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CHAPTER 1 

 

1. Introduction 

1.1 Enzymes 

Chemical reactions provide the foundation for all life. However, the typical rates for most of the 

essential reactions needed to support life are too slow under spontaneous processes. To this end, 

Nature has developed biological catalysts, called enzymes, which facilitate the chemical reactions at the 

accelerated rates needed to sustain life. Carbonic anhydrase is one example of these vital enzymes in 

humans and other organisms, catalyzing the interconversion of carbon dioxide and water to bicarbonate 

and protons. 

CO2 + H2O  H+ + HCO3
- 

At near physiological conditions, the rates for the spontaneous hydration of carbon dioxide and 

dehydration of carbonic acid are ~0.15 s-1 and ~0.019 s-1, respectively [1], which carbonic anhydrase 

accelerates to 1 x 106 s-1 and 6 x 105 s-1, respectively [2]. Catalysis of these reactions is critical for 

maintenance of acid-base equilibrium in tissues and bodily export of carbon dioxide. The necessity of 

the function of this enzyme is apparent given that its loss results in osteoporosis, renal tubular acidosis, 

and cerebral calcification [3]. 

The value of enzymes for mankind is not limited to biological activities, as their power is also 

harnessed for commercial purposes. Enzymes are used for the manufacture of many consumer staples 

such as cheese, alcohol, and bread. Cheese is comprised of coagulated milk proteins (casein), whereby a 

mixture of enzymes produced in the stomach of ruminant (multi-chambered) mammals, termed rennet, 

are used for the curdling process. Additionally, many types of alcoholic beverages and bread are 

produced by harnessing the power of sugar fermentation enzymes in yeast, which produce ethanol and 
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CO2. Indeed, Wilhelm Kühne coined the term enzyme while studying yeast extracts, which is derived 

from the medieval Greek word “enzymos,” referring to the process of leavening bread [4]. 

1.1.1 Mechanistic Enzymology 

Investigation of mechanistic enzymology is a primary focus in this thesis work. Through 

exploitation of the advancing technology, studies on enzyme-mediated reaction mechanisms began in 

the late nineteenth century. One of the founding principles in mechanistic enzymology was the “lock 

and key” model, first proposed by Emil Fischer in 1894 [5]. Fischer used this metaphor to describe the 

intricate and requisite interaction(s) between an enzyme and its substrate(s) following observations of 

sugar substrate specificity by various fermentation yeasts [6]. The notion was later extended to the 

important theory of the formation of an enzyme-substrate complex [7], which was essential for the 

derivation of rate equations that mathematically and accurately describe the enzyme kinetics. Building 

upon a model developed by Victor Henri in 1903, Leonor Michaelis and Maud Leonora Menten 

established a fundamental mathematical model that showed the direct proportionality between the 

rate of an enzyme catalyzed reaction and the enzyme-substrate complex, which is known as the 

Michaelis-Menten equation [8]. Kenneth Johnson stated “Nearly a century after the original publication, 

the work of Michaelis and Menten stands up to the most critical scrutiny of informed hindsight” [9]. 

In 1925 Briggs and Haldane further substantiated the work by Michaelis and Menten by 

rederiving their equation and postulating that the concentration of the enzyme-substrate complex is 

constant, i.e. the steady-state approximation [10]. Attempts have been made to simplify the previously 

complex non-linear regression analysis by using linear transformations of the Michaelis-Menten 

equation. A double reciprocal equation developed by Lineweaver and Burk [11] gained considerable 

popularity and use, despite its deficiencies when including low substrate concentrations in the analysis. 

Alternatively, the Eadie-Hofstee plot [12] uses a non-inverse linear transform of the Michaelis-Menten 

equation that more accurately estimates the kinetic parameters, albeit the error analysis is more 
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arduous. Fortunately, the computing power of contemporary computers facilitates non-linear regression 

analysis, making linear regression transformations of the Michaelis-Menten equation unnecessary. 

Kenneth Johnson and his company (KinTek) have developed a dynamic simulation program, KinTek 

Explorer® [13,14], that eliminates the need for simplifying assumptions and permits the simultaneous 

fitting of multiple (and variable) experiments to a specified kinetic model developed by the user. The 

utility of the KinTek Explorer global fitting ability will be demonstrated in the kinetic modeling discussed 

in this dissertation, vide infra. 

1.2 Cytochrome P450 

Cytochrome P450 (P450) proteins are heme thiolate oxidase enzymes that are ubiquitous 

throughout life. Currently, the P450 superfamily has over 41,000 named genomic sequences, which are 

found within all the kingdoms, as well as viruses [drnelson.uthsc.edu/cytochromeP450.html, 15]. These 

~50 kDa enzymes have a heme prosthetic group attached to a cysteine residue, which is in the only 

known conserved amino acid region found within all the P450s [16]. The heme moiety in P450s gives 

them their characteristic spectroscopic properties and conspicuously contributed to their naming. 

Tsueno Omura and Ryo Sato were the first to characterize these enzymes and christened them 

cytochrome P450, derived from “pigment 450,” consequent of the typical peak at 450 nm that is 

observed in the difference absorbance spectrum of the reduced, CO-bound enzyme [17-19]. 

P450s, as a group, are versatile enzymes with a broad range of substrates that are able to 

catalyze various reactions, including mixed-function oxidations, reductions, rearrangements, and others 

(Figure 1.1) [20]. The archetypal reaction catalyzed by P450 enzymes is a monooxygenation with the 

following stoichiometry (RH is the substrate): 

RH + NADPH + O2 + H+ → ROH + NADP+ + H2O 

A typical hydroxylation reaction cycle is comprised of several steps that are outlined in Figure 1.2. The 

reaction generally begins with the ferric form of the heme moiety, which is normally coordinated with a 
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distal water molecule. The cycle commences with substrate binding, which usually displaces the water 

but does not itself coordinate with iron, and is followed by a single electron reduction. Molecular oxygen 

is then able to bind to the iron, giving a ferrous dioxygen complex, prior to a second reduction. The 

resulting peroxo species can then be protonated, forming a ferric hydroperoxide. A dehydration step 

then generates the acclaimed perferryl species known as “Compound I” that is ascribed for the substrate 

chemistry in most of the P450 reactions. The fleeting intermediate species proceeds to abstract the 

alkane hydrogen, resulting in a carbon radical. Radical recombination ensues to yield the ferric heme 

and a hydroxylated product that is released in the final step of the cycle. Experimental procedures have 

been developed to assess the kinetic rates for most of individual reaction steps in search of rate-limiting 

steps, including the characterization of the transient Compound I species as reported by Rittle and 

Green [21]. 

The reaction cycle discussed above requires two reducing equivalents (electrons) that are 

extricated from a reduced nicotinamide adenine dinucleotide phosphate (NADPH) molecule. Electron 

transport from NADPH to the P450 heme is facilitated by associated redox partners, which differ 

depending on the localization of the P450 within the cell. Microsomal P450s, which are localized to the 

endoplasmic reticulum, receive the electrons from NADPH-cytochrome P450 reductase (POR). The 

reductase facilitates the stepwise transfer of electrons using flavin adenine dinucleotide (FAD) and flavin 

mononucleotide (FMN) prosthetic groups. The POR FAD prosthetic group accepts a hydride ion from 

NADPH and consecutively transfers single electrons to the FMN, which in turn transfers the electrons to 

the P450 as it receives them. Alternatively, mitochondrial and some bacterial P450s have two redox 

partners, adrenodoxin (Adx) and adrenodoxin reductase (ADR). The pair functions in a manner that 

parallels POR, where ADR is the FAD component that accepts the two electrons from NADPH, but Adx 

contains an iron-sulfur cluster as opposed to an FMN cofactor. Additionally, microsomal cytochrome b5 

(b5) can sometimes be used as a redox partner for certain microsomal P450 reactions.  
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Figure 1.1 Reactions catalyzed by P450 enzymes [20] 
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Figure 1.2 Catalytic cycle for a typical P450-mediated hydroxylation reaction [22] 
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Considering the magnitude of P450s that have been, and continue to be, identified through 

sequencing studies, it became necessary to develop a standard naming system to distinguish between 

the enzymes [23]. P450 enzymes are classified into families based on an amino acid sequence identity at 

>40% (denoted by an initial identification number), while >55% sequence identity is required to be 

placed in the same subfamily (denoted by a successive capital letter). For example, P450 17A1 is 

classified into family 17, subfamily A, and the final number, 1, designates the individual P450 in the 

group. 

The earliest reported P450 structures were generated using soluble bacterial P450s. Poulos et al. 

first crystallized P450 101A1, also known as P450cam, in complex with camphor (its substrate) in 1985 at 

2.6 Å resolution, and later improved the resolution to 1.63 Å [24,25]. To date, a Protein Data Bank query 

for “cytochrome P450” yields over 800 results [rscb.org, 26 ]. Despite the differences in sequence 

identity, cellular localization, and function, a conserved overall fold is observed in the reported P450 

structures. The secondary structure of P450 enzymes has also shown consistency with 13 α-helices (A, B, 

B’, and C–L) and five β-sheets (β1–β5) [27]. Another structural feature shared by eukaryotic microsomal 

P450s is the N-terminal polypeptide chain, which serves solely as a membrane anchor to the 

endoplasmic reticulum. The membrane anchor is frequently removed to improve heterologous 

expression efficiency without loss of catalytic activity. 

1.3 Human P450 Enzymes 

The Human Genome Project revealed that humans have 57 P450-encoding genes. Human P450s 

have been studied extensively, generating a great deal of knowledge about the functions of these 

enzymes. In addition to the nomenclature classification based on sequence identity (vide supra), human 

P450s can also be categorized based on their substrate class, as shown in Table 1-1. It should also be 

clarified that the grouping based on substrate class is rather arbitrary, in considering that several P450s 
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can be placed under more than one substrate class. For example, human P450 3A4 is a classical 

xenobiotic metabolizing enzyme, but it is also functions in the metabolism of steroids [28,29]. 

The general role(s) of P450 enzymes are viewed in two categories: (1) they are substrate specific 

and have essential biological functions or (2) they are promiscuous and serve to protect the organism 

[30]. Characterization of the human P450s that catalyze vital physiological reactions, such as those 

needed for sterol and vitamin metabolism, has been facilitated through association with heritable 

metabolic diseases [31]. Some of the diseases that have been linked with defects in human P450 genes 

are listed in Table 1-2. Conversely, P450s that metabolize xenobiotics, e.g. ingested natural products, 

environmental pollutants, and therapeutic drugs, are not typically associated with important 

physiological consequences of endogenous substrate chemistry. The significance of this second group is 

to safeguard against accumulation of potentially harmful agents, but this function is sometimes 

problematic in regards to medicine. P450s are currently credited for the metabolism of ~75% of “small 

molecule” drugs processed by enzymes [32]. In this regard, ~90% of P450 mediated metabolism is 

attributed to a small group of P450s, including 1A2, 2C9, 2C19, 2D6, and 3A4 [30]. P450 3A4 is perhaps 

the most renowned P450 involved in drug oxidation, considering that it accounts for almost half of the 

medicinal drug clearance [33]. A primary reason for the large contribution by P450 3A4 is due to the 

high levels of expression in the intestine and liver. Needless to say, the xenobiotic metabolizing P450s 

have been studied extensively, and their reactions are taken into account in the development of new 

drugs.  
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Table 1-1 P450 Classification by substrate class [32] 

Sterols Xenobiotics Fatty acids Eicosanoids Vitamins Unknown 

1B1 1A1 2J2 4F2 2R1 2A7 

7A1 1A2 2U1 4F3 24A1 2S1 

7B1 2A6 4A11 4F8 26A1 2W1 

8B1 2A13 4B1 5A1 26B1 4A22 

11A1 2B6 4F11 8A1 26C1 4X1 

11B1 2C8 4F12 
 

27B1 4Z1 

11B2 2C9 4F22 
 

27C1 20A1 

17A1 2C18 4V2 
   

19A1 2C19 
    

21A2 2D6 
    

27A1 2E1 
    

39A1 2F1 
    

46A1 3A4 
    

51A1 3A5 
    

 
3A7 

    

 
3A43 
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Table 1-2 Some diseases associated with defects in CYP genes [32] 

Gene Disorder 

CYP1B1 Primary congenital glaucoma (buphthalmos) 

CYP2R1 Rickets 

CYP4A Defects in salt metabolism, water balance leading to arterial hypertension  

CYP4F22 Ichthyosis 

CYP4V2 Bietti’s crystalline dystrophy 

CYP5A1, 8A1 Defects leading to clotting and inflammatory disorders, coronary artery disease, and 
pulmonary hypertension 

CYP7A1 Hypercholesterolemia 

CYP7B1 Severe hyperoxysterolemia and neonatal liver disease 

CYP11A1 Lipoid adrenal hyperplasia; occasional congenital adrenal hyperplasia (CAH) 

CYP11B1 Occasional CAH 

CYP11B2 Corticosterone methyl oxidase deficiency type I, or type II; occasional CAH 

CYP11B1, 11B2 Chimeric enzymes causing glucocorticoid- remediable aldosteronism; occasional CAH 

CYP17A1 Mineralocorticoid excess syndromes, glucocorticoid and sex hormone deficiencies; 
association with increased risk of prostate cancer and benign prostatic hypertrophy; 
occasional CAH 

CYP19A1 Loss of function: virilization of females, hypervirilization of males, occasional CAH; gain 
of function: gynecomastia in young males 

CYP21A2 > 90% of all CAH 

CYP24A1 a Hypervitaminosis D 

CYP27A1 Cerebrotendinous xanthomatosis 

CYP27B1 Vitamin D-dependent rickets type I 

CYP46A1 a Learning disability 

a Evidence of disease in animal models but not yet in clinical studies 
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1.4 Human Steroid Biosynthesis 

Several P450 enzymes contribute to the production of human steroids, as listed in Table 1. The 

steroid biosynthetic pathway illustrated in Figure 1.3 shows the sequence in which the P450s take part, 

in coordination with two hydroxysteroid dehydrogenase enzymes (3β- and 17β-) and 5α-reductase. The 

illustration also provides a categorized view of the prominent natural human steroids in five groups: 

progestogens, mineralocorticoids, glucocorticoids, androgens, and estrogens. The first group of steroids 

is the progestogens, whose production begins with P450 11A1, also known as the cholesterol side-chain 

cleavage enzyme or P450scc (scc: side-chain cleavage), as it catalyzes the conversion of cholesterol to 

pregnenolone (Preg). 3β-Hydroxysteroid dehydrogenase can transform Preg to progesterone (Prog) by 

oxidizing the 3-hydroxy group to a ketone while simultaneously isomerizing the 5,6-double bond to the 

4,5 position. P450 17A1 is the next enzyme in the pathway and mediates key bifurcations in steroid 

production that lead to mineralocorticoids, glucocorticoids, and sex hormones (androgens and 

estrogens). P450 17A1 is a dual function enzyme that catalyzes the hydroxylation of carbon-17 on Preg 

and Prog to yield 17α-hydroxy steroids, 17α-hydroxypregnenolone (17α-OHpreg) and 17α-

hydroxyprogesterone (17α-OHprog), and in turn uses them as substrates in a “desmolase” or “lyase” 

reaction that generates dehydroepiandrosterone (DHEA) and androstenedione (Andro), respectively. An 

alternate course for Prog and 17-OHprog leads to aldosterone and cortisol synthesis, respectively, 

through oxidation reactions from P450s 21A2, 11B1, and 11B2. The androgens produced by the P450 

17A1 17,20-lyase function lead to the synthesis of testosterone via hydroxysteroid dehydrogenase 

activity. The pathway ultimately terminates with P450 19A1, commonly referred to as aromatase, which 

generates estrogens from Andro and testosterone. The vitality of the steroid metabolizing P450 

enzymes is apparent, given the physiological relevance of their products. At the crux of pathway lies 

P450 17A1, the enzyme of focus in this dissertation work.  
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Figure 1.3 The steroid biosynthetic pathway [adapted from 34] 
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1.5 Human Cytochrome P450 17A1 

Homo sapiens P450 17A1 is encoded by a single gene, CYP17A1, located on chromosome 

10q24.32 [35]. The gene consists of eight exons that are transcribed to a 1895 bp mRNA sequence, 

which is further translated to a 508 amino acid protein at 57 kDa. The primary sites of expression are the 

gonads and the adrenal glands. P450 17A1 is abundant in the Leydig cells of the testis and theca cells of 

the ovaries, whereas in adrenal tissue it is localized in the zona fasciculata and zona reticularis. Notably, 

P450 17A1 protein has also been observed in fetal human nervous tissue and adult adipose tissue, and 

its enzymatic activity has been detected in adipose cells and tissue preparations from fetal kidney, 

thymus, and spleen [36-38]. 

1.5.1 Substrates and Catalytic Activity 

As discussed above, the dual functionality of P450 17A1 is indispensable in the steroid 

biosynthetic pathway; however, the enzyme possesses additional catalytic abilities, presented in Figure 

1.4. The primary major catalytic activity by P450 17A1 is the hydroxylation of Preg and Prog (21-carbon 

steroids) to yield 17-OHpreg and 17-OHprog. Alternatively, hydroxylation of carbon-16 is also observed 

with Prog, producing 16α-hydroxyprogesterone (16α-OHprog) at a 1:4 ratio in comparison with 17-

OHprog [39]. Trace amounts (~1% of products) of 11-DOC from 21-hydroxylation activity is a third 

reported Prog hydroxylation reaction mediated by P450 17A1 [40]. The second major catalytic activity 

by P450 17A1 is the 17,20-lyase chemistry, a carbon-carbon bond cleavage reaction that generates 19-

carbon steroids and acetic acid. As such, P450 17A1 produces DHEA and Andro from 17-OHpreg and 17-

OHprog, respectively. However, the desmolase activity with 17-OHprog as the substrate is reportedly 

much lower than when 17-OHpreg is used, indicating that human sex hormone production likely 

proceeds mainly through the pregnenolone steroids [41]. Bypass of the 17α-hydroxy intermediate for 

17,20-lyase catalysis has been exhibited with Preg as a substrate yielding androstadienol, 15,16-
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androstadien-3β-ol [42]. Further adding to the gamut of P450 17A1 chemistry, novel catalytic products 

have been identified in these studies, which are reviewed in Chapter 2. 

The hydroxylation reactions catalyzed by human P450 17A1 are deemed to proceed through the 

typical hydroxylation cycle, vide supra, that is supported by the Compound I iron oxygen species (FeO3+). 

The 17,20-lyase reaction, however, has been subject the subject of deliberation. The speculative issue is 

whether the active oxidant is a ferric peroxide (FeO2
-), an early intermediate after oxygen addition, or 

Compound I. Akhtar and his associates have investigated the issue and concluded that the ferric 

peroxide is involved in the reaction [43]. P450 19A1 is another steroidogenic enzyme that catalyzes a 

carbon-carbon bond cleavage reaction whose mechanism was reported to be ferric peroxide-mediated 

[44]. However, reanalysis of the chemistry using current technologies revealed that P450 19A1 operates 

via the Compound I active iron species in catalyzing the reaction [45]. Following the revision to the 

chemical mechanism of P450 19A1, the P450 17A1 17,20-lyase reaction has been reexamined, and the 

results are presented in Chapter 2. 

1.5.2 Posttranslational Modification 

One of the most prevalent modes of protein/enzyme (in)activation is through posttranslational 

modification (PTM). P450s are not an exception, and phosphorylation of P450 7A1, one of the steroid 

metabolizing variants, was proposed to be a posttranslational regulatory factor early in the P450 

research field [46,47]. Furthermore, in vivo phosphorylation of several human xenobiotic metabolizing 

P450s has been detected through proteomic methods, although the relevance has yet to be clarified 

[48]. In regard to human P450 17A1, serine phosphorylation has been reported to enhance 17,20-lyase 

rates without altering hydroxylation activity [49,50]. Likewise, dephosphorylation diminishes the 

desmolase activity [51]. Alternatively, human b5 is another selective 17,20-lyase enhancer but in 

combination with phosphorylation the stimulation was not additive, leading to the conclusion that the 

stimulation by either factor is exclusive [52].  
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Figure 1.4 Human P450 17A1 Catalyzed Reactions  
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1.5.3 Cytochrome b5 Stimulation of the 17,20-Lyase Reaction 

Selective stimulation of the P450 17A1 17,20-lyase reaction by human b5 is a well-established 

phenomenon. Prompted by studies revealing a discrepancy in the desmolase catalytic ability of purified 

enzyme and human tissue homogenates, Katagiri et al. investigated the influence of b5 on recombinant 

P450 17A1 activity [53]. They showed that b5 enhanced the P450 17A1 C-C cleavage reactions with 17-

OHpreg and 17-OHprog by 13- and 10-fold, respectively, in comparison to only 2-fold for the 17-

hydroxylation of Preg, while stimulation of 17-OHprog and 16-OHprog production was relatively weak 

(see Figures 1.5 and 1.6). The mechanism for the b5-mediated stimulation has remained enigmatic. 

Hildebrant and Estabrook reported the first account of a b5-supported P450 reaction, in which they 

postulated b5 as the second electron donor in the oxidation of ethylmorphine in liver microsomes [54]. 

Although POR is the redox competent in P450 3A4-catalyzed testosterone oxidation, the reaction is 90% 

faster when b5 is present [55]. Notably, the mechanism of b5 in the P450 17A1 17,20-lyase reaction does 

not involve electron transfer. Lee-Robichaud et al. reported that redox-deficient Mn-substituted b5 is 

able to stimulate the 17,20-lyase activity [56]. Furthermore, apo-b5, a form completely devoid of the 

heme cofactor, showed no difference when compared to holo-b5 [57]. The results are compelling and 

establish the precedent that b5 functions through an allosteric mechanism, a role first reported by 

Morgan and Coon [58]. An alternative theory is that apo-b5 scavenges heme that has liberated from the 

P450 enzyme in the reaction mixture [59], but a contradictory study found that not enough free heme is 

present to suffice the b5 stimulation and it is unlikely to transfer in the time scale of the enzyme assay 

[60]. Interestingly, the function of b5 allostery has been ascribed to alter the kinetics of electron transfer 

[61]. The stimulatory effect of b5 in P450 17A1 reactions is a continual focus in this work. Chapter 2 

includes interesting results using b5 and oxygen surrogates in support of the 17,20-lyase reaction, while 

a focus of Chapter 3 is the influence of b5 on individual reaction steps. 
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Figure 1.5 b5 stimulation of the P450 17A1 17,20-lyase reaction [53] 
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Figure 1.6 b5 stimulation of the P450 17A1 hydroxylation reactions [53] 
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1.5.4 Structural Analyses 

The first crystal structures of human P450 17A1 were solved and reported by DeVore and Scott 

[62]. The enzymes were crystallized in complex with the inhibitors abiraterone (Figure 1.7) and 

galeterone, both of which have a steroidal backbone with either a pyridine or benzimidazole group, 

respectively, attached at the carbon-17 atom. The structures exhibited the typical P450 fold and both 

inhibitors formed the expected heme iron-nitrogen bond. The authors also note the presence of empty 

space in the substrate pocket with the bound inhibitors, despite the fact they are larger than natural 

ligands. More recently, human P450 17A1, with a A105L mutation, has been co-crystalized with 

substrates bound [63]. The mutation was deemed structurally inconsequential, and the substrate 

orientations and bonding characteristics were similar to that with abiraterone. Interestingly, void space 

was again observed in the substrate pocket. The observation of unoccupied space in the active site 

provides a rationale for the unexpected, novel product synthesis detailed in Chapter 2. 

Considering the significant effect on the 17,20-lyase reaction, structural analysis of human P450 

17A1 in complex with b5 has been a subject of great interest. For some time now, it has been known that 

mutation of arginine residues at positions 347 and 358 in P450 17A1 diminishes the 17,20-lyase function 

in humans [64]. Mutagenesis studies using recombinant enzymes revealed that cationic residues at 

these positions are essential for catalysis of the desmolase reaction [56,65]. Peng and colleagues 

demonstrated a direct interaction between P450 17A1 and b5 at these amino acid residues using 

crosslinking experiments [66]. Structural nuclear magnetic resonance (NMR) analysis of human P450 

17A1 in solution with b5 have yielded consistent results, in which the b5 interaction with P450 17A1 

arginine residues 347 and 358 was corroborated [67]. However, the findings were also puzzling in that 

the binding interactions with both b5 and POR were mapped to the same region of P450 17A1. 

Considering that b5 does not transfer electrons, and therefore POR must provide both reducing 

equivalents for each catalytic cycle, the exchange between the two proteins is perplexing.  



20 
 

 

Figure 1.7 Human P450 17A1 Structure [PDB 3RUK] 
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1.5.5 Human P450 17A1 Related Diseases 

P450 17A1 is consequential to human physiology and disease due to its central role in steroid 

biosynthesis. DeVore and Scott have tabulated numerous genetic variants identified in the clinic with 

their associated effect on the enzymatic activity and structural context [62]. The scope of genetic lesions 

includes missense mutations, deletions, duplications, and premature stop codons. In some cases, the 

missense mutation leads to a moderate decrease in catalytic activity, while others completely inactivate 

the enzyme with only a single amino acid change. Diminished 17α-hydroxylation and 17,20-lyase 

catalysis results in cortisol and sex hormone deficiency, stemming from the deficit in 17α-hydroxy 

steroids, with concomitant mineralocorticoid accretion. The excess 11-deoxycorticosterone (11-DOC) 

causes sodium retention, hypertension, hypokalemia, suppressed plasma renin activity, and suppressed 

aldosterone production [68]. When remedied with glucocorticoid therapy, 11-DOC synthesis is 

suppressed, while plasma renin activity and aldosterone concentrations normalize [69]. Additionally, the 

lack of androgens and estrogens results in sexual infantilism, pubertal failure, and infertility. As such, 

females with this disorder appear phenotypically normal, while males lack or have incomplete genitalia, 

a syndrome known as male pseudohermaphroditism. Remarkably, some missense mutations in P450 

17A1 lead to isolated 17,20-lyase deficiency with normal 17α-hydroxylase activity, i.e. R347H, R358Q, 

and E305G [64,70]. The first two amino acid differences disrupt the associations with the redox partners 

while the second alters the 17-OHpreg binding [70,71]. 

Bearing in mind that human P450 17A1 is responsible for androgen synthesis, it is considered an 

important factor in sex hormone responsive cancers, e.g. prostate cancer. The current standard remedy 

for prostate cancer is androgen deprivation therapy through excision of the androgen producing tissues 

(castration). Unfortunately, the procedure does not always resolve the affliction, and relapse usually 

occurs in what is known as castration-resistant prostate cancer (CRPC). In some cases, CPRC develops 

from mutations of the androgen receptor. Conversely, CRPC tumors have shown the ability to generate 
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androgens de novo, and therapy with P450 17A1 inhibitors provides a selective pressure for cells 

expressing high levels of the enzyme [72]. 

1.5.6 Inhibitors 

Inhibition of human P450 17A1 has become a major goal for prostate cancer therapy, and 

presumably the remedy is useful for other steroid-responsive maladies (e.g. breast and endometrial 

cancer). Five of the small molecule inhibitors that have been used/tested in prostate cancer therapy are 

shown in Figure 1.7. The earliest attempt at preventing androgen synthesis by means biosynthetic 

inhibition was the “off label” use of ketoconazole. Ketoconazole is a broad spectrum P450 inhibitor, 

which is primarily prescribed to treat fungal infections. Studies in 1985 using microsomal preparations 

revealed the aptitude of the drug for 17,20-lyase inhibition [73]. Although the drug does inhibit human 

P450 17A1, it obstructs general steroid production by indiscriminately impeding P450 11A1, 21A2, 11B1, 

and 19A1 function [74,75], as well as the drug-metabolizing P450s such as P450 3A4. Ketoconazole is no 

longer used for the treatment of prostate cancer, but its trial is noteworthy for establishing the 

foundation of steroidogenic inhibition in prostate cancer therapy. 

In 2011 the U.S. Food and Drug Administration approved abiraterone acetate, the pro-drug for 

abiraterone, as a treatment for CRPC [76]. Abiraterone is a selective P450 17A1 inhibitor, albeit with a 

steroidal core structure and a D-ring attached pyridine. The molecule falls short as an optimal therapy in 

that it inhibits the 17α-hydroxylation reaction in addition to the 17,20-lyase function. Consequently, 

adjuvant prednisone or dexamethasone (synthetic glucocorticoids) is required to counteract the cortisol 

deficit and associated elevated 11-DOC issues observed with complete P450 17A1 deficiency, vide supra. 

Glucocorticoid therapy, however, cannot be endured indefinitely, and activation of a mutant androgen 

receptor has been observed with prednisone [77]. Presumably, a reaction specific inhibitor that is 

exclusive to 17,20-lyase catalysis would prevent the adverse effects caused by glucocorticoid shortage.  
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Figure 1.8 Human P450 17A1 Inhibitors 
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Pharmaceutical industry efforts have generated several reaction selective-inhibitors. Orteronel 

(TAK-700) is a non-steroidal P450 17A1 inhibitor brought to Phase III clinical trials for metastatic CRPC. 

The drug was developed through structure-activity relationship studies with the cleavage reaction 

[78,79]. 17,20-Lyase selectivity over 17α-hydroxylation was five-fold for half-maximal inhibitory 

concentrations (IC50) [80]. In contrast, reviews on the topic indicate that the in vivo selectivity and 

resulting side effects are not better than those of abiraterone [77,81,82]. In 2014 Takeda discontinued 

the orteronel development initiative, reporting that the therapy did not improve overall survival nor did 

it have a clinical profile that was better than currently available therapies [83]. Human P450 17A1 

inhibition by orteronel has been reevaluated in this work, including comparisons of the two enantiomers 

(Chapter 3). 

Other P450 17A1 selective inhibitors currently in clinical trials include galeterone (TOK-001) and 

seviteronel (VT-464). In addition to inhibition of P450 17A1, galeterone is an androgen receptor 

antagonist [84,85]. Seviteronel is a non-steroidal, desmolase selective inhibitor that has a reported 17α-

hydroxylase:17,20-lyase IC50 ratio of ~10 [86]. For further reading on these two molecules, see 

references 77,82,87,88.  

1.5.7 Processivity 

P450 17A1 is one of the multi-step, sequential reaction P450s, a group that includes both 

xenobiotic and endogenous substrate metabolizing enzymes. Interestingly, five of the P450s involved in 

steroid biosynthesis belong to this special group, and remarkably four of them complete their reaction 

sequences with a C-C bond scission reaction. P450s 11A1 and 11B2 catalyze a three-step processes that 

generates Preg and aldosterone from cholesterol and 11-DOC, respectively. P450 19A1 is another three-

step enzyme but is unique in that it aromatizes and deformylates its substrate in the final step. As stated 

above, P450 17A1 is a dual function enzyme that sequentially catalyzes 17α-hydroxylation and 17,20-

lyase reactions. The issue of processivity refers to the capacity of the enzyme to catalyze the sequential 
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reactions in a processive or distributive manner. In a processive mechanism, the intermediate products 

remain in the enzyme during the multi-step process resulting in final product synthesis. Alternatively, in 

a distributive sequence the intermediate products dissociate from the enzyme and must rebind before 

the next round of catalysis is possible. Processivity studies have suggested that steroidogenic P450s 

employ both mechanisms. Bovine P450 11B2 has been reported to catalyze the hydroxylation of carbons 

11 and 18 of 11-DOC and corticosterone, respectively, prior to a final oxidation of 18-

hydroxycorticosterone to yield aldosterone as a final product in a processive fashion [89]. Remarkably, 

co-incubation with P450 11A1 has been reported to disrupt the processivity of P450 11B2 by promoting 

the dissociation of the intermediate product, corticosterone. On the other hand, human P450 19A1 

follows a distributive mechanism in the production of estrogens from androgens [22]. 

While the processivity of human P450 17A1 has not been ascertained, investigations using P450 

17A1 enzymes from other species have generated conflicting results. Guinea pig P450 17A1 was 

reported to follow a processive mechanism through the sequential hydroxylation and cleavage reactions 

on the progesterone series substrates [90]. Studies with the bovine enzyme suggested a primarily 

distributive mechanism, with only 20% of the Preg metabolized to DHEA processively [91]. The bovine 

enzyme was more distributive with Prog as the substrate, with a 10-fold larger dissociation rate for 17-

OHprog over 17-OHpreg. Guinea pig P450 17A1 utilizes both Preg and Prog substrates, while bovine 

P450 17A1, like the human enzyme, preferentially uses Preg [53]. In view of the known stimulatory 

effect human b5 has on the 17,20-lyase reaction, the allosteric interaction may make human P450 17A1 

a processive enzyme. Chapter 3 presents a model that has been developed describing the processivity of 

human P450 17A1 in association with b5. 
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1.6 Research Aims 

The central goal of this project is to better describe the mechanisms by which human P450 17A1 

catalyzes the 17α-hydroxylase and 17,20-lyase reactions, with the view that the results will support the 

initiative to develop therapeutically effective, reaction selective inhibitors. 

The first step in all biochemical studies is the procurement of the protein of interest. 

Fortunately, heterologous expression of human P450 17A1 and its purification was established more 

than 20 years ago [92,93]. 

1.6.1 Evaluate the Chemical Mechanism of the 17,20-Lyase Reaction 

Presumably, a better grasp of the 17,20-lyase reaction would facilitate the development of 

reaction-selective human P450 17A1 inhibitors. One theory that has garnered considerable support is 

that ferric peroxide (FeO2
-) is the active iron-oxygen species in human P450 17A1 that facilitates the 

carbon-carbon bond cleavage reaction. The use of several methods to evaluate this issue, the first of 

which is isotopic labelling of enzyme products with oxygen-18, is reviewed in Chapter 2. The current 

dogma is that FeO2
- is a nucleophilic species that incorporates an 18O atom into the 17,20-lyase acetic 

acid product, whereas as the electrophilic FeO3+ does not. Assays using pig testis microsomes have 

generated 18O labeled acetate as a product, supporting the ferric peroxide mechanism [43,94]. As an 

alternative method, enzyme incubations were conducted with oxygen surrogates that discriminate 

between the two species. Based on previous reports, the Compound I and ferric peroxide active iron 

species can be generated with either iodosylbenzene or hydrogen peroxide, respectively. It is possible to 

misinterpret the hydrogen peroxide results, given that the ferric peroxide species can form Compound I. 

However, iodosylbenzene is capable of transferring only a single oxygen atom, thereby designating the 

reacting species for product(s) generated as Compound I. LC-MS and NMR studies were also conducted 

to characterize some novel and unexpected chemistry. Taken together, the results from these analyses 

will better clarify the reaction intermediates for 17,20-lyase catalysis by human P450 17A1. 
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1.6.2 Evaluation of the Processivity of Human P450 17A1 and the Effect of Cytochrome b5 

Reaction-selective inhibition of human P450 17A1 is more likely if the enzyme catalyzes the 

sequential reactions through a distributive mechanism. Varying degrees of processivity have been 

reported for P450 17A1 from other animals [90,91,95], but an analysis of human P450 17A1 using 

purified enzymes has not been reported. One concept for evaluation is whether the b5 enhances the 

17,20-lyase reaction by allosterically inducing a processive enzyme-desmolase substrate conformation. 

Steady-state catalytic analyses were first conducted to understand the catalytic efficiency of the enzyme 

with the different substrates. In order to assess the effect of b5 on individual reaction steps, a series of 

pre-steady-state techniques were employed. Processivity of human P450 17A1 was also investigated 

using pulse-chase assays, which follow the conversion of radiolabeled substrates. Chapter 3 concludes 

with a kinetic model, for the human P450 17A1 mechanism, developed using global data fitting 

software, i.e. KinTek Explorer®. 
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Chapter 2 

2. Chemical Mechanism of the 17,20-lyase Reaction and New Hydroxylation Products 

2.1 Introduction 

P450 enzymes catalyze oxidations of more chemicals than any other group of proteins [96]. The 

list of reactions includes aliphatic and aromatic hydroxylations, heteroatom oxidations, epoxidations, 

and reactions involving both ring formation and cleavage [97-99]. Many P450 reactions are important in 

the biosynthesis and degradation of steroids and sterols [68,99], including several critical C–C bond 

cleavage reactions, i.e. those catalyzed by P450s 11A1, 17A1 (Figure 1.4), 19A1, and 51A1 [32,100]. 

The mechanisms of the C–C cleavage reactions have been the subject of considerable interest 

and debate. One of the questions with P450s 17A1, 19A1, and 51A1 has been whether the active 

oxidant is a ferric peroxide (FeO2
−), which is an early intermediate following oxygen addition to the iron 

(Figure 2.1, step 4) or the FeO3+ species (Figure 2.1, step 6), often referred to as Compound I 

[99,101,102]. With P450s 17A1 and 19A1, a variety of approaches has been applied, including 

theoretical calculations, biomimetic models, spectroscopy, substrate atom labeling, and kinetics 

[44,94,103-121]. 

These C–C bond cleavage reactions are complex, and many of the results are ambiguous; also, a 

“mixed” mechanism would not be discerned in many of these experiments. One powerful approach 

originally used by Akhtar and co-workers [94,117-120] analyzes the actual reaction and can provide 

discrimination between the nucleophilic FeO2
− and electrophilic FeO3+ reactions (Figure 2.1), based on 

the incorporation of 18O label from O2 into the carboxylic acid products (Figure 2.2) [100]. However, 

these experiments are complicated due to the ubiquitous presence of formic acid (P450 19A1 and 51A1 

reactions) and acetic acid (P450 17A1) in laboratory settings. Thus, the data from such experiments are 

interpreted with the most confidence when the steroid substrates are labeled with 2H or 13C isotopes to 

facilitate analysis [44,45]. Even then, the mass spectrometry results can be problematic, particularly if a 
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shift of only one atomic mass unit is introduced and isotopologues derived from 18O incorporation are 

not discriminated from molecules containing natural abundance 13C atoms [45].  

The incorporation of one atom of 18O label from O2 into formic acid (Figure 2.2 A) had been 

considered one of the most critical pieces of evidence in support of an FeO2
− mechanism for P450 19A1 

[44,105,122]. Because of the importance of this evidence in the existing dogma, Yoshimoto and 

Guengerich re-examined this experiment using several technical improvements including the following: 

(i) purified recombinant P450 19A1; (ii) a new diazo reagent with a pyridine nitrogen to facilitate positive 

ionization for liquid chromatography-mass spectrometry (LC-MS); and (iii) the use of high resolution 

mass spectrometry (HRMS) [45]. The results for P450 19A1 unambiguously ruled out incorporation of an 

18O label from 18O2 into formic acid by distinguishing 2H from 13C isotope composition and are only 

consistent with an FeO3+ mechanism for P450 19A1 [45].  

Because of the impact of the new studies [45], the 18O experiments with P450 17A1 [94,117-

120] were repeated using the newer methodologies. Although the 18O labeling results could be 

interpreted as support of an FeO2
− mechanism for human P450 17A1, at least three possible FeO3+ 

mechanisms are still consistent with the data (Figure 2.2 B, C, and F). Artificial oxygen surrogates that 

might distinguish among mechanisms were also employed, i.e. iodosylbenzene, a single oxygen atom 

donor, and H2O2. Finally, kinetic solvent isotope effects for the reactions were measured, in light of 

inconsistencies in the field [113,123]. The evidence now suggests that an FeO3+ mechanism is likely, at 

least in part, for the 17α,20-lyase reaction, and the enzyme also demonstrated the ability to catalyze 

additional 6β- and 16-hydroxylation reactions. 
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Figure 2.1 Classic P450 cycle with paths for oxygen surrogates [99] 

Paths for oxygen surrogates (PhI=O, H2O2) are also included. Note the FeO2
− (ferric peroxide) and FeO3+ 

(compound I) forms discussed in the text. In the literature there exists different nomenclature for the 

same iron intermediates in this P450 catalytic cycle (i.e. FeIIIO2
−, FeIIIO2H, FeIVO+̣, and FeIVOH) [124,125]. 

For clarity throughout the text, compound I is referred to interchangeably with FeO3+, and ferric 

peroxide is referred to interchangeably with FeO2
−. The electron transfers from the reductase are 

simplifications in that the course of electron flow is probably from FMNH2/FADH• to FMNH•/FADH• in 

the first reduction (step 2) and (assuming that the reductase contributes the second electron to the 

P450) from FMNH•/FAD• to FMNH•/FAD in the second reduction step 4.  
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Figure 2.2 Possible mechanisms of P450 17A1-catalyzed 17α,20-lyase reaction and expected 18O labeling 
[100]. 



32 
 

The course of 18O (from 18O2) and deuterium (D) labels are indicated with an asterisk. A, ferric peroxide 
mechanism [94,117-120]; B, compound I mechanism with hydrogen atom abstraction from the 17α 
alcohol followed by C17-C20 bond scission to yield an acetyl radical; C, compound I mechanism with 
hydrogen atom abstraction from the C16 carbon; D, compound I mechanism with hydrogen atom 
abstraction from the 17α alcohol followed by C17-C20 bond scission to yield a hydrated acetyl radical 
(gem-diol); E, compound I mechanism with hydrogen atom abstraction from the C21 methyl group 
followed by C17-C20 bond scission to yield a C17 radical; F, addition of the 17α-hydroxyl group to 
compound I to yield an iron peroxide-C17 complex, which can decompose via either (a) a C20 gem-diol 
or (b) a C17-C20 dioxetane. See text for discussion and also Figure 2.18. Mechanisms B–D result in an 
acetyl radical that undergoes oxygen rebound with Fe-*OH (compound II), with an oxygen atom from 
molecular oxygen (*O2) into the acetic acid product.  
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2.2 Results 

2.2.1 Experimental Design for 18O Experiments 

The P450 17A1 17,20-lyase reaction produces DHEA from 17α-OHpreg (Figure. 1.4). The product 

acetic acid is of particular interest in determining the mechanism of P450 17A1 catalysis (Figure 2.2). To 

unambiguously distinguish the acetic acid formed as a product of the P450 17A1 reaction, the 17α-

hydroxy substrate was d3-labeled at position C21 because of concerns about the level of endogenous 

acetic acid interfering with that formed in the enzyme reaction, based on our experience with 1- and 2-C 

carboxylic acids [126-129]. Based on possible mechanisms shown in Figure 2.2, the acetic acid products 

of 18O2 incubations with the 17α-hydroxy steroids are as follows: CD3CO18OH (mechanisms A, B, C, and 

Fb), a 1:2 molar ratio of CD3COOH and CD3CO18OH (mechanism D), only CD2HCOOH (mechanism E), or 

only CD3COOH (mechanism Fa). Because of the small amounts of acetic acid produced (1:1 

stoichiometry with steroid, ∼ 25 μmol) during incubations, the acetic acid was converted into an ester 

using diazoethylpyridine to facilitate characterization. In addition to the increase in mass, the ester is 

designed for efficient ionization attributable to the nitrogen in the pyridine ring, i.e. 2-(pyridin-2-yl)ethyl 

acetate [45] (m/z 166.1, “MH+”) with one 16O incorporated (d2-labeled,“MH+ + 2”) or one 16O 

incorporated (d3-labeled,“MH+ + 3”), and one 18O incorporated (d3-labeled, “MH+ + 5”). A similar 

approach was used for 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog. 

2.2.2 17α-OHpreg and 17α-OHprog 18O Experiments 

One 18O atom was incorporated into acetic acid without deuterium loss (Figure 2.3, B–D) when 

17α-OH-[21,21,21-2H3]preg was used as the substrate, ruling out the mechanism in Figure 2.2 E. 

In the case of 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog as the substrate (Figure 2.4), the signal-to-

noise ratio of 18O-incorporated acetate was three times greater than when the 17α-OH-[21,21,21-

2H3]preg substrate was used. This improvement in sensitivity is attributed to the extra centrifugation 

step to remove the emulsion when extracting the acetic acid product (cf. Section 2.4.4). Additionally, a 
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trideutero-pyridine acetate product with no 18O incorporation at 6 ppm mass tolerance was observed; 

however, the intensity was small compared with the 18O-incorporated acetate product (∼0.1% of 18O-

incorporated product), and this isotopologue is likely derived from the residual 16O2 in the 18O2 cylinder 

(99% 18O abundance).  

2.2.3 Reactions with Oxygen Surrogates, Background and Previous Studies 

If the ferric hydroperoxide mechanism is operative, then one might expect the reaction to be 

supported by the direct addition of H2O2 to ferric P450 (Figure 2.1). However, Auchus and Miller [130] 

reported that no 17,20-lyase activity was observed with recombinant human P450 17A1 plus H2O2 in 

yeast microsomes. Iodosylbenzene is a single oxygen donor and cannot support a reaction that requires 

two oxygens, i.e. a ferric peroxide complex [131]. Iodosylbenzene also did not support the 17α,20-lyase 

reaction in a P450 17A1 yeast microsomal system [130].  
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Figure 2.3 P450 17A1 incubation with [21,21,21-2H3]17α-OHpreg (1) in the presence of 18O2 followed by 
derivatization and analysis by HRMS. 

A, scheme showing the incubation of deuterated lyase substrate (1) with P450 17A1 and b5 in the 

presence of 18O2. The acetic acid product (3) was derivatized with the diazoethylpyridine reagent (4) and 

analyzed by LC-HRMS. B, mass spectrum of the m/z 166.5–171.3 range by selecting the tR 3.01–3.12-min 

time interval in the ion chromatogram corresponding to the pyridine ester retention time. Shown at m/z 

167.0901 is the peak corresponding to the acetate from background acetic acid from the natural 

abundance of 13C isotope (5i, expected mass, m/z 167.0896, Δ 3.0 ppm). The peak at m/z 171.1099 

corresponds to the acetate derived from the enzymatic product (5a, expected mass, m/z 171.1093, Δ 3.5 

ppm). C, expansion of the mass spectrum (m/z 168.95–169.22) from B showing the absence of d3-
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labeled acetate with no 18O incorporation (5b, expected mass, m/z 169.1051). D, expansion of the mass 

spectrum (m/z 170.95–171.22) from B showing the presence of d3-labeled acetate with 18O 

incorporation (5a, expected mass, m/z 171.1093). p, profile (peaks are shown in profile mode and not 

“centroid”). ESI, electrospray ionization; RT, retention time; NL, normalized level. More information 

about the meaning of the settings can be obtained from the Xcalibur Qual Browser User Guide (Thermo 

Scientific). 
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Figure 2.4 P450 17A1 incubation with 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog (1b) in the presence of 18O2 
followed by derivatization and analysis by HRMS. 

A, scheme showing the incubation of deuterated lyase substrate (1b) with P450 17A1 and b5 in the 

presence of 18O2. The acetic acid product (3) was derivatized with the diazoethylpyridine reagent (4) and 

analyzed by liquid chromatography-HRMS. B, mass spectrum of the m/z 166.5–171.3 range by selecting 

the tR 3.10–3.19-min time interval in the ion chromatogram corresponding to the pyridine ester 

retention time. Shown at m/z 167.0890 is the peak corresponding to the acetate from background acetic 

acid from the natural abundance of 13C isotope (5i, expected mass, m/z 167.0896, Δ 3.6 ppm). The peak 

at m/z 171.1099 corresponds to the acetate derived from the enzymatic product (5a, expected mass, 

m/z 171.1093, Δ 4.1 ppm). C, expansion of the mass spectrum (m/z 168.95–169.22) (from B) showing 
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the detection of d3-labeled acetate with no 18O incorporation (5b, expected mass, m/z 169.1051, Δ 5.3 

ppm). D, expansion of the mass spectrum (m/z 170.95–171.22) from B showing the presence of d3-

labeled acetate with 18O incorporation (5a, expected mass, m/z 171.1093). p, profile (peaks are shown in 

profile mode and not “centroid”). ESI, electrospray ionization. RT, retention time. NL, normalized level. 

More information about the meaning of the settings can be obtained from the Xcalibur Qual Browser 

User Guide (Thermo Scientific). 
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2.2.4 P450 17A1 Reactions with Iodosylbenzene 

Preliminary experiments indicated that the most effective concentration to use was 300 μM 

(results not presented).  

Two products were formed from 17α-OHprog in both the iodosylbenzene and NADPH-based 

systems (Figure 2.5). The expected product Andro (Figure 1.4) was characterized by co-elution with a 

standard and by both LC-UV and LC-MS comparisons with a standard (data not shown). The other 

product, which eluted just before Andro, was identified as 16,17α-di(OH)prog by co-elution with a 

standard and by both LC-UV and LC-MS comparisons with a reference standard (Figure 2.6). Although 

the dihydroxy product co-eluted with the 16α,17α-diastereomer, the presence of the 16β-stereoisomer 

cannot be excluded. 

The products formed from 17α-OHpreg were converted to Δ4 steroids by the action of 

cholesterol oxidase. These were identified as 16,17α-di(OH)prog and Andro, thus indicating that the 

products formed from 17α-OHpreg were 16,17α-di(OH)preg and DHEA.  

The rates of formation of 16,17α-di(OH)prog and Andro from 17α-OHprog in the NADPH- and 

iodosylbenzene-based systems were comparable in the absence of b5 (Figure 2.7 A). The 

iodosylbenzene-dependent reaction was stimulated 2-fold by b5, but the stimulation of the reaction that 

used POR was much greater (10-fold), so that the iodosylbenzene versus POR comparison (with b5 

present) is more disparate (Figure 2.7 A). 

With 17α-OHpreg as substrate, a similar conclusion was reached regarding comparisons of the 

rates of the POR- and iodosylbenzene-supported reactions (Figure 2.7 B). When the 16-hydroxylation of 

the 17α-hydroxy steroids was considered, the iodosylbenzene-supported reactions were faster (Figure 

2.8). It is also notable that these reactions were stimulated by b5.  
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Figure 2.5 Formation of 16,17α-di(OH)prog and Andro from 17α-OHprog by P450 supported by the 
oxygen surrogate iodosylbenzene. 

Retention times (tR) and integration units are indicated on the chromatograms. A, standard compounds. 

B, reaction (0.5 μM P450 17A1) supported by POR (2.0 μM), b5 (0.5 μM), and NADPH (30 s incubation). C, 

reaction (0.5 μm P450 17A1 and b5 (0.5 μM)) with 0.30 mM iodosylbenzene (30 s incubation). In control 

experiments with only b5 and iodosylbenzene (2 mM) mixed with the 17α-hydroxysteroids, the amounts 

of Andro detected were <15% of the amounts observed in this and similar studies with both 17α-

hydroxysteroids. 
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Figure 2.6 Identification of 16,17α-di(OH)prog as a product of 17α-OHprog. 

HRMS spectrum of 16,17-di(OH)prog formed in a reaction with POR, b5, and NADPH. Exact mass 

346.2217 (protonated species): observed for MH+, m/z 347.2184 (Δ 9.5 ppm). 
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Figure 2.7 Time course and effect of b5 on 19-carbon steroid formation in the presence of 
iodosylbenzene (PhIO) or the typical NADPH-supported reaction. 

A, oxidation of 17α-OHprog. B, oxidation of 17α-OHpreg. The insets show the NADPH-supported 

reactions in the presence of b5. The points are means of duplicate assays, shown as means ± range.  
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Figure 2.8 Time course and effect of b5 on steroid 16-hydroxylation in the presence of iodosylbenzene 
(PhIO) or the typical NADPH-supported reaction. 

A, oxidation of 17α-OHprog. B, oxidation of 17α-OHpreg. The points are means of duplicate assays, 

shown as means ± range.  
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2.2.5 Reactions with H2O2 

H2O2 was added to purified P450 17A1 (with b5 present), and no detectable 17,20-lyase activity 

was found toward 17α-OHpreg or 17α-OHprog, using varying concentrations of H2O2 (up to 10 mM) 

(Figure 2.8). Under these conditions, the usual reconstituted P450 17A1/POR/b5 system yielded the 

expected products (Figure 2.9, B and E). 

2.2.6 Additional Oxidation Products 

With both 17α-OHprog and 17α-OHpreg, the rates of formation of the lyase products (Andro 

and DHEA) were no longer linear after 5 min (300 s) (Figure 2.7). The change was more obvious in the 

latter case, with the amount of accumulated product decreasing (Figure 2.7 B). The phenomenon was 

found to be the result of further 16-hydroxylation of the lyase products, in that these products (tR, UV 

spectra, and mass spectra) were also identified in the longer term reactions with both substrates (with 

16-OH-DHEA being converted to 16-OHandro by cholesterol oxidase in the assays with 17α-OHpreg) 

(Figure 2.10). The time course of formation of these products from Andro and DHEA is shown in Figure 

2.11. 

Also noted was a decrease in the level of 16,17α-dihydroxy steroids with extended time (in the 

NADPH-supported reactions, Figure 2.8). The products formed from (commercial) 16α,17α-di(OH)prog 

were analyzed. One product was 16α-OHandro, identified above (Figure 2.12). The major product 

formed from 16α,17α-di(OH)preg was 16α-OH-DHEA, identified by its mass and NMR spectra (Figure 

2.13).  
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Figure 2.9 Reaction products formed from 17α-OHprog and 17α-OHpreg in P450 17A1 reactions 
supported by various factors. 

Retention times (tR) and integration units are indicated on the chromatograms. A–C, 17α-OHprog; D–F, 

17α-OHpreg. A and D, POR, b5, and NADPH; B and E, H2O2 (10 mM) (with b5); C and F, iodosylbenzene 

(PhI=O, 300 μM) (with b5). In these studies the Δ5 products (formed from 17α-OHpreg) were oxidized to 

Δ4 products to facilitate LC-UV analysis. 
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Figure 2.10 Identification of 16-hydroxy steroids as reaction products formed from DHEA and Andro. 

A, authentic steroid standards: 16α-OHandro, algestone (16α,17α-di(OH)prog), Andro, and 17α-OHprog; 

B, 10-min DHEA incubation (with products treated with cholesterol oxidase); C, 10-min Andro 

incubation; D, mass spectrum of peak identified as 16-OHandro (formed from Andro); E, MS/MS analysis 

of m/z 303.2 peak of D. 
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Figure 2.11 Time course of 16-hydroxylation of Andro and DHEA by P450 17A1. 
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Figure 2.12 Rate of conversion of 16α,17α-di(OH)prog to 6β,16α,17α-tri(OH)prog (Figure 2.14) by P450 
17A1. 

The points are means of duplicate assays, shown as means ± range. 
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Figure 2.13 Characterization of 16α-OH-DHEA. 

The product was formed in an incubation of an NADPH-reconstituted P450 17A1 system with 16α,17α-
di(OH)preg and isolated by preparative HPLC. A, HRMS spectrum of [DHEA + 16]+ peak, 16α-OH-DHEA 
(theoretical m/z for MH+ 305.2111, found m/z 305.2094 (Δ 5.6 ppm)). B, NMR spectra of 16α,17α-
di(OH)preg (a) and product (b) in CDCl3 (600 MHz). See text for discussion.  
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2.2.7 Identification of Steroid B Ring Hydroxylation Product 

The other major product in the incubation of 16α,17α-di(OH)prog with P450 17A1 was a triol, as 

judged by HRMS (m/z 363.2160, calculated MH+ m/z 363.2166, Δ 1.7 ppm) (Figure 2.14 A) [132]. The UV 

spectrum was similar to those of other Δ4 3-keto steroids except blue-shifted ∼5 nm (Figure 2.14 B), 

consistent with an intact Δ4 3-keto steroid having some modification near the chromophore. The site of 

hydroxylation was identified as C-6 by 1H NMR (Figure 2.14 C and appendix Table 6-1), i.e. 6β,16α,17α-

tri(OH)prog [28,133]. The 18, 19, and 21 methyl groups were intact (δ 0.79, 1.40, and 2.28 ppm), but 

there was a new multiplet at δ 4.38 ppm. The NOESY spectrum (appendix Figure 6.1) showed a spatial 

correlation between the new hydroxymethine proton (δ 4.38 ppm) and the Δ4-proton (δ 5.70 ppm). 

Moreover, the HMBC spectrum (heteronuclear multiple-bond correlation (NMR) spectroscopy) 

(appendix Figure 6.2) indicated a 3-bond coupling interaction between the C4-carbon (δ 125 ppm) and 

the hydroxymethine proton (δ 4.38 ppm) suggesting either the C2-position or the C6-position for the 

newly identified hydroxymethine proton (δ 4.38 ppm). The C6-position for the hydroxymethine proton 

(δ 4.38 ppm) was established because the C2-methylene protons (δ 2.53 and 2.42 ppm), which had a 2-

bond correlation to the C3-keto carbon atom (δ 205.1 ppm) in the HMBC spectrum, were present. 

Moreover, the COSY spectrum (appendix Figure 6.3) indicated a 3-bond coupling between the C6-proton 

(δ 4.38 ppm) and the C7-protons (δ 1.98 and 1.34 ppm) (see also HSQC spectrum, appendix Figure 6.4). 

The stereochemistry of the C6-hydroxyl group was assigned as β, based on the chemical shifts of 

the 7-protons of the steroid. In considering the chemical shifts of literature compounds (see Refs. 134 

and 135 and see Table 2C in Ref. 132 and references therein), corresponding to 6α- and 6β-OHprog), the 

chemical shifts of the 7α- and 7β-protons are very informative. In the isolated P450 17A1 product, the 

chemical shifts of the 7α- and 7β-protons were (δ) 1.34 and 1.98 ppm, respectively, and in Ref. 132, the 

7α- and 7β-protons were at (δ) 1.28 and 2.02 for 6β-OHprog, whereas the protons had chemical shifts of 

(δ) 1.11 and 2.19 for 6α-OHprog. Thus, 6β-hydroxy is the most likely stereochemistry of the new 
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product. The NOESY spectrum showed spatial correlation between the C6-proton (δ 4.38 ppm) and both 

of the 7α- and 7β-protons (δ 1.34 and 1.98 ppm). Considering a Newman projection down the C6–C7 

bond axis, this NOESY interaction is supported by the 6β-hydroxy configuration (appendix Figure 6.1).  

The products formed from 16α,17α-di(OH)preg were also analyzed. One product was 16α-OH-

DHEA. The other product was either a tetraol or an epoxytriol (5,6-epoxy-3β,16α,17α-

trihydroxypregnan-20-one), as judged by HRMS (m/z 365.2305, calculated mass, m/z 365.2323, Δ 4.9 

ppm). The site of oxygen incorporation was not identified. The major product isolated from this reaction 

was 16α-OH-DHEA, as can be seen from the 1H NMR spectrum of the purified product (Figure 2.13 B). 

There is a loss of the C21-methyl protons (δ 2.25 ppm) and an upfield shift of the 16β-proton (5.1 ppm 

to 4.4 ppm) (Figure 2.13 B). The proton NMR spectrum of the isolated P450 17A1 product also matched 

a previously reported NMR spectrum of synthetic 16α-OH-DHEA [136]. 

  



52 
 

 

Figure 2.14 Characterization of 6β,16α,17α-tri(OH)prog. 
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The product was formed in an incubation of an NADPH-reconstituted P450 17A1 system with 16α,17α-

di(OH)prog and isolated by preparative HPLC. A, HRMS spectrum (theoretical m/z for MH+ 363.2166, 

found m/z 363.2160 (Δ 1.7 ppm)). B, UV spectra of product (b) compared with 16α,17α- di(OH)prog (a). 

C, 1H NMR spectra of product (b) and 16α,17α-di(OH)prog (a) in CDCl3 (600 MHz). Note that the C-18, C-

19, and C-21 methyl signals are intact and the chemical shifts of the H-7 protons appear to be moved 

upfield, as predicted (appendix Table 6-1). See text and Ref. 132 for discussion, and see appendix Figures 

6.1-6.4 for two-dimensional NMR spectra. 
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2.2.8 Solvent Kinetic Isotope Effects on 17,20-Lyase Reactions 

No C–H bond-breaking steps are involved in any steps proposed in Figure 2.2 except for panel D, 

which is not supported by the 18O work. Thus, no C-H kinetic deuterium isotope effect studies can be 

applied, but solvent kinetic isotope effect experiments can be informative.  

No solvent kinetic isotope effect was found for the 17,20-lyase reaction with 17α-OHprog 

(measured rates of 1.47 ± 0.03 min−1 in H2O and 1.40 ± 0.03 min−1 in 95% D2O (v/v), n = 4, calculated 

isotope effect of 1.05 ± 0.09 (S.D.)). In contrast, a small but repeatable inverse isotope effect (0.83 ± 

0.05 (S.D.), n = 4) was observed for the 17,20-lyase reaction with 17α-OHpreg under the usual conditions 

with b5, POR, and a substrate concentration of 30 μM (measured rates of 4.10 ± 0.22 min−1 in H2O, 4.94 ± 

0.13 min−1 in 95% D2O (v/v), calculated from four independent experiments (± S.D.)) (Figures 2.15 and 

2.16). The solvent kinetic deuterium isotope effects for the 16-hydroxylation reactions were 1.35 ± 0.15 

for 17α-OHprog and 1.34 ± 0.23 for 17α-OHpreg (n = 4, ± S.D., data not shown). 
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Figure 2.15 Kinetic solvent isotope effects on 17α-OHprog and 17α-OHpreg 17,20-lyase reactions 
catalyzed by P450 17A1 (in the presence of POR, NADPH, and b5). 

Results are shown as means of four individual experiments ± S.D. 
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Figure 2.16 Solvent kinetic deuterium isotope effects on 17α-OHprog and 17α-OHpreg reactions 
catalyzed by P450 17A1 (in the presence of POR and b5). 

Retention times (tR) and integration units are indicated on the chromatograms. The substrate 

concentration was 30 μm in all cases, and the reactions were done in either H2O or 95% D2O (v/v) at pH 

or pD 7.4. A and B, 17α-OHprog; C and D, 17α-OHpreg. A and C, H2O; B and D, 95% D2O (v/v).  
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2.3 Discussion 

The results indicate that acetic acid recovered in the human P450 17A1 reactions with either 

17α-OHprog or 17α-OHpreg contained an 18O atom derived from molecular oxygen. These results are 

consonant with the original analysis of Akhtar and co-workers on P450 17A1 [94,117] and, on their own, 

are consistent with the FeO2
− mechanism presented in Figure 2.2 A [130,137]. Alternative mechanisms 

that are still consistent with the 18O labeling results, but involving FeO3+, are presented in Figure 2.2 B, C, 

and F, arrow b [100,130,138]. The mechanisms in Figure 2.2 B and C involve formation of an acetyl 

radical, which has adequate chemical precedent [121,139-141]. The dioxetane mechanism is similar to 

one that has been proposed for tryptophan and indole dioxygenases [142]. One of these two FeO3+ 

mechanisms is proposed to contribute to the lyase reaction in that (i) iodosylbenzene can support the 

lyase reaction, and (ii) P450 17A1-17α-hydroxysteroid complexes are poised for multiple hydroxylation 

reactions in addition to lyase reactions.  

2.3.1 Incubations with 18O2 

Previous studies of 18O2 incubations with P450 17A1 concluded that 18O incorporation into the 

acetic acid product was the major isotopologue detected, leading to the conclusion that the ferric 

peroxide was the iron-active species for C–C bond cleavage [43,116]. However, these studies (i) used 

low resolution mass spectrometry and (ii) used microsomes from porcine testes as the source of enzyme 

(i.e. non-purified enzyme); and (iii) the report that used the direct lyase substrate 17α-OH-[21,21,21-

2H3]preg did not present raw data [116], whereas a subsequent report used [16α,17α,21,21,21-2H5]preg 

as the substrate and not the direct substrate that results in the formation of DHEA, i.e. 17α-OHpreg [43]. 

Furthermore, the low resolution mass spectrometry used in these studies yielded an ambiguous 

determination of 18O-, 2H-, and 13C-labeled content of the acetate products [43], which resulted in the 

interpretation of multiple possible mechanisms for the lyase step of P450 17A1 (Figure 2.2). In this work, 
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the incubations included purified P450 17A1 and labeled lyase substrates (17α-OH-[21,21,21-2H3]preg 

and 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog) in the presence of 18O2 and analyzed the acetate product by 

HRMS after derivatization with the new diazo reagent. The results unambiguously established that the 

acetate produced from the enzymatic incubation incorporated one oxygen atom from molecular oxygen 

in both cases, with the C-21 deuteriums retained (Figures 2.3 and 2.4). Moreover, no significant amounts 

of any other acetate isotopologues from the enzyme incubation were detected (i.e. loss of one 

deuterium or lack of 18O incorporation). These experiments agree with the observation of oxygen 

incorporation from the reports of Akhtar and co-workers [43,116]. However, although these data can 

support a ferric peroxide mechanism for C–C bond cleavage (Figure 2.2 A), they do not rule out a 

Compound I mechanism (Figure 2.2 B, C, and F, arrow b).  

2.3.2 Oxygen Surrogate Studies, Iodosylbenzene 

The use of iodosylbenzene and POR to form Compound I with P450 17A1 resulted in two 

different activities when the 17α-hydroxysteroid was used as the substrate. In both conditions, 16α-

hydroxylation and C–C bond cleavage activities toward 17α-OHprog yielded 16,17α-di(OH)prog and 

androstenedione, respectively (Figures 2.5, 2.7 A, and 2.8 A). However, the product distributions were 

different; iodosylbenzene yielded more 16-hydroxylation relative to C–C bond cleavage (∼9:1, Figure 2.5 

C) compared when POR was used (∼0.1:1, Figure 2.5 B). The switch in reactivities depending on the 

oxidation system used (iodosylbenzene versus POR) suggests a conformational change in the enzyme-

substrate complex when the reductase binds to the P450 enzyme. Moreover, when 17α-OHpreg was 

used as the substrate, the 16-hydroxylation activity was diminished (Figure 2.9, D and F) relative to 

when 17α-OHprog was used as the substrate. Similarly, this substrate-dependent switch in reactivity is 

reminiscent of the different 16- versus 17-hydroxylation regioselectivities observed when two different 

substrates, Prog and Preg, are used for P450 17A1 [40], which is explained by the 3-keto-Δ4 versus 3β-

hydroxy-Δ5 moieties in the AB-ring systems of these steroid substrates.  
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Moreover, the fact that P450 17A1 is catalyzing a C-H hydroxylation with its lyase substrate, 

17α-OHpreg, supports the presence of a Compound I species, which either hydroxylates the C16-

position or cleaves the C17,C20-bond as shown in Figure 2.2. This observation may contradict the 

conclusions about the active iron hydroperoxo species observed by resonance Raman spectroscopy 

[115,125]. However, it is possible that the iron peroxohemiketal species reported in the resonance 

Raman study [125], i.e. Figure 2.2 A, tetrahedral intermediate, was a structural misassignment and that 

the actual observed species was indeed an iron peroxo intermediate attached through the C17-position 

of the steroid (Figure 2.2 F). This iron peroxo intermediate can be formed from a nucleophilic attack of 

the C17-hydroxy group of the lyase substrate (i.e. 17α-OHpreg or 17α-OHprog, Figure 2.2 F) onto 

Compound I.  

It should be pointed out that the iodosylbenzene mechanism may be more complex than just a 

direct oxygen transfer, as pointed out by Ortiz de Montellano [137]. A possible intermediate is shown in 

Figure 2.17, which may even have oxidant capacity of its own. 
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Figure 2.17 Possible oxidizing alternative to Compound I in the iodosylbenzene (PhI=O)-supported 
reactions [137]. 
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2.3.3 Oxygen Surrogate Studies, Hydrogen Peroxide 

Many studies in the literature involve the use of alkyl hydroperoxides as oxygen surrogates for 

P450 reactions, beginning with Kadlubar et al. [143]. However, although peracids can be used as 

reagents to generate P450 Compound I [21], studies with alkyl hydroperoxides are problematic due to 

the production of radicals and their ensuing chemistry [137,144]. Some bacterial Family 152 P450s use 

H2O2 as a physiological cofactor [145-147], and bacterial P450 101A1 (P450cam) was mutated to a species 

that could efficiently utilize H2O2 in reactions [148]. H2O2 can support some mammalian P450 reactions 

after direct addition [134,135,149-152] (although generally not as well as alkyl hydroperoxides [143]), 

but the role of a ferric peroxide in each oxygenation reaction can only be postulated, in that the ferric 

peroxide can subsequently convert to Compound I.  

In principle, the FeO2
− complex could proceed to compound I (FeO3+) through appropriate acid-

base catalysis, but there are also side reactions that may diminish the progress of a putative Fe3+-H2O2 

complex on to FeO3+ (Figure 2.1). Attempts were made to generate and observe Compound I or other 

intermediates by mixing P450 17A1 with H2O2 (10 mM) or iodosylbenzene (300 μM) in a stopped-flow 

spectrophotometer (dead time ∼2 ms, rapid scanning) but were unsuccessful in seeing any distinct 

complexes (data not presented). However, given the difficulties encountered by others in observing 

these transient species even with bacterial P450s [21], negative results are inconclusive.  

2.3.4 b5 Effects 

Another issue that is still not resolved is the stimulatory effect of b5, which is known to promote 

the 17,20-lyase reaction of P450 17A1. Results with apo-b5, devoid of heme, have shown that b5 does 

not donate the second electron in the catalytic cycle of this P450 [57]. The stimulation of 17,20-lyase 

activity by b5 in the iodosylbenzene-supported reaction (Figure 2.7) is consistent with this view. b5 

stimulation of the 16-hydroxylation reactions with both 17α-OHprog and 17α-OHpreg was also noted 
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(Figure 2.7). Discussed in Chapter 3,the stimulation of the 17α-hydroxylation of both Prog and Preg by b5 

(see Chapter 3) has also been observed. The conclusion about the stimulatory role of b5 in the 

iodosylbenzene reactions is that it is acting in an allosteric manner to facilitate these reactions (e.g. due 

to more ideal juxtaposition in reaction intermediates), which is the reason proposed for the normal 

physiological reaction [32,57,100].  

2.3.5 Hydroxylations Catalyzed by P450 17A1 

The 16α-hydroxylation of DHEA has previously been reported to be catalyzed by P450 3A4 

[153,154]. Upon monitoring the production of DHEA from 17α-OHpreg by P450 17A1 over time (Figure 

2.7 B, inset), there was a decrease in DHEA formation in the time points greater than 5 min. This 

observation suggested that DHEA was further being oxidized to another product. As such, it was 

hypothesized that this new product would correspond to 16-OH-DHEA based on the other activities of 

P450 17A1 (16-hydroxylation of Prog [40] and 16-hydroxylation of its 17α-hydroxylated products). The 

new product, which was converted to its 3-keto-Δ4 counterpart by cholesterol oxidase, co-

chromatographed with standard 16α-OHandro (Figure 2.9). The 16-hydroxylation product of P450 17A1 

was also observed when Andro was used as the substrate (Figure 2.10). The ability of P450 17A1 to form 

16-hydroxylated androgens is physiologically relevant in that estriol, an abundant and characteristic 

estrogen during human pregnancies, arises from the aromatization of 16α-hydroxy androgens [155,156].  

The current favored working hypotheses are shown in some detail in Figure 2.18. Two involve an 

acetyl radical and one a steroid dioxetane intermediate, which are both considered viable entities. 
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Figure 2.18 Mechanisms of P450 17A1-catalyzed 17,20-lyase reaction consistent with 18O labeling [100], 
oxygen surrogate results, and solvent kinetic isotope results. 

The course of an 18O label (from 18O2) is indicated with an asterisk [100,130]. A, compound I mechanism 

with hydrogen atom abstraction from the 17α alcohol followed by C17-C20 bond scission to yield an 

acetyl radical; B, addition of the 17α-hydroxyl group to compound I to yield an iron peroxide-C17 

complex, followed by decomposition via a C17-C20 dioxetane; C, Compound I mechanism with hydrogen 

atom abstraction from the C16 carbon. See text for discussion and also Figure 2.2. 
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2.3.6 B Ring Hydroxylation of 16α,17α-Di(OH)prog by P450 17A1 

Surprisingly the 6β-position was hydroxylated when 16α,17α-di(OH)prog was used as a 

substrate for P450 17A1 (Figure 2.14). This shift in regioselectively from the D-ring to the B-ring of the 

steroid by P450 17A1 was due to the presence of two hydroxyl groups on the 16α- and 17α-positions. 

Interestingly, regioselectivity was switched from the B-ring to the C–D-ring of the steroid in another 

P450 system when the Δ4-double bond was reduced. P450 3A4 hydroxylates the 6β-position of 

testosterone (B-ring of the steroid); however, with 5α-dihydrotestosterone as the substrate, P450 3A4 

oxygenated the 18β-methyl group (between the C–D-ring of the steroid) [29]. The causes for the switch 

in regioselectivities of the different P450 systems are probably not the same. Moreover, P450 17A1, 

which normally hydroxylates the α-face of (the D-ring of) its steroid substrates (Preg and Prog), 

introduced a hydroxyl group on the β-face of 16α,17α-di(OH)prog. The hydroxylation of the opposite 

face can be rationalized from overlaying 17α-OHprog and 16α,17α-di(OH)prog (Figure 2.19). When the 

C10, C14, and O16 atoms from 16α,17α-di(OH)prog were aligned with the C14, C10, and O3 atoms of 

17α-OHprog, the O17 atom of 17α-OHprog was positioned 1.4 Å away from the C6 atom of 16α,17α-

di(OH)prog, the site where the new oxygen atom is introduced. Additionally, the 17-oxygen of 17α-

OHprog was directed at the β-face of 16α,17α-di(OH)prog. The 3-oxo group of 17α-OHprog has been 

shown to hydrogen bond to Asn-202 of P450 17A1 in the crystal structure [63]. Based on the 

observations with 6β-hydroxylation of 16α,17α-di(OH)prog by P450 17A1 and the overlay of the two 

different substrates, it is reasonable that the 16α-hydroxy group of 16α,17α-di(OH)prog hydrogen bonds 

to Asn-202 of P450 17A1, which in turn directs the 6β-hydrogen to the active iron center of the enzyme. 

Interestingly, the 17α,20-lyase product for the 16α,17α-di(OH)prog substrate (i.e. 16α-OHandro) was 

detected by LC-MS analysis and co-elution with the standard, but this lyase product seems to be a minor 

product in comparison with the 6β-hydroxylation product. 
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2.3.7 17,20-Lyase Reaction of 16α,17α-Di(OH)preg by P450 17A1 

Conversely, when 16α,17α-di(OH)preg was used as the substrate for P450 17A1, the major 

product isolated from the incubation was 16α-OH-DHEA, which is formed from the 17,20-carbon–carbon 

bond cleavage.  

2.3.8 Oxygen Incorporation into 16α,17α-Di(OH)preg by P450 17A1 

An additional oxygenation product (M + 16 of substrate) was detected by LC-HRMS when 

16α,17α-di(OH)preg was used as the substrate. However, there was not enough purified material 

recovered to determine the location of the oxygen on the steroid ring by 1H NMR. A possible site of 

oxidation may be the C21-position. Alternatively, from the knowledge of 6β-hydroxylation reactivity of 

P450 17A1 with 16α,17α-di(OH)prog as the substrate, the oxygen may be incorporated in two other 

possible sites as follows: (i) the Δ5,6-double bond of the substrate to form the 5,6-epoxide or (ii) the C7-

position may be hydroxylated. Epoxidation activity of P450 17A1 has been previously reported with a 

Δ16,17-steroid substrate [157]. Nevertheless, the shift in favoring C–C bond cleavage reactivity over 

hydroxylation when using the 3β-hydroxy-Δ5 substrate (16α,17α-di(OH)preg) instead of the 3-keto-Δ4 

substrate (16α,17α-di(OH)prog) is similar to what occurs with Preg and Prog (i.e. 17,20-carbon-carbon 

bond cleavage versus 16α-hydroxylation). This observation may be related to the hydrogen bonding that 

occurs between the 3β-hydroxy group of the 3β-hydroxy-Δ5 substrate and Asn-202 of the enzyme.  
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Figure 2.19 Sites of hydroxylation of Prog by P450 17A1. 

A, chair configuration of Prog, with the four sites of attack indicated by arrows. B, wire diagram of 17α-

OHprog (17OHP, red) and 16α,17α-di(OH)prog (16,17OHP, blue) overlaid, with the latter in an 

alternative configuration to show the proximity of the C-6 atom of 16α,17α-di(OH)prog with the 17-

hydroxy group of 17α-OHprog. The model was made using Chem3D, with a minimum root mean square 

error of 0.1 and minimum root mean square gradient of 0.01. The C14, C10, and O3 atoms of 17α-

OHprog were aligned with the C10, C14, and O16 atoms of 16α,17α-di(OH)prog, respectively, by 

displaying the distance measurements of each pair of atoms and then running an overlay minimization 

calculation. The green lines indicate the pair of atoms that were aligned (after overlay minimization, the 

distances between C14 of 17-OHP and C10 of 16,17-OHP; C10 of 17-OHP and C14 of 16,17-OHP; and O3 

of 17-OHP and O17 of 16,17-OHP were 1.2, 1.3, and 1.4 Å, respectively, and are shown as green lines). 

The distance between the O17 atom of 17α-OHprog and C6 atom of 16α,17α-di(OH)prog was 1.4 Å.  



67 
 

2.3.9 Kinetic Solvent Isotope Effects Do Not Support a Ferric Peroxide Mechanism 

One argument against the proposed acetyl radical mechanism (Figure 2.2 B) is a reported 

inverse kinetic solvent deuterium isotope effect (0.39) reported by Sligar and co-workers [113]. If the 

mechanism in Figure 2.2 B, C, or F, arrow b, were valid, the abstraction of a hydrogen atom from the 17-

hydroxyl group (Figure 2.2 B) or the heterolytic cleavage of an O–H bond (Figure 2.2 D) might be 

expected to be a (partially) rate-limiting step, and an inhibitory effect of hydroxyl deuteration might be 

expected. In contrast, a similar study by Swinney and Mak [123] reported that (30%) D2O attenuated 

androgen formation from Prog using microsomes from pig testes as the enzyme source (kH/kD ∼1.25 at 

pH 7), suggesting that the 17,20-lyase reaction is dependent on Compound I formation either through 

the protonation of the distal oxygen of ferric peroxide (cf. P450 catalytic cycle) or deuterium atom 

abstraction from the 17-hydroxyl group of the substrate (Figure 2.2 B).  

Because of the discrepancy, the results were reanalyzed in this system (Figure 2.15). Running 

the normal P450 17A1 reaction (with POR and b5) in 95% D2O showed no significant change in the rate 

of conversion of 17α-OHprog to Andro and a small but statistically significant change in the rate of 

oxidation of 17α-OHpreg to DHEA, with an apparent isotope effect of 0.83 (Figure 2.16), which is much 

less than the effect (0.39) reported by Gregory et al. [113]. Interpretation of solvent kinetic deuterium 

isotope effects is complex [158], in that protonation and deprotonation can occur throughout the amino 

acid side chains of an enzyme, not only on an iron-oxygen complex. The reason for the small inverse 

isotope effect with one lyase substrate but not another (Figures 2.15 and 2.16) is unclear. The opposite 

pattern between the solvent isotope effects for the 17α-OHpreg lyase and the 16-hydroxylation 

reactions is qualitatively consistent with the report of Gregory et al. [113]. One possibility is that the Δ5 

substrate (17α-OHpreg) 3-hydroxyl group exchanges with deuterium and that this has an effect on the 

juxtaposition of the substrate in the active site. The hydroxyl moiety has been shown by Scott and co-

workers [62,63] to be in hydrogen bonding distance to Asn-202 of human P450 17A1. A substitution of 
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the 3-hydroxyl group by deuteration (i.e. −OD) could shift the substrate to favor the lyase reaction 

versus 16-hydroxylation. However, the lack of solvent isotope effects does not allow any definite 

conclusions about the rate-limiting nature of the abstraction of a proton or hydrogen atom from the 17-

OH group, due to the multiple complex influences from solvent deuterium on enzyme function.  

Although resonance Raman spectra of what is reported to be the human P450 17A1 

FeO2
−complex have recently been published [115,125], two caveats are as follows: (i) no b5 (for which 

the 17,20-lyase reaction is very dependent, e.g. Figure 2.7 B) was present, and (ii) the observed complex 

was not tested for its catalytic competence, i.e. to form product(s). Even if the FeO2
− complex did form 

the normal products (Andro and DHEA, plus the 16-hydroxylation products, which is unlikely) in these 

experiments, the simultaneous or subsequent intermediacy of an FeO3+ species as well could not be 

ruled out. 

2.3.10 Conclusions 

The ability of iodosylbenzene, but not H2O2, to support the lyase reaction provides what may be 

the strongest evidence in favor of a Compound I mechanism, in that iodosylbenzene cannot possibly 

form a peroxy intermediate. The apparent rate of the lyase reaction was similar to that of the NADPH-

supported reaction (without b5) in the case of the 17α-OHprog reaction and was somewhat less than 

that of the NADPH-supported reaction (without b5) in the case of the 17α-OHpreg lyase reaction (Figures 

2.7 and 2.8). Ideally, the Compound I form of P450 17A1 could be prepared using the approaches that 

Green and co-workers [21,124,150,159] have used with two bacterial P450s [150], and the reaction 

could be investigated directly. Nevertheless, in considering all of the literature in this field and that 

presented here in this article, the iodosylbenzene and H2O2 results (Figure 2.11) are difficult to dismiss, 

even if they are not physiological, and are interpreted as evidence for a Compound I reaction (Figure 

2.18).  
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The multiple hydroxylations are probably catalyzed by FeO3+ intermediates, formed with P450 

17A1-17α-hydroxy steroid complexes. It is possible that individual reactions (i.e. hydroxylation, lyase) 

proceed from different FeO complexes, although it is simpler to explain all as emanating from a single 

iron-oxygen intermediate. The myriad of reactions is depicted in Figure 2.20 and reveals a surprising 

flexibility in the P450 17A1 enzymes. As indicated, P450 17A1 has been shown to catalyze 21-

hydroxylation of Prog [40]. The observed rates are indicated in the figure. Lyase reactions are not overly 

dominant. The biological activities of most of the products are, still unknown. 

In summary, the investigation has produced evidence that a Compound I-type mechanism 

(Figure 2.18) can be involved in the 17,20-lyase reactions. The results do not rule out a ferric peroxide 

mechanism, nor do they define the fraction of the normal reaction that is catalyzed by each of the two 

mechanisms, if both are operative. If further research implicates Compound I in this reaction, then few 

strong cases for P450 ferric peroxide chemistry will remain, at least in the field of steroid metabolism 

[45,150,160].  
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Figure 2.20 Summary of current known reactions of human P450 17A1. 

See also Refs. 40,100,116. Rates determined at high substrate concentrations (approximating kcat 

conditions) in this study are indicated, in units of nanomoles of product formed/min/nmol P450 17A1, 

when available. A, products formed from Prog; B, products formed from Preg. 

  



71 
 

2.4 Material and Methods 

2.4.1 General 

Bruker instruments (400 and 600 MHz) were used to acquire NMR spectra in the Vanderbilt 

facility. CD3CN and CDCl3 residual proton peaks were referenced to δ 1.94 and 7.26 ppm, respectively, 

and the CDCl3 triplet in the carbon spectrum was referenced to δ 77.16 ppm and CD3CN was referenced 

to 118.26 ppm [161]. Unless specified otherwise, all chemicals were purchased from Sigma-Aldrich. A 

modified version of the nitrosourea reagent was synthesized according to Ref. 45 using 2-(2-

pyridyl)ethylamine (instead of 3-(3-pyridyl)propylamine) as the starting material, as described in detail 

here.  

2.4.2 Reagents 

17α-OH-[21,21,21-2H3]prog (96.5% atomic excess as judged by 1H NMR, 97.9% atomic excess as 

judged by LC-MS) was synthesized and characterized as described previously [40]. 17α-OH-[21,21,21-

2H3]preg (nominal 98.4% atomic excess) and 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog (nominal 98.7% 

atomic excess) were purchased from C/D/N Isotopes (Pointe-Claire, Quebec, Canada). 16α,17α-

Di(OH)prog (algestone) was purchased from Toronto Research Chemicals (Toronto, Ontario, Canada). 

16α-OHAndro was obtained from Steraloids (Newport, RI). Chemical synthesis of (2-(pyridin-2-

yl)ethyl)urea [45], 1-nitroso-1-(2-(pyridin-2-yl)ethyl)urea [45], 2-(pyridin-2-yl)ethyl acetate, and 16α,17α-

di(OH)preg [157,162] was performed by Francis Yoshimoto as described[163]. Iodosylbenzene was 

freshly prepared by F. Peter Guengerich [163] per the protocol described in Ref. 164. 

2.4.3 Enzymes 

Recombinant human P450 3A4 with a C-terminal His5 tag was expressed in Escherichia coli and 

purified as described previously [165,166]. E. coli recombinant rat POR and human liver b5 were 

prepared as described by Hanna et al. [167] and Guengerich [168], respectively.  
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Recombinant human P450 17A1 (with a C-terminal His4 tag) was expressed in E. coli and 

purified by metal-affinity chromatography using a protocol adapted from those previously reported 

[62,95,169]. Briefly, an E. coli codon-optimized cDNA, corresponding to the amino acid sequence 

reported by DeVore and Scott [62], was purchased (Genewiz, South Plainfield, NJ) and inserted into the 

pCW-Ori(+) expression vector. The construct was used to transform competent E. coli JM109 cells 

(Agilent), and an isolated colony was used to inoculate 100 ml of Luria-Bertani medium (containing 100 

μg/ml ampicillin), which was then incubated at 37 °C with shaking at 250 rpm overnight (12–14 h). 

Expression ensued by inoculating 1 liter of Terrific Broth medium, containing 100 mg/liter ampicillin and 

250 μl/liter of trace elements [170], with 10 ml of the overnight culture and incubating at 37 °C (250 

rpm) for ∼4 h (OD600 ∼0.32). The expression culture was then supplemented with 1 mm isopropyl β-D-1-

thiogalactopyranoside and 1 mM δ-aminolevulinic acid, and the incubation conditions were changed to 

30 °C and 200 rpm. After ∼40 h, the culture was centrifuged at 5000 × g for 10 min, and the bacterial 

pellet was resuspended in 300 ml of 100 mM Tris-HCl buffer (pH 7.6) containing 500 mM sucrose and 

0.5 mM EDTA and placed on ice. The suspension was then treated with 60 μl of a 50 mg/ml lysozyme 

solution/g of bacterial pellet and incubated on ice for 30 min, with gentle mixing every 10 min. All 

subsequent steps were conducted on ice or at 4 °C. Next, a spheroplast pellet was obtained by 

centrifugation at 5000 × g for 10 min and resuspended in 25 ml of 300 mM potassium phosphate buffer 

(pH 7.4; KPhos) containing 20% glycerol (v/v), 6 mM Mg(CH3CO2)2, 0.1 mM dithiothreitol (DTT), 0.1 mM 

phenylmethylsulfonyl fluoride, and a protease inhibitor mixture (cOmpleteTM, EDTA-free, Roche 

Applied Science). The spheroplasts were lysed by sonication, and debris and unbroken cells were 

removed by centrifugation at 9000 × g for 20 min. The cytosol was cleared of the membrane fraction by 

centrifugation at 100,000 × g for 60 min and was supplemented with 300 mM NaCl and 20 mM 

imidazole prior to loading onto a nickel-nitrilotriacetic acid (NTA) resin (Qiagen) bed that had been 

equilibrated with 300 mm KPhos (pH 7.4) containing 300 mM NaCl, 20% glycerol (v/v), 20 mM imidazole, 



73 
 

and 0.1 mM DTT. The bound protein was washed with 10 bed volumes of the same buffer and eluted 

with the same buffer containing 250 mM imidazole. The purified enzyme was then dialyzed four times 

against 100-fold volumes of 200 mM KPhos (pH 7.4) containing 20% glycerol (v/v), 0.1 mM EDTA, and 

0.1 mM DTT and stored at −70 °C until use.  

2.4.4 Assays 

2.4.4.1 18O2 Incubations 

The standard reconstituted P450 17A1 system contained P450 17A1 (8.4 μM), POR (13 μM), b5 

(14 μM), 130 μM 17α-OH-[21,21,21-2H3]pre or 100 μM 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog, and L-α-

1,2-dilauroyl-sn-glycero-3-phosphocholine (80 μM; DLPC) in 2.2-ml incubation mixtures containing 50 

mM KPhos (pH 7.4). Reaction mixtures were placed in Thunberg tubes, and air was removed on a gas 

train equipped with a manifold [171,172] (three exchanges of argon/vacuum, 5 min each cycle). After 

introduction of 18O2 (Sigma-Aldrich, 99% atomic excess, pressurized cylinder) into a Thunberg tube under 

vacuum, each reaction was initiated by adding an NADPH-generating system (10 mM glucose 6-

phosphate, 0.5 mM NADP+, and 2 μg/ml yeast glucose-6-phosphate dehydrogenase (91); 8% of total 

reaction volume) tipped from the stopper reservoir, with mixing. Incubations were conducted in a water 

bath at 37 °C for 30 min for 17α-OH-[21,21,21-2H3]preg substrate or 60 min for 17α-OH-

[2,2,4,6,6,21,21,21-2H8]prog substrate with shaking at 100 rpm.  

The reactions were quenched with CH2Cl2 (5 ml), and 500 μl of 3 M HCl (chilled to 0 °C) for the 

17α-OH-[21,21,21-2H3]preg substrate or 1 ml of 3 M HCl (chilled to 0 °C) for the 17α-OH-

[2,2,4,6,6,21,21,21-2H8]prog substrate was added to decrease the pH to ∼1 and facilitate extraction of 

acetic acid into the organic layer. For cases with 17α-OH-[2,2,4,6,6,21,21,21-2H8]prog as the substrate, 

the mixture (after addition of HCl) was mixed with a vortex device and centrifuged at 1500 × g for 1 min 

to remove the emulsion. Before the reaction of the product acetic acid with the diazo reagent, the 
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organic extracts were collected, and residual water was removed using anhydrous MgSO4 (∼50 mg for 

each extraction).  

2.4.4.2 Derivatization of Acetic Acid 

Diazoethylpyridine was prepared ex tempore from 1-nitroso-1-(2-(pyridin-2-yl)ethyl)urea (5 mg) 

in diethyl ether (2 ml), after treatment with KOH (1 ml of a 30% (w/v) solution in H2O) (33). The organic 

layer (containing the diazo reagent) was dried with anhydrous MgSO4 (∼50 mg), filtered with a cotton-

plugged Pasteur pipette, and reacted with an organic extract of each P450 17A1-steroid-18O2 incubation. 

The solvent was evaporated under a stream of nitrogen, and residues were dissolved in CH3CN (70 μl).  

2.4.4.3 LC-MS Analysis 

LC-MS analysis of deuterium-labeled 2-(pyridin-2-yl)ethyl acetate from 18O2 incubations was 

performed using an Acquity UPLC system connected to a Thermo LTQ XL Orbitrap mass spectrometer 

operating in the electrospray ionization (ESI) positive ion mode. A Phenomenex Kinetex® 2.6-μm C8 100 

Å, LC column (100 mm × 2.1 mm) was used for separation of the acetic acid derivative at a flow rate of 

0.3 ml/min with the following gradient: 0–1.0 min, 100% A (v/v); 4.0–5.2 min, 100% B (v/v); 5.3–8.0 min, 

100% A (v/v); mobile phase A was 10 mM NH4HCO2 in H2O (v/v); and mobile phase B was 10 mM 

NH4HCO2 in 95:5 CH3CN/H2O (v/v).  

For the 18O2 incubation assays, the LTQ mass spectrometer was tuned in the electrospray 

ionization positive mode using synthetic 2-(pyridin-2-yl)ethyl acetate (see above). The tune settings 

were as follows: sheath gas flow rate, 15 (arbitrary units); auxiliary gas flow rate, 5 (arbitrary units); 

sweep gas flow rate, 0 (arbitrary units); spray voltage, 4 kV; capillary temperature, 300 °C; capillary 

voltage, 16 V; tube lens, 30 V.  

The LTQ Orbitrap XL high resolution mass spectrometer was calibrated with the ESI-positive ion 

calibration solution by direct infusion (10 μl/min with a 500-μl Hamilton syringe) as done previously [45]. 

The mass spectrometer was first tuned to the standard solution with m/z 524.3 
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(methionine/arginine/phenylalanine/alanine acetate), and the tube lens voltage was set to 145 V to 

fragment caffeine (m/z 195 to 138).  

2.4.4.4 17α-Hydroxysteroid Reactions with Oxygen Surrogates 

The standard reconstituted system used for comparison included P450 17A1 (0.5 μM for 

iodosylbenzene, 0.1 μM for H2O2), POR (2.0 μM), b5 (0.5 μM), and DLPC (10 μM) in 0.5-ml incubation 

mixtures containing 50 mM KPhos (pH 7.4) and the NADPH-generating system. Assays were done as in 

the case of the 18O-labeling work (see above) except that the incubations were aerobic, as described 

previously [127], using 10 μM 17α-OHprog or 17α-OHpreg with P450 17A1 (0.5 μM) and no POR, in the 

absence or presence of b5 (0.5 μM). H2O2 (to 10 mM) or iodosylbenzene (to 2 mM) was added at varying 

concentrations (from aqueous stocks). The incubations were done for 5 min with H2O2 and for 30 s with 

iodosylbenzene (41, 92), with extraction into CH2Cl2 and analysis of the conversion of 17α-OHprog to 

Andro and of 17α-OHpreg to DHEA by UPLC. The Δ5 steroids were converted to Δ4 steroids by treatment 

with cholesterol oxidase prior to LC-UV analysis [127]. Iodosylbenzene reactions were conducted for a 

short time period because the reagent is very destructive to P450 heme [131].  

Product analysis was done on a Waters Acquity UPLC system with a Waters Acquity UPLC 

Ethylene Bridged Hybrid (BEH) octadecylsilane (C18) column (2.1 mm × 100 mm, 1.7 μm). LC conditions 

were as follows: solvent A consisted of 70% CH3OH and 30% H2O (v/v), and solvent B was 100% CH3CN. 

The products were resolved by a 0.2 ml min−1 gradient with the following steps: 0–1 min, hold at 5% B 

(v/v), 1–4 min, linear gradient from 5 to 30% B (v/v); 4–4.5 min, linear gradient from 30 to 40% B (v/v); 

4.5–4.55 min, 40 to 95% B (v/v); 4.55–6.75 min, hold at 95% B (v/v); 6.75–7 min, 95 to 5% B (v/v); and 7–

10 min, hold at 95% B (v/v). The column temperature was maintained at 40 °C, and the Δ4 steroids were 

quantified by their absorbance at 243 nm.  
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2.4.4.5 LC-UV-MS Analysis of New Steroid Products 

An LTQ Orbitrap XL mass spectrometer was tuned in the atmospheric pressure chemical 

ionization-positive mode with commercially available steroid solutions in a 1:1 mixture (v/v) of H2O and 

CH3CN (16α-OHandro and 16α,17α-di(OH)prog). The tune settings were as follows: vaporizer 

temperature, 350 °C; sheath gas flow rate, 50 (arbitrary units); auxiliary gas flow rate, 5 (arbitrary units); 

sweep gas flow rate, 0 (arbitrary units); discharge current, 10 μA; capillary temperature, 275 °C; capillary 

voltage, 10 V; tube lens, 25 V. The same LC method used for UV analysis (see above) was employed for 

the Δ4 steroid products. The LC conditions for the Δ5 steroids were as follows: solvent A consisted of 95% 

H2O and 5% CH3OH (v/v), and solvent B was 95% CH3OH and 5% H2O (v/v). The gradient steps were as 

follows: 0–1.5 min, hold at 60% B (v/v); 1.5–7.5 min, linear gradient from 60 to 85% B (v/v); 7.5–7.75 

min, hold at 85% B (v/v); 7.75–8.25 min, 85 to 60% B (v/v); and 8.25–10 min, hold at 60% B (v/v). The 

column was kept at ambient temperature.  

2.4.4.6 Solvent Kinetic Isotope Effect Assays 

These assays were also done as in the case of the oxygen surrogate experiments (see above), 

with the incubations done aerobically as described previously [127], using 30 μM 17α-OHprog or 17α-

OHpreg with P450 17A1 (0.5 μM)/b5 (0.5 μM), POR (2 μM), and DLPC (10 μM) in 0.5 ml incubation 

mixtures containing 50 mM KPhos (pH 7.4), with 1 mM NADPH. In the D2O experiments, the content of 

D2O was 95% (v/v), with the pD adjusted (pH = pD + 0.4) (75, 93). Incubations were for 60 s at 37 °C, and 

the products were analyzed as for the oxygen surrogate experiments (see above).  

2.4.5 Isolation of 6β,16α,17α-Tri(OH)prog as a Product 

A 20-ml reaction mixture consisting of the same components described in the oxygen surrogate 

experiments (see above), using 280 units/ml of catalase and 40 μM 16α,17α-di(OH)prog, was run 

overnight (∼20 h). The product was extracted from the aqueous mixture with 200 ml of CH2Cl2, and the 

solvent was evaporated. The dried product was purified using the same system outlined for the 16,17-
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di(OH)preg purification (see above) using an isocratic HPLC method (63.5% CH3OH) and peak detection 

at 243 nm.  

2.4.6 Isolation of 16α-OH-DHEA as a Product 

The same procedure described for the isolation of the 6β,16α,17α-tri(OH)prog product (see 

above) was used, with the following exceptions. The enzyme concentrations were increased to 1 μM 

P450 17A1, 4 μM POR, 1 μM b5, and 3700 units/ml catalase, with 50 μM 16α,17α-di(OH)preg and the 

NADPH-generating system. The incubation was run for 4 h. Purification was conducted using the same 

procedure detailed in the LC-UV purification of 16α,17α-di(OH)prog (see above), except that the 

wavelength used to detect the Δ5 product was 215 nm. 
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Chapter 3 

3. The Kinetic Model 

3.1 Introduction 

Human steroid biosynthesis is comprised of a series of redox reactions on the sterol nucleus, the 

majority of which are catalyzed by P450 enzymes [32,173]. Interestingly, several of the steroid-oxidizing 

P450s catalyze multistep reactions, some of which are carbon-carbon bond cleavage reactions 

[22,32,45,121]. Early in the steroid synthesis pathway, 17α-hydroxylation of the 21-carbon steroids Preg 

and Prog produces essential precursors, 17-OHpreg and 17-OHprog, that lead to cortisol production. 

Alternatively, the 17α-hydroxy steroids are also converted to 19-carbon androgens, DHEA and Andro, 

through a subsequent desmolase reaction (17,20-lyase) in which the C17-C20 bond is broken. The two 

functions are catalyzed by human P450 17A1, which is primarily expressed in the adrenal gland and 

gonads [173], the tissues where glucocorticoids and androgen-derived sex hormones are produced, 

respectively. 

The divergence of the pathways of steroid production at the sites of P450 17A1 expression has 

been attributed to the presence of b5 in these tissues [173]. In vitro studies with b5 have shown that that 

it stimulates the catalytic activities of human P450 17A1, predominantly the 17,20-lyase versus 17α-

hydroxylation reaction [53,174]. In some reactions with other P450 enzymes, b5 participates in electron 

transfer, but this role was dismissed for the stimulation of P450 17A1 based on the observation that 

apo-b5, a form devoid of the heme cofactor, retained the desmolase stimulation activity [57]. Akhtar and 

associates proposed that b5 stabilizes an enzyme-substrate conformation in which the ferric peroxide 

(FeO2
-) form of P450 17A1 mediates the cleavage reaction [174]. The theory was supported by the b5 

selectivity to enhance primarily the 17,20-lyase reaction, whereas P450 hydroxylation reactions typically 

follow Compound I (FeO3+) chemistry. However, the results presented in Chapter 2 suggest that the 

P450 17A1 iron-oxygen species in the desmolase reaction is Compound I, although contribution from the 
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ferric peroxide has not been ruled out, and the b5 effect was observed when the corresponding oxygen 

surrogate, iodosylbenzene, was used. b5 is currently considered as an allosteric activator of the P450 

17A1 17,20-lyase activity, although the exact mechanism of action remains unclear. 

Androgen deprivation is the standard form of therapy for advanced prostate cancer patients, 

many of which undergo surgical orchiectomy to eliminate the primary androgen producing tissue. The 

procedure yields an initial positive response, but the majority of patients progress to develop castration-

resistant prostate cancer (CRPC). While androgen receptor mutations are known factors that contribute 

to some of the cases of cancer resurgence, the adrenal gland and tumors have been identified as 

alternative androgen sources that potentiate the disease [68,72,175]. Therefore, inhibition of human 

P450 17A1 has become a therapeutic goal for prostate cancer, leading to FDA approval of abiraterone as 

a treatment for CRPC. Abiraterone is a steroid-based P450 17A1 inhibitor that blocks both the 17α-

hydroxylation and 17,20-lyase reactions, which is problematic in that it diminishes both androgen and 

glucocorticoid levels. Orteronel (TAK-700) is another small molecule inhibitor that is selective for the 

desmolase reaction, but in the clinic, the compound generated adverse effects stemming from cortisol 

deficiency and development was stopped after failing to exhibit improved efficacy [83]. 

One issue with reaction-selective inhibition of human P450 17A1 is the processivity of the two 

reactions. Enzymes that catalyze multistep reactions are characterized as processive when the 

intermediate product remains enzyme bound in the transition from the first reaction to the second, 

whereas with a distributive enzyme the intermediate product dissociates and must rebind prior to 

further reaction. Therefore, reaction-selective inhibition of human P450 17A1 by a competitive inhibitor 

can only be possible if the catalytic mechanism is distributive. Bovine and zebrafish P450 17A1 have 

been characterized as distributive, while the guinea pig enzyme was described as processive [90,91,127]. 

The processivity of human P450 17A1 is the primary focus of this chapter, which was evaluated 

by kinetic analysis of the recombinant enzyme. Steady-state and pre-steady-state methods were 
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employed in binding and catalytic assays to measure the kinetic parameters that would differentiate 

between a processive and a distributive mechanism. Furthermore, b5 was incorporated in the analyses 

to test the hypothesis that it stimulates the 17,20-lyase activity by promoting a more processive 

mechanism. Inhibition studies with TAK-700 enantiomers were conducted to investigate the level of 

potency required to selectively inhibit the desmolase reaction. Finally, the results from the kinetic 

analyses were used to develop a minimal kinetic model for human P450 17A1 catalysis of the two 

reactions. 

3.2 Results 

3.2.1 Substrate and Product Binding 

Initial binding studies indicated that human P450 17A1 bound all the major substrates and 

products with very high affinity. Dissociation constants (Kd) <0.5 μM were obtained in assays involving 

sequential, incremental ligand titrations of dilute enzyme in a 10-cm cell (data not shown). However, the 

validity of these results was questionable due to the subsequent observation of protein instability over 

long time periods, in that the individual experiments surpassed 60 minutes in length. Alternatively, 

ligand binding was assessed using fresh enzyme solutions for each steroid concentration. All of the 

substrates and products evaluated generated the typical Type I difference spectrum. Plots of maximum 

absorbance difference versus ligand concentrations, fit with a quadratic formula, are shown in Figure 

3.1. Human P450 17A1 bound the 5 (pregnenolone series) steroids with higher affinity than the 4 

(progesterone) counterparts (Table 3-1). The binding affinity was the highest for the hydroxylase 

substrates and less for the respective 17-hydroxy steroids, but the differences are not drastic. The 

enzyme exhibited two-fold greater affinity for 17-OHpreg (Kd 0.52 μM) versus 17-OHprog (Kd 0.95 μM). 

The desmolase products had the least affinity, and although the Kd for Andro is not reliable (out of 

range), the apparent lack of enzyme saturation at 10 μM shows that the affinity is considerably lower for 

this steroid (Figure 3.1 F). 
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3.2.2 Steady-State Kinetics of Human P450 17A1 Activity 

One of the conundrums with b5 modulation of human P450 17A1 catalytic activity is the 

distinction between the 17,20-lyase reaction and the 17α-hydroxylation. In these analyses, the steady-

state kinetic parameters obtained, using a reconstituted enzyme system, indicate that the b5 effect on 

catalytic efficiency is not limited to a single reaction (see Figure 3.2 and Table 3-2). The Michaelis-

Menten constants (Km) for Prog and 17α-OHprog reactions were higher than those for Preg and 17α-

OHpreg. The Km values increased approximately two-fold when b5 was included, whereas the value for 

16α-hydroxylation of Prog increased nearly five-fold. The Km for 17α-hydroxylation of Prog was the only 

value that decreased in the presence of b5. The exact meaning of Km in these reactions is not clear. The 

b5 effect was far more apparent in the kcat parameters, increasing the values by as much as 60-fold for 

the 17,20-lyase reaction with 17α-OHprog. The differences culminated in enhanced catalytic efficiencies 

for the 17α-hydroxylation reactions, in addition to the expected 17,20-lyase reactions, with both steroid 

series, but not for Prog 16α-hydroxylation. Notably, the addition of b5 to the incubations with Preg 

resulted in significant catalysis of the 17,20-lyase reaction, even though substrate turnover was 

maintained below 20%, which was not observed in Prog assays. 
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Figure 3.1 Substrate and product binding of human P450 17A1 

Production of the Type I spectrum (low-spin to high-spin iron) was monitored from 0.1 to 10 μM ligand 

concentration. The observed spectral change was fit to a uni-molecular binding model (with quadratic 

equation, see Section 3.4.5.1). Each data point corresponds to the mean and standard deviation of three 

replicate shots. See Table 3-1 for estimated Kd values.  
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Table 3-1 Kd values for P450 17A1 with substrates and products 

 K
d
, μM 

Preg 0.37 ± 0.03 

17α-OHpreg 0.52 ± 0.10 

DHEA 1.7 ± 0.2 

Prog 0.47 ± 0.04 

17α-OHprog 0.95 ± 0.08 

Andro 19 ± 9 

± indicates the standard error of the Kd from analysis of 3 replicates per ligand concentration.  
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Figure 3.2 Steady-state kinetics of the primary reactions catalyzed by human P450 17A1 

Hyperbolic fitting of the product formation rate at from 0.2 to 20 μM substrate concentration. Each data 

point corresponds to an average rate from two replicate incubation samples and the error bars denote 

the standard deviation. See Section 3.4.4.1 for experimental details and Table 3-2 for estimated Km and 

kcat parameters.  
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Table 3-2 Steady-state parameters for human P450 17A1 reactions 

  
k

cat
, s

-1
 K

m
, μM k

cat
/K

m
, μM

-1
 s

-1
 

Substrate Reaction -b
5
 +b

5
 -b

5
 +b

5
 -b

5
 +b

5
 +

 
/-b

5
 

ratio 
         

Preg 17α-hydroxylation 0.0037 0.11 0.5 1.1 0.0074 0.10 14 
  (0.0005) (0.01) (0.3) (0.2) (0.0044) (0.02)  

 
Lyase 

 
0.045 

 
0.49 

 
0.092 

    (0.003)  (0.14)  (0.027)  
17α-OHpreg Lyase 0.0059 0.071 0.57 0.91 0.010 0.078 8 
  (0.0012) (0.005) (0.46) (0.24) (0.009) (0.021)  
Prog 17α-hydroxylation 0.086 0.17 9.7 4.3 0.0089 0.040 4 
  (0.004) (0.01) (0.8) (0.4) (0.0009) (0.004)  

 
16α-hydroxylation 0.0064 0.025 1.1 5.3 0.0058 0.0047 0.8 

  (0.0009) (0.003) (0.6) (1.3) (0.0030) (0.0012)  
17α-OHprog Lyase 0.00031 0.019 2.9 7.1 0.00011 0.0027 25 
  (0.00001) (0.000) (0.3) (0.3) (0.00001) (0.0001)  
The values in parenthesis correspond to the standard error of the Km and kcat from analysis of two 

replicate incubation samples per substrate concentration. 
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3.2.3 Pre-Steady-State Experiments 

The b5 stimulatory effect was evident in the steady-state catalysis of all the major human P450 

17A1 reactions, but steady-state analyses are insufficient to clarify how the protein expedites the 

reaction cycle. In order to elucidate the mechanism of action, pre-steady-state studies were used to 

isolate individual steps in the reaction cycle. 

3.2.3.1 Estimating koff Rates 

Enzyme-inhibitor trapping assays were employed to evaluate the human P450 17A1 substrate 

and product dissociation rates, in the presence and absence of b5. The technique applied exploits the 

differing spectral changes that occur from perturbations to the heme moiety of the enzyme. The natural 

steroid ligands generate a Type I difference spectrum, corresponding to a blue shift in the Soret band, 

which is produced without interaction with the heme and simple displacement of a heme-coordinated 

water molecule. Conversely, the drug TAK-700 (Orteronel) generates a Type II difference spectrum (blue 

shift of the Soret band), which is typical of azole-containing P450 inhibitors coordinating nitrogen atoms 

directly with the heme iron. The koff rate can then be estimated from the spectral conversion of an 

enzyme-substrate complex to enzyme-inhibitor, with the requirement that substrate does not rebind 

and inhibitor binding is much faster than steroid dissociation. Accordingly, TAK-700 binding was 

measured at 6.2 ± 0.5 s-1 under the experimental conditions, determined by SVD analysis of the spectral 

change using a two species model composed of 1) free enzyme and 2) enzyme-inhibitor complex (Figure 

3.3 A-E). The same analysis method was used to estimate the steroid koff rates, in experiments starting 

with P450 17A1-steroid complexes (example of 17α-OHpreg in Figure 3.3 F-J). The results indicate that 

b5 does not affect the dissociation rates of the 17,20-lyase substrates (17α-OHpreg and 17α-OHprog), 

because the parameters changed very little when b5 was included (Table 3-3). 
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3.2.3.2 Single-Turnover Kinetics 

The b5 effect on individual chemistry steps was studied using single-turnover catalytic assays. 

The method relies on the ability to stop the reaction at very short time periods, thereby resolving the 

time frame for an initial chemical reaction from that of a subsequent step (i.e. intermediate product 

release and rebinding and/or further chemistry). Furthermore, the incubations are followed to complete 

conversion of the initial substrate to the final products. These studies illustrated the significant effect b5 

mediates on the ability of human P450 17A1 to catalyze the reactions (Figure 3.4). The rate of Preg 

turnover was increased by ~ 60% when b5 was included, while the conversion of Prog remained the 

same in both conditions (Table 3-4). As expected, b5 greatly enhanced the oxidation of the 17α-hydroxy 

steroids, augmenting the conversion rates of 17α-OHpreg and 17α-OHprog by 10- and 4-fold, 

respectively (Table 3-4). Notably, incubations starting with either Preg or Prog showed a clear lag in 

production of the corresponding 17,20-lyase product, supporting a distributive mechanism for catalysis 

of the two reactions. These pre-steady-state catalytic studies also yielded a time course that includes 

the production of the recently identified human P450 17A1 products (see Chapter 2).  

3.2.4 Pulse-Chase Experiments 

In contrast to defining enzyme processivity by comparing parameters estimated in separate 

experiments, pulse-chase studies offer a simple approach to directly probe the dissociation of an 

intermediate product from the enzyme. These experiments begin with a pulse of labeled starting 

substrate, and after a given amount of time the reactions are “chased” with an excess of a non-labeled 

intermediate substrate. The production of labeled 17,20-lyase products is then indicative of the enzyme 

processivity. A distributive enzyme would hence yield less labeled desmolase products, considering that 

the released labeled intermediate is unable to rebind in the presence of excess chase substrate. 

Conversely, the production of labelled 17,20-lyase products by a processive enzyme would be 

unaffected by the chase, because the intermediate remains in the enzyme between the two reactions. 
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In light of the weak capacity of human P450 17A1 to catalyze the 17,20-lyase reaction in the absence of 

b5, as shown in the catalytic studies discussed above, b5 was included in all the pulse-chase studies. 

Furthermore, these analyses were focused on Preg turnover, given that 17,20-lyase catalysis is more 

prominent in that substrate class. Pulse-chase studies were conducted at steady-state and pre-steady-

state conditions, where the conversion of 3H-Preg to 3H-DHEA was followed after the addition of 

unlabeled 17-OHpreg. At steady-state conditions the reaction pulse length was 1 min, followed by a 10 

min chase period. A range of 17α-OHpreg concentrations were used (5 – 75 μM), which all caused some 

degree of decreased DHEA synthesis. The yield was decreased by only 9% at the lowest 17α-OHpreg 

concentration used, while the chase with 15-fold higher concentration, 75 μM, attenuated the reaction 

to 43% of activity observed in the control incubation (Figure 3.5 A). It is possible to interpret these 

results as evidence for a distributive mechanism. However, the pulse-chase assay under steady-state 

conditions does not distinguish whether the reduced production of 3H-DHEA is caused by chase-

mediated blockade of binding the initial 3H-Preg substrate or rebinding the 3H-17α-OHpreg which was 

dissociated (in a distributive mechanism). To this end, pulse-chase assays were carried out under single-

turnover (rapid-quench) conditions, which allow the introduction of the chase steroid prior to the 

completion of the initial reaction cycle. The results are therefore more straightforward than those from 

steady-conditions, considering that only the rebinding of 3H-17α-OHpreg is obstructed and any 3H-DHEA 

generated must derive from an intermediate that did not dissociate from the substrate pocket. Initial 

experiments revealed that 17,20-lyase catalysis was unencumbered with a pulse length as short as 0.5 s 

(data not shown). These results contradicted the conclusion of a distributive mechanism, which was 

founded on the observation of an approximately 1 s lag phase in the single turnover experiments (Figure 

3.4 A). Further investigation indicates that the majority of human P450 17A1 in these incubations (that 

include b5) commits to catalyzing the 17,20-lyase reaction when 3H-Preg is bound, based on the 

observation that 3H-DHEA production continued even when the chase is added early in the lag phase 
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(0.05 s, Figure 3.5 B). In combination with the failure to segregate the 17α-hydroxylation and 17,20-lyase 

reactions at steady state conditions, the single-turnover pulse-chase results favor a relatively processive 

mechanism for the human P450 17A1-b5 complex.  
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Figure 3.3 Estimating koff parameters with enzyme inhibitor trapping 
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Example singular value decomposition (SVD) analyses of individual stopped-flow absorbance 

measurements of mixing 10 μM(S)-TAK-700 with 2 μM human P450 17A1, A-E, or a 2 μM human P450 

17A1-17α-OHpreg complex, F-J (final concentration, see Section 3.4.5.2 for details). A sequential two-

species model was applied in the SVD analyses, which generated a rate and corresponding standard 

deviation of the fit.  A,F-absolute absorbance, B,G-SVD eigenvector spectra for species 1 and species 2, 

C,H-SVD eigenvector kinetics of species 1, species 2, the total calculated eigenvector contribution, and 

the experimental data, D,I-zoomed panel of the total calculated eigenvector contribution and 

experimental data, E,J-residuals plot (difference between total calculated eigenvector and experimental 

data)   
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Table 3-3 koff rates estimated by singular value decomposition (SVD) analysis 

 

k
off

 (s
-1

) 

 

-b
5
 

 

+b
5
 

Preg 0.23 ± 0.02 
 

0.29 ± 0.03 

17α-OHpreg 0.32 ± 0.02 
 

0.41 ± 0.03 

DHEA 0.80 ± 0.05 
 

0.77 ± 0.05 

 
       

Prog 0.46 ± 0.02 
 

0.42 ± 0.03 

17α-OHprog 0.81 ± 0.08 
 

0.92 ± 0.04 

Andro 1.8 ± 0.2 
 

1.4 ± 0.1 

The koff values correspond to the average rate from three replicate analyses. The ± denotes the 

propagated error of the standard deviations from the three replicates.   
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Figure 3.4 Single-turnover kinetics of human P450 17A1 
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Single-turnover plots for human P450 17A1-mediated oxidation of Preg (A), 17α-OHpreg (B), Prog (C), 
and 17α-OHprog (D) in incubations lacking and including b5 (left and right panels, respectively). Each 
data point corresponds to an individual analysis of four combined replicate incubation samples. See 
section 3.4.4.2 for experimental details and Table 3-4 for estimated substrate consumption rates.  
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Table 3-4 Single-turnover substrate oxidation rates 

 

k, s
-1

 

Substrate -b
5
 +b

5
 

Preg 0.27 ± 0.01 0.43 ± 0.02 

17α-OHpreg 0.0074 ± 0.0006 0.077 ± 0.002 

   
Prog 0.46 ± 0.02 0.47 ± 0.02 

17α-OHprog 0.0066 ± 0.0005 0.029 ± 0.001 

The estimated rates, and corresponding standard error (±), were obtained by fitting the substrate 

consumption plot (Figure 3.4) to a single-exponential decay model in Prism.   
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Figure 3.5 Pulse-chase assays under steady-state and single-turnover conditions 

A, Production of 3H-DHEA in steady-state incubations pulsed for 1 min with 3H-Preg and chased with 
17α-OHpreg (concentrations indicated on x-axis, see Section 3.4.4.3 for experimental details).The results 
are presented as means ± SD of duplicate experiments. B, Production of 3H-DHEA under single-turnover 
conditions with variable pulse lengths and chased with 17α-OHpreg for 5 s (where indicated, see Section 
3.4.4.3 for experimental details). The results presented in A and B correspond to the means ± SD of 
duplicate experiments.  



97 
 

3.2.5 Reaction Selective Inhibition by TAK-700 Enantiomers  

Defining the processivity of human P450 17A1 is critical for the development of reaction specific 

inhibitors of the 17,20-lyase reaction but not 17α-hydroxylation. The enzyme should function in a 

distributive manner in order for a competitive inhibitor to selectively inhibit the desmolase reaction, 

whereas the likelihood is low that such a compound is able to distinguish between the two 

substrates/steps in a processive mechanism. In support of a distributive mechanism, TAK-700 was 

developed by the Takeda company as a selective 17,20-lyase inhibitor. (S)-TAK-700 was the enantiomer 

selected for development and subsequent clinical trials, due to higher potency in comparison with (R)-

TAK-700 [78,79]. The inhibition profiles of the two enantiomers have been evaluated, and the results are 

presented in Figure 3.6 and Table 3-5. (S)-TAK-700 was the more potent enantiomer based on lower IC50 

values for all the reactions assessed. Greater reaction selectivity was also observed for (S)-TAK-700, with 

a three-fold lower IC50 value for the 17,20-lyase versus 17α-hydroxylation reactions with 17-OHpreg and 

Preg, respectively, while the difference was approximately two-fold for (R)-TAK-700. The reaction 

selectivity with the progesterone series substrates was the same for both enantiomers, with 

hydroxylase-lyase IC50 ratios of 1.4, although the (S)-TAK-700 values were 6.5 times lower. The reactions 

with the progesterone series substrates exhibited greater susceptibility to the inhibitors, with lower IC50 

values for both reactions versus those for the 17α-OHpreg cleavage reaction. Notably, both enantiomers 

were unable to inhibit the 17,20-lyase reaction with greater potency than the 17α-hydroxylation 

reaction in incubations with Preg as the substrate, considering that the IC50 values for both reactions 

were nearly identical. These results support a processive enzyme mechanism for the human P450 17A1-

b5 system. Although a lower IC50 was obtained for the desmolase reaction, the increased potency is 

dependent on the reaction starting with the 17α-hydroxy steroid. Thus, these inhibitors are unable to 

selectively inhibit the 17,20-lyase reaction in a processive enzyme system, assuming that the conversion 

of Preg to DHEA observed in these studies proceeded through such a mechanism.
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Figure 3.6 Inhibition of human P450 17A1 by TAK-700 enantiomers 

(S)- and (R)-TAK-700-mediated inhibition of human P450 17A1 reactions was assessed as residual activity 

normalized to non-challenged incubation samples. Each data point corresponds to an average residual 

activity from two replicate samples and the error bars denote the standard deviation. The data was fit 

with the log(inhibitor) vs response (three parameters) equation in Prism to obtain the IC50 values (listed 

in Table 3-5). See Section 3.4.4.4 for experimental details.  
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Table 3-5 IC
50

 values for inhibition of steroid oxidation by TAK-700 enantiomers 

  

IC
50

 (95% CI), μM 

Substrate Product (S)-TAK-700 (R)-TAK-700 

Preg 17α-OHpreg 1.5   (1.1 – 1.9) 6.4   (4.7 – 8.6) 

 
DHEA 1.4   (1.2 – 1.8) 6.3   (4 – 9.7) 

17α-OHpreg DHEA 0.49   (0.22 – 1.1) 2.8   (1.1 – 7) 

Prog 17α-OHprog 0.32   (0.22 – 0.48) 2.1   (1.6 – 2.8) 

 
16α-OHprog 0.23   (0.15 – 0.35) 1.3   (0.86 – 2) 

17α-OHprog Andro 0.23   (0.17 – 0.31) 1.5   (1 – 2.3) 
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3.2.6 Kinetic Model 

The estimated dissociation rates of the 17α-hydroxy steroids were faster than the respective 

oxidation rates, while the rates of both steps were comparable for the hydroxylase substrates (Figure 

3.7). The koff rates also showed correlation with the experimental Kd parameters, and they were used to 

calculate the steroid association rates (kon). With the exception of Andro, due to an unreliable 

dissociation constant, the kon values were similar, ranging from 0.47 - 0.98 μM-1 s-1 (Table 3-6). Notably, 

the kon rates were all below the typical diffusion-limited range for enzyme-substrate association (10 - 

100 μM-1 s-1) [176]. 

The KinTek Explorer® program was used to fit the experimental data from the steroid titrations 

and catalytic assays (with b5 included) to a minimal kinetic model. The model was structured so that all 

redox steps were grouped in order to generate a single “oxidation” rate, and a simple binding 

mechanism was assumed. Using the estimated and calculated parameters as starting values, the 

software produced rates that fit the Δ5 steroid catalytic data reasonably well, but not the binding data 

(Figure 3.8 and appendix Figure 6.5). The estimated Kd for 17α-OHpreg (3.5 μM) was greater than the 

prior value (0.52 μM), while they decreased for Preg (0.37 to 0.066 μM) and DHEA (1.7 to 0.068 μM). 

Still, the updated 17α-OHpreg dissociation rate (1.0 s-1) remained approximately two times faster than 

the 17,20-lyase rate (0.42 s-1). The changes to the binding kinetics, and the relationship between the 

17α-OHpreg koff and oxidation rates, were consistent when the binding experiments were excluded from 

the global fit (Figure 3.9 and appendix Figure 6.6). Constraining the binding equilibria to the 

experimentally derived Kd values exhibited a minor effect to the 17α-OHpreg koff:17,20-lyase reaction 

ratio (2.7) and the simulated rates described the experimental data sets well (Figure 3.10 and appendix 

Figure 6.7). However, the estimated kon rate for DHEA was drastically lower than from prior simulations 

and the calculated value, while those for Preg and 17α-OHpreg were comparable. Additional variations 

to the parameter restrictions were tested to give similar results (Appendix Figures 6.8-6.11). The 
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collective global fit results suggest that the 17α-OHpreg dissociation rate is faster than the rate of the 

desmolase reaction, although the inverse variation to the binding equilibria for 17α-OHpreg and DHEA 

indicate an apparent disconnect between the binding and catalytic data when a simple kinetic model is 

applied. The kinetic model for the Δ4 steroids was less reliable, considering that the simulations did not 

describe all the data sets as well as achieved for the Δ5 steroids model (data not shown). 

The single-turnover pulse-chase assay data was fit to a minimized kinetic model that had been 

used to assess the processivity of bovine and guinea pig P450 17A1 [90,91]. Interestingly, the estimated 

17,20-lyase rate (0.82 s-1) was faster than the 17α-hydroxylation reaction (0.37 s-1) when none of the 

parameters were constrained, but the fit was unreliable due to an exceedingly fast koff (4.5 s-1) for 17α-

OHpreg (Appendix Figures 6.12-6.13) in comparison to what was observed experimentally (0.41 s-1,Table 

3-3). The most convincing fit was generated when the 17α-OHpreg Kd was maintained as a constant 

(0.52 μM), producing a koff rate (0.27 s-1) that was approximately two-fold faster than the 17,20-lyase 

rate (0.13 s-1, Appendix Figures 6.14-6.15). The similarity of the parameter ratio to that from the global 

fit using the same constraints (see above) implies that the disproportion of the individually-derived 

experimental rates is invalid and establishes precedent for the extent of 3H-DHEA production under 

these assay conditions. 

Steroid binding was further evaluated by applying different models to the kinetic binding data 

from the Δ5 steroid titrations. A good fit of the kinetic binding data was ultimately achieved in a model 

that included two conformations of the free enzyme and the enzyme-substrate complex (Figure 3.10 

and appendix Figure 6.16). The estimated parameters indicate that only a portion of the free enzyme 

exists in a steroid-binding state (Keq 0.91), and they conform to diffusion-limited standards as the initial 

binding step for each steroid was near 10 μM-1 s-1. At the present time the binding model and estimated 

parameters cannot be regarded as definite, considering that further analysis is necessary to confirm the 
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existence of the individual binding steps. However, the inability to describe the kinetic binding data 

using simpler models suggests that the steroid binding process of human P450 17A1 is complex. 
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Figure 3.7 Human P450 17A1 binding parameters and substrate oxidation rates 

The Kd, koff, and reaction rates (k) correspond to the estimated parameters obtained from ligand binding 

(Section 3.2.1), enzyme-trapping (Section 3.2.3.1), and single-turnover oxidation experiments (Section 

3.2.3.2), respectively.  



104 
 

 

Table 3-6 kon rates calculated from Kd and koff 

 

k
on

, μM
-1

 s
-1

 

 

-b
5
 

 

+b
5
 

Preg 0.62 
 

0.78 

17α-OHpreg 0.62 
 

0.79 

DHEA 0.47 
 

0.45 

Prog 0.98 
 

0.89 

17α-OHprog 0.85 
 

0.97 

Andro 0.095 
 

0.074 
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Figure 3.8 Fit results from global data analysis of binding and catalytic assays 

Global fitting of experimental data from human P450 17A1 catalytic assays under single-turnover and 

steady-state conditions and steroid binding titrations to a simple mechanistic model in Kintek Explorer. 

None of the parameters were fixed and all experiments were included in the global fitting. See Appendix 

Figure 6.5 for detailed fit iteration results.   



107 
 

  



108 
 

 

Figure 3.9 Fit results from global data analysis with binding assays excluded 

Global fitting of experimental data from human P450 17A1 catalytic assays under single-turnover and 

steady-state conditions to a simple mechanistic model in Kintek Explorer. The steroid binding 

experiments were excluded from global fitting. None of the parameters were fixed. See Appendix Figure 

6.6 for detailed fit iteration results.   
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Figure 3.10 Fit results from global data analysis with experimental Kd values as constants 

Global fitting of experimental data from human P450 17A1 catalytic assays, under single-turnover and 

steady-state conditions, and steroid binding titrations to a simple mechanistic model in Kintek Explorer. 

The steroid binding equilibria were fixed to the experimental Kd values and all experiments were 

included in the global fitting. See Appendix Figure 6.7 for detailed fit iteration results.   
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Figure 3.11 Analysis of human P450 17A1 steroid binding kinetics with KinTek Explorer 

Stopped-flow absorbance changes from Preg, 17α-OHpreg and DHEA binding. Raw data are presented as 

scatter plots, and overlaid lines represent the fits from KinTek Explorer software using the model 

displayed. The species causing an absorbance change in the heme Soret spectra are circled. k1=0.23 s-1, 

k-1=0.21 s-1; Preg (ΔA391-A426) k2=12 μM-1 s-1, k-2=4.4 s-1, k3=0.50 s-1, k-3=1.9 s-1; 17α-OHpreg (ΔA393-A426) 

k2=8.4 μM-1 s-1, k-2=2.2 s-1, k3=0.093 s-1, k-3=2.31 s-1; DHEA (ΔA393-A428) k2=12 μM-1 s-1, k-2=12 s-1, k3=0.10 s-

1, k-3=2.3 s-1. See Appendix Figure 6.16 for detailed fit iteration results. 
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3.3 Discussion 

The results indicate that human P450 17A1 is not an inherently processive enzyme when it 

catalyzes the sequential 17α-hydroxylation and 17,20-lyase reactions. However, when b5 is present, the 

catalytic efficiencies of both functions are significantly enhanced, and the conversion of Preg to DHEA 

becomes more concerted. Observations from the binding studies suggest that human P450 17A1 steroid 

association is a complex process that cannot be explained with a simple binding mechanism. TAK-700 

did exhibit a higher potency for the 17,20-lyase reaction, but the selective capacity of the compound 

was insufficient to prevent 3H-Preg to 3H-DHEA conversion. The kinetic model developed from global 

analysis of the experimental data indicates that the 17α-OHpreg koff-17,20-lyase rate ratio is 

approximately two when bound by the human P450 17A1-b5 complex. 

3.3.1 Steroid Binding 

Substrate binding is an enzymatic step that can regulate the processivity of an enzyme. In 

theory, high affinity for an intermediate product/substrate supports a mechanism where that compound 

remains bound, while intermediate release is faster when the affinity is low. Recombinant human P450 

17A1 exhibited the greatest affinity for Preg (Kd 0.37 μM), Prog (Kd 0.47 μM), and 17α-OHpreg (Kd 0.52 

μM) (Table 3-1). Interestingly, these three steroids are considered the physiologically relevant substrates 

for human P450 17A1, while 17α-OHprog (Kd 0.95 μM) is considered a poor substrate [41]. The disparity 

in binding affinity between 17α-OHprog and the other steroids (see above) has also been reported by 

other groups [63,93,177]. It is plausible that greater affinity for 17α-OHpreg versus 17α-OHprog 

supports a mechanism where the former is a substrate in a processive system, while the mechanism for 

the latter is more distributive, but such a conclusion requires more compelling evidence than the 

marginal two-fold difference observed in this work. These studies were extended to the 17,20-lyase 

products, DHEA and Andro, which had the highest Kd values at 1.7 and 19 μM, respectively. Until 

recently, DHEA and Andro were considered the catalytic end products of human P450 17A1, but further 



113 
 

oxidation of both steroids (16-hydroxylation) has now been observed in enzyme incubations (see 

Chapter 2). Although Andro can be used as a substrate, it is likely that the substantial difference in 

binding affinity renders it a poor substrate in comparison to DHEA, which was demonstrated in single-

turnover experiments through production of 16-OH-DHEA and not 16-OHandro (Figure 3.4).  

The stimulatory effect of b5 on the 17,20-lyase reaction by human P450 17A1 could, in theory, 

derive from alterations to the binding mechanism. Studies on P450 17A1 from other species suggest 

that their ability to catalyze the scission reaction is determined by the 17α-hydroxy steroid dissociation 

rate, based on values estimated from pulse-chase assays [90,91]. However, the influence of b5 on the 

parameter was not addressed previously, as the protein was not included in the studies. In this work, an 

enzyme-trapping assay was used for direct analysis of the human P450 17A1 steroid dissociation step in 

the presence and absence of b5. In general, the koff rates of the Preg series steroids were two-fold lower 

than those of the corresponding Prog molecules. Although the difference is not great, these results 

further support the dominance of the Preg pathway (over Prog) in human P450 17A1 catalysis of the 

cleavage reaction. It was not surprising that the fastest koff rates were estimated for the 17,20-lyase 

products, but interestingly, the rates observed for DHEA were similar to those for 17-OHprog. The 

estimated koff values were only slightly altered when b5 was included, suggesting that b5 does not impact 

the step (Table 3-3). Nevertheless, the absence of a b5 effect under these conditions does not rule out 

that interactions with POR may be required to affect substrate binding. Estrada et al. used NMR to 

perform competition assays with human P450 17A1 and b5 and rat POR, which showed that substrate 

binding decreased the ability of rat POR to disrupt the interaction between P450 17A1 and b5 [67]. 

However, their analysis did not investigate any of the kinetic parameters for these interactions. 

3.3.2 b5 Enhanced Catalytic Activities 

The mechanism by which human b5 enhances human P450 17A1 catalytic activity has been 

debated, but the selectivity for the 17,20-lyase reaction is a well-accepted phenomenon. b5 has been 
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reported to enhance the 17,20-lyase reaction by up to ten-fold, while the 17α-hydroxylation reactions 

were augmented two- to three-fold [53,56,65,169,174]. The steady-state catalytic analyses in this 

investigation suggest that b5 stimulation is less discriminating between the two reactions and varies 

based on the substrate type. Most of the Km values for the primary P450 17A1 reactions were increased 

approximately two-fold with the addition of b5, with the exception of Prog 16α-hydroxylation and 17α-

hydroxylation reactions, which increased approximately five-fold and decreased two-fold, respectively. 

The more pronounced b5 effect was observed in the turnover number (kcat) for all reactions assessed, 

some of which were drastic. Unexpectedly, the b5-mediated stimulation of the 17α-hydroxylation 

reaction with Preg increased the kcat value 30-fold, which was greater than the 12-fold increase of the 

17α-OHpreg cleavage rate. The largest increase in turnover number was ~60-fold for 17α-OHProg 

cleavage, while the rate for the Prog 17α-hydroxylation and 16α-hydroxylation reactions increased two- 

and four-fold, respectively. In combination, the altered kinetic constants yield significantly improved 

catalytic efficiencies for reactions with Preg, 17α-OHpreg, and 17α-OHprog. These results provide 

further evidence that b5 functions as a sentry between the androgen and glucocorticoid synthesis 

pathways. Without b5 stimulation, Preg is a poor substrate for human P450 17A1, which thereby 

facilitates the conversion of the steroid to Prog by 3β-hydroxysteroid dehydrogenase. In turn, the Prog 

17α-hydroxylation reaction does not rely on b5 stimulation, providing an unencumbered pathway for 

Preg to glucocorticoid synthesis. On the other hand, human P450 17A1-mediated conversion of Preg and 

17α-OHpreg is significantly boosted when b5 is present, leading to DHEA production. Additionally, the b5-

mediated stimulation of the desmolase reaction with 17α-OHprog increases the androgen pool further. 

One apparent caveat with the steady-state catalytic results is the failure to separate the 17α-

hydroxylation and 17,20-lyase reactions when b5 was included in Preg assays. Although the result is 

informative regarding the processivity of the enzyme, the Michaelis-Menten function used in the 

analysis does not account for the 17α-OHpreg that was further oxidized to DHEA. As such, the actual kcat 
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value for Preg 17α-hydroxylation is probably higher than the reported parameter, as was shown by the 

Preg oxidation rate from single-turnover assays. 

The steady-state turnover assays provided an overall view of the human P450 17A1 catalytic 

ability, but they do not provide insight on specific reaction steps considering that the experiments 

progress through multiple reaction cycles. In order to eliminate turnover rate limitations derived from 

steroid binding steps, single-turnover assays were employed to assess the rates for the individual 

hydroxylation and 17,20-lyase steps. The results show that b5 stimulated the chemical reaction steps 

with Preg, 17α-OHpreg, and 17α-OHpreg by ~1.6-, 10-, and 4.4-fold, respectively, but did not affect Prog 

conversion. This trend correlates with the b5 effects on the kcat parameters from steady-state assays, in 

which Prog reactions exhibited the least stimulation. Most of the oxidation rates estimated from the 

single-turnover assays were greater than the steady-state kcat values, indicating that steady-state 

catalysis is influenced by other reaction steps. Interestingly, the 17α-OHpreg reaction rates (with and 

without b5) were comparable to the respective kcat values, and similarity was also observed for 17α-

OHprog with b5 included. This suggests that the 17,20-lyase itself is a relatively rate-limiting step in the 

reaction, which b5 is able to accelerate. 

The single-turnover experiments also provided insight towards the processivity of human P450 

17A1 and the effect by b5. The reaction rates derived from the single-turnover assays with 17α-OHpreg 

and 17α-OHprog were slower than the estimated koff rates for the respective substrate. Additionally, a 

lag phase was observed in the production of the lyase products. These results indicate a distributive 

mechanism where the 17α-hydroxy steroid intermediates are more likely to dissociate from the 

substrate pocket than proceed through the 17,20-lyase reaction. Nonetheless, b5 was able to stimulate 

the processivity of the enzyme by decreasing the koff:chemistry rate quotient from ~40 to ~5 for 17α-

OHpreg and ~120 to ~30 for 17α-OHprog. In contrast, the parameters for Prog were nearly identical 
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regardless of the presence of b5, while the koff rates for Preg were comparable to the chemistry rate 

without b5 included. 

3.3.3 Pulse-Chase 

Pulse-chase assays have been a useful tool to investigate the enzyme processivity of several 

multistep P450s (e.g. 2A6, 11B2, and 19A1), and this and other laboratories have shown variability in 

this characteristic [22,89,129]. The technique has also been applied to assess the processivity of P450 

17A1 enzymes from other species, which classified guinea pig P450 17A1 as a processive catalyst in Prog 

to Andro conversion, while 80% of the bovine enzyme was distributive in Preg to DHEA turnover [90,91].  

The kinetics discussed above suggest that human P450 17A1 is primarily a distributive enzyme in 

catalyzing the sequential 17α-hydroxylation and 17,20-lyase reactions, and interactions with b5 

enhances the Preg to DHEA processivity. In this investigation, pulse-chase experiments were conducted 

under steady-state and single-turnover conditions, with b5 included as it was critical for the desmolase 

function. These assays were also focused on Preg to DHEA conversion, in light of the prominence of 

DHEA production (versus Andro) in the previous experiments. In steady-state pulse-chase studies, a 

modest effect was observed in reactions initiated with 3H-Preg and challenged with several 

concentrations of non-labeled 17α-OHpreg. Although the 17,20-lyase reaction was hindered, only the 

addition of 75 μM 17α-OHpreg decreased the average DHEA production by > 50%. The results parallel 

prior investigations with zebrafish P450 17A1, which exhibited a distributive mechanism but greater 

processivity when Preg was the substrate [127]. Single-turnover conditions were then applied to 

examine the conversion of 3H-Preg to 3H-DHEA through individual reaction cycles. Remarkably, there 

was only a nominal difference in 3H-DHEA production between the control and experimental chase with 

a saturating concentration of intermediate steroid (40 μM 17α-OHpreg). Given that the scission reaction 

was not obstructed to a greater extent, the pulse-chase assays provide evidence that in the presence of 

b5 human P450 17A1 catalyzes Preg turnover to DHEA in a processive fashion. 
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3.3.4 Inhibition 

Several human P450 17A1 inhibitors have been developed for the purpose of treating prostate 

cancer. The only compound to gain FDA approval thus far has been abiraterone, but the capacity of the 

drug to inhibit both reactions consequently triggers adverse effects due to cortisol deficiency. In this 

regard, TAK-700 was developed as a lyase-selective inhibitor, although development was discontinued 

after clinical trials determined the compound lacked greater efficacy versus abiraterone [77,81,82]. 

Nonetheless, there is utility in TAK-700 to investigate the human P450 17A1 mechanism for catalyzing 

the 17α-hydroxylation and 17,20-lyase reactions. Chemical synthesis of TAK-700 yields the (S)- and (R)- 

enantiomers, of which (S)-TAK-700 was chosen for development based on better selectivity versus P450 

3A4 inhibition and greater efficacy at reducing DHEA and testosterone levels in cynomolgus monkeys 

[79]. However, the developers did not present a comprehensive comparison of the enantiomers for all 

major human P450 17A1 reactions. The catalytic inhibition analyses in this work extended the 17,20-

lyase reaction selectivity to both substrate series by both TAK-700 enantiomers and recapitulated the 

superior potency of the (S)- over the (R)- conformer. The results also revealed the inability of the 

compounds to selectively inhibit the 17,20-lyase reaction when Preg is the substrate. Although the (S)-

TAK-700 IC50 value for 17α-OHpreg cleavage was three-fold lower than the IC50 for Preg 17α-

hydroxylation, the compound failed to inhibit Preg to DHEA conversion with greater sensitivity than the 

antecedent reaction. The comparable IC50 values for both reactions with Preg as the substrate suggest 

that the inhibition of DHEA synthesis occurs primarily by preventing 17α-OHpreg production. Moreover, 

this observation provides further support for a mechanism in which the 17α-hydroxylation and 17,20-

lyase reactions are concerted when b5 mediates the human P450 17A1 conversion of Preg. 

3.3.5 Global Kinetic Model 

Taking into account the estimated koff and 17α-hydroxy steroid consumption rates derived from 

individual experiments, human P450 17A1 catalysis of the 17α-hydroxylation and 17,20-lyase reactions 
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can be characterized as distributive, especially when b5 is not present. Paradoxically, selective inhibition 

of the 17,20-lyase reaction was lacking when Preg was used as the substrate in the pulse-chase and TAK-

700 assays with b5 included. The contradictory results most likely stem from the specificity of the 

experimental design. The purpose of the enzyme-inhibitor trapping assay was to evaluate only the rate 

of steroid release, but the design fails to investigate whether it will be affected by interactions with POR 

or the P450 oxidation state. Additionally, the single-turnover oxidation rates were assessed under the 

assumption that the reactions were initiated with all of the substrate being enzyme bound, considering 

that the estimated Kd values were below the substrate concentration used. In this regard, KinTek 

Explorer was used to eliminate the simplifying assumptions in the data analysis and permitted the 

simultaneous application of a mechanistic model to the collective datasets. 

The calculated kon values that were used as starting parameters were all below 1 μM-1 s-1, which 

is too slow for a diffusion-limited interaction [176], but they were fast enough based on the estimated 

kcat and oxidation rates from the single-turnover reactions. However, the rates generated from the 

global fitting indicate a clear disconnect between the catalytic and equilibrium binding data, in which 

the affinity of 17-OHpreg was diminished (0.52 μM, estimated to 3.0-3.5 μM from fit) while Preg and 

DHEA both increased (0.37 μM, estimated to 0.028-0.066 μM from fit, and 1.7 μM, estimated to 0.029-

0.068 μM from fit, respectively). This issue was resolved only when the estimated Kd values were set as 

constants, but even then, the kon for DHEA was unrealistically slow (0.086 μM-1 s-1). Although the rates 

changed based on the various constraints and exclusions applied to the model, the consensus among 

the global fit results is that the koff of 17α-OHpreg is two to three times faster than the 17,20-lyase 

reaction. This result was reaffirmed by rates generated from fitting the single-turnover pulse chase data, 

where the koff was estimated at 0.27 s-1 and the scission reaction rate was 0.13 s-1 when the 

experimentally-derived 17α-OHpreg Kd held constant. 
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The inconsistency in the binding parameters estimated from direct analysis of the equilibrium 

binding data and the rates derived from the global fit indicated that the simple binding mechanism used 

in the analyses was likely inaccurate. This reasoning is supported by the complex ligand binding 

mechanisms of other human P450s. P450 19A1, which also oxides steroids in a multistep process, 

exhibited a two-phase binding mechanism, with the first step being spectroscopically silent [22]. 

Additionally, the binding mechanism for the substrate promiscuous P450 3A4 was more complex, 

involving three steps [98]. The model which best fit the kinetic steroid binding data for human P450 

17A1 involved two conformations of the free enzyme as well as the enzyme-substrate complex. The 

model suggests that the enzyme binds substrate in only one conformation, which is reasonable 

considering the existence of P450s in open and closed forms [178]. An additional enzyme-substrate 

conformation is also supported by the observation of multiple conformations in NMR analyses [179]. In 

contrast to P450s 3A4 and 19A1, the model fits when all the enzyme-substrate complexes induce a 

spectral change. Although further analysis is required to validate this binding model, the rates leading to 

the final and possibly “active” conformation (k3, Preg = 0.50 s-1 and 17α-OHpreg = 0.093 s-1) are 

comparable to the estimated rates of oxidation.  

3.3.6 Conclusions 

The results from this study extend the range of P450 17A1 catalytic reactions that are 

significantly enhanced by b5 to include 17α-hydroxylation of Preg, but not Prog. The phenomenon 

correlates with the physiological use of Prog and 17α-OHprog as precursors for other essential steroid 

hormones (aldosterone and cortisol), while the role b5 is then to “shunt” steroid synthesis towards 

androgen production starting with Preg. In principle, channeling steroid production towards DHEA 

synthesis would be most efficient if the 17α-hydroxy steroid intermediate did not dissociate from the 

enzyme active site, ergo a processive mechanism. Although the 17α-hydroxy steroid koff rates were 

relatively unaffected when b5 was included in the enzyme-inhibitor trapping assays, it is possible the 



120 
 

enzyme-substrate complex stabilization mechanism is only operative when P450 17A1 is in a different 

oxidation state and was therefore missed under the conditions used. This theory is supported by b5-

mediated coupling of P450 17A1 reduction and catalysis [180], given that the protein does not directly 

participate in electron transfer [57]. The maintenance of a reactive enzyme conformation by b5 has 

historically been attributed to the 17,20-lyase reaction [56,174], but the results from this work clarified 

that it also occurs with a hydroxylase substrate bound. The reason for selective stimulation of the 

reaction with Preg over Prog is unclear. 

The results from the various catalytic assays provide considerable evidence that b5 may well 

induce the catenation of the 17,20-lyase and 17α-hydroxylation reactions with Preg as the substrate. 

First, the two reactions were inseparable in steady-state incubations when b5 was incubated with Preg, 

but not Prog. Furthermore, TAK-700, a reaction-selective inhibitor, was unable to dissect the desmolase 

reaction from the 17α-hydroxylation reaction at a higher potency in reactions that began with Preg, 

even though the 17,20-lyase IC50 with 17α-OHpreg was lower than for Preg oxidation. This result 

indicates that the DHEA produced in the Preg incubation was generated through a processive 

mechanism in which the 17α-OHpreg did not dissociate from the enzyme. The single-turnover reactions 

exhibited a lag phase, which supports a distributive mechanism, and was more pronounced with Prog as 

the substrate than when Preg was used. However, the pulse-chase assays with Preg indicated that 17α-

OHpreg does not dissociate from the enzyme during the lag phase given DHEA production was not 

diminished when a saturating amount of competitive substrate was introduced during that period. 

The rates generated form global fitting of the individual data sets with a minimal kinetic model 

indicate that human P450 17A1 is at least partially processive with Preg as the substrate, in that the 

17,20-lyase rate was generally two-fold slower than the koff for 17α-OHpreg. Based on the evaluation of 

bovine P450 17A1 (without b5) which was characterized as 20% processive [91], the rates for the human 

enzyme would describe it as a more processive enzyme (50% based on their method of calculation). One 
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critical caveat however, was the inconsistency observed with steroid binding parameters. Further 

analysis of the binding kinetics showed that steroid binding is complex and possibly includes a 

conformation of the free enzyme which is unable to bind substrate and two forms of the enzyme-

substrate complex. Presumably one of the two enzyme-substrate complexes could be the more active 

form, which catalyzes the oxidations at a faster rate. The concept of multiple conformations of the 

enzyme-substrate complex is substantiated by the observation of additional backbone conformations in 

NMR analyses [179] and the fact that human P450 17A1 can catalyze various oxidations of the same 

steroid, one of which occurs when the substrate is flipped around in substrate pocket (6β-hydroxylation, 

see Chapter 2). While further investigation is necessary to verify its validity, a mechanistic model is 

proposed in which the E´ pathway constitutes an alternative conformation, which is stabilized by b5, that 

facilitates the reactions at a faster rate (Figure 3.12). Global data fitting to this model was unsuccessful 

due to unresolved issues with the software crashing. 

In summary, the observations from this investigation indicate that the mechanism for P450 

17A1 catalysis of the two reactions is primarily distributive in the absence of b5 and becomes more 

processive with the Δ5 series steroids when b5 is present. The processivity of human P450 17A1 becomes 

an issue when attempting to selectively inhibit the 17,20-lyase reaction as a treatment for prostate 

cancer, considering that such a mechanism does not provide an opportunity to parse out the intended 

function through an competitive inhibitor. In this regard, selective inhibition of androgen production will 

only be possible if the interactions between human P450 17A1 and b5 as disrupted.  
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Figure 3.12 Hypothetical human P450 17A1 reaction scheme with additional conformations 

The Δ5 steroids are presented but also represent the Δ4 steroids. 
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3.4 Material and Methods 

3.4.1 Reagents 

Most of the steroids were obtained from either Sigma-Aldrich or Steraloids (Wilton, NH). DHEA 

was purchased from Waterstonetech (Carmel, IN). [7-3H(N)]-Preg was purchased from PerkinElmer 

(NET039001MC). [4-14C]-Prog (ARC1398) and [1,2,6,7-3H]-17α-OHprog (ART 0638) were purchased from 

American Radiolabeled Chemicals (St. Louis, MO. The (S)-TAK-700 enantiomer was a generous gift of 

Millennium Pharmaceuticals. 

3.4.2 Purification of (R)-TAK-700 

A racemic mixture of TAK-700 was purchased from ApexBio (catalog number A4326), and the 

compound was dissolved in CH3OH for purification of the enantiomers. The (S)- and (R)- enantiomers 

were resolved on a Chiralcel® OJ-RH 4.6 x 150 mm column with an isocratic 63.5% CH3OH – 36.5% H2O 

mobile phase. The two enantiomeric fractions with absorbance peaks at 238 nm were collected. The (S)- 

and (R)- fractions were differentiated using a standard (S)-TAK-700 sample (see General section). The 

(S)-TAK-700 was extracted from the aqueous solution with CH2Cl2 and the solvent was evaporated in 

vacuo. The dried solid was stored at -20 °C until further use. 

3.4.3 Enzymes 

E. coli recombinant rat POR and human liver b5 were prepared as described by Hanna et al. [167] 

and Guengerich [168], respectively. E. coli recombinant human P450 17A1 was prepared as described in 

Chapter 2. Cholesterol oxidase from Streptomyces sp. was purchased from Sigma-Aldrich (C8649). 

3.4.4 Catalytic Assays 

3.4.4.1 Steady-state Incubations 

The steady-state catalytic assays were conducted using a reconstituted enzyme system in a final 

reaction volume of 0.5 ml. The reaction mixtures typically contained 0.01-0.5 μM human P450 17A1, 2 

μM rat POR, 0.5 μM human b5 (when included), and 16 μM L-α-1,2-dilauroyl-sn-glycero-3-
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phosphocholine (added as lipid vesicles after sonication of 1 mg/ml stock; DLPC) in 50 mM potassium 

phosphate buffer (pH 7.4; KPhos). The P450 17A1 enzyme concentrations used were: 0.01 μM for 

incubations with Preg and 17-OHpreg, 0.01 μM and 0.5 μM for Prog 17α-hydroxylation and 16α-

hydroxylation (respectively), and 0.5 μM in 17-OHprog desmolase assays. Substrate was added at 

concentrations ranging from 0.2 to 20 μM. Duplicate samples were pre-warmed at 37 °C for 5 min 

(water bath with gentle shaking) and reactions initiated with the addition of an NADPH-generating 

system (10 mM glucose 6-phosphate, 0.5 mM NADP+, and 2 μg/ml yeast glucose 6-phosphate 

dehydrogenase) [181]. The mixtures were incubated for 5 min at 37 °C. Reactions were quenched with 

the 2 ml CH2Cl2, mixed with a vortex device, and placed on ice. The samples were centrifuged to 

separate the organic and aqueous layers, and 90% of the organic phase was transferred to a new vessel 

and evaporated under a nitrogen stream. The extracts from Prog and 17-OHprog incubations were 

resuspended in 100 μl of a CH3CN-H2O (1:1) mixture and 10 μl of this was analyzed by UPLC-UV. The Preg 

and 17-OHpreg extracts were dissolved in 100 μl CH3OH, mixed with 400 μl of cholesterol oxidase (0.5 

units/reaction), and incubated at 30 °C (with shaking at 200 rpm) for 6-12 hours. The extraction 

procedure was then repeated, and the samples were resuspended and analyzed as Prog and 17-OHprog. 

The reaction products were resolved on an Acquity BEH C18 UPLC octadecylsilane column (2.1 mm x 100 

mm, 1.7 μm) with mobile phases A, 70% CH3OH/30% H2O, and B, CH3CN, at a 0.2 ml/min flow rate. The 

mobile phase linear gradient proceeded as follows: 0-1 min, 95% A; 4 min, 70% A; 4.5 min, 60% A; 4.55-

6.75 min, 5% A; 7-10 min, 95% A (all v/v). The column temperature was maintained at 40 °C, and the 

sample chamber was held at 4 °C. The reaction products were identified by co-elution with commercial 

standards and quantified by the A243 peak area. kcat and Km values were estimated from hyperbolic fits in 

Prism software (GraphPad, San Diego, CA). 
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3.4.4.2 Single-Turnover Conditions 

Single-turnover incubations were performed using an RQF-3 quench-flow instrument (KinTek 

Corp, Snow Show, PA). The instrument operates through a series of rapid mixing steps through two in-

line incubation chambers, where each step dilutes the samples two-fold. The instrument temperature 

was conditioned at 37 °C. The enzyme substrate mixture in these reactions included 4 μM steroid, 4 μM 

human P450 17A1, 8 μM rat POR, 4 μM human b5 (when added), and 32 μM DLPC (lipid vesicles) in 100 

mM KPhos (pH 7.4). The following radiolabeled substrates were used in these studies: 3H-Preg (1 

mCi/μmol), 3H-17-OHpreg (0.7 mCi/μmol), 14C-Prog (0.06 mCi/μmol), and 3H-17-OHprog (1 mCi/μmol). 

The reactions were initiated through rapid mixing with 1 mM NADPH in 50 mM KPhos (7.4) in the first 

reaction chamber. The samples were incubated from 0.5 to 30 s, at which point, the reactions were 

quenched with HCl (1 M) as they were pushed through the second reaction into the collection vessel. 

Four time point replicates were collected into the same vessel for analysis to compensate for the low 

specific activity of 14C-Prog, and the procedure was applied for the other substrates. The samples were 

centrifuged at 2,000 x g for 5 min to eliminate precipitated protein and the supernatant directly 

subjected to analysis by HPLC-UV-on-line liquid scintillation counting methods. The reaction products 

were resolved on a Zorbax RX-C8 octylsilane (4.6 mm x 250 mm, 5 μm) column with mobile phases A, 

95% H2O/5% CH3OH, and B, 95% CH3OH/5% H2O (v/v). With the column at ambient temperature, the 

following linear gradients (1 ml/min) were used: 3H-Preg, 14C-Prog, and 3H-17-OHprog assays: 0-10 min, 

70% B, 15-18 min, 100% B, 20-30 min, 70% B; 3H-17-OHpreg assays: 0-15 min, 65% B, 20-23 min, 100% B, 

25-35 min, 65% B (all v/v). The scintillation fluid (LiquiscintTM, National Diagnostics, Atlanta, GA) flow 

rate was 3 ml/min. The reaction products were identified by co-elution with commercial standards 

(monitored at A216 (Preg, 17-OHpreg, and DHEA) and A243 (Prog, 17-OHprog, 16-OHprog and Andro)) and 

quantified by the radiochromatogram peak area using β-RAM software. 
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Radiolabeled 17-OHpreg was prepared through enzyme-mediated conversion of [7-3H(N)]-Preg. 

[7-3H(N)]-17-OHpreg was obtained from a 30 s incubation with the enzyme system described above, 

devoid of b5. The radiolabeled steroid was purified by the chromatographic method applied for 3H-17-

OHpreg assays, and fractions were collected (without the β-RAM system). The steroid was extracted 

from the mobile phase with CH2Cl2, the organic (lower) layer transferred to a new vessel, and the 

solvent evaporated under a nitrogen stream. The dried extract was dissolved in C3H5OH, and co-elution 

with commercial 17-OHpreg was used to validate the identity of the radiolabeled compound. 

3.4.4.3 Pulse-Chase Assays 

Pulse-chase experiments were performed to follow the conversion of 3H-Preg to 3H-DHEA at 

steady-state and single-turnover conditions. 

The reconstituted enzyme-substrate mixture in the steady-state pulse-chase assays is consistent 

with the protocol described for steady-state incubations, with the following alterations: 1) 0.5 μM 

human P450 17A1, and 2) 50 μM 3H-Preg (0.013 mCi/μmol). One minute after the reactions were started 

with the NADPH-generating system, the mixtures were mixed with unlabeled 17-OHpreg, at varying 

concentrations (5 – 75 μM and vehicle), and the incubations continued for ten minutes before 

quenching with HCl (0.67 M, final). The mixtures were centrifuged to clear precipitated protein and the 

steroid products were resolved and quantified by the HPLC methods employed in the single-turnover 

experiments (vide supra) with the following linear gradient: 0-9 min, 75% B; 13.4 min, 86% B; 13.5-15 

min, 90% B; 16-25 min, 75% B (all v/v). 

The pulse-chase assays done at single-turnover conditions followed a protocol similar to that 

outlined above, with some distinctions. The standard single-turnover procedure includes one reaction 

phase, while a pulse-chase experiment requires two incubation periods. This was achieved in the rapid 

quench instrument by utilizing the second reaction chamber and incubating with a chase compound, 

while the quenching agent is placed in the collection vial. The reagent concentrations were increased so 
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that, after two dilutions, the working concentrations in the chase step (second phase) matched those 

from the single-turnover incubations. The specific activity of 3H-Preg was adjusted to 0.83 mCi/μmol, 

and 80 μM unlabeled 17-OHpreg was used as the chase compound. The pulse length was varied 

between 0.05 and 2 s and the chase continued for 5 s before the reaction was quenched in the 

collection vessel with HCl (0.6 M final). The mixtures were centrifuged to clear precipitated protein, and 

the steroid products were resolved and quantitated by the method described for the steady-state pulse-

chase assays. 

3.4.4.4 TAK-700 Inhibition 

Competitive inhibition studies with the TAK-700 enantiomers were performed and analyzed by 

the methods described for steady-state assays. The inhibitors were added to the enzyme substrate 

mixture with the final composition as: 0.005-100 μM (S)- or (R)-TAK-700, 5 μM substrate, 0.01 μM 

human P450 17A1 (0.1 μM in assays with 17-OHprog) , 0.5 μM human b5, 2 μM POR, 16 μM DLPC (lipid 

vesicles) in 50 mM KPhos (7.4). The remaining steps, including cholesterol oxidase conversion in Preg 

and 17-OHpreg assays, were done as described for the steady-state experiments, with the exception of 

the mobile phase. In order to resolve an inconsistent TAK-700 migration profile, the mobile phase was 

changed to 5 mM NH4CH3CO2-70% CH3OH/30% H2O for A and 5 mM NH4CH3CO2-90% CH3CN/10% H2O 

for B (all v/v). IC50 values were calculated in GraphPad Prism using the formula: Y=bottom+(top-

bottom)/(1+10^(X-logIC50)). 

3.4.5 Binding Studies 

3.4.5.1 Ligand Binding 

Initial binding studies were performed using previously reported methods [127]. In a 10 cm cell 

(Starna Cells, Atascadero, CA, catalogue no. 34Q-100, 25 ml), the steroid ligands were incrementally 

added to 0.1 μM human P450 17A1 in 50 mM KPhos (7.4). The experiment was conducted as a series of 

additions, and the enzyme samples were exposed to ambient temperature, recurrent mixing, and a 
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strong light beam for periods > 60 min. Subsequent control experiments, where ligand was not added, 

exhibited spectral instability in the enzyme over the same period of time. Specifically, a time-dependent 

decrease in the Soret band was observed, which is problematic considering that the change in the Soret 

band (upon ligand binding) is the outcome analyzed in the assays (note: no obvious precipitation 

occurred). 

Steroid binding was reanalyzed, with untreated enzyme samples for each steroid concentration, 

using a stopped-flow instrument equipped with a 20 mm cell and a rapid scanning monochrometer (OLIS 

RSM-1000, On-Line Instrument Systems, Bogart, GA). The stopped-flow sample syringes were 

conditioned at 37 °C and filled with either 2 μM human P450 17A1 or 0.2-20 μM steroid in 100 mM 

KPhos (7.4) with 120 μM DLPC (lipid vesicles). After mixing, the instrument recorded the absorbance 

spectrum from 350-500 nm at one millisecond intervals for up to 7 s. The differential absorbance 

maxima and minima were determined by subtracting the final and initial (0 s) spectra. The composite 

absorbance changes, Δ (Amax – Amin), from three replicates were averaged and plot against the ligand 

concentrations. The data were fit with a quadratic binding formula to estimate binding constants (Kd) 

using GraphPad Prism. 

Y=B+(A/2)(1/E)((Kd+E+X)-((Kd+E+X)2-(4EX)))1/2 

3.4.5.2 Inhibitor Trapping 

Spectral enzyme-inhibitor trapping assays were implemented to measure dissociation rates for 

the steroid ligands. The analysis is dependent upon a faster inhibitor binding rate versus the dissociation 

rates for the steroids. The experiments were performed at ambient temperature using the stopped-flow 

apparatus described above and (S)-TAK-700 as the trapping inhibitor. The on rate for (S)-TAK-700 was 

first measured by mixing 4 μM human P450 17A1 in 100 mM KPhos (7.4) (with 120 μM DLPC (lipid 

vesicles)) and 20 μM (S)-TAK-700 (in the same buffer). The rate was estimated by singular value 

decomposition (SVD) analysis of the experimental data matrix with the following parameters: 
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absorbance: measured value, wavelength; 350-500 nm (200 points), and time: 0-1 s (one scan per 

millisecond). The data was fit with a two-species sequential model (simple first-order) and the calculated 

rates from at least three replicates were averaged. To assess the dissociation rates, the steroid ligands (4 

μM) and human b5 (4 μM, when included) were added to the enzyme solution. The time component was 

0-10 s (averaged mode, 62 scans per second) and data were analyzed as stated. 

3.4.6 Kinetic Analysis 

Steroid association rate (kon) parameters were calculated using the corresponding dissociation 

rates (koff), estimated from the inhibitor trapping assays, and the dissociation constants (Kd), derived 

from the steroid binding experiments, based on the following equation: 

Kd = koff / kon 

The experimental data from the catalytic assays, under single-turnover and steady-state 

conditions, and steroid titrations were concurrently fit to a minimal kinetic model in the KinTek 

software. The predetermined rates parameters (kon, koff, Kd, and single-turnover substrate conversion 

rates) were used as starting values in the model, and in some cases, the values were fixed. The limits for 

the molar extinction coefficients that were applied to the spectral binding experiments were derived 

from the prior fit with a quadratic formula in prism (see above). The details for each of the model 

variations are presented in the fit results (Appendix). The imported data sets included the averaged data 

point with standard deviation (when applicable). 

In order to accurately fit the ligand titration and catalytic experiments in a single model, a 

“kinetically silent” second order activation step was added to prevent the software from regarding the 

binding assay as a catalytic experiment. The activation step corresponds to the combined P450 17A1 

reaction steps that lead to the chemically competent iron-oxygen species (i.e. reduction by POR, binding 

of molecular oxygen, protonation, and loss of water), which were not evaluated. The concentration of 

the “activating reagent” was fixed at 1 μM and a Keq of 1 μM was set with kforward = 100 μM-1 s-1 and kreverse 
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= 100 s-1, with the intention of forcing the step to be rapidly reversible in order to prevent any kinetic 

influence on the other parameters. Additionally, the reversibility accounted for uncoupling (loss of iron-

oxygen species that results in the Fe3+) that can occur during Compound I (or ferric peroxide) formation. 

Any rate limitations derived from uncoupling were considered to be factored into the rate of the 

chemical reaction step. Simulations without the activation step produced similar results at the same 

constraints. 

The kinetic model was reduced for analysis of the single-turnover pulse-chase data to conform 

to single-turnover conditions, and paralleled the model applied for analysis of P450 17A1 from other 

species [90,91]. 

Steroid binding kinetics was evaluated by applying different enzyme-ligand binding models to 

the kinetic data obtained in stopped-flow binding assays (see Section 3.4.5.1) using the KinTek Explorer 

software. The data was reduced by taking the difference of the kinetic traces (~7 s trace, 1 scan per 

millisecond) at the wavelengths previously designated for Amax and Amin (e.g. A391 and A426 kinetic traces 

were subtracted for Preg assays; see Section 3.4.5.1 and Figure 3.1). Three replicate difference traces for 

each steroid concentration were averaged and then normalized to t= 0 s. The kinetic traces were then 

reduced once more by boxed average (n=5) with standard deviation, before import into the KinTek 

software. The binding models tested included 2-ligand binding and alternative conformations of the 

enzyme and enzyme-substrate complex. In some models, the visibility of the substrate-enzyme 

complexes was also varied. 
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Chapter 4 

4. Concluding Remarks 

4.1 New Products, New Pathways 

P450 17A1 is an indispensable enzyme that functions at the center of the human steroid 

biosynthetic pathway. Through interactions with b5, P450 17A1 mediates diverging pathways that lead 

to the production of glucocorticoids and sex hormones by oxidation of Preg and Prog to 17α-hydroxy 

steroids and subsequently to DHEA and Andro, respectively. The physiological relevance of these steroid 

end products is well understood. Glucocorticoids (primarily cortisol in humans) are important for a 

variety of functions, including stress response, immune system suppression, gluconeogenesis, and lipid 

metabolism. The sex steroids are divided into two classes: androgens, which are responsible for 

masculinization and male reproductive function, and estrogens, which mediate the female reproductive 

system and feminization. Additionally, 16α-OHprog is another well-known end product generated by 

human P450 17A1 but does not have a defined function, although agonistic activity of the progesterone 

receptor has been reported and regulation of electrolyte balance was speculated [182]. Interestingly, 

human P450 17A1 does not catalyze 16α-hydroxylation of Preg. 

The scope of P450 17A1 oxidation reactions has been redefined in this investigation. In contrast 

to the selectivity observed with Preg and Prog, human P450 17A1 converted both 17α-OHpreg and 17α-

OHprog into 16(α),17α-dihydroxy steroids. The physiological relevance for the biosynthesis of these 

novel products is unknown; however, patents for the synthetic preparation of these molecules were 

obtained as early as 1955 [183,184]. The more studied of the two, 16α,17α-(OH)2prog (also known as 

algestone) is currently used as the nucleus for the contraceptive drug dihydroxyprogesterone 

acetophenide. Additionally, human P450 17A1-mediated 16(α)-hydroxylation of DHEA and Andro was 

also observed, whereas 16α-OH-DHEA production has previously been attributed to P450 3A4 [153,154]. 
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These 16(α)-hydroxy androgens are quite relevant to human biology as they are precursors to estriol 

(155,156), an estrogen that is found in high levels during pregnancy. 

Although unexpected, the identification of additional 16-hydroxylation products is conceivable 

based on the established reaction with Prog. However, it was unprecedented that human P450 17A1 

would be able catalyze a third oxidation reaction with the dihydroxy steroids. The initial hypothesis 

proposed that the third hydroxylation would be located on carbon-21, considering that trace levels of 

21-hydroxylation activity had been reported for the enzyme [40]. Remarkably, NMR analysis of the new 

products revealed that the oxidation occurred on the steroid B-ring, whereas all the typical P450 17A1 

oxidations are localized to the D-ring of the molecule. The new Δ4 steroid was characterized as 

6β,16α,17α-(OH)3prog. A putative B-ring oxidized product was also detected in 16α,17α-(OH)2preg 

incubations, but not enough was obtained for adequate NMR analysis. Additionally, human P450 17A1 

utilized the dihydroxy steroids as substrates for the 17,20-lyase reaction, which was the primary product 

observed with 16α,17α-(OH)2preg as the substrate, yielding an alternative pathway to 16-hydroxy 

androgen synthesis. The physiological relevance of the trihydroxy steroids is unknown, and their 

identification has not been reported in prior studies. However, the same oxidation sites were recognized 

on tetrahydroxy steroids that were identified in urine from neonates with 21-hydroxylase deficiency 

[185]. 

The identification of these new steroids poses several new questions, with the first being what 

are their biological functions? Do they activate, or antagonize, the steroid receptors and signaling 

pathways in the same fashion as their precursors? Are these steroids found in the body, or is their 

production simply a phenomenon of the in vitro conditions used? These results also challenge the 

general concept that P450s that oxidize endogenous substrates are constrained to specified catalytic 

functions based on smaller active sites but xenobiotic metabolizing P450s have larger substrate pockets 

that facilitate their promiscuity. Is it possible that the other steroid metabolizing P450s also have 
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unrestrained catalytic abilities, and can they use these new steroids as substrates? These questions can 

be answered through biochemical analyses, and although it is mere speculation at this point, it would 

not be surprising if new steroid pathways were identified. 

4.2 The b5 Effect 

The b5-mediated stimulation of human P450 17A1 catalytic activities is a well-known 

phenomenon. The effect has mainly been recognized with the 17,20-lyase reaction in comparison with 

17α-hydroxylation, considering that the reaction rates were augmented by up to ten-fold and two-fold, 

respectively [53,56,65,169,174]. In reactions with some other P450 enzymes, b5 acts as a redox partner 

by facilitating electron transfer to the P450 [54,55]. This role has been precluded for interactions with 

human P450 17A1 following the observation that redox-deficient apo-b5 and a Mn-substituted form 

were able to stimulate the activity [56,57]. The most popular theory has been that b5 enhances the 

17,20-lyase activity by allosterically promoting an enzyme-substrate conformation that facilitates ferric 

peroxide chemistry [56,174]. However, the analyses discussed in Chapter 2 provide considerable 

evidence that the cleavage reaction can be arbitrated by the Compound I form of human P450 17A1. 

Furthermore, b5 enhanced the 17,20-lyase activity when an oxygen surrogate for Compound I 

(iodosylbenzene) was employed. Presumably, this result suggests that the allosteric activity of b5 may 

occur after the formation of the Compound I iron-oxygen species. Another indication that b5 is not 

selective for the ferric peroxide form of human P450 17A1 is that the protein also enhanced 17α- and 

16(α)-hydroxylation of Preg and 17α-hydroxy steroids, respectively. 

This investigation has produced the first account that b5 significantly augments the 17α-

hydroxylation of Preg, in addition to the 17,20-lyase reaction with the 17α-hydroxy steroids. However, it 

is still unclear why the same effect was not observed in Prog oxidation. The analyses discussed in 

Chapter 3 suggest that b5 stimulates the steps involved in the chemical reaction, which take place after 

substrate binding and before product release. These observations are consistent with a report that b5-
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mediates the coupling of NADPH consumption and product formation, although the authors indicated 

the effect was primarily observed for the 17,20-lyase reaction [180]. However, close inspection of the 

results show that Preg 17α-hydroxylation also exhibited a modest stimulation by b5, but not in the case 

with Prog. Based on the results from this investigation, it is likely that a greater effect would have been 

observed with Preg if the incubation conditions used were more similar to those employed in this work. 

Still perplexing, however, is the observation that b5 would affect this reaction phase considering that is 

when reduction occurs, but it is not active in electron transfer with human P450 17A1. The enigma is 

further complicated by the characterization that the b5 and POR both interface with the same site on 

human P450 17A1 [67]. It is possible that POR is replaced by b5 following the reduction steps to stabilize 

the Compound I intermediate, which is conceivable given that b5 stimulated the reactions supported by 

iodosylbenzene (which does not involve electron transfer). However, such an exchange is impractical if 

the end result is a faster reaction rate. 

4.3 Processivity and Human P450 17A1 Inhibition 

“Studies on Prostatic Cancer… may be the first translational research study of a molecularly 

targeted therapy in the history of cancer,” commented William G. Nelson about the 1941 Cancer 

Research article authored by Charles Huggins and Clarence V. Hodges [186,187]. The 1966 Nobel Prize in 

Physiology or Medicine was awarded to Huggins “for his discoveries concerning hormonal treatment of 

prostatic cancer.” To date, androgen deprivation remains the primary form of therapy for prostate 

cancer, which is accomplished by removing the androgen producing tissues (castration) in advanced 

cases. Although the initial response is positive, cancer progression typically ensues as CRPC. 

Development of CRPC can be caused by mutations in the androgen receptor, but it is common that 

androgen production from the adrenals and tumors is the driving factor. In this regard, the only way to 

impede CRPC progression is to stop androgen production at the enzyme level. However, targeting 

human P450 17A1 is problematic in that complete inhibition results in the concomitant loss of 
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glucocorticoid levels. Currently the only FDA approved human P450 17A1 inhibitor, abiraterone, 

requires adjuvant prednisone therapy to alleviate the adverse effects caused by the hindered cortisol 

production. 

Reaction-selective inhibition of human P450 17A1 has become a “Holy Grail” in drug 

development for prostate cancer. TAK-700 is one 17,20-lyase selective inhibitor that went through 

clinical trials, but the drug incited the same adverse effects produced by abiraterone [77,81,82]. 

Presumably, the reaction selectivity of the drug was insufficient to obtain a dose that stopped androgen 

production and allowed sufficient cortisol synthesis. One explanation for this failure is that the 17α-

hydroxylation and 17,20-lyase reactions cannot be distinguished if the reactions proceed through a 

processive mechanism in human. The analyses discussed in Chapter 3 suggest that this may actually be 

the case. Neither of the TAK-700 enantiomers was able to impede the 17,20-lyase reaction in 

incubations that included Preg and b5. Additionally, the pulse-chase assays, which included b5, indicated 

that at least a fraction of the 17α-OHpreg did not dissociate from human P450 17A1. This result is 

confounded by the observation that b5 did not affect the dissocation rates of the 17α-hydroxy steroids, 

which were estimated to be faster than the rate of the 17,20-lyase reaction. However, the enzyme-

inhibitor trapping assays did not take into account the possible b5-P450 17A1-substrate complex(es) that 

exist(s) throughout the entire reaction cycle, which may be the one(s) stabilized by b5 and establish the 

processive mechanism. 

Another perspective was gained from applying a kinetic model to the experimental binding data 

and the results from catalytic assays with b5 included. The rate parameters generated from global fitting 

suggest that approximately half of the 17α-OHpreg that is bound by human P450 17A1 may proceed 

through the 17,20-lyase processively when stimulated by b5. Furthermore, analysis of the kinetic binding 

data revealed that the human P450 17A1 steroid binding process does not fit to a simple model, and 

multiple conformations were needed to accurately describe the data. These results require further 
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validation, but they do provide the basis to propose two conformations of the enzyme-substrate 

complex, in which one may dissociate the substrate readily, while the other proceeds to catalyze the 

17,20-lyase reaction through a processive mechanism and is possibly stabilized by b5. Confirmation of 

this model would complicate the development of a reaction-selective competitive inhibitor, unless the 

human P450 17A1-b5 interaction can be disrupted. 

In summary, the catalytic repertoire of human P450 17A1 has been expanded to include a series 

of novel 16-hydroxy products, in addition to an unprecedented 6β,16α,17α-trihydroxy steroid. The 

chemical mechanism for the 17,20-lyase reaction was reevaluated, generating strong evidence for a 

Compound I-mediated reaction. Analysis of the b5 effect towards human P450 17A1 catalytic activities 

revealed that 17α-hydroxylation of Preg is also enhanced at a significant level. Lastly, a kinetic model is 

proposed that includes two conformations of the enzyme-substrate complex, where one is a b5-

stabilized processive form leading to androgen production. 
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Figure 6.1 NOESY NMR spectrum of 6β,16α,17α-tri(OH)prog derived from 16α,17α-di(OH)prog (600 
MHz, CDCl3). 

(A) Newman projection along C6-C7 bond axis to show the proximity between H-6α (δ 4.38 

ppm) with H-7α (δ 1.34 ppm) and H-7β (δ 1.98 ppm) protons that is supported by the NOESY data, and 

for comparison: (B) a Newman projection along the C6-C7 bond axis of a hypothetical 6α-hydroxy 

epimer (6α,16α,17α-trihydroxyprogesterone) to show anticonfiguration of H-6β with H-7α. (C) NOESY 

interaction between H-6 (δ 4.38 ppm) and H-4 (δ 5.84 ppm) protons. 
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Figure 6.2 HMBC NMR spectrum of 6β,16α,17α-tri(OH)prog derived from 16α ,17α –di(OH)prog (600 
MHz, CDCl3). 

The H-6 hydroxymethine proton (δ 4.38 ppm) is shown to have a 3-bond coupling to the C4-

carbon (δ 128 ppm). 
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Figure 6.3 COSY NMR spectrum of 6β,16α,17α –tri(OH)prog derived from 16α,17α-di(OH)prog (600 MHz, 
CDCl3). 

Shown with the lines are the 3-bond coupling interaction between the H-6 proton (δ 4.38 ppm) 

with the H-7protons (δ 1.34 and 1.98 ppm). 
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Figure 6.4 HSQC NMR spectrum of 6β,16α,17α-tri(OH)prog derived from 16α,17α-di(OH)prog (600 MHz, 
CDCl3). 

The arrows show the assignment of C2, C4, and C7 carbons (δ 34.2, 127.7, and 38.5 ppm) with their 

respective one-bond heteronuclear correlations to assign their attached protons. 
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Figure 6.5 KinTek Explorer iterations for Figure 3.8 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.1.170130 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:368 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 11 observable(s) over 12 experiment(s). 
Fit Time     : 132.413 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=2), Exp3 (id=3), Exp5 (id=64), Exp4 (id=45), Exp6 (id=65), Exp7 
(id=66), Exp8 (id=67), Exp9 (id=68), Exp10 (id=70), Exp11 (id=71), Exp12 (id=73) 
Data Points     : 99 
Params Fit      : 11 
Deg of Freedom  : 88 
Chi             : 0.91867 
Chi2 / DoF      : 0.00959 
GammaQ          : 1.00000 
Computed Sigma  : 0.09280 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + P = EP                k+1                   0.173       0.231      134   15 
                          k-1                  0.0115       0.122     1060   
 
E + I = EI                k+2                   0.296       0.179     60.4   0.288 
                          k-2                    1.03        1.18      114   
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E + A = EA                k+3                    1.89        8.45      447   14.7 
                          k-3                   0.129       0.169      131   
 
EP + POR = rEP            k+4        X            100         n/a      n/a  (1) 
                          k-4        X            100         n/a      n/a   
 
EI + POR = rEI            k+5        X            100         n/a      n/a  (1) 
                          k-5        X            100         n/a      n/a   
 
rEP = EI                  k+6                    1.01       0.374       37   1.01e+007 
                          k-6        X              0         n/a      n/a   
 
rEI = EA                  k+7                   0.418       0.289     69.1   4.18e+006 
                          k-7        X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 0.173 0.231 
k-1 0.0115 0.122 
k+2 0.296 0.179 
k-2 1.03 1.18 
k+3 1.89 8.45 
k-3 0.129 0.169 
k+4 100 n/a 
k-4 100 n/a 
k+5 100 n/a 
k-5 100 n/a 
k+6 1.01 0.374 
k-6 0 n/a 
k+7 0.418 0.289 
k-7 0 n/a 
 
 
 
 
Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
Experiment 5a             a                     0.227        0.11     48.4 
 
Experiment 5b             a                     0.227        0.11     48.4 
 
Experiment 6a             b                      0.16       0.204      128 
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Experiment 6b             b                      0.16       0.204      128 
 
Experiment 7a             c                      0.11      0.0948     86.2 
 
Experiment 7b             c                      0.11      0.0948     86.2 
 
OUTPUT-FACTORS 
a 0.227 0.11 
b 0.16 0.204 
c 0.11 0.0948 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1             EP         X              4         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EI         X              4         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP-e1m1 4 n/a 
POR-e1m2 1 n/a 
EI-e2m1 4 n/a 
POR-e2m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e4m1 0.01 n/a 
POR-e4m2 1 n/a 
E-e4m1 0.01 n/a 
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POR-e4m2 1 n/a 
E-e5 1 n/a 
E-e5 1 n/a 
E-e6 1 n/a 
E-e6 1 n/a 
E-e7 1 n/a 
E-e7 1 n/a 
 
 
 
 
Covariance Matrix 
 
           k+1        k-1        k+2        k-2        k+3        k-3        k+6        k+7        a          b          c           
------------------------------------------------------------------------------------- 
k+1       +1.55                                                                                                                     
k-1       +0.645     +0.431                                                                                                         
k+2       +0.361     +0.199     +0.93                                                                                               
k-2       +0         +0         +0         +40.1                                                                                    
k+3       +32.7      +11.9      +25.5      +0         +2070                                                                         
k-3       +0.378     +0.0921    +0.257     +0         +32.7      +0.833                                                             
k+6       +1.27      +1.18      +0.434     +0         +19.8      +0.0302    +4.05                                                   
k+7       +0         +0         +0         +9.04      +0         +0         +0         +2.43                                        
a         +0         +0         +0         +0.54      +0         +0         +0.0654    +0.107     +0.35                             
b         +0         +0         +0         +2.76      +0         +0         +0         +0.735     +0.0382    +1.21                  
c         +0         +0         +0         +0.361     +0         +0         +0         +0.102     +0.0112    +0.0388    +0.261      
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Figure 6.6 KinTek Explorer iterations for Figure 3.9 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.1.170130 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:165 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 8 observable(s) over 6 experiment(s). 
Fit Time     : 54.910 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=2), Exp3 (id=3), Exp5 (id=64), Exp4 (id=45), Exp6 (id=65) 
Data Points     : 75 
Params Fit      : 8 
Deg of Freedom  : 67 
Chi             : 0.91137 
Chi2 / DoF      : 0.01240 
GammaQ          : 1.00000 
Computed Sigma  : 0.10594 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + P = EP                k+1                   0.552        1.33      241   35.1 
                          k-1                  0.0157       0.454     2890   
 
E + I = EI                k+2                   0.266       0.147     55.5   0.337 
                          k-2                   0.788       0.966      123   
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E + A = EA                k+3                    5.46        27.7      508   34 
                          k-3                   0.161       0.318      198   
 
EP + POR = rEP            k+4        X            100         n/a      n/a  (1) 
                          k-4        X            100         n/a      n/a   
 
EI + POR = rEI            k+5        X            100         n/a      n/a  (1) 
                          k-5        X            100         n/a      n/a   
 
rEP = EI                  k+6                    0.92       0.719     78.1   9.2e+006 
                          k-6        X              0         n/a      n/a   
 
rEI = EA                  k+7                   0.397       0.278     70.1   3.97e+006 
                          k-7        X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 0.552 1.33 
k-1 0.0157 0.454 
k+2 0.266 0.147 
k-2 0.788 0.966 
k+3 5.46 27.7 
k-3 0.161 0.318 
k+4 100 n/a 
k-4 100 n/a 
k+5 100 n/a 
k-5 100 n/a 
k+6 0.92 0.719 
k-6 0 n/a 
k+7 0.397 0.278 
k-7 0 n/a 
 
 
 
 
Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
OUTPUT-FACTORS 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
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------------------------------------------------------------------------------------- 
Experiment 1             EP         X              4         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EI         X              4         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP-e1m1 4 n/a 
POR-e1m2 1 n/a 
EI-e2m1 4 n/a 
POR-e2m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e4m1 0.01 n/a 
POR-e4m2 1 n/a 
E-e4m1 0.01 n/a 
POR-e4m2 1 n/a 
 
 
 
 
Covariance Matrix 
 
           k+1        k-1        k+2        k-2        k+3        k-3        k+6        k+7         
------------------------------------------------------------------------------------- 
k+1       +39.3                                                                                    
k-1       +7.68      +4.59                                                                         
k+2       +0.902     +0.452     +0.484                                                             
k-2       +0         +0         +0         +20.8                                                   
k+3       +512       +47.2      +27.1      +0         +17100                                       
k-3       +3.25      +0         +0.108     +0         +168       +2.26                             
k+6       +7.67      +6.98      +0.628     +0         +4.19      +0         +11.5                  
k+7       +0         +0         +0         +5.49      +0         +0         +0         +1.72       
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Figure 6.7 KinTek Explorer iterations for Figure 3.10 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.1.170130 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:118 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 11 observable(s) over 12 experiment(s). 
Fit Time     : 51.983 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=2), Exp3 (id=3), Exp5 (id=64), Exp4 (id=45), Exp6 (id=65), Exp7 
(id=66), Exp8 (id=67), Exp9 (id=68), Exp10 (id=70), Exp11 (id=71), Exp12 (id=73) 
Data Points     : 99 
Params Fit      : 8 
Deg of Freedom  : 91 
Chi             : 1.06476 
Chi2 / DoF      : 0.01246 
GammaQ          : 1.00000 
Computed Sigma  : 0.10756 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + P = EP                k+1        3          0.215       0.154     71.6  (2.7) 
                          k-1        3         0.0796           0        0   
 
E + I = EI                k+2        2          0.973       0.656     67.4  (1.92) 
                          k-2        2          0.508           0        0   
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E + A = EA                k+3        1         0.0857       0.219      256  (0.588) 
                          k-3        1          0.146           0        0   
 
EP + POR = rEP            k+4        X            100         n/a      n/a  (1) 
                          k-4        X            100         n/a      n/a   
 
EI + POR = rEI            k+5        X            100         n/a      n/a  (1) 
                          k-5        X            100         n/a      n/a   
 
rEP = EI                  k+6                    1.32        0.21     15.9   1.32e+007 
                          k-6        X              0         n/a      n/a   
 
rEI = EA                  k+7                   0.185      0.0177     9.62   1.85e+006 
                          k-7        X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 0.215 0.154 
k-1 0.0796 0 
k+2 0.973 0.656 
k-2 0.508 0 
k+3 0.0857 0.219 
k-3 0.146 0 
k+4 100 n/a 
k-4 100 n/a 
k+5 100 n/a 
k-5 100 n/a 
k+6 1.32 0.21 
k-6 0 n/a 
k+7 0.185 0.0177 
k-7 0 n/a 
 
 
 
 
Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
Experiment 5a             a                     0.241       0.129     53.7 
 
Experiment 5b             a                     0.241       0.129     53.7 
 
Experiment 6a             b                     0.136       0.131     96.1 
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Experiment 6b             b                     0.136       0.131     96.1 
 
Experiment 7a             c                     0.131       0.175      133 
 
Experiment 7b             c                     0.131       0.175      133 
 
OUTPUT-FACTORS 
a 0.241 0.129 
b 0.136 0.131 
c 0.131 0.175 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1             EP         X              4         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EI         X              4         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP-e1m1 4 n/a 
POR-e1m2 1 n/a 
EI-e2m1 4 n/a 
POR-e2m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e4m1 0.01 n/a 
POR-e4m2 1 n/a 
E-e4m1 0.01 n/a 
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POR-e4m2 1 n/a 
E-e5 1 n/a 
E-e5 1 n/a 
E-e6 1 n/a 
E-e6 1 n/a 
E-e7 1 n/a 
E-e7 1 n/a 
 
 
 
 
Covariance Matrix 
 
           k+1        k+2        k+3        k+6        k+7        a          b          c           
------------------------------------------------------------------------------------- 
k+1       +0.512                                                                                   
k+2       +0         +9.29                                                                         
k+3       +0         +0         +1.04                                                              
k+6       +0         +0         +0.035     +0.957                                                  
k+7       +0.00479   +0.0855    +0         +0         +0.00681                                     
a         +0         +0.037     +0.0119    +0.021     +0         +0.362                            
b         +6.27e-006 +0         +3.14e-005 +1.62e-006 +0         +0         +0.37                  
c         +0.00544   +0.0846    +0         +0         +0.00169   +0         +0         +0.664       
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Figure 6.8 Fit results from global data analysis with bound kon rates 

Global fitting of experimental data from human P450 17A1 catalytic assays, under single-turnover and 

steady-state conditions, and steroid binding titrations to a simple mechanistic model in Kintek Explorer. 

The steroid kon rates were bound as a constant value for all steroids. All experiments were included in 

the global fitting. See Appendix Figure 6.9 for detailed fit iteration results. 
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Figure 6.9 Figure 6.12 Kinetic Explorer iteration for Figure 6.8 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.2.170308 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:151 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 11 observable(s) over 12 experiment(s). 
Fit Time     : 59.393 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=2), Exp3 (id=3), Exp5 (id=64), Exp4 (id=45), Exp6 (id=65), Exp7 
(id=66), Exp8 (id=67), Exp9 (id=68), Exp10 (id=70), Exp11 (id=71), Exp12 (id=73) 
Data Points     : 99 
Params Fit      : 9 
Deg of Freedom  : 90 
Chi             : 0.93478 
Chi2 / DoF      : 0.00971 
GammaQ          : 1.00000 
Computed Sigma  : 0.09443 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + P = EP                k+1        1           0.25       0.112       45   15.5 
                          k-1                  0.0161       0.149      922   
 
E + I = EI                k+2        1           0.25           0        0   0.192 
                          k-2                     1.3        1.25     95.9   
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E + A = EA                k+3        1           0.25           0        0   3.1 
                          k-3                  0.0805      0.0865      107   
 
EP + POR = rEP            k+4        X            100         n/a      n/a  (1) 
                          k-4        X            100         n/a      n/a   
 
EI + POR = rEI            k+5        X            100         n/a      n/a  (1) 
                          k-5        X            100         n/a      n/a   
 
rEP = EI                  k+6                       1       0.437     43.6   1e+007 
                          k-6        X              0         n/a      n/a   
 
rEI = EA                  k+7                   0.498        0.35     70.4   4.98e+006 
                          k-7        X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 0.25 0.112 
k-1 0.0161 0.149 
k+2 0.25 0 
k-2 1.3 1.25 
k+3 0.25 0 
k-3 0.0805 0.0865 
k+4 100 n/a 
k-4 100 n/a 
k+5 100 n/a 
k-5 100 n/a 
k+6 1 0.437 
k-6 0 n/a 
k+7 0.498 0.35 
k-7 0 n/a 
 
 
 
 
Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
Experiment 5a             a                      0.22       0.107     48.6 
 
Experiment 5b             a                      0.22       0.107     48.6 
 
Experiment 6a             b                      0.16       0.237      148 
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Experiment 6b             b                      0.16       0.237      148 
 
Experiment 7a             c                      0.11       0.111      101 
 
Experiment 7b             c                      0.11       0.111      101 
 
OUTPUT-FACTORS 
a 0.22 0.107 
b 0.16 0.237 
c 0.11 0.111 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1             EP         X              4         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EI         X              4         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP-e1m1 4 n/a 
POR-e1m2 1 n/a 
EI-e2m1 4 n/a 
POR-e2m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e4m1 0.01 n/a 
POR-e4m2 1 n/a 
E-e4m1 0.01 n/a 
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POR-e4m2 1 n/a 
E-e5 1 n/a 
E-e5 1 n/a 
E-e6 1 n/a 
E-e6 1 n/a 
E-e7 1 n/a 
E-e7 1 n/a 
 
 
 
 
Covariance Matrix 
 
           k+1        k-1        k-2        k-3        k+6        k+7        a          b          c           
------------------------------------------------------------------------------------- 
k+1       +0.354                                                                                              
k-1       +0.243     +0.621                                                                                   
k-2       +0         +0         +43.7                                                                         
k-3       +0         +0         +0         +0.21                                                              
k+6       +0.505     +1.74      +0         +0         +5.34                                                   
k+7       +0         +0         +11.5      +0         +0         +3.44                                        
a         +0.0182    +0.134     +0         +0         +0.4       +0         +0.32                             
b         +0         +0         +2.75      +0         +0         +0.828     +0         +1.57                  
c         +0         +0         +0         +0.032     +0         +0.00467   +0         +0.00424   +0.347       
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Figure 6.10 Fit results from global data analysis with bound koff rates 

Global fitting of experimental data from human P450 17A1 catalytic assays, under single-turnover and 

steady-state conditions, and steroid binding titrations to a simple mechanistic model in Kintek Explorer. 

The steroid koff rates were bound per the ratios observed in the enzyme-inhibitor trapping assays. All 

experiments were included in the global fitting. See Appendix Figure 6.11 for detailed fit iteration 

results. 
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Figure 6.11 Kinetic Explorer iteration for Figure 6.10 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.2.170308 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:10 fn:206 jac:10 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 11 observable(s) over 12 experiment(s). 
Fit Time     : 121.899 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=2), Exp3 (id=3), Exp5 (id=64), Exp4 (id=45), Exp6 (id=65), Exp7 
(id=66), Exp8 (id=67), Exp9 (id=68), Exp10 (id=70), Exp11 (id=71), Exp12 (id=73) 
Data Points     : 99 
Params Fit      : 9 
Deg of Freedom  : 90 
Chi             : 0.92676 
Chi2 / DoF      : 0.00954 
GammaQ          : 1.00000 
Computed Sigma  : 0.09362 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + P = EP                k+1                    2.23        3.76      169   6.62 
                          k-1        1          0.336       0.161     47.8   
 
E + I = EI                k+2                   0.254       0.119     46.7   0.535 
                          k-2        1          0.475           0        0   
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E + A = EA                k+3                     100         163      163   112 
                          k-3        1          0.893           0        0   
 
EP + POR = rEP            k+4        X            100         n/a      n/a  (1) 
                          k-4        X            100         n/a      n/a   
 
EI + POR = rEI            k+5        X            100         n/a      n/a  (1) 
                          k-5        X            100         n/a      n/a   
 
rEP = EI                  k+6                    1.01       0.315       31   1.01e+007 
                          k-6        X              0         n/a      n/a   
 
rEI = EA                  k+7                   0.324      0.0902     27.9   3.24e+006 
                          k-7        X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 2.23 3.76 
k-1 0.336 0.161 
k+2 0.254 0.119 
k-2 0.475 0 
k+3 100 163 
k-3 0.893 0 
k+4 100 n/a 
k-4 100 n/a 
k+5 100 n/a 
k-5 100 n/a 
k+6 1.01 0.315 
k-6 0 n/a 
k+7 0.324 0.0902 
k-7 0 n/a 
 
 
 
 
Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
Experiment 5a             a                      0.22       0.105     47.7 
 
Experiment 5b             a                      0.22       0.105     47.7 
 
Experiment 6a             b                      0.16       0.154     96.3 
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Experiment 6b             b                      0.16       0.154     96.3 
 
Experiment 7a             c                      0.11       0.087     79.1 
 
Experiment 7b             c                      0.11       0.087     79.1 
 
OUTPUT-FACTORS 
a 0.22 0.105 
b 0.16 0.154 
c 0.11 0.087 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1             EP         X              4         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EI         X              4         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 3             E          X           0.01         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4             E          X           0.01         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 5             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 6             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
Experiment 7             E          X              1         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP-e1m1 4 n/a 
POR-e1m2 1 n/a 
EI-e2m1 4 n/a 
POR-e2m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e3m1 0.01 n/a 
POR-e3m2 1 n/a 
E-e4m1 0.01 n/a 
POR-e4m2 1 n/a 
E-e4m1 0.01 n/a 
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POR-e4m2 1 n/a 
E-e5 1 n/a 
E-e5 1 n/a 
E-e6 1 n/a 
E-e6 1 n/a 
E-e7 1 n/a 
E-e7 1 n/a 
 
 
 
 
Covariance Matrix 
 
           k+1        k-1        k+2        k+3        k+6        k+7        a          b          c           
------------------------------------------------------------------------------------- 
k+1       +403                                                                                                
k-1       +0         +0.735                                                                                   
k+2       +0         +0.0501    +0.403                                                                        
k+3       +8620      +402       +103       +754000                                                            
k+6       +0         +0.402     +0.0338    +0         +2.82                                                   
k+7       +0         +0.283     +0         +145       +0.086     +0.232                                       
a         +0         +0.0694    +0.00812   +0         +0.315     +0.0171    +0.314                            
b         +0         +0.0946    +0         +37        +0.0505    +0.0749    +0.00828   +0.677                 
c         +0         +0         +0         +0         +0.0117    +0         +0.00139   +0         +0.216       
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Figure 6.12 Fit results from pulse-chase data analysis 

Fitting of 3H-preg pulse-chase experimental data with a minimal kinetic model to estimate the koff and 

reaction rates in Kintek Explorer. None of the rates were constrained. See Appendix Figure 6.13 for 

detailed fit iteration results.
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Figure 6.13 Kinetic Explorer iteration for Figure 6.12 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.2.170308 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:260 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 32 observable(s) over 16 experiment(s). 
Fit Time     : 11.772 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=5), Exp3 (id=7), Exp4 (id=9), Exp5 (id=11), Exp6 (id=12), Exp7 
(id=13), Exp8 (id=14), Exp9 (id=15), Exp10 (id=16), Exp11 (id=17), Exp12 (id=18), Exp13 (id=19), Exp14 
(id=20), Exp15 (id=21), Exp16 (id=22) 
Data Points     : 32 
Params Fit      : 4 
Deg of Freedom  : 28 
Chi             : 0.17477 
Chi2 / DoF      : 0.00109 
GammaQ          : 1.00000 
Computed Sigma  : 0.03139 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + I^ = EI^              k+1        “           0.03      0.0521      174   0.00672 
                          k-1        ”           4.46        36.2      812   
 
EP^ + POR = rEP^          k+2        X            100         n/a      n/a  (1) 
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                          k-2        X            100         n/a      n/a   
 
EI^ + POR = rEI^          k+3        X            100         n/a      n/a  (1) 
                          k-3        X            100         n/a      n/a   
 
rEP^ = EI^                k+4        •          0.369      0.0107     2.89   3.69e+006 
                          k-4        X              0         n/a      n/a   
 
rEI^ = EA^                k+5        –          0.821        6.67      812   8.21e+006 
                          k-5        X              0         n/a      n/a   
 
E + I = EI                k+6        “           0.03           0        0   0.00672 
                          k-6        ”           4.46           0        0   
 
EP + POR = rEP            k+7        X            100         n/a      n/a  (1) 
                          k-7        X            100         n/a      n/a   
 
EI + POR = rEI            k+8        X            100         n/a      n/a  (1) 
                          k-8        X            100         n/a      n/a   
 
rEP = EI                  k+9        •          0.369           0        0   3.69e+006 
                          k-9        X              0         n/a      n/a   
 
rEI = EA                  k+10       –          0.821           0        0   8.21e+006 
                          k-10       X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 0.03 0.0521 
k-1 4.46 36.2 
k+2 100 n/a 
k-2 100 n/a 
k+3 100 n/a 
k-3 100 n/a 
k+4 0.369 0.0107 
k-4 0 n/a 
k+5 0.821 6.67 
k-5 0 n/a 
k+6 0.03 0 
k-6 4.46 0 
k+7 100 n/a 
k-7 100 n/a 
k+8 100 n/a 
k-8 100 n/a 
k+9 0.369 0 
k-9 0 n/a 
k+10 0.821 0 
k-10 0 n/a 
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Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OUTPUT-FACTORS 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1             EP^        X              4         n/a      n/a 
Experiment 1             POR        X              1         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EP^        X              4         n/a      n/a 
Experiment 2             POR        X              1         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 2 mix40       I          X             40         n/a      n/a 
Experiment 3             EP^        X              4         n/a      n/a 
Experiment 3             POR        X              1         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             EP^        X              4         n/a      n/a 
Experiment 4             POR        X              1         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4 mix40       I          X             40         n/a      n/a 
Experiment 5             EP^        X              4         n/a      n/a 
Experiment 5             POR        X              1         n/a      n/a 
Experiment 5 mix1        POR        X              1         n/a      n/a 
Experiment 6             EP^        X              4         n/a      n/a 
Experiment 6             POR        X              1         n/a      n/a 
Experiment 6 mix1        POR        X              1         n/a      n/a 
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Experiment 6 mix40       I          X             40         n/a      n/a 
Experiment 7             EP^        X              4         n/a      n/a 
Experiment 7             POR        X              1         n/a      n/a 
Experiment 7 mix1        POR        X              1         n/a      n/a 
Experiment 8             EP^        X              4         n/a      n/a 
Experiment 8             POR        X              1         n/a      n/a 
Experiment 8 mix1        POR        X              1         n/a      n/a 
Experiment 8 mix40       I          X             40         n/a      n/a 
Experiment 9             EP^        X              4         n/a      n/a 
Experiment 9             POR        X              1         n/a      n/a 
Experiment 9 mix1        POR        X              1         n/a      n/a 
Experiment 10            EP^        X              4         n/a      n/a 
Experiment 10            POR        X              1         n/a      n/a 
Experiment 10 mi1        POR        X              1         n/a      n/a 
Experiment 10 mi40       I          X             40         n/a      n/a 
Experiment 11            EP^        X              4         n/a      n/a 
Experiment 11            POR        X              1         n/a      n/a 
Experiment 11 mi1        POR        X              1         n/a      n/a 
Experiment 12            EP^        X              4         n/a      n/a 
Experiment 12            POR        X              1         n/a      n/a 
Experiment 12 mi1        POR        X              1         n/a      n/a 
Experiment 12 mi40       I          X             40         n/a      n/a 
Experiment 13            EP^        X              4         n/a      n/a 
Experiment 13            POR        X              1         n/a      n/a 
Experiment 13 mi1        POR        X              1         n/a      n/a 
Experiment 14            EP^        X              4         n/a      n/a 
Experiment 14            POR        X              1         n/a      n/a 
Experiment 14 mi1        POR        X              1         n/a      n/a 
Experiment 14 mi40       I          X             40         n/a      n/a 
Experiment 15            EP^        X              4         n/a      n/a 
Experiment 15            POR        X              1         n/a      n/a 
Experiment 15 mi1        POR        X              1         n/a      n/a 
Experiment 16            EP^        X              4         n/a      n/a 
Experiment 16            POR        X              1         n/a      n/a 
Experiment 16 mi1        POR        X              1         n/a      n/a 
Experiment 16 mi40       I          X             40         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP^-e1m1 4 n/a 
POR-e1m1 1 n/a 
POR-e1m2 1 n/a 
EP^-e2m1 4 n/a 
POR-e2m1 1 n/a 
POR-e2m2 1 n/a 
I-e2m2 40 n/a 
EP^-e3m1 4 n/a 
POR-e3m1 1 n/a 
POR-e3m2 1 n/a 
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EP^-e4m1 4 n/a 
POR-e4m1 1 n/a 
POR-e4m2 1 n/a 
I-e4m2 40 n/a 
EP^-e5m1 4 n/a 
POR-e5m1 1 n/a 
POR-e5m2 1 n/a 
EP^-e6m1 4 n/a 
POR-e6m1 1 n/a 
POR-e6m2 1 n/a 
I-e6m2 40 n/a 
EP^-e7m1 4 n/a 
POR-e7m1 1 n/a 
POR-e7m2 1 n/a 
EP^-e8m1 4 n/a 
POR-e8m1 1 n/a 
POR-e8m2 1 n/a 
I-e8m2 40 n/a 
EP^-e9m1 4 n/a 
POR-e9m1 1 n/a 
POR-e9m2 1 n/a 
EP^-e10m1 4 n/a 
POR-e10m1 1 n/a 
POR-e10m2 1 n/a 
I-e10m2 40 n/a 
EP^-e11m1 4 n/a 
POR-e11m1 1 n/a 
POR-e11m2 1 n/a 
EP^-e12m1 4 n/a 
POR-e12m1 1 n/a 
POR-e12m2 1 n/a 
I-e12m2 40 n/a 
EP^-e13m1 4 n/a 
POR-e13m1 1 n/a 
POR-e13m2 1 n/a 
EP^-e14m1 4 n/a 
POR-e14m1 1 n/a 
POR-e14m2 1 n/a 
I-e14m2 40 n/a 
EP^-e15m1 4 n/a 
POR-e15m1 1 n/a 
POR-e15m2 1 n/a 
EP^-e16m1 4 n/a 
POR-e16m1 1 n/a 
POR-e16m2 1 n/a 
I-e16m2 40 n/a 
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Covariance Matrix 
 
           k+1        k-1        k+4        k+5         
------------------------------------------------------------------------------------- 
k+1       +0.689                                       
k-1       +0         +333000                           
k+4       +0         +4.06      +0.0288                
k+5       +0         +61200     +0.853     +11300       
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Figure 6.14 Fit results from pulse-chase data analysis with experimental 17α-OHpreg Kd values as 
constraint 

Fitting of 3H-preg pulse-chase experimental data with a minimal kinetic model to estimate the koff and 

reaction rates in Kintek Explorer. The experimental 17α-OHpreg Kd was applied as a binding equilibrium 

constraint. See Appendix Figure 6.13 for detailed fit iteration results.  
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Figure 6.15 Kinetic Explorer iteration for Figure 6.14 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.2.170308 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:221 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 32 observable(s) over 16 experiment(s). 
Fit Time     : 9.749 seconds 
 
Experiments     : Exp1 (id=0), Exp2 (id=5), Exp3 (id=7), Exp4 (id=9), Exp5 (id=11), Exp6 (id=12), Exp7 
(id=13), Exp8 (id=14), Exp9 (id=15), Exp10 (id=16), Exp11 (id=17), Exp12 (id=18), Exp13 (id=19), Exp14 
(id=20), Exp15 (id=21), Exp16 (id=22) 
Data Points     : 32 
Params Fit      : 3 
Deg of Freedom  : 29 
Chi             : 0.21056 
Chi2 / DoF      : 0.00153 
GammaQ          : 1.00000 
Computed Sigma  : 0.03782 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E + I^ = EI^              k+1        1          0.521       0.672      129  (1.92) 
                          k-1        1          0.272           0        0   
 
EP^ + POR = rEP^          k+2        X            100         n/a      n/a  (1) 
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                          k-2        X            100         n/a      n/a   
 
EI^ + POR = rEI^          k+3        X            100         n/a      n/a  (1) 
                          k-3        X            100         n/a      n/a   
 
rEP^ = EI^                k+4        “          0.366      0.0126     3.43   3.66e+006 
                          k-4        X              0         n/a      n/a   
 
rEI^ = EA^                k+5        ”          0.127      0.0338     26.6   1.27e+006 
                          k-5        X              0         n/a      n/a   
 
E + I = EI                k+6        1          0.521           0        0  (1.92) 
                          k-6        1          0.272           0        0   
 
EP + POR = rEP            k+7        X            100         n/a      n/a  (1) 
                          k-7        X            100         n/a      n/a   
 
EI + POR = rEI            k+8        X            100         n/a      n/a  (1) 
                          k-8        X            100         n/a      n/a   
 
rEP = EI                  k+9        “          0.366           0        0   3.66e+006 
                          k-9        X              0         n/a      n/a   
 
rEI = EA                  k+10       ”          0.127           0        0   1.27e+006 
                          k-10       X              0         n/a      n/a   
 
RATE-CONSTANTS 
k+1 0.521 0.672 
k-1 0.272 0 
k+2 100 n/a 
k-2 100 n/a 
k+3 100 n/a 
k-3 100 n/a 
k+4 0.366 0.0126 
k-4 0 n/a 
k+5 0.127 0.0338 
k-5 0 n/a 
k+6 0.521 0 
k-6 0.272 0 
k+7 100 n/a 
k-7 100 n/a 
k+8 100 n/a 
k-8 100 n/a 
k+9 0.366 0 
k-9 0 n/a 
k+10 0.127 0 
k-10 0 n/a 
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Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OUTPUT-FACTORS 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1             EP^        X              4         n/a      n/a 
Experiment 1             POR        X              1         n/a      n/a 
Experiment 1 mix1        POR        X              1         n/a      n/a 
Experiment 2             EP^        X              4         n/a      n/a 
Experiment 2             POR        X              1         n/a      n/a 
Experiment 2 mix1        POR        X              1         n/a      n/a 
Experiment 2 mix40       I          X             40         n/a      n/a 
Experiment 3             EP^        X              4         n/a      n/a 
Experiment 3             POR        X              1         n/a      n/a 
Experiment 3 mix1        POR        X              1         n/a      n/a 
Experiment 4             EP^        X              4         n/a      n/a 
Experiment 4             POR        X              1         n/a      n/a 
Experiment 4 mix1        POR        X              1         n/a      n/a 
Experiment 4 mix40       I          X             40         n/a      n/a 
Experiment 5             EP^        X              4         n/a      n/a 
Experiment 5             POR        X              1         n/a      n/a 
Experiment 5 mix1        POR        X              1         n/a      n/a 
Experiment 6             EP^        X              4         n/a      n/a 
Experiment 6             POR        X              1         n/a      n/a 
Experiment 6 mix1        POR        X              1         n/a      n/a 
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Experiment 6 mix40       I          X             40         n/a      n/a 
Experiment 7             EP^        X              4         n/a      n/a 
Experiment 7             POR        X              1         n/a      n/a 
Experiment 7 mix1        POR        X              1         n/a      n/a 
Experiment 8             EP^        X              4         n/a      n/a 
Experiment 8             POR        X              1         n/a      n/a 
Experiment 8 mix1        POR        X              1         n/a      n/a 
Experiment 8 mix40       I          X             40         n/a      n/a 
Experiment 9             EP^        X              4         n/a      n/a 
Experiment 9             POR        X              1         n/a      n/a 
Experiment 9 mix1        POR        X              1         n/a      n/a 
Experiment 10            EP^        X              4         n/a      n/a 
Experiment 10            POR        X              1         n/a      n/a 
Experiment 10 mi1        POR        X              1         n/a      n/a 
Experiment 10 mi40       I          X             40         n/a      n/a 
Experiment 11            EP^        X              4         n/a      n/a 
Experiment 11            POR        X              1         n/a      n/a 
Experiment 11 mi1        POR        X              1         n/a      n/a 
Experiment 12            EP^        X              4         n/a      n/a 
Experiment 12            POR        X              1         n/a      n/a 
Experiment 12 mi1        POR        X              1         n/a      n/a 
Experiment 12 mi40       I          X             40         n/a      n/a 
Experiment 13            EP^        X              4         n/a      n/a 
Experiment 13            POR        X              1         n/a      n/a 
Experiment 13 mi1        POR        X              1         n/a      n/a 
Experiment 14            EP^        X              4         n/a      n/a 
Experiment 14            POR        X              1         n/a      n/a 
Experiment 14 mi1        POR        X              1         n/a      n/a 
Experiment 14 mi40       I          X             40         n/a      n/a 
Experiment 15            EP^        X              4         n/a      n/a 
Experiment 15            POR        X              1         n/a      n/a 
Experiment 15 mi1        POR        X              1         n/a      n/a 
Experiment 16            EP^        X              4         n/a      n/a 
Experiment 16            POR        X              1         n/a      n/a 
Experiment 16 mi1        POR        X              1         n/a      n/a 
Experiment 16 mi40       I          X             40         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
EP^-e1m1 4 n/a 
POR-e1m1 1 n/a 
POR-e1m2 1 n/a 
EP^-e2m1 4 n/a 
POR-e2m1 1 n/a 
POR-e2m2 1 n/a 
I-e2m2 40 n/a 
EP^-e3m1 4 n/a 
POR-e3m1 1 n/a 
POR-e3m2 1 n/a 
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EP^-e4m1 4 n/a 
POR-e4m1 1 n/a 
POR-e4m2 1 n/a 
I-e4m2 40 n/a 
EP^-e5m1 4 n/a 
POR-e5m1 1 n/a 
POR-e5m2 1 n/a 
EP^-e6m1 4 n/a 
POR-e6m1 1 n/a 
POR-e6m2 1 n/a 
I-e6m2 40 n/a 
EP^-e7m1 4 n/a 
POR-e7m1 1 n/a 
POR-e7m2 1 n/a 
EP^-e8m1 4 n/a 
POR-e8m1 1 n/a 
POR-e8m2 1 n/a 
I-e8m2 40 n/a 
EP^-e9m1 4 n/a 
POR-e9m1 1 n/a 
POR-e9m2 1 n/a 
EP^-e10m1 4 n/a 
POR-e10m1 1 n/a 
POR-e10m2 1 n/a 
I-e10m2 40 n/a 
EP^-e11m1 4 n/a 
POR-e11m1 1 n/a 
POR-e11m2 1 n/a 
EP^-e12m1 4 n/a 
POR-e12m1 1 n/a 
POR-e12m2 1 n/a 
I-e12m2 40 n/a 
EP^-e13m1 4 n/a 
POR-e13m1 1 n/a 
POR-e13m2 1 n/a 
EP^-e14m1 4 n/a 
POR-e14m1 1 n/a 
POR-e14m2 1 n/a 
I-e14m2 40 n/a 
EP^-e15m1 4 n/a 
POR-e15m1 1 n/a 
POR-e15m2 1 n/a 
EP^-e16m1 4 n/a 
POR-e16m1 1 n/a 
POR-e16m2 1 n/a 
I-e16m2 40 n/a 
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Covariance Matrix 
 
           k+1        k+4        k+5         
------------------------------------------------------------------------------------- 
k+1       +79                               
k+4       +0         +0.0276                
k+5       +3.76      +0.00772   +0.2         
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Figure 6.16 Kinetic Explorer iteration for Figure 3.11 

------------------------------------------------------------------------------------- 
Version : Professional Version 6.1.170130 
 
 
Build       : PRO 
Config      : gsl 
Fitter      : Levmar. 
Levmar Box  : 1. 
Levmar Ln   : 0. 
Levmar Cycle: 0. 
Levmar Linear: 0. 
fitLevmarInitialMu: 0.0001. 
fitLevmarTol1: 1e-008. 
fitLevmarTol2: 1e-008. 
fitLevmarTol3: 1e-012. 
 
Fit stop reason: small |Dp| 
Fit iterations/calls: iter:1 fn:135 jac:1 
 
Data to fit  : Empirical Data. 
Fit Function : Fit to Model. 
Fit Domain   : 24 observable(s) over 24 experiment(s). 
Fit Time     : 8.226 seconds 
 
Experiments     : Exp1 (id=1), Exp2 (id=9), Exp3 (id=24), Exp4 (id=46), Exp5 (id=47), Exp6 (id=48), Exp7 
(id=49), Exp8 (id=50), Exp9 (id=51), Exp10 (id=52), Exp11 (id=53), Exp12 (id=54), Exp13 (id=55), Exp14 
(id=56), Exp15 (id=57), Exp16 (id=58), Exp17 (id=59), Exp18 (id=60), Exp19 (id=61), Exp20 (id=62), Exp21 
(id=63), Exp22 (id=64), Exp23 (id=65), Exp24 (id=66) 
Data Points     : 33304 
Params Fit      : 20 
Deg of Freedom  : 33284 
Chi             : 0.90234 
Chi2 / DoF      : 0.00002 
GammaQ          : -0.00000 
Computed Sigma  : 0.00494 
 
 
 
 
Reaction               Constant   Constraint   Value    StdErr      %Error    Keq 
------------------------------------------------------------------------------------- 
E1 = E2                   k+1                   0.233      0.0103     4.43   1.1 
                          k-1                   0.212       0.011      5.2   
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E2 + P = E2P              k+2                      12        1.06     8.85   2.74 
                          k-2                    4.37       0.666     15.2   
 
E2P = E3P                 k+3                   0.499       0.208     41.8   0.266 
                          k-3                    1.88      0.0956     5.09   
 
E2 + I = E2I              k+4                    8.43         1.2     14.2   3.92 
                          k-4                    2.15        0.64     29.8   
 
E2I = E3I                 k+5                  0.0928       0.268      289   0.0401 
                          k-5                    2.31       0.347       15   
 
E2 + A = E2A              k+6                    11.5        2.99       26   0.943 
                          k-6                    12.2        3.93     32.3   
 
E2A = E3A                 k+7                   0.101       0.354      349   0.0435 
                          k-7                    2.33       0.184     7.86   
 
RATE-CONSTANTS 
k+1 0.233 0.0103 
k-1 0.212 0.011 
k+2 12 1.06 
k-2 4.37 0.666 
k+3 0.499 0.208 
k-3 1.88 0.0956 
k+4 8.43 1.2 
k-4 2.15 0.64 
k+5 0.0928 0.268 
k-5 2.31 0.347 
k+6 11.5 2.99 
k-6 12.2 3.93 
k+7 0.101 0.354 
k-7 2.33 0.184 
 
 
 
 
Experiment             Factor     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1a             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 2a             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 3a             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
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Experiment 1b             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 1c             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 1d             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 1e             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 1f             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 1g             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 1h             a                     0.107     0.00337     3.15 
                          b                     0.888       0.294     33.1 
 
Experiment 2b             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 2c             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 2d             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 2e             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 2f             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 2g             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 2h             c                    0.0465     0.00414      8.9 
                          d                      2.56        7.04      275 
 
Experiment 3b             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
 
Experiment 3c             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
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Experiment 3d             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
 
Experiment 3e             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
 
Experiment 3f             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
 
Experiment 3g             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
 
Experiment 3h             e                    0.0472     0.00383      8.1 
                          f                      2.32         7.8      336 
 
OUTPUT-FACTORS 
a 0.107 0.00337 
b 0.888 0.294 
c 0.0465 0.00414 
d 2.56 7.04 
e 0.0472 0.00383 
f 2.32 7.8 
 
 
 
 
Experiment            Reagent     Constraint   Value    StdErr      %Error     
------------------------------------------------------------------------------------- 
Experiment 1a            E1         X              1         n/a      n/a 
Experiment 1a            E2         X              1         n/a      n/a 
Experiment 1a mi0.1      P          X            0.1         n/a      n/a 
Experiment 1b mi0.25     P          X           0.25         n/a      n/a 
Experiment 1c mi0.5      P          X            0.5         n/a      n/a 
Experiment 1d mi0.75     P          X           0.75         n/a      n/a 
Experiment 1e mi1        P          X              1         n/a      n/a 
Experiment 1f mi2        P          X              2         n/a      n/a 
Experiment 1g mi5        P          X              5         n/a      n/a 
Experiment 1h mi10       P          X             10         n/a      n/a 
Experiment 2a            E1         X              1         n/a      n/a 
Experiment 2a            E2         X              1         n/a      n/a 
Experiment 2a mi0.1      I          X            0.1         n/a      n/a 
Experiment 2b mi0.25     I          X           0.25         n/a      n/a 
Experiment 2c mi0.5      I          X            0.5         n/a      n/a 
Experiment 2d mi0.75     I          X           0.75         n/a      n/a 
Experiment 2e mi1        I          X              1         n/a      n/a 
Experiment 2f mi2        I          X              2         n/a      n/a 
Experiment 2g mi5        I          X              5         n/a      n/a 
Experiment 2h mi10       I          X             10         n/a      n/a 
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Experiment 3a            E1         X              1         n/a      n/a 
Experiment 3a            E2         X              1         n/a      n/a 
Experiment 3a mi0.1      A          X            0.1         n/a      n/a 
Experiment 3b mi0.25     A          X           0.25         n/a      n/a 
Experiment 3c mi0.5      A          X            0.5         n/a      n/a 
Experiment 3d mi0.75     A          X           0.75         n/a      n/a 
Experiment 3e mi1        A          X              1         n/a      n/a 
Experiment 3f mi2        A          X              2         n/a      n/a 
Experiment 3g mi5        A          X              5         n/a      n/a 
Experiment 3h mi10       A          X             10         n/a      n/a 
 
INITIAL-CONCENTRATIONS 
E1-e1.1m1 1 n/a 
E2-e1.1m1 1 n/a 
P-e1.1m2 0.1 n/a 
P-e1.2m2 0.25 n/a 
P-e1.3m2 0.5 n/a 
P-e1.4m2 0.75 n/a 
P-e1.5m2 1 n/a 
P-e1.6m2 2 n/a 
P-e1.7m2 5 n/a 
P-e1.8m2 10 n/a 
E1-e2.1m1 1 n/a 
E2-e2.1m1 1 n/a 
I-e2.1m2 0.1 n/a 
I-e2.2m2 0.25 n/a 
I-e2.3m2 0.5 n/a 
I-e2.4m2 0.75 n/a 
I-e2.5m2 1 n/a 
I-e2.6m2 2 n/a 
I-e2.7m2 5 n/a 
I-e2.8m2 10 n/a 
E1-e3.1m1 1 n/a 
E2-e3.1m1 1 n/a 
A-e3.1m2 0.1 n/a 
A-e3.2m2 0.25 n/a 
A-e3.3m2 0.5 n/a 
A-e3.4m2 0.75 n/a 
A-e3.5m2 1 n/a 
A-e3.6m2 2 n/a 
A-e3.7m2 5 n/a 
A-e3.8m2 10 n/a 
 
 
 
 
Covariance Matrix 
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           k+1        k-1        k+2        k-2        k+3        k-3        k+4        k-4        k+5        k-5        k+6        k-6        k+7        
k-7        a          b          c          d          e          f           
------------------------------------------------------------------------------------- 
k+1       +1.09                                                                                                                                                                                                                        
k-1       +1.1       +1.24                                                                                                                                                                                                             
k+2       +0         +4.01      +11500                                                                                                                                                                                                 
k-2       +7.79      +13.3      +6640      +4530                                                                                                                                                                                       
k+3       +10.3      +12.8      +1290      +1180      +444                                                                                                                                                                             
k-3       +0         +0         +0         +0         +0         +93.5                                                                                                                                                                 
k+4       +0         +0         +0         +0         +0         +10.1      +14600                                                                                                                                                     
k-4       +0         +0         +0         +0         +0         +3.27      +7250      +4190                                                                                                                                           
k+5       +3.15      +3.38      +4.42      +31        +33.5      +0         +2400      +1630      +736                                                                                                                                 
k-5       +1.08      +2.26      +48.5      +58.4      +32.7      +0         +0         +0         +0         +1230                                                                                                                     
k+6       +0         +0         +122       +96.1      +22.1      +4.66      +0         +0         +0         +22.3      +91200                                                                                                         
k-6       +9.11      +15.9      +275       +357       +216       +0         +0         +0         +36.8      +71.1      +113000    
+158000                                                                                             
k+7       +7.22      +8.69      +50.5      +112       +95        +0         +0         +0         +23        +20        +4820      
+10200     +1280                                                                                    
k-7       +0.823     +1.39      +22.9      +30.2      +18.6      +0         +0         +0         +3.25      +6         +0         +0         
+0         +344                                                                          
a         +0         +0         +0         +0         +0         +0.761     +0.132     +0.0403    +0         +0         +0         +0         
+0         +0         +0.116                                                             
b         +0         +0         +0         +0         +0         +241       +172       +52.1      +0         +0         +0         +0         +0         
+0         +3.57      +882                                                    
c         +0         +0         +0.171     +0.126     +0.0201    +0.00775   +0         +0         +0         +8.86      +0.101     
+0.156     +0.00448   +0.0127    +7.68e-007 +0         +0.175                                       
d         +0         +0         +0         +0         +0         +89.8      +0         +0         +0         +24200     +174       +0         +0         
+0         +0.937     +1190      +202       +507000                           
e         +0         +0         +0.0937    +0.0369    +0         +0.00844   +0.0337    +0.0126    +0         +0.0116    +0         
+0         +0         +0         +4.33e-005 +0.0474    +9.72e-005 +0.466     +0.15                  
f         +0         +0         +0         +0         +0         +166       +1800      +547       +0         +0         +0         +0         +0         
+12300     +2.18      +2840      +0         +12600     +49.1      +622000     
 


