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ABSTRACT 

 

Diepoxybutane is a mutagenic and carcinogenic oxidation product of the important 

industrial chemical and environmental contaminant butadiene.  The mutagenic potential 

of diepoxybutane is thought to be due in part to its bifunctional electrophilic character.  

One mechanism by which bis-electrophiles can exert their toxic effects is through the 

induction of genotoxic and mutagenic DNA-protein or –peptide cross-links.  This 

mechanism has been shown in systems overexpressing the DNA repair protein O
6
-

alkylguanine DNA-alkyltransferase (AGT) or glutathione transferase and involves 

reactions with nucleophilic cysteine residues.  The hypothesis that DNA-protein crosslink 

formation is a more general mechanism for genotoxicity by bis-electrophiles was 

investigated by screening nuclear proteins for reactivity with model monofunctional 

electrophiles.  Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was identified as a 

candidate due to the nucleophilicity of two cysteine residues (Cys
152

 and Cys
246

) in 

reaction screens with model electrophiles (Dennehy, M. K. et al. (2006) Chem. Res. 

Toxicol. 19, 20-29).  Incubation of GAPDH with bis-electrophiles resulted in inhibition 

of its catalytic activity but only at high concentrations of diepoxybutane.  In vitro assays 

indicated DNA-GAPDH crosslink formation in the presence of diepoxybutane, and bis-

electrophile reactivity at Cys
246 

was confirmed using mass spectral analysis.  In contrast 

to AGT, overexpression of human GAPDH in Escherichia coli did not enhance 

mutagenesis by diepoxybutane.  The candidate proteins histones H2b and H3 were 

identified in screens using human liver nuclei and the bis-electrophile 1,2-dibromoethane.  

Incubation of these proteins with diepoxybutane resulted in DNA-protein cross-links and 
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produced protein adducts, and DNA-histone H2b cross-links were identified 

(immunochemically) in E. coli cells expressing histone H2b.  However, heterologous 

expression of histone H2b in E. coli failed to enhance bis-electrophile-induced 

mutagenesis, although histone H2b bound DNA with even higher affinity than AGT.  The 

extent of DNA cross-linking of isolated histone H2b was similar to that of AGT, 

suggesting that differences in post-cross-linking events explain the difference in 

mutagenesis.  In a related experiment, reactive diepoxybutane-glutathione conjugates 

believed to contribute to enhanced mutagenesis observed in bacterial cells overexpressing 

glutathione transferases were investigated.  Mass spectral analysis of incubations 

containing purified glutathione transferase, glutathione, and diepoxybutane yielded a 

glutathione conjugate that retained the epoxide.  Diepoxybutane also produced 

glutathione-DNA cross-links upon incubation. 
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