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CHAPTER I 

 

INTRODUCTION 

 

Molecular physiology and function of BMP2 

Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily of 

secreted signaling molecules that are essential not only for embryonic development but 

also postnatal life [1]. Following translation, BMPs are cleaved into propeptide and 

carboxy-terminal mature domains [2], [3], which then form homo- or heterodimers before 

they are secreted and bind to heteromeric Type I and Type II BMP receptors. Ligand-

bound BMP receptors then phosphorylate Smad proteins, which consequently translocate 

into the nucleus where they interact with other transcription factors to stimulate the 

expression of target genes [1] (Figure 1). 

Having originated prior to bilaterial evolution at least 700 million years ago [4], 

BMP signaling serves numerous critical functions amongst modern vertebrates, and 

Bmp2 function is no exception. Expressed with remarkable temporal and spatial precision 

in the majority of cells, Bmp2 already plays critical roles in pattern formation, 

morphogenesis, cell fate determination, and differentiation during early embryonic 

development, which is illustrated by the fact that Bmp2 homozygous knockout mice die 

between E7.0 and E10.5 due to failure to close the preamniotic canal and defects in 

cardiac development [5]. Even beyond their indispensable role in early development, 

though, proper regulation of BMP signaling continues to be essential throughout all 

stages of life, and any alteration of the pathway has the potential to have significant 
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effects on health and disease. For example – amongst others -, genome-wide association 

studies have identified susceptibility loci for colorectal cancer near multiple genes of the 

BMP pathway, including BMP2 and BMP4 [6], [7], [8], a genetic association for BMP3 

has been implicated in papillary thyroid cancer [9], and BMPR2 mutations are considered 

to be the most common cause of heritable pulmonary arterial hypertension [10], [11]. 

 

 

 

Figure 1. “Canonical BMP signaling pathway. BMPs bind heteromeric Type I and 
Type II receptors. Upon ligand binding, the Type II receptor phosphorylates the Type I 
receptors, which, in turn phosphorylate and activate downstream Smad proteins. 
Activated Smads translocate to the nucleus and activate or represses target gene 
transcription. Extra- and intracellular antagonists, such as Noggin or Tob, regulate BMP 
ligand binding or effector function.” (Figure and legend courtesy of Ron Chandler, 2007 
[12]) 
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Bmp2 significance in bone 

 BMPs were first discovered by virtue of their osteoinductive properties when 

ectopic bone formation was induced by transplantation of protein fractions from 

demineralized bone [13]. However, it wasn’t until more than 20 years later, that Bmp2 in 

particular was identified as one of the main genes responsible for proper osteoblast 

differentiation and bone formation [14], [15]. 

During development, each bone in the mammalian skeleton is formed through one 

of two processes. Endochondral bones, which include the long bones of the limbs, ribs, 

vertebrae, the medial part of the clavicles, and certain parts of the occipital bone, develop 

from mesenchymal cells through a cartilage intermediate that is eventually replaced by 

ossifying bone. The facial skeleton, the majority of the calvarium, and the lateral part of 

the clavicle, on the contrary, are intramembranous bones, which are formed by immediate 

differentiation of mesenchymal condensations into osteoblasts without a cartilage 

intermediate [16]. The differentiation pathway from multipotent mesenchymal cells to 

mature osteoblasts proceeds through an osteoblast progenitor stage, and each stage along 

the pathway is characterized by different cellular markers. While the first specification 

step from mesenchyme to osteoblast progenitor requires expression of the transcription 

factor Runx2 (Cbfa1), and osteoblast progenitors exhibit low levels of Col1a1 

expression, the commitment of osteoblast progenitors to become functional osteoblasts is 

stimulated by the transcription factor Osx. Once the committed osteoblasts are capable of 

forming a mineralized bone matrix, they are considered functional osteoblasts and can be 

identified based on robust expression of mature osteoblast markers, such as Osteocalcin, 

Osteopontin (Spp1/Bsp), and high levels of Col1a1 [16], [12]. Several of these markers 



	
   4	
  

can be activated by signaling pathways downstream of Bmp2 [17], [18], and the 

expression of both Runx2 and Osx are stimulated by BMP2, which underscores the 

crucial role played by Bmp2 in osteoblast lineage commitment and maturation. 

During endochondral ossification, Bmp2 is expressed in both hypertrophic 

chondrocytes and the osteogenic perichondrium [19], where its stimulatory effect on bone 

formation and osteoblast differentiation is balanced by the repressor activity of Noggin 

and Tob (Figure 1). Mutations in either of these repressors, which mimic human disease 

phenotypes, illustrate the precarious nature of this feedback mechanism. While Tob 

knockout mice display increased bone mass and bone formation rate [20], [21], 

overexpression of Noggin has the opposite effect, resulting in an osteoporosis phenotype 

with reduced bone formation and low bone mineral density [22], [23]. 

Similarly, Bmp2 conditional knockout (cKO) mice that were generated with a 

prx1-cre driver, which deletes Bmp2 from all limb bud mesenchyme derivative cells, 

illustrate the devastating effect of direct loss of Bmp2 expression in bone [24]. Although 

initial bone formation can still proceed in the absence of Bmp2, adult Bmp2 cKO mice 

not only suffer from spontaneous fractures due to significantly reduced bone mass but are 

also unable to initiate endogenous fracture repair, which highlights the vitally essential 

role of BMP2 in the healing process [15] (Figure 2). 

Thus considering its complex functions in osteogenesis, it is not at all surprising 

that Bmp2 is of great significance for the maintenance of bone health and has been 

implicated in a variety of human disease phenotypes. Indeed, not only have several 

association studies identified Bmp2 as a candidate gene for conditions such as 

osteoporosis [25], [26], osteoarthritis [27], [28], and ossification of the posterior 
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longitudinal ligament (OPLL) [29], [30], but the functional consequences of Bmp2 

polymorphisms have also been demonstrated on a molecular level [31]. In addition to its 

role in the pathogenesis of disease, Bmp2 has further been recognized as both a drug and 

a promising drug target for the treatment of bone disorders. For example, recombinant 

human BMP2 protein (rhBMP2) (INFUSE®, Wyeth Pharmaceuticals) has been FDA 

approved for use in fracture repair and spinal fusion [32], [33], [34], and statin drugs have 

been shown to upregulate Bmp2 expression in vitro and in vivo [18], which consequently 

leads to an increase in bone formation and enhanced fracture healing [35], [36], [37], 

[38], [39], [40]. In view of the potential benefits of such clinical applications, it is 

imperative that studies of Bmp2 and its effectors continue in order to further improve our 

knowledge of regulatory mechanisms that govern its osteogenic function. 

 

 

 

Figure 2. Bmp2 conditional knockout phenotype. In the absence of Bmp2, cKO mice 
exhibit significantly decreased bone mass and spontaneous fractures which remain 
unresolved due to failure to initiate endogenous fracture repair. Shown is an x-ray of a 
10-week old Bmp2 homozygous conditional knockout animal. (Panel adapted from Fig. 
2v of Tsuji et al., 2006 [15]) 
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Bmp2, FGF2, and Runx2 interactions during osteogenesis 

Upstream of Bmp2, fibroblast growth factor (FGF) signaling pathways, especially 

mediated by FGF2, play an important role in the activation of Bmp2. This effect is 

supported by the fact that Bmp2 and Fgf2 expression peak at the same stage of osteoblast 

differentiation [41], and Bmp2 expression is reduced in Fgf2 null mice [41]. Moreover, it 

has recently been demonstrated that the stimulation of Bmp2 expression by FGF2 is 

mediated by Runx2 both in vitro and in vivo [42], which suggests the involvement of a 

feedback mechanism, as Runx2 expression can also be stimulated by BMP2 [43]. In 

addition to enhancing Bmp2 expression, FGFs are likewise known to be important for the 

regulation of Runx2 during skeletal development [44]. They activate MAP kinase 

pathways resulting in the phosphorylation of Runx2 at the carboxy-terminus, which 

enhances Runx2 binding, and consequently increases transcription of target genes [16], 

[43]. Considering the great complexity of interactions involving Runx2 and its early role 

in mesenchymal cell specification, it is not surprising that this transcription factor of the 

runt protein family is referred to as the “master organizer of gene transcription” in 

osteoblast differentiation [43]. While severe skeletal defects are observed in homozygous 

Runx2 null mice that completely lack both endochondral and intramembranous 

ossification because osteoblasts fail to differentiate [45], [46], the phenotype of Runx+/- 

mice closely mirrors that observed in cleidocranial dysplasia in humans, which is caused 

by mutations of Runx2 [45]. These mutant phenotypes and their direct relevance to 

human health further justify the title of “master organizer” and highlight the importance 

of understanding the interactions between Runx2 and its various effectors, including 

Bmp2. 
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Long-range regulation of gene expression in evolution and development 

It is estimated that only about 1.5% of mammalian genomes are protein-coding, 

however 5% of genomic DNA have been evolutionarily conserved ([47] and sources 

cited therein). This obvious discrepancy naturally raises questions regarding the function 

of the remaining 3.5% of conserved sequence that do not fall under the traditional 

definition of a gene, but can be answered by the well-established fact that these 

conserved non-coding regions can provide the necessary space for important regulatory 

elements. Considering the need for many cells with identical genetic material to 

orchestrate the development of an entire organism while differentiating into various 

distinct tissues with vastly diverse functions, each cell requiring its own unique program 

of gene expression, such a seemingly disproportionally large amount of regulatory 

sequences is certainly not at all implausible. While numerous examples of complex gene 

regulation have been reported in the literature, though, many questions remain regarding 

the identification and evolutionary significance of regulatory elements as well as their 

mechanism of action. 

Long-range cis-regulatory elements in development and human disease 
 
 Cis-regulatory elements are indispensable for faithful maintenance of accurate 

expression patterns of genes that govern vertebrate development, and the mutation of any 

given element can cause severe developmental defects, including various human genetic 

diseases. For example, members of the bone morphogenetic protein family, such as 

Bmp5, play crucial roles in early stages of skeletal development. While null mutations 

cause a short ear phenotype and significant skeletal abnormalities ([48] and sources cited 

therein), mutations in single regulatory elements that act over long distances have been 
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shown to disrupt individual patterns of Bmp5 expression [49], consistent with the 

modular function of enhancers at this locus. Similarly, elimination of an intronic shh 

enhancer in zebrafish inhibits expression of this crucial signaling molecule in the 

notochord and floor plate [50], whereas deletion of a distant limb-specific enhancer 

element causes loss of Shh expression in the developing limb bud and consequent 

degeneration of the distal portion of the mouse limb [51]. 

Another regulatory element controlling Shh expression in the developing limb and 

fin is conserved in humans where point mutations in the element, which is located in an 

intron of the Lmbr1 gene at a 1Mb distance from the Shh promoter, have been associated 

with preaxial polydactyly due to ectopic Shh expression because they seem to disrupt a 

repressor function [52]. In Van Buchem disease, a non-coding deletion is thought to 

remove a SOST-specific regulatory element, which significantly reduces the level of 

SOST expression in adult bone and causes defects in bone metabolism [53]. While these 

previous two cases identify a fairly straightforward genotype-phenotype relationship with 

complete penetrance, quite the opposite is the case in Hirschsprung disease [54]. It is but 

one example of multigenic inheritance and demonstrates how non-coding mutations in 

regulatory elements, such as a RET enhancer in this instance, can significantly contribute 

to disease susceptibility, but do not inevitably cause the disease; thus, mutations in 

regulatory elements exhibit a range of genetic characteristics no different from those in 

protein-coding regions. 

DNA sequence comparison identifies evolutionarily conserved elements 
 

Given the significant role played by regulatory elements in the early development 

of humans as well as other vertebrates, one cannot neglect the problem of identifying 
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such elements within the large genomic context. While a universal genetic code and 

recurring structural features greatly facilitate the identification of protein-coding genes 

once genomic sequences for a species of interest become available, non-coding sequences 

with regulatory function cannot readily be recognized based on their nucleotide sequence 

alone. In order to circumvent this problem and begin to elucidate the informational 

content of intergenic DNA, sequence comparison between related species is a commonly 

used approach based on the premise that sequences conserved during evolution are more 

likely to be functional than those that have not been subject to selective pressure against 

mutations. 

In recent years, rapid advances in genomic sequencing have provided a wealth of 

data that is maintained and annotated in public databases such as NCBI and the Ensembl 

and UCSC Genome Browsers, and provide new opportunities for investigators to address 

questions of conservation in vertebrate and mammalian evolution. However, in order to 

be able to make efficient use of the increasing amount of sequence information, easy-to-

use bioinformatic tools need to be readily accessible. This was accomplished by the 

development of resources such as MultiPipMaker and Vista, which allow investigators to 

align and analyze multiple genomic sequences as well as to visualize the results in a user-

friendly format [55], [56], [57], [58]. Woolfe et al. and Miller et al. provide just two 

examples of how genome-wide multiple alignments can be used to identify evolutionarily 

conserved elements and develop hypotheses about their significance in both protein-

coding and non-coding regions [59], [60]. While most sequence comparisons are 

performed between distantly related species because conservation across larger distances 

is generally considered more significant, though, Fisher et al. argue that regulatory 
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elements can be effectively identified based on conservation across moderate 

evolutionary distances, whereas the comparison of too divergent species might in turn 

prevent the recognition of conserved functional elements that have accumulated too many 

mutations over time [61]. Considering the accompanying evidence that human RET 

enhancers function in zebrafish despite lack of sequence similarity, this theory certainly 

has to be taken into account when analyzing sequence comparison data. 

In vitro and in vivo approaches to functional analysis of putative regulatory elements 

 In light of the large amount of data generated by new in silico methods, the quest 

for efficient functional assays that reliably test the role of evolutionarily conserved 

elements in vitro and in vivo is becoming more important than ever. In 1998, studies of 

regulatory elements controlling Bmp5 expression in mouse required radiation- and 

chemical mutagenesis-generated alleles as well as laborious cloning procedures in order 

to generate overlapping reporter gene constructs that cover the putative regulatory region 

[49]. Despite yielding reliable results for a single gene of interest, however, such methods 

are rather impractical for the study of multiple genes requiring the analysis of large 

numbers of gene fragments. More efficient enhancer screening strategies were first 

reported in zebrafish by Müller et al., who co-injected putative enhancers with reporter 

constructs and evaluated the mosaic expression in transient transgenic embryos by 

accumulated expression maps [50]. This convenient method of creating transgenics, 

which takes advantage of the large number of embryos produced by zebrafish and the fact 

that injected DNA fragments tend to integrate at the same genomic location, has since 

been used successfully in other studies (e.g. [59]), but the significant degree of mosaicism 

in fish transgenics remained a cause for concern. Consequently, Fisher et al. developed an 
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alternative transgenic assay in zebrafish based on the Tol2 transposon, which circumvents 

this problem [61]. 

In mice, transgenic mosaicism is less common, and soon after the first co-

injection studies in zebrafish, a co-injection reporter gene approach using Bacterial 

Artificial Chromosomes (BACs) was successfully employed by diLeone et al. in order to 

screen large DNA regions surrounding Bmp5 for regulatory function [48]. Similarly, the 

efficient use of BACs has also been demonstrated by Spitz et al. who identified a DNA 

element that drives expression of several unrelated genes at the HoxD locus in a 

transposon based targeted enhancer-trap approach [62]. Due to its unusual complexity, 

the regulatory landscape surrounding the HoxD cluster has inspired numerous studies, 

which are not limited to the BAC methodology mentioned above, but have also given rise 

to less conventional strategies such as the STRING approach, which is designed to induce 

large chromosomal rearrangements by a combination of meiotic and targeted 

recombination [63]. Although the STRING approach is significantly more time-intensive 

and best suitable to answer very specific types of questions concerning large regulatory 

control regions, an important common feature of the methods mentioned here is the fact 

that they avoid the manipulation of embryonic stem cells. 

In addition to in vivo studies, various in vitro assays can also represent a very 

efficient and powerful means to analyze potential regulatory function of evolutionarily 

conserved elements. This has been successfully demonstrated in a study by Holohan et al. 

that utilized ChIP-array analysis in order to identify CTCF binding sites in the Drosophila 

genome [64] as well as by Grice et al. who used luciferase and electrophoretic mobility 

shift assays to test putative RET enhancers [65]. Ultimately, these examples illustrate the 
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vast array of functional assays available to date and hopefully underscore the importance 

of selecting the most efficient approach suitable to the particular problem at hand and 

system of study, which often includes a combination of methods in silico, in vitro, and in 

vivo. 

The role of cis-regulatory elements in genome architecture 

As more and more vertebrate genomes were sequenced, whole genome 

comparisons between species became feasible, and a comprehensive study comparing the 

human and pufferfish genomes performed by Woolfe et al. provided valuable insight into 

the role and characteristics of conserved non-coding sequences [59]. Particularly striking 

is the trend that the great majority of sequences that have been extremely highly 

conserved across this large evolutionary distance are found in close proximity to so-

called trans-dev genes that play important roles in transcription and developmental 

regulation. Moreover, many of these trans-dev genes are located in gene deserts, whose 

existence can be rationalized by the presence of cis-regulatory elements, which exert 

selective pressure against the collapse of such intergenic regions. In fact, this hypothesis 

is strongly supported by the findings of Nobrega et al. who showed that several 

evolutionary conserved elements located in the gene desert surrounding the human 

DACH gene exhibit enhancer function in vivo [66]. When such genomic regions 

surrounding trans-dev genes are compared across different vertebrates, however, it is 

important to note that while the order of conserved elements as well as the physical 

linkage to neighboring genes are generally conserved between human and teleost fish, the 

absolute distances between two genes, that can often lie several hundred kilobases apart 

in humans, are significantly decreased in less complex vertebrates [66], [59]. A 
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comparative study of genomic architecture in Drosophila and C. elegans by Nelson et al. 

showed that this general trend even holds true in invertebrates where intergenic distances 

are positively correlated with a gene’s regulatory complexity. However, in absolute 

terms, more complex animals have significantly larger gene loci of high regulatory 

complexity than less complex organisms [67]. 

Genome complexity, conservation, and regulatory functions 

In order to explain the larger amount of non-conserved non-coding DNA 

surrounding genes in more complex organisms, one could speculate on possible 

implications about the evolution of vertebrates and invertebrates. Viewed in this context, 

the data seems to suggest that the non-conserved regions in more complex organisms 

appear to be under selective pressure similar to conserved elements because they contain 

additional regulatory functions; however, the corresponding functional elements are less 

readily detectable because they are unique to each higher organism. An extensive 

analysis of evolutionarily conserved elements in vertebrate, insect, worm, and yeast 

genomes by Siepel et al. supports this idea [47]. It not only underscores the significance 

of regulatory elements by showing that many of the most highly conserved non-coding 

elements are actually more conserved than the coding regions themselves, but it also 

demonstrates that the overall fraction of the genome that is conserved as well as the 

fraction of coding regions among conserved elements decrease with increasing biological 

complexity of the organism. In fact, according to this study, only 3%-8% of the human 

genome is conserved (as compared to 47%-68% of the S. cerevisiae genome), which is 

consistent with other reports that describe 5% conservation in mammalian genomes ([47] 

and sources cited therein). Since the same estimates suggest that only 1.5% of a 
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mammalian genome is actually protein coding, this leaves a disproportional amount of 

conserved, non-coding sequences, whose function is still largely unknown, but seems 

likely to be responsible for specific regulatory functions corresponding to higher 

biological complexity of these mammalian genomes. 

Alternate models for mechanisms of enhancer and repressor function 

 While investigations are ongoing about the identification and functional 

characterization of regulatory elements in different genomes, another subject of 

continued discussion is the mechanism by which enhancers and repressors function to 

control gene expression. Since various regulatory elements have been mapped either 

within introns [54], [65], [50], upstream [52], [66], [51], [62], or downstream [48], [49] 

of the corresponding genes, their location with respect to the gene under control would 

seem to be relatively irrelevant to its function, if it can be assumed that the same global 

mechanism applies to all such elements. Furthermore, the underlying mechanism has to 

be capable of functioning efficiently over large distances, because - while some elements 

may lie in close proximity to the promoter - it is not at all uncommon for enhancers of 

highly regulated trans-dev genes, such as HoxD, DACH, Shh, and Bmp5, to be separated 

from their corresponding gene by several hundred kilobases [48], [49], [66], [51], [62]. In 

one of the most extreme cases, as mentioned above, a regulatory element proposed to 

repress Shh expression in the developing limb even lies within an intron of an apparently 

unrelated gene, Lmbr1, 1Mb upstream of the transcription start site of Shh [52]. 

 Both of the two primary models under debate, based on a looping and a scanning 

mechanism, respectively, fit these general criteria. In brief, the looping model, as further 

discussed in detail below, hypothesizes that a chromosome’s conformation changes such 
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that long stretches of DNA assume so-called “loops” in order to establish sufficient 

physical proximity between genes and distant regulatory elements to allow transcription-

factor complexes to form between them ([68] and sources cited therein). The scanning 

model, on the other hand, proposes that transcription factors track along the DNA from 

regulatory elements until they reach the transcription start site ([69] and sources cited 

therein), and thus fundamentally differs from the looping hypothesis in that it does not 

require any direct contact between enhancer-associated factors and the promoter. While 

there is no general consensus favoring one model over the other, results of independent 

studies that used an RNA fluorescence in situ hybridization technique called RNA TRAP 

[70] and a Chromosome Conformation Capture (3C) methodology [71], respectively, to 

examine the spatial organization of the beta-globin locus in mouse, already seemed to 

favor a mechanism involving close physical contact early on. Since then, this tendency 

has further been heavily supported by advanced applications of the 3C strategy (i.e. 5C) 

that show complex three-dimensional organization of entire genomes [72], as well as 3C 

evidence of inter-chromosomal interactions between promoters and enhancers [73], [74]. 

Neither of these analyses, however, provides evidence that would definitively rule out at 

least a partial contribution of a scanning mechanism to enhancer function in some 

instances. Therefore, the only unanimous conclusion seems to be that chromatin structure 

plays an essential role in the function of regulatory elements [70], [69], [71]; but 

ultimately, further investigation will be necessary to fully elucidate the mechanistic 

details of this process and determine to what extent - if at all - a scanning mechanism 

may still be involved. 
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Bmp2 gene regulation 

Similar to related BMP genes, such as Bmp5, Bmp4, and Gdf6, [49], [75], [76], 

Bmp2 is located in a large gene desert, where it is surrounded by approximately 1.5 Mb 

of non-coding DNA, which, as described above, is a phenomenon common to many so-

called ‘trans-dev’ genes that play important roles in development and transcriptional 

regulation. Since they require multiple cis-regulatory elements to control their 

spatiotemporal expression patterns during development, their presence and functional 

significance exert selective pressure against the collapse of these large intergenic regions 

and thus shape the genomic landscape [67]. The indispensable role of these cis-regulatory 

elements for normal gene function is illustrated by the severe consequences resulting 

from their mutations [52], [51], [54], [53]. They are remarkable not only due to their 

large number and high level of specificity, but also in terms of the large distances across 

which they are known to function. While the analysis of such large DNA regions poses 

certain difficulties, the use of overlapping bacterial artificial chromosomes (BACs) for 

the identification of regulatory elements in transgenic assays is a very powerful method 

that has been proven successful at a variety of gene loci [48], [77], [62].  

In the Mortlock lab, Ron Chandler recently employed a BAC scanning approach 

to survey a ~400kb region surrounding the Bmp2 gene for regulatory function in 

transgenic mice [12], [19]. As illustrated in Figure 3, the two BACs chosen for this assay 

share a ~55kb overlap region, which includes the entire transcription unit, and each 

extends ~200kb 5’ or 3’ of Bmp2. Each of the BACs was modified by insertion of an 

IRES- lacZ / Neo (βgeo) cassette into exon 3 of the Bmp2 gene, which encodes the 

carboxy-terminal mature domain of the protein, and transgenic mouse lines were 



	
   17	
  

generated by pronuclear injection. Extensive analyses of transgenic embryos from both 

lacZ-BAC lines demonstrated that transgene expression recapitulates endogenous Bmp2 

expression in a variety of tissues, which could be assigned to one of three regions 

depending on whether only the 5’ BAC, only the 3’ BAC, or both BACs were capable of 

driving expression in a given tissue. An overview of representative results is shown in 

Figure 3. While a comprehensive overview of the observed cis-regulatory functions 

across all various Bmp2-expressing tissues as previously discussed [19], [12] is not 

essentially relevant in great detail to this study, it is particularly worth noting here that an 

interesting partition of transgene expression was observed in bone. While the 3’ BAC 

showed evidence for enhancer function in osteoblast progenitor cells of both 

endochondral and some intramembranous bones, the 5’ BAC was only able to drive 

expression in hypertrophic chondrocytes. 
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Figure 3.  Overview of lacZ-BAC transgene scan to identify Bmp2 cis-regulatory 
elements.  Locations of 3’- and 5’-BACs are shown relative to Bmp2, and panels below 
illustrate select tissues where transgene expression is driven by elements in the 
corresponding BAC regions. Overall, transgene expression patterns recapitulate most 
sites of known endogenous Bmp2 expression. (Figure derived from data by Chandler et 
al., 2007 [12], [19]) 
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            Consequently, a deletion-based approach, as described in Figure 4, was employed 

in order to narrow down the location of the osteoblast control element to one of four 

~40kb regions. This strategy eventually lead to the identification of a 656bp 

evolutionarily conserved region (ECR1) in the deletion 3 region, 156kb downstream of 

Bmp2, that is able to drive lacZ expression in osteoblast progenitors of embryos carrying 

a transgene with ECR1 cloned upstream of a hsp-lacZ cassette. 

 

 
 
 

 
 
Figure 4.  Identification of the osteoblast enhancer ECR1.  (a) On the UCSC Genome 
Browser, the locations of the 3’ BAC (black) and the 4 deletion regions (green, red) are 
shown relative to Bmp2.  (b) ECR1, a 656bp element, is the only part of the deletion 3 
region that is conserved to chicken.  (c) When ECR1 was cloned upstream of a hsp-LacZ 
cassette, it was able to drive transgene expression in osteoblast progenitors. (Panels b and 
c adapted from Chandler et al., 2007 [19]) 
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Chromosome Conformation Capture 

Chromosome conformation capture (3C) was first described by Dekker et al. in 

2002 [78] and has since become an established technique for the detection of both intra- 

and interchromosomal interactions between DNA elements. While large structural 

polymorphisms and changes in the nuclear localization of chromosomes can be studied 

by microscopy techniques, conformational changes at the resolution of a single gene 

locus spanning only a few hundred kilobases cannot yet be visualized by current 

technology [79]. However, structural dynamics at the gene level are believed to play a 

vital role in transcriptional regulation. Once general transcription factors have bound to 

the promoter region, they have to join specific activator and coactivator proteins at the 

enhancer locus in order to form the preinitiation complex that is required for RNA-

polymerase II to be able to initiate transcription of the gene [80]. This type of interaction 

becomes of particular interest at complex gene loci where numerous tissue- and time-

specific enhancer elements can be distributed both upstream and downstream at often 

large distances from the promoter, because it suggests that the intervening DNA has to 

form a ‘loop’ in order to allow direct communication between these distant elements.  

Designed to detect this looping mechanism, the 3C technique measures cross-

linking frequencies between different regions of a gene locus or between different 

chromosomes, which is thought to be indicative of functional interactions between cross-

linked DNA elements. As illustrated in Figure 5, chromatin in cells of interest is first 

cross-linked by formaldehyde in order to form a covalent bond between interacting loci 

and then digested with a suitable restriction enzyme [81]. While the choice of restriction 

enzyme depends on both the desired resolution and the distribution of restriction sites 
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across the regions of interest, six-cutters, such as HindIII, EcoRI, and BglII are 

commonly used for this purpose. In the next step, the free ends of restriction fragments 

are ligated to one another. In a naked DNA sample, this process would create hundreds of 

thousands of different ligation products resulting from ligation between any two random 

fragments. However, the key assumption of 3C is that fragments that are in close 

proximity to one another, because their physical association has been retained in the 

cross-linking step, will preferentially ligate to each other. Consequently, the 3C sample 

will be enriched in the ligation product composed of two restriction fragments that are 

bound to one another by proteins such as those that make up the preinitiation complex. 

After reversal of the cross-links, removal of the proteins, and purification of the DNA, 

ligation products can then be detected by PCR with primers that amplify across the 

ligation sites.  

 

 

Figure 5.  3C strategy. After formaldehyde cross-linking, the chromatin is cut with a 
restriction enzyme and the ends of restriction fragments are ligated.  Once protein has 
been removed, ligation products are detected by PCR amplification across the ligation 
site. (Figure modified from Lodish et al., 2000 [80] and Lomvardas et al., 2006 [73]) 
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While early 3C studies used conventional PCR and gel electrophoresis to quantify 

and compare ligation products of interest [78], [79], [71], [73], in 2007, Hagège et al. 

proposed a TaqMan-based qPCR approach that provides significantly more accurate 

measurements [82]. Moreover, recent studies have begun to combine competitive PCR on 

the Sequenom platform, sequencing, and microarray-based comparative genome 

hybridization to achieve optimal sensitivity and further improve quantification of 3C 

products [83], [84]. Besides accurate quantification, however, a critical aspect of every 

3C assay is the inclusion of appropriate controls in order for 3C results to be interpreted 

correctly. The importance of: (1) a control template containing equal amounts of all 

possible ligation products in order to normalize for differences in primer efficiencies, (2) 

establishing the frequency of random interactions across the genomic locus of interest, 

and (3) evaluation of interactions at an unrelated locus that is presumed to maintain a 

constant chromosome conformation if multiple different cell types or conditions are 

compared, have been reviewed in detail by Dekker et al. [81]. Eventually, the objective is 

to detect local peaks of cross-linking frequency against a background of low cross-linking 

frequencies at the locus of interest, which provides evidence for functional interactions 

between DNA elements at the respective locations. Figure 6 provides an example of 

expected 3C profiles both in the presence and absence of looping.  

While 3C had originally been developed in yeast [78], Tolhuis et al. not only 

applied the method to a mammalian system but also demonstrated its significance for the 

comparison of gene regulatory mechanisms in different tissues [71], which provides 

valuable evidence for the dynamic nature of chromosome conformation. Lastly, after 3C 

had proven effective in detecting intrachromosomal interactions at relatively isolated 
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gene loci, the remarkable power of this technique has been further validated by its 

successful implementation for the study of gene associations that span up to 40Mb [85] as 

well as tissue-specific interchromosomal interactions [73], [74]. More recently, Simonis 

et al. adapted the general strategy to a 4C (chromosome conformation capture-on-chip) 

technology for higher throughput applications, which allows for genome-wide analysis of 

interactions between DNA elements and provides insight into the overall spatial 

organization within the nucleus [86], [87], [88], [89], while Dostie et al. developed 5C 

(chromosome conformation capture carbon copy) as further variation and expansion of 

the 3C approach for large-scale applications that uses ligation-mediated amplification 

(LMA) combined with microarray or ultra-high-throughput DNA sequencing to quantify 

large numbers of inter- and intrachromosomal interactions and thus reveal highly 

complex networks between distant DNA elements across entire genomes [90], [91], [92], 

[93], [72]; all of which provide invaluable insight into the enormous complexity of 

nuclear organization, as reviewed in detail by de Wit et al. [94]. 
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Figure 6. Expected 3C cross-linking profiles in the presence and absence of looping. 
The example above illustrates cross- linking frequencies observed at the β-globin locus. 
The vertical black bar indicates the constant fragment, whereas grey bars represent 
candidate interacting fragments. Blue and red curves illustrate cross-linking in brain and 
fetal liver, respectively, with an obvious peak observed in liver, where β-globin is 
robustly expressed, whereas the 3C profile in brain is typical for loci where no looping 
occurs. (Figure from Tolhuis et al. [71])  

6
ligate to each other.  Consequently, the 3C sample will be enriched in the ligation product composed of two 
restriction fragments that are bound to one another by proteins such as those that make up the preinitiation 
complex.  After reversal of the cross-links, removal of the proteins, and purification of the DNA, ligation 
products can then be detected by PCR with primers that amplify across the ligation sites.

While early 3C studies used conventional PCR and gel electrophoresis to quantify and compare ligation 
products of interest [48], [49], [52], [53], in 2007, Hagège et al. proposed a TaqMan-based qPCR approach that 
provides significantly more accurate measurements [54].  Moreover, recent studies have begun to combine 
competitive PCR on the Sequenom platform, sequencing, and microarray-based comparative genome 
hybridization to achieve optimal sensitivity and further improve quantification of 3C products [55], [56].  Besides 

accurate quantification, however, a critical aspect 
of every 3C assay is the inclusion of appropriate 
controls in order for 3C results to be interpreted 
correctly, which has been reviewed in detail by 
Dekker et al. [51].  Eventually, the objective is to 
detect local peaks of cross-linking frequency 
against a background of low cross-linking 
frequencies at the locus of interest, which 
provides evidence for functional interactions 
between DNA elements at the respective 
locations.  Figure 4 provides an example of 
expected 3C profiles both in the presence and 
absence of looping.

While 3C had originally been developed in yeast 
[48], Tolhuis et al. not only applied the method to 
a mammalian system but also demonstrated its 
significance for the comparison of gene 
regulatory mechanisms in different tissues [52], 
which provides valuable evidence for the dynamic 
nature of chromosome conformation.  Lastly, after 
3C had proven effective in detecting 
intrachromosomal interactions at relatively 
isolated gene loci, the remarkable power of this 
technique has been further validated by its 
successful implementation for the study of gene 
associations that span up to 40Mb [57] as well as 
tissue-specific interchromosomal interactions 
[53], [58].

C.  PRELIMINARY STUDIES

Analysis of 3’ lacZ-BAC transgene expression in the absence of ECR1
In order to investigate whether ECR1 is solely responsible for driving the transgene expression in osteoblasts 
that can be observed with the 3’ lacZ-BAC, or if other enhancers might be involved in osteoblast-specific Bmp2 
regulation, we deleted ECR1 from the 3’ lacZ-BAC.  BAC DNA was prepared for pronuclear injection by 
NucleoBond AX 100 column purification (Clontech), and two days of injections and oviduct transfers were 
performed by the Vanderbilt Transgenic Core Facility.  Out of 104 embryos that had been transferred, twelve 
survived to E15.5, at which time they were sacrificed and stained with X-gal.  Based on staining and 
genotyping PCR confirmation, one embryo could be identified to be transgenic.  As illustrated in Figure 5, 
however, transgene expression in this embryo is mosaic, and the analysis of the expression pattern is further 
complicated by what appears to be a low transgene copy number.  Nonetheless, when the X-gal staining 
pattern is compared to the known sites of 3’ lacZ-BAC expression, we can identify staining in the majority of 
expected locations, except those associated with deletion regions 3 and 4 (Figure 5).  While the lack of 
expression in the brain and spine discs could possibly be attributed to fragmentation of the BAC, PCR analysis 
has confirmed that at least the immediate flanking sequences surrounding the ECR1 deletion are still present 
in this transgene (data not shown).  Most importantly, it has to be noted that no staining could be detected in 

Eva Broeckelmann

Figure 4.  Expected 3C cross-linking profiles in the presence 
and absence of looping.  The example above illustrates cross-
linking frequencies observed at the β-globin locus.  The vertical 
black bar indicates the constant fragment, whereas grey bars 
represent candidate interacting fragments.  Blue and red curves 
illustrate cross-linking in brain and fetal liver, respectively, with 
an obvious peak observed in liver, where β-globin is robustly 
expressed, whereas the 3C profile in brain is typical for loci 
where no looping occurs. (Figure from Tolhuis et al. [52])
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CHAPTER II 

 

COMPLEXITY OF DISTANT BMP2 ENHANCERS IN BONE 

 

Introduction 

Although transgenic analysis in mouse has shown that the 656bp evolutionarily 

conserved element ECR1 possesses robust enhancer function in osteoblasts [19], [12], we 

currently do not have enough information to determine whether it is actually essential for 

osteoblast-specific Bmp2 expression in all bones or if additional enhancer elements might 

also be involved in regulating Bmp2 in this complex cell type, as has already been shown 

to be the case in the example of Bmp5 regulation in bone [95], which exhibits striking 

similarities. Consequently, if additional enhancers are responsible for driving Bmp2 

expression in other osteoblast populations, it remains to be determined if these elements 

act independently of one another and complement each other according to the specific 

population of osteoblasts they function in, or if they are able to interact to some extent 

such that they either require cooperation or exhibit a level of redundancy that would 

enable them to completely compensate for one another. This question is of particular 

interest in the context of upstream signaling pathways that might act on Bmp2 enhancers 

in osteoblasts, because studies have shown that Bmp2 gene expression is stimulated by 

FGF2 in both endochondral [41] and intramembranous [42], [96] bones in vivo as well as 

in cultured osteoblasts [42]. In regards to ECR1 in particular, results of previous 

luciferase assays in MC3T3-E1cells describe the direct stimulation of ECR1 enhancer 

activity by FGF2 treatment [97], which in turn raises the question whether the same 
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signaling mechanism could be responsible for the activation of separate enhancers of 

Bmp2, or if distinct upstream activation pathways might be necessary to achieve such a 

remarkable degree of anatomical specificity and thus contribute yet another layer of 

complexity to the system. 

 

Methods 

 

ECR1hspLacZ transgenic mouse line 

 The ECR1hspLacZ moue line used for these studies was originally created by 

Ron Chandler in the Mortlock lab, and carries a plasmid transgene consisting of the 

ECR1 enhancer cloned upstream of an hsp-LacZ cassette, as previously described [12], 

[19]. While formerly being maintained in heterozygous condition, though, they have 

since been bred to homozygosity, such that all embryos sacrificed for the harvest of long 

bones and subsequent explant culture and FGF2 treatment described here were 

guaranteed to be transgenic. 

 

ECR1 deletion from 3’ LacZ-BAC 

The 656bp ECR1 sequence was deleted from the 3’ lacZ-BAC transgene 

mentioned above [12], [19] with the BAC recombineering strategy using GalK selection 

that has been described in detail by Warming et al. [98]. In brief, the 3’ lacZ-BAC was 

grown in SW102 cells, in which the GalK gene has been deleted from the otherwise 

intact galactose operon, and ECR1 was replaced with a GalK cassette by homologous 

recombination. The homology arms used to flank the GalK cassette in this first step were 
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ECR1+GalK-F: 5’-

TCCATGTGTTAGGCAAACACTGTTGTAAGCCACGCTGCTTTTGAATGCTTCCT

GTTGACAATTAATCATCGGCA-3’ and ECR1+GalK-R: 5’-

AGAAAACAAGATTTTAGGGTCTGGAAATTAGACCCAAGATGGAGTATTAGTC

AGCACTGTCCTGCTCCTT-3’, and recombinant clones were identified based on their 

ability to grow on minimal media plates supplemented with galactose as the only carbon 

source. Next, the GalK cassette was removed by homologous recombination with a 

double-stranded oligonucleotide (top strand = 5’-

GGAGACCATTGCTGATGTTCCATGTGTTAGGCAAACACTGTTGTAAGCCAATT

TCCAGACCCTAAAATCTTGTTTTCTCATTAAAAAAAAAACTTTTTCC-3’) 

homologous to the immediate flanking sequences surrounding GalK. Successful 

recombinants in which ECR1 had been deleted seamlessly were eventually selected for 

on 2-deoxy-galactose (2-DOG) containing minimal media plates with glycerol as the only 

carbon source. 

 

Purification of BAC DNA for pronuclear injection 

 BAC DNA was prepared for pronuclear injection by NucleoBond AX 100 column 

purification (Clontech) according to the manufacturer’s protocol and resuspended in 

microinjection buffer (MIB) (10mM Tris-HCl [pH 7.4]; 0.15mM EDTA [pH 8.0]). 

Resulting DNA samples were quantified by band densitrometry following restriction 

digest and pulsed-field gel electrophoresis, and temporarily stored at 4°C until being 

diluted to 1ng/µl in MIB and filtered through 0.22µm Millex-GV syringe filters 

(Millipore) the day before pronuclear injection. 
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Generation of transient transgenic mice 

 Twelve rounds of pronuclear injections and oviduct transfers were performed by 

the Vanderbilt Transgenic Core Facility, where BAC DNA was injected as uncut, circular 

molecules into C57BL/6J x DBA/2J F1 hybrid embryos. Foster dams were sacrificed and 

embryos dissected at E15.5. 

 

Yolk sac DNA preps 

 Genomic DNA of all harvested embryos from pronuclear injections was isolated 

from yolk sacs, which were carefully preserved during dissection, by overnight digestion 

with 6.25µl Proteinase K (20mg/ml) in 500ml Digestion Buffer (10mM Tris- HCL [pH 

8.0], 100mM NaCl, 10mM EDTA [pH 8.0], 0.5% sodium dodecyl sulfate), followed by 

multiple rounds of (phenol-) chloroform extractions and ethanol precipitation with 

sodium acetate. DNA pellets were then washed with 70% ethanol before resuspension in 

TE [pH 7.4] and stored at -20°C. 

 

X-gal staining 

 By and large, all x-gal staining for lacZ expression was completed as previously 

described with Wash buffer (0.1M sodium phosphate buffer [pH 7.3], 2mM MgCl, 0.01% 

deoxycholate, 0.02% Nonidet P-40) [49] and x-gal staining solution (0.8mg/ml x-gal, 

4mM K3Fe(CN)6, 4mM K4Fe(CN)6 · 3 H2O, and 0.1M Tris [pH 7.4]) [77], with the 

exception that specimens were always pre- and post-fixed in 10% Neutral Buffered 

Formalin. While all isolated bones - both calvaria and long bones - were treated the same 

as whole mount embryos of the same age, cultured primary osteoblasts were stained for 
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48 hours at 37°C, pre-fix time was reduced to 10-15min at room temperature, and all 

washes were kept to a minimum and performed with extreme care in order to minimize 

the loss of poorly adherent cells. 

 

PCR genotyping 

 In addition to x-gal staining, all embryos resulting from pronuclear injections 

were genotyped by PCR of yolk sac DNAs with primers amplifying the CAM (F: 5’-

GGAAATCGTCGTGGTATTCACTC-3’; R: 5’-TCCCAATGGCATCGTAAAGAAC) 

and LacZ (F: 5'-TTTCCATGTTGCCACTCGC-3'; R: 5'- 

AACGGCTTGCCGTTCAGCA-3') loci of the BAC transgene multiplexed with Gdf5 

primers (F: 5’-TGGCACATCCAGAGACTAC-3’; R: 5’-

TGGAGAGAAATGAAGAGGC -3’) as positive control in 10X pH9 buffer (100mM 

Tris HCl [pH 9], 250mM KCl, 15mM MgCl2). Further PCR amplification across the 

ECR1 locus was performed with primers ECR1+164bp-F: 5’- 

CTTGCCTAGAGGCATCTCCA-3’ and R: 5’-CAGGAAACTTTTTAAGGCGAAA-3’ 

in order to independently confirm the absence of the osteoblast enhancer from the BAC 

transgene. 

 

Fetal long bone osteoblast isolation and culture 

Pregnant female mice that were mated with homozygous ECR1hspLacZ males 

were euthanized by CO2 at E17.5, and pups were dissected out in sterile 1X DPBS 

without MgCl2 or CaCl2. After dissection of radius and ulna, the epiphyses were removed 

whenever explants were to be used for prolonged explant culture and osteoblast isolation, 
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and bones washed twice in 1X DPBS with vortex agitation between washes. The 

resulting bone fragments were resuspended in digestion solution (1-2mg/ml 

CollagenaseII) and incubated at 37°C for 30-60 minutes while shaking in order to remove 

any remaining muscle and connective tissue. As soon as fragments had settled down 

following this incubation, the supernatant was removed and bone fragments were washed 

three times with cold recovery media (10% FBS, 1% Pen/Strep, 1% Amphotericin B in 

low glucose DMEM [Invitrogen#11885-092]) prior to plating approximately 10 long 

bones per well in a 24-well plate, in order to eventually allow osteoblasts to migrate out 

of the explant. 

For FGF2 treatment experiments, the primary cell cultures were first split after 

eight days in culture when migrated cells had essentially covered the entire well, and 

were allowed to continue to proliferate until they reached confluence at passage two. 

24hr- FGF2 treatments were then performed using 20ng/ml FGF2 in serum-free DMEM 

in parallel with serum-starved, untreated control wells (as otherwise described in Chapter 

III). After 24hrs, RNA was isolated for RT-PCR analysis from one treated and untreated 

well, respectively, while identical wells, processed in parallel, were stained with x-gal. 

 

Results 

 

ECR1 enhancer activity alone is insufficient to recapitulate all osteoblast-specific 
transgene expression of the Bmp2 3’ lacZ-BAC 
 

Extensive analyses of the two Bmp2 lacZ-BAC lines have previously shown that 

the 3’ lacZ-BAC drives transgene expression in osteoblast progenitor cells in both 

endochondral and intramembranous bones [12]. Moreover, no osteoblast transgene 
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expression in either type of bone was observed in transgenic mice carrying the deletion 3 

BAC, which in turn was a vital piece of evidence that lead to the identification of the 

osteoblast-specific enhancer ECR1 located in the deletion 3 region [19]. Since the 

ECR1hsplacZ transgene is both robustly expressed in long bones (Figure 7b - bottom), 

and sections through the mandible also revealed lacZ-positive osteoblasts in 

intramembranous bone [12] (data not shown), it initially appeared to recapitulate 

endogenous Bmp2 expression in all osteoblast progenitor cells where the intact 3’BAC 

drives transgene expression. 

Surprisingly, however, when calvaria were later dissected from ECR1hspLacZ 

embryos at E15.5 and stained for lacZ, it became very obvious that transgene expression 

is in fact absent from the majority of the bones in the skull, such as the parietal or frontal 

bones (Figure 7b - top), although embryos from the 3’ lacZ-BAC line exhibit abundant 

transgene expression in these areas (Figure 7a). In fact, the only part of the skull where x-

gal staining can be observed in ECR1hspLacZ embryos at E15.5 is a well-defined spot in 

the back of the head where the occipital bone will eventually be located (Figure 7b). 

Interestingly, the occiput is the only bone in the skull that is partially formed by 

endochondral ossification, and thus - from a developmental perspective - is actually more 

similar to long bones than to any other part of the skull. While we cannot yet exclude the 

possibility that the observed x-gal staining might be due to ectopic expression or an 

artifact of trapped lacZ substrate (and in case it is determined to be authentic, the exact 

location and timing of transgene expression in the base of the skull have yet to be 

determined by concurrent x-gal and alizarin red staining at different time-points in 
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embryonic development), the absence of expression in the cranial intramembranous 

bones at E15.5 is undoubtedly striking and justifies further exploration. 

 

 

 

 

Figure 7.  ECR1 alone does not recapitulate all sites of 3’ lacZ-BAC expression in 
osteoblasts, but exhibits anatomical specificity.  (a) Bmp2 transgene expression in 
calvaria and long bones of 3’ lacZ-BAC mice, 17.5 dpc. Numerous lacZ-positive cells are 
present in the parietal (arrows), zygomatic (arrowheads), and occipital bones (open 
arrowhead).  (b) Transgene expression in ECR1hspLacZ embryos, 15.5 dpc. No lacZ-
positive cells are found in cranial intramembranous bones. (All but top of panel b adapted 
from Chandler et al., 2007 [19]) 
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ECR1 is essential for all 3’BAC specific transgene expression in bone 

In order to investigate whether ECR1 is solely responsible for driving the 

transgene expression in osteoblasts that can be observed with the 3’ lacZ-BAC, or if 

additional enhancers might be involved in osteoblast-specific Bmp2 regulation, we 

deleted ECR1 from the 3’ lacZ-BAC with the GalK recombineering strategy. Once 

successful deletion had been confirmed, BAC DNA was purified, and pronuclear 

injections were completed at the Vanderbilt Transgenic Core Facility in order to generate 

transient transgenic mice that were to be sacrificed and analyzed at E15.5. As 

summarized in Table 1, even twelve rounds of injections only yielded a combined total of 

four transgenic embryos, out of which only two were informative at the time-point of 

interest. Among the other two embryos that could be identified to be transgenic by PCR 

genotyping, one had died prematurely (i.e. had the appearance of ~E11.5 by the time it 

was dissected and littermates had reached E15.5), whereas the other one did survive until 

E15.5, but had obviously only inserted a presumably very small portion of the transgene, 

since the ECR1 locus at the more distant end of the BAC could not be detected by PCR, 

and the only LacZ expression that could be observed was ectopic. 

 

 
Table 1. Summary of pronuclear injections 

 

 
 

* while 4 embryos were genotyped to be transgenic, only 2 of these were actually 
informative at E15.5 
 

Rounds of pronuclear injections 12
Total # of surrogate dams 17
Total # of embryos harvested 38
Total # of transgenic embryos 4*
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Figure 8. PCR genotyping confirmation of transgenic embryos. PCR products 
resulting from amplification with ‘ECR1+164bp’ primers as visualized by agarose gel 
electrophoresis. The first and second lane, respectively, illustrate fragment sizes expected 
from amplification of the wildtype (wt) genomic locus and ECR1 deletion BAC. Lanes 4-
7 show genotyping results of wt embryos, while the red star in lane 9 indicates 
genotyping confirmation of the single transient transgenic embryo from this litter with 
PCR products representing both the endogenous, intact ECR1 locus and the randomly 
integrated ECR1 deletion BAC. 
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The transgene expression patterns observed in the two remaining transient 

transgenic embryos, whose integration of the ECR1 deletion BAC could clearly be 

confirmed by genotyping PCR (Figure 8), are illustrated in Figure 9. Overall, apparent 

mosaicism observed in both instances and the relatively weak x-gal staining, which 

suggests that the copy number of integrated BACs is presumably quite low and 

consequently increases the likelihood of their integrity being compromised, preclude 

definitive conclusions at this point in time. But nonetheless, the consistency of expression 

patterns amongst these two transgenic embryos, on the other hand, supports their validity. 

Upon direct comparison to the known sites of 3’ lacZ-BAC expression, we detected LacZ 

staining in the majority of expected locations, except those associated with deletion 

regions 3 and 4 (Figure 9). While the lack of expression in the brain and spine discs – 

which had previously been assigned to the deletion 4 region - could possibly indicate 

fragmentation of the BAC transgene, PCR analysis has confirmed that in addition to 

LacZ and the CAM resistance gene in the BAC backbone, at least the immediate flanking 

sequences surrounding the ECR1 deletion are still present in this transgene (Figure 8). 

Most importantly for our purposes, though, it has to be noted that no staining 

could be detected in any osteoblasts, neither in long bones nor calvaria, which not only 

mirrors the results previously obtained with the Deletion 3 BAC, but also suggests that 

ECR1 is indispensable for LacZ transgene expression in all osteoblasts, although in 

isolation, it is only sufficient to drive expression in a defined subset of primarily 

endochondral osteoblasts. Consequently, these experimental results further support the 

hypothesis that Bmp2 expression in bone is regulated by multiple enhancers, which are 

likely to serve specialized roles in distinct osteoblast populations, although not all are 
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capable of functioning autonomously. Instead, the evidence seems to suggest that all may 

actually be co-dependent on ECR1 to some extent, since loss of ECR1 abolishes 

transgene expression in all osteoblasts, including intramembranous populations, such as 

those in calvaria, where ECR1 alone exhibits no activity. 

 
 
 

  
Figure 9.  Summary of transgene expression patterns after ECR1 deletion compared 
to sites of expression previously observed with full-length 3’ lacZ BAC. The bottom 
diagram lists sites of LacZ expression at E15.5 that have previously been associated to 
the indicated regions of the 3’lacZ BAC. Highlighted in green are those anatomical sites 
where transgene expression was similarly observed in transient transgenic ECR1 deletion 
BAC embryos at the same time point, whereas the enlarged rib image on the bottom right 
illustrates the complete absence of observable LacZ expression in bone. Whole mount 
images of the two transient transgenic ECR1 deletion BAC embryos (top right) in direct 
comparison to representative embryos from the intact 3’lacZ BAC transgenic line (top 
left) also underscore the difficulties of mosaicism and presumably low copy number that 
were encountered with the ECR1 deletion BAC transgenesis. (top left images of intact 
3’lacZ BAC embryos adapted from Chandler et al., 2007 [12], [19]) 
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ECR1 transgene expression cannot be induced by FGF2 in vitro 

 In order to test whether ECR1 enhancer activity can be stimulated by FGF2 and 

thus could also be involved in the induction of Bmp2 transcription by this signaling 

pathway, we harvested and cultured long bones from ECR1hspLacZ transgenic embryos 

at E17.5 as described above until primary osteoblasts had migrated out of the explants 

and expanded sufficiently for FGF2 treatment to be initiated. After 24hrs, RNA was 

isolated for real-time RT-PCR analysis of both Bmp2 and LacZ expression. As expected, 

Bmp2 expression was greatly upregulated by FGF2 (Fig 10A, top), and the magnitude of 

induction was actually greater than that observed in MN7 cells and calvarial primaries 

(Figure 13). On the contrary, the already very low level of LacZ expression (Figure 10A, 

bottom - note different scales on the y-axis compared with the top graph) on average even 

decreased further with FGF2 treatment, which was consistent with the complete lack of 

observable x-gal staining in additional wells that had been treated in parallel. 
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Figure 10. FGF2 fails to induce ECR1 transgene expression in fetal long bone 
osteoblasts. (A) Bmp2 and LacZ expression, respectively, observed in ECR1hspLacZ 
transgenic long bone osteoblasts with (+) and without (-) 24hrs treatment with 20ng/ml 
FGF2 as measured by real-time RT-PCR and normalized to Hprt. (N=4). (B) E17.5 
ECR1hspLacZ long bones stained with x-gal immediately after dissection and (C) 
following collagenase digestion. 
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Discussion 

 In light of the evidence presented in this chapter, we argue that ECR1 is an 

osteoblast enhancer that specifically drives Bmp2 expression in long bones as well as 

some facial intramembranous bones, but fails to recapitulate endogenous expression in 

cranial intramembranous bones. Consequently, this suggests the presence of (an) 

additional osteoblast enhancer(s) located within the 3’BAC region, which is/are 

responsible for activation of Bmp2 expression in distinct osteoblast populations, 

including, but not necessarily limited to those where ECR1 alone is inactive. Considering 

the obvious differences between endochondral and intramembranous ossification as well 

as the high complexity of gene regulation observed at the closely related Bmp5 locus 

during skeletal development [95], the notion of two or more independent enhancers being 

required to control Bmp2 expression during these distinct developmental processes is 

certainly plausible. 

While, as mentioned above, the small sample size, apparent mosaicism, low copy 

number, and uncertainty about BAC integrity are certainly cause for concern in regards to 

the ECR1 deletion BAC transgenesis and ultimately preclude any definitive conclusions 

until these preliminary findings have been replicated in at least 3 transgenic embryos with 

robust and unambiguous lacZ expression, the consistency in expression pattern observed 

between the two transient transgenic embryos to date certainly supports the validity of 

our preliminary findings. Likewise, the existing results can still be additionally 

strengthened by further examination of the two transgenic yolk sac DNA samples with 

additional PCR analyses that might be able to confirm BAC integrity, e.g. by testing for 

the presence or absence of other unique parts of the BAC transgene, such as the junctions 
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between BAC backbone and insert. Similarly, transgene copy number could be 

determined by real-time PCR and would provide further insight into the likelihood of the 

integrated BAC transgene being intact, as previously discussed by Chandler et al. [99]. 

Ideally, though, additional pronuclear injections would be needed to further 

replicate our results such that N ≥ 3, although judging by the poor yield of the previous 

twelve attempts, it may prove to be a rather expensive and time-intensive, yet inefficient 

endeavor if the same procedure is used. While the rate of transgenesis among the 

harvested embryos was within the expected range, conditions where initial survival rates 

of the pronuclear injections themselves are only between ~10 – 63% (based on those days 

for which detailed information was available) in addition to such problems as surviving 

embryos being lost in transfer, are certainly less than ideal, and suggest that it might be 

worthwhile to assure all conditions are optimized in order to improve overall efficiency 

and thus chances of obtaining informative data on future attempts. 

The lack of ECR1 transgene expression in response to FGF2 described here in our 

study of transgenic long bone osteoblasts does not only argue against a direct 

involvement of ECR1 in the known stimulation of Bmp2 expression by FGF2 signaling, 

but hence could also be interpreted as further evidence for the existence of additional 

osteoblast enhancer(s) which are stimulated by FGF2. Nonetheless, we cannot yet 

exclude the possibility that the seemingly negative results could merely be due to 

procedural difficulties in the isolation of this cell population, either. In fact, considering 

that most of the LacZ-positive cells appear to be concentrated primarily in the outermost 

layer(s) of these long bones, it would be plausible to suppose that the majority of the 

osteoblasts of interest actually could have already been lost during the initial collagenase 
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digestion, since a significant difference in staining intensity can be observed between 

bones that were immediately stained with x-gal after dissection (Figure 10B) and those 

stained after the suggested collagenase digestion (Figure 10C). Therefore these 

experiments might very well be worth repeating with modifications to the protocol in 

terms of the initial collagenase treatment after dissection. Furthermore, one also has to 

take into consideration that embryos ≥ E16.5 are susceptible to background staining in 

ossifying bone, and thus the intensity of staining observed in whole mounts and dissected 

long bones at E17.5 may in fact - perhaps greatly - overestimate the actual level of 

ECR1hspLacZ transgene expression in these bones at this particular time-point. In the 

future, this problem could possibly be circumvented by staining at 4°C instead of room 

temperature, however. 
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CHAPTER III 

 

INTEGRATION OF EVOLUTIONARY CONSERVATION, RT-PCR, 3C, DNaseHS, 
AND ChIP ON CHIP DATA HIGHLIGHTS NOVEL CANDIDATE ENHANCERS OF 

BMP2 IN OSTEOBLASTS 
 
 
 

Introduction 

While MC3T3-E1 cells, which are derived from murine calvaria, are commonly 

used as an osteoblast cell line of choice and have been employed for previous studies of 

Bmp2 regulation, it is obvious that the baseline level of endogenous Bmp2 expression is 

actually extremely low in this cell line [42], [12]. Moreover, it has to be noted that neither 

of the primer pairs used to study Bmp2 transcripts in the RT-PCR reactions referenced 

above span any introns [42], [12], which means that one cannot exclude the possibility 

that the observed PCR products resulted from amplification of genomic DNA. In the 

Mortlock lab, first evidence for the lack of endogenous Bmp2 expression in MC3T3-E1 

cells was accrued when a ChIP on chip pilot experiment failed to detect any H3K9 

acetylation of histones at the Bmp2 locus, although numerous other osteoblast-specific 

genes that are known to be expressed in MC3T3-E1 cells were clearly marked by this 

histone modification (S. Pregizer et al., unpublished data). This result was then further 

verified when MC3T3-E1 culture was repeated under the same ChIP on chip conditions, 

and RT-PCR revealed no Bmp2 expression over the course of 15 days (data not shown), 

thus highlighting the need to identify a more suitable osteoblast cell line for further in 

vitro studies of Bmp2 regulation. 
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Amongst the in vitro studies designed to explore the Bmp2 regulatory landscape 

from new angles, 3C was one of high priority. Especially considering the long distances 

that separate functional DNA elements at the Bmp2 locus, we reasoned that the 

chromosome conformation would need to adapt dynamically to the specific requirements 

of particular enhancers in different tissues, such that the intervening DNA forms a loop 

whenever a given element, such as ECR1, joins the preinitiation complex at the Bmp2 

promoter during transcriptional activation in osteoblasts. As reviewed above, 3C is a 

well-studied technique whose power to detect looping has been extensively validated in a 

variety of in vitro and in vivo systems [78], [100], [73], [101], [83], [102], [71], [84] and 

has not only the ability to provide invaluable insight into the molecular basis of known 

enhancer function, but might even have the potential to identify the location(s) of novel 

regulatory elements. 

Genomic DNA is associated with histones, which facilitate compact packaging 

into chromatin fibers within the nucleus. However, chromatin does not exist in one rigid 

configuration, but in fact its structure is highly dynamic in nature, as it can vary 

significantly between tissues and at different times in development based on the 

transcriptional needs of a cell. While chromatin in the condensed state is generally 

considered to be inactive, it has long been known that functional DNA elements such as 

actively transcribed genes and the corresponding regulatory elements are found in regions 

of decondensed, open chromatin, which is necessary for the complex transcription 

machinery to be able to access the DNA and initiate transcription [103], [104]. Since this 

open chromatin structure with its relative lack of histones makes DNA more susceptible 

to digestion by endonucleases such as DNase I, DNase hypersensitivity (HS) assays can 
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be used as a tool to screen for enhancer elements, which has been successfully employed 

at several loci of genes that are associated with a complex regulatory landscape, such as 

the globin loci or TH2 cytokine genes [105], [106]. 

Similarly, histones are frequently subject to posttranslational modifications with 

various acetylation, methylation, phosphorylation, or ubiquitination patterns that are 

considered to be characteristic of the functional role and activity of the associated 

genomic DNA. Such epigenetic associations can be taken advantage of for the functional 

characterization of loci of interest by chIP on chip or chIP-seq assays, for example, and 

has frequently been applied to comprehensive genome-wide analyses [107], [108]. 

Therefore it seems reasonable to hypothesize that information on both DNase HS sites 

and histone modifications across the Bmp2 locus could greatly augment and complement 

our understanding of the regulatory landscape. 

 

Methods 

 

Neonatal calvarial osteoblast isolation 

 1-4 day old pups from CD1 mice were sacrificed by decapitation and calvaria 

stored in cold HBSS after dissection. Once all calvaria from a litter had been collected, 

HBSS was replaced by digestion solution (2mg/ml Collagenase, 0.5mg/ml Trypsin in 

HBSS), and fibroblasts were removed from calvaria by an 18-minute incubation at 37°C. 

Once the supernatant from the first round of digestion had been discarded, digestion was 

repeated five more times with 15-minute incubations, and 10% FBS was used to 

inactivate the enzymes after each round. The combined supernatants from the last five 
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digestions containing calvarial osteoblasts were then centrifuged for 5 min at 1500 rpm, 

and the pellet was resuspended in α- MEM + 10% FBS, 1% Pen/Strep, and 1% 

Amphotericin B. Lastly, the cell suspension was passed through a 70µm nylon membrane 

before being transferred to 10cm culture dishes. 

 

Screen of osteoblast cell lines for appropriate Bmp2 expression 

 Primary calvarial osteoblasts, MN7, MC3T3, and U-33 cells were each cultured in 

α-MEM (+10% FBS) and treated with 20ng/ml FGF2 as described in Figure 13. On Day 

0, i.e. at confluence, and in 24 hour intervals thereafter, total RNA was isolated with the 

‘SV Total RNA Isolation’ kit (Promega) according to manufacturer’s instructions, and 

the ‘SuperScript® III Reverse Transcriptase’ kit (Invitrogen) was used to synthesize 

cDNA with oligo(dT) primers. Eventually, levels of Bmp2 and Hprt expression were  

 

 
Table 2. iCycler real-time PCR protocol 

 
 Cycle 1: (1X) 
 Step 1:   50.0 °C   for 02:00. 
 Cycle 2: (1X) 
 Step 1:   95.0 °C   for 08:30. 
 Cycle 3: (40X) 
 Step 1:   95.0 °C   for 00:15. 
 Step 2:   60.0 °C   for 01:00. 
 Data collection and real-time analysis enabled. 
 Cycle 4: (1X) 
 Step 1:   95.0 °C   for 01:00. 
 Cycle 5: (1X) 
 Step 1:   55.0 °C   for 01:00. 
 Cycle 6: (81X) 
 Step 1:   55.0 °C-95.0 °C  for 00:10. 
 Increase set point temperature after cycle 2 by 0.5 °C 
       Melt curve data collection and analysis enabled. 
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measured by real-time RT-PCR with SYBR Green on an iCycler (Bio-Rad), with the 

following primers: Bmp2-F: 5'-AGGCGAAGAAAAGCAACAGA-3', Bmp2-R: 5'- 

GGGGAAGCAGCAACACTAGA-3'; Hprt-F: 5'-AAGCTTGCTGGTGAAAAGGA-3', 

and Hprt-R: 5'- TTGCGCTCATCTTAGGCTTT-3' according to the protocol in Table 2. 

 

Chromosome Conformation Capture 

All chromosome conformation capture assays were essentially performed as 

described by Hagège et al. [82] with the following modifications. In order to achieve 

sufficient digestion efficiency, chromatin was always cross-linked with 1% 

formaldehyde/10%FBS/DPBS only. Similarly, the more stringent lysis buffer containing 

NP-40 (10mM Tris-HCl, pH 7.5; 10mM NaCl; 0.2% NP-40; 1X complete protease 

inhibitor [11836145001 Roche]) was used for a 15-30 minute incubation on ice, and the 

cell suspension was both thoroughly pipetted up and down and subjected to at least 25 

strokes with a dounce homogenizer in order to assure proper cell lysis. Before and after 

two rounds of digestion with 400 U of HindIII (100U/µl) for at least 8 hours each, 10µl of 

undigested and digested sample were collected in order to allow for thorough analysis of 

digestion efficiency. All digestion steps were performed at 37°C in either a microplate 

shaker at 900 rpm or a more slowly rotating apparatus, since both methods had been 

shown to achieve roughly comparable digestion efficiencies. De-crosslinking and 

proteinase K digestion were divided into two separate steps with de-crosslinking at 65°C 

overnight preceding proteinase K digestion at 55°C. Finally, DNA was purified by 

sequential (phenol-)chloroform extractions and ethanol precipitation. 
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qPCR analysis of 3C products and control samples: 

Restriction enzyme digestion efficiency was assessed by SYBR Green real-time PCR 

with primers on opposite ends of HindIII restriction sites, e.g. ‘promoterR’: 5’- 

GTCTTGAGGCAGCCAATGGT-3’ and ‘promoterR_out’: 5’-

CCAGAATCTCCCTGCTTTCA-3’ or ‘ECR1L’: 5’-CCTCTCGAACTGTTTCCTGG-3’ 

and ‘ECR1L_out’: 5’-CCCTGGAGATGTTTGCTGAT-3’. If the digestion efficiency 

was deemed acceptable, the overall DNA concentration in the 3C sample was quantified 

by SYBR Green real-time PCR with internal primers, such as F: 5’-

TTGTTTAGCTCCCCATGTCC-3’ and R: 5’-TTGTCCAGTATTGTTGCCAGA-3’ at 

the Bsp locus alongside serial dilutions of pure genomic reference DNAs of C57BL/6J 

and DBA/2J F1 mice obtained from the Jackson Laboratory. Lastly, 3C ligation products 

were quantified by TaqMan real-time PCR with the probe: 5' -FAM-

CTGAGCCCTCCTCCCC-3' and primers specific for HindIII fragments across the Bmp2 

locus (Table 3), which had been designed with Primer Express® software for the 7900HT 

real-time PCR system. In order to eventually be able to calculate relative crosslinking 

frequencies across the locus that were adjusted for differences in primer efficiencies, the 

exact same TaqMan assays were run on control templates that had previously been 

generated by HindIII digestion and random ligation of 3’- and 5’-BAC DNAs, 

respectively, in parallel with the 3C samples themselves on every new plate. 
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Figure 11. qPCR primer design for 3C analysis. Depicted are the locations of the 
TaqMan probe above the constant fragment (black segment, i.e. Bmp2 promoter in our 
case) and candidate interacting fragments (colored segments) with primers (T1-T4) 
designed to amplify across the future ligation sites. Restriction sites that will be used in 
the 3C assay are depicted as small vertical bars in blue. (Figure and legend modified from 
Hagège et al. [82]) 
 
 
 
 
 
 

 
Table 3. TaqMan PCR primers for 3C analysis 

 

 
 

 

 

3C_5'fw13 CTAAGGAAAAAAATCCAAGTGAAGCT
3C_5'fw54 TCAGGCTTGAAAGCAAATGTCTT
3C_5'fw70 CACAGAGGCACTAGAGCAAAGC
3C_5'fw89 GATCAGCATCCCTGTGAACAAA
3C_5'fw100 GGAAATTCTTTGCTGTTTTTCTAACA
3C_5'fw130 GAGGAGACATCATATCTTTCAAAAGCT
3C_5'fw170 TTTCCCCTGTCTAGTAGTATGTATAGTTTTTC
3C_3'fw200 CAAATGGGAACAGCAGTTAAGAAA
3C_3'fw219 GGAGGTCTTTGTGTGGGTTTTT
3C_3'fw238 CGAATGAAACTGGAAAATATGCTAAG
3C_3'fw259 CTGCTCCAATGGATAGAAACTTCTT
3C_3'fw281 TCAGTCATCTTGGATTTCATGGA
3C_3'fw302 TCCCAGCAGGGAACAAGCT
3C_3'fw321 CTGGAGCAGGCTTTGAAGCT
3C_3'fw340 GACAAGGCACTGGTCAAGCTT
3C_3'fw360 AAAGGCGGCAAACATAAAGC
3C_3'fw380 TGCAGGAGAGATTTAATAGTCAATGG
3C_promoter-rv188 GTCTTGAGGCAGCCAATGGT
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ChIP on chip data 

 ChIP on chip assays on select osteoblast cell lines and neonatal calvaria were 

carried out by Dr. Steven Pregizer from the Mortlock lab. The custom oligo chip used for 

this purpose covers 49 bone related genes with ~40bp density, and chromatin 

immunoprecipitation was performed as previously described [109] with antibodies 

against histone modifications acH3K9, meH3K4, and variant H2AZ before samples were 

sent to Nimblegen for hybridization. Once the resulting data had been analyzed and peaks 

identified, detailed results were obtained from Dr. Pregizer in order to create custom 

tracks displaying all peak locations across the Bmp2 locus on the UCSC Genome 

Browser. 

 

Evolutionarily conserved elements across the Bmp2 locus 

 For the purpose of this study, we focused on PhastCons Vertebrate Conserved 

Elements from 30-way Multiz Alignment as displayed on the Mouse July 2007 

(NCBI37/mm9) Assembly of the UCSC Genome Browser. 

 

In silico analysis of DNase HS across the Bmp2 locus 

 Since comprehensive screens for DNase HS across large genomic regions such as 

the entire Bmp2 locus are expensive and would require the application of high-throughput 

technologies, we decided to take advantage of existing DNase HS data on primary human 

osteoblasts from the ENCODE project, which has recently become available on the 

UCSC Genome Browser and is referred to as “Open Chromatin by DNaseI HS from 

ENCODE/OpenChrom(Duke University)”. Upon examination of the data across the 
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portion of the human BMP2 gene desert that corresponds to our ~400kb BAC region of 

interest at the murine locus, we chose to focus on those peaks of the osteoblast density 

signal that reach y ≥ 0.02, which translates to the top 15 loci with the strongest DNase HS 

signal. Once the exact coordinates of those peaks were determined with the Table 

Browser, corresponding loci in the mouse assembly (July 2007 (NCBI37/mm9) ) were 

identified with the former “Convert”, now renamed “LiftOver”, tool of the UCSC 

Genome Browser. Finally, a new custom track was created in order to facilitate 

visualization and comparison of the transposed DNase HS peaks to other features at the 

murine Bmp2 locus. 

 

Direct comparison of DNase HS sites and evolutionary conservation 

In addition to visual inspection of the relationships and similarities between 

various features such as 3C looping profile and histone modifications across the Bmp2 

locus, the putative DNase HS sites were also directly compared to the above mentioned 

Vertebrate Conserved Elements by creating intersections between the two with the Table 

Browser, in order to highlight loci of direct overlap as further means to test their likely 

significance and thus validity of our inferred DNase HS predictions. 

 

Nested RT-PCR analysis of lincRNA transcription 

 RNA had previously been isolated from MN7 cells at confluence (i.e. Day 0) and 

cDNA synthesized as described in Chapter II for the screen of various osteoblast cell 

lines. Primers to test for transcription of the ~21kb lincRNA upstream of Bmp2 (Table 4) 

were based on the annotated structure of the Ensembl gene ENSMUSG00000086650 and 
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designed to amplify across each of the four introns as shown in Figure 12. In the first 

round of the nested PCR, four separate reactions were run in which primer fw1 was 

combined with each of the reverse primers, respectively (i.e. fw1+rv1, fw1+rv2, 

fw1+rv3, and fw1+rv4). The second round of PCR then was designed to test all possible 

nested primer combinations on each of the primary PCR products. All PCR reactions 

were performed for 40 cycles at 60°C annealing temperature. 

 

 

 

Figure 12. Primer design for nested RT-PCR. Shown are the relative locations and 
nomenclature of all primers tested in nested RT-PCR attempts to amplify transcripts of 
the lincRNA (ENSMUSG00000086650) upstream of Bmp2. 
 

 

 
 

Table 4. Nested RT-PCR primer sequences 
 

  
 

 

 

 

Bmp2-5'gene_fw1 AAACTGCACCGCCAGAAC
Bmp2-5'gene_fw2 AAGACCACAGTGGGAAATGG
Bmp2-5'gene_fw3 CATCTGAAGCACTCGGTGAA
Bmp2-5'gene_fw4 TGCTTCCTCAATGCTGTGAC
Bmp2-5'gene_rv1 AAAGCAGCTCCTCCATTGTT
Bmp2-5'gene_rv2 TTCACCGAGTGCTTCAGATG
Bmp2-5'gene_rv3 GTCACAGCATTGAGGAAGCA
Bmp2-5'gene_rv4 AACCAGAGCGCAGAGAACAT
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Sequencing of nested RT-PCR products 

 In order to assure sufficient quality and quantity of substrates to be sequenced, the 

second round of all nested PCRs that had been shown to yield single bands was repeated 

in eight 50µl reactions each, which were combined and quantified by UV 

spectrophotometry such that 10µg of each DNA could be run out on an agarose gel and 

subsequently cleaned up with the ‘QIAquick Gel Extraction Kit’ (Qiagen) according to 

manufacturer’s instructions. Thus purified DNA samples were then once again quantified 

by UV spectrophotometric analysis and submitted for Sanger sequencing at the 

Vanderbilt Sequencing Core with the respective fw primers of all samples as well as the 

rv primer for the fourth DNA sample. 

 

Results 

 

MN7 cells recapitulate the endogenous Bmp2 expression and FGF2 response of 
primary calvarial osteoblasts 
 

Since, as mentioned above, the MC3T3-E1 cell line that has commonly been used 

as osteoblast model system in culture had been proven to be unsuitable for studies of 

Bmp2 expression in our lab, it was deemed necessary to carefully screen alternate cell 

lines in order to determine which one(s) would best mimic endogenous Bmp2 expression 

patterns before proceeding with any further in vitro studies. Thus, we selected MN7 and 

U-33 cells – both murine cell lines derived from bone marrow stromal cells – as potential 

candidates and rigorously tested these two in comparison to both MC3T3-E1 and primary 

calvarial osteoblasts for levels of endogenous Bmp2 expression as well as their response 

to FGF2. As expected, MC3T3-E1 cells once again failed to express any Bmp2 transcript 
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detectable by real-time PCR, and even FGF2 treatment was unable to reactivate any 

significant amount of expression, which conclusively excluded them from consideration 

for any further experiments requiring Bmp2 transcription. On the contrary, FGF2 

treatment of both MN7 and U-33 cells significantly increased Bmp2 expression and thus 

recapitulated the inductive effect of this growth factor on primary osteoblasts (Figure 13; 

U-33 data not shown). However, since the overall levels of Bmp2 expression in U-33 

cells (both in absolute copy number and relative to Hprt) were several orders of 

magnitude lower than in MN7 cells or primary osteoblasts (data not shown), MN7 cells, 

whose osteogenic potential has previously been confirmed by expression of alkaline 

phosphatase as well as Von Kossa staining [110], clearly stand out as the osteoblast cell 

line of choice for future in vitro studies. 

 
 
 

 

Figure 13. Induction of Bmp2 expression following FGF2 treatment. MN7 cells (A) 
and primary calvarial osteoblasts (B) were grown to confluence in α-MEM +10% FBS, 
then medium was replaced with serum-free α-MEM either with (+) or without (-) 
20ng/ml FGF2. After 24 hrs, medium was replaced with serum-free α-MEM in all plates, 
and cells were cultured for 48 more hours. Total RNA was isolated at all time-points, and 
Bmp2 and Hprt expression were measured by real-time RT-PCR. Shown are the mean 
and SD of Bmp2 expression normalized to Hprt from triplicate experiments, and p-value 
is based on paired t-test analysis. 

9

3C evidence for looping interactions at the Bmp2 locus
We have performed 3C analysis on MN7 cells in order to test the hypothesis that ECR1 physically interacts 
with the Bmp2 promoter during transcriptional activation.  Following formaldehyde crosslinking, nuclei were 
digested with HindIII, the resulting restriction fragments were ligated under conditions favoring intramolecular 
ligation, and the relative abundance of ligation products of interest was quantified by TaqMan PCR.  While the 
Bmp2 promoter served as the constant fragment where both the reverse primer and the TaqMan probe anneal, 
a total of 18 forward primers were designed such that they cover the entire 400kb BAC region at approximately 
20kb intervals.  Relative crosslinking frequencies across the locus were determined by comparing TaqMan 
PCR products detected in the 3C sample to control templates generated by HindIII digestion and random 
ligation of 3’- and 5’-BAC DNA, in order to correct for differences in primer efficiencies.  When relative 
crosslinking frequencies were plotted across the Bmp2 locus, we found three local peaks corresponding to the 
ECR1 locus and two additional restriction fragments located in the 5’ BAC and overlap regions, respectively 
(Figure 11).  While looping between ECR1 and the Bmp2 promoter supports our hypothesis about the 
molecular mechanism underlying its enhancer function, the detection of a peak in the overlap region is not 
particularly surprising either, considering that we are expecting to find additional osteoblast enhancers in the 3’ 
BAC region.  The interaction with a restriction fragment about 130kb upstream of Bmp2, on the other hand, 
was rather unexpected, because the 5’ lacZ-BAC does not drive transgene expression in osteoblasts.  
However, when the genomic region under this local peak of crosslinking frequency was examined more closely 
on the UCSC genome browser, we found that it directly overlaps with a large Ensembl gene prediction, which 
might further support the functional significance of this locus in the context of Bmp2 regulation.  Thus, having 
not only collected preliminary evidence for looping between ECR1 and Bmp2, but having also identified two 
new candidate loci of interest, it will be essential to validate our findings by replication in both MN7 and other 
(non-) osteoblast cell lines in order to determine if looping is dependent on the transcriptional activity of Bmp2 
and whether or not the observed interactions can be enhanced even further by upregulation of Bmp2 with 
FGF2.   Once these looping mechanisms have been sufficiently verified in vitro, it will be particularly interesting 
to determine if they can also be detected in vivo, and whether or not dynamic changes in chromosome 
conformation accompany Bmp2 regulation in different types of osteoblasts and other tissues.

Eva Broeckelmann

   A)                               B)

Figure 10.  Induction of Bmp2 expression following FGF2 treatment.  MN7 cells (A) and primary calvarial 
osteoblasts (B) were grown to confluence in α-MEM +10% FBS, then medium was replaced with serum-free 
α-MEM either with (+) or without (-) 20ng/ml FGF2.  After 24 hrs, medium was replaced with serum-free α-
MEM in all plates, and cells were cultured for 48 more hours.  Total RNA was isolated at all time-points, and 
Bmp2 and Hprt expression were measured by real-time RT-PCR.  Shown are the mean and SD of Bmp2 
expression normalized to Hprt from triplicate experiments, and p-value is based on paired t-test analysis.
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In vitro, osteoblasts exhibit looping interactions between the Bmp2 promoter and 
distant loci across the gene desert 
 

In order to test whether or not ECR1 physically interacts with the Bmp2 promoter 

during transcriptional activation, we first performed 3C on MN7 cells, and later repeated 

the same analysis on MC3T3-E1 cells and FGF2-treated MN7s. Following formaldehyde 

crosslinking and HindIII digestion, as detailed above, the relative abundance of ligation 

products of interest was quantified by TaqMan PCR. While the Bmp2 promoter served as 

the constant fragment where both the reverse primer (“3C_promoter-rv188”, Table 3) and 

the TaqMan probe anneal, the 17 forward primers it was tested against were designed to 

cover the entire 400kb BAC region at approximately 20kb intervals. Once relative 

crosslinking frequencies across the locus had been determined by comparing the 

abundance of ligation products in the 3C sample to those detected in the 3’- and 5’-BAC 

control templates, their distribution across the Bmp2 locus in MN7 cells identified local 

peaks of interest, indicative of looping interactions with the promoter, in both the 3’- and 

5’-BAC regions (Figure 14A). 

While an increased crosslinking frequency with downstream loci certainly agrees 

with prior expectations based on the extensive transgene expression in osteoblasts 

observed with the 3’ LacZ-BAC, it is nonetheless worth noting that the most pronounced 

local peak (observed with primer “3C_3’fw360”, Table 3) actually does not perfectly 

correspond to ECR1 itself, but is located ~20kb downstream of this known osteoblast 

enhancer locus. Significantly more surprising, on the other hand, was the finding of a 

very distinct peak of crosslinking in the 5’BAC region, ~120kb upstream of Bmp2, given 

that the 5’ LacZ-BAC is not known to have the ability to drive the same osteoblast-

specific expression. However, when the genomic region under this 5’ peak of 
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crosslinking frequency was examined more closely on the UCSC Genome Browser, we 

found that it happens to fall almost directly on the first exon of a supposed long 

intergenic non-coding RNA (lincRNA) (i.e. Ensembl gene ENSMUSG00000086650), 

which not only corroborates the validity of this rather unexpected 3C result, but also 

directs the attention to previously less scrutinized parts of the gene desert and 

underscores the value of combining evidence from various genomic features and in vitro 

data in order to identify novel putative enhancer loci. 

Having solidly established the looping profile at the Bmp2 locus in MN7 cells, the 

next logical step was to test whether the observed interactions represent a permanent 

characteristic of this locus, or to what extent looping may be dynamic and dependent on 

the transcriptional state of Bmp2 under any given circumstances. Thus, the same 3C 

analysis was applied to both MC3T3-E1 cells and FGF2-treated MN7s, which did indeed 

support the latter hypothesis of the chromosome conformation’s dynamic nature. While 

FGF2 treatment of MN7s caused a notable height increase of both crosslinking peaks 5’ 

and 3’ of Bmp2 (Figure 14B), the crosslinking frequencies at the exact same loci have 

diminished so far in MC3T3-E1 cells that they cannot even be distinguished as peaks 

above the background any longer (Figure 14C), which is consistent with the lack of Bmp2 

expression in this cell line and consequently exemplifies the notion that DNA looping 

interactions are directly related to if not necessary for long-range gene regulation. 

 
Figure 14. Looping interactions at the Bmp2 locus in select osteoblast cell lines. 
Depicted are average relative crosslinking frequencies (+/- SEM) observed between the 
Bmp2 promoter (grey vertical bar) and 17 HindIII restriction fragments across the 5’- and 
3’-BAC regions in (A) MN7s (N=4), (B) MN7s + FGF2 (N=2), and (C) MC3T3s (N=2). 
Mammalian conservation and Ensembl gene prediction according to the UCSC Genome 
Browser, as well as the relative locations of deletions 1-4 (red, black, green, and blue 
bars) and ECR1 are indicated below and above the graph, respectively, in panel (A). 
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A lincRNA 120kb upstream of Bmp2 is actively transcribed in MN7 cells 
 
 In light of our 3C data that suggest looping interactions between the Bmp2 

promoter and an intergenic locus 120kb upstream of Bmp2 that coincides with the first 

exon of a lincRNA annotated on the UCSC Genome Browser, it was imperative to 

ascertain whether or not this particular RNA is even transcribed in the same osteoblast 

cell line that the 3C assays had been performed on in order to be able to assess the 

relevance of this annotation for our purposes. After the first attempt at RT-PCR with all 

possible primer combinations (Figure 12 and Table 4) yielded only multiple non-specific 

bands, we resorted to a nested PCR approach. Using this method, four primer 

combinations (Table 5) successfully yielded single bands at or very close to the expected 

size after the second round of PCR. 

 

 
Table 5. Effective primer combinations for nested RT-PCR 

 

 
 

 

Upon sequencing to confirm the exact identity of these PCR products, we 

discovered three different splice variants between the second and third exon alone – two 

of which include an additional exon of slightly varying size that is missing from the 

Ensembl gene annotation – and one transcript spanning exon 3 and 4, which also slightly  

Primary PCR Primers Secondary PCR Primers
fw1+rv2 fw2+rv2
fw1+rv3 fw2+rv2
fw1+rv4 fw2+rv2
fw1+rv4 fw3+rv3
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Figure 15. Splice variants of the lincRNA 120kb upstream of Bmp2 expressed in 
MN7 cells. Schematic representations of sequencing results from the four distinct 
transcripts that could successfully be amplified from MN7s by nested RT-PCR are shown 
aligned below the annotated structure of Ensembl gene ENSMUSG00000086650. 
 
 

deviates from the published annotation by a small elongation of the third exon, however 

(Figure 15). Although neither exon 1 nor 5 were included in any of the four successfully 

amplified transcripts, it is by no means evidence of their complete absence in MN7 cells, 

since all of the primary PCR reactions utilized the fw1 primer located in exon 1, and 

similarly, two primer combinations included the rv4 primer in the fifth exon as well, 

which – especially considering the large size of the introns that span several kilobases – 

would be virtually impossible to yield any useful PCR products from genomic DNA 

alone. 
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Combination of bioinformatic and in vitro evidence supports lincRNA significance 
and identifies novel loci of interest for putative enhancer function 
 
 As described above, DNase HS sites from human primary osteoblasts were 

mapped onto the murine Bmp2 locus, whereas the order and relative distances of all 

elements was preserved, and all exhibit very high degrees of sequence conservation, 

including three that are 100% identical. Upon direct comparison, nine out of the 15 

putative DNase HS sites in mouse show at least partial overlap with vertebrate conserved 

elements. When yet another layer of complexity was added with ChIP on chip peak data 

representing histone modifications and variants in different osteoblastic cells, the number 

of loci of interest was further narrowed, such that three DNase HS loci close to the two 

3C peaks (Figure 16) eventually stand out as most likely candidate enhancers. While all 

three candidates are located in immediate vicinity (i.e. within <50bp) of either H2AZ 

and/or meH3K4 marks in MN7 cells and/or calvaria, though, only the most 3’ one of 

these three putative DNase HS sites actually exhibits a short, 9bp, direct sequence 

overlap with a ChIP on chip peak - namely H2AZ in MN7s. Since both MN7s and 

calvaria are osteoblast populations known to exhibit robust Bmp2 expression, these 

results could very well be explained by histones being displaced from the DNA in the 

precise region of DNase hypersensitivity, which would deplete any modified histone 

signal. Alternatively, it is also possible that the lack of significant overlap could represent 

a mere artifact of slight differences between the underlying peak calling algorithms, and 

consequently is of no particular concern with regards to the potential functional 

significance of these loci. 
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Figure 16. Integrated 3C, DNaseHS, ChIP on chip analysis, and evolutionary 
conservation at the Bmp2 locus.  Depicted are average relative crosslinking frequencies 
(+/- SEM) from triplicate 3C experiments observed between the Bmp2 promoter (grey 
vertical bar) and 17 HindIII restriction fragments across the 5’- and 3’-BAC regions in 
MN7 cells. Above the graph, UCSC Genome Browser custom tracks display the overlap 
of DNaseHS sites (ENCODE data from human osteoblasts mapped onto the murine 
locus) with vertebrate conserved elements compared to select histone modifications and 
remodeling signatures observed in various osteoblasts by chIP on chip analysis. As 
reference, the locations of the 5’- and 3’-BACs, deletions 1-4 (red, black, green, and blue 
bars), and ECR1 are indicated on top. 
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Discussion 

While the exact reason for the lack of Bmp2 expression observed in our recent 

experience with MC3T3-E1 cells remains unknown, one plausible explanation is that 

they have simply become too differentiated with repeated passaging, such that Bmp2 

expression has already been reduced to a barely detectable baseline level, which in fact is 

a theory that agrees with caveats regarding the loss of osteoblast phenotype resulting 

from prolonged culture that has already been addressed in previous reports [12]. 

Regardless of the underlying cause, however, the important conclusion to be drawn from 

these observations is the fact that these subclones of MC3T3-E1 cells are not suitable for 

our purposes that require an in vitro system in which Bmp2 is robustly expressed. 

Although some preliminary data was generated in MC3T3-E1 cells, we feel strongly that 

the current phenotype of these cells is an important indication against continuing to use 

them as a model system that is meant to recapitulate in vivo osteoblast conditions. 

Instead, they do however serve another important role as negative control, as has already 

been demonstrated in our 3C assays. 

In fact, one of the most valuable conclusions from our 3C studies is that looping 

interactions across an individual gene locus are indeed dynamic - as evidenced by the 

MC3T3-E1 and MN7+FGF2 results -, since they directly correspond to transcriptional 

and thus enhancer activity. This finding in turn underscores its potential value for the 

identification of functionally significant elements at a given locus of interest, which is 

illustrated, for example, by both of the 3C peaks found in the Bmp2 gene desert. At the 

distant end of the 3’BAC region, still downstream of ECR1, nothing had previously given 

us any reason to suspect regulatory function at any particular locus until the 3C data 
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prompted a closer look at other features in this region. In fact, if not for the overlap with 

conserved DNase HS sites and histone marks in this region, the two candidate loci around 

the 3C peak downstream of ECR1 (Figure 16) may otherwise have never been identified 

as regions of interest. Similarly, the 3C data was instrumental in highlighting a potential 

regulatory function in the 5’ BAC region. Although in hindsight one could argue that the 

lincRNA upstream of Bmp2 could have been recognized as potential sign of functional 

significance, it is rather unlikely that it would have elicited much interest on this end of 

the BAC region if it was not for the 3C peak that originally directed our attention its way 

and eventually prompted the discovery of an impressive accumulation of multiple other 

features (i.e. DNase HS site, evolutionary conservation, as well as H3K4 methylation in 

calvaria and H2AZ in MN7s), that all converge around the first exon of the lincRNA. 

Given this plethora of evidence, it is highly unlikely to be purely coincidental, 

but, on the contrary, is extremely consistent with the rapidly growing understanding of 

the prevalence and significance of noncoding RNAs (ncRNAs). As the GENCODE 

consortium has, for instance, annotated over 3,000 long noncoding RNAs (lncRNAs) 

across the human genome [111], [112], [113], various types of ncRNAs have been 

receiving increased attention and have been reviewed extensively in recent years (e.g. 

[114], [113]). While ncRNAs are known to be transcribed from both promoters and 

enhancers, lncRNAs, including lincRNAs, in particular have been shown to have cis-

regulatory function [115], and studies of the HOXA cluster, for example, have even 

reported a direct association between chromosomal looping and lincRNA expression 

already [116]. Thus, considering that the fundamental premise underlying the looping 

hypothesis is direct physical contact between promoters and distant regulatory elements 
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through various components of the transcription initiation complex, which consequently 

brings a participating enhancer in very close proximity with RNA polymerase II as well, 

it suggests itself that some degree of transcription could easily occur from an enhancer 

locus coincidentally with active transcription from the promoter itself. Conversely it 

follows that, similar to the presence of 3C peaks, active transcription of a lincRNA could 

in turn function as strong indicator for the presence of a regulatory element at the 

corresponding locus. 

Overall, our findings across the Bmp2 locus highlight not only the 3C 

methodology itself, but moreover its integration with other genomic characteristics as a 

very powerful and efficient tool to screen large genomic regions in order to identify 

putative enhancers, although it of course remains to be seen whether or not the regulatory 

potential of these candidate loci can ultimately be verified in functional assays. 
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CHAPTER IV 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Analyzing DNase HS in murine osteoblasts 

Having identified putative DNase HS sites at the mouse Bmp2 locus by 

conversion of ENCODE data from human osteoblasts and further solidified loci of 

particular interest through the integration of various other forms of in vitro evidence, a 

logical next step to verify the significance of these candidate loci would be to directly 

analyze their chromatin structure in a DNase hypersensitivity assay on MN7 cells and/or 

primary mouse osteoblasts. While comprehensive screens for DNase HS across large 

genomic regions such as the entire Bmp2 locus are expensive and would require the 

application of high-throughput technologies, the preliminary data would allow us to 

concentrate our analysis to use a more targeted approach where the DNase 

hypersensitivity would be quantified by SYBR Green real-time PCR [117], which has 

been shown to be not only more practicable than the conventional Southern blotting 

technique, but also superior in such critical aspects as resolution and accuracy of 

quantification. 

In order to facilitate the detection of fragments of interest in these DNase HS 

assays, we could take advantage of transgenic mice carrying the 3’- or 5’ lacZ-BAC, 

since primary osteoblasts isolated from either of these lines include multiple copies of the 

respective transgene, which in turn would greatly increase the intensity of PCR signals. 

Lastly, considering that active promoters are generally located in regions of open 
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chromatin and we know that Bmp2 is robustly expressed in primary osteoblasts, the Bmp2 

promoter, which is in fact extremely hypersensitive to DNase I in human osteoblasts, can 

be used as positive control for these assays.  

 

Further analysis of ECR1 response to FGF2 in vitro 

While a previous study has reported ECR1 upregulation by FGF2 in vitro [97], 

one cannot neglect the fact that the luciferase assay results reported it that particular study 

were only based on a single, at that point unreplicated experiment and were also 

performed in MC3T3-E1 cells, which however fail to express Bmp2 in our experience. 

Thus it would be particularly important to thoroughly replicate the above-mentioned 

findings in other osteoblasts in order to validate the proposed interaction between ECR1 

and FGF2. Since our data has shown that MN7 cells not only express much higher 

baseline levels of Bmp2 than more differentiated MC3T3-E1 cells but also exhibit robust 

Bmp2 induction by FGF2 (Figure 13), MN7s would naturally be the first cell line of 

choice in which to attempt to replicate the earlier luciferase assays, although further 

studies in additional cell lines as well as primary osteoblasts would be equally interesting 

in order to investigate whether ECR1 response to FGF2 is dependent on factors such as 

the endogenous activity of the enhancer in a given osteoblast population, or if its 

response is even independent of baseline expression levels of Bmp2, as the previous 

findings in MC3T3-E1 cells would suggest. 

For this purpose, we already established two stably transfected MN7 cell lines 

with the ECR1- and minimal Bmp2-promoter luciferase constructs (as described for the 

above-mentioned study in MC3T3-E1 cells [97]), respectively, each co-transfected with 
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an RFP-Hygromycin selectable marker, which only have yet to be analyzed in luciferase 

assays under varying concentrations of FGF2. Eventually, these luciferase assays could 

be expanded by strategic mutagenesis of the ECR1 construct, whereas a systematic 

deletion analysis would not only allow us to determine exactly which part(s) of the 656bp 

element are essential for enhancer activity, but it could also identify the exact location of 

the FGF2-responsive element or test for the significance of candidate transcription factor 

binding sites based on in silico predictions. 

 

Functional tests of putative additional osteoblast enhancers 

 Following extensive in vitro and in silico analyses to identify candidate osteoblast 

enhancers at the Bmp2 locus, the quasi gold-standard would of course be to test the 

functionality of each putative cis-regulatory elements in vivo by creating transgenic 

mouse models. Since this approach is naturally very time-intensive and can often be cost-

prohibitive, though, a viable alternative in vitro would be to utilize additional luciferase 

assays similar to the ones mentioned above. Thus, one could initially screen a larger 

number of DNA element of interest, once they have been cloned into the same luciferase 

plasmid in place of ECR1, for their ability to upregulate luciferase expression - with or 

without FGF2 treatment, if desired – and compared to activity of the minimal Bmp2 

promoter alone. Select element(s) that show particular promise in these in vitro enhancer 

assays could still be chosen for confirmation in transgenic analysis. In case it were 

necessary or preferable to investigate the functionality of a particular element in vitro 

within a more authentic context in regards to its genomic environment and location 

relative to Bmp2, one could alternatively transfect any Bmp2 lacZ-BAC into MN7 cells 
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after targeted deletion or modification of a locus of interest in order to determine its 

effect on β-galactosidase activity. 

 

Identifying specific transcription factors that act on osteoblast enhancers 

Studying upstream regulation of Bmp2 in calvarial osteoblasts, Choi et al. have 

previously shown that FGF2 acts through the transcription factor Runx2 to activate Bmp2 

expression [42]. Moreover, subsequent studies by Ron Chandler not only identified a 

candidate Runx2 binding site at the ECR1 locus by TRANSFAC analysis, but also 

demonstrated an interaction between ECR1 and Runx2 in a ChIP assay in MC3T3-E1 

cells [12], suggesting that ECR1 might play an important role as intermediary in this 

pathway. Thus, it is imperative to try and replicate these findings in order to determine, in 

particular, whether or not ECR1 can similarly be shown to bind Runx2 in MN7 cells and 

primary osteoblasts, and/or which, if any, other transcription factors might be involved. 

At the same time, ChIP assays could also be used to test if any transcription factor 

binding can be enhanced by FGF2 treatment, and eventually, similar assays can of course 

be applied to any other osteoblast enhancer(s) as well, once their location is confirmed. 

 

3C assays on additional (non-) osteoblast cell lines 

 As mentioned above, all 3C assays described here support the hypothesis that 

looping interactions are dynamic and correlate well with the transcriptional activity 

observed at the Bmp2 locus; but so far, our studies have only examined a limited number 

of osteoblast cell lines and culture conditions, and in order to be able to reinforce our 

hypothesis, it would certainly be valuable to expand the analysis to additional osteoblast 
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and (non-) osteoblast cell lines with varying degrees of Bmp2 expression. While other 

Bmp2-expressing osteoblasts would be expected to exhibit similar looping profiles to 

MN7s, non-osteoblast cell lines that do not express Bmp2 would likewise be lacking any 

significant peaks of crosslinking frequency consistent with the MC3T3-E1 profile, if our 

hypothesis holds. Ultimately, though, perhaps the most powerful evidence could be 

obtained from MN7s in which Bmp2 expression has been transcriptionally repressed, as 

any decrease or loss of the previously observed crosslinking peaks would compellingly 

underscore the presumably highly dynamic nature of chromosome conformation. 

 

In vivo analysis of looping interactions in different osteoblast populations and other 
Bmp2-expressing tissues 

 
Considering that the studies presented here have not only provided overwhelming 

evidence for the hypothesis that ECR1 cannot be the only enhancer controlling Bmp2 

expression in bone, but have also demonstrated that chromosome conformation is 

dynamic and can readily adjust to the specific transcriptional needs of a locus at any 

given time, one might actually be able to utilize 3C as an efficient means to identify the 

location of any additional osteoblast enhancer(s). Since the chromosome conformation 

might be expected to differ between different osteoblast populations in order to allow for 

optimal tissue- or anatomical-specific communication between the promoter and the 

respective enhancer, 3C assays performed on primary osteoblasts isolated from calvaria 

and long bones, respectively, could help identify the exact location(s) of any additional 

osteoblast enhancer(s) based on the distinctive looping profiles found to be characteristic 

of a given osteoblast population. 
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Likewise, results from the previous BAC transgenesis have provided strong 

evidence for the existence of many more tissue-specific enhancers in this ~400kb region 

surrounding the Bmp2 gene [19], [12] (Figure 3), but except for ECR1 and a digit-

specific element in the 3’ region that is more proximal to Bmp2 than ECR1 [118], none of 

these other elements have been localized with resolution greater than the ~40kb deletion 

regions. Since additional transgenic experiments to test more conserved regions in the 

two BACs for possible enhancer function would be time-consuming and expensive, it is 

important to consider alternative approaches that might facilitate future functional studies 

by identifying the locations of these cis-regulatory elements with greater precision. For 

reasons detailed above, 3C could potentially fit this purpose, as it is not only significantly 

more cost-effective than transgenic approaches, but also unbiased in that it does not rely 

on pre-determined criteria such as evolutionary conservation to select regions of interest. 

Once again, the underlying assumption of using 3C for this purpose would be the 

dynamic nature of the chromosome conformation, where the physical interactions 

between promoter and enhancers are specific to a given tissue or cell type and can readily 

change depending on transcriptional requirements and/or differentiation status of the 

cells, which has not only been suggested by our studies here, but also previously 

demonstrated to be the case at several other gene loci, such as the β-globin locus, Ifng, 

and Foxl2 [71], [100], [74], [84]. 

In fact, both applications of the 3C methodology described above have already 

begun to be tested, as 3C assays for this very purpose have already been performed on 

both cultured, calvarial primary osteoblasts isolated at E17.5 and on chromatin isolated 

from embryonic liver tissue at E15.5, although the resulting samples have yet to be 
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analyzed by qPCR. In addition to primary long bone osteoblasts for direct comparison to 

calvarial primaries, other embryonic tissues that could be great candidates for 3C analysis 

would be kidneys or gut tissue, which, similar to liver, have important advantages of ease 

of precise dissection, consistent transgene expression in >91% of transgenic embryos 

observed for the respective lacZ-BACs, and the fact that previous analysis has shown 

Bmp2 to be expressed in a relatively large percentage of cells within each of these tissues 

(Figure 3). 

 

Independent verification of looping interactions at the Bmp2 locus 

In addition to 3C, ChIP with antibodies against components of the preinitiation 

complex, such as RNA polymerase II (RNA pol II) and a common coactivator, could not 

only serve as an independent means to test whether or not any given enhancer of interest 

physically interacts with the Bmp2 promoter during transcriptional activation, but it also 

simultaneously has the potential to identify additional trans-factors that contributes to 

these enhancers’ activities. 

Coactivators such as p300 are defined as “proteins that do not bind DNA, but are 

required for transcriptional activation of gene expression” [43], [119]. The fact that they 

do not themselves bind DNA either at the promoter or at the enhancer, but yet are vital 

components of the large preinitiation complex that associates the two DNA elements with 

one another, can be used to our advantage when an alternative method is sought to 

support the model of looping between any given enhancer and the Bmp2 promoter. In 

fact, Visel et al. have convincingly demonstrated with a high-throughput ChIP-seq 

analysis that p300 binding is indeed able to predict the location of enhancer elements 
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[120], which corroborates the rationale of this approach. Moreover, since the coactivator 

and histone acetyltransferase p300 is known to bind Runx2 and has especially been 

demonstrated to be critical for the activation of the Osteocalcin promoter [43], it qualifies 

as a strong candidate for a similar role in the any Runx2-mediated induction of Bmp2 in 

osteoblasts. Although knowledge about the occupancy of transcription factors and 

coactivators itself is ultimately nothing but suggestive in nature, it also resembles 3C 

looping profiles in the point that its informative value could be increased significantly if 

it can be shown to be dynamic across various cell lines and/or under different conditions 

(e.g. with FGF2 treatment) and corresponds to variations in Bmp2 expression as well. 

Ultimately, if the looping hypothesis is supported by the association of RNA pol 

II with both the Bmp2 promoter and osteoblast enhancers, the central location of this 

active polymerase raises the question whether we can detect evidence for transcription at 

the respective enhancer locus as well. Although little is known about the functional 

benefits of such transcription from regulatory elements, it has been well studied in 

Drosophila [121], [122], and both the recruitment of RNA pol II to known enhancers 

[123], [124] and the generation of non-coding RNAs [125], [126], [127] are phenomena 

that have been described in mammalian genomes as well. Thus, considering the close 

physical proximity between interacting elements in the large transcription initiation 

complex, it is very plausible that low levels of transcription from an enhancer locus 

accompany Bmp2 activation, and if this association can indeed be detected in vitro or in 

vivo, the findings would add further invaluable insight into the molecular mechanisms 

that facilitate enhancer activity. 
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Summary 

A member of the TGF-β superfamily of cytokines, BMP2 not only plays a critical 

role in pattern formation and morphogenesis during early embryonic development, but 

also promotes osteoblast differentiation and bone formation, making it a vital factor for 

the maintenance of bone health. Expanding on earlier studies of the regulatory landscape 

surrounding Bmp2 by BAC transgenesis in mice that had lead to the identification of the 

osteoblast enhancer ECR1, the work presented here further scrutinizes the particular role 

of ECR1 during osteogenesis and provides striking evidence for the hypothesis that – 

despite its indispensable role for Bmp2 expression in osteoblasts -, it is in fact not entirely 

autonomous, but requires additional enhancer activity to control the full scope of 

osteoblast-specific expression. Subsequent analysis of the chromosomal conformation 

during transcriptional activation does not only support this hypothesis and substantiate 

the dynamic nature of looping interactions at the locus, but combined with additional 

epigenetic characteristics also serves to highlight several distant loci within the gene 

desert as excellent candidates for putative enhancer function. Therefore, in addition to 

future functional tests of these candidate loci, another question of particular interest will 

then be to explore whether or not dynamic changes in chromosome conformation 

accompany targeted Bmp2 regulation in different osteoblast populations and other tissues, 

as this could potentially prove to be an invaluable tool to efficiently identify the 

location(s) of tissue-specific regulatory elements. 

Eventually - considering its critical role in osteogenesis and consequent 

significance for human health and disease, e.g. as risk factor for various bone disorders 

such as osteoporosis, which substantiates Bmp2 as a primary target for therapeutic 
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intervention -, a clear understanding of the factors and mechanisms that control Bmp2 

expression in osteoblasts will be essential for the future development of therapies that 

could enhance bone growth and stimulate healing. 
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