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CHAPTER I 

 

INTRODUCTION 

 

Dopamine and Disorders of Dopamine Dysregulation: 

The neurochemical dopamine (DA) is an important modulator in the 

central nervous system (CNS) implicated in a wide range of behavioral, cognitive, 

and homeostatic functions.  Due to the fact that dopamine systems are involved 

in a variety of regulatory functions, dysregulation of dopaminergic 

neurotransmission often results in clinical phenotypes. 

Imbalances in dopamine signaling appear to contribute to a variety of 

disorders including those of movement (ex: Parkinson’s disease), executive 

function (ex: attention-deficit hyperactivity disorder (ADHD)), psychiatric 

disorders (ex: schizophrenia) and drug addiction (Kiyatkin, 1995b, Goldman-

Rakic, 1998b, Nestler, 2001, Moore, 2003, Girault and Greengard, 2004, Arnsten 

and Li, 2005, Biederman and Faraone, 2005, Kalivas and Volkow, 2005).  

Although clinical phenotypes usually become apparent only later in life for many 

of these disorders, developmental abnormalities in dopaminergic circuit formation 

and connectivity may contribute as dopamine and its receptors can be detected 

very early in the developing brain across species (Frederick and Stanwood, 

2009).  Additionally, dopamine has been shown to directly modulate specific 

developmental processes in the forebrain that, if altered, can result in abnormal 
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brain development and potential manifestation of clinical behaviors (Metin et al., 

2008, Bhide, 2009, Frederick and Stanwood, 2009).  

 

Dopaminergic Pathways in the CNS: 

In the mammalian system, dopaminergic signaling originates within nine 

major groups of dopaminergic neurons classified as the A8-A17 cell groups.   

These groups are divided by their anatomical locations and represent midbrain 

dopamine neurons (groups A8-A10), diencephalic neurons (A11-A15), olfactory 

neurons (A16), and dopaminergic cells in the retina (A17) (Bjorklund and 

Dunnett, 2007).  Figure 1 shows the distribution of dopamine neuron cell groups 

in the rodent brain. 

 
 
Figure 1:  Sagittal view through an adult rodent brain depicting the nine 
dopamine neuron cell groups (A8-17) and their major projections.  (Adapted from 
Bjorklund and Dunnett, 2007) 
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The nigrostriatal tract and the mesocorticolimbic pathways, originating in 

the A8-A10 cell groups, are two important dopaminergic pathways in the 

forebrain.  The nigrostriatal projections consist of dopamine neurons with cell 

bodies located primarily in the substantia nigra (SN) pars compacta (A9 cell 

group) with axonal processes terminating in the dorsal striatum also known as 

the caudate putamen.  The striatum is a component of the subcortical basal 

ganglia circuitry that plays an essential role in the coordination of voluntary 

locomotor activity.  The mesocorticolimbic pathway arises in the midbrain ventral 

tegmental area (VTA) (A10 cell group) and can be further divided into the 

mesocortical and mesolimbic routes.  The mesolimbic projections provide input to 

the nucleus accumbens and surrounding structures and are important for 

mediating behaviors associated with motivation, reward (endogenous systems 

and drug abuse) and reinforcement.  The cortical projections, on the other hand, 

terminate in limbic cortical regions including the prefrontal cortex (PFC) and 

anterior cingulate cortex (ACC) to regulate cognitive and executive functions 

including attention (Weinberger et al., 1988, Fuxe et al., 2006, Pierce and 

Kumaresan, 2006, Bjorklund and Dunnett, 2007, Palmiter, 2011). 

 
 
Dopamine Receptors: Overview 

The physiological response to dopamine is mediated through five distinct 

dopamine receptors; the first two of which (the D1 and D2 dopamine receptors) 

were described in 1979 (Kebabian and Calne, 1979). The other three receptors, 

the D3, D4, and D5 dopamine receptors, were not cloned from the human genome 

until over a decade later and were subsequently grouped with either the D1 or D2 
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receptor based on their pharmacological profiles, sequence homology and signal 

transduction systems (Sokoloff et al., 1990, Sunahara et al., 1991, Van Tol et al., 

1991). 

Dopamine receptors are seven-transmembrane guanine nucleotide 

binding protein (G-protein) coupled receptors (GPCRs).  The receptors interact 

through the third intracellular loop with specific G-proteins to induce intracellular 

second messenger signaling cascades including regulation of calcium and 

potassium channels on the postsynaptic cell.  Additionally, there is also auto-

regulatory influence of dopamine through presynaptic receptor activation of 

receptors in the dopamine D2-like receptor family (Freissmuth et al., 1989, 

Strader et al., 1994, Jaber et al., 1996, Missale et al., 1998, Beaulieu and 

Gainetdinov, 2011).  Transmitter action at receptors is terminated by a number of 

regulatory mechanisms, including desensitization, down-regulation of receptor 

expression and clearance of the transmitter.  Dopamine is cleared by re-uptake 

into the presynaptic terminal by a high affinity plasma membrane dopamine 

transporter (DAT) in most regions (or the norepinephrine transporter (NET) in the 

cortex) and by enzymatic degradation by monoamine oxidase (MAO) or catechol-

-methyl transferase (COMT) (Jaber et al., 1996, Missale et al., 1998, Beaulieu 

and Gainetdinov, 2011). 

 

Dopamine Receptors: Classification and Expression 

The D1-like receptor family is comprised of the D1 and D5 receptor 

subtypes.  These receptors share 80% transmembrane homology and have 
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similar pharmacologic profiles making it difficult for any known compound to fully 

discriminate between the two receptors (Sunahara et al., 1991, Tiberi et al., 

1991, Tiberi and Caron, 1994).  The D1 receptor is expressed more globally 

throughout the brain and at higher levels than any of the other dopamine 

receptors.  The D5 receptor, by comparison, is much more modestly expressed in 

the brain and is primarily concentrated in the hippocampus, lateral mammillary 

nucleus and the parafasicular nucleus of the thalamus; areas where the D1 

receptor is not significantly expressed (Missale et al., 1998, Beaulieu and 

Gainetdinov, 2011).  In regions such as the prefrontal cortex and striatum where 

both D1 and D5 receptors are expressed, it has been shown that the receptor 

subtypes localize to different cellular locations and populations of cells.  For 

example, on cortical pyramidal cells in the primate brain, subtype-specific 

antibodies were used to demonstrate that D1 receptors are concentrated in 

dendritic spines while D5 receptors are localized to dendritic shafts.  Additionally, 

D5 receptors have been shown to be expressed on cholinergic interneurons in 

the cortex and striatum while D1 receptors are located primarily on pyramidal 

neurons and medium spiny neurons (MSNs), respectively (Bergson et al., 1995, 

Wang et al., 1997, Khan et al., 2000, Berlanga et al., 2005).   

The D2-like receptor family is comprised of the dopamine D2, D3, and D4 

receptor subtypes.  The D2 and D3 receptors share a high degree of sequence 

homology with 52% amino acid homology overall and 75% homology within their 

transmembrane domains (Sokoloff et al., 1990).  The dopamine D4 receptor is 

less conserved; however, sharing only 41% overall and approximately 50% 
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transmembrane homology with the D2 receptor (Van Tol et al., 1991).  Of the 

three D2-like receptor subtypes, the D2 receptor proper is most widely and 

abundantly expressed in the mammalian brain, where is it is found predominantly 

in the striatum, nucleus accumbens, cortex, olfactory tubercle, hippocampus, 

amygdala and the hypothalamus.  The D3 receptor has a more limited and 

specific pattern of distribution than the D2 receptor; concentrated primarily in 

limbic brain regions including the shell of the nucleus accumbens, the olfactory 

tubercle, and the islands of Calleja (Sokoloff et al., 1990, Missale et al., 1998, 

Stanwood et al., 2000, Beaulieu and Gainetdinov, 2011).  The distribution 

patterns of D2 and D3 receptors are therefore overlapping in some regions, 

however, receptor binding studies with radioactive ligands have shown that D2 

receptor expression is at least twice as abundant as D3 receptor expression in 

regions where both receptors are expressed (Sokoloff et al., 1990, Levesque et 

al., 1992, Gurevich and Joyce, 1999).  The D4 dopamine receptor subtype has a 

widespread distribution in the mammalian brain and appears to be concentrated 

in the frontal cortex, amygdala, hippocampus, hypothalamus and the retina (Van 

Tol et al., 1991, Defagot et al., 1997, Missale et al., 1998, Beaulieu and 

Gainetdinov, 2011).  Particularly within the cortex, signaling through the D4 

receptor subtype has been shown to be important in modulating specific 

functions (Lauzon and Laviolette, 2010, Rondou et al., 2010, Lauzon et al., 2011) 

including glutamatergic neurotransmission in pyramidal neurons (Wang et al., 

2003, Yuen et al., 2010, Yuen and Yan, 2011), modulation of GABAA receptor 

currents (Wang et al., 2002, Graziane et al., 2009) and regulation of calcium                              
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(Ca2+)/ calmodulin (CaM)-dependent protein kinase II CaMKII) (Gu and Yan, 

2004, Lauzon et al., 2011).  Furthermore, mutations and polymorphic variants in 

DRD4, the gene that encodes the D4 receptor, have been shown to alter receptor 

function and have been implicated in a variety of disorders including ADHD and 

schizophrenia (DiMaio et al., 2003, Jonsson et al., 2003, Tarazi et al., 2004, 

Lauzon and Laviolette, 2010, Rondou et al., 2010, Ptacek et al., 2011).  

Additionally, D1 and D2 receptor protein expression has been observed in 

the SN pars reticulata and the external segment of the globus pallidus; regions of 

the basal ganglia circuit that receive input from MSNs in the striatum. Dopamine 

receptor mRNA has not been detected in these regions, however, indicating that 

dopamine receptors in these regions are present on MSN projections from the 

striatum (Jaber et al., 1996, Missale et al., 1998). 

 

Dopamine Receptors: Signaling 

Dopamine receptors couple to G-proteins which serve as signal 

transducers between the membrane-bound receptors and intracellular effector 

systems.  G-proteins exist in hetero-trimeric complexes composed of a G 

subunit in association with G which exists as a functional dimer.  Activation of 

the G-protein complex is controlled by a regulatory cycle involving receptor-

activated exchange of GDP for GTP on G, dissociation of the trimer, activation 

of effector molecules, and inactivation through the GTPase activity of 

G(Freissmuth et al., 1989, Strader et al., 1994).   
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D1-like receptors couple to stimulatory Gs proteins to increase adenylyl 

cyclase (AC) activity in most brain regions (Kebabian and Calne, 1979).  In the 

striatum, however, D1 receptor signaling is mediated by Golf, a stimulatory G-

protein which exists in greater abundance than Gs in that region (Zhuang et al., 

2000, Corvol et al., 2001, Herve et al., 2001).  D2-like receptors have antagonistic 

functions to D1-like receptors; coupling to Gi/o to inhibit cyclase activity 

(Kebabian and Calne, 1979).  Downstream of cyclase activity, the two classes of 

receptors differentially regulate the activity of cyclic adenosine monophosphate 

(cAMP) and dependent proteins.  One such protein, cAMP-dependent protein 

kinase A (PKA), is a kinase that phosphorylates a large number of substrates 

including the dopamine and cAMP-regulated phosphoprotein of 32kDa (DARPP-

32), a cytosolic protein that is enriched in dopaminoceptive neurons.  PKA 

phosphorylates DARRP-32 on residue Thr34 thus converting DARPP-32 into a 

potent inhibitor of protein phosphatase 1 (PP1).  The balance of PKA/PP1 

thereby regulates the phosphorylation of DARPP-32-Thr34, which modulates 

PKA/PP1 in a feedback loop, and the phosphorylation state of many downstream 

effectors including -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA)-type glutamate receptors (Greengard, 2001, Neve et al., 2004, 

Svenningsson et al., 2004).  Within the C-terminal domain of the GluR1 subunit, 

there are two major phosphorylation sites, one of which, residue Ser845, is 

regulated by PKA.  Dopamine receptor-mediated regulation of PKA and DARPP-

32 therefore has a role in regulating neuronal excitability through influencing the 

function of AMPA receptor GluR1 phosphorylation state.  Phosphorylation at 
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GluR1-Ser845 increases the peak open probability and surface expression of 

AMPA receptors, thereby enhancing AMPA currents and neurotransmission 

(Carvalho et al., 2000, Wang et al., 2005, Santos et al., 2009). 

The second major GluR1 phosphorylation site is regulated by CaMKII; an 

enzyme that is highly enriched in the postsynaptic density (PSD) and central to 

synaptic transmission and plasticity.  Following increased calcium signal, Ca2+/ 

CaM binds to the regulatory domain of the kinase thereby activating the molecule 

for phosphorylation of exogenous substrates as well as autophosphorylation at 

residue Thr286.  Autophosphorylation at residue Thr286 renders activity of 

CaMKII independent of Ca2+/CaM regulation and persists after the initial 

calcium signal has subsided. In this way, CaMKII is able to convert transient 

calcium signals into longer-lasting changes in synaptic activity (Colbran and 

Brown, 2004).  CaMKII phosphorylates AMPA GluR1 at Ser831 thus increasing 

AMPA receptor conductance and enhancing neuronal activity (Carvalho et al., 

2000, Wang et al., 2005, Santos et al., 2009).  Dephosphorylation of CaMKII is 

mediated by PP1 which is also localized at the PSD and has a role in regulating 

AMPAR functions, as previously described (Carvalho et al., 2000, Colbran and 

Brown, 2004, Wang et al., 2005, Santos et al., 2009). 

Dopamine D1 receptor-mediated regulation of intracellular Ca2+ 

mobilization and CaMKII has been described(Lee et al., 2004, Zhen et al., 

2004, So et al., 2005, Rashid et al., 2007, Ng et al., 2010); thus providing a 

second mechanism by which dopamine can modulate glutamatergic signaling 

and neurotransmission.  In this mechanism, D1 receptors are reported to couple 
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to Gq to activate phospholipase C (PLC) and generate inositol triphosphate (IP3) 

and diacylglycerol second messengers from PLC-mediated phosphatidylinositol 

(PI) metabolism.  Liberated IP3 then binds intracellular receptors to release Ca2+ 

from intracellular stores and activate Ca2+ sensitive molecules such as CaMKII 

(Freissmuth et al., 1989, Undie et al., 1994, Wang et al., 1995, Jin et al., 2001, 

Jin et al., 2003, Rashid et al., 2007).   

Although D1 receptor-mediated PI signaling has been previously described 

(Undie and Friedman, 1990, Undie et al., 1994, Jin et al., 2003), the mechanism 

remained elusive as D1 receptor agonist-induced IP3 accumulation and some 

behaviors thought to be mediated by D1 receptors signaling in this pathway were 

conserved in D1 receptor knockout mice (Friedman et al., 1997, Clifford et al., 

1998, Clifford et al., 1999).  In 2007, however, Rashid et. al. (Rashid et al., 2007) 

suggested that D1 receptor-mediated PI signaling was resultant from complexes 

containing D1 and D2 receptor heteromers coupled to Gq.  In this mechanism, 

dopaminergic stimulation of neurons that co-express D1 and D2 receptors would 

activate the Gq pathway, triggering Ca2+ release and activation of CaMKII(Lee 

et al., 2004, Zhen et al., 2004, So et al., 2005, Rashid et al., 2007, Ng et al., 

2010).  Although the biological significance of a D1/D2 receptor pathway coupled 

to Gq remains unknown; signaling in this pathway has been implicated in a 

variety of physiological processes including the production of brain-derived 

neurotrophic factor (BDNF) (Hasbi et al., 2009), neuronal growth (Hasbi et al., 

2009), modulation of fibroblast growth factor (FGF)-2 in astrocytes (Zhang et al., 

2009), inhibition of high-voltage Ca2+ currents in the striatum (Ma et al., 2009), 
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facilitation of long-term depression in the hippocampus (Liu et al., 2009b) and 

spontaneous glutamate release in the cortex (Chu et al., 2010).  Additionally, the 

D1/D2 receptor heteromer has been implicated in pathological conditions; 

radioligand binding studies reveal an increased proportion of heteromers in the 

high-affinity state following repeated amphetamine treatment and in the post-

mortem brain tissue of individuals that suffered with schizophrenia (Perreault et 

al., 2010). Furthermore, increased association between D1 and D2 receptors has 

also been described in the post-mortem brain tissue of individuals who suffered 

from depression as assessed using co-immunoprecipitation techniques (Pei et 

al., 2010).  

  It is recognized, however, that a signaling mechanism involving 

heteromer formation between D1 and D2 dopamine receptors is not feasible in all 

brain regions as D1 and D2 receptors are not co-expressed in most neurons.  Use 

of Bacterial Artificial Chromosome (BAC) transgenic mice that express 

fluorescent proteins under the control of the D1 or D2 receptor promoter have 

allowed for the visualization of cells that co-express these receptor subtypes.  

Within the striatum, for example, it has been convincingly demonstrated that 

MSNs are largely segregated into two distinct pathways, defined as the direct or 

indirect pathways based on their terminal projections, which express either D1 or 

D2 receptors, respectively.  Only 5-10% of cells in this region, however, have 

been shown to co-express both receptors.  Co-expression of D1 and D2 receptors 

has also been demonstrated in the prefrontal cortex of BAC transgenic mice, with 

20-25% of cells expressing both receptors (Shuen et al., 2008, Matamales et al., 
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2009, Valjent et al., 2009, Zhang et al., 2010).  Furthermore, use of double-

labeled fluorescence immunohistochemistry and fluorescence resonance energy 

transfer (FRET) technology has revealed additional regions of D1 and D2 receptor 

co-localization, including the nucleus accumbens and globus pallidus, while 

confirming the segregation of receptors into separate populations in the striatum 

(Perreault et al., 2010).  Signal transduction mediated by a D1/D2 receptor 

heteromer coupled to Gq would constitute a distinct signaling pathway from 

either D1 receptor or D2 receptor activation of Gs/Golf or Gi/o, respectively; and 

one which would be highly regulated in specific brain regions and cells (Sahu et 

al., 2009, Perreault et al., 2011). 

Additionally, D5 receptors have been shown to demonstrate the ability to 

signal through Gq to accumulate IP3 in hippocampal, striatal and cortical 

membranes stimulated with dopamine or D1 receptor agonists; an ability that was 

lost in D5 receptor knockout mice (Sahu et al., 2009).  The mechanism of this 

signaling, however, has been suggested to be distinct from that of the reported 

D1/D2 receptor heteromer (So et al., 2009, Hasbi et al., 2010) as the D1 and D5 

receptor subtypes are largely expressed on different cell populations in the 

striatum (Khan et al., 2000, Berlanga et al., 2005). 
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Figure 2:  Dopamine D1 receptor activation increases adenylyl cyclase activity to 
increase cAMP and PKA activity.  Activation of D2 receptors, on the other hand, 
has opposing functions and reduces activity of PKA.  Additionally, it has been 
reported that D5 receptors and D1/D2 receptor heteromers are able to couple and 

signal through Gq to stimulate PI hydrolysis, IP3 formation and intracellular 
calcium release.  
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Dopamine Receptors: Expression in the Striatum and Direct/Indirect 

Pathways 

The dopamine D1 and D2 receptor subtypes possess distinct cellular 

distributions within the striatum where they are involved in modulating basal 

ganglia locomotor circuits.  Within the striatum, dopaminergic axons from the SN 

pars compacta innervate -aminobutyric acid (GABA)ergic MSNs which account 

for approximately 90% of the cellular population.  Also forming synaptic contacts 

on the dendritic arbors of MSNs are descending corticostriatal glutamatergic 

inputs and those projections coming from the thalamus.  As mentioned, MSNs 

are largely segregated into two populations based on expression of dopamine 

receptors and axonal projections.  MSNs primarily expressing dopamine D1 

receptors, and co-expressing the peptide substance P, project directly to the SN 

pars reticulata in the striatonigral pathway. Those cells enriched in D2 receptors 

and additionally expressing enkephalins, project to the SN pars reticulata via an 

indirect route involving intermediate synapses in the globus pallidus and the 

subthalamic nucleus; the striatopallidal pathway.  The SN pars reticulata then 

relays signals to the thalamus and motor cortex (stimulatory in the case of the 

direct pathway or inhibitory from the indirect) for the control of voluntary 

movement (Gerfen, 1992, Albin et al., 1995, Shuen et al., 2008). 
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Figure 3: Direct and Indirect motor pathways of the basal ganglia are modulated 
by dopaminergic input.  In the direct pathway, D1 receptor stimulation in the 
striatum acts to increase activity in the circuit, while D2 receptors in the indirect 
pathway act to reduce input to the cortex. The light grey lines represent 
excitatory pathways mediated by glutamatergic neurotransmission, and the 
darker lines show inhibitory projections mediated by GABA; projections from the 
Substantia Nigra pars compacta (SNc) to the striatum, however, are mediated by 
dopamine and are depicted as excitatory (light grey) or inhibitory (dark grey) 
based on the dopamine receptors activated (D1 or D2 receptors respectively) in 
the striatal MSNs.  
(Adapted from http://functionalneurosurgery.net/parkinsonsurgery.htm) 
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Dopamine and Locomotion: 

Dopamine neurotransmission plays a fundamental role in normal 

functioning of the basal ganglia and an extensive literature exists on the role of 

dopaminergic signaling in modulating locomotor behaviors (Beninger, 1983, 

Fishman et al., 1983, Waddington and O'Boyle, 1987, 1989, Gerfen, 1992, 

Jackson and Westlind-Danielsson, 1994, Missale et al., 1998, Beaulieu and 

Gainetdinov, 2011).  The identification of selective D1-like and D2-like receptor 

ligands has been instrumental in dissecting the roles of the individual receptor 

subtypes as well as the interactions between the two dopamine signaling 

systems in mediating specific aspects of behavior.  In addition, the creation of 

dopamine receptor knockout mice has provided an invaluable genetic tool to 

investigate these functions.  Furthermore, evaluation of knockout mice has 

largely revealed phenotypes resembling those observed with pharmacological 

manipulations using selective ligands.  

Multiple lines of evidence, using pharmacological and genetic approaches, 

indicate that locomotor activity is primarily controlled by post-synaptic D1 receptor 

stimulation and D2 and D3 dopamine receptors expressed at both pre- and 

postsynaptic locations (Waddington and O'Boyle, 1989, Jackson and Westlind-

Danielsson, 1994, Waddington et al., 1995).  It should be noted that there are 

two splice variants of the D2 dopamine receptor, D2 long (D2L) and D2 short (D2S) 

receptor variants that are differently distributed within these pre- and post-

synaptic neuronal population; D2S receptors being predominantly presynaptic in 
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location while the D2L receptor isoforms are found predominantly at postsynaptic 

sites (Usiello et al., 2000, De Mei et al., 2009).   

D1 receptor stimulation by selective agonists increases locomotor activity 

that can be blocked by the D1 receptor antagonist, SCH23390; indicating the 

importance of D1 receptors in locomotor activation (Molloy et al., 1986, 

Waddington and O'Boyle, 1989, Xu et al., 1994b).  Furthermore, evaluation of D1 

receptor knockout mice revealed a phenotype of normal or increased locomotor 

activity (depending upon the originating line) (Drago et al., 1994, Xu et al., 1994b, 

Waddington et al., 2001, Waddington et al., 2005), that was not altered by 

administration of D1 receptor agonists or SCH23390 (Xu et al., 1994b, 

Waddington et al., 2001, Waddington et al., 2005).   These mice were originally 

created on a mixed background, however, later studies in mutant mice on a 

congenic C57Bl/J background also revealed a hyperactive phenotype 

(McNamara et al., 2003).  An additional phenotype of blunted habituation 

(thereby increasing activity compared to wildtype over time) was also observed in 

these mice (McNamara et al., 2003).  Taken together, these data not only 

demonstrate a role for the D1 receptor in the locomotor activating properties of 

dopaminergic ligands, but also validates the in vivo selectivity of the D1 receptor 

ligands that had been previously demonstrated using receptor binding 

techniques.   Additionally, D1 receptor null mice did not increase their locomotor 

activity in response to cocaine, a psychostimulant drug that elicits a profound 

locomotor response in wildtype mice (Xu et al., 1994a, Drago et al., 1998).   
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Modulation of locomotor activity by D2-like receptors is more complex.   

Presynaptic autoreceptors generally provide an important negative feedback 

mechanism that adjusts neuronal firing rate, synthesis, and release of dopamine 

in response to changes in extracellular levels of dopamine.  These receptors, 

therefore, generally decrease dopamine release when stimulated resulting in 

decreased locomotor activity (Jackson and Westlind-Danielsson, 1994, Beaulieu 

and Gainetdinov, 2011).  Stimulation of postsynaptic receptors, on the other 

hand, generally increases locomotor activity (Molloy et al., 1986).   

Additionally, D2-like autoreceptors are generally activated by lower 

concentrations of dopaminergic agonists than those necessary to activate 

postsynaptic receptors; a mechanism by which the same agonist can induce a 

biphasic locomotor response with decreased activity at low doses and locomotor 

activation at higher doses (Waddington and O'Boyle, 1989, Jackson and 

Westlind-Danielsson, 1994, Beaulieu and Gainetdinov, 2011).  Consistent with 

the ability of D2 receptors to increase locomotor responses, behavioral 

characterization of D2 receptor knockout mice revealed an akinetic phenotype 

with significantly reduced spontaneous movement; one that resembled the 

extrapyramidal symptoms associated with Parkinson’s disease (although the 

severity varied dependent upon the line assessed)  (Baik et al., 1995, Kelly et al., 

1998, Clifford et al., 2000, Wang et al., 2000, Waddington et al., 2005).  This 

phenotype was also recapitulated by administration of D2-like receptor 

antagonists (Wadenberg et al., 2000, Waddington et al., 2005) further indicating 

that D2 receptor stimulation is critical for locomotor activation.  
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Furthermore, it is clear that there is a synergic interaction between 

simultaneous activation of D1-like and D2-like dopamine receptors that is 

necessary for maximal stimulation of locomotor activity (Carlson et al., 1987, 

White et al., 1988, Jackson and Westlind-Danielsson, 1994).  Mutant mice with 

simultaneous knockout of the D1 and D3 receptor subtypes or the D2 and D3 

receptors have been evaluated to address these interactions between receptor 

subtypes (Hu and White, 1994, Jung et al., 1999, Karasinska et al., 2000, Wong 

et al., 2003).  Additionally, D1/D2 receptor knockouts have been created, however 

concurrent deletion of the D1 and D2 receptors is not compatible with postnatal 

life (Kobayashi et al., 2004). 

Pharmacological manipulation of D3 receptor signaling with D3 receptor-

preferring ligands (over D2 receptors) and D3 receptor knockout mice suggests 

that activation of D3 dopamine receptors exerts an inhibitory effect on locomotion; 

either by acting as autoreceptors or through the involvement of postsynaptic 

receptor populations.  D3 receptor-preferring agonists have been shown to inhibit 

locomotor activity (Daly and Waddington, 1993, Sokoloff and Schwartz, 1995) 

whereas D3-preferring antagonists evoke motor activation (Waters et al., 1993, 

Sokoloff and Schwartz, 1995).  Additionally, D3 receptor knockout mice have 

been shown to exhibit heighted basal locomotor activity in some studies (Accili et 

al., 1996, Steiner et al., 1997, Xu et al., 1997, Joseph et al., 2002), although this 

phenotype has not been observed in all strains tested (Waddington et al., 2005). 

Lastly, the role of the D5 and D4 receptor subtypes in modulating 

locomotor activity has yielded inconclusive results.  Initial phenotypic 



20 
 

characterization of D5 receptor knockout mice revealed a hyperactive phenotype, 

while other characterizations revealed no differences or reduced activity (Sibley, 

1999, Holmes et al., 2001, Elliot et al., 2003, Waddington et al., 2005).  

Additionally, the lack of D5 receptor-selective ligands makes it impossible to 

pharmacologically assess the selective contribution of this receptor to locomotor 

responses.  Similarly, in D4 receptor knockout mice, initial evaluation indicated a 

hypoactive phenotype in these mice (Rubinstein et al., 1997), however that was 

later shown to be likely due to novelty and not a pure motor phenotype (Dulawa 

et al., 1999, Falzone et al., 2002).  Furthermore, the D4 receptor is not highly 

expressed in the basal ganglia, therefore the contribution of D4 receptors to 

locomotor behaviors likely originates from modulation of glutamatergic input from 

the cortex (where D4 receptors are highly expressed) into the striatum (Rondou et 

al., 2010). 

 

 

Functional Selectivity of GPCRs: 

 
Functional selectivity (also referred to as biased agonism, protean agonism, 

agonist-directed trafficking of receptor stimulus, collateral efficacy, differential 

engagement, or stimulus trafficking) describes the ability of agonists to stabilize 

different active conformations of the same GPCR; thereby resulting in differential 

activation of signaling pathways and cellular responses mediated by a single 

receptor (Mailman, 2007, Urban et al., 2007, Stallaert et al., 2011).  This idea has 

been slow to gain popularity in the field, as classical pharmacology theory would 

suggest that agonist-induced activation of GPCRs is generally a “linear” process; 
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that is, all agonists that activate a particular GPCR do so by stabilizing the same 

conformation of the receptor, which then couples to the same G-protein(s) or 

accessory effector proteins and subsequently activates (or inhibits) the same set 

of intracellular responses (Figure 4A).   The idea of functional selectivity, 

therefore, is seemingly irreconcilable with this premise of classical receptor 

signaling.  More recently, however, an evolving body of literature has 

demonstrated that agonists that activate the same GPCR are capable of 

producing different physiological response profiles through activation of different 

types of G-proteins in vitro and in vivo (Figure 4B) (Mailman, 2007, Urban et al., 

2007, Stallaert et al., 2011).  Additionally, it has been shown that some agonists 

trigger different regulatory processes (including differential recruitment of 

arrestins and G protein-coupled receptor kinases) even when they activate the 

same G-proteins; thereby producing different cellular responses by undergoing 

different mechanisms of desensitization and GPRC-independent signaling (Kelly 

et al., 2008, Porrello et al., 2011, Stallaert et al., 2011).  To date, there are a 

number of examples in the literature of functionally selective ligands at various 

GPCR targets that have been shown to contribute to physiological or 

pathophysiological processes.  Additionally, functionally selective interactions 

across dimers has also been described (Mailman, 2007, Urban et al., 2007, 

Mailman and Murthy, 2010, Patel et al., 2010, Gesty-Palmer and Luttrell, 2011, 

Porrello et al., 2011, Urizar et al., 2011). 

 

 
 



22 
 

 
 

 
 

Figure 4: Functional selectivity of agonists (ag) at GPCRs.  (A) is a schematic of 
the traditional “linear” model of agonist action at a GPCR where both the red and 
yellow agonists  produce the same cellular responses through the same set of G- 
proteins (blue).  Functional selectivity is depicted in (B) where the red and yellow 
agonists each stabilize a different conformation of the same GPCR, thereby 
coupling to different G-proteins (blue or green, respectively) and producing 
different cellular responses.  (Adapted from Kelly et. al., 2008) 
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Functional Selectivity in the Dopamine System: 

Functionally selective ligands, because of their ability to modulate 

differential signaling, can "fine-tune" pharmacological responses; a significant 

advantage for engineering drugs that not only target specific GPCRs, but specific 

signaling pathways for greater therapeutic efficacy with reduced side-effects from 

off-target signaling.  Within the dopamine system, functional selectivity of 

dopamine receptors has been described at the level of G-protein coupling, 

mechanisms of desensitization and GPCR-independent signaling; thereby 

increasing the diversity of mechanisms by which dopamine can modulate cellular 

processes  (Jin et al., 2001, Beaulieu et al., 2005, Ryman-Rasmussen et al., 

2005, Rashid et al., 2007, Ryman-Rasmussen et al., 2007, Mailman and Murthy, 

2010, Beaulieu and Gainetdinov, 2011).  Particularly of interest to us are the D1-

like receptor ligands which have been reported to preferentially activate D1 

receptors coupled to alternative signaling through Gq (Arnt et al., 1992, Andringa 

et al., 1999, Cools et al., 2002, Jin et al., 2003, Rashid et al., 2007).   

The high-affinity benzazepine compound SKF83959 is one such ligand 

that has been reported to show functional selectivity at dopamine D1 receptors.  

SKF83959, a derivative of the prototypic D1 receptor agonist SKF38393 (Setler et 

al., 1978), was classified as a D1 receptor partial agonist, however with a  very 

different pharmacologic profile than previous ligands in this class.  In 1992, Arnt 

and colleagues reported that SKF83959 had no significant agonist activity in 

stimulating adenylyl cyclase in their in vitro system and actually inhibited the 

cyclase-stimulating activity of 100 M dopamine, similar to the reference 
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antagonist SCH23390.  Seemingly contradictory, however, SKF83959 retained 

agonist activity behaviorally; inducing circling behavior and oral stereotypies in 

unilateral 6-hydroxydopamine (6-OHDA) lesioned rats, a rodent model of 

Parkinson’s disease, with similar efficacy as SKF38393 (Arnt et al., 1992).  

These initial biochemical characterizations of SKF83959 were subsequently 

echoed by other laboratories demonstrating antagonistic properties of SKF83959 

both in vitro and in vivo (Andringa et al., 1999, Cools et al., 2002, Jin et al., 

2003).  It was difficult to reconcile biochemical antagonism with the behavioral 

properties of this ligand as studies from a variety of laboratories interested in the 

clinical efficacy of SKF83959 demonstrated that it produced behavioral 

responses similar to other cyclase-stimulating D1 receptor agonists.  

Behaviorally, SKF83959 was shown to elicit intense grooming behavior and 

orofacial movements in rodent models (Downes and Waddington, 1993, Fujita et 

al., 2010), have efficacy in reversing some parkinsonian motor symptoms in both 

rodent and non-human primate (MPTP treated) models of Parkinson’s disease 

(Arnt et al., 1992, Gnanalingham et al., 1995a, Gnanalingham et al., 1995c, b, 

Zhang et al., 2007), and reduce the abuse-related effects of cocaine including its 

self-administration (Bergman et al., 2000, Khroyan et al., 2000, Platt et al., 2001). 

 As it appeared that the efficacy of SKF83959 in stimulating adenylyl 

cyclase did not correlate with its behavioral efficacy, the possibility that 

SKF83959 might activate other signaling systems was explored.  There was 

already evidence in the literature suggesting that dopamine, and some D1 

receptor agonists (SKF38393 for example) could modulate PI metabolism in the 
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amygdala, hippocampus, striatum and frontal cortex (Mahan et al., 1990, Undie 

and Friedman, 1990, 1992, Undie et al., 1994).  These actions were blocked by 

the D1 receptor antagonist SCH23390 (Undie and Friedman, 1990, 1992), co-

stimulation of cAMP with forskolin (Undie and Friedman, 1994) or co-activation of 

PKA with Sp-cAMPS (Undie and Friedman, 1994),  but not by the D2 receptor 

antagonist sulpiride (Undie and Friedman, 1990, 1992).  Dopamine-mediated 

modulation of intracellular calcium currents was also demonstrated (Mahan et al., 

1990, Tang and Bezprozvanny, 2004, Ming et al., 2006, Rashid et al., 2007, Liu 

et al., 2009a).   

As increasing numbers of D1 receptor agonists were assessed for 

biochemical profiling, there was mounting evidence suggesting that D1 receptor 

ligands possessed differential efficacies for activating adenylyl cyclase and/or PI 

metabolism with no correlation between the potencies in the two assays; 

evidence potentially indicating that D1-like receptors mediating PI signaling were 

pharmacologically distinct from classic D1 receptors coupled to adenylyl cyclase 

activity (Felder et al., 1989, Undie and Friedman, 1994, Undie et al., 1994).  In 

1995, Wang et. al. demonstrated the ability of D1 receptors to couple to Gq in rat 

striatum thereby providing a putative mechanism for dopamine-stimulated PI 

signaling through alternate G-protein coupling (Wang et al., 1995).  D1 receptor-

Gq coupling (and Gi to some degree) was later demonstrated in the amygdala, 

hippocampus, and frontal cortex and was additionally shown to be blocked by 

SCH23390 but not by sulpiride (Jin et al., 2001, Jin et al., 2003, Mannoury la 

Cour et al., 2007).  Furthermore, SKF83959 was shown to enhance PI hydrolysis 
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in rat and monkey brain tissue with greater potency than SKF38393, thereby 

attributing a potential signaling mechanism to the behavioral actions of the ligand 

(Panchalingam and Undie, 2001, Jin et al., 2003).  Interestingly, however, 

SKF83959-induced PI hydrolysis was not induced in PC12 cells expressing 

dopamine D1 receptors (Jin et al., 2003).  Additionally, dopamine and SKF38393-

induced IP3 accumulation and co-immunoprecipitation of [3H]SCH23390 binding 

sites with Gq were shown to be retained in the striatum of D1 receptor knockout 

mice.  Accumulation of cAMP, on the other hand, was lost and Gs binding sites 

were greatly reduced (Friedman et al., 1997); further evidence suggesting that 

the classical dopamine D1 receptor may not be the receptor responsible for 

mediating PI hydrolysis. 

 In 2007, the veil of mystery surrounding the molecular identity of the D1-

like dopamine receptor linked to Gq signaling appeared to be lifted.  Rashid et. 

al. reported evidence suggesting that dopaminergic modulation of Gq was 

resultant from activation of heteromeric complexes containing D1 and D2 

dopamine receptors in the striatum.  When activated by the D1 receptor agonist 

SKF81297, an intracellular calcium signal was produced that could be blocked by 

either SCH23390 or the D2 receptor antagonist, raclopride, indicating 

involvement of the D2 receptor (Rashid et al., 2007).  There was some evidence 

in the literature suggesting that SKF83959 had moderate affinity for other 

receptors, including dopamine D2 receptors and alpha adrenergic receptors 

(Andringa et al., 1999, Neumeyer et al., 2003), however previous studies failed to 

establish a role for these receptors in the signaling of SKF83959 (Undie and 
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Friedman, 1990, 1992, Jin et al., 2001).  It was further demonstrated in these 

studies that the D2 receptor agonist quinpirole was unable to stimulate calcium 

release; however, it potentiated the response when co-applied with SKF81297 or 

SKF83959 thereby indicating that D2 receptors were only involved in the 

signaling if co-activated with D1 receptors (Rashid et al., 2007).  Furthermore, 

Rashid et. al. reported the ability of specific D1 receptor ligands to differentially 

stimulate coupling to Gs or Gq; thereby identifying functionally selective ligands 

for activating AC-coupled or PI hydrolysis-coupled D1 receptors (Rashid et al., 

2007).  Consistent with previous reports, SKF83959 was reported to 

preferentially activate D1 receptors coupled to Gq and PI hydrolysis while a 

second benzazepine analog SKF83822 was claimed to selectively activate D1 

receptors coupled to Gs and cyclase activity (Figure 5) (Rashid et al., 2007).  To 

date, SKF83959-induced signaling has been implicated in a variety of 

physiological processes (Kuroiwa et al., 2008, Chen et al., 2009, Liu et al., 

2009a, Fujita et al., 2010, Stolzenberg et al., 2010, Chu et al., 2011, Nimitvilai et 

al., 2012) and some chemical optimization has been done around the ligand for 

development of new compounds with increased potential for drug development 

(Neumeyer et al., 2003, Desai et al., 2007, Zhang et al., 2008). 
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Figure 5: Specific D1-like receptor agonists have been reported to preferentially 

activate Gq and/or Gs signaling pathways.  (Schematic adapted from Rashid et. 

al., 2007) 

 
 
 
Summary: 

SKF83959 is a high affinity dopamine D1 receptor agonist that has been 

reported to preferentially activate D1 receptors coupled to Gq.  This pathway 

results in Pl hydrolysis, intracellular calcium mobilization, and potential activation 

of CaMKII, an important regulator of synaptic transmission.  Although the exact 

mechanism remains unclear, one recent model suggests that SKF83959 

activates D1/D2 receptor heteromeric complexes coupled to Gq.  In order to test 

the hypothesis that SKF83959 exerts its actions by activating D1/D2 receptor 

heteromers coupled to Gq and CaMKII- Thr286 phosphorylation (as a proxy for 

downstream activation), we used pharmacologic approaches (selective 

antagonist compounds) and genetic models (dopamine receptor knockout mice, 
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Gq knockout mice and CaMKII- Thr286Ala knockin mice) to define the signaling 

specificity of SKF83959 using behavioral endpoints (locomotor response and 

orofacial grooming assessment).  Additionally, since Gq knockout mice exhibit a 

motor phenotype, we have further characterized the neurobehavioral phenotype 

and drug-induced locomotor responses of this mutant in order to place our 

SKF83959-induced findings in the Gq null mice into better context.   Lastly, we 

have extended the behavioral characterization of SKF83959 on motor output and 

additionally defined SKF83959-induced effects on anxiety and depressive-like 

behaviors.  
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CHAPTER II 

 

NEUROBEHAVIORAL PHENOTYPING OF Gq KNOCKOUT MICE REVEALS 
IMPAIRMENTS IN MOTOR FUNCTIONS AND SPATIAL WORKING MEMORY 

WITHOUT CHANGES IN ANXIETY OR BEHAVIORAL DESPAIR 
 

Introduction: 

 A large number of neurotransmitter receptors containing seven 

transmembrane domains, including the group I metabotropic glutamate receptors 

mGluR1 and mGluR5, 1 adrenergic receptors and 5HT2 serotonergic receptors, 

mediate their physiological responses by activating heterotrimeric GTP-binding 

(G-) proteins with alpha subunits in the Gq family (Gq) (Pin and Duvoisin, 1995, 

Millan et al., 2008, Cotecchia, 2010, Ribeiro et al., 2010).  The Gq family 

consists of four members: Gq, G11, G14 and G15/16; of which Gq and G11 

represent the major isoforms in the adult brain (Strathmann and Simon, 1990, 

Wilkie et al., 1991).  These proteins are co-expressed almost ubiquitously in the 

central nervous system, share 88% amino acid sequence homology and couple 

receptor stimulation to the activation of PLC- isoforms, PI hydrolysis, and 

downstream second messenger signaling systems (Strathmann and Simon, 

1990, Smrcka et al., 1991, Taylor et al., 1991, Mailleux et al., 1992, Offermanns 

et al., 1994, Exton, 1996).  Although Gq and G11 are expressed together in 

almost every cell type, the relative levels of expression vary across brain regions 

with Gq expression being 2-5 times higher than G11 in most areas (Milligan, 

1993).  Given that the functions of these two proteins are largely redundant, 
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genetic inactivation of both Gnaq and Gna11, the genes that encode for Gq and 

G11 respectively, results in embryonic lethality at embryonic day 10.5 due to 

developmental defects of the cardiovascular system (Offermanns et al., 1998).  

Genetic inactivation of either Gq or G11 results in mice that are viable with more 

pronounced phenotypes observed in the Gq knockouts which harbor 

impairments in cerebellar maturation, motor coordination and primary hemostasis 

(Offermanns et al., 1997a, Offermanns et al., 1997b, Offermanns et al., 1998). 

 Gross anatomical deficits in the morphology and development of the 

nervous system have not been reported in Gq knockout mice other than 

postnatal alterations in the innervation of the cerebellum (Offermanns et al., 

1997a).  As such, loss of Gq-mediated synaptic pruning in the cerebellum has 

been suggested to underlie the altered behavioral output in motor function and 

ataxia observed in these animals.  These findings raise the question of whether 

deficits in Gq signaling in forebrain locomotor circuitry may also be involved.   In 

these circuits, dopaminergic axons from the SN pars compacta innervate 

GABAergic MSNs in the dorsal striatum (caudate putamen).  Also forming 

synaptic contacts on the dendritic arbors of the MSNs are descending 

corticostriatal glutamatergic inputs and those projections coming from the 

thalamus.  MSNs in the dorsal striatum are largely segregated into two 

populations based on expression of dopamine receptors and axonal projections.  

MSNs expressing dopamine D1 receptors project directly to the SN pars 

reticulata while those expressing D2 receptors project to the SN pars reticulata 

via an indirect route involving intermediate synapses in the globus pallidus and 
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the subthalamic nucleus.  The SN pars reticulata then relays signals to the 

thalamus and motor cortex (stimulatory in the case of the direct pathway or 

inhibitory from the indirect) for the control of voluntary movement (Gerfen, 1992, 

Albin et al., 1995, Shuen et al., 2008).  The thalamus and motor cortex are points 

of convergence between the cerebellar and basal ganglia circuits (Nakano, 

2000), suggesting that deficits in either or both of these circuits could result in 

motor deficits from loss of Gq signaling.  In fact, Gq is highly expressed in both 

the caudate putamen and the cerebellum (Mailleux et al., 1992).   

Recent evidence also suggests that dopamine D1-like receptors, which are 

typically thought of as coupling with Gs/olf, may also be capable of coupling to 

Gq (Wang et al., 1995, Jin et al., 2001).  Additionally, given the broad diversity in 

receptors that couple to Gq and the range in biological processes in which these 

receptors are involved, there may be other circuits that are behaviorally relevant 

that might be impacted by constitutive loss of Gq signaling.  For example, the 

prefrontal cortex, a brain region that has been shown to directly regulate working 

memory and other cognitive functions (Goldman-Rakic, 1995, Chudasama, 2011, 

Kesner and Churchwell, 2011) as well as influencing a variety of other behaviors 

including mood regulation and emotional processing (Drevets et al., 2008, White 

et al., 2009, Etkin, 2010) also expresses high levels of Gq protein (Milligan, 

1993).  The functions of the prefrontal cortex have been previously shown to be 

sensitive to local changes in neurochemical content and receptor signaling 

(Rinaldi et al., 2007, Vijayraghavan et al., 2007, Arnsten, 2011).  Here, we 
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address these questions and more precisely define the phenotype and drug 

responsivity of Gq knockout mice using a systems-level approach.  

 

Methods: 

Animals 

The generation of Gq knockout mice has previously been described 

(Offermanns et al., 1997a).  For the present experiments, heterozygous Gq
 

males were mated to heterozygous females to generate litters containing 

wildtype, heterozygous and knockout mice.  The genotypes of all mice were 

determined by polymerase chain reaction (PCR) analysis of genomic DNA 

obtained from tail biopsies using methods previously described with minor 

adaptations (Offermanns et al., 1997a, Stanwood et al., 2005).  For each 

experiment, an average of 6-24 wildtype, 6-20 heterozygous and 6-15 knockout 

mice were analyzed with the exception of the forced swim test in which four 

knockout mice were analyzed.   Tail biopsies were obtained at the time of 

weaning, postnatal day (P)21, for initial assignment of genotypes and once again 

at the time of sacrifice for confirmation.   

Male mice were housed in cages of 2-5 with their littermates under 

standard housing conditions on a 12 h light/dark cycle (lights on 0600-1800 h) 

with ad libitum food and water.  Their cages contained environmental enrichment 

huts (Otto Environmental, Milwaukee, WI) and their diet was high-energy 

irradiated LabDiet 5LJ5 (Tusculum, Nashville, TN).  All behavioral testing was 

conducted during the light phase on mice that were at least (P)60 at the time of 
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initial testing.  Mice were extensively handled for at least one week prior to the 

beginning of testing and were habituated to the testing rooms for ~30 min prior to 

beginning of every experiment.  Mice were also weighed prior to the beginning of 

each experiment and there were no significant changes in weight as a result of 

the behavioral testing.  All procedures were approved by the Vanderbilt 

University Animal Care and Use Committee. 

  

Drugs 

 The drugs used in this study were the dopamine D1-like receptor agonists 

SKF83959 (3-methyl-6-chloro-7,8-dihydroxy-1-[3-methylphenyl]-2,3,4,5-

tetrahydro-1H-3-benzazepine; Tocris Biosciences, Minneapolis, MN) used at 1 

mg/kg and SKF83822 ([R/S]-6-chloro-7, 8-dihydroxy-3-allyl-1-[3-methyl-phenyl]-

2,3,4,5-tetrahydro-1H-3-benzazepine, NIMH Chemical Synthesis Program, 

Research Triangle Park, NC) used at 0.4 mg/kg.  Additionally, the NMDA 

receptor antagonist MK-801 ([5R,10S]-(+)-5-Methyl-10,11-dihydro-5H-

dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate, Sigma, St. Louis, MO) 

was used at 0.2 mg/kg and cocaine HCl (NIH/NIDA, Bethesda, MD) was used at 

30 mg/kg.  All drugs were dissolved in 0.9% saline and injected intraperiotoneally 

(i.p.). 

 

Rotarod 

 Motor coordination and balance were measured using a commercially 

available accelerating rotarod apparatus (Ugo Basile model 7650, Collegeville, 
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PA).  Mice were placed on the rotating cylinder (3 cm in diameter) and confined 

to a section approximately 6.0 cm long by gray plastic dividers. The rotational 

speed of the cylinder was increased from 5 to 40 rpm over a 5 min period.  The 

latency at which mice fell off the rotating cylinder was measured. Each mouse 

was tested on three independent trials per day (with a 15 min inter-trial period) 

over a three day testing period. 

 

Inverted Screen 

For the inverted screen test, 2-4 littermates were placed on a metal grid 

screen (10 cm x 14 cm) with separate compartments.  After placement, the mice 

were allowed time to grip the grid before it was inverted 60 cm over a plastic 

cage containing fresh bedding.  Latency to fall was recorded up to 60 s, at which 

point mice were removed from the apparatus and returned to the home cage. 

Three independent trials were conducted approximately 15 min apart on one day 

of testing, and data from all three trials were averaged together. 

 

Elevated Zero Maze 

 The elevated zero maze is a modification of the elevated plus maze used 

for assessing anxiety-related behaviors. Use of the circular maze removes any 

ambiguity in data interpretation as there is no center zone (Lister, 1990, 

Shepherd et al., 1994, Rodgers et al., 1997).  The elevated circular platform (40 

cm off the ground, 50 cm in diameter) had two enclosed arenas opposite each 

other (5 cm wide with 15 cm high walls) and two open arenas (5 cm wide).  At the 
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start of the test, each mouse was lowered by its tail into the open arena of the 

maze and allowed to explore the maze for 300 sec.  Activity of the mouse was 

monitored via an overhead camera connected to a computer in a separate room 

using video acquisition and ANY-maze analysis software (Stoelting, Wood Dale, 

IL).  Data analyzed included percentage of time spent in the open versus closed 

arenas and the total distance traveled in the maze.  

 

Y-maze 

 The Y-maze containing 3 clear arms (34.5 cm × 5.2 cm) joined in the 

center was placed on an opaque table about 91 cm above the ground in a room 

containing several large immovable objects to use as spatial cues.  At the start of 

the test, each mouse was lowered by its tail into the center junction of the maze 

and allowed to explore the maze for 360 s.  Activity of the mouse was monitored 

via an overhead camera connected to a computer in a separate room using video 

acquisition and ANY-maze analysis software (Stoelting, Wood Dale, IL).  The 

sequence of individual arm entries was scored by the observer in real time and 

used to calculate the percentage of spontaneous alternations for each animal 

(consecutive entry into each of the three arms) as previously described 

(Thompson et al., 2005).  The Y-maze assesses spatial working memory as 

animals tend to alternate between arms based on their memory of the previously 

visited arms.  Chance performance is 22.2% in this paradigm. 
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Forced Swim Test 

 Behavioral despair was assessed in the forced swim test using plastic 

cylinders (50 cm in diameter, 21 cm in height) filled approximately ¾ full with 

room temperature water.  Mice were individually placed into the cylinder for a 6 

min test and were recorded on video for the duration of the test.  After testing, the 

mice were placed into a heating cage to dry before returning to the home cage.  

The water was changed between tests and the temperature of the water was 

recorded.  Videos were later analyzed for time spent immobile for each mouse by 

an observer blinded to genotype.    

 

Open Field  

 Locomotor activity in a novel open field and locomotor responses to 

SKF83959, SKF83822, cocaine and MK-801 were measured using commercial 

open field activity chambers (Med Associates, 29 x 29 x 20.5 cm) that were 

contained within light- and air-controlled environmental chambers (Med 

Associates, St. Albans, VT; 64 × 45 × 42 cm) (Stanwood and Levitt, 2007).  

Location and movement were detected by the interruption of infrared beams by 

the body of the mouse (16 photocells in each horizontal direction, as well as 16 

photocells elevated 4 cm to measure rearing) and were measured by the Med 

Associates Activity Monitoring program.  On Days 1 and 2 of testing, mice were 

placed into activity chambers for 30 min for baseline measurements, removed 

from the chambers, injected with 0.9% saline, and returned to the chambers for 

60 min.  On Day 3 of testing, the mice were injected with SKF83959 (1 mg/kg) 
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instead of 0.9% saline.  This extended protocol was designed to extensively 

habituate the mice to the chambers before drug administration.  For testing of 

additional compounds, a 2-day protocol was implemented where the mice 

received 0.9% saline on Day 1 and the test compound (0.4 mg/kg SKF83822, 0.2 

mg/kg MK-801 or 30 mg/kg cocaine; i.p.) on Day 2.  Experiments were 

conducted at least one week apart and animals were handled during the period 

of time during which they were not tested.  For simplicity of analysis and display, 

the baseline and post-injection periods were averaged and are represented as 

bar graphs.   

 

Data Analysis and Statistics 

Except when otherwise noted, data were subjected to one- or-two way 

analysis of variance (ANOVA) using genotype as a between-group factor using 

GraphPad Prism (GraphPad Software, San Diego, CA).  Post-hoc Tukey’s 

multiple comparison tests were used to compare groups to each other except for 

the rotarod analysis, where Bonferroni comparisons were employed.  Normality 

was not observed within the inverted screen dataset, due to many null mice 

immediately falling from the screen.  For these data, therefore, a nonparametric 

Kruskal-Wallace test and posthoc Dunn’s comparisons were employed.  Graphs 

are marked with an asterisk (*) to denote statistical significance (p < 0.05).  For 

data with p < 0.01 or p < 0.001, the graphs are marked with two (**) or three (***) 

asterisks, respectively.  For data with a p > 0.05 but less than p = 0.20, the data 

was noted as exhibiting a trend.  In the inverted screen test, genotype differences 
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were assessed by unpaired Student’s t-test with significance defined as two-

tailed p < 0.05.   

 

Results: 

Gq knockout mice exhibit alterations in body weight  

Visual inspection revealed that Gq knockout mice are significantly smaller 

than their wildtype littermates (Figure 6A).  Figure 6B shows the average weights 

of adult Gq null, heterozygous and wildtype mice at the start of behavioral 

testing.  Consistent with their smaller sizes, Gq knockout mice weigh almost half 

as much as wildtype mice (F(2,28) = 12.33, p < 0.001) and this phenotype is 

maintained across their lifespan (data not shown).  

 
 
Figure 6: Weight analysis.  

Gq knockout mice are smaller than their wildtype littermates as shown in the 
photomicrograph in (A).  (B) shows the average weight of each genotype at the 

time of initial testing (~2–3 months of age).  Gq knockout mice weigh 
significantly less than wildtype [F(2, 28) = 12.33, p < 0.001] and heterozygous [F(2, 

28) = 12.33, p < 0.01] mice and this phenotype is maintained throughout the life of 
the animals (data not shown).  Each column represents the average of 8–12 
animals. 
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Abnormal motor function in Gq knockout mice 

 Mice homozygous for a deletion in Gq have previously been described as 

exhibiting deficits in motor function including loss of balance during walking and 

rearing, spastic and uncontrolled movements and ataxia upon visual inspection 

((Offermanns et al., 1997a) and data not shown).  Quantifiable deficits in motor 

function and coordination are revealed on an accelerating rotarod where Gq 

knockout mice fell from the device in significantly less time than controls on each 

of three consecutive testing days (Figure 7A; factorial ANOVA, post-hoc 

Bonferroni comparisons p < 0.05 on Day 1, p < 0.01 on Days 2 and 3),confirming 

previous findings (Offermanns et al., 1997a).  There were also significant 

differences in performance observed between the heterozygous and null mice on 

each day of testing (Figure 7A; p < 0.05 on Day 1, p < 0.001 on Days 2 and 3) 

with no significant differences between the heterozygous and wildtype mice.  

Similarly, Gq knockout mice performed significantly worse than wildtype and 

heterozygous animals on an inverted screen test, confirming motor and/or 

coordination impairments in the null animals (p < 0.05; Figure 7B).   
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Figure 7: Rotarod and inverted screen tests.  

Gq knockout mice spend significantly less time on an accelerating rotarod than 
their wildtype and heterozygous littermates (A; p < 0.05 between the knockouts 
and the other two genotypes on day 1 of testing; p < 0.01 on days 2 and 3 by 
Two-Way ANOVA with Bonferroni post-hoc comparison test).  n = 6 for each 
genotype and each individual animal was tested in three trials on three 
consecutive days of testing.  The data shown here represents the three trial 
averages across genotypes on each day of testing.  (B) shows the latency of 
each genotype to fall from an inverted screen.  Wildtype and heterozygous mice 

are able to grip the screen almost three times longer than Gq null mice indicating 
reduced muscle and/or grip strength in the knockouts (overall p < 0.001 by 
Kruskal–Wallis test; null mice are significantly different from both wildtype and 
heterozygote mice by Dunn's test, p < 0.05).  Each column represents the 
average of 13–22 animals. 
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Gq knockout mice appear normal in tests of anxiety and behavioral despair 

 Gq knockout mice exhibited a significant hypolocomotive phenotype in the 

elevated zero maze as evidenced by the reduction in total ambulatory distance 

traveled in the maze compared to wildtype and heterozygote animals (Figure 

8A).  Both Gq knockout and wildtype mice spent significantly more time in the 

closed arenas than the open arenas with no significant difference between the 

genotypes with respect to the percentage of time spent in the open (33.9 +/- 

3.8% for wildtype, 25.3 +/- 6.1% for Gq knockout) or closed arenas (66.1 +/- 

3.8% for wildtype, 74.7 +/- 6.1% for Gq knockout) of the maze (Figure 8B).  This 

is consistent with previous reports suggesting that wildtype mice spend 

approximately 20-30% of their time in the open arenas of the zero maze 

(Shepherd et al., 1994).  Although not statistically significant (F(2,32) = 2.3, p = 

0.11), heterozygous animals spent somewhat more time in the open arenas (42.1 

+/- 6.8%) than the other two genotypes.  While in the open arenas, wildtype and 

heterozygous animals traveled at significantly faster speeds than the knockout 

mice (Figure 8C; F(5,30) = 8.5, p < 0.001) which moved slower in the maze 

overall (Figure 8D; F(2,33) = 11.96, p < 0.001) compared to the other two 

genotypes. 

Figure 9 displays the results of the forced swim test, a commonly used 

assay of behavioral despair used to predict the antidepressant potential of 

compounds or drug targets in animal models (Porsolt et al., 1977, Shepherd et 

al., 1994).  The forced swim test revealed no significant differences between the 
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genotypes, indicating that loss of Gq protein expression does not confer 

antidepressant effects.   

 

 

Figure 8: Elevated zero maze.  

Gq knockout mice exhibit a hypoactive phenotype on the elevated zero maze 
and travel significantly less distance in the maze than their wildtype and 
heterozygous littermates (A; F(2, 15) = 16.55, p < 0.001).  There is not a significant 
difference between the genotypes in the percentage of time spent in the open 
areas (B) indicating a normal anxiety phenotype in the null mice.  n = 12 for 
wildtype and heterozygous mice, n = 11 for knockout mice in these experiments.  
While in the open arenas, wildtype and heterozygous mice move at significantly 
faster speeds than knockout mice (C; F(5, 30) = 8.5, p < 0.001), which move slower 
in the maze overall (D; F(2, 33) = 11.96, p < 0.001). 
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Figure 9: Forced swim test.  

Forced swim test analysis reveals no significant differences (p > 0.05) between 
the genotypes in this assay of behavioral despair.  Each column represents the 
average of 4–6 animals. 
 

 

Gq knockout mice exhibit deficits in spatial working memory 

 Gq knockout mice again exhibited significant hypoactivity in the Y-maze 

as evidenced by the significant reduction in total arm entries committed by this 

genotype compared heterozygous and wildtype littermates (Figure 10A).  In 

addition, acquisition of this spatial task was severely impaired in Gq knockouts 

compared to wildtype (F(2,4) = 13.3, p < 0.001).  Gq knockout mice exhibited a 

significant reduction in the number of spontaneous alternations (entry of the 

maze’s three arms in sequence), and the percentage of alternations, a measure 

which takes into account the hypoactive phenotype of the Gq null mice in this 

task (Figure 10B and C).  Wildtype animals spontaneously alternated at 62.5 +/- 

2.9 % compared to 44.1 +/- 7.5 % observed in Gq knockout mice. 
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Figure 10: Y-maze test.  

In this test of spatial working memory, the reduced number of arms entered by 

Gq knockout mice compared to wildtype and heterozygous littermates again 
reveals a hypoactive phenotype (A).  In addition, acquisition of this spatial task 

was severely impaired in Gq knockout mice which exhibited a significant 
reduction in the number of spontaneous alternations (B; F(2, 44) = 14.42, p < 
0.001) and percentage of alternations (C; F(2, 44) = 4.44, p < 0.05 between 
wildtype and null) in this task.  Percentage of alternations was determined by 
dividing the number of alternations by the number of possible alternations [(# 
total arm entries − 2) × 100], thereby taking into account the locomotor 

phenotype of Gq knockout mice.  Each column represents the average of 12–18 
animals. 
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Drug-induced locomotor responses appear intact in Gq knockout mice 

 In order to gauge the integrity of basal ganglia locomotor circuitry, we 

investigated the spontaneous locomotor activity of Gq knockout, heterozygous 

and wildtype mice in open field chambers and their acute locomotor response to 

pharmacological compounds known to modulate locomotor output (primarily by 

modulating dopaminergic signaling in basal ganglia circuits).  Our data show that 

in a novel open field, Gq knockout mice are initially hypoactive compared to their 

wildtype and heterozygous littermates (as assessed by distance traveled) and 

travel significantly less distance than wildtype animals during the 90 min session 

(Figure 11A; (F(2,30) = 4.2, p < 0.05).  These data further support our earlier 

observations regarding the activity level of the null animals in both the elevated 

zero and Y-maze tasks.  On the second day of habituation (Figure 11B), as the 

wildtype and heterozygous animals acclimate further to the chambers and reduce 

their level of activity, there is no longer a significant difference in the total 

distance traveled by each genotype, although there is still a trend (F(2,31) = 4.2, 

p = 0.16) toward hypoactivity in the null mice. 
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Figure 11: Open field test.  

Locomotor activity in a novel open field was assessed.  (A,B) show the 
ambulatory distance traveled as a function of time (5 min blocks over a 90 min 
testing period) by each genotype on 2 days of habituation.  Mice were removed 
from the chamber after 30 min and administered 0.9% saline (i.p.) before 
returning to the chamber for the last 60 min of testing.  The inset in each panel 
shows the total distance traveled by each genotype, which is significantly 

reduced for Gq knockout mice on day 1 (A; F(2, 30) = 4.2, p < 0.05).  n = 12–18 for 
each genotype. 
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Drug-induced locomotor responses were first assessed using cocaine, a 

prototypical psychomotor stimulant that increases locomotor activity by blocking 

high affinity monoamine transporters.  Figure 12A shows the ambulatory distance 

traveled by each genotype as a function of time in the open field chamber.  The 

first 30 min represent the baseline period during which the animals were allowed 

time to habituate to the chamber and the last 60 min (minutes 35-90 on the 

graph) represent the post-injection period.  The data for the baseline and post-

injection periods are then averaged and displayed as Figure 12B.  These data 

illustrate that injection of 30 mg/kg cocaine (i.p.) elicited a significant locomotor 

response in all three genotypes relative to the pre-injection baseline period 

(F(5,21) = 186.0, p < 0 .001).  The raw distance traveled for the knockout mice in 

the post-injection period, however, was significantly reduced compared to 

responses observed in both the wildtype and heterozygous animals (F(5,21) = 

186.0, p < 0.001).  There was also a small but significant blunting of the post-

injection response of the heterozygous animals (F(5,21) = 186.0, p < 0.001).  

However, when normalized for percentage change from baseline, there were no 

significant differences between the genotypes.  If anything, there was a trend 

(F(2,25) = 2.23, p = 0.13) toward a greater percentage change from baseline in 

the null animals because their baseline activity was very low (Figure 12C).  

Taken together, these results indicate that the cocaine-induced locomotor 

response is largely intact in Gq knockout mice, despite their profound basal 

hypoactivity. 
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Figure 12: Locomotor response to acute cocaine.  

We investigated the integrity of locomotor responses to variety of 
pharmacological compounds with the ability to modulate dopaminergic signaling 
(directly or indirectly) and motor output.  (A) shows the ambulatory distance 
traveled as a function of time (5 min blocks over a 90 min testing period) by each 
genotype during a 30 min baseline period and 60 min after the animals were 
injected with cocaine (30 mg/kg; i.p.).  The data is represented as bar graphs in 
(B) with the data from min 10–30 collapsed for each genotype as the baseline 
measurement and min 40–60 representing the post-injection period.  There is a 
significant increase in locomotor activity in each genotype following exposure to 
cocaine, however there is a significant difference between the post-injection 



50 
 

locomotor response of the knockout mice compared to the other two genotypes 
[F(5, 21) = 186.0, p < 0.001].  The percentage change from baseline for each 
genotype is displayed in (C) with no significant changes.  n = 6–12 for each 
genotype in these experiments. 
 

 

Next, we assessed the locomotor responses to direct stimulation of 

dopamine D1 receptors by the high affinity benzazepine-derived agonist 

SKF83822.  SKF83822 has been reported to activate dopamine D1 receptors 

coupled to Gs/olf and downstream cyclase activity (Undie et al., 1994, Rashid et 

al., 2007).  Behaviorally, SKF83822 has been shown to produce a locomotor 

response in both rodent and non-human primate models without affecting 

stereotypy, intense grooming or dyskinesia (Peacock and Gerlach, 2001, 

O'Sullivan et al., 2004).  In our analyses, an acute injection of SKF83822 (0.4 

mg/kg; i.p.) induced a greater than three-fold increase in locomotor activity 

relative to the baseline period for each genotype (Figure 13A and B; F(5,18) = 

139.2, p < 0.001).  Again, as observed with acute cocaine, there were significant 

differences between the post-injection response of the knockout animals 

compared to their wildtype and heterozygous littermates (Figure 13B; F(5,18) = 

139.2, p < 0.001) without significant changes in the percentage change from 

baseline between the genotypes (Figure 13C). 
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Figure 13: Locomotor response to acute SKF83822.  

(A,B) represent the ambulatory distance traveled by each genotype in response 
to an acute injection of the dopamine D1 receptor agonist SKF83822 (0.4 mg/kg; 
i.p.).  There is a significant increase in locomotor activity in each genotype 
following exposure to SKF83822 [F(5, 18) = 139.2, p < 0.001].  There is, however, 
a significant difference between the locomotor response of the knockouts 
compared to the other two genotypes [F(5, 18) = 139.2, p < 0.001] without 
significant changes in the percentage change from baseline between the 
genotypes (C).  n = 6–12 for each genotype in these experiments. 
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We then assessed a second benzazepine-derived D1 receptor agonist, 

SKF83959, for activity in the open field.  Unlike SKF83822, SKF83959 has been 

reported to antagonize dopamine-mediated stimulation of adenylyl cyclase (Arnt 

et al., 1992, Andringa et al., 1999, Cools et al., 2002, Jin et al., 2003) and may 

preferentially activate D1 receptors linked to stimulation of PI hydrolysis (Arnt et 

al., 1992, Panchalingam and Undie, 2001, Jin et al., 2003).  Initial studies 

assessing the locomotor response to varying doses of SKF83959 suggested that 

1 mg/kg (i.p.) elicited a maximal response in wildtype mice (data not shown).  

This response was still fairly modest, however, and increased locomotor activity 

approximately 2-fold over the baseline level (data not shown).  In response to an 

acute injection of SKF83959 (1 mg/kg; i.p.), we again observed significant 

increases in post-injection locomotor responses in wildtype, heterozygous and 

knockout mice (Figure 14A and B; F(5,18) = 123.9, p < 0.001).  We did observe 

significant differences in the post-injection response of the knockout animals 

compared to the wildtype and heterozygous animals (F(5,18) = 123.9, p < 0.001), 

however the magnitude of the locomotor response was more robust in the 

knockout (F(2,33) = 7.0, p < 0.05) and heterozygous (F(2,33) = 7.0, p < 0.001) 

animals compared to wildtype when considering the percentage change from 

baseline (Figure 14C).   
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Figure 14: Locomotor response to acute SKF83959.  

SKF83959 (1 mg/kg; i.p.), a dopamine D1 receptor agonist that has been 

reported to activate D1 receptors coupled to Gq, significantly increases 

locomotor activity in Gq knockout, heterozygous, and wildtype mice (A,B; F(5, 18) 
= 123.9, p < 0.001).  There is also a significant difference in the post-injection 
locomotor response of the null mice compared to their wildtype and heterozygous 
littermates (B; F(5, 18) = 123.9, p < 0.001) and a significant difference in the 
percentage change from baseline of the knockouts [C; F(2, 33) = 7.0, p < 0.05] and 
heterozygotes [F(2, 33) = 7.0, p < 0.001] compared to wildtype.  n = 12–18 for each 
genotype. 
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Lastly, we set out to evaluate locomotor activity by modulating 

glutamatergic input with the non-competitive N-Methyl-D-Aspartate (NMDA) 

receptor antagonist MK-801.  In response to acute MK-801 (0.2 mg/kg; i.p.), we 

observed significant increases in post-injection locomotor responses in wildtype 

and Gq heterozygotes (F(5,36) = 9.8, p < 0.05) but not in Gq knockout mice 

(Figure 15A and B). There were however, as observed previously with all 

compounds tested, significant differences between the post-injection response of 

the knockout animals compared to their wildtype (F(5,36) = 9.8, p < 0.001) and 

heterozygous (F(5,36) = 9.8, p < 0.01) littermates (Figure 15B) following acute 

MK-801.  Similarly, as observed with all compounds tested except SKF83959, 

there were no significant changes in the percentage change from baseline 

between the genotypes (Figure 15C). 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 

 

Figure 15: Locomotor response to acute MK-801.  

The NMDA receptor antagonist MK-801 (0.2 mg/kg; i.p.) induced a significant 
locomotor response in wildtype and heterozygous mice [F(5, 36) = 9.8, p < 0.05] 

but not in Gq knockouts (A,B).  Additionally, there were no significant changes 
observed in the percentage change from baseline between the genotypes (C).    
n = 6–12 for each genotype in these experiments. 
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Discussion: 

 As predicted, Gq knockout mice performed significantly worse than 

wildtype mice on tests of motor coordination and strength revealing a phenotypic 

motor dysfunction in these animals.  These results confirm the visual phenotype 

of the null mice which hints at ataxia, inability to coordinate movements and 

uncontrolled locomotion.  Gq knockout mice are also much smaller and weigh 

less than heterozygous or wildtype mice; a phenotype which is consistent with 

the previously reported role of Gq signaling in the normal functioning of the 

hypothalamus to regulate the production of growth hormone and feeding 

behavior (Wettschureck et al., 2005).   

 Motor impairments in Gq knockout mice could result from deficits in motor 

circuits controlled by cerebellar output as previously hypothesized (Offermanns 

et al., 1997a) and/or the involvement of other motor pathways including those 

involving the basal ganglia locomotor circuitry, which we assessed indirectly 

using locomotor stimulant drugs.  In attempting to holistically evaluate Gq 

knockout mice for circuit-level deficits in brain function, we used simple, well-

defined behavioral paradigms to probe the contribution of Gq signaling capacity 

in complex behaviors that may be relevant to mental health disorders.   

Anxiety and depression, for example, are two common emotional 

disorders accounting for a substantial proportion of the burden of mental health 

disorders in the United States (Weissman et al., 1996, Kessler et al., 2005).  

Although the neural circuits underlying these disorders are not completely 

understood, dysfunctions in the amygdala, hippocampus, basal ganglia and 



57 
 

prefrontal cortex are commonly implicated (Clark et al., 2009, Aupperle and 

Paulus, 2010, Clark and Beck, 2010, Harro et al., 2011, McEwen et al., 2012).  In 

the elevated zero maze, a useful task for assessing anxiety-related behavior in 

rodent models, we saw no significant differences between the genotypes with 

respect to the percentage of time spent in the open arenas. These results 

indicate a normal anxiety-like phenotype in the knockout mice although we do not 

know if there are compensations within the circuit from global loss of Gq that 

result in lack of an observed phenotype.  Additionally, we observed no significant 

differences in the forced swim test assessing depressive-like phenotypes.  These 

results were unexpected as there is evidence in the literature suggesting that 

inhibiting the PLC-protein kinase C signaling transduction pathway or intracellular 

calcium release (which can be activated by Gq-coupled receptors) produces 

antidepressant effects in the forced swim test (Galeotti et al., 2006, Galeotti and 

Ghelardini, 2011).  There is also evidence suggesting that chronic stress in 

rodent models alters transcript levels of Gnaq (Alfonso et al., 2006); another 

implication of alterations in Gq signaling in rodent models of depression.  It is 

possible, however, to activate these signaling pathways via other mechanisms 

including signaling initiated by G11 coupling which remains intact in Gq knockout 

animals.   

 The Y-maze task is often employed as a test of spatial working memory 

whereby mice will alternate between the three arms of the maze based on their 

interest in exploring the novel environment and their memory of the last arm 

entered.  The influence of the prefrontal cortex in spontaneous alternation 
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behaviors has previously been demonstrated in rodent models (Kolb, 1984) in 

addition to the roles of other brain regions including the hippocampus, basal 

forebrain, dorsal striatum and cerebellum in mediating this behavior (Lalonde, 

2002).  We observed significant differences in the ability of Gq knockout mice to 

perform this task indicating that functional Gq signaling in the prefrontal cortex 

may be necessary for acquisition of this task.  These results are interesting with 

respect to the extensive literature detailing the importance of catecholamine 

signaling, in particular the role of dopamine, in mediating prefrontal cortex 

function and working memory (Vijayraghavan et al., 2007, Arnsten, 2011).  

Additionally, there is evidence in the literature suggesting that dopamine D1 

receptors in the prefrontal cortex are able to couple to Gq (Jin et al., 2001) and 

thus the performance of Gq null mice could be explained by lack of dopamine 

signaling in this pathway.  Alternatively, lack of signaling through other Gq-

coupled receptors in the cortex could be contributing to the observed phenotype. 

 In evaluating the intactness of the basal ganglia locomotor circuitry, we 

assessed the drug-induced locomotor responses of wildtype, heterozygous and 

Gq null animals to a variety of pharmacologic compounds.  The psychostimulant 

cocaine acts indirectly to increase dopaminergic signaling by blocking the 

dopamine transporter, thus inhibiting dopamine re-uptake into pre-synaptic nerve 

terminals.  As a result, dopamine accumulates at MSN synapses in the dorsal 

striatum, thus increasing and prolonging receptor activation primarily through D1 

receptors signaling in the direct motor pathway to increase locomotor output 

(Kolb, 1984, Karasinska et al., 2005, Bateup et al., 2010).  We were successful in 
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generating locomotor responses in all three genotypes in response to acute 

cocaine suggesting that the functioning of the basal ganglia motor pathways 

remains largely intact in the absence of Gq.  Although Gq protein expression 

does not appear to be necessary for the acute locomotor response to cocaine, it 

does appear to be involved in the expression of cocaine withdrawal in rodent 

models.  It has previously been shown that rats undergoing withdrawal for 2 days 

after receiving twice-daily cocaine injections (15 mg/kg; i.p.) exhibited increased 

levels of membrane-associated G11 and Gq proteins in the amygdala after 1 or 

3 days (for peak expression, respectively) of cocaine exposure (Carrasco et al., 

2004).  Additionally, following 5 days of cocaine treatment, membrane-bound 

G11 and Gq were also increased in the paraventricular nucleus of the 

hypothalamus (Carrasco et al., 2004), but no changes were observed in brain 

regions such as the  frontal cortex even after 14 days of cocaine exposure 

(Carrasco et al., 2003, Carrasco et al., 2004).  These changes in G11 and Gq 

protein expression are transient, however, and are reversed back to baseline 

levels when assessed after 7 days of withdrawal (Carrasco et al., 2003). 

  We were also successful in generating a locomotor response in Gq 

knockout mice by directly stimulating dopamine D1 receptors in the direct motor 

output pathway with the D1 receptor partial agonists SKF83822 and SKF83959. 

These results were expected with SKF83822 as this compound has been 

previously shown to produce a locomotor response typical of classical dopamine 

agonists stimulating adenylyl cyclase activity (Peacock and Gerlach, 2001, 

O'Sullivan et al., 2004). Interestingly, however, we also observed a locomotor 
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response in Gq knockout mice following administration of SKF83959, a 

dopamine D1 receptor agonist that has been reported to activate D1 receptors 

coupled to PI hydrolysis and intracellular calcium mobilization.  Previous reports 

assessing the behavioral effects of SKF83959 have shown the drug to elicit 

intense grooming behavior and orofacial movements in rodent models (Downes 

and Waddington, 1993, Fujita et al., 2010) and prove effective in reversing 

parkinsonian symptoms in rodent (unilateral 6-OHDA lesioned) and non-human 

primate (MPTP treated) models of Parkinson’s disease (Arnt et al., 1992, 

Gnanalingham et al., 1995a, Gnanalingham et al., 1995c, b, Zhang et al., 2007).   

 One recent model in the literature detailing a mechanism by which 

SKF83959 stimulates PI activity involves activating a D1/D2 receptor heteromer 

complex coupled to Gq protein (Rashid et al., 2007) and subsequent signaling 

systems.  We therefore expected to observe minimal SKF83959-induced 

locomotor responses in Gq knockout mice, if in fact, SKF83959 does activate D1 

receptors signaling through Gq.  Contrary to our hypotheses, however, 

SKF83959-induced locomotor responses were intact in Gq null animals.  In fact, 

when their different baselines are taken into account, Gq heterozygous and 

knockout mice may actually be more sensitive to the effects of SKF83959 in that 

both genotypes exhibited a significantly greater percentage change from baseline 

in their post-injection locomotor response compared to wildtype animals.  Taken 

together, these results suggest that SKF83959 may not be exclusively activating 

receptors coupled to the Gq signaling pathway.  The most likely explanation is 

that SKF83959 is not a selective as thought, and may activate D1 receptors 



61 
 

coupled to Gs/olf signaling pathways.  It is conceivable that even if SKF83959 

does activate D1-Gs/olf coupled receptors, there could be alternative cyclase-

independent pathways feeding into IP3 dependent-calcium mobilization that 

would support the initial biochemical characterization of this drug (Arnt et al., 

1992, Andringa et al., 1999, Jin et al., 2003). 

 Our attempts to induce a significant locomotor response in Gq knockout 

mice by modulating glutamatergic tone with the non-competitive NMDA receptor 

antagonist MK-801 proved unsuccessful.  Experiments using MK-801 were 

designed to indirectly modulate locomotor output as descending glutamatergic 

inputs from the cortex project to the striatum where they synapse on the dendritic 

spines of MSNs in close proximity to the synaptic contacts of the ascending 

midbrain dopamine neurons from the SN pars compacta.  The glutamatergic and 

dopaminergic nerve terminals form synaptic triads where they contact MSNs: 

points of contact whereby the two signaling systems likely converge to modulate 

MSN output (Schmidt and Kretschmer, 1997, Klug et al., 2011).  Additionally, 

there is evidence suggesting that MK-801 produces indirect activation of 

dopaminergic neurons to dose-dependently induce locomotor activity up to 0.5 

mg/kg with a peak response around 0.2 mg/kg.  At  higher doses of MK-801 (> 

0.5 mg/kg) a characteristic motor syndrome is produced involving ataxia and 

stereotypic behaviors including head weaving and body rolling (Liljequist et al., 

1991).  Although the locomotor response induced by MK-801 was not statistically 

significant in the null animals in our assessments, there was a trend toward 

increased activity in these mice.  In addition, the response observed in the 
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wildtype animals was fairly modest after a 0.2 mg/kg exposure and it may be 

necessary to move to slightly higher doses for a more robust response. At higher 

doses, however, other behaviors are also elicited which could confound the 

clarity of the locomotor response.  Furthermore, there is some evidence 

suggesting that proper postnatal signaling of the Gq-coupled mGluR1 receptor is 

required for proper maturation of glutamatergic synapses in the ventral tegmental 

area, a midbrain nucleus containing dopaminergic cell bodies (Bellone et al., 

2011).   A mechanism such as this could potentially be necessary in other brain 

regions and may partially explain the results observed in the Gq knockout mice.  

 

Conclusions: 

 We have replicated and extended findings showing clear motor deficits in 

Gq knockout mice as assessed on an accelerating rotarod and the inverted 

screen test.  Also, we have shown that Gq knockout mice exhibit a significant 

hypoactive phenotype in the Y-maze, elevated zero maze and the open field, 

further supporting deficits in motor output.  Drug-induced locomotor activity in Gq 

knockout mice, however, remains intact with stimulation by dopaminergic 

agonists but not with the glutamatergic antagonist, MK-801.  These findings 

indicate that basal ganglia locomotor circuitry is largely functional in the absence 

of Gq signaling capacity.  Motor impairments in these animals, therefore, likely 

originate in the cerebellum or other brain regions important in initiating motor 

output or discrete regions in areas such as the thalamus that are involved in 

signal integration and relay of motor signals to the cortex.  
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 Additionally, we observed normal phenotypes in both the elevated zero 

maze and the forced swim test indicating that anxiety and depression-related 

circuitry appears intact after loss of Gq expression.  Lastly, use of the Y-maze 

revealed spatial memory deficits in Gq knockout mice, indicating that functional 

Gq-coupled receptor signaling is necessary for proficiency in this task, most 

likely in the prefrontal cortex.  However, our use a global mutant line and 

systemic injections clearly requires a very cautious interpretation, particularly with 

regard to specific brain regions. 
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CHAPTER III 

 

LOCOMOTOR AND GROOMING RESPONSES TO SKF83959 REQUIRE 
DOPAMINE D1 BUT NOT D2 RECEPTORS: EVIDENCE AGAINST SKF83959 

ACTIVATING A D1-D2 RECEPTOR OLIGOMER 
 

Introduction: 

 The dopamine D1 receptor is the most highly expressed subtype among 

the dopamine receptor family (D1-D5 receptors) and plays critical roles in a 

variety of functions including motor control, motivated behaviors and cognition 

(Kiyatkin, 1995a, Goldman-Rakic, 1998a, Girault and Greengard, 2004, Arnsten 

and Li, 2005).  While D1-like receptors, consisting of the D1 and D5 receptor 

subtypes (Grandy et al., 1991, Sunahara et al., 1991), are positively coupled to 

adenylyl cyclase activity through the stimulatory G-protein Gs (Stoof and 

Kebabian, 1981), it is also recognized that D1-like receptors are also capable of 

coupling to Gq (Wang et al., 1995, Jin et al., 2001).  Additionally, it has been 

shown that specific D1-like receptor ligands can activate alternative signal 

transduction systems resulting in PI hydrolysis and accumulation of inositol 

triphosphate in vitro (Undie and Friedman, 1990, Undie et al., 1994, Undie et al., 

2000).  Furthermore, there is some evidence suggesting that specific 

dopaminergic ligands can increase intracellular calcium mobilization resulting in 

the activation of CaMKII, an important regulator of synaptic transmission (Zhen 

et al., 2004, Rashid et al., 2007, Ng et al., 2010). 



65 
 

 SKF83959, a dopamine D1-like receptor partial agonist and 

phenylbenzazepine derivative of SKF38393, is one ligand that has been reported 

to preferentially activate D1-like receptors linked to stimulation of PI hydrolysis in 

native tissue preparations (Arnt et al., 1992, Panchalingam and Undie, 2001, Jin 

et al., 2003).  Additionally, this reported biased ligand has also been documented 

to have minimal cyclase-stimulating activity and antagonize dopamine-mediated 

stimulation of adenylyl cyclase in vitro (Arnt et al., 1992, Andringa et al., 1999, 

Cools et al., 2002, Jin et al., 2003).  One recent model in the literature suggested 

that dopaminergic modulation of PI activity and downstream signaling systems 

occurs through activation of a D1/D2 receptor heteromeric complex coupled to 

Gq protein (Rashid et al., 2007).  Such functional selectivity in dopamine 

receptor-G protein signaling was suggested to be highly regulated; occurring only 

in specific brain regions and cells (Perreault et al., 2010, Zhang et al., 2010, 

Perreault et al., 2012).   

Although the biological significance of signaling mediated by the proposed 

D1/D2 receptor heteromer remains largely unknown, the complex has been 

implicated in drug addiction (Perreault et al., 2010) and psychiatric disorders 

(Grymek et al., 2009, Pei et al., 2010, Perreault et al., 2010).  Furthermore, 

SKF83959 has been previously shown to reverse some motor symptoms in 

animal models of Parkinson’s disease (Arnt et al., 1992, Gnanalingham et al., 

1995a, Gnanalingham et al., 1995c, Zhang et al., 2007).  Here, we assessed the 

necessity of functional D1 and D2 receptors in the responses induced by 

SKF83959.  Additionally, we evaluated the contribution of D5 receptors, Gq and 
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the role of CaMKII-Thr286 autophosphorylation in mediating signaling initiated by 

SKF83959. 

 

Materials and Methods: 

Animals 

C57Bl/6J mice (Jackson) were utilized for dose-response experiments and 

those studies examining the effects of dopaminergic antagonists on SKF83959-

mediated behaviors.  All other mice (D1, D2 and D5 receptor knockouts, Gq 

knockouts and CaMKII-Thr286Ala knockin mice) were bred at Vanderbilt 

University using strategies previously described for generation of mixed litters 

and assignment of genotypes (Frederick et al., 2012).  All lines were fully 

backcrossed (>10 generations) to a C57Bl/6 background. 

Male mice were housed under standard housing conditions on a 12 h 

light/dark cycle with conditions previously described (Frederick et al., 2012).  All 

behavioral testing was conducted on mice that were at least (P)60 at the time of 

initial testing.  Mice were extensively handled prior to testing and were habituated 

to the testing rooms for ~30 min prior to beginning of every experiment.  All 

procedures were approved by the Vanderbilt University Animal Care and Use 

Committee. 

  

Drugs 

The dopamine D1-like receptor agonist SKF83959 (3-methyl-6-chloro-7,8-

dihydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine; Tocris 
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Biosciences, Minneapolis, MN) was dissolved in 0.9% saline solution at 0.2 

mg/cc (1 mg/kg) and injected intraperiotoneally (i.p.) for the majority of 

experiments.  For the dose response experiments, additional doses of SKF83959 

(0.05 and 0.25 mg/kg) were also used.  The D2-like receptor antagonist 

raclopride (3,5-Dichloro-N-(1-ethylpyrrolidin-2-ylmethyl)-2-hydroxy-6-

methoxybenzamide (+)-tartrate salt, Sigma, St. Louis, MO) was used at 0.5 

mg/kg and the D1-like receptor antagonist SCH23390 (R(+)-7-Chloro-8-hydroxy-

3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride, Sigma, 

St. Louis, MO) was used at 0.01 mg/kg or 0.25 mg/kg.  Additional doses of 

SCH23390 (0.05 and 0.1 mg/kg) were also tested for their effects on locomotor 

responses (See Appendix Figure 33).  The selective D3 receptor antagonist PG 

01037 (N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)-trans-but-2-enyl)-4-(pyridine-

2-yl)benzamide hydrochloride; Tocris Biosciences, Minneapolis, MN) was used at 

0.5, 5 and 10 mg/kg.  Additionally, the mGluR5 antagonist MTEP ([(2-methyl-1, 

3-thiazol-4-yl) ethynyl]pyridine; Ascent Scientific, Princeton, NJ/Abcam 

Biochemicals, Cambridge, MA) was used at 10 mg/kg while the 2 adrenergic 

receptor antagonist atipamezole (5-(2-Ethyl-2,3-dihydro-1H-indene-2-yl)-1H-

imidazole hydrochloride; Tocris Biosciences, Minneapolis, MN) was used at 0.01, 

0.05, 0.1, 0.25 and 0.5 mg/kg for initial dose finding (See Appendix Figure 34), 

and 0.25 mg/kg for experiments with SKF83959. 

 

Open Field  

 Locomotor responses to SKF83959 were measured using commercial  
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open field activity chambers (Med Associates, 29 x 29 x 20.5 cm) that were 

contained within light- and air-controlled environmental chambers (Med 

Associates, St. Albans, VT; 64 × 45 × 42 cm).  Location and movement were 

detected by the interruption of infrared beams by the body of the mouse (16 

photocells in each horizontal direction, as well as 16 photocells elevated 4 cm to 

measure rearing) and were measured by the Med Associates Activity Monitoring 

program.  A three-day protocol was employed where the mice received injections 

of 0.9% saline for two days and SKF83959 on the third day as previously 

described (Frederick et al., 2012).  For the studies with dopaminergic 

antagonists, the antagonist solution was injected (i.p.) 10 min prior to injection 

with SKF83959 (1 mg/kg; i.p.) while the mice were in the home cage.  Following 

the SKF83959 injection, the mice were returned to the activity chambers for a 60 

min assessment of locomotor activity.  

 

Grooming Analysis 

During the open field testing, mice were additionally monitored by an 

overhead camera for later analyses of grooming behavior. Grooming was 

analyzed from the video recordings by assessing the number of grooming events 

every 30 s for a 5 min period during the baseline session and 5 min from the 

post-injection period.  The observer was blind to genotype at the time of analysis.   

 

Data Analysis and Statistics 

Data were subjected to one- or-two way analysis of variance (ANOVA)  
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using genotype as a between-group factor using GraphPad Prism (GraphPad 

Software, San Diego, CA).  Post-hoc Tukey’s multiple comparison tests or 

Bonferroni comparisons were used to compare groups to each other.  Graphs 

are marked with an asterisk (*) to denote statistical significance (p < 0.05).  For 

data with p < 0.01 or p < 0.001, the graphs are marked with two (**) or three (***) 

asterisks, respectively.   

 

Results: 

In wildtype mice, a peripheral injection of SKF83959 (0.05 - 1 mg/kg) 

produced a dose-dependent increase in horizontal locomotor activity that was 

maximal at 1 mg/kg (Figure 16).  This response was still fairly modest, however, 

and increased locomotion approximately 2-fold over the baseline level of activity 

(Figure 16C; F(4,39) = 39.9, p < 0.05).  In addition to the locomotor response, 

SKF83959 (1 mg/kg; i.p.) also elicited a specific motor stereotypy involving 

orofacial grooming as previously described (Downes and Waddington, 1993, 

Deveney and Waddington, 1995) and Figure 17.  The grooming response was 

maximal at 0.05 mg/kg (Figure 17B; F(3,23) = 10.3, p < 0.001) compared to 

vehicle) although there was no significant difference between the responses 

elicited from the 0.05 mg/kg and the 1 mg/kg dose.   

 The SKF83959-induced locomotor response was blocked by the D2-like 

receptor antagonist raclopride (Figure 18A and B) and the D1-like receptor 

antagonist SCH23390; a result which showed dose-dependency (Figure 18C - 

E).  SKF83959-induced grooming behavior was also blocked by D1-like and D2-
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like receptor antagonists (Figure 18G and H) as previously described (Deveney 

and Waddington, 1995, Perreault et al., 2010). 

 

Figure 16 

SKF83959 (0 - 1.0 mg/kg; i.p.) dose-dependently increases locomotor activity in 

C57/Bl6J mice (A, B and C).  (A) shows the raw time-course data while (B) 

depicts the data as a bar graph.  The percentage change from baseline for each 

dose tested is shown in (C) with 1.0 mg/kg producing a significant increase in 

activity compared to vehicle. 
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Figure 17 

SKF83959 (0 - 1.0 mg/kg; i.p.) increases orofacial grooming behavior in C57/Bl6J 

mice with a peak in grooming at the 0.05 mg/kg dose (A and B).  (A) shows the 

number of grooming events per 30sec during the 5 min periods evaluated for the 

baseline and post-injection periods.  The percentage change from baseline for 

each dose tested is shown in (B) with all three doses producing a significant 

increase in grooming compared to vehicle. 
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Figure 18 

SKF83959-induced locomotor activity and orofacial grooming is blocked by D1-

like and D2-like receptor antagonists in C57/Bl6J mice.  (A, C and E) show the 



73 
 

ambulatory distance traveled in open field chambers as a function of time (5 min 

blocks over a 90 min testing period) by each test group during a 30 min baseline 

period and 60 min after the animals were injected with SKF83959 (1 mg/kg; i.p.) 

or 0.9% saline.  Ten minutes prior to receiving SKF83959 or saline control, 

animals were injected with the D2 -like receptor antagonist raclopride (A, B and 

G; 0.5 mg/kg; i.p.), the D1-like receptor antagonist SCH23390 (C, D and H; 0.25 

mg/kg; and E, F and H; 0.01 mg/kg; i.p.) or 0.9% saline.  The data is represented 

as bar graphs in (B, D and F), with the data from min 10-30 collapsed for the 

baseline measurement and min 40-60 representing the post-injection period for 

statistical comparisons.  Grooming analyses are displayed in (G and H). 
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In order to assess the complement of dopamine receptors necessary for 

mediating SKF83959-induced signaling and behavior, we investigated the 

SKF83959-induced locomotor activity of dopamine receptor knockout mice.  Our 

data show that in open field chambers, D1 receptor knockout mice were initially 

hyperactive compared to their wildtype and heterozygous littermates during the 

baseline session (Figure 19A and B; p < 0.001 by Two-way ANOVA, Bonferroni 

post-test).  During the post-injection period, wildtype and heterozygous D1 

receptor mutant mice both significantly increased their locomotor activity in 

response to SKF83959 (Figure 19A and B; p < 0.001).  The null mice, on the 

other hand, were seemingly unaffected and continued to habituate to the 

chambers to reduce their level of activity (Figure 19A and B; p < 0.001). 

In the D5 receptor mutant line, SKF83959 elicited a significant locomotor 

response in all three genotypes tested (Figure 19C and D; p < 0 .001).  The post-

injection response for the knockout and heterozygous mice, however, was 

significantly reduced compared to wildtype (Figure 19C and D, p < 0.05).  

Similarly, SKF83959 also significantly increased locomotor activity in all three 

genotypes of the D2 receptor mutant line (Figure 19E and F; p < 0 .001).  Here, 

the D2 receptor knockout mice initially exhibited significant hypoactivity compared 

to the other two genotypes in the baseline session (Figure 19E and F; p < 0 .001) 

resulting in a more robust response in the knockout mice when considering the 

percentage change from baseline (data not shown).   
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Figure 19 

SKF83959 does not induce locomotor activity in D1 receptor knockout mice but 

significantly increases activity in D5 and D2 receptor knockouts.  (A, C and E) 

show the ambulatory distance traveled as a function of time (5 min blocks over a 

90 min testing period) by each genotype for the three dopamine receptor mutant 

lines assessed.  Mice were removed from the chamber after 30 min and 

administered SKF83959 (1 mg/kg; i.p.) before returning to the chamber for the 

last 60 min of testing.  The data are represented as bar graphs in (B, D and F). 
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SKF83959-induced grooming responses largely paralleled the 

observations made with locomotor activation in the mutant lines.  SKF83959 

elicited a significant response in wildtype mice (Figure 20A; p < 0 .001) bot not in 

D1 receptor knockout mice which were significantly different from wildtype when 

assessing the number of post-injection grooming events (Figure 20A; p < 0 .001) 

and the percentage change from baseline (Figure 20B; p < 0 .05).   SKF83959-

induced grooming was significantly increased in D5 receptor knockout mice 

(Figure 20C; p < 0.01); however, the response in the null mice was significantly 

blunted compared to wildtype (Figure 20C and D; p < 0.05).  Lastly, SKF83959 

also significantly increased grooming activity in mice lacking functional D2 

receptors (Figure 20E; p < 0.05) with no difference in percentage change from 

baseline between the knockouts and wildtype mice (Figure 20F). 

 In addition to evaluating the contribution of the dopamine receptors to 

SKF83959-mediated actions, we also assessed the contribution of the G-protein 

Gq.  Locomotor and grooming responses to SKF83959 were assessed in Gq 

knockout mice with similar results as those observed in the D2 receptor mutant 

line.  Here, we show that SKF83959 significantly increased grooming in Gq 

knockout mice (Figure 20G, p < 0.05) with a trend toward a greater percentage 

change from baseline in the knockouts compared to wildtype (Figure 20H, p = 

0.19).  These data parallel our previously published data showing that 

SKF83959-induced locomotor activity is also intact in these mice (Frederick et 

al., 2012). 
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Figure 20 

SKF83959-induced grooming is absent in mice lacking the D1 receptor but 

present in D5 and D2 receptor knockouts and Gq null mice.  Mice were monitored 
by an overhead camera while in the open field and grooming was later assessed 
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every 30 s for a 5 min period during the baseline and post-injection periods. (A, 
C, E and G) show the baseline and post-SKF83959 grooming events committed 
by each genotype for each of the mutant lines assessed while (B, D, F and H) 
shows the data represented as a percentage of the baseline. 
 

 

In order to assess the hypothesis that dopamine D3 receptors may be 

involved in mediating SKF83959-induced actions, we tested whether we could 

block SKF83959-induced locomotion by inhibiting D3 receptor signaling with the 

selective D3 receptor antagonist PG 01037.  In wildtype mice, we found that PG 

01037 did not attenuate SKF83959-induced locomotor activity at the three doses 

tested: 0.5, 5 and 10 mg/kg (Figure 21A - F).  At the 0.5 and 5 mg/kg doses, PG 

01037 had no effect on locomotor responses when administered alone, however 

we did observed a significant increase in locomotor activity compared to vehicle 

at the 10 mg/kg dose (Figure 21E and F, p < 0.001 by Two-way ANOVA, 

Bonferroni post-test).  This locomotor response, however, was not significantly 

different from the baseline level of activity (Figure 21E and F, comparison 

between baseline and PG 01037-vehicle). 
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Figure 21 

SKF83959-induced locomotor activity is not blocked by the selective D3 receptor 

antagonist PG 01037 in C57/Bl6J mice.  (A, C and E) show the ambulatory 

distance traveled in open field chambers as a function of time by each test group 

during a 30 min baseline period and 60 min after the animals were injected with 

SKF83959 (1 mg/kg; i.p.) or 0.9% saline.  Ten minutes prior to receiving 

SKF83959 or saline, animals were injected with saline or PG 01037 (A and B; 

0.5 mg/kg; i.p.), (C and D; 5 mg/kg) or (E and F; 10 mg/kg; i.p.).  The data is 

represented as bar graphs in (B, D and F), with the data from min 10-30 

collapsed for the baseline measurement and min 40-90 representing the post-

injection period for statistical comparisons.   
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Since we did not observe any effects when D3 receptors were selectively 

blocked in wildtype mice (and D2 receptors were still functional), we then decided 

to test the hypothesis that signaling through both the D2 and D3 receptor 

subtypes needed to be blocked in order to attenuate SKF83959-induced actions.   

In the D2 receptor mutant line, we observed that PG 01037 had no effect on 

locomotor activity when administered alone (Figure 22A and B) as we have 

previously observed in our earlier experiments with wildtype mice (see Figure        

21).  Additionally, the D2 receptor knockout mice were significantly hypoactive 

when compared to wildtype as we have observed previously in this line (see 

Figure 19) and all three genotypes continued to habituate in the chambers after 

they received PG 01037 (10 mg/kg; i.p.) (Figure 22A and B).  To our surprise, 

however, when D2 receptor knockouts received PG 01037 (10 mg/kg, i.p.) ten 

minutes prior to receiving an acute injection of SKF83959 (1 mg/kg, i.p.), the 

response was greatly potentiated in these mice compared to wildtype (Figure 

22C and D).  Furthermore, we replicated these results using a second 

compound, raclopride, to block D3 receptors in the D2 receptor knockouts and 

obtained similar results (Figure 23C and D).  In these experiments, however, we 

observed that raclopride significantly reduced locomotor activity when 

administered at 0.5 mg/kg (i.p.) to wildtype and heterozygous D2 receptor mutant 

mice (Figure 23A and B) and blocked the SKF83959-induced locomotor 

response in these mice (Figure 23C and D).  The D2 receptor knockout mice, on 

the other hand, produced the potentiated response (Figure 23C and D), similarly 

as observed previously with the PG 01037 compound. 
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Figure 22 

(A and B) show that the selective D3 receptor antagonist PG 01037 does not 

affect locomotor responses when administered (10 mg/kg; i.p.) to D2 receptor 

wildtype, heterozygous or knockout mice.  The compound potentiates the 

locomotor response in D2 receptor knockout mice, however, when administered 

prior to an acute injection of SKF83959 as shown in (C and D). 
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Figure 23 

(A and B) show that the D2-like receptor antagonist raclopride (0.5 mg/kg; i.p.) 

inhibits locomotor activity in D2 receptor wildtype and heterozygous mice, thereby 

bringing them to the same level of activity as the hypoactive null mice.  (C and D) 

show that raclopride blocks SKF83959-induced locomotor activity in the wildtype 

and heterozygous mice, however, locomotor responses are potentiated in the 

null mice.  

 

 

Additionally, we also assessed the contribution of non-dopaminergic 

receptors in the signaling of SKF83959.  First, we assessed the contribution of 

signaling through the metabotropic glutamate receptor subtype 5 (mGluR5) to 

SKF83959-induced locomotor behavior by blocking mGluR5 signaling with the 

non-competitive antagonist MTEP.  Next, we evaluated the contribution of  
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2 adrenergic receptors by blocking receptor signaling with the highly potent and 

selective antagonist atipamezole.  We observed an attenuation of SKF83959-

induced locomotor activity by both MTEP (Figure 24A and B; 10 mg/kg) and by 

atipamezole (Figure 24C and D; 0.25 mg/kg) when administered ten minutes 

prior to administration of an acute dose of SKF83959 (1 mg/kg; i.p.).   

 

 

Figure 24 

SKF83959-induced locomotor responses are blunted but not completely blocked 

by the mGluR5 receptor antagonist MTEP (A and B) and by the 2 adrenergic 

receptor antagonist atipamezole (C and D). 
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Lastly, we assessed the role of CaMKII in mediating the behavioral 

responses to SKF83959 to address previous reports indicating that 

phosphorylation of CaMKII is a critical downstream component in the signaling 

of SKF83959 (Zhen et al., 2004, Rashid et al., 2007, Ng et al., 2010).  We 

evaluated CaMKII-Thr286Ala knockin mice which are not able to be 

phosphorylated at the Thr286 residue (Giese et al., 1998, Gustin et al., 2011) to 

address this question.  Our data show that both SKF83959-induced locomotor 

and grooming responses are intact in CaMKII-Thr286Ala knockin mice (Figure 

25A and D) as these mice respond similarly to wildtype in both assessments.   

 

Figure 25 

SKF83959-induced behaviors are intact in autophosphorylation - deficient 

CaMKII-Thr286Ala knock-in mice.  (A and B) show the locomotor response to 

SKF83959 as a time-course and bar graph, respectively.  The SKF83959-

induced grooming response is displayed in (C and D). 
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Discussion: 

We have shown that SKF83959-induced locomotion was dose-

dependently increased over a range of doses (0 - 1 mg/kg; i.p.) and a maximal 

locomotor response was elicited from 1 mg/kg SKF83959 when compared to 

vehicle.  The orofacial grooming response, however, was maximal at a lower 

dose of SKF83959 (0.05 mg/kg; i.p.) although significant grooming was still 

elicited at the higher doses of SKF83959 (0.25 and 1 mg/kg; i.p.).  It is unclear at 

this time why there is a large separation (at least a 20 fold difference) between 

the doses of SKF83959 needed to elicit maximal responses in the locomotor and 

grooming responses.  Additionally, although we have observed that SKF83959 

elicits parallel responses for these two behaviors, we do not know whether the 

same circuitry subserves both the locomotor and grooming responses to 

SKF83959.  Studies utilizing localized injections of SKF83959 into specific brain 

regions would be necessary to further address the question of whether these 

behaviors are  mediated by activation of the same (or different) neural circuits.  

To this end, there is evidence in the literature demonstrating that local injections 

of locomotor-stimulating agents such as cocaine or amphetamine into the 

nucleus accumbens or ventral striatum, but not the caudate putamen (dorsal 

striatum), increases locomotor activity in rodent models.  Furthermore, lesions to 

the ventral striatum have been shown to reduce locomotion elicited by systemic 

cocaine or amphetamine (Kelly and Iversen, 1976, Staton and Solomon, 1984, 

Delfs et al., 1990, Ikemoto, 2002).  Moreover, it has also been demonstrated in 

the literature that microinjections of amphetamine into the dorsal striatum 
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increase stereotypic responses (of which grooming is included) over changes in 

locomotion (Staton and Solomon, 1984, Kelley et al., 1988).  It is therefore 

reasonable to hypothesize that the SKF83959-induced locomotor and grooming 

responses are primarily mediated by the ventral and dorsal striatum, respectively. 

SKF83959-induced behavioral responses were attenuated by the D1-like 

receptor antagonist SCH23390 and absent in D1 receptor knockout mice, thereby 

confirming the role of the dopamine D1 receptor in mediating the effects of 

SKF83959.  Additionally, since SKF83959 also has affinity for D5 receptors, we 

also assessed the SKF83959-induced behaviors in D5 receptor null mice.  

SKF83959-induced locomotor activity and grooming were largely intact in D5 

receptor knockouts, further confirming the role of the D1 receptor as the primary 

D1-like receptor target for the behavioral effects of SKF83959.  There was, 

however, a significant difference between the response of wildtype and D5 

receptor knockouts, suggesting a possible role for the D5 receptor in mediating 

the signaling to some degree.   

The D1 and D5 dopamine receptors, sharing 80% homology in their 

transmembrane domains and similar pharmacologic profiles, are not 

differentiated from one another by any known pharmacologic compound.  It is 

recognized, however, that the D5 receptor displays higher baseline activity, lower 

agonist-induced stimulation of cAMP and a higher affinity for dopamine than the 

D1 receptor (Sunahara et al., 1991, Tiberi et al., 1991, Tiberi and Caron, 1994, 

Missale et al., 1998, Beaulieu and Gainetdinov, 2011).  Additionally, the 

anatomical distribution of the D1 and D5 receptors are largely distinct from each 
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other in expression density and localization as the D5 receptor is poorly 

expressed in most regions when compared to the D1 receptor.  The D5 receptor 

is expressed at low to moderate levels in multiple brain regions including the 

cerebral cortex, substantia nigra, hypothalamus, striatum, nucleus accumbens, 

cerebellum and olfactory tubercle and more distinctly in the hippocampus, the 

lateral mammillary nucleus, and the parafasicular nucleus of the thalamus, where 

the D1 receptor is not significantly expressed (Bergson et al., 1995, Khan et al., 

2000, Berlanga et al., 2005).  Particularly, within the striatum, D5 receptors have 

been shown to be poorly expressed on GABAergic MSNs, where D1 receptors 

are predominately expressed, but instead are more abundantly expressed on 

large aspiny cholinergic interneurons which account for approximately 2% of the 

entire striatal neuronal population (Bergson et al., 1995, Khan et al., 2000, 

Berlanga et al., 2005).  The localization of D5 receptors on cholinergic cells 

allows for direct dopaminergic modulation of acetylcholine levels in the striatum.  

In fact, D5 receptor activation of striatal cholinergic interneurons has been shown 

to enhance Zn2+ sensitive GABAA currents thereby modulating GABA 

neurotransmission in the striatum (Yan and Surmeier, 1997).  Loss of D5 receptor 

signaling, therefore, could blunt SKF83959-induced behaviors through a 

reduction in GABAA currents facilitated through D5 receptors on cholinergic cells 

thereby altering maximal striatal output.  Additionally, cholinergic interneurons 

have been shown to modulate striatal signaling and synaptic plasticity via 

activation of muscarinic receptors on MSNs and modulation of long-term 

potentiation at striatal synapses (Howe and Surmeier, 1995, Calabresi et al., 
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1999, Alcantara et al., 2001); mechanisms which could also be altered in the 

knockout mice.  

Interestingly, and much to our surprise, we observed behavioral 

responses to SKF83959 in both the D2 receptor knockout mice and Gq knockout 

mice, suggesting that these proteins are not necessary for SKF83959 signaling 

and drug-induced behavioral responses.  These results contradict the current 

model in the literature regarding the signaling mechanism of SKF83959.  In this 

mechanism, SKF83959 acts through a D1/D2 receptor heteromer coupled to Gq 

and downstream signaling systems involving PI hydrolysis and intracellular 

calcium release.  If, in fact, SKF83959 does signal through such a mechanism, 

then we would have expected to observe minimal SKF83959-induced locomotor 

and grooming responses in the D2 receptor and Gq null mice as we did with the 

D1 receptor knockout mice.  Contrary to our hypotheses however, D2 receptor 

and Gq knockout mice appear to be more sensitive to SKF83959; both exhibiting 

greater percentage change from baseline in the locomotor assay compared to 

wildtype mice.  We did, however, replicate previous reports indicating that 

SKF83959-induced behaviors can be blocked by the D2-like receptor antagonist 

raclopride.  These results, however, are confounded by the fact that raclopride 

alone at 0.5 mg/kg, the dose that has previously been reported to block 

SKF83959-induced grooming behaviors, induces significant catalepsy in wildtype 

mice (see Figure18A and B and (Wadenberg et al., 2000, Perreault et al., 2010)).   

SKF83959-induced behaviors were conserved in D2 receptor knockout 

mice suggesting that D2 receptors are not necessary for SKF83959-induced 
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actions. We therefore next assessed the possible role that dopamine D3 

receptors could be playing in mediating these effects.  Although the D2 and D3 

receptor subtypes share only 46% amino acid sequence homology, they do 

share structural and signaling similarities with 75% homology in their 

transmembrane domains; the regions primarily involved in constructing the 

ligand-binding site.  Additionally, they share a similar long third intracellular loop 

common to GPCRs that interact with Gi isoforms that signal to inhibit activity of 

adenylyl cyclase (Missale et al., 1998, Beaulieu and Gainetdinov, 2011). 

Because of the high degree of homology between the D2 and D3 receptor 

ligand binding sites, it has been difficult to obtain specific compounds that can 

selectively bind to either the D2 or the D3 receptor subtype.  The receptors have 

some distinguishing pharmacological features, however, including differences in 

the efficacy of response for specific ligands.  Dopamine, in fact, has 20 times 

greater affinity for D3 receptors than for D2 receptors, likely related to sequence 

differences between the two receptors in the third intracellular loop altering the 

efficiency of coupling to G-proteins (Missale et al., 1998, Beaulieu and 

Gainetdinov, 2011).  More recently, with focused drug-discovery efforts, selective 

compounds have been developed that can distinguish between the two receptor 

subtypes.  (Pilla et al., 1999, Grundt et al., 2005, Boeckler and Gmeiner, 2006, 

Micheli and Heidbreder, 2008).  These ligands allow for the subtype-specific 

evaluation of receptor functions and subtype-specific contributions to various 

modalities of behavioral output.   
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The D2 and D3 receptor subtypes also differ in their neuroanatomical 

localization and expression levels.  The D3 receptor has a more limited and 

specific pattern of distribution than the D2 receptor; concentrated primarily in 

limbic brain regions including the shell of the nucleus accumbens, the olfactory 

tubercle, and the islands of Calleja.  Additionally, the D3 receptor is expressed at 

very low, but detectable levels in the ventral pallidum, substantia nigra pars 

compacta, ventral tegmental area and hippocampus (Gurevich and Joyce, 1999, 

Stanwood et al., 2000, Beaulieu et al., 2005).  Based on its anatomical 

localization, D3 receptors could play important roles in mediating limbic-related 

functions and motor/sensory processing functions.  Particularly of interest here 

due to its expression in the striatum, the D3 receptor may contribute to 

extrapyramidal motor functions and more specifically, SKF83959-induced 

locomotor and grooming responses.  Previous reports indicate that SKF83959 

has similar affinity for dopamine D3 receptors as it does for D2 receptors 

(Neumeyer et al., 2003), so it feasible that D3 receptors could compensate for the 

more abundantly expressed D2 receptor in their absence in the D2 receptor 

knockout mice.  The ability of SKF83959 to signal through a D1/D3 receptor 

heteromer has not been previously tested and experiments with raclopride 

completed by our laboratory and others could implicate the involvement of D2 

and/or D3 receptors since raclopride has high affinity at both receptors (Seeman 

and Van Tol, 1993). 

The novel high-affinity and selective D3 receptor antagonist PG 01037 [N-

(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)-trans-but-2-enyl)-4-(pyridine-2-
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yl)benzamide hydrochloride] was used for our studies due to its established 

>100-fold binding selectivity at the D3 dopamine receptor compared to the D2 

receptor subtype (Grundt et al., 2005).  This compound has also been previously 

shown to be a selective D3 receptor antagonist in vivo and readily enters the 

brain to localize in brain regions rich in D3 receptor expression (Grundt et al., 

2005).  Furthermore, the metabolism and pharmacokinetic profile of this 

compound have already been established in the literature (Mason et al., 2010).  

Behaviorally, PG 01037 has been shown to be effective in antagonizing D3 

receptors in animal models of psychostimulant  abuse to alter drug-seeking 

behaviors (Grundt et al., 2007, Higley et al., 2011) and to attenuate abnormal 

involuntary movements associated with L-Dopa therapy in animal models of 

Parkinson's disease (Kumar et al., 2009). 

  In wildtype mice, we were unable to block SKF83959-induced locomotor 

responses with the selective D3 receptor antagonist PG 01037 at the three doses 

tested: 0.5, 5 and 10 mg/kg.  We believe that we were in an adequate dose 

range to observe a response, if any, as the compound has been shown to enter 

the brain at concentrations of 2-10 mg/kg (Grundt et al., 2007, Mason et al., 

2010).  Additionally, the 10 mg/kg dose has previously been shown to be 

efficacious in behavioral paradigms in animal models (Collins et al., 2005, Kumar 

et al., 2009, Higley et al., 2011) and  has also been shown to be the preferred 

dose for administration by the i.p. route (Mason et al., 2010).   

We then tested the hypothesis that signaling through both the D2 and D3 

receptor subtypes needed to be blocked in order to attenuate SKF83959-induced 
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actions.  We decided to utilize a combined pharmacologic and genetic approach 

by antagonizing the D3 receptor population with the selective compound PG 

01037 in the D2 receptor knockout mice which lack functional D2 receptors.  Such 

an approach, in theory, would be similar to blocking both receptors with the 

mixed antagonist raclopride, which we have previously shown to block 

SKF83959-induced behaviors.  Additionally, D2/D3 receptor double knockout 

mice have been characterized for their locomotor phenotype and have been 

shown to exhibit a basal hypoactive phenotype (Jung et al., 1999). 

In the D2 receptor mutant line, we observed, to our surprise, a greatly 

potentiated response in the D2 receptor knockouts compared to wildtype  when 

they received PG 01037 (10 mg/kg; i.p.) ten minutes prior to administration of 

SKF83959 (1 mg/kg; i.p.).  The wildtype and heterozygous mice responded to co-

administration of PG 01037 and SKF83959 with a 2-3 fold increase in locomotor 

activity as expected, however the D2 receptor null mice increased their activity 

approximately 15 fold.  These results were contrary to our hypothesis that 

SKF83959-induced locomotor activity would be diminished if we blocked 

signaling through both the D2 and D3 receptor subtypes.  Furthermore, we 

replicated these results using a second compound, raclopride, to block D3 

receptors in the D2 receptor knockouts and obtained similar results.  Taken 

together, use of the selective D3 receptor antagonist PG 01037 did not clear up 

whether both D2 and D3 receptors could potentially both be involved in the 

signaling of SKF83939 as the potentiated response in the knockout mice 

confounds the results and hints at altered D3 receptor expression in the D2 
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receptor null mice that warrants further investigation.  In order to further explore 

the potential role of the D3 receptor subtype in SKF83959 signaling using a 

behavioral approach, we would need to investigate the SKF83959-induced 

behaviors in D3 receptor knockouts and D2/D3 receptor double knockout mice.  

We do not know, however, if there would be alterations in expression of other 

receptors in these mice, such as the D4 receptor subtype, which shares 53% 

transmembrane homology with the D2 receptor, which could confound the 

results.  The D4 receptor subtype, however, is not highly expressed in the 

striatum (Missale et al., 1998, Beaulieu and Gainetdinov, 2011).  

Additionally, we assessed the contribution of non-dopaminergic receptors 

in the signaling of SKF83959.  First, since proper functioning of the striatum 

depends on the ability of MSNs to integrate inputs from dopaminergic neurons 

and descending glutamatergic cortical neurons, we assessed the contribution of 

signaling through mGluR5.  The mGluR5 subtype is abundantly expressed in the 

striatum (Shigemoto et al., 1993, Romano et al., 1995, Muly et al., 2003) where it 

has been shown to be involved in modulating dopamine release (Ohno and 

Watanabe, 1995, Verma and Moghaddam, 1998, Bruton et al., 1999).  

Additionally, mGluR5s have been shown to function cooperatively with dopamine 

D1 receptors in striatal neurons to enhance the accumulation of cAMP (Paolillo et 

al., 1998) and regulate the phosphorylation state of key signaling molecules: 

cAMP-response element binding protein (CREB) and the extracellular signal-

regulated kinase 2 (ERK2) (Voulalas et al., 2005).   
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Furthermore, due to the abundant expression of mGluR5 in limbic brain 

regions (Shigemoto et al., 1993, Romano et al., 1995), and its convergence upon 

dopaminergic reward pathways, the mGluR5 subtype is believed to play an 

important role in associative learning, motivational processes and synaptic 

plasticity.  In particular, mGluR5 may be a key neuroanatomical target and 

modulator of the reinforcing properties of cocaine and other drug of abuse as well 

mediating other stages of the addiction cycle including withdrawal and 

reinstatement (Chiamulera et al., 2001, Gubellini et al., 2004, Kauer and 

Malenka, 2007, Carroll, 2008, Schotanus and Chergui, 2008, Olsen et al., 2010, 

Huang et al., 2011, Wang et al., 2012).  In fact, when mGluR5 function is 

selectively knocked-down in dopamine D1 receptor-expressing neurons with an 

interfering RNA peptide in a mouse model, a critical interaction between 

mGluR5s and dopamine D1 receptors in the formation of reward associations and 

reinforcement of motivated behaviors is revealed (Novak et al., 2010). 

We also assessed the contribution of signaling through 2 adrenergic 

receptors as interactions between these receptors and dopamine receptor 

signaling have been previously demonstrated in multiple species (Cornil and Ball, 

2008).  The morphological and functional features of the 2 adrenergic receptor, 

in fact, appear to be similar in phylogeny to that of the dopamine D2 receptor 

(Donnelly et al., 1994, Vernier et al., 1995); the receptor that was proposed to 

interact with the D1 receptor in the signaling of SKF83959.  Additionally, 2 

receptors have been shown to operate as hetero-receptors to modulate 

dopamine release in the striatum (Starke et al., 1989, Trendelenburg et al., 1994, 
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Bucheler et al., 2002)  and dopaminergic activation of these receptors has been 

shown to inhibit activity of adenylyl cyclase (Zhang et al., 1999).  Furthermore, 

the effects of 2 receptor ligands on dopaminergic modulation of motor function 

have been investigated in animal models of Parkinson’s disease and shown to 

modulate locomotor responses to amphetamine, methylphenidate and 

apomorphine (Mavridis et al., 1991, Chopin et al., 1999, Haapalinna et al., 2003). 

The 2 adrenergic receptor family is comprised of three subtypes; the 2a, 

2b and 2c receptors of which the 2a and 2c subtypes are the major forms 

expressed in the brain (Nicholas et al., 1993, Happe et al., 2004).  The 2c 

receptor has a more limited expression pattern and has been shown to be 

concentrated in the basal ganglia among other regions; however, it is expressed 

at much lower densities than the widely distributed 2a receptor (Nicholas et al., 

1996, Happe et al., 2004).  Selective compounds and receptor knockout mice 

have been developed to investigate the functions of individual 2 receptor 

subtypes selectively (Link et al., 1996, Altman et al., 1999, Knaus et al., 2007, 

Quaglia et al., 2011); future studies could dissect the role of 2 receptor signaling 

at this level of detail.  

In order to assess the contribution of mGluR5 to SKF83959-induced 

locomotor behavior, we blocked mGluR5 signaling with the non-competitive 

antagonist MTEP.  MTEP has been shown to be a highly selective ligand with no 

known off-target activity at other receptors tested (Cosford et al., 2003, Busse et 

al., 2004).  Additionally, MTEP has been previously shown to reach full receptor 

occupancy at a dose of 10 mg/kg; therefore, this dose was selected for our 



96 
 

behavioral assessments.  For studies evaluating 2 adrenergic receptor 

contribution, the highly potent and selective 2 receptor antagonist atipamezole 

was used.  In receptor binding studies, atipamezole was shown to have 100 

times higher affinity on 2 adrenergic receptors than reference compounds and 

was additionally shown to be greater than 200 times more selective than 

yohimbine, an 2 receptor antagonist that was previously the standard compound 

reported in the literature (Virtanen et al., 1989).  Although atipamezole has been 

assessed in behavioral models, the doses used (> 0.5 mg/kg) have been 

reported to produced effects on locomotor response (Kauppila et al., 1991).  We 

therefore conducted dose response experiments to determine a suitable dose for 

use in our locomotor experiments (see Appendix Figure 34) and selected a dose 

of 0.25 mg/kg. 

We observed an attenuation of SKF83959-induced locomotor activity by 

both the mGluR5 receptor antagonist MTEP (10 mg/kg; i.p.) and by the 2 

adrenergic receptor antagonist atipamezole (0.25 mg/kg; i.p) suggesting that 

signaling through non-dopaminergic receptors may contribute to producing a 

maximal SKF83959-mediated response.  These receptors, however, are not 

required for SKF83959-induced locomotor activity. 

Lastly, we assessed the role of CaMKII in mediating the behavioral 

responses to SKF83959 to address previous reports indicating that 

phosphorylation of CaMKII is a critical downstream component in the signaling 

of SKF83959 (Zhen et al., 2004, Rashid et al., 2007, Ng et al., 2010).  We 

observed intact SKF83959-induced locomotor and grooming responses in 
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CaMKII-Thr286Ala knockin mice, thereby negating the necessity of CaMKII 

phosphorylation at the autophosphorylation site (Thr286) in the signaling 

mechanism of SKF83959.  

 

Conclusions: 

When taken together, these data suggest that SKF83959 does not 

exclusively activate D1 and D2 receptors coupled to a Gq signaling pathway as 

has been previously claimed in the literature.  We therefore need to be cautious 

when interpreting data collected from studies utilizing this ligand and re-evaluate 

the literature with respect to these new findings.  Additionally, these results 

indicate that alternative mechanisms for the signaling of SKF83959 should be 

explored as its effects clearly do not require the presence of D1/D2 receptor 

heteromers. 
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CHAPTER IV 

 

SKF83959 ALTERS RESPONSES IN ANIMAL MODELS OF ANXIETY AND 
BEHAVIORAL DESPAIR 

 

Introduction: 

 Depression and anxiety are common emotional disorders accounting for a 

substantial proportion of the burden of mental health disorders in the United 

States (Weissman et al., 1996, Kessler et al., 2005).  Although several subtypes 

of these disorders are described in the fourth edition of the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-IV), they all share general 

symptoms and treatment regimens and are highly comorbid.  The estimated 

lifetime prevalence for depression and anxiety is approximately 17% and 25-

30%, respectively, with both these disorders occurring more often in women.  

Additionally, both disorders often have onset during adolescence or early 

adulthood and become either recurrent or chronic conditions; thereby reducing 

quality of life and occupational productivity in the affected clinical population 

(Weissman et al., 1996, Kessler et al., 2005, Aina and Susman, 2006). 

Although the neural circuits underlying these disorders are not completely 

understood and there is no unitary model for their molecular and cellular origins, 

dysfunctions in the amygdala, hippocampus, basal ganglia and prefrontal cortex 

are commonly implicated (Clark et al., 2009, Aupperle and Paulus, 2010, Clark 

and Beck, 2010, Harro et al., 2011, McEwen et al., 2012). In depression, for 

example, some cognitive theories propose that the interplay between reduced 
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activation in subcortical regions produce the altered emotional state while 

increased activation in cortical circuits dysregulates higher-order control of 

emotion and behavioral output (Clark and Beck, 2010, Harro et al., 2011).  

Regardless of the neural circuits ultimately responsible for the manifestation of 

symptoms, current drug therapies take a systems-level approach to increase 

levels of certain neurotransmitters throughout the brain; primarily serotonin and 

norepinephrine (Bauer et al., 2007, Bandelow et al., 2008, Dell'Osso et al., 2010, 

Racagni and Popoli, 2010).  Additionally, GABAergic neurotransmission has 

been targeted by drugs such as benzodiazepines used primarily for the treatment 

of anxiety disorders (Kalueff and Nutt, 2007, Ravindran and Stein, 2010) and 

more recent drug discovery efforts have been aimed at developing compounds 

that target the glutamate system for treatment of depression (Cryan and O'Leary, 

2010, Autry et al., 2011, Duman et al., 2012).   

Although pharmacologic intervention is the first line of treatment for 

patients suffering with mood and stress-related disorders, these therapies prove 

largely unsatisfactory in a significant portion of the affected population.  

According to the large, multi-center Sequenced Treatment Alternatives to Relieve 

Depression (STAR*D) study that was completed a few years ago, only 33% of 

depressed patients (n > 2800) went into remission following 14 weeks of 

treatment with the selective serotonin reuptake inhibitor (SSRI) citalopram; a 

widely prescribed antidepressant drug.  Furthermore, for those that did achieve 

successful remission initially, there were high rates of relapse which increased 

dramatically for patients that required several different drug treatment strategies 
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to reach remission.  Unfortunately, approximately 1/3 of patients received no 

benefit from any medication prescribed; revealing a substantial population of 

treatment-resistant individuals with unmet medical needs (Rush et al., 2006, 

Trivedi et al., 2006, Pigott et al., 2010, Sinyor et al., 2010).  Similar numbers 

have been reported for the number of patients suffering with anxiety disorders 

that do not respond sufficiently to first-line treatment; approximately 25% of the 

patient population (Bandelow et al., 2008). 

Alternative treatment options are limited for those that fail to respond to 

current pharmacologic regimens and are often more time-consuming and can be 

(semi-) invasive; however, psychotherapy, electroconvulsive therapy, transcranial 

magnetic stimulation and more recently, deep brain stimulation are options for 

medication-resistant cases (Bauer et al., 2007, Bandelow et al., 2008, Mathew, 

2008, Hollon, 2011, Anderson et al., 2012, Lee et al., 2012). 

 Undoubtedly, there is much room in the field for the discovery and 

verification of new therapeutic interventions for depression and anxiety; either as 

stand-alone options or to augment those treatments currently available.  

Recently, modulation of the dopamine neurotransmitter system has been 

highlighted as a potential target in the treatment of depression.  In particular, a 

potential interaction between dopamine D1 and D2 receptors has been a point of 

focus as it has been demonstrated that increased co-immunoprecipitation of 

these receptors can be achieved in post-mortem tissue of individuals who 

suffered from depression (Pei et al., 2010).  Furthermore, dopamine has been 

previously implicated in depression as it is known to be potent modulator of mood 



101 
 

and several studies (both from animal models of depression and human studies) 

have implicated dopamine deficiency in the pathogenesis of the disorder 

(Swerdlow and Koob, 1987, Kapur and Mann, 1992, Dunlop and Nemeroff, 

2007).  For example, in a learned-helplessness model of depression in rats, 

reduced dopamine content was observed in the striatum and nucleus accumbens 

concurrent with the expression of the “depressed” phenotype.  These effects 

were prevented by prior administration of a D1 receptor agonist but exacerbated 

by pre-treatment with D1 receptor antagonist (Anisman et al., 1979, Tombaugh et 

al., 1980, Sherman et al., 1982).  Additionally, the use of dopaminergic agonists, 

dopamine re-uptake inhibitors, dopamine precursors and antidepressant drugs 

has shown some efficacy in other animal models of depression (Muscat et al., 

1990, Kapur and Mann, 1992). 

In humans, a decreased level of the dopamine metabolite homovanillic 

acid in the cerebrospinal fluid of depressed patients has been a consistent 

finding, indicating reduced dopamine turnover in this population.  Additionally, 

antidepressant treatments and ECT have shown to enhance dopamine function 

in some patients (Linnoila M, 1983, Kapur and Mann, 1992, Dunlop and 

Nemeroff, 2007).  Furthermore, some symptoms observed in depression, such 

as lack of motivation and anhedonia may originate in brain regions directly 

modulated by dopaminergic input.  In fact, both depression and anxiety are often 

comorbid with Parkinson’s disease; a disorder characterized by degeneration of 

dopaminergic projections into the striatum (Kapur and Mann, 1992, Aarsland et 

al., 2012, Anderson et al., 2012). 
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Calcium, and molecules sensitive to calcium signaling such as CaMKII, 

are central to neuronal excitability and synaptic plasticity; physiological 

processes that are likely altered in human depression (Colbran and Brown, 2004, 

Castren and Rantamaki, 2010, Drago et al., 2011).  SKF83959, therefore, with its 

reported specify to activate dopamine receptors linked to calcium regulation, 

could have unique therapeutic potential for modulating calcium selectively in 

dopaminergic pathways.  In fact, SKF83959  has been previously shown to have 

some therapeutic efficacy in improving motor symptoms in animal models of 

Parkinson’s disease (Arnt et al., 1992, Downes and Waddington, 1993, 

Gnanalingham et al., 1995a, Gnanalingham et al., 1995c, Zhang et al., 2007, 

Fujita et al., 2010).  Additionally, as putative D1/D2 receptor heteromers have also 

been implicated in depression (Pei et al., 2010), SKF83959 may be a ligand that 

could target signaling specifically in that context.  Here, we characterized the 

behavioral responsiveness to SKF83959 in animal models of anxiety and 

behavioral despair to assess the potential efficacy of this compound for treatment 

of anxiety and depression. 

 

Materials and Methods: 

Animals 

C57Bl/6J mice (Jackson) were utilized for the majority of experiments.  D2 

receptor knockout mice (on a C57Bl/6J background) from colonies maintained at 

Vanderbilt University were additionally assessed in the tail suspension test.   
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Breeding strategies and standard procedures for genotype assignment have 

previously been described (Frederick et al., 2012).  

Male mice were housed under standard housing conditions on a 12 h 

light/dark cycle with conditions previously described (Frederick et al., 2012).  All 

behavioral testing was conducted on mice that were at least (P)60 at the time of 

initial testing.  Mice were extensively handled prior to testing and were habituated 

to the testing rooms for ~30 min prior to beginning of every experiment.  All 

procedures were approved by the Vanderbilt University Animal Care and Use 

Committee. 

  

Drugs 

The dopamine D1-like receptor agonist SKF83959 (3-methyl-6-chloro-7,8-

dihydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine; Tocris 

Biosciences, Minneapolis, MN) was dissolved in 0.9% saline solution at 0.2 

mg/cc (1 mg/kg) and injected intraperiotoneally (i.p.) 30 minutes prior to testing 

on the elevated zero maze, forced swim test or tail suspension test.  Desipramine 

(3-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)-N-methylpropan-1-amine; Sigma, 

St. Louis, MO) and fluoxetine ((±)-N-Methyl-γ-[4-(trifluoromethyl)phenoxy] 

benzenepropanamine hydrochloride; Sigma, St. Louis, MO) were used at 20 

mg/kg for acute dosing.  For chronic testing in the novelty-induced food 

suppression test, mice were injected daily with 0.9% saline, 0.5 mg/kg 

SKF83959, or 10 mg/kg fluoxetine for 21 days.  SKF83959 was prepared fresh 

every other day, based on studies we conducted testing the stability of the 
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compound in solution (see Appendix Figure 35), while fluoxetine was prepared 

fresh every 3 days for chronic administration. 

 

Elevated Zero Maze 

 Anxiety-related behavior was assessed in the elevated zero maze.  The 

elevated circular platform (40 cm off the ground, 50 cm in diameter) had two 

enclosed arenas opposite each other (5 cm wide with 15 cm high walls) and two 

open arenas (5 cm wide).  At the start of the test, each mouse was lowered by its 

tail into the open arena of the maze and allowed to explore the maze for 300 sec.  

Activity of the mouse was monitored as previously described and the percentage 

of time spent in each arena was calculated. 

 

Forced Swim Test 

 Behavioral despair was assessed in the forced swim test using plastic 

cylinders (50 cm in diameter, 21 cm in height) filled approximately ¾ full with 

room temperature water.  Mice were assessed for time spent immobile as 

previously described (Frederick et al., 2012) and the observer was blinded to 

treatment group at the time of assessment.   

 

Tail Suspension Test 

 The tail suspension test was used as a second measure of behavioral 

despair.  In these experiments, each mouse was suspended by its tail from an 

aluminum bar (11.5 cm x 2.3 cm) inside the testing apparatus (Med Associates, 
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33 x 33 x 32cm).  The level and the duration of force placed on the bar by each 

mouse was measured using an automated computer monitoring program (Med 

Associates) during a 7 min test.  Applied force that measured below the lower 

threshold was considered as immobility and used to calculate the time spent 

immobile for each mouse.  At the conclusion of the testing period, mice were 

removed from the bars and placed into their home cages.  The data shown 

represents the amount of time spent immobile during the last 5 min of the test. 

 

Novelty-Induced Food Suppression Test 

The novelty-induced food suppression test is a predictive measure of 

anxiety that has also been shown to be sensitive to chronic antidepressant 

administration (Dulawa et al., 2004, Dulawa and Hen, 2005).  In this paradigm, 

the latency to consume a palatable substance (Vanilla Ensure, Abbot 

Laboratories, Abbot Park, IL) and the amount consumed are assessed in a novel 

environment after a defined treatment period with the potential anti-

depressant/anxiety drugs of interest.  For these experiments, mice were handled 

daily for one week prior to beginning a 21 day regimen of daily injections.  Cages 

of mice were assigned to receive either 0.9% saline (negative control), 0.5 mg/kg 

SKF83959 (test drug) or 10 mg/kg fluoxetine (positive control).  On day 17, mice 

were singly housed and cage bedding was not changed until the testing was 

concluded.  On days 18-20, mice were trained to drink Ensure from a sipper 

(replacing the water bottle) for 30 min per day under red lighting.  The latency to 

consume and amount consumed by each mouse were noted during these 
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training sessions.  Animals that failed to train by the end of the third day were 

subsequently omitted from the study.  On days 21-22, the testing days, the mice 

were assessed in the home cage under red light (a familiar condition) or in a 

novel cage under bright light (a potentially anxiety-provoking condition).  In order 

to avoid ordering effects, on the first day of testing, half of the mice from each 

experimental drug condition were tested in the home cages first and the other 

half were first tested in the novel cages.  On the next day, the mice were 

switched and tested under the second condition.  Data analyzed included the 

latency to the first sip of Ensure (in seconds) as well the amount consumed (in 

grams).  

 

Data Analysis and Statistics 

Data were subjected to one- or-two way analysis of variance (ANOVA) using 

genotype as a between-group factor using GraphPad Prism (GraphPad 

Software, San Diego, CA).  Post-hoc Tukey’s multiple comparison tests or 

Bonferroni comparisons were used to compare groups to each other.  Graphs 

are marked with an asterisk (*) to denote statistical significance (p < 0.05).  For 

data with p < 0.01 or p < 0.001, the graphs are marked with two (**) or three (***) 

asterisks, respectively. 
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Results: 

Acute SKF83959 does not affect anxiety  

In the elevated zero maze, we observed no significant differences in 

performance between saline-treated mice and those that received an acute 

injection of SKF83959 (1 mg/kg; i.p.) thirty minutes prior to testing in the elevated 

zero maze (Figure 26A and B).  Both saline and drug-treated mice spent 

significantly more time in the closed arenas than the open arenas (Figure 26B; 

F(3,23) = 16.5, p < 0.001) with no significant difference between the treatment 

groups in the percentage of time spend in the open arenas. 

 

Figure 26: Elevated zero maze. 

Wildtype mice treated with saline or SKF83959 (1 mg/kg; i.p.) both traveled the 
same distance in the elevated zero maze (A) and spent the same percentage of 
time in the open portions of the maze (B).  n = 6 for each treatment group in 
these experiments.  
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Acute SKF83959 reduces behavioral despair 

In the forced swim test of behavioral despair, wildtype mice that received 

the 1 mg/kg dose of SKF83959 tended to spend less time immobile than mice 

that were treated with saline, desipramine (20 mg/kg; i.p.) or SKF83959 (3 

mg/kg; i.p.) (Figure 27).  These results, however, were not significant by 

statistical comparisons (F(3, 23) = 2.0, p = 0.14). 

 

Figure 27: Forced swim test.  

There were no significant differences between treatment groups in the forced 
swim assay.  There was, however, a trend toward reduced immobility in mice that 
received 1 mg/kg SKF83959 (i.p.) prior to testing (F(3, 23) = 2.0, p = 0.14).  n = 6 
for each treatment group. 
 

 

In the tail suspension test, a second assessment of behavioral despair, 

SKF83959 (1 mg/kg; i.p.) significantly increased mobility in wildtype mice 

compared to those that received saline (Figure 28; p < 0.05 by Two-Way ANOVA 
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with Bonferroni post-hoc comparison test).  Additionally, this response was 

conserved and more robust in D2 receptor knockout mice where SKF83959 

increased mobility by more than 60 sec compared to saline and fluoxetine-

treated mice of the same genotype (Figure 28; p < 0.001).  Furthermore, D2 

receptor null mice spent less time immobile compared to wildtype in all three 

treatment groups; a difference that was most pronounced between the 

SKF83959-treated wildtype and null groups (p < 0.05 for saline and fluoxetine 

treatment groups and p < 0.001 for SKF83959 treatment groups).  We did not 

observe any significant effects of fluoxetine treatment compared to saline in 

either of the genotypes tested.     

 

Figure 28: Tail suspension test.  

SKF83959 significantly reduced time spent immobile in wildtype and D2 receptor 
knockout mice (p < 0.05 for wildtype and p < 0.001 for D2 null mice between 
saline and SKF83959-treatment groups by Two-Way ANOVA with Bonferroni 
post-hoc comparison test).  
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Chronic SKF83959 appears to possess anti-anxiety/depressant potential 

 In the novelty-induced food suppression paradigm, mice received daily 

injections of SKF83959 (0.5 mg/kg; i.p.), fluoxetine (10 mg/kg; i.p.) or saline for 

21 days before assessment of their latency to consume Ensure and the amount 

consumed in two environments: the home cage, a familiar environment, and a 

novel cage with bright light, a potentially anxiety-producing environment.  In the 

home cage, SKF83959-treated mice consumed significantly more Ensure than 

fluoxetine treated mice (Figure 29A; F(2, 25) = 4.2, p < 0.05) and fluoxetine-

treated mice had a significantly greater latency to consume compared to animals 

that received saline (Figure 29C; F(2, 26) = 3.6, p < 0.05).  In the novel 

environment, on the other hand, mice that received chronic injections of 

SKF83959 consumed significantly more Ensure than mice that received saline or 

fluoxetine (Figure 29B; F(2, 26) = 4.8, p < 0.05).  Additionally, mice that were 

treated with fluoxetine or SKF83959 tended to approach the sipper with reduced 

latencies than the saline-treated controls; although not significant by comparison 

with One-Way ANOVA (Figure 29D; F(2, 25) = 1.9, p = 0.16).  If the behavior of 

the animals in the home cage was taken into account in the analysis, then we 

reveal no significant differences between the treatment groups when assessed 

for differences in the amount consumed (Figure 29E; F(2, 24) = 1.4), however, a 

statistically significant difference between the two drug-treatment groups 

compared to saline is revealed in the latency to consume (Figure 29F; F(2, 25) = 

4.6, p < 0.05). 
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Figure 29: Novelty-induced food suppression test.  

Chronic injections of SKF83959 (0.5 mg/kg; i.p.) increased food consumption in a 
novel environment (B; F(2, 26) = 4.8, p < 0.05) and decreased latency to sip (D 
and F; F(2, 25) = 4.6, p < 0.05) in wildtype mice.   Chronic fluoxetine (10 mg/kg; 
i.p.) also decreased latency (D and F; F(2, 25) = 4.6, p < 0.05) but no effects 
were observed with consumption.  Behaviors in the home cage are shown in (A 
and C) and (E) shows the amount consumed as a ratio for behavior in the novel 
as a ratio of the home cage data.  n = 10 for each treatment group in these 
experiments.  
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Discussion: 

We assessed the dopamine D1 receptor agonist SKF83959 for behavioral 

efficacy in rodent models of anxiety and depression.  SKF83959 produced no 

significant effects in an elevated zero maze; indicating lack of SKF83959-induced 

modulation of anxiety-related phenotypes at the dose tested (1 mg/kg; i.p).  As a 

caveat, however, we did not conduct full dose response curves to determine if 

other doses of SKF83959 might be effective in this assay. 

In the forced swim test, we observed a small reduction in immobility in 

SKF83959-treated mice, suggesting reduced behavioral despair.  This effect, 

however, was not significant as we did not have enough power in this preliminary 

experiment.  We would therefore need to repeat these experiments with larger 

group sizes for validation in this paradigm.  Our observations were confirmed, 

however, in a second measure of behavioral despair, the tail suspension test.  In 

this assessment, SKF83959 (1 mg/kg; i.p.) reduced time spent immobile in 

wildtype and D2 receptor knockout mice; further evidence suggesting that D2 

receptor signaling is not involved in mediating SKF83959-induced actions (See 

Chapter III for reference).   

We did not observe any effects from acute injection of desipramine (a 

tricyclic antidepressant) or fluoxetine (a selective serotonin reuptake inhibitor 

commonly referred to as Prozac) at 20 mg/kg (i.p.) in the forced swim test or the 

tail suspension test.  These drugs were included in the studies as positive 

controls as they are both used clinically for the treatment of depression.  The 

majority of studies in the literature using these drugs, or other clinically active 
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ligands, report antidepressant effects of these compounds in these behavioral 

paradigms at a wide range of doses (Bourin et al., 1998, Skrebuhhova et al., 

1999, David et al., 2003, Cryan et al., 2005, Pollak et al., 2010).  Some studies, 

however, find these drugs to be ineffective following acute administration and 

report that chronic exposure is necessary to observe behavioral effects (Detke et 

al., 1997, David et al., 2003, Dulawa et al., 2004, Pollak et al., 2010); results that 

might be more reflective of the clinical time-course of antidepressant efficacy in 

humans which may take weeks to produce any benefit.  In fact, the forced swim 

and tail suspension tests have been criticized as behavioral tests of depression 

due to their acute nature and discordance with the persistent features of the 

human disorder.  They are beneficial, however, as screens for novel compounds 

that may possess antidepressant efficacy as the majority of clinically therapeutic 

compounds do show efficacy in these models (Cryan et al., 2005, Petit-

Demouliere et al., 2005).  Our inability to observe effects with desipramine or 

fluoxetine after acute treatment could be reflective of a number of factors in the 

experimental design; most likely the dose administered or the length of time 

between drug exposure and testing. 

Lastly, we evaluated chronic SKF83959 (0.5 mg/kg for 21 days) in the 

novelty-induced food suppression test, also commonly referred to as novelty-

induced hypophagia.  We observed a significant reduction in the inhibition of the 

fluoxetine and SKF83959-treated groups to feed in a novel environment 

compared to the saline group; a result likely reflective of the antidepressant 

potential of the compounds.  It has been previously demonstrated that 
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assessment of feeding behavior in a novel environment in this paradigm 

constitutes a valid measure of the anxiety-related components of depression; one 

which has been shown to be sensitive to chronic, but not acute antidepressant 

treatment (Dulawa et al., 2004, Dulawa and Hen, 2005).  Additionally, this 

paradigm is a useful tool to investigate anxiety-behaviors that are often 

expressed comorbid with depression (Weissman et al., 1996, Kessler et al., 

2005, Aina and Susman, 2006). 

 

Conclusions: 

Taken together, these studies indicate that SKF83959 could have 

potential therapeutic efficacy as an antidepressant agent and could potentially 

define a novel class of antidepressants targeting the dopamine system.   The 

results presented here are very preliminary, however, and would need to be 

replicated before any strong conclusions could be drawn.  Additionally, further 

studies in other animal models of depression and anxiety would be necessary to 

characterize SKF83959 more fully before moving into trials with clinical 

populations. 
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CHAPTER V 

 

SUMMARY AND DISCUSSION 

 

As a result of the work defined here within this thesis, we have a) more 

precisely defined the neurobehavioral phenotype of Gq knockout mice and their 

responsiveness to locomotor agents, b) used a genetic approach to demonstrate 

that the current dopamine D1/D2 receptor heteromer model of signaling does not 

explain the actions of SKF83959 and c) investigated the potential therapeutic 

efficacy of SKF83959 as a treatment for depression. 

In Chapter II, we reported that we replicated and extended findings 

showing motor deficits in Gq knockout mice in a number of behavioral tasks: the 

accelerating rotarod, inverted screen test, Y-maze, elevated zero maze and the 

open field (Frederick et al., 2012).  Additionally, we demonstrated that drug-

induced locomotor responses were largely intact in these mutant mice; data 

indicating that basal ganglia locomotor circuits are largely functional in the 

absence of Gq.  Furthermore, we observed normal phenotypes in both the 

elevated zero maze and the forced swim test, but not in the Y-maze; revealing 

deficits in spatial working memory in the knockout mice (Frederick et al., 2012).   

Working memory deficits in Gq knockout mice are interesting with respect 

to the extensive literature detailing the importance of catecholamine signaling, in 

particular the role of dopamine, in mediating prefrontal cortex function and 

working memory (Vijayraghavan et al., 2007, Arnsten, 2011).  Since there is 
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evidence in the literature suggesting that dopamine D1 receptors in the prefrontal 

cortex are able to couple to Gq (Wang et al., 1995, Jin et al., 2001, Mannoury la 

Cour et al., 2007), the altered performance of Gq null mice in the Y-maze could 

be explained by lack of dopamine signaling in this pathway.  We do not have any 

selective pharmacologic tools at this time, however, to selectively probe the role 

of dopamine D1 receptors signaling in this pathway (See Chapter III) in working 

memory functions.  Alternatively, we could test the contribution of Gq coupled D1 

receptors by selectively knocking out Gq in cells that express dopamine D1 

receptors using the Cre-lox system of site-specific recombination (Sauer, 1987, 

Orban et al., 1992).  These experiments would be very feasible to conduct as we 

currently maintain a transgenic floxed Gq colony in our laboratory (Wettschureck 

et al., 2005, Wettschureck et al., 2006) and D1 receptor-Cre lines have already 

been created (Gantois et al., 2007, Lemberger et al., 2007) and are available 

from mouse repositories.  Furthermore, we can address the possible contribution 

of G11 signaling in these studies (which may be compensating in some aspects 

in the absence of Gq) by using a conditional Gq mutant line with a constitutive 

deletion of Gna11 to produce progeny that have tissue specific inactivation of Gq 

signaling in a constitutively deficient G11 background (Wettschureck et al., 2005, 

Wettschureck et al., 2006).  A caveat here, however, is that other receptors that 

couple to Gq are co-expressed in cells that express D1 receptors, so we would 

also be losing signaling in those pathways by deleting Gq in D1 receptor-

expressing cells.  Although we do not currently know what other Gq-coupled 

receptors or transmitter systems in the cerebral cortex may be contributing to the 
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observed phenotype, norepinephrine is a likely candidate.  Norepinephrine, a 

precursor of dopamine, is highly synthesized in the cortex and has been shown 

to play a role in working memory (Levy, 2009, Gibbs et al., 2010, Arnsten, 2011).   

Furthermore, 1 adrenergic receptors are Gq coupled receptors, so use of a 

global Gq knockout in our studies would have blocked signaling through this 

pathway, potentially contributing to the phenotype as well (Bylund, 1992, 

Civantos Calzada and Aleixandre de Artinano, 2001).   

In Chapter III, we reported that dopamine D1 receptors, but not D2 

receptors are necessary for mediating the behavioral responses of the reported 

biased agonist, SKF83959.  These data are contradictory to the D1/D2 receptor 

heteromer model that is currently described in the literature as the signaling 

mechanism underlying SKF83959’s actions.  Furthermore, we reported that 

SKF83959-induced locomotor and grooming responses were conserved in Gq 

knockout mice (in Chapters II and III); thereby negating the role of Gq as the G-

protein responsible for mediating the signaling.  Taken together, these results 

suggest that SKF83959 is not exclusively activating dopamine (D1 and D2) 

receptors coupled to a Gq signaling pathway.  The most likely explanation is that 

SKF83959 is not as selective as thought, and may activate D1 receptors coupled 

to Gs/olf signaling pathways, although we have not tested this hypothesis in Gs/olf 

knockout mice.  To this end, constitutive Gs knockout mice have been previously 

generated.   These mice are not viable and die in utero, however, due to the 

essential role of Gs in peripheral signaling as well as within the CNS.  We could 

however, evaluate SKF83959-induced behaviors in mice with tissue-specific 
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inactivation of Gs signaling using the Cre-lox system as mice in which the first 

exon (E1) of Gnas, the gene that encodes Gs, has been floxed have been 

previously generated (Sakamoto et al., 2005a, Sakamoto et al., 2005b).  Cre 

recombination at Gnas E1 has been shown to be superior to recombination at 

other sites (such as at exon 2 which is common to all known transcripts of Gnas) 

since Gnas encodes alternative protein products that are regulated by genomic 

imprinting, leading to monoalleleic, parental origin-dependent expression of 

various transcripts (Yu et al., 2001, Weinstein et al., 2004, Sakamoto et al., 

2005a, Sakamoto et al., 2005b).  Recombination at exon 1, therefore, has been 

shown to disrupt expression of Gs without affecting the expression of other Gnas 

products including NESP55, which is expressed exclusively from the paternal 

allele and XLs, which is expressed exclusively from the maternal allele 

(Sakamoto et al., 2005a, Sakamoto et al., 2005b).  Initial analyses would need to 

be conducted to assess the presence of any behavioral phenotypes in these 

mice which could make data difficult to interpret.  Similarly, we could also 

address the contribution of G-proteins linked to cAMP in SKF83959-induced 

actions by assessing SKF83959-induced behaviors in Golf knockout mice 

(Belluscio et al., 1998, Zhuang et al., 2000).  As previously mentioned, Golf is 

largely expressed in the striatum (instead of Gs) (Zhuang et al., 2000, Corvol et 

al., 2001, Herve et al., 2001) so use of these mice would be preferred if we 

believed that SKF83959-induced locomotor and grooming behaviors were 

mediated by this region.  Furthermore, use of these knockout mice could tease 

apart differences in the circuitry underlying these behaviors; if, for example, the 
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grooming response was mediated by the dorsal striatum and therefore absent in 

these mice, but the locomotor response was intact, that would indicate that the 

locomotor phenotype was mediated by a different brain region where Golf is not 

highly expressed or that Golf is not involved in the signal transduction pathway 

for the locomotor response.  If SKF83959 does signal through D1 receptors 

coupled to Gs/olf, then that would explain the locomotor phenotype that we 

observed after acute administration of SKF83959 (1 mg/kg; i.p.) as it is 

consistent with the behavioral profile of other D1 receptor ligands that activate 

adenylyl cyclase (Arnt et al., 1992, Waddington et al., 1995). 

In fact, the critical role of adenylyl cyclase activity in motor functions has 

been demonstrated in adenylyl cyclase 5 (AC5) knockout mice.  AC5 is the major 

isoform found in the striatum and mice deficient in this enzyme are greatly 

impaired on a rotarod test (Iwamoto et al., 2003).  Additionally, these mice exhibit 

reduced spontaneous locomotor activity and the locomotor responses to D1 and 

D2 dopamine receptor agonists are markedly diminished, unless used at very 

high doses (Lee et al., 2002, Iwamoto et al., 2003).  Furthermore, AC5 knockout 

mice increase their locomotor activity in response to administration of haloperidol 

(0.03 mg/kg; i.p.) or clozapine (0.6 mg/kg; i.p.), an effect not observed in wildtype 

mice.  These effects, however, are blocked by the D1 receptor antagonist 

SCH23390; thereby indicating involvement of D1 receptor signaling.  The residual 

signaling is likely mediated by the remaining isoforms of AC present in the 

striatum as only 85-90% of D1 receptor-stimulated AC activity and ~80% of 



120 
 

forskolin-induced activity was eliminated in the knockout mice (Lee et al., 2002, 

Iwamoto et al., 2003). 

Although the importance of cyclase activity in locomotor function has been 

established in the literature, initial studies assessing the cyclase-stimulating 

activity of SKF83959 reported little to no activation in vitro and in vivo (Arnt et al., 

1992, Andringa et al., 1999, Jin et al., 2003).  One possibility is that the assays 

used to conduct these experiments were not sensitive enough to detect any 

activation of adenylyl cyclase by SKF83959, which could have been particularly 

low, and these experiments should therefore be repeated with current 

technologies and methods.  Alternatively, it is conceivable that even if SKF83959 

does activate D1-Gs/olf coupled receptors, there could be alternative cyclase-

independent pathways, mediated by G subunits or G-protein independent 

signaling mechanisms, which feed into SKF83959-induced PI hydrolysis (Undie 

and Friedman, 1990) or IP3-dependent calcium mobilization (Mahan et al., 1990, 

Tang and Bezprozvanny, 2004, Ming et al., 2006, Liu et al., 2009a) that would 

support the initial biochemical characterization of this drug as a potent modulator 

of PI signaling.  In fact, GPCR activation of PLC has been shown to be activated 

by both pertussis toxin-insensitive (Gq) and pertussis toxin-sensitive (G) 

signaling pathways.  Furthermore, it has been demonstrated that the composition 

of the G subunits specifically mediates the level of activation Gsignaling has 

on specific PLC isoforms. (Boyer et al., 1994, Runnels and Scarlata, 1999).  

Therefore, it may be that G subunits (that dissociated from Gs after D1 receptor 

activation), mediate PI hydrolysis, IP3 accumulation and calcium signaling.  Of 
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note, the aforementioned dopamine and D1 receptor agonist-induced effects 

observed on PI hydrolysis and intracellular calcium release were blocked by 

SCH23390 but not by D2 receptor ligands (sulpiride or domperidone)(Mahan et 

al., 1990, Undie and Friedman, 1990), indicating no involvement of D2 receptors 

in the signaling.  In order to address whether SKF83959 activates PI signaling at 

the level of PLC (independent of Gq), SKF83959-induced locomotor and 

grooming behaviors could be assessed in PLC knockout mice.  There are four 

isoforms of PLC,1-4, and knockout mice have been generated for each of the 

isoforms revealing isoform specific functions including developmental influences 

of PLC1 signaling in patterning of the cerebral cortex (Jiang et al., 1996, Jiang 

et al., 1997, Kim et al., 1997, Kano et al., 1998, Hannan et al., 2001).  

Furthermore, PLC4 knockout mice have been reported to demonstrate an ataxic 

phenotype due to the role of this isoform in the development of the cerebellum, 

as previously also described for Gq knockout mice (Offermanns et al., 1997a, 

Kano et al., 1998). 

Our studies indicate that SKF83959 does not signal through D1/D2 

receptor heteromers coupled to Gq to mediate its behavioral effects, although 

that does not mean that D1/D2 receptor heteromers are not a physiological entity 

nor does it address whether dopamine receptors are able to couple to Gq in 

vivo.  Wang et. al. demonstrated dopamine and SKF38393-induced coupling to 

both Gs and Gq in rat striatal membranes; an effect that was blocked by the D1 

receptor antagonist SCH23390 (10M) but not by the D2 receptor antagonist, 

sulpiride (10 M) (Wang et al., 1995).  Interactions between the D1 receptor and 
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Gq were additionally demonstrated in other brain regions by other groups using 

methods of co-immunoprecipitation, [35S]GTPγS and [α32P]GTP-binding to select 

G-proteins (Jin et al., 2001, Mannoury la Cour et al., 2007).  These interactions 

were also blocked by SCH23390 (Jin et al., 2001, Mannoury la Cour et al., 2007) 

but not sulpiride (Jin et al., 2001), additional evidence against the involvement of 

D1/D2 heteromers in D1 receptor-Gq coupling.  Some studies have shown that 

SKF83959 can induce D1 receptor coupling to Gq (Jin et al., 2003, Mannoury la 

Cour et al., 2007) and IP3 accumulation (Jin et al., 2003) using i.p. administration 

of 0.8 mg/kg SKF83959.  These results are more difficult to resolve in light of our 

data showing that SKF83959-induced behaviors are conserved in Gq knockout 

mice.  One possible explanation, however, could be that SKF83959, like other D1 

receptor agonists, has the ability to stimulate coupling to multiple G-protein 

families to initiate multiple signaling cascades.  Although D1 receptors may retain 

the ability to signal through Gq in vivo, it may be that signaling in this pathway 

does not influence behavioral output and may be involved in other cellular 

processes yet to be determined.  Recent unpublished data from the laboratory of 

Dr. Jonathan Javitch (Columbia University), however, convincingly argues 

against the ability of dopamine D1 receptors to effectively couple to Gq in vitro 

when stimulated with dopamine or SKF83959 over a wide range of 

concentrations (up to log [10-4] M).  Dr. Javitch’s laboratory has created a novel in 

vitro bioluminescence resonance energy transfer (BRET) assay in which a signal 

is detected from the conformational change of activated G-proteins (Urizar et al., 

2011).  Using this assay, no BRET signal was detected for Gq (indicating 
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activated Gq proteins) after addition of dopamine or SKF83959 when cells were 

transfected with D1 receptors, D5 receptors, D2 receptors (of either the long or 

short isoform) or any combination of these receptors.  Conformational changes of 

the cognate G-proteins, however, were verified for all receptors (Gs for D1 and 

D5 receptors and Gi for D2 receptor isoforms) and shown to be blocked by 

specific receptor antagonists.  Furthermore, Gq activation was demonstrated to 

be detectable within the system by transfecting cells with M1 muscarinic 

receptors (which are Gq-coupled receptors) and activating the receptors with 

acetylcholine.  Moreover, unpublished data from our laboratory visualizing the co-

localization of D1 and D2 receptors in images of brain sections from Drd1a-

tdTomato Drd2-EGFP BAC double transgenic mice reveals that D1 and D2 

receptor co-localization in vivo may be much less in some brain regions, 

including the nucleus accumbens and frontal cortex, than had been estimated in 

previous reports from other laboratories (Shuen et al., 2008, Matamales et al., 

2009, Valjent et al., 2009, Perreault et al., 2010, Zhang et al., 2010).   

The idea that dopamine-mediated PI signaling was not mediated by the 

classical dopamine D1 receptor stemmed largely from studies demonstrating that 

a) dopamine and SKF38393-induced IP3 accumulation and [3H]SCH23390 

binding sites co-immunoprecipitated with Gq were retained in the striatum of D1 

receptor knockout mice (Friedman et al., 1997) and b) SKF83959-induced PI 

hydrolysis was not induced in PC12 cells expressing dopamine D1 receptors (Jin 

et al., 2003).  We know, however, that D5 receptors have also been reported to 

couple to Gq and to induce PI signaling so this could explain why IP3 
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accumulation was still present in D1 receptor knockout mice (Sahu et al., 2009, 

So et al., 2009, Hasbi et al., 2010).  Additionally, we do not know if there are off-

target effects of SKF83959 at the concentrations used in these experiments as it 

has been demonstrated that SKF83959 does have moderate affinity for 

adrenergic and serotonergic receptors (Andringa et al., 1999, Neumeyer et al., 

2003) through which signaling could become more prominent in the absence of 

higher affinity D1 receptors to bind.  Furthermore, it is also possible that there are 

orphan Gq-coupled GPCRs with characteristics similar to D1-like receptors that 

could potentially be activated by SKF83959. 

 With respect to the studies assessing IP3 accumulation in PC12 cells 

transfected with D1 receptors, one possibility is that the machinery necessary for 

PI metabolism is not entirely expressed in this particular cell line.  In these 

experiments, the authors assessed 0, 10M, 50M and 250M SKF83959 for 

effects on IP3 accumulation after a 30 minute period.  In addition to testing 

SKF83959, they also tested SKF38393, the prototypic dopamine D1 receptor 

agonist that has been implicated in mediating both stimulation of adenylyl cyclase 

activity and PI hydrolysis (Undie and Friedman, 1990, Undie et al., 1994).  The 

authors observed no effect on IP3 using either ligand, thus indicating a failed 

experiment if they expected positive results (i.e. increased IP3 content) from 

SKF38393.  The authors did not include any experiments where they transfected 

a known Gq-coupled receptor into PC12 cells (a muscarinic receptor for 

example) and demonstrated that they could observe dose-dependent IP3 

accumulation after adding a ligand.  Furthermore, previous studies demonstrating 
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dopamine-mediated PI signaling in transfected cells did not use IP3 as the 

functional readout; rather they assessed PLCactivation (Yu et al., 1996) or 

intracellular calcium release (Liu et al., 1992, Frail et al., 1993, Lin et al., 1995).  

Additionally, these studies evaluating D1 receptor stimulation in transfected cells 

did not use PC12 cells, rather they used HEK 293 cells (Lin et al., 1995, Yu et al., 

1996) or Ltk-fibroblast cells (Liu et al., 1992); indicating that there may be 

differential expression of necessary proteins in these cells lines for specific cell-

signaling pathways.  Furthermore in both the study by Liu et. al. and the one 

conducted by Lin et. al., it was demonstrated that the calcium signal was 

mediated by a G-protein that was sensitive to cholera toxin (potentially Gs) and 

that the signal was potentiated by the activity of cAMP (Liu et al., 1992, Lin et al., 

1995) and PKA (Liu et al., 1992).  Additionally, Lin et. al. demonstrated that the 

cAMP-dependent calcium pool was also sensitive to IP3, further indicating a link 

between G-protein signaling (independent of Gq) and IP3/calcium release (Lin et 

al., 1995). 

The ability of other Gq-coupled receptors to “prime” dopamine D1-like 

receptor modulation of calcium currents has also been described (Dai et al., 

2008).  In these studies, forskolin-induced stimulation of cAMP was not sufficient 

to induce calcium release on its own nor was D1-like receptor stimulation in the 

absence of priming.  Dopamine D1-like receptor stimulation, however, potentiated 

the calcium response to mGluR stimulation through a mechanism that was 

dependent upon cAMP and PKA (Dai et al., 2008).  Although mechanisms such 

as these may exist to explain how dopamine D1 receptor signaling could 
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potentially modulate PI metabolism at points downstream of Gq, it is difficult to 

interpret calcium signal as an end-point measurement as many systems 

converge to modulate its homeostasis within the cell.  Calcium regulation is 

subject to regulation by a number of inputs and because cross-talk between 

pathways is very common, calcium release in not necessarily directly translatable 

to receptor activation at the cell membrane.   As has been discussed here, there 

are a number of ways by which one can get increased calcium without activating 

Gq coupled receptors.  Furthermore, to this end, SKF83959 signaling has been 

implicated in regulating calcium-dependent molecules such as CaMKII (Zhen et 

al., 2004, Rashid et al., 2007, Ng et al., 2010).   We therefore assessed the role 

of CaMKII phosphorylation at residue Thr286 in mediating SKF83959-induced 

responses using phosphorylation-deficient CaMKII-Thr286Ala knockin mice.  In 

these mutant mice, we observed intact SKF83959-induced locomotor and 

grooming responses, thereby negating the necessity of CaMKII phosphorylation 

at this residue in the signaling mechanism of SKF83959 as previously reported.  

Additionally, we were not able to reproducibly demonstrate SKF83959-induced 

phosphorylation of CaMKII-Thr286 in a number of brain regions including the 

striatum (as previously reported)(Ng et al., 2010), medial frontal cortex or nucleus 

accumbens (data not shown); thereby further supporting our behavioral findings.  

These data indicate that although previous reports detected increased activity 

(Zhen et al., 2004) or phosphorylation of CaMKII following administration of 

SKF83959 (Ng et al., 2010), the change in CaMKII was not necessarily a direct 
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result of SKF83959 signaling.   Additionally, phosphorylation of CaMKII at Thr286 

does not appear necessary to produce the behavioral responses of the ligand. 

 The involvement of D2 receptors in the signaling of SKF83959 was first 

suggested by Rashid et. al. when they demonstrated that D1 receptor agonist-

induced calcium currents were potentiated by the D2 receptor agonist, quinpirole, 

and blocked by the D2 receptor antagonist raclopride.  Additionally, they used 

radioligand binding studies to demonstrate that SKF83959 binds with high affinity 

to pertussis toxin-resistant D2 receptors only (non- Gi/o coupled) in the presence 

of D1 receptors, indicating the presence of a D1/D2 receptor heteromer (Rashid et 

al., 2007).  The data in this paper demonstrated the ability of D1 receptors to 

couple to Gq; however the idea that D2 receptors and SKF83959 are specifically 

involved was pieced together from many experiments using a variety of 

pharmacologic manipulations.  Clearly, even if the D1/D2 receptor heteromer 

model can be supported in vitro as was demonstrated by Rashid et. al., it is not 

supported by systematic in vivo analyses using specific knockout mice (Chapter 

III).  Moreover, the pitfalls of using calcium signal as a readout have already been 

discussed. 

Additionally, we assessed the involvement of the dopamine D5 and D3 

receptor subtypes and other non-dopaminergic receptors in the signaling of 

SKF83959.  Regarding the role of the D5 receptor, its localization on cholinergic 

cells allows for direct dopaminergic modulation of acetylcholine levels in the 

striatum.  Furthermore, D5 receptor activation of striatal cholinergic interneurons 

has been shown to enhance Zn2+ sensitive GABAA currents thereby modulating 
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GABA neurotransmission in the striatum (Yan and Surmeier, 1997). One 

potential mechanism by which SKF83959-induced actions could have been 

blunted in D5 receptor knockout mice, therefore, could be through a reduction in 

GABAA currents facilitated through D5 receptors on cholinergic cells altering 

maximal striatal output.  Additionally, cholinergic interneurons have been shown 

to modulate striatal signaling and synaptic plasticity via activation of muscarinic 

receptors on MSNs and modulation of long-term potentiation at striatal synapses 

(Howe and Surmeier, 1995, Calabresi et al., 1999, Alcantara et al., 2001); 

mechanisms which could have also altered the locomotor output in the D5 

receptor knockout mice.  Furthermore, the BRET data from the Javitch laboratory 

suggests that SKF83959 activation of D5 receptors does not activate Gq 

suggesting that this receptor is mediating signaling initiated by SKF83959 

through an alternative pathway, perhaps through Gs.  The BRET in vitro system 

could be used to test this hypothesis by transfecting cells with D5 receptors and 

testing for activation of Gs (resulting in a BRET signal) when activated by 

SKF83959. 

In our assessments evaluating the involvement of D3 receptors in 

mediating SKF83959-induced actions, our results proved inconclusive.   We were 

not able to successfully inhibit locomotor activity with pharmacological blockade 

of D3 receptors with a selective antagonist PG 01037 in wildtype or D2 receptor 

knockout mice.  Furthermore, we observed a potentiated phenotype in the D2 

receptor knockouts when they were administered PG 01037 or raclopride, hinting 

at altered D3 receptor expression in these mice which confounds the results.  In 



129 
 

order to further explore the potential role of the D3 receptor subtype in SKF83959 

signaling using a behavioral approach, we would need to investigate the 

SKF83959-induced behaviors in D3 receptor knockouts and D2/D3 receptor 

double knockout mice.  Currently, we do not maintain a D3 receptor mutant 

colony in the laboratory that would be necessary for addressing this question.  

Here, we could again utilize the BRET in vitro system by transfecting cells with D3 

receptors (alone or in combination with D1 receptors) and testing for activation of 

specific G-proteins by SKF83959. 

With respect to the contribution of non-dopaminergic signaling systems, 

we observed an attenuation of SKF83959-induced behavior by both the mGluR5 

receptor antagonist MTEP (10 mg/kg; i.p.) and by the 2 adrenergic receptor 

antagonist atipamezole (0.25 mg/kg; i.p) suggesting that signaling through non-

dopaminergic receptors may contribute to producing a maximal SKF83959-

mediated response.  These receptors, however, are not required for SKF83959-

induced locomotor activity and further support the idea that SKF83959 mainly 

exerts its actions by activating dopamine D1 receptors. 

When taken together, these data suggest that SKF83959 does not 

activate D1/D2 receptors heteromers coupled to Gq as has been previously 

claimed in the literature and alternative signaling mechanisms need to be 

explored (see Figure 30 for summary).  Furthermore, as a number of studies in 

the literature have utilized this ligand based on its reported specificity, we 

therefore need to re-evaluate the literature with respect to these findings. 
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Figure 30 

Schematic depicting some proposed mechanisms of signaling for 
SKF83959.  On the right we have the mechanism of the D1/D2 receptor 

heteromer coupled to Gq, which is the current model in the literature.  The red 
“X” denotes that we have tested the hypothesis and demonstrated that it is 
insufficient to explain the actions of SKF83959.  On the left side, we have 
depicted other potential signaling mechanism for SKF83959 and potential ways 
in which SKF83959 could produce PI hydrolysis, IP3 accumulation or intracellular 

calcium release without signaling through Gq. 
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In Chapter IV, we report our very preliminary findings assessing the 

therapeutic efficacy of SKF83959 in animal models of anxiety and depression.  

Although we did not observe any significant effects on anxiety behavior in the 

elevated zero maze, we did observe acute effects of SKF83959 in two tests of 

behavioral despair: the forced swim test and the tail suspension test.  In the tail 

suspension test, we assessed both wildtype and D2 receptor knockout mice for 

SKF83959-induced effects and observed interesting effects.  Not only did 

SKF83959 reduce time spent immobile in both genotypes, but it actually had a 

larger response in the D2 receptor mutant mice; further confirming that D2 

receptors do not mediate SKF83959 signaling.  

The results observed from acute SKF83959 administration in the tests of 

behavioral despair were intriguing to us; however the forced swim and tail 

suspension tests have been criticized as behavioral tests of depression due to 

their acute nature and discordance with the persistent features of the human 

disorder.  We therefore decided to test for antidepressant efficacy in the novelty-

induced food suppression paradigm; a paradigm that has been validated to 

measure the anxiety-related components of depression.  In particular, this 

paradigm is sensitive to chronic, but not acute antidepressant treatment (Dulawa 

et al., 2004, Dulawa and Hen, 2005).  Assessment of SKF83959 in the novelty-

induced food suppression paradigm revealed promising results; reducing latency 

to feed and food consumption in a novel environment.  Although very preliminary, 

these studies indicate that SKF83959 could have potential therapeutic efficacy as 
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an antidepressant agent and could potentially define a novel class of 

antidepressants targeting the dopamine system. 

 

Summary: 

We have tested the hypothesis that SKF83959 exerts its actions by 

activating dopamine D1/D2 receptor heteromeric complexes coupled to Gq and 

downstream CaMKII-Thr286 phosphorylation using pharmacologic approaches 

and genetic models.  Our results show that SKF83959 requires functional 

dopamine D1 receptors to elicit drug-induced locomotor and grooming responses 

(and D5 receptors are involved to some degree), but D2 receptor signaling, Gq 

expression and CaMKII-Thr286 phosphorylation are not necessary to produce 

these behaviors.  These data go against the current model in the literature and 

brings up many more questions surrounding the mechanism of this ligand that 

are yet to be addressed.  Furthermore, although we do not completely 

understand the mechanism of SKF83959, our data suggests that the ligand may 

be promising as a therapeutic agent for depression and that lines of inquiry 

around this ligand should still be pursued in the field. 
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CHAPTER VI 

 

APPENDIX 

 

 In Chapter III we reported data assessing SKF83959-induced behaviors in 

various mutant lines.  Each of the studies was conducted independent of the 

others and multiple experiments were conducted in each mutant line examined. 

We therefore were interested in making sure that we were activating SK83959-

induced locomotor activity to reproducible levels across experiments.  In order to 

address this question, we assessed the SKF83959-induced locomotor response 

from every wildtype mouse in each mutant line tested and examined the wildtype 

response across experiments.  Figure 31A shows the average baseline 

locomotor response of all wildtype mice (from all mutant lines) across 

experiments and the vehicle and SKF83959-induced locomotor responses.  

Figure 31B shows this data as a percentage change from baseline and reveals 

an approximate 2-3 fold increase in locomotor activity in the SKF83959-treated 

mice compared to those that received saline.  These results are consistent with 

those observed in the C57/Bl6J mice that received the 1 mg/kg dose in the dose-

response experiments (Chapter III, Figure 16) and demonstrates that SKF83959-

induced locomotor activation is highly reproducible. 

 Additionally, we used an extended 3-day protocol in our experiments 

requiring two days of habituation to the open field chambers with saline injections 

and injection of SKF83959 on the third day.  In some of the mutant lines, 
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however, we observed varied responses in basal locomotor activity between the 

different genotypes on the third day.  We therefore were interested in knowing 

whether the basal level of activity (or level of habitation) would vary the 

SKF83959-induced locomotor response.   In order to address this question, we 

injected C57/Bl6J mice with vehicle or SKF83959 (1 mg/kg; i.p.) on what would 

be Day 1 or our usual protocol.  These mice, therefore, were not extensively 

habituated to the open field and only had the 30 minutes prior to the injection to 

be exposed to the chambers.  We observed in these experiments that, although 

the baseline activity was a little higher than what we previously observed, 

SKF83959 still increased locomotor activity by 2-3 fold (Figure 32A – C).  These 

results indicate that SKF83959 increases locomotor activity in the open field 

regardless of the basal level of activity. 
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Figure 31 

SKF83959 (1 mg/kg; i.p) significantly and reproducibly increases locomotor 
activity in wildtype mice from all mutant lines tested (A and B).  The SKF83959-
induced locomotor response is consistently found to be a 2-3 fold increase in 
locomotor activity compared to vehicle controls (B). 
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Figure 32 

SKF83959 (1 mg/kg; i.p) significantly increases locomotor activity in C57Bl/6J 
mice when administered after only 30 minutes of habituation to the open field (A 
and B).  The SKF83959-induced locomotor response is a 2-3 fold increase in 
activity compared to vehicle (B) regardless of extensive habituation or basal level 
of activity. 
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 In Chapter III, we assessed the involvement of receptor signaling in 

SKF83959-induced actions using pharmacologic manipulations in addition to 

evaluation of the mutant mouse lines.  For some of the ligands, however, we did 

not have good data available to determine what doses would be good to use for 

behavioral assessments.  We therefore conducted dose-response curves for the 

D1 receptor antagonist SCH23390 and the 2 adrenergic receptor atipamezole in 

order to find doses that did not have effects on locomotor responses when 

administered alone.  At concentrations of 0.1 mg/kg and 0.05 mg/kg, SCH23390 

had significant inhibitory effects on locomotor responses (Figure 33A and B).  A 

dose of 0.01 mg/kg, however, was not significant from vehicle; therefore this was 

the dose we used in some our studies with a low-dose of SCH23390.  We also 

used a higher dose of SCH23390 (0.25 mg/kg) is some studies and although this 

dose blocked SKF83959-inducd locomotor behavior, it also induced profound 

inhibition of locomotor activity when administered alone (Chapter III, Figure 18).  

Additionally, with atipamezole, we tested a large range of doses (Figure 34A and 

B) and decided on a dose of 0.25mg/kg for use in our experiments as we wanted 

a dose that was high enough that if we didn’t observe an effect, it wouldn’t be 

due to the dose being too low to exert an effect.  

 Lastly, in Chapter IV, we conducted studies with chronic administration of 

SKF83959 (0.5 mg; i.p. for 21 days).  We wanted to save on costs associated 

with preparing the drug fresh every day; however, we did not know whether 

SKF83959 would be stable in solution for more than 24 hours.  In all previous 

experiments, SKF83959 had been made up fresh in solution on the day of the 



138 
 

experiment.  We therefore tested SKF83959 in solution over a 3-day period and 

observed its effect on locomotor activation.  We found that the percent change in 

locomotor activation compared to baseline was reduced with each day the ligand 

was in solution (Figure 35A – G).  We therefore decided to prepare SKF83959 

fresh every 2 days for use in the novelty-induced food suppression experiment. 
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Figure 33 

The D1 receptor antagonist SCH23390 significantly inhibits locomotor activity at 
doses of 0.1 mg/kg and 0.05 mg/kg; however, the 0.01 mg/kg dose is not 
significant from vehicle (A and B). 
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Figure 34 

The 2 adrenergic receptor antagonist atipamezole does not change locomotor 
activity compared to baseline at 0.1, 0.25 or 0.5 mg/kg, however locomotor 
responses at these doses are significantly different compared to vehicle (A and 
B). 
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Figure 35 

The locomotor stimulating effects of SKF83959 decline as SKF83959 is in 
solution over 3 days (A – G).  
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