicals produced 

from SIN-1 degraded KP7K crosslinkers, and the newly freed polymer chains likely underwent 



 24 

 

 

reorganization and recrystallization.28 In contrast, the uncrosslinked PCL and 70% PCL-30% CPCL 

scaffolds showed minimal changes in the Tc. PEG-crosslinked scaffolds also degraded with SIN-1 

treatment, albeit to a lesser degree than the KP7K-crosslinked scaffolds. Interestingly, Reid et al. has 

shown that PEG also degrades in response to ROS produced from Fenton reaction with 50% (w/v) 

H2O2 and 6.2 mM FeCl3 or from radicals produced by UV degradation of 30% H2O2.30 However, PEG 

and PEG-crosslinked scaffolds might require supraphysiological levels of ROS for degradation which 

may not be biologically relevant.  

Figure 3.3. Characterization of scaffold degradation in response to ROS in vitro. (A) Tc values of 
scaffolds obtained from DSC after daily changes of PBS with or without 1mM SIN-1 over 30 days 
at 37°C. (B) SEM images of the scaffold surface after culturing mouse bone marrow-derived 
macrophages (BMDMs) for 7 days with or without LPS stimulation. (C) Quantification of pores 
created by BMDMs on KP7K-crosslinked scaffold surface on day 7.  	
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  The degradation of KP7K scaffold was accelerated in a physiologically relevant ROS 

environment in vitro where mouse bone marrow-derived macrophages were seeded on the scaffolds 

with or without the stimulation with 50 µg/ml LPS (Figure 3.3B-C).31 As an endotoxin, LPS activates 

macrophages to overproduce ROS and reactive nitrogen species (RNS) including nitric oxide (NO), 

nitrite (NO2
-) and peroxynitrite (ONOO-).32 After removing cells and protein debris from the scaffold, 

the scaffold surface was imaged by scanning electron microscopy (SEM) (Figure 3.3B). ROS-

cleavable KP7K-crosslinked scaffolds evidently formed numerous pores < 1 um2, especially when 

seeded with LPS activated BMDMs, while PEG-crosslinked scaffolds appeared to maintain their 

smooth surface over 7 day culture. Quantification of this pore formation after 7 day culture (Figure 

3.3C) reveals that sub-micron diameter pores increased by more than 10-folds for KP7K-crosslinked 

scaffolds cultured with LPS-activated BMDMs, whereas when cultured without LPS, the pore 

generation was minimal. These results prove that KP7K-crosslinked scaffolds degrade in response to 

the physiological levels of ROS produced by activated BMDMs.  

  While PCL is known to slowly undergo hydrolytic chain scission over several years and 

become 6-hydroxylcaproic acid that is safely removed from the body,33 we expected that the initial 

host immune response to implants would degrade ROS-degradable KP7K into α-aminobutyric acids 

that can be used for biosynthesis, while leaving PEG crosslinkers intact due to its non-

biodegradability.34 Therefore, we tested our hypothesis that ROS-degradability of the scaffolds would 

encourage cell infiltration in a host-responsive manner, thereby improving vascularization of the 

constructs in vivo (Figure 3.4). Scaffolds were subcutaneously implanted in mice for 2 weeks, and 

sections were stained with H&E to determine host cell infiltration (Figure 3.4A). While cell infiltration is 

observed in all the constructs, there are some noticeable differences between the materials. When 

the density of nuclei is determined per tissue/scaffold area from H&E stained sections (Figure 3.4B), it 

is evident that PCL-30% CPCL had significantly less cells infiltrating compared to PCL, possibly due 

to the negative charges on carboxyl groups. PEG-crosslinked scaffolds showed a similar amount of 
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infiltrating host cells compared to PCL, and more importantly, KP7K-crosslinked scaffolds exhibited 

the highest nuclei density with 50% more cells infiltrating compared to PCL. Additionally, mice were 

perfused through the heart with fluorescent microbeads for angiography before harvesting35  (Figure 

3.4A), and the implanted scaffolds were collected for gene expression analysis (Figure 3.4C). While 

PCL-30% CPCL and PEG-crosslinked scaffolds showed similar levels of neovasculature formation 

compared to PCL, KP7K-crosslinked scaffolds significantly promoted angiogenesis, as evidenced by 

abundant functional, perfusable blood vessels shown in the angiograms, compared to those of PCL 

scaffolds. This result was further supported by significant increases in gene expression of 

angiogenesis markers (CD31 and VEGFA)36 assessed by quantitative RT-PCR (Figure 3.4C), 

indicating that crosslinking with KP7K significantly increases blood vessel growth into the scaffolds 

upon implantation. This is likely due to the fact that early inflammatory responses resulted in 

 degradation of KP7K-crosslinked scaffolds, which enhances cell infiltration and growth of host cells 

into the implanted scaffolds, thereby promoting angiogenesis, compared to other conditions that 

degrade slowly through hydrolysis only. It is also possible that the oligoproline peptides themselves 

Figure 3.4. (A) After 2-week subcutaneous implantation, scaffolds were stained with H&E (purple: 
cytoplasm, dark blue: nuclei; scale bar = 50 µm), and imaged for angiography (scale bar = 300 
µm). (B) Cell infiltration was quantified by Area (nuclei) / Area (tissue) (%) from H&E stained 
sections. (C) mRNA expression of angiogenesis markers by qRT-PCR (N=4; Error = ±1 SEM). 
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may have collagen-mimetic functions and properties, as oligoproline peptides mimic collagen in both 

chemical composition and structure37. However, further studies are required to confirm this possibility.   

  This study demonstrated synthesis and crosslinking of 70% PCL-30% CPCL with ROS-

cleavable KP7K and PEG-dihydrazide crosslinkers via DCC/NHS coupling. To examine their ROS-

mediated degradation in a physiologically relevant condition, BMDMs were cultured on the scaffolds 

under LPS treatment to stimulate their ROS overproduction in vitro. The KP7K-crosslinked scaffolds 

underwent significant surface degradation in response to overproduced ROS from activated BMDMs. 

Furthermore, angiogenesis was significantly promoted within the implanted KP7K-crosslinked 

scaffolds. This pro-angiogenic behavior can likely be explained by ROS production from host 

inflammatory cells which induce scaffold degradation and pore generation, resulting in enhanced host 

cell infiltration into the scaffolds. We have shown that KP7K-crosslinked 70%PCL-30%CPCL is 1) 

degradable in response to physiologically relevant ROS levels which allows for better host cell 

infiltration, and 2) pro-angiogenic in vivo via host-material interactions.   

  While various stimuli-sensitive materials have been developed in nano- to microscale formats 

as drug delivery vehicles, applying large-scale stimuli-sensitive scaffolds for tissue engineering 

remain underexplored. Here, we demonstrated the unique advantages of applying ROS-responsive 

scaffolds in improving vascularization, which is currently an unmet need in the field of tissue 

engineering. Further studies are required to understand the mechanism by which ROS-degradable 

KP7K-crosslinked scaffolds promote angiogenesis with favorable host response. In this way, the 

scaffold design can be improved to achieve successful engraftment and better clinical outcomes in 

the future. 
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Chapter 4 

 

Aim 2: In Situ Crosslinkable Gelatin Hydrogels for Vasculogenic Induction and Delivery of 

Mesenchymal Stem Cells 

 

This chapter is taken from: 

 

Lee, Sue Hyun, et al. "In situ crosslinkable gelatin hydrogels for vasculogenic induction and 

delivery of mesenchymal stem cells." Advanced functional materials 24.43 (2014): 6771-6781. 

 

Abstract: Clinical trials utilizing mesenchymal stem cells (MSCs) for severe vascular diseases have 

highlighted the need to effectively engraft cells and promote pro-angiogenic activity. A functional 

material accomplishing these two goals is an ideal solution as spatiotemporal and batch-to-batch 

variability in classical therapeutic delivery can be minimized, and tissue regeneration would begin 

rapidly at the implantation site. Gelatin may serve as a promising biomaterial due to its excellent 

biocompatibility, biodegradability, and non-immuno/antigenicity. However, the dissolution of gelatin at 

body temperature and quick enzymatic degradation in vivo have limited its use thus far. To overcome 

these challenges, an injectable, in situ crosslinkable gelatin was developed by conjugating 

enzymatically-crosslinkable hydroxyphenyl propionic acid (GHPA). When MSCs are cultured in 3D in 

vitro or injected in vivo in GHPA, spontaneous endothelial differentiation occurs, as evidenced by 

marked increases in endothlelial cell marker expressions (Flk1, Tie2, ANGPT1, vWF) in addition to 

forming an extensive perfusable vascular network after 2-week subcutaneous implantation. 

Additionally, favorable host macrophage response is achieved with GHPA as shown by decreased 

iNOS and increased MRC1 expression. These results indicate GHPA as a promising soluble factor-

free cell delivery template which induces endothelial differentiation of MSCs with robust 
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neovasculature formation and favorable host response.  

 

4.1 Introduction 

Numerous material platforms have been funcionalized with biological molecules (e.g. vascular 

endothelial growth factor) to stimulate a pro-angiogenic response of embedded cells in order to 

effectively engineer functional new tissue.[1-3] In many of these studies, the pro-angiogenic activity is 

thought to rely exclusively on the biological molecules that are engrafted or delivered within these 

constructs, and the direct influence of the material itself has received little attention. Although these 

approaches have shown promise in vascularizing engineered constructs, they face significant 

challenges for stem cell delivery, because encapsulated stem cells show limited survival, vascular 

diffferentiation, and functional regeneration that are required for effective repair of vascular tissue.[4] 

Moreover, variations in the spatiotemporal release, batch-to-batch uniformity, and efficiency of 

presentation of biological molecules has hindered progress since these problems could result in 

heterogenous differentiation with unexpected side effects. Therefore, the principles for designing 

functional materials as a instructive cell delivery platform are evolving. While the traditional view 

considered the extracellular matrix (ECM) as a passive scaffold material mainly providing 

biomechanical support, it is now clear that ECM plays a central role in the outside-in signaling that 

influences the structure and functions of the cells with which it interacts.[5-7]  Therefore, engineered 

ECM without the addition of extrinsic bioactive molecules represents an ideal functional material 

source that (1) can be specifically modified to engraft stem cells for maximal cell survival; (2) provide 

uniform functional and structural cues to cells  in order to minimize spatiotemporal variations; and (3) 

instruct tissue regeneration as an all-in-one directive material platform that does not require release 

or presentation of additional biological molecules.  

Mesenchymal stem cells (MSCs) are generated in culture from the adherent, non-

hematopoietic population of the bone marrow (BM).[8] Due to their robust proliferation and survival, a 
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single clinically-relevant dose (~108) of therapeutic-grade MSCs can be obtained in 7 days from only 

a small starting volume (5 ml) of BM.[9] However, MSCs face the challenge of poor engraftment when 

delivered in vivo.[8,10] Moreover, the potential of MSCs to differentiate into endothelial cells has not 

been fully harnessed and remains unclear.[8,11]  Published reports suggest that MSCs can contribute 

to endothelium, smooth muscle, or even myogenic tissue in cardiovascular repair at low levels; 

however, heterogeneous cellular responses have blurred the understanding of this process.[11, 12] 

Furthermore, clinical delivery of MSCs to diseased vascular tissue has proven unsuccessful, due 

primarily to ineffective retention of the cells at the site of implant, suggesting that an optimized, 

biocompatible delivery system for MSCs would be highly valuable. There have been several reports 

studying methods to differentiate MSCs into endothelial cells.[13-16] However, most studies employed 

in vitro experiments, thus would require pre-differentiation of MSCs prior to transplantation. 

Additionally, none of these approaches enables dynamic, in situ endothelial differentiation upon 

engraftment to a target site. Hence, a functional material that not only provides the mechanical 

support for the implanted stem cells but also serves as a guide for in situ stem cell differentiation 

while maintaining cell viability is highly desirable, but largely lacking to this date. 

Gelatin, a form of denatured collagen, can be an ideal material source as it is known for its 

excellent biocompatibility and biodegradability, as well as adhesiveness for cell attachment, and 

absence of immuno/antigenicity.[17] However, the in vivo application of gelatin has been limited thus 

far due to its low upper critical solution temperature and quick enzymatic degradation, resulting in few 

experiments that have aimed to understand the functional impact of gelatin for stem cell delivery.[18] 

To address these issues, we have recently developed injectable, in situ-crosslinkable gelatin 

hydrogels.[19] Conjugation of hydroxyphenyl propionic acid to the free amines of gelatin (GHPA) 

enabled rapid H2O2- and horseradish peroxide (HRP)-mediated crosslinking. Such modification 

allowed the use of gelatin as an injectable thermostable hydrogel with tunable degradation resistance 

and mechanical properties for in vivo applications.  



 33 

When encapsulated and cultured within GHPA hydrogels, MSCs showed high cell viability at 

15 days with de novo expression of endothelial-specific markers in vitro, and formed perfusable 

vascular networks that resulted from MSCs undergoing endothelial differentiation in vivo. Our study 

indicates that GHPA hydrogels are an ideal platform for regenerating vascularized tissue from 

encapsulated MSCs in vivo, and display intrinsic properties that stimulate vascular induction.  The 

GHPA hydrogels can be combined with established stem cell therapies to develop the next 

generation of clinically-applicable materials for treating severe vascular diseases and damage.     

 

4.2 Experimental Section  

Materials: Gelatin (type A from porcine skin, >300 Bloom), 3-(4-hydroxyphenyl) propionic 

acid (HPA), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), N-hydroxy-succinimide (NHS), 

peroxidase from horseradish (HRP type VI, 250–330U/mg solid), hydrogen peroxide (H2O2) were 

obtained from Sigma Aldrich (St. Louis, MO, USA). Dimethylformamide (DMF) was obtained from 

Junsei (Tokyo, Japan). Dulbecco's modified Eagle medium (DMEM), penicillin–streptomycin (P/S), 

fetal bovine serum (FBS), Dulbecco's phosphate buffered saline (DPBS) and trypsin–EDTA were 

purchased from Gibco BRL (Grand Island, NY, USA). All chemicals and solvents were used as 

received. 

Synthesis and chemical characterization of Gelatin-Hydroxyphenyl Propionic Acid (GHPA): 

Synthesis of GHPA has been described previously.[19] Briefly, hydroxyphenyl propionic acid (HPA) 

was first activated with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), N-hydroxysuccinimide 

(NHS) in a co-solvent of water and DMF (volume ratio of 3: 2). The activated HPA solution was then 

added to the pre-heated gelatin solution and stirred at 40°C for 24 hours. The resulting solution was 

transferred into a dialysis bag (MWCO. 3.5 kDa), dialyzed against deionized water for 3 days, filtered, 

and lyophilized to obtain the GHPA conjugates (Figure 1A). GHPA was characterized by 1H NMR 

spectroscopy (AS400, OXFORD instruments, UK), and the phenolic contents of the conjugates were 
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measured quantitatively at 275 nm using a UV visiblespectrophotometer (V-750 UV/vis/NIR, Jasco, 

Japan). 

Characterization of Elastic/Storage Moduli (G’) of GHPA: GHPA was dissolved in DMEM media at 

3-7% (wt) and divided into two aliquots; one was mixed with horseradish peroxidase (HRP) at the 

final concentration of 2.5µg/ml, while the other aliquot was mixed with H2O2 at the final concentrations 

of 0.0025-0.01% (w/v). Solutions were loaded onto separate syringes, and a dual-syringe applicator 

were used to evenly eject the two solutions, ensuring proper mixing and gelling (Figure 1B). Storage 

moduli (G’) was measured in a parallel plate setting on a TA Instrument RA2000 rheometer in 

oscillation mode with a frequency of 1 Hz and 0.1% strain at 37°C.  

In Vitro 3D Culture of MSC in GHPA Gels: Wild type murine mesenchymal stem cells (MSCs, 

GIBCO) or Flk1-LacZ transgenic murine MSCs were used (Jackson Laboratories). GHPA and H2O2 

were dissolved in DMEM media at various % (w/v) as indicated, while a constant concentration of 2.5 

µg/ml HRP was used in all conditions. Cells were added to the GHPA+HRP solution at the final 

concentration of 106 cells/ml. The same number of cells was seeded on tissue culture plate without 

GHPA gel to serve as a control. After GHPA gelled on the well plate, DMEM supplemented with 10% 

FBS and 1% penicillin-streptomycin was added and media was changed every day over 15 days.  

Cell Viability Assay: Cell viability was measured at days 1, 7, and 15 post culture using 5µM 

resazurin (Sigma). After 4 hours incubation of resazurin with cells, test culture media were transferred 

to a new 96-well plate for fluorescence readout at 590 nm using a plate reader (M1000, Tecan, 

Mannedorf, Switzerland). On the same days, cells were also incubated in media containing 1µM 

calcein AM (Invitrogen) and 1µg/ml propidium iodide (Sigma) for 15 minutes and then imaged by a 

Zeiss 710 confocal laser scanning microscope for identification of live/dead cells.  

MSC Delivery in GHPA Gels on Polyvinyl Alcohol (PVA) Scaffolds In Vivo: All animal procedures 

were approved and performed in accordance with Vanderbilt Institutional Animal Care and Use 

Committee. With heterozygous Flk1-LacZ transgenic murine MSCs whose Flk1 was partially replaced 
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by promoter-less LacZ, Flk1+ cells can then be detected by beta-galactosidase staining. GHPA and 

H2O2 were dissolved in DMEM media at various % (w/v) as described above, while a constant 

concentration of 2.5µg/ml HRP was used in all conditions. Flk1-LacZ MSC (5x105)-containing GHPA 

gel solutions in a total volume of 60 µl were loaded on porous 6 mm-diameter PVA scaffolds 

(Medtronics). As a control, porous PVA scaffolds loaded with non-crosslinked GHPA + HRP gel 

solution containing Flk1-LacZ MSCs were implanted. The gel-scaffold complexes were then 

subcutaneously implanted aseptically on the ventral side of 5-month-old female C57/bl6 mice 

(Jackson Lab) for 2 weeks, and the procedure was previously described (Figure 5A).[40] Briefly, mice 

were anesthesized with 1.5 L/min oxygen and 1.5% isoflurane on a warm water blanket, and shaved. 

A small 1.5 cm longitudinal incision was made on the ventral side, and four different gel-scaffold 

complexes were inserted into individual subcutaneous pockets. The skin incision was closed with 

sutures. 

Characterization of Implanted Scaffolds: At 2 weeks post implantation, mice were perfused under 

heavy, near-lethal level of anesthesia with 4% isoflurane in 2 L/min oxygen. First, PBS containing 0.1 

mg/ml heparin sulfate was injected into the left ventricle to exsanguinate via the cut inferior vena 

cava. Then mice were perfused with PBS containing fluorescent microbeads (Invitrogen) for micro-

angiography.[31] Scaffolds were subsequently harvested and analyzed for mRNA expression by qRT-

PCR, β-galactosidase activity by x-gal staining, angiogenesis by micro-angiography and CD31 

staining, and the presence of remaining GHPA gel and general histological analysis by trichrome 

staining.  

Gene Expression Analysis via Quantitative Polymerase Chain Reaction (qRT-PCR): Samples 

were homogenized in Trizol (Invitrogen), and RNA was collected using RNeasy kit (Qiagen). RNA 

concentration and 260/280 ratios were measured on a TECAN M1000 plate reader. RNA was treated 

with DNAse to eliminate genomic contamination, and reverse-transcribed using High Capacity cDNA 

Synthesis Kit (ABiosystems). SYBR Green PCR mix (Biorad) was used for quantitative PCR. Each 
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sample containing at least 40 ng cDNA and 500 nM of each primer with annealing temperature at 

55°C was run in technical triplicates, followed by melting curve analysis. Raw data were analyzed 

using CFX Manager (Biorad), and biological replicates from different animals were combined.[41] 

GAPDH expression was used as a reference gene, where the GAPDH expression level divides each 

gene expression level for normalization. This relative gene expression to GAPDH is then normalized 

to that of the control condition. Primers used in this study are listed in Table 1. 

 

Table 4.1. List of RT-PCR primers used in this study. 

 

 

Tissue Preparation for Immunohistochemistry: Samples were fixed in 4% paraformaldehyde 

(PFA) for 24 hours at 4 °C, washed with PBS, and immersed in 5%-30% sucrose solution until 

samples sank. Samples were then embedded in Optimal Cutting Temperature compound (TissueTek) 

and frozen in acetone and dry ice bath. 5 µm-thick sections were obtained by cryosectioning. 

Trichrome Green Staining: Trichrome green staining for implanted GHPA gel cryosections was 

performed by the Vanderbilt Research Histology Core.   

Genes Forward Primer Reverse Primer Accession  
ANGPT1 TCACTCAGTGGCTGCAAAAACTTG CTAGCAGTTGTATTTCAAGTCGGG  NM_001286062.1 
ANGPT2 CACAGTGGCTGATGAAGCTGG GTCGTCTGGTTTAGTACTTGGGC NM_007426.4 

CD31 TCCCTGGGAGGTCGTCCAT GAACAAGGCAGCGGGGTTTA NM_008816 
Flk1 GAGAGCAAGGCGCTGCTAGC GACAGAGGCGATGAATGGTG NM_010612 

GAPDH TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG NM_001289726 
iNOS CCAAGCCCTCACCTACTTCC CTCTGAGGGCTGACACAAGG NM_010927 

MRC-1 TTGTGGTGAGCTGAAAGGTG GTGGATTGTCTTGTGG NM_008625 
MyoD AGGCTCTGCTGCGCGACC TGCAGTCGATCTCTCAAAGCACC NM_010866.2 

Myogenin CCAGGAGATCATTTGCTCG TTCTGGACATCAGGACAGCC NM_031189.2  
NFL CCAGGAAGAGCAGACAGAGGT GTTGGGAATAGGGCTCAATCT NM_010910.1 
NFM ACCAGGACACCATCCAGCAG GCTGTCGGTGTGTGTACAGAGG NM_008691.2  
NSE AGCGTTACTTAGGCAAAGGTGT AGATACCTGAGCTGATGAGGGC NM_013509.2 
Tie1 ACCCACTACCAGCTGGATGT ATCGTGTGCTAGCATTGAGG NM_011587.2  
Tie2 GCCTTAATGAACCAGCACCAAG CCTTATAGCCTGTCCTCGAAC  NM_001290549.1  
Trk-A GCAGCCACCGTGAAGAAAT GCACCAATGATGCTGCTCCA NM_001033124.1 

VE-cadherin TCCTCTGCATCCTCACCATCACA TAAGTGACCAACTGCTCGTGAAT NM_009868 
VEGFA ATGCGGATCAAACCTCACCA CCGCTCTGAACAAGGCTCAC NM_001110267.1 

vWF GCTTGAACTGTTTGACGGAGAGG TGACCCAGCAGCAGGATGAC NM_011708 
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β-Galactosidase Staining: Sample cryosections as well as positive and negative controls were fixed 

with 4% PFA for 10 min at room temperature, washed with PBS, and incubated at 37°C for 2 days in 

a solution containing the following: 27 mM NaH2PO4, 73 mM Na2HPO4, 2 mM MgCl2, 2 mM EGTA, 1 

µg/ml NP40, 5 mM K4[Fe(CN)6], 5 mM K3[Fe(CN)6], and 1 mg/ml x-gal (all chemicals from Sigma-

Aldrich). Slides were then washed with dH2O and mounted for imaging. 

Immunostaining: Samples were fixed with 4% PFA for 10 min at room temperature, washed with 

PBS, blocked with 10% goat serum and 0.1% Triton-X100 overnight at 4°C, washed with PBS, and 

incubated with 1:100 goat anti-mouse CD31 antibody (sc-1505, Santa Cruz Biotechnology), 1:100 

rabbit anti-LacZ antibody (ab616, Abcam), 1:100 rabbit anti-Flk1 antibody (sc-504, Santa Cruz 

Biotechnology) for 2 hours, followed by incubation with 1:1500 IR680LT-conjugated anti-rat antibody 

(92668029, Licor) and ReadyProbes® AlexaFluor 488-conjugated anti-rabbit antibody (R37116, 

Invitrogen). Sections were then counter-stained with DAPI and mounted for imaging.  

Imaging: Bright-field microscopy for β-galactosidase and trichrome green stain was performed on a 

Nikon Eclipse Ti microscope, and fluorescence images for immunostaining and micro-angiography 

were acquired using a Zeiss 710 confocal laser microscope. ImageJ (National Institutes of Health, 

USA) was used for all image preparation and analysis, including z-stacking fluorescence images and 

quantification.   

Statistical Analysis: Results are presented as means ± standard deviation (SD) or standard error 

mean (SEM) as indicated. Comparisons among different conditions were performed via ANOVA, 

followed by Tukey’s HSD test in Prism 6 (Graphpad). For all statistics, p < 0.05 was considered 

statistically significant, and such significance is indicated where appropriate. 

 

4.3 Results and Discussion 

Gelatin-Hydroxyphenyl Propionic Acid (GHPA) Synthesis and Characterization 

Injectable and sprayable hydrogels were successfully produced from hydroxyphenyl propionic 
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acid-conjugated gelatin that underwent in situ oxidative crosslinking among the phenolic moieties 

catalyzed by HRP in the presence of H2O2 (Figure 4.1A and B). As seen in Figure 4.1B, two GHPA 

solutions were prepared in order to avoid premature gelation where one GHPA solution contains HRP 

with cells, and the other GHPA solution contains H2O2. HRP/cells- or H2O2-containing GHPA 

solutions are loaded into separate syringes, and the solutions can be injected or sprayed for in situ 

cross-linking towards mimally-invasive in vivo applications.[19] 1H NMR and UV-vis spectra of GHPA 

and unmodified gelatin in Figure 1C and D confirmed successful conjugation with 145.1 µmol HPA/g 

total polymer. 

 

Figure 4.1. (A) Synthesis of gelatin-hydroxyphenyl propionic acid (GHPA). (B) Rapid gelation of 
GHPA by H2O2 and horseradish peroxidase (HRP)-catalyzed oxidative crosslinking. Bottom right 
image shows a dual-syringe system for cell-containing GHPA injections for in situ crosslinking, and 
this system can be used for injection or spraying. (C) 1H NMR and (D) UV-vis spectra of synthesized 
GHPA and unmodified gelatin. 

 

 

Mechanical properties were characterized without cells at 37°C in wet conditions. All test 

samples underwent complete gelation within 20 seconds and their storage moduli (G’) were 

measured at varying GHPA and H2O2 concentrations (Figure 4.2). Overall, crosslinked GHPA gels 

exhibited storage moduli ranging from ~100 Pa to ~2500 Pa which are typical of soft hydrogels 
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and similar to native tissue.[20] As GHPA and/or hydrogen peroxide concentration(s) increased up to 

7% and 0.01% (w/v) respectively, the storage modulus increased due to enhanced crosslinking. A 

previous study demonstrated a similar relationship wherein the resistance to degradation correlated 

directly with crosslinking density.[19] Three different formulations (arrows in Figure 4.2) were chosen 

for the cell experiments, each with different mechanical properties. Conditions with storage moduli < 

500 Pa were excluded from the selection, as these soft gels were difficult to handle and degraded 

within a few days, even in in vitro cell cultures.      

 

Figure 4.2. Storage moduli (G’) of crosslinked GHPA gels with varying concentrations of GHPA 
[%w/v] and H2O2 [%w/v] were measured using a rheometer with N=5 and error bars = +1 SEM. The 
compositions indicated with arrows were used for the following biological experiments. 

 

 

In Vitro 3D Culture of Mesenchymal Stem Cells (MSCs) in GHPA   

Using the dual-syringe system, GHPA solutions containing MSCs, HRP, and/or H2O2 were 

mixed upon injection and gelled in a 24-well plate of tissue culture polystyrene (TCPS) for 15 days of 

in vitro 3D culture. Reduction of resazurin was used as an indicator of live metabolic cells to measure 

viabiliity on days 1, 7, and 15 (Figure 4.3A).[21] Among the different GHPA compositions, there were 
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no statistical differences in cell viability, although the condition with the highest GHPA and H2O2 

contents (7%:0.01%) exhibited a slight decrease in viability. Hydrogen peroxide, a known cytotoxic 

agent, may account for the low viability at 1 and 7 days as well as the retarded growth in 7%:0.01% 

condition compared to other compositions.[22] In addition, inefficient diffusion of nutrients and wastes 

inherent in 3D static culture may also have negatively affected the cell viability.[23] Despite its 

shortcomings at the early culture period, viability of MSCs in GHPA gels greatly improved to around 

80% for all GHPA conditions by day 15.  

 

Figure 4.3. (A) In vitro cell viability of MSCs encapsulated in crosslinked GHPA gels on days 1, 7, and 
15 compared to MSCs on tissue culture polystyrene (TCPS) by resazurin reduction with N=3 and 
error bars = ±1 SD. X%:Y% denotes X %w/v gelatin and Y %w/v H2O2. (B) Z-stacked confocal images 
of Live/Dead stained 3D MSC culture in GHPA on days 1, 7, and 15.  
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As a collagen-derived material, gelatin possesses numerous cell binding recognition sites with 

the RGD sequence being the most well-studied and prevalent site.[24] This is a crucial advantage of 

collagen- or gelatin-based materials over synthetics (ie. poly(ethylene glycol) hydrogels) whose cell 

attachment relies critically on tethered molecules with reduced viability.[25] Most anchorage-dependent 

cells require attachment and spreading on a culture substrate for survival and proliferation, and poor 

cell attachment usually results in a rounded cell morphology and death due to anoikos.[26] The 

improved cell viability and healthy cell morphology upon 3D encapsulated culture were also 

evidenced in live/dead imaging over time (Figure 4.3B). MSCs appeared rounded yet viable at day 1; 

by day 7, most cells began extending through the gel, and by day 15 the cells formed highly-branched 

networks within the gel, while the top surface of GHPA gel was completely covered by a confluent cell 

monolayer (data not shown). Overall, crosslinked GHPA gels supported robust MSC viabilty and 

proliferation within and on the surface of the material, likely due to the favorable properties derived 

from collagen.  Furthermore, changes in cell morphology and organization into unusual, highly-

branched networks not only demonstrated active cell-material and cell-cell interactions, but led to 

question if MSCs began to differentiate within the GHPA gels.  

In Vitro MSC Differentiation to Endothelial Lineage in GHPA 

Since the organization of branched networks was observed in MSCs encapsulated in GHPA 

gels on day 15 in vitro (Figure 4.3B), we tested the ability of the material to promote MSC 

differentiation to specific lineages. An initial differentiation survey was performed by RT-PCR for 

several myogenic (MyoD, Myogenin), neuronal (NSE, Trk-A, NFL, NFM), and endothelial (VEGFA, 

CD31, Flk1, ANGPT1, ANGPT2, Tie1, Tie2, VE-cad, vWF) markers. Among the markers investigated, 

the expression of eight vascular-endothelial lineage markers was significantly up-regulated, 

compared to the TCPS control (Figure 4.4A). Of note, MSCs in all conditions were positive for a 

neuronal marker NSE, and GHPA gels promoted very weak expression of Trk-A. However, no 

significant up-regulation in expression of neuronal markers in MSCs cultured in GHPA gels was 
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observed relative to TCPS control, while the expression of eight vascular-endothelial markers were 

clearly up-regulated. Importantly, MSCs in all GHPA gels demonstrated de novo expression of critical, 

endothelial-specific markers, such as Tie2, ANGPT1, VE-Cadherin, and vWF, that are only observed 

in MSCs when stimulated with meticulous treatment with bioactive molecules or in co-culture with 

endothelial cells.[13,44]   

Hence, we decided to further characterize potential MSC differentiation into an endothelial 

lineage in vitro. First, quantitative RT-PCR (qRT-PCR) for CD31 and Flk1/VEGFR-2 showed 

remarkable up-regulation of CD31 (> 5 fold) and Flk1 (≈ 4 fold) expression in comparison to MSCs 

cultured on TCPS (p < 0.05) (Figure 4.4B). Subsequently, MSCs stained positive for Flk1 and CD31 

in all crosslinked GHPA conditions (Figure 4.4C), compared to non-detectable levels of CD31 and 

Flk1 expression in TCPS control (Figure 4.4D). These results demonstrate the causal role of GHPA 

on in vitro MSC differentiation into the endothelial lineage at both the gene and protein levels. 

Furthermore, F-actin staining of MSCs in GHPA gel revealed clear lumen formation as shown in 

Figure 4.4E.  

Previous studies employing similar gelatin materials have shown that gels < 600 Pa in stiffness 

promoted neuronal differentiation while stiff gels > 8000 Pa promoted myogenic differentiation of 

human mesenchymal stem cells in vitro with the use of mitomycin.[42,43] Taken together, our results 

suggest that GHPA gels with stiffness in the range of 600 ~ 2500 Pa have potential to promote MSC 

differentiation towards an endothelial lineage in vitro. Existing literature shows that cell binding to the 

RGD sequence on gelatin or denatured collagen involves integrin αvβ3, which is also found to cross-

talk with Flk1, thereby promoting proliferation, migration and tubulogenesis of endothelial cells.[24, 27] 

Additionally, blocking of αvβ3 is proven to be an effective way to restrict angiogenesis as an anti-

cancer therapy, signifying the necessity and importance of αvβ3 in angiogenesis.[28] Hence, prevalent 

RGD ligands on GHPA likely promoted endothelial differentiation and subsequent angiogenenesis by 

the MSCs via the αvβ3-Flk1 mechanism, which is in agreement with the previous works.[27, 29] 
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Elucidating the exact mechanism of inducing endothelial differentiation and tubulogenesis from MSCs 

by crosslinked GHPA gels is a major subject of our next study.   

 

Figure 4.4. (A) Expression for vascular-endothelial, myogenic, and neural lineage markers in MSCs 
was determined from mRNA after 15 days of culture in GHPA gels by RT-PCR. + indicates positive 
controls from heart (vascular-endothelial), skeletal muscle (myogenic), and brain (neural) tissues, 
while TCPS indicates control MSCs cultured on on tissue culture poly styrene. (B) Expression for 
endothelial cell markers CD31 and Flk1 in MSCs was determined from mRNA after 15 days of culture 
in GHPA gels by qRT-PCR with N=3 and error bars = ±1 SEM. * indicates p<0.05 in comparison to 
the control MSCs on tissue culture plate. (C) CD31, Flk1 and nuclei were stained and imaged after 15 
days of culture in GHPA gels, and a merged image for the TCPS control is shown in (D). Z-stacked 
confocal images are shown in (C). (E) F-actin staining of MSCs after 15 days of culture in 7%:0.005% 
condition showed clear lumen formation. Insets contain orthogonal views.  
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In Vivo Delivery, Engraftment and Tracking of MSCs in GHPA Gels 

In order to confirm the effect of GHPA gels on MSCs in vivo, Flk1-LacZ MSC-containing GHPA 

gels were injected into porous, non-biodegradable polyvinyl alcohol (PVA) sponges to allow for the 

tracking of delivered cells and GHPA as a target organ model.[30] Multiple gel-PVA sponge complexes 

were implanted into the ventral subcutaneous regions of wild type mice for 2 weeks (Figure 4.5A). 

Flk1, the murine analogue to human KDR/VEGFR2, is a well-established marker of vasculature and 

considered to be endothelial cell-specific. Therefore, Flk1-LacZ MSCs that begin expressing Flk1 in 

these experiments can be detected with β-galactosidase staining, and are indicative of endothelial 

differentiation. Flk1-LacZ transgenic MSCs were used to track and distinguish the implanted cells 

from host wild type cells, and provided a convenient reporter system for monitoring MSC 

differentiation into endothelial cells. 

After 2 weeks of implantation, the scaffolds were harvested for analyses. Trichrome green 

staining was used to visualize newly-formed collagen or injected GHPA (green-light blue), cytoplasm 

of various cell types (purple-red), and erythrocytes (small pink rings due to the lack of nuclei) (Figure 

5B). In all test conditions, there was robust leukocyte infiltration throughout the scaffolds, and groups 

of erythrocytes were often observed as well. However, there were two significant differences among 

the conditions: 1) more collagen and/or GHPA was present throughout the scaffolds in the conditions 

with higher GHPA and hydrogen peroxide contents, and sometimes lumps of the remaining GHPA 

were observed in crosslinked GHPA conditions (e.g. lower left corner in the upper image of 7%:0.01% 

condition in Figure 4.5B), and 2) crosslinked GHPA conditions exhibited extensive vascular networks 

throughout the scaffolds, with organized branches of cells extending a few hundred microns  and 

containing erythrocytes which indicates functional, perfused vasculature, while the control condition 

lacks such structures (e.g. images in the lower panel of Figure 4.5B). Additionally, it was evident that 

there were no giant foreign body cells or fibrous capsule formation around the injected gels, indicating 

the non-inflammatory nature of GHPA. Hence, the conjugation of hydroxyphenyl propionic acid to 
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geatin likely retains the non-immuno/antigenicity inherited from gelatin.    

β-galactosidase staining revealed increasing numbers of the implanted Flk1-LacZ+ MSCs 

(blue) retained in crosslinked GHPA conditions at 2 weeks post injection, indicating differentiation of 

the implanted MSC into Flk1/VEGFR2+ endothelial lineage in vivo (Figure 4.5C and D). In particular 

7%:0.01% and 7%:0.005% showed 4- and 3-fold increases in Flk1+ MSCs, respectively, compared to 

the control for which PVA scaffolds were loaded with a non-crosslinked GHPA solution containing 

Flk1-LacZ MSCs and HRP but without H2O2 for implantation. This result confirms that GHPA 

promotes MSC differentiation into an endothelial lineage in vivo as well as in vitro, and that 

crosslinking of the GHPA gel is necessary to drive this event. 

In Vivo Angiogenesis and Endothelial Differentiation of MSCs Delivered in GHPA  

In order to visualize the functional neovasculature in the implanted scaffolds, mice were 

perfused with heparinized saline containing fluorescent microbeads for micro-angiography before 

harvesting the scaffolds.[31] The resulting micro-angiograms from the surface and cross-sections of 

the scaffolds for each condition are shown in Figure 4.6A and quantified in Figure 4.6B. All 

angiograms presented are from the same mouse.  Neovasculature in implanted scaffolds can be 

distinguished from the vasculature in the native host tissues around the implantation site in two 

important ways: 1) implanted scaffolds were not as profusely vascularized as the surrounding host 

tissues, and 2) neovasculature inside or on the surface of the scaffolds were irregular and tortuous in 

shape, while the vasculature in the neighboring host tissue exhibited well-organized vessel networks 

running straight and parallel to each other. Across all conditions, the surface of the implanted scaffold 

showed well-connected and higly-branched vasculature where smaller capillaries with diameters < 

10µm sprouted from larger arterioles that were 20-30µm in diameters. The control scaffold also 

formed a considerable amount of neovasculature on its surface.  

 Although there were no statistically significant differences among the crosslinked GHPA 

conditions, there appeared to be a trend indicating an increase in the blood vessel formation on the 
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surface of the crosslinked GHPA conditions with the higher GHPA content and crosslinking. The 

crosslinked GHPA conditions, especially the 7%:0.01% condition showed a 100% increase in 

angiogenesis on the surface compared to the uncrosslinked control. On the other hand, the micro- 

angiograms from the cross-sections of the scaffolds revealed greater differences between the 

uncrosslinked control and crosslinked GHPA conditions: the control condition showed a limited 

degree of neovasculature at the perimeter of the scaffold while the crosslinked GHPA gels supported 

 

Figure 4.5. (A) Schematic of in vivo experiment where Flk1-LacZ MSCs-containing GHPA was 
injected into and crosslinked within a porous PVA scaffold for a murine ventral subcutaneous 
implantation. (B) Trichrome green staining of cross-sections of scaffolds at 2 weeks post implantation 
where cytoplasm is stained red, erythrocytes pink and collagen/GHPA gels blue/green. (C) β-
galactosidase staining shows that delivered Flk1-LacZ transgenic MSCs were retained and became 
Flk1-LacZ+(blue) post 2-week implantation in crosslinked GHPA conditions. The boxes indicate Flk1-
LacZ+ cell-containing areas. (D) Quantification of retained MSCs that differentiated into an endothelial 
phenotype (Flk1-LacZ+ cells) post 2-week implantation with error bars = ±1 SEM and N=4. Statistical 
significance with p < 0.05 is indicated with * in comparison to the control, and ¢ in comparison to 
5%:0.005%. (B-C) Top row images with scale bars = 200µm, and bottom row images with scale bars 
= 50µm. 
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robust angiogenesis throughout the cross-sections. Quantification showed more than 200% increase 

in all three crosslinked GHPA conditions compared to the control. Understandably, there is less 

vasculature seen in the cross-sections than on the surfaces due to reduced access, and blood 

vessels exhibited even more tortuosity within the scaffold, likely due to the physical obstacles driven 

by the non-biodegradablity of PVA scaffold.  

Interestingly, there also appeared to be a positive correlation between the amount of 

neovasculature and the degree of GHPA content and crosslinking (Figure 4.6B). This implies that the 

stability of GHPA gels in vivo is a crucial factor in promoting angiogenesis, as uncrosslinked gelatin is 

known to degrade rapidly in vivo by matrix metalloproteases.[32] Additionally, the tubulogenic effect 

observed in in vitro experiments was lost in non-crosslinked GHPA control condition in vivo, while the 

condition containing the most GHPA with the highest level of crosslinking showed the highest degree 

of angiogenesis among the test groups.  

Finally, simultaneous staining of LacZ and CD31 confirmed that Flk1-LacZ+ MSCs were 

incorporated into the blood vessels (Figure 4.6C). Immunostaining for LacZ yielded similar results to 

the β-galactosidase staining in Figure 5C, with only few weakly Flk1-LacZ+ MSCs detected in the 

control condition. For the crosslinked GHPA conditions, numerous cells stained positive for LacZ, 

however, LacZ expression was the strongest at and co-localized with the CD31+ blood vessels, 

indicating that the delivered MSCs indeed differentiated into endothelial cells and formed blood 

vessels in vivo.   

Taken together, the angiograms and co-staining of LacZ and CD31 showed branched, 

perfused neovasculature formation throughout the implanted scaffolds for crosslinked GHPA 

conditions with clear co-localization between delivered Flk1-LacZ+ MSCs and several CD31+ blood 

vessels, confirming MSC differentiation into endothelial cells with the aid of crosslinked GHPA in vivo 

as well as in vitro.  
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Figure 4.6. (A) Angiograms of the harvested scaffolds by perfusion with fluorescent microbeads at 2 
weeks post implantation. Representative images from the outer surface and cross-sections are 
shown with scale bars = 300 µm. White dotted line marks the boundaries of the scaffolds. (B) % area 
of the functional blood vessels by angiograms in (A) with error bars = ±1 SEM and N=4. * indicates 
statistical significance with p < 0.05 in comparison to the control. (C) CD31, LacZ and nuclei staining 
of the cross-sections of the explanted scaffolds with scale bars = 50 µm. All images were acquired by 
confocal microscopy, and z-stacked.  

 

 

In Vivo Gene Expression in GHPA Gels Delivering MSCs 

The gene expression from the harvested scaffolds was analyzed by qRT-PCR. Several 

markers (Flk1, VE-cadherin, CD31, vWF) for angiogenesis were analyzed (Figure 4.7A). All 

angiogenic markers surveyed were significantly up-regulated in all crosslinked GHPA conditions 

compared to the uncrosslinked control. For Flk1 expression, crosslinked GHPA conditions showed 

approximately 1-, 2-, 3-fold increases in expression for 5%:0.005%, 7%:0.005%, and 7%:0.01%, 
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respectively. For VE-cadherin expression, crosslinked GHPA conditions showed approximately 1-, 4-, 

and 12-fold increases in expression for 5%:0.005%, 7%:0.005%, and 7%:0.01%, respectively. In a 

similar trend, CD31 expression showed 1-, 1-, and 3-fold increases for 5%:0.005%, 7%:0.005%, and 

7%:0.01%, respectively. There was a clear positive correlation between the angiogenic marker 

expression and the GHPA content/crosslinking density, and these results are in agreement with the 

angiograms and CD31 staining. For vWF expression, however, all crosslinked GHPA conditions had 

60% increase in comparison to the control condition. Collectively, these results demonstrate that 

overall there were significant increases in the expression of angiogenesis markers in the crosslinked 

GHPA conditions, and that such increases were even more pronounced in conditions with higher 

amounts of GHPA and crosslinking. 

The expression of two markers (iNOS and MRC1) that represent the host macrophage 

response to the implants were also measured (Figure 4.7B). iNOS expression is associated with a 

classically-activated/inflammatory macrophage phenotype, while MRC1 expression is regarded as a 

marker for an alternatively-activated/reparative macrophage phenotype.[33] For iNOS expression, the 

5%:0.005% showed a 50% increase compared to the control; however, iNOS expression for 

7%:0.005% did not change, and 7%:0.01% showed a 50% decrease in comparison to the control. For 

MRC1, there was again a GHPA/crosslinking-dependent trend of increasing expression, with 

7%:0.01% condition having the highest level of MRC1 expression at 1.9-fold that of the control. These 

results indicate that the 7%:0.01% condition invoked a favorable response from the host 

macrophages with reduced inflammation and increased a reparative macrophage phenotype, and this 

group also demonstrated the highest degree of vascularization and endothelial marker expression, all 

of which may forecast better long-term integration with the host tissues and functional vascularity. It is 

also possible that such positive interactions between crosslinked GHPA and host immune cells may 

have contributed to the increased angiogenesis seen in the crosslinked GHPA conditions since 

angiogenesis and inflammation are known to be coupled, interdependent processes  
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Figure 4.7. After 2-week subcutaneous implantation, explanted scaffolds were assayed for gene 
expression of (A) angiogenesis/ endothelial cell markers and (B) macrophage markers by qRT-PCR 
with N=4 and error bars = ±1 SEM.  =  

 

 

4.4 Conclusion 

In this study, injectable and in situ crosslinkable gelatin demonstrated excellent biocompatibility, 

tunable mechanical properties, and a marked pro-angiogenic effect by promoting endothelial 

differentiation of MSCs, resulting in robust neovasculature formation throughout the implants, as well 

as favorable macrophage responses. Previous studies have shown MSC differentiation into 

endothelial cells using soluble factors such as VEGF and/or bFGF in vitro and/or in vivo.[1-3] In 

contrast, currently there is only one other study showing differentiation of adipose tissue-derived 

MSCs into endothelial cells by encapsulating MSCs in PEGylated fibrin hydrogels.[34] In contrast to 

our study, MSCs in PEGylated fibrin hydrogels did not show increase in Flk1 expression, which 

implies that there may be multiple mechanisms responsible for endothelial differentiation of MSCs. 

Nevertheless, our GHPA can be considered as a unprecedented injectable biomaterial platform that 
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is equipped with advanced functions to direct endothelial differentiation of BM-derived MSCs both in 

vitro and in vivo via purely material-driven signaling pathways. Such biomaterial-driven stem cell 

differentiation would be preferred to soluble factor-mediated differentiation due to the reproducibility, 

relatively economic production cost, reduced spatiotemporal variations commonly observed in soluble 

factor treatments, minimized side effects, and the physical and instructive support provided for tissue 

regeneration at the target site. The results are also highly significant as this is one of the first studies 

to use a purely gelatin-based material in the form of an injectable hydrogel for vasculogenic delivery 

of stem cells in the fields of tissue engineering and regenerative medicine, which has been almost 

impossible to-date.  

Another important advantage of gelatin-based material is its non-immuno/antigenicity in vivo, 

as the harsh gelatin extraction process is thought to remove known antigens existing on intact 3D 

collagen fibrils.[35] Injections of unmodified gelatin into several animals has also failed to produce 

antibodies.[36] Similarly, past studies involving crosslinked gelatin substrates showed negligible 

inflammation and no sign of scarring or fibrous capsule formation when implanted, and these results 

are in agreement with the data presented here.[37-39] 

Only a small number of studies have investigated angiogenesis using thermally- or chemically-

crosslinked, pre-fabricated solid gelatin scaffolds, and these studies often used clinically-available 

hemostatic agent Gelfoam®. These studies showed significant angiogenesis in the implants, even 

when implanted alone.[37, 38] Interestingly, it was also shown that crosslinked gelatin scaffolds 

significantly improved angiogenesis as compared to collagen scaffolds prepared in a similar 

method.[37] Our study is also in support of the in vivo pro-angiogenic effect of crosslinked gelatin, 

however, our results are convoluted by the inclusion of highly trophic MSCs.  

Due to the ease of isolation and high capacity for ex vivo expansion, BM-derived MSCs 

represent a highly desirable candidate cell type for in vivo regeneration of vascularized host tissue. 

However, results from multiple clinical trials demonstrated that the promise of BM-derived cell therapy 
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has fallen short due to two major obstacles: poor long-term engraftment of cells within the ischemic, 

hostile wound environment, and poor vascularization. Therefore, our study has focused on 

overcoming the major hurdles of utilizing easily-obtained BM-MSCs for vascular applications by 

optimizing a minimally-invasive, targeted delivery strategy, ensuring long-lasting survival and 

retention of implanted cells post delivery, and promoting angio/vasculogenesis in vivo. In order to 

strive towards clinical translation, the angiogenic effects of crosslinked gelatin material alone and 

especially in comparisons to other materials need to be investigated further. In addition, because of 

the short history of using gelatin-based materials in tissue engineering applications, the exact 

mechanisms for improved angiogenesis by GHPA and 3D gelatin-cell interactions remain to be 

elucidated. Further studies are required to better understand the apparent and numerous advantages 

of GHPA and its optimal applications in specific biomedical fields.   
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Chapter 5 

 

Aim 3: Elucidating the molecular mechanism driving material-driven endothelial differentiation 

of mesenchymal stem cells and human mesenchymal stem cell response in GHPA 

 

5.1 Introduction 

Our interesting findings from Chapter 4 led to the new phase of the study to investigate the 

molecular mechanisms behind purely material-driven differentiation of MSCs into endothelial 

lineage.[1] While there have been a number of previous studies that have shown purely material-

driven differentiation of MSCs into osteocytes, neural cells, and chondrocytes, endothelial 

differentiation most commonly required an extensive use of biochemical agents such as VEGF and 

FGF, activating the well-characterized VEGF signaling pathway that drives endothelial differentiation 

in many types of stem cells.[2-4] Interestingly, we also observed an increased expression of VEGF 

receptor 2 in MSCs cultured in GHPA in the absence of any added growth factors; however, we 

believe that this must be the result of other mechanisms that led to VEGFR expression. Namely, we 

suspected that integrins at the cell-material interface are at play in initially driving the differentiation.  

 Integrins are extracellular matrix receptors expressed on the cell membrane, and they serve as 

a physical anchoring point for the cell. Additionally, there are a number of different outside-in 

signaling cascades that could be initiated by integrins upon binding to their ligands. Such outside-in 

signaling can significantly affect many essential processes such as cell proliferation, death, motility, 

morphology and differentiation.[5-7] In this preliminary work, we first sought to identify integrins at the 

MSC-GHPA interface and verify their roles in endothelial differentiation by selectively blocking 

integrins with inhibitors.  

 Having observed the material-driven differentiation effects in murine MSCs in aim 2, one of the 

natural next questions is to examine if the same effects hold in human MSCs. While only about ~300 
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genes out of ~20,000 are unique to either human or mice as revealed from whole genome 

sequencing, interspecies differences have been rather difficult to predict and understand at times, as 

evidenced by countless clinical trials that have ultimately failed after successful pre-clinical studies in 

mice.[8] Therefore, robust validation in human MSCs is required for translation. To this end, we have 

isolated bone marrow-derived MSCs from 3 patients, as well as a commercial line from Lonza. In 

particular, we isolated MSCs from old patients (> 65 years old) as they stand to benefit the most from 

regenerative medicine approaches. In this preliminary work, we sought to replicate the experiments 

with murine MSCs from aim 2 with human patient-derived MSCs.  

 

5.2 Materials and Methods 

In Vitro 3D Culture of hMSC in GHPA Gels: hMSCs were isolated from the bone marrow of male 

patients (> 65 in age) free from any blood disorders and cancer. FACS was used to isolate hMSCs 

that are CD14-/CD20-/CD34-/CD73+/CD90+/CD105+.[9] GHPA and H2O2 were dissolved in DMEM 

media at various % (w/v) as indicated, while a constant concentration of 2.5 µg/ml HRP was used in 

all conditions. Cells were added to the GHPA+HRP solution at the final concentration of 106 cells/ml. 

The same number of cells was seeded on tissue culture plate without GHPA gel to serve as a control. 

After GHPA gelled on the well plate, DMEM supplemented with 10% FBS and 1% penicillin-

streptomycin was added and media was changed every day over 15 days. For the inhibition study, 

P11 (EMD Millipore) was used at 10 µM, obtustatin (Tocris Biosciences) at 10 nM, and mVEGF (Sino 

Biological Inc) at 50 ng/ml as supplements.[10-11] 

Western Blotting: Western blot analysis was done according to standard protocols. Primary 

antibodies used in this study include: ITGA1 (1:200, #10728, Santa Cruz), ITGAV (1:5000, ab179475, 

Abcam), pAKT (1:1000, #9271S, Cell Signaling) and GAPDH (1:1000, #2118, Cell Signaling).  

IRdye680- or 800-tagged secondary antibodies (1:8000, Licor) were used, and membranes were 

imaged in a Licor scanner. 
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MSC Delivery in GHPA Gels on Polyvinyl Alcohol (PVA) Scaffolds In Vivo: All animal procedures 

were approved and performed in accordance with Vanderbilt Institutional Animal Care and Use 

Committee. GHPA and H2O2 were dissolved in DMEM media at various % (w/v) as described above, 

while a constant concentration of 2.5µg/ml HRP was used in all conditions. hMSC (5x105)-containing 

GHPA gel solutions in a total volume of 60 µl were loaded on porous 6 mm-diameter PVA scaffolds 

(Medtronics). As a control, porous PVA scaffolds loaded with non-crosslinked GHPA + HRP gel 

solution containing h MSCs were implanted. The gel-scaffold complexes were then subcutaneously 

implanted aseptically on the ventral side of 5-month-old male, immunodeficient NU/J mice (Jackson 

Lab) for 2 weeks, and the procedure was previously described (Figure 4.5A). Briefly, mice were 

anesthesized with 1.5 L/min oxygen and 1.5% isoflurane on a warm water blanket, and shaved. A 

small 1.5 cm longitudinal incision was made on the ventral side, and four different gel-scaffold 

complexes were inserted into individual subcutaneous pockets. The skin incision was closed with 

sutures. 

Characterization of Implanted Scaffolds: At 2 weeks post implantation, mice were perfused under 

heavy, near-lethal level of anesthesia with 4% isoflurane in 2 L/min oxygen. First, PBS containing 0.1 

mg/ml heparin sulfate was injected into the left ventricle to exsanguinate via the cut inferior vena 

cava. Then mice were perfused with PBS containing fluorescent microbeads (Invitrogen) for micro-

angiography. Scaffolds were subsequently harvested and analyzed for angiogenesis by micro-

angiography.  

Gene Expression Analysis via Quantitative Polymerase Chain Reaction (qRT-PCR): Samples 

were homogenized in Trizol (Invitrogen), and RNA was collected using RNeasy kit (Qiagen). RNA 

concentration and 260/280 ratios were measured on a TECAN M1000 plate reader. RNA was treated 

with DNAse to eliminate genomic contamination, and reverse-transcribed using High Capacity cDNA 

Synthesis Kit (ABiosystems). SYBR Green PCR mix (Biorad) was used for quantitative PCR. Each 

sample containing at least 40 ng cDNA and 500 nM of each primer with annealing temperature at 
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55°C was run in technical triplicates, followed by melting curve analysis. Raw data were analyzed 

using CFX Manager (Biorad), and biological replicates from different animals were combined.[41] 

GAPDH expression was used as a reference gene, where the GAPDH expression level divides each 

gene expression level for normalization. This relative gene expression to GAPDH is then normalized 

to that of the control condition.  

Imaging: Bright-field microscopy for the inhibition study was performed on a Nikon Eclipse Ti 

microscope, and fluorescence images for micro-angiography were acquired using a Zeiss 710 

confocal laser microscope. ImageJ (National Institutes of Health, USA) was used for all image 

preparation and analysis, including z-stacking fluorescence images and quantification.   

 

5.3 Results and Discussion 

Integrin Expression of mMSCs cultured in GHPA gels in vitro 

 In order to elucidate the integrins involved in material-driven differentiation in murine MSCs, we 

started by assaying the cultures for various integrin expression through qRT-PCR (Figure 5.1). Of 26 

integrins known to date, we focused on known integrins that bind to collagen and others heavily 

involved in angiogenesis. As expected, the expressions of integrin alpha 1, a collagen receptor, was 

significantly up-regulated compared to mMSCs grown on tissue culture polystyrene (TCPS). 

Additionally, integrin alpha v and beta 3, together forming a heterodimer that plays a significant role in 

angiogenesis, were shown to be up-regulated. Lastly, ERK1 and PI1K that are key downstream 

signaling molecules in endothelial differentiation were significantly up-regulated as well.  

 Western blotting was then used to validate the gene expression levels (Figure 5.2A). 

Surprisingly, the protein level expressions of integrins in many cases did not match our gene level 

expression assay. However, it has been shown that cells grown 2D on TCPS tend to have un-

naturally massive focal adhesion sites rich with integrins with low turn-over compared to the cells 

cultured in 3D matrix.[12,13] We expect similar effects to be in play. Additionally, we observed 
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significant up-regulation of pAKT, a key downstream signaling molecule involved in endothelial 

differentiation, in GHPA conditions. We then examined better negative controls such as mMSCs 

cultured in alginate gel or PEG hydrogels for 3 days (Figure 5.2B). mMSCs in alginate gel expressed 

low amounts of integrin alpha 1 and v, as expected, while cells in PEG gels expressed considerable  

 

  

 

Figure 5.1. mRNA expression levels of MSCs cultured for 15 days either on tissue culture plate 
(control) or embedded in 3 different compositions of GHPA (GHPA%:H2O2%). Results from 3 
biological replicates were used. Error bars = ± SEM, and * indicates statistical significance with p 
< 0.05. 

 

 Figure 5.2. Protein expressions of mMSCs were cultured in TCPS and various formulations of 
GHPA (GHPA%:H2O2%) for 15 days in (A) and PEG and Alginate hydrogels for 3 days in (B).  
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amounts of integrin alpha v and low amounts of alpha 1. In both conditions, mMSCs did not express 

pAKT. Of note, mMSCs cultured in PEG and alginate gels stayed rounded with complete cell deaths 

by day 7 (data not shown) due to anoikis. Further work is required to complete the profiling of integrin 

expression at the protein level using wetern blotting as well as immuostaining to understand how 

integrins are interacting with the cell matrix.  

Inhibition of key integrins attenuates endothelial differentiation 

Furthermore, specific integrin inhibitors were used to determine the integrins responsible for 

driving the endothelial differentiation process (Figure 5.3). Here we added a positive control where 

soluble VEGF was used in media, as well as two conditions for inhibiting integrins: integrin alpha 

v/beta 3 inhibitor P11 and integrin alpha 1 inhibitor obtustatin.[10,11] The addition of VEGF visibly 

improved the amount and connectivity of vasculogenesis in GHPA conditions. Interestingly, both 

inhibitors appeared to attenuate the material-driven endothelial differentiation, where P11 treated 

cells stayed rounded through 15 days while obtustatin treated cells tended to aggregate into large 

clumps and showed limited sprouting activity. These results indicate that integrins alpha v/beta 3 and 

alpha 1 are crucial in driving endothelial differentiation of mMSCs in GHPA. Further work is required 

to examine the molecular changes at the gene and protein levels to elucidate the effects of integrin 

inhibition.  

Human MSCs cultured in GHPA in vitro  

Human MSCs were prepared from bone marrow of three old (> 65 in age) patients via FACS 

and generously provided by Dr. Pampee Young and Daniel Balikov for this study. Unlike mMSCs, 

hMSCs did not form extensive tubular network when cultured in 3D GHPA gels (Figure 5.4). 

Interestingly, hMSCs exhibited better survival through the initial gelling process with most cells 

surviving throughout the culture period; mMSCs on the other hand exhibited about 30% survival on 

day 1 (Figure 4.3). Additionally, there is significant underline the many challenges of translating 

treatment approaches in mice to humans. Several approaches may improve the response in hMSCs,  
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Figure 5.3. mMSCs cultured on TCPS and GHPA for 15 days with no treatment, soluble VEGF, 
P11 (integrin alpha v/beta 3 inhibitor) and obtustatin (integrin alpha 1 inhibitor). 

 
 

Figure 5.4 Live/dead staining of hMSCs encapsulated in GHPA on day 15 with scale bar = 200 µm 
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such as the use of VEGF, optimization of cell density, and GHPA formulations among others. Lastly, 

further verification of endothelial differentiation at gene and protein levels in hMSCs is required.  

Angiogenesis in hMSCs delivered in GHPA in vivo  

 To examine if hMSCs in GHPA also induces strong angiogenesis in vivo in mice as mMSCs 

did, we subcutaneously delivered hMSCs in GHPA loaded on PVA scaffolds in an identical setting as 

was done in chapter 4 with murine cells, except for the use of immunodeficient mice. The use of 

immunodeficient mice was necessary in order to avoid severe immune response to and eventual 

rejection of hMSCs in mice. However, it should be noted that immunodeficient mice have severely 

altered immune system that may poorly model human response.[14] After two weeks of implantation, 

mice were perfused with fluorescent solution for functional vascular imaging, and the results are 

shown in Figure 5.5. Overall, we observed increased amounts of vasculature forming for conditions 

delivering hMSCs in crosslinked GHPA gels compared to the control condition where hMSCs were 

delivered in non-crosslinked GHPA, similar to what was shown with mMSCs in Figure 4.7. However, 

we noted 2 key differences: 1) in immunodeficient mice with hMSCs, even control conditions induced 

angiogenesis throughout the construct while in the mMSC experiment, angiogenesis was limited to 

the surface area for the control, and 2) in the hMSC experiment, all conditions showed angiogenesis 

closer to the surface in the cross-sectionals and mostly lacked vascularization in the center. For the 

first observation, we believe that the altered immune system in immunodeficient mice may have 

prevented or delayed the formation of fibrous capsule around the control condition, which would have 

limited vascularization to the surface. For the second observation, it may be attributed to the fact that 

hMSCs did not undergo significant endothelial differentiation in vitro (Figure 5.4) as mMSCs did. 

Lastly, due to small biological replicates (N=2), the error bars in Figure 5.5B are quite large. It is 

possible that hMSCs from donor 2 more readily differentiates into endothelial cells and supports 

angiogenesis in vivo. While the results are incomplete, we observed promising trends with hMSC 

delivery through in situ crosslinked GHPA. Similarly, future work would require performing and  
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Figure 5.5. In vivo angiogenesis in hMSCs delivered via GHPA. Representative confocal 
images of functional vasculaturere from 2 donor-derived hMSCs shown in (A) with blue lines 
tracing the implants. ImageJ was then used to quantify angiogenesis in (B). 

	
  

 
 



 64 

repeating experiments and further analyses at the gene and protein levels.  

 

5.4 Conclusions and Future Directions 

 While significant work remains to be completed, our preliminary results have identified key 

integrins necessary for efficient material-driven endothelial differentiation of mMSCs, where the 

blocking of integrin alpha v/beta 3 and integrin alpha 1 with inhibitors visibly attenuated the hMSC 

interactions with GHPA to differentiate into endothelial cells. Additionally, We have aimed to take our 

interesting findings with mMSCs to the next level with hMSCs to assess the translationability of our 

delivery platform. Our preliminary results from replicating the experiments with patient-derived hMSCs 

showed that hMSCs by themselves do not sufficiently undergo endothelial differentiation in vitro, and 

their angiogenic effects in vivo, while limited in magnitude compared to mMSCs, appear to be 

strengthened when delivered via crosslinked GHPA. It would be desirable to first optimize the 

endothelial differentiation process of hMSC in GHPA. For example, the addition of VEGF may 

successfully drive endothelial differentiation of hMSCs in GHPA gels.  Additionally, the next logical 

experiment would be to apply this platform in a more relevant model, such as the hindlimb ischemia 

model where therapeutic angiogenic effects could be measured more holistically.  

We believe that understanding how MSCs interacts with materials to differentiate into desirable 

cell types could pave the way for rational design of the next-generation biomaterials that support 

tissue survival and seamless integration with the host tissues. For example, based on our findings, an 

even more angiogenic material could be engineered where additional ligands for integrins that were 

shown to be crucial in endothelial differentiation are presented in the most effective way. While the 

weak mechanical properties of the GHPA hydrogels as formulated in our studies may not be 

appropriate for all tissue engineering applications, GHPA may be an excellent material to be used as 

an element where vascularization is necessary in combination with patient-derived MSCs.  

 



 65 

5.5 References 

[1]  Lee, S. H., Lee, Y., Chun, Y. W., Crowder, S. W., Young, P. P., Park, K. D., & Sung, H. J. 
(2014). In situ crosslinkable gelatin hydrogels for vasculogenic induction and delivery of 
mesenchymal stem cells. Advanced functional materials, 24(43), 6771-6781. 

[2] Trappmann, B., Gautrot, J. E., Connelly, J. T., Strange, D. G., Li, Y., Oyen, M. L., ... & Spatz, 
J. P. (2012). Extracellular-matrix tethering regulates stem-cell fate. Nature materials, 11(7), 
642-649. 

[3] Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem 
cell lineage specification. Cell, 126(4), 677-689. 

[4] Oswald, J., Boxberger, S., Jørgensen, B., Feldmann, S., Ehninger, G., Bornhäuser, M., & 
Werner, C. (2004). Mesenchymal stem cells can be differentiated into endothelial cells in 
vitro. Stem cells, 22(3), 377-384. 

[5] Hynes, R. O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. 
  Cell, 69(1), 11-25. 
[6] Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature 

Reviews Cancer, 2(2), 91-100. 
[7] van der Flier, A., & Sonnenberg, A. (2001). Function and interactions of integrins. Cell and 

tissue research, 305(3), 285-298. 
[8] Chinwalla, A.T., Cook, L.L., Delehaunty, K.D., Fewell, G.A., Fulton, L.A., Fulton, R.S., Graves, 

T.A., Hillier, L.W., Mardis, E.R., McPherson, J.D. and Miner, T.L., 2002. Initial sequencing and 
comparative analysis of the mouse genome. Nature, 420(6915), pp.520-562. 

[9] Bochev, I., Elmadjian, G., Kyurkchiev, D., Tzvetanov, L., Altankova, I., Tivchev, P., & 
Kyurkchiev, S. (2008). Mesenchymal stem cells from human bone marrow or adipose tissue 
differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell biology 
international, 32(4), 384-393 

[10] Marcinkiewicz, C., Weinreb, P. H., Calvete, J. J., Kisiel, D. G., Mousa, S. A., Tuszynski, G. P., 
& Lobb, R. R. (2003). Obtustatin A Potent Selective Inhibitor of α1β1 Integrin in vitro and 
Angiogenesis in vivo. Cancer Research,63(9), 2020-2023. 

[11] Choi, Y., Kim, E., Lee, Y., Han, M. H., & Kang, I. C. (2010). Site-specific inhibition of integrin 

αvβ3-vitronectin association by a ser-asp-val sequence through an Arg-Gly-Asp-binding site 
of the integrin. Proteomics, 10(1), 72-80. 

[12] Fraley, S. I., Feng, Y., Krishnamurthy, R., Kim, D. H., Celedon, A., Longmore, G. D., & Wirtz, 
D. (2010). A distinctive role for focal adhesion proteins in three-dimensional cell 
motility. Nature cell biology, 12(6), 598-604. 

[13] Cukierman, E., Pankov, R., Stevens, D. R., & Yamada, K. M. (2001). Taking cell-matrix 
adhesions to the third dimension. Science, 294(5547), 1708-1712. 

[14] Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical 
research. Nature Reviews Immunology, 7(2), 118-130. 

 
 
 
 
 



 66 

Chapter 6 

 

Significance and Future Directions 

 

6.1 Summary and Significance 

In summary, this work was motivated by the unmet clinical needs for tissue engineering to 

provide necessary organs for the ever-growing patient pool waiting on donated organs. In particular, 

our work sought to address some of the most pressing challenges in translating tissue engineering 

into the clinic: namely, the difficulties in vascularizing engineered tissue constructs. To this end, we 

employed two different approaches to tackle this common barrier. The first approach was to 

incorporate reactive oxygen species (ROS)-degradable peptide into PCL scaffolds that would allow 

better cell infiltration, which led to improved angiogenesis. This work is significant, as our study was 

among the first to apply ROS-sensitive biomaterial for tissue engineering, which has seen extensive 

applications in drug delivery applications thus far. In the second approach, by modifying gelatin to 

form a thermostable hydrogel, a novel interaction between gelatin hydrogel and mesenchymal stem 

cells (MSC) that drove MSC differentiation into blood vessel-forming endothelial cells was discovered 

and examined. This phenomenon is highly desirable and applicable, as GHPA and patient-derived 

bone marrow-derived MSCs can be easily obtained and used to support robust microvasculature 

formation in various engineered tissue constructs. Furthermore, this platform can be easily applied in 

numerous disease contexts to promote angiogenesis in vivo and potentially cure the underlying 

medical conditions. It is our hope that our studies brought renewed interest in using universally 

accessible and biofunctional gelatin to promote angiogenesis in tissue engineering for successful 

implantation and that we demonstrated a successful use of mesenchymal stem cells isolated from the 

patients as a vascular cell source to form functional vasculature.  

Thus, the strengths of our approaches in this work primarily lie in 1) utilizing accessible 
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materials and cells as well as easy fabrication and application of the developed platforms that could 

expedite the scale-up and clinical translation/adoption processes, and more importantly 2) illuminating 

design principles that could be widely applied in tissue engineering. As such, the findings and 

platforms developed from this work are clinically relevant and translatable. Additionally, the insights 

gained from our studies add to our understanding of fundamental biological and physiological 

processes that were previously unexplored. In a way, such novel approaches not only have practical, 

clinical implications, but they also allow for new biological, physiological questions to be asked and 

explored. On the other hand, the weaknesses of our work primarily stem from the difficulties in 

pinpointing the exact mechanisms driving the desirable effects, such as increased cell infiltration, 

enhanced angiogenesis and MSC differentiation into endothelial cells, due to the innately coupled 

nature of the variables in each system. Suggestions to address these weaknesses are explored in 

section 6.2.  

 Lastly, this work has highlighted the need for an exhaustive and systematic evaluation of 

various factors within each system, in order to derive universally applicable design principles. It is our 

belief that elucidating such guiding principles with more clarity would pave the way for tissue 

engineering to enter the clinic in a timely manner and make a lasting impact on the lives of the 

patients.  

 

6.2 Future Directions 

A significant limitation in this work is the innately coupled nature of the variables within the 

systems, which makes it difficult to tease out the exact mechanisms for the observed effects. 

Specifically, in Aim 1, incorporating the ROS-cleavable peptide KP7K not only resulted in the ROS-

degradability of the scaffold as a whole, but it also led to increased cell infiltration, which likely led to 

enhanced angiogenesis in ROS-degradable scaffolds. Thus, one may ask if the increased cell 

infiltration and enhanced angiogenesis are due to the ROS-degradability of the scaffolds or to the 
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non-specific protein-binding motif that KP7K offers which may facilitate cell binding and migration into 

the scaffold. One way to decouple these effects would be to introduce antioxidants in the cell culture 

media, which would scavenge ROS generated from the cells and leave the ROS-degradable KP7K 

peptides/scaffold intact. If cell infiltration remains enhanced, then it may mean that the ROS-

degradable peptide also inherently promotes cell binding and infiltration due to its protein-binding 

motif. In the opposite case, it may mean that the cell infiltration is made possible due to the 

degradation of the scaffold with the concurrent formation of numerous pores that may physically allow 

better cell infiltration. Decoupling these effects would add valuable insights in designing 

multifunctional biomaterials. 

Similarly, in Aim 2, we observed that culturing MSCs in GHPA gel resulted in the endothelial 

differentiation of MSCs. While it is clear that the differentiation is purely material-driven by design, it 

remains uncertain which properties of the material is/are in charge of this desirable effect: mechanical 

properties, use of H2O2 and HRP, certain cell-recognition/binding sites in gelatin or any combination 

of these factors. It appears likely that the mechanical properties may have an effect on MSC 

differentiation as many other studies have shown.[4-6] It is also entirely possible that the initial 

oxidative insult by residual H2O2 from crosslinking and the following cell death may have selected for 

MSCs prone to adapt and differentiate. Lastly, gelatin may present certain cell-binding/recognition 

sites that may promote MSC differentiation into certain lineages. One way to decouple some of these 

variables and their effects on MSC differentiation would be to mimic this system with other polymers, 

such as poly(ethylene glycol) hydroxyphenyl propionic acid to test the effect of gelatin-specific cell-

binding sites or to use gelatin hydrogel with an alternate crosslinking method such as the UV-

crosslinkable gelatin-methacrylate to test the effect of H2O2 and HRP on MSC differentiation. For 

example, if the PEG-HPA still exerts the same effect on MSCs to differentiate into endothelial cells, 

then we may rule out gelatin-specific cell-binding sites as the driving force of the differentiation. 

Similarly, if gelatin-methacrylate also promotes MSC differentiation into endothelial cells without the 
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use of H2O2 and HRP, then we can rule out these crosslinking agents as necessary factors for 

differentiation. Such exhaustive and systematic evaluation of various factors and decoupling their 

effects would be instrumental in deriving universally applicable design principles that could 

significantly advance the field of tissue engineering as a whole, and those principles can be applied in 

various shapes and forms, tailored to each potential application while delivering the expected 

outcomes.  

Apart from decoupling variables to derive guiding principles, another limiting aspect of this 

work is the simple subcutaneous implantation rodent model used for our proof-of-concept studies. 

First, subcutaneous implantation is not a pathophysiologically-relevant model and lacks applicable 

disease-specific contexts. Since our work showed the improved angiogenesis with ROS-degradable 

scaffolds in Aim 1 and MSCs delivered in GHPA hydrogels in Aims 2&3, we could further apply these 

approaches in a more relevant disease model such as the hind limb ischemia model or myocardial 

infarction model, where enhanced angiogenesis may serve a therapeutic function and significantly 

improve the outcomes. Secondly, we have used mice for our experiments, however, it is well-known 

that hundreds of successful therapies in mice have failed to successfully translate in human patients 

due to a number of interspecies differences, with noticeably different immune systems in rodents vs 

humans being one significant source of differences.[1] As an example, in Aim 3 we have also 

observed the drastic differences in how murine MSCs vs human MSCs respond when cultured in 

GHPA hydrogels. Therefore, in order to better simulate human response future experiments should 

consider using humanized mice or large animal models in pigs that better mimic human 

physiology.[2,3]  

Our approach is immediately applicable and clinically translatable in that the current form of 

minimally invasive delivery of MSCs and GHPA itself can be directly applied and tested for 

therapeutic efficacy in treating various ischemic conditions. Furthermore, our approach can in the 

future become a part of other tissue engineering applications to address a critical need for rapid 



 70 

vasculature formation to ensure the survival and proper functioning of the constructs for treating 

numerous conditions and improving the lives of the patients.  
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