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CHAPTER I 

 

INTRODUCTION 

 

 More than 100 years ago, it was suggested that pancreatic secretion is influenced 

by “a hormone or secretin yielded by the duodenal mucous membrane” (1). Minkowski 

and Mering had already shown, in 1890, that internal pancreas secretion is essential for 

normal carbohydrate homeostasis (1).  Not only was it proposed that gut hormones 

played a role in regulating normal glucose homeostasis, but it was suggested that diabetes 

may be induced by the “functional disturbance occasioned by the absence of such an 

intestinal excitant” (1).  In 1906, Moore, et al., attempted to determine the role of gut 

factors in regulating internal pancreatic secretion and glucose homeostasis (1).  This 

included the treatment of diabetic patients with duodenal mucous extracts orally, with 

mixed results (1). Although it is now understood that oral administration would result in 

digestion of these factors, those early experiments set the stage for further investigation 

of the role of the gut in glucose homeostasis. 

 The goal of this thesis is to further explore the role of a specific gut factor, 

glucagon-like peptide-1 (GLP-1) in glucose homeostasis. This will be done by evaluation 

of glucose metabolism during either acute physiological elevations of GLP-1 or 

inhibition of its action in the conscious dog in vivo.  Direct and indirect modes of GLP-1 

action on liver, muscle, and fat will be considered and discussed. 
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The Incretin Concept 

 When healthy individuals receive an oral glucose load, glucose is absorbed from 

the gut, and circulating glucose levels increase.  This increase is sensed by the β-cell of 

the endocrine pancreas, which initiates an increase in insulin secretion. This increase in 

insulin secretion results in arterial plasma levels of the hormone that are approximately 

twice those achieved after an intravenous glucose infusion given at a rate chosen to match 

glucose levels seen postprandially (2). This augmentation of insulin release is known as 

the “incretin effect”. 

 

Gut Hormones Influence the Endocrine and Exocrine Pancreas 

 In 1901, work done by Pawlow showed that there is an increase in pancreatic 

secretion (later to be classified as endocrine secretion) when chyme is released into the 

duodenum (3).  To determine the physiological mechanisms important for this response, 

Bayliss and Starling, conducted “the crucial experiment” which found that introduction of 

acid into a denervated jejunum of an anaesthetized dog, increased pancreatic (endocrine) 

secretion (3). The idea that messages could be sent throughout the body by means other 

than nerves was a turning point in physiology, leading to the introduction of the concept 

of a “hormone” (4). 

 The influence of gut hormones on pancreatic secretion to specifically regulate 

glucose homeostasis was supported by more conclusive evidence provided several 

decades later in 1929, by Zunz and La Barre (4). They conducted experiments in which 

the pancreatic vein of a dog was drained into the jugular vein of a second dog (4).  While 

injection of gut extracts into the former dog only slightly lowered its blood glucose, the 
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latter dog experienced a significant decrease in blood glucose (4).  Zunz and La Barre 

concluded from their experiments that gut extracts lowered blood glucose levels by 

stimulating the endocrine pancreas to secrete insulin (4). This provided critical evidence 

supporting a role for gut hormones in regulating endocrine secretion of the pancreas. 

 This experiment was followed by further work by La Barre and Still in 1929, 

which indicated that the crude gut extracts could be purified into two separate 

components (5).  The first factor, which, when injected, induced pancreatic secretion 

without changing glycemia (5) became known as “excretin”, because infusion resulted in 

“external” pancreatic secretion into the pancreatic duct (6), and what is now known as the 

exocrine pancreas. The other factor decreased blood sugar (5). This fraction became 

known as the “incretin,” due to its ability to increase “internal” secretion into the 

pancreatic vein (6), later recognized as the endocrine pancreas, including insulin. 

 

Oral versus Intravenous Glucose Delivery  

 The physiological importance of incretins was not understood until the mid-

1960s, after the development of an immunoassay for insulin by Morgan & Lazarow (7). 

After this landmark achievement, it was discovered that normal weight humans given an 

oral glucose load had plasma insulin levels approximately twice those seen when the 

same group received an intravenous glucose infusion to match the blood glucose profile 

seen after the oral glucose load (2; 8).  At that point the physiological mechanism was 

unknown, however this phenomena was named the “incretin effect”, due to the yet to be 

defined factors released from the gut resulting in an increase in insulin release. 
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The Entero-Insular axis 

 By the late 1960s the phenomenon of gut induced insulin secretion had been 

termed the “entero-insular axis” (9).  This concept described three ways that nutrients in 

gut induce changes in the pancreas: 1) direct absorption of the nutrients into the blood 

stream and delivery to the pancreas; 2) neural transmission from the gut to the pancreas; 

3) endocrine transmission induced by hormones released from the gut into the circulation 

(6). (Figure 1.1)  Signals from the gut to the pancreas can involve any of these 

components, either alone or in combination.  

 After consumption of an orally delivered meal, nutrients are absorbed from the 

gut and enter the hepatic portal vein followed by entry into the peripheral circulation. As 

nutrient concentrations in blood increase, direct contact with the islet is increased.  

Glucose (10) and amino acids (11) increase ATP production by the β-cell, which induces 

insulin secretion directly. Under normal conditions, free fatty acids increase glucose 

stimulated insulin secretion, however, excess free fatty acids in the peripheral circulation 

result in a decrease in glucose stimulated insulin secretion (12).  Therefore, nutrients 

absorbed in the gut can regulate insulin secretion in both a positive and negative manner. 

 Neural regulation of the pancreas is supported by a vast innervation which has 

been shown to regulate both its endocrine and exocrine function (13). The islets 

themselves are surrounded by many nerve fibers, with α-, β-, and δ-cells all innervated 

by both the sympathetic and the parasympathetic nervous systems (14).  Nerves in the 

gastrointestinal system, referred to as the enteric nervous system, include more that 100 

million neurons (15).  When a nutrient load reaches the gut, enteric neural signaling is 

initiated with afferent signals traveling through the vagus either directly to the pancreas  
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Figure 1.1 The enter-insular axis. Signals to the pancreas in response to nutrient load in 

the gut. Adapted from Ref. (6). 
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or to the central nervous system. The latter then alters efferent discharges to the pancreas 

(15). 

 The entero-insular axis relies heavily on endocrine transmission from the gut to 

the pancreas.  This transmission occurs by secretion of gut hormones into the circulation, 

so that they can directly interact with receptors in the pancreas, or by interaction with a 

receptor at a tissue located closer to the site of secretion, by which it can initiate a neural 

signal to induce an indirect effect at the β-cell.  Gut hormones, secreted in response to a 

nutrient load, that initiate changes in insulin secretion and glucose homeostasis will be 

the focus of the remainder of this thesis.  

 

Defining Incretin Hormones 

 The definition of an incretin hormone as defined by Creutzfeldt involves the 

following: 

1) The hormone must be released from gut endocrine cells after ingestion 

of nutrients, especially of glucose. 

2) The circulating hormone must stimulate insulin secretion in a 

concentration which is easily achieved after ingestion of a nutrient. 

3) The hormone releases insulin only at elevated glucose levels (4). 

 

There are identified incretin hormones: GIP and GLP-1.  It has been suggested that the 

incretin effect, which has been shown to increase insulin secretion by approximately 

fifty-percent, is due to increases in that these two incretin hormones, although the 

majority of this work has been done in the mouse (2; 16). 
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Glucose Dependent Insulinotropic Polypeptide 

 In 1969, it was discovered that “gastric inhibitory polypeptide,” or GIP, isolated 

from porcine intestine, decreases acid secretion when given in large quantities to dogs 

(17).  It was later determined that GIP induced glucose-dependent insulin secretion at 

physiological levels, resulting in a re-naming to “glucose-dependent insulinotropic 

polypeptide” (17).  Due to the fact that lower levels of GIP induce its incretin effect, as 

opposed to GIP’s effect on gastric inhibition, it is believed that the physiological 

importance of the peptide is its ability to induce glucose mediated insulin secretion (17).  

 GIP is a 42 amino acid peptide (18) secreted by the K cells of the upper small 

intestine (19; 20) in response to absorption of carbohydrate and fat (21). Inhibitors of 

absorption block this effect (6). The GIP receptor (GIPR) is member of the vasoactive 

intestinal peptide (VIP)/glucagon/secretin receptor family of G-protein coupled receptors. 

When ligand binds it, the adenylyl cyclase signaling cascade is activated (22). GIPR are 

located in pancreatic islets, adipose tissue, and brain (22). Although GIPR 
-/-

 mice exhibit 

normal weight, fasting glucose levels, and glycemic response to an intra-peritoneal 

glucose tolerance test, glucose levels after an oral glucose tolerance test (OGTT) were 

significantly greater in the GIPR 
-/- 

 than the wild-type (23). The higher glucose levels in 

the GIPR 
-/- 

mice in response to the OGTT were associated with significantly lower 

plasma insulin levels (23). The decrease in insulin was not due to a defect at the β-cell, 

because isolated islets from the GIPR 
-/-

 mice remained glucose competent; therefore, the 

impaired glucose tolerance was due to a disruption of the entero-insular axis (23).  

 This indicates that GIP signaling is required for normal incretin response to oral 

glucose delivery, reaffirming its classification as an incretin hormone. Although GIP 
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induces insulin secretion, it was determined that GIP did not account for the full incretin 

effect observed after oral nutrient delivery, and that another hormone must contribute to 

the remainder of the effect (4). 

 

Preproglucagon 

 During the analysis of preproglucagon, it was determined that peptides other than 

glucagon were coded on the gene, and that these other peptides also influence glucose 

homeostasis. Preproglucagon is expressed in the α-cell of the pancreas, the L cell in the 

gut, and the brain. Preproglucagon is translated into the proglucagon amino acid sequence 

at all of these sites; however, due to different processing enzymes in each of the cell 

types, different peptides are produced in each location (24). (Figure 1.2) These 

processing enzymes are serine proteases known as proprotein convertases (PC) which 

exist in the PC1/3 form in the gut and brain, while PC2 is found in the pancreas (24). 

Post-translational modification by PC2 results in glucagon as the only active peptide 

product (25; 26). Inactive products include: glicentin-related pancreatic peptide (GRPP), 

intervening peptide-1 (IP-1), and the major proglucagon fragment (25; 26). In the 

presence of PC1/3, glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), 

two intervening peptides (IP-1, IP-2), oxyntomodulin, and glicentin are the peptides 

produced (27; 28).  (Figure 1.2) 
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Figure 1.2 Posttranslational modification of proglucagon. Proprotein convertase (PC) 2 is 

produced in the pancreas, with glucagon resulting as the active petide. In the gut and 

brain, PC1/3 activity results in GLP-1 and GLP-1 as the major active fragments.  GRPP: 

Glicentin related pancreatic polypeptide; IP; intervening peptide. Adapted from Ref. (24). 

Proglucagon 
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 Glicentin stimulates gut growth (28), but does not alter insulin section (29). 

Oxyntomodulin does induce insulin secretion; however, it circulates at such low 

concentrations, it is unlikely that it contributes to the incretin effect (29).  Most evidence 

suggests that its physiological role is stimulating gastric acid secretion and decreasing 

food intake (28). GLP-2, although released in response to a nutrient load, does not 

contribute to the incretin effect, with its primary effects being inhibition of 

gastrointestinal motility and gastric acid secretion, in addition to protective and 

regenerative effects in the bowel (28).  However, it was determined that the 

preproglucagon product, GLP-1, does induce insulin secretion at physiological levels. 

 

Glucagon-Like Peptide-1 

 GLP-1 induces insulin secretion, despite its ~50% amino acid homology with 

glucagon (30). This peptide has the same amino acid sequence in all mammals (31).  In 

response to an oral nutrient load, GLP-1 is secreted from the L cells in the gut. These 

cells are referred to as open-type endocrine cells, because the apical membrane has 

microvilli reaching the intestinal lumen and the base has a large supply of endocrine 

granules near the basal lamina (26). The L cells secrete two active forms of GLP-1: GLP-

1(7-36) amide and glycine-extended GLP-1 (7-37).  In the blood GLP-1(7-36) amide 

represents approximately 75% of active GLP-1, while GLP-1(7-37) is the remaining 25% 

(24). These two forms of GLP-1 have indistinguishable actions at the endocrine pancreas 

and identical clearance rates (32). 
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GLP-1 Secretion 

 Secretion of GLP-1 is induced by oral delivery of nutrients, specifically 

carbohydrates and lipids. Absorption of the nutrients is required to induce secretion (33). 

Postprandial peripheral GLP-1 levels increase rapidly, peaking approximately 15-30 

minutes after a meal, with an additional secondary rise occurring at about 90 minutes 

(34).  GLP-1 levels remain elevated for at least 3 hours after oral nutrient delivery in 

humans (34; 35).  

 Originally, it was thought that the first peak in GLP-1 level was due to hormonal 

regulation or neural firing initiated in the upper gut after a meal (36; 37), because it did 

not appear as though L cells were present in the proximal area of the gut (38).  In rodents, 

GIP secreted from K cells in the upper gut upon contact with nutrients induces GLP-1 

secretion either though endocrine or neural pathways (37; 39), however this effect is not 

observed in humans (40). Endocrine GIP mediated GLP-1 secretion occurs when GIP 

interacts with its G-protein coupled receptor on the L cell membrane. This increases 

activation of adenylyl cyclase (AC), which increases cAMP and activates protein kinase 

A (PKA), resulting in GLP-1 secretion via granule exocytosis (39).  

 Evidence for neural simulation of GLP-1 secretion has been obtained in vitro, 

with human and rodent L cells secreting GLP-1 in response to acetylcholine acting via a 

muscarinic receptor 1(39).  When rodents receive a muscarinic receptor antagonist in 

vivo, there is no GLP-1 secretion in response to intraduodenal nutrient delivery (41).  It 

has also been shown that the neuropeptide, gastrin-releasing peptide (GRP), released 

from neurons in the enteric nervous system activates its G-protein coupled receptor to 

induce GLP-1 secretion (42).  Both acetylcholine and GRP induce GLP-1 secretion by 
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activating phospholipase C (PLC), which stimulates protein kinase C (PKC), resulting in 

granule exocytosis (39). Therefore, it is clear that neural signaling can contribute to the 

secretion of GLP-1; however, its exact role in GLP-1 secretion has now become 

somewhat controversial due to the fact that recent reports indicate that GLP-1 

immunoreactive cells have been detected in the duodenum (43).  This new finding would 

suggest that L cells in the upper gut have direct contact with nutrients soon after 

consumption, resulting in the early peak in GLP-1 level; therefore, the early secretion of 

GLP-1 may be less reliant on neural signaling than once thought. 

 Direct contact of nutrients with the L cell is the accepted explanation for the peak 

in GLP-1 levels that occurs approximately 90 minutes after a meal. Evidence both in vivo 

(37) and in vitro (44-46) shows that GLP-1 secretion is induced in a dose dependent 

manner when L cells are directly exposed to carbohydrate or lipid. Some suggest that fat 

is more likely to reach the distal gut, and therefore is responsible for the second 

postprandial peak in GLP-1 level after a mixed meal (39); however, when our lab 

administered an oral glucose tolerance test (OGTT) in the dog, the second peak was still 

observed (47). In addition, glucose infusion, either peripherally (48) or intraportally (49), 

does not induce GLP-1 secretion, indicating that glucose must have direct contact with 

the luminal membrane of the L cell to induce GLP-1 secretion.  

 The L cell is directly stimulated by glucose via sodium glucose transporters 

(SGLT) 1/3 or glucose transporter (GLUT) 1/5, resulting in increased ATP levels, and 

subsequent closure of KATP channels (46). An increase in intracellular K+, in combination 

with Na+ from the SGLT, depolarizes the L cell, resulting in an opening of voltage gated 
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calcium channels (39; 50).  Increased intracellular calcium levels results in GLP-1 

secretion (50).   

 Monounsaturated fatty acids bind to the receptor GPR120 on the membrane of the 

L cell (39). It has been shown that when GPR120 is activated, there is an increase in 

intracellular calcium levels and p44/42 MAPK phosphorylation (51); however when 

these pathways are both blocked, fatty acids are still able to induce GLP-1 secretion (39; 

51). This leaves the mechanism of fatty acid initiated GLP-1 secretion somewhat unclear. 

 Upon release by the L cell, GLP-1 enters both the intestinal lymph system and 

portal circulation, with total levels of GLP-1 being approximately 5-6 times greater in the 

former than the latter (52).  GLP-1 secretion, whether in response to GIP, acetylcholine, 

GRP or a meal, is inhibited by somatostatin (39; 53-55). 

 

Degradation of Incretin Hormones 

 Dipeptidyl peptidase-4 (DPP-IV) is responsible for the degradation of incretin 

hormones (56). Also known as the T-cell antigen CD26, it exists in two forms: membrane 

bound and free in plasma (18; 57). The membrane bound form of DPP-IV is found 

throughout the vasculature, including that in the kidney and the brush-border membrane 

of the gut (57). The major site of degradation of incretins by DPP-IV is close to the site 

of their secretion in the gut brush-border membrane. It has been shown that 

approximately half of active secreted GLP-1 is degraded by DPP-IV located in the brush 

border epithelium and the gut capillary endothelium before it reaches the vasculature 

(58). Once released into the circulation, the intact forms of GIP and GLP-1 are both 

quickly degraded with half lives of 5 and 1-2 minutes, respectively (59; 60). 
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 DPP-IV cleaves two N-terminal amino acids from peptides in which the next to 

the last amino acid is a proline or alanine, as is the case for GIP (1-42), GLP-1(7-36) 

amide, and GLP-1(7-37).  The receptors for both GIP and GLP-1 interact with the N-

terminus of the peptide to initiate their respective signaling cascades; therefore, cleavage 

results in dramatically different interaction at the receptor (61; 62).  After exposure of 

GIP or GLP-1 to DPP-IV, the resulting metabolites GIP (3-42) and GLP-1 (9-36) amide, 

do not contribute to the incretin effect (63; 64); however, it is still unclear if these 

metabolites are completely inert. In a small number of studies, infusion of GLP-1 (9-36) 

amide has been shown to slightly decrease blood glucose via a mechanism independent 

from insulin secretion and gastric emptying (64; 65); however, the majority of work 

shows that this metabolite is inert (66-68). 

 It was once thought that DPP-IV degradation was occurring largely in the kidney. 

This changed when antibodies were developed for both the active and degraded forms of 

the incretin peptides.  It was determined that the kidneys are not a major site of 

degradation by DPP-IV, but rather a site of clearance for GIP, GLP-1, and their 

metabolites (57; 69).  The kidneys eliminate ~ 10-20% of the active forms of the peptides 

(69), which is greater than the rate of glomerular filtration alone, indicating that another 

mechanism is involved (57).  It has been suggested that a portion of the elimination of 

GLP-1 and GIP occurring at the kidney may be due to degradation by neutral 

endopeptidase 24.11 (NEP 24.11), which exists in high quantities in the kidney.  NEP 

24.11 has been shown to degrade GLP-1 and GIP in vitro (57). As stated earlier, it is now 

clear that the majority of degradation of endogenously released GLP-1 occurs by DPP-IV 

in the gut (58). 
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Incretin Hormones in Type 2 Diabetes 

 Type 2 diabetes occurs when the pancreatic β-cells are no longer able to produce 

enough insulin to compensate for the whole body insulin resistance. It diabetic humans, 

the incretin effect is significantly decreased relative to that in normal individuals (2). 

(Figure 1.3) There are several reasons relating directly to incretin hormone secretion and 

degradation that could explain a decreased incretin effect in those with type 2 diabetes. 

They are: 1) decreased incretin peptide levels, 2) a decrease in incretin peptide sensitivity 

at the β-cell, or 3) postprandial glucose levels in type 2 diabetic patients are greater than 

the stimulus needed for maximal for insulin secretion, resulting in the inability of 

incretins to further increase insulin release.  It is likely that a combination of these 

contribute to decreased postprandial insulin secretion in those with type 2 diabetes. 

 A decrease in incretin peptide level could be the result of either an increase in 

degradation, or a decrease in production. The half life of both GIP and GLP-1 are similar 

in healthy humans and those with type 2 diabetes, indicating that the degradation of 

incretin hormones is not altered with the onset of diabetes (59; 60). Incretin hormone 

production in human patients with type 2 diabetes is somewhat controversial. Early 

reports indicated that after oral nutrient delivery, GIP levels were similar in type 2 

diabetic patients and healthy humans, while GLP-1 was significantly reduced in diabetic 

patients (70; 71). Although decreased GLP-1 level in type 2 diabetic patients became an 

accepted explanation for a decrease in the incretin effect, the development of more 

sophisticated assays, including those that could differentiate between active and inactive 

forms of GLP-1, resulted in new findings. The more recent data indicated that active and 

inactive GLP-1 levels could actually be greater in type 2 diabetic patients in response  
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Figure 1.3 The incretin effect in normal weight and obese humans with or without 

diabetes.  Despite greater plasma glucose levels in response to an oral glucose load (not 

shown), insulin secretion in response was dramatically decreased in those with diabetes, 

as shown here with total AUC of insulin peripheral insulin profile. When glucose was 

infused to match the respective peripheral glucose profile of the oral glucose load, insulin 

secretion was decreased in all groups.  Adapted from Ref. (2) 
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to oral nutrient delivery (43), but this may be in response to greater glycemic levels. In 

addition, it has been recently shown that DPP-IV levels are decreased in type 2 diabetes, 

resulting in decreased DPP-IV activity and reduced GLP-1 degradation (72). Overall, 

there is still much debate about postprandial GLP-1 level in those with type 2 diabetes.  

 Decreased sensitivity of the β-cell to incretin peptides would also result in a 

decrease in the incretin effect.  In humans with type 2 diabetes, an infusion of GIP to 

create a physiological increase of the peptide in the periphery in the presence of a 

hyperglycemic clamp did not increase insulin levels compared to hyperglycemia alone 

(40). When the GIP infusion rate was doubled to create super-physiological levels in the 

periphery there was only a slight increase in insulin secretion when compared to 

hyperglycemia alone (40).  The response was markedly decreased from the response 

observed in normal subjects (40).  However, when humans with type 2 diabetes 

underwent a hyperglycemic clamp and receive a GLP-1 infusion to increase circulating 

levels to those observed after a meal, insulin secretion was increased when compared to a 

hyperglycemic clamp alone (40).  The insulin response to the hyperglycemia and GLP-1 

in those with type 2 diabetes is just slightly less than those observed in healthy subjects 

infused with the same rate of GLP-1 in the presence of a hyperglycemic clamp (40). 

Therefore, in humans with type 2 diabetes, resistance of the β-cell to GIP contributes to a 

decreased incretin effect, but sensitivity to GLP-1 largely remains intact. 

 Although type 2 diabetes ultimately results in β-cell failure, it has been shown 

that postprandial glucose levels do not promote maximal insulin secretion, and when 

peripheral glucose levels are increased to levels greater than found after a meal, insulin 

secretion is increased in those with the disease (73).  In addition, GLP-1 increases insulin 



 18 

secretion under hyperglycemic conditions in patients with type 2 diabetes, and GLP-1, at 

both physiologic and super-physiologic levels,  can increase insulin secretion over a vast 

range of hyperglycemia (40; 73). This is evidence that insulin secretion has not reached a 

maximum rate in the presence of postprandial glycemia in those with type 2 diabetes, per 

se; however, damage sustained to the β-cell over the progression of developing diabetes 

may contribute to the decreased incretin effect. 

 To take advantage of the maintained sensitivity of the β-cell to GLP-1 in diabetic 

patients that maintain some β-cell function, several novel diabetes therapies have been 

developed. The established therapies fall into two major categories. The first group 

consists of GLP-1 mimetics or derivatives that are resistant to degradation by DPP-IV. 

This includes the GLP-1 mimetic exenatide, a commercial preparation of exendin-4, a 

peptide found in Gila monster saliva. Another derivative is liraglutide, which is formed 

by fusing of GLP-1 to a fatty acid, which in turn binds to albumin. GLP-1 bound to 

albumin is resistant to degradation. The second category of potential diabetes therapies 

are nonpeptide compounds that target DPP-IV by decreasing its production or inhibiting 

its action. Other potential therapies include methods (i.g. secretagogues or vectors)  to 

induce increased endogenous GLP-1 production via increased expression of PC1/3 or the 

peptide itself (74; 75). 

 

GLP-1 Receptor 

GLP-1R Characteristics 

 The GLP-1 receptor (GLP-1R) is a classical guanine nucleotide binding protein 

(G protein)-coupled receptor of the B1 subfamily, which also includes receptors for GIP, 



 19 

glucagon, and GLP-2 (76).  Although B1 subfamily members have high gene homology, 

binding at physiological levels only occurs among ligands and their respective receptors 

(76).   Human GLP-1R consists of 463 amino acids, which is 90% homologous to the rat 

GLP-1R (76; 77).  GLP-1R has a dissociation constant of 0.3 nM with GLP-1, and 0.1 

nM with exendin-4 (76; 78). GLP-1 binds somewhat at extracellular loops, but primarily 

to the extracellular amino-terminus of the receptor which, at 146 amino acids, is 

moderately long like other B family receptors (79). The third intracellular loop of the 

GLP-1R mediates GLP-1 signaling, whereas the first and second intracellular loops 

discriminates between various G protein isoforms (80).  There is evidence that the GLP-

1R is coupled to Gs, Gi1, Go, and Gl1 (80). 

 Early characterization of the GLP-1R was conducted with radioligand assays, 

resulting in evidence of a single receptor type in rat insulinoma-derived cells (81; 82). 

Cloning of the GLP-1R in the islet of the rat resulted in two different RNA spicing 

variants, but a single established amino acid sequence to compare against all other tissues 

(83).  The tissue distribution of GLP-1R in vivo is quite controversial. This is due to the 

fact that locations of the receptor have been identified in different manners and in 

different species.  Different methods of detection vary from radiolabelling and 

immunoassays, to changes in neural firing and metabolism. (Table 1.1)  
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Site of identified 

GLP-1R 
Technique of Identification 

Pancreas 

-Binding of GLP-1 to α-, β-, δ-cell of rats by radiolabeled assay (84) 

-GLP-1R protein detected in rat β-cell by Western blot (85) 

-GLP-1R RNA detection in islets of rats, dogs, and humans by PCR followed 

by Southern blot of cDNA (86-90) 

-GLP-1R RNA detected in rat and human by Northern blot (83; 91; 92) 

-Increased insulin and somatostatin secretion, accompanied by decreased 

glucagon secretion in canine and rat pancreases perfused with GLP-1 (93) 

Brain & Nervous 

System 

-Binding of GLP-1 in rat brain by radiolabeled assay (94) 

-GLP-1R RNA in rat CNS by in situ hybridization (95) 

-Detection of GLP-1R RNA in rat brain by Northern blot (91) 

-GLP-1R RNA detected in rat and human brain by PCR/Southern blot (89; 

90) 

Hepatic Portal Vein 

-GLP-1R RNA identified in nerve terminals within the hepatic portal vein of 

rat by PCR/Southern blot (87)  

-Increased afferent neural discharges from the region when rats given 

intraportal GLP-1 bolus (96) 

Liver 

-Binding of GLP-1 in rats by radiolabeled assay (97) 

-GLP-1R RNA identified in rat by Northern blot (91) 

-GLP-1R RNA identified in rat by PCR/Southern blot (88) 

-GLP-1 decreases human endogenous glucose production, independently of 

changes in pancreatic hormones (98) 

-GLP-1 infusion increases canine hepatic glucose uptake (47; 48) 

-GLP-1 increases glycogen storage in rat hepatocytes (99) 

Adipose 

-Binding of GLP-1 to human adipose by radiolabeled assay (100) 

-GLP-1R RNA identified in rat and canine by PCR/Southern blot (86; 88) 

-GLP-1 increases insulin mediated glucose uptake in adipocyte cell line (88) 

-GLP-1 increases nonhepatic glucose uptake in canine (48) 

Skeletal Muscle 

-Binding of GLP-1 to rat skeletal muscle (101) 

-GLP-1R RNA detected in rat by Northern blot (91) 

-GLP-1R RNA detected in rat and canine by PCR/Southern blot (86; 88; 90) 

-GLP-1 increases nonhepatic glucose uptake in canine (48) 

Heart -GLP-1R RNA detected in rat and human by PCR/Southern blot (88-90) 

Kidney 
-GLP-1R RNA detected in rat by Northern blot (83; 91) 

-GLP-1R RNA detected in rat and human by PCR/Southern blot (89; 90) 

Lung 
-GLP-1R RNA detected in rat by Northern blot (83; 91) 

-GLP-1R RNA detected in human and rat by PCR followed by Southern blot 

(87; 89; 90) 

Stomach 
-GLP-1R RNA detected in rat by Northern blot (83) 

-GLP-1R RNA detected in rat and human by PCR/Southern blot (89; 90) 

Intestine -GLP-1R RNA detected in rat and human by PCR/Southern blot (88; 90) 

 

Table 1.1 Positive identification of GLP-1R locations. 
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 Radiolabeled assays have been used to determine GLP-1 binding to α-, β-, and δ-

cells of the islets of Langerhans, the brain, liver, and skeletal muscle of rats, as well as 

human adipose tissue (84; 94; 97; 100; 101). While Western blots confirmed the presence 

of GLP-1R on the β-cell, there was no indication of GLP-1R on the α-cell using this 

technique (85). Northern blot analysis of rat tissue confirmed the presence of GLP-1R 

RNA in the islet, in addition to the stomach, kidney, and lung, but not in the smooth 

muscle, spleen, heart, testis, intestine, or colon, with mixed results for rat liver, skeletal 

muscle, and brain (83; 91). Northern blot analysis of human tissue indicated positive 

results for the pancreas, but not in lung, smooth muscle, heart, brain, spleen, liver, 

skeletal muscle, or kidney (92).  In situ hybridization has resulted in identification of 

GLP-1R throughout the central nervous system of the rat (95). Also in the rat, PCR, 

followed by Southern blot of cDNA, identified GLP-1R in the nodose ganglia and nerve 

terminals innervating the portal vein, pancreatic islets, lung, skeletal muscle, adipose, 

intestine, stomach, kidney, brain, and heart, with mixed detection at the liver, and none in 

the spinal cord (87; 88; 90). This same technique in the dog found GLP-1R located in the 

pancreas and fat, with much lower levels in skeletal muscle, and no detection in liver 

(86). GLP-1R RNA has also been detected in human pancreas, lung, brain, stomach, 

kidney, heart, but not in liver, skeletal muscle, or adipose by PCR followed by Southern 

blot (89). 

 There has been suggestion of GLP-1R in some tissues due to effects that result 

from the presence of GLP-1.  Perfused canine and rat pancreases produce increased 

insulin and somatostatin in the presence of a GLP-1 infusion (93), confirming the 

presence of a receptor for GLP-1 in the pancreatic islet. Although there is no 
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confirmation of GLP-1R RNA in the liver, isolated rat hepatocytes have increased 

glycogen storage in the presence of GLP-1 (99). In addition, hepatic glucose production 

is decreased in humans that receive GLP-1 intravenously, in the presence of a pancreatic 

clamp (98). An intraportal bolus of GLP-1 resulted in increased afferent discharges from 

the hepatic branch of the vagal nerve in rat (96), confirming the presence of a receptor for 

GLP-1 in the hepatic portal vein. Although there have been mixed opinions on whether or 

not the GLP-1R is located in insulin sensitive tissue (liver, muscle, and fat), GLP-1 does 

increase glucose utilization in these tissues, when pancreatic hormone levels are held 

constant (47; 48; 86; 88). 

 Discrepancies in determining GLP-1R tissue distribution could be explained by 

the use of different methods and various species used to identify the location of the 

distribution of GLP-1R; however, there are other possible explanations.  It has been 

suggested that an as yet to be identified receptor, other than the classical GLP-1R, exists 

and that GLP-1 may be mediating a portion of its effects in some tissues via this other 

receptor (102). This is also supported by the fact that even though only one receptor has 

been identified, it has been shown that alternate gene splicing can result in two separate 

transcripts (83; 91). Others have suggested the GLP-1R may be present in very low 

abundance in some tissue, such that it is not detected when compared to the high levels of 

the receptor in the islet (92). Another possibility is that the GLP-1R is not uniformly 

expressed throughout certain tissues (92). Additionally, due to the presence of GLP-1 in 

the central nervous system, it is possible that GLP-1 has indirect effects intiated by 

interaction with its receptors at a nerve terminus in one location, which results in effects 

that are manifested at another tissue. Therefore, it appears as though GLP-1 could 
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mediate its actions by direct interaction with its receptor and through indirect pathways 

via neural mediation.  

GLP-1 Signal Transduction 

 The presence of GLP-1R in the β-cell is fully accepted; therefore, the pathway of 

GLP-1 signaling has been investigated primarily in the pancreas.  Remarks in reference to 

GLP-1 signaling have been determined in insulin producing cells, unless otherwise 

specifically noted.  

 Although it has been shown that GLP-1R activates various G-protein isoforms 

(80), in the β-cell, GLP-1R primarily activates Gsα, which in turn activates adenylyl 

cyclase (AC) (103). Increased activation of AC results in production of cAMP, which is 

the main mediator of GLP-1 effects (104; 105). Negative regulation of cAMP occurs in 

the presence of cyclic nucleotide phosphodiesterases (PDE) (106).  Although less 

frequently, GLP-1 does initiate cAMP-independent signaling which is regulated by 

phosphatidylinositol-3 (PI3) kinase.  Even though this pathway is much less defined, it is 

likely that PI3 kinase is activated by the Gβγ subunit of the GLP-1R (103). Further detail 

of GLP-1R signal transduction is given in conjunction with the effects of GLP-1. 

 

Elimination or Blocking the GLP-1R 

 GLP-1 is translated from the preproglucagon gene, which also includes other 

peptides that mediate glucose homeostasis; therefore, a knockout model of some or the 

entire preproglucagon gene may result in changes in glucose metabolism that do not truly 

reflect the lack of the GLP-1 protein.  To determine the specific physiological effects of 

GLP-1, null mutation of the GLP-1R was created (107). Fasting glucose levels of GLP-
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1R
-/-

 mice are similar to those of wild type animals; however, in response to an oral 

glucose load, peripheral glycemia is significantly greater in the GLP-1R
-/-

 mice, with no 

compensatory increase in insulin secretion (107).  The true contribution of GLP-1 to 

regulating glucose homeostasis may, however, actually be much greater than exhibited by 

the glycemic response of the GLP-1R
-/-

 mice. These animals exhibit significantly greater 

circulating GIP levels, in addition to much greater GIP sensitivity at the β-cell, which 

may compensate for the lack of GLP-1 signaling (108).  

 Not only do GLP-1R
-/-

 mice show increased GIP action (108), but GIPR
-/-

 mice 

also have a compensatory increase in GLP-1 sensitivity (16; 109; 110).  This makes it 

difficult to evaluate the specific contributions of either peptide. To better evaluate the true 

physiological contributions of incretin hormones, double incretin knockout (DIRKO) 

mice were developed (109).  The DIRKO mice have greater peripheral glycemia than 

either of the single knockout animals after an oral glucose tolerance test (109).  This is 

the result of significantly reduced plasma insulin levels, despite the higher glycemia 

(109); therefore, the response of the DIRKO mice confirm the combined contribution of 

GIP and GLP-1 to the incretin effect, but the individual knockouts do not specifically 

define the individual physiological role of either hormone. 

 There is another approach to determining the physiological effects GLP-1. It is 

the use a GLP-1R antagonist, exendin (9-39) (78; 111).  Exendin (9-39) is a truncated 

form of the previously mentioned exendin-4, and acts in a competitive manner to 

specifically block the GLP-1R (78). This provides a tool to clarify the physiological role 

of GLP-1 by acutely blocking GLP-1 signaling.  This negates the concerns of 
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compensatory mechanisms that occur with the chronic ablation of GLP-1 signaling 

observed in the GLP-1R
-/-

 mice. 

 

GLP-1R and Diabetes 

 It has been determined that in individuals with type 2 diabetes, β-cell sensitivity 

to GLP-1 is slightly decreased compared to healthy subjects (40).  Changes that may 

occur at the GLP-1R with this disease have yet to be defined.  There is no correlation of 

common allelic variants of the GLP-1R gene with type 2 diabetes (112; 113). In one 

patient with type 2 diabetes, but not in any control subjects, a specific mutation of the 

GLP-1R was identified which resulted in a 60-fold decrease in binding affinity for active 

forms GLP-1, with no difference in binding of either GLP-1 (9-36) or exenatide (9-39) 

(114).  In rats, it has been shown that GLP-1R mRNA levels are decreased in islets in 

response to hyperglycemia (115).  In addition, these levels are also decreased in the brain 

of the obese Zucker rats (116).  This evidence suggests that decreased sensitivity of the β-

cell to GLP-1 in type 2 diabetes could be partially attributed to either decreased binding 

affinity of the GLP-1 to its receptor or decreased GLP-1R expression. 

 

Effects of GLP-1 

 Although GLP-1 was first identified as an incretin hormone, there is a large body 

of evidence indicating that GLP-1 acts throughout the body as a glucoregulatory factor 

(117; 118).  The following is a summary of how GLP-1 affects various tissues and 

organs, including a description of GLP-1 mediated signaling.  Direct effects of GLP-1 

include actions that are mediated by GLP-1 binding to a receptor at the tissue in which 
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the effect is observed. These include tissues in which it has been proven or suggested that 

the GLP-1R is present. Indirect effects are those that are initiated by GLP-1 interaction 

with its receptor at a site other than which the effect is observed. Indirect effects are the 

result of paracrine or neural transmission from the site of initiation to the site of the 

resulting effect. It has been shown that GLP-1 exerts both direct and indirect effects. 

 

Insulin Secretion 

 The most well defined effect of GLP-1 is glucose-dependent insulin secretion. As 

mentioned previously, activation of cAMP is the major signaling pathway initiated upon 

GLP-1 binding with its receptor at the β-cell.  Increased levels of cAMP are required for 

glucose-dependent GLP-1 induced insulin secretion (119).  GLP-1 signaling initiates two 

major downstream pathways of cAMP. The first major regulator is the increased activity 

of PKA (120); however, when PKA is blocked, insulin secretion stimulated by GLP-1 is 

only decreased by 50-60%, supporting the fact that a second signaling mechanism is in 

place (103; 119). The second pathway is mediated by “cAMP regulated guanine 

nucleotide exchange factors” (cAMPGEFs)  also known an “exchange proteins directly 

activated by cAMP” (Epac) (119; 121).  cAMP has a significantly lower affinity for Epac 

than PKA; therefore, lower levels of cAMP activate PKA, and when PKA signaling is 

saturated, cAMP continues to increase signal transmission by Epac activation (103; 121). 

 Glucose uptake by GLUT2 at the β-cell increases the intracellular ATP/ADP ratio 

(122-124) .  Epac augments this increase in the ATP/ADP ratio, via a Ca
2+

 dependent 

mechanism (125).  KATP channels are closed by this increased ATP/ADP ratio (126). 

GLP-1 activated PKA increases KATP channel closure by direct phosphorylation of the 
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channel (127), and there is some evidence that Epac also augments KATP channel closure 

(128). This results in quicker depolarization of the cell (129), thereby increasing the 

intracellular Ca
2+

 content by opening membrane Ca
2+

 channels and causing exocytosis of 

Ca
2+

 from stores in the endoplasmic reticulum (ER). Both routes of increased 

intracellular Ca
2+

 are augmented by PKA and Epac (125; 130; 131).  Increased 

intracellular Ca
2+

 results in exocytosis of insulin granules from the plasma membrane. 

There is evidence that both PKA and Epac also interact directly at the insulin vesicles to 

aid exocytosis (132). GLP-1 induced activation of PKA also results in greater frequency 

of insulin granule exocytosis by antagonizing Kv channels (133; 134).  Kv channels 

oppose the actions of KATP channels by decreasing intracellular K
+
 concentration, which 

results in repolarization of the β-cell (133; 134).  

 GLP-1 also initiates effects at the β-cell which increase the availability of insulin 

for secretion. Insulin producing cells have increased intracellular insulin content after 

incubation with GLP-1 (135).  This effect is mediated by both cAMP/PKA and PI3-

kinase/cAMP-independent pathways (103).  GLP-1 increases mRNA levels of 

transcription factor PDX-1 and promotes its transport to the nucleus (136-138).  Nuclear 

PDX-1 increases insulin mRNA levels (139). This has been directly linked to GLP-1 

induced increases in intracellular insulin content (104; 135).  

 GLP-1 also promotes continued activation of PDX-1 by PI3 kinase activation of 

PKB.  This phosphorylates forkhead transcription factor O1 (FoxO1), which traps it in 

the cytoplasm, making it unable to block nuclear PDX-1 action (103; 140).  In addition, 

GLP-1 activates polypyrimidine tract binding protein 1 (PTB1), which stabilizes insulin 

and insulin vesicle protein mRNA, making it less susceptible to degradation (103; 141). 
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There is also some evidence that GLP-1R activation enhances second phase insulin 

secretion by shifting less accessible pools of insulin granules closer to the membrane of 

the cell (130; 142). Combined with the aforementioned effects, this perpetuates GLP-1 

enhanced insulin secretion well after the induction of hyperglycemia (40; 73).  

 There have been additional reports to suggest that indirect mechanisms also 

mediate GLP-1’s effect on insulin secretion.  When GLP-1 is infused into the brain of 

mice, glucose-dependent insulin secretion is increased (143). Others have suggested that 

a neural circuit exists between GLP-1 receptors in the hepatic portal vein and the 

pancreas (96). Although it is well documented that GLP-1 does have a direct effect at the 

pancreas, these studies indicate that elevations of GLP-1 observed after a meal may 

initiate the incretin response in a variety of ways. 

 

β-cell Mass 

 Chronic GLP-1R activation in human isolated islets, as well as in vivo in rodents 

results in increased β-cell mass (144-147). This effect has been shown to be independent 

of both the peripheral glucose level and GLP-1’s ability to lower glycemia (147; 148). 

Although GLP-1 appears to be expressed during embryonic development, and embryonic 

β-cells do express GLP-1R, it has yet to be determined the extent to which endogenous 

GLP-1 increases or maintains adult β-cell mass in a healthy physiological setting (149). 

In addition, it has yet to be fully determined the effects of GLP-1 on β-cell mass in 

humans.  Even so, the ability of GLP-1R activation to result in increased β-cell mass may 

eventually be used for the development of therapies for improved β-cell mass in both 

type 1 and 2 diabetes.  
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Increased β-cell mass occurs by increasing the ratio of β-cell expansion to β-cell 

depletion. GLP-1 has been shown to increase this ratio by multiple mechanisms, mainly 

initiated by cAMP/PKA and PI3-kinase/cAMP-independent pathways, which activate 

PDX-1 (103; 150; 151). PDX-1 not only regulates insulin transcription, but is also a 

major determinant of β-cell generation and maintenance (152; 153). 

 Generation of β-cell mass in vivo occurs in three ways: 1) neogenesis, which 

includes differentiation from precursor cells; 2) proliferation by division of existing β-

cells; and 3) hypertrophy by enlargement of existing β-cells (154).  Established β-cell 

precursor cells are found in islets and pancreatic ducts in vivo (155; 156). In the presence 

of GLP-1, PDX-1 is up-regulated in precursor cells from both of these regions, resulting 

in the transformation of these cells into insulin producing cells (157; 158). Stem cells are 

a potential source of exogenously produced β-cells for those with type 1 or 2 diabetes. 

GLP-1, in conjunction with additional factors, also converts stem cells into insulin 

producing cells (159; 160).  GLP-1 also promotes proliferation and hypertrophy of 

established β-cells through PI3 kinase activation of PKB, which deactivates FoxO1, 

allowing PDX-1 to localize to the nucleus (137; 144; 146; 161; 162). 

 Depletion of β-cell mass occurs in two ways: cell death, mainly via apoptosis and 

atrophy of existing β-cells (154). GLP-1 inhibits β-cell apoptosis and promotes β-cell 

integrity in vitro (145; 163). This has been confirmed in vivo in Zucker diabetic fatty 

(ZDF) rats, which have decreased β-cell mass due to increased apoptosis (164). When 

ZDF rats are chronically treated with GLP-1, islet mass and β-cell proliferation is 

significantly increased, while β-cell apoptosis is significantly decreased (165). Taken 
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together it is clear that the actions of chronic activation of GLP-1R in the pancreas 

protects and expands β-cell mass. 

 

GLP-1 Regulation of the α-cell 

 GLP-1 has been shown to decrease inappropriately high glucagon levels in 

diabetic patients (166). Similar to GLP-1’s ability to induce insulin secretion, the effect 

on glucagon secretion is glucose dependent, meaning that GLP-1 will only block elevated 

glucagon secretion under conditions of hyper and euglycemia (167).  GLP-1 does not 

seem to have this effect on healthy patients (168). The presence of the GLP-1R on the α-

cell is controversial, because it has been identified by some (84), but not others (85). 

Despite what is observed in vivo, intracellular cAMP levels do not change in isolated α-

cells in the presence of GLP-1 (85). In addition, isolated α-cells actually increase 

glucagon secretion in the presence of GLP-1 (169); therefore, what would appear to be a 

direct effect of GLP-1 on the α-cell may actually be an indirect effect resulting from a 

direct GLP-1 effect elsewhere in the islet.  

 One possibility is that the GLP-1 induced decrease in glucagon secretion observed 

in vivo is actually a secondary effect of enhanced insulin secretion. Insulin could be  

acting in a paracrine manner with its known receptor at the α-cell (170). It has been 

shown that insulin does directly inhibit glucagon secretion from isolated α-cells (170).  In 

vivo, mice that are unable to secrete insulin in response to glucose are unable to suppress 

glucagon secretion (171; 172). In addition, increased Zn
2+

 in the islet, which is packaged 

and released with insulin granules, inhibits glucagon secretion (170). Increased insulin 

secretion associated with GLP-1 may result in increased Zn2+ release, which could be 
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responsible for decreased glucagon secretion. Some have also suggested that the decrease 

in glucagon secretion is a result of the direct effect of GLP-1 resulting in an increase in 

α-cell insulin sensitivity (167).  

 It has been well documented that the direct effect of GLP-1 on pancreatic δ-cells 

is increased somatostatin release (173; 174), which could inhibit glucagon secretion in a 

paracrine fashion. This is supported by studies indicating that GIP does not alter 

somatostatin release from pancreatic δ-cells or decrease glucagon secretion in humans 

(103; 173; 175). Due the suggested blood flow in the islet from β- to α- to δ-cell, it seems 

most likely that the effect of GLP-1 on glucagon secretion in vivo is actually an indirect 

result of GLP-1’s direct effects on the β- , and possibly to a lesser effect the δ-cells, in the 

pancreas. 

 

GLP-1 Regulation at the Liver 

 The liver is responsible for the disposition of approximately one-third of 

circulating glucose after an orally delivered moderate glucose load (176).  With ~80% of 

hepatic blood supplied by the hepatic portal vein GLP-1 levels are significantly greater at 

the liver than in the periphery (47). While liver glucose production and uptake are 

indirectly regulated by GLP-1 induced changes in pancreatic hormone levels, there is 

some evidence that GLP-1 can exert a direct effect on the liver, per se (47; 177). 

 There has been very little evidence that the classical GLP-1R is present in the 

liver. The use of PCR to detect GLP-1R mRNA has brought about mixed results, with 

minimal levels at best (86; 88), but it has been shown that radiolabeled GLP-1 does bind 
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to hepatic membranes (97).  This suggests that direct regulation of the liver by GLP-1 

resulting in changes in glucose production and utilization is possible (97; 102).   

 In vivo, a peripheral infusion of GLP-1, to create a physiological increase in GLP-

1 levels, suppressed glucose production in humans under euglycemic clamp conditions 

with pancreatic hormones clamped at basal levels (98).  Our lab has shown in dogs that 

when a physiological or pharmacological increase in plasma GLP-1 is brought about 

under hyperglycemic-hyperinsulinemic clamp conditions there is an increase in net 

hepatic glucose uptake (47; 48; 177). This effect occurs whether GLP-1 is administered 

intraportally or via the hepatic artery (47; 177), suggesting that GLP-1 is mediating this 

effect directly by activating its receptors at the liver. This effect is small and seen only 

with high physiological levels of the peptide (177). 

 In vitro, hepatocytes incubated in GLP-1 increase glucose incorporation into 

glycogen due to increased glycogen synthase and decreased glycogen phosphorylase 

activity (178). Changes in enzyme activation are the result of cAMP-independent 

signaling via PI3 kinase/PKB pathways (179).  This is in agreement with the inhibition of 

glucagon-induced glycogenolysis by GLP-1 (180). When GLP-1 levels are elevated in 

the brain of mice, insulin mediated hepatic glucose uptake and conversion into glycogen 

is favored over nonhepatic glucose uptake (143). These results indicate that GLP-1 

enhances hepatic glucose uptake and storage by both direct and indirect mechanisms.   
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Direct Effects of GLP-1 on Adipose and Skeletal Muscle 

 There is in vitro evidence that GLP-1 exerts a direct effect at the adipocyte. GLP-

1 binds to the adipocyte membrane (100; 181) and has been shown to increase 

intracellular cAMP levels in primary adipose culture (182). In 3T3-L1 adipocytes, GLP-1 

increases insulin mediated glucose uptake (88). In this cell line, increased insulin 

mediated glucose uptake in the presence of GLP-1 results in increased lipid synthesis 

(88). This is in agreement with experiments in primary cultures of adipocytes in which 

GLP-1 increased insulin dependent incorporation of radiolabeled acetate into fatty acids 

(183). Although there is agreement between cell line and primary culture in regard to 

fatty acid synthesis, there are mixed results when evaluating glycogen synthesis, with 

increases in primary cultured adipocytes (184), and no effect in 3T3-L1 adipocytes (88). 

These effects are thought to be mediated through a PI3 kinase/MAPK pathway (185), and 

are not the result of changing the affinity of insulin for its receptor (88). 

 The effects of GLP-1 on skeletal muscle have also been explored in vitro. It has 

been determined that GLP-1 binds to rat skeletal muscle, but that binding is not 

accompanied by changes in AC or cAMP (101; 186).  Similar results were found in L6 

myotubes exposed to GLP-1; however, when these cells were transfected with the 

identified GLP-1R, they experience a significant increase in intracellular cAMP (187).  

This suggests that an unidentified receptor for GLP-1 at the muscle may be mediating its 

effects. There is some evidence that signaling is occurring via PI3 kinase (188-190); 

however, these studies have all been conducted in the same laboratory, and others have 

not been able to confirm these results (191). Muscle tissue exposed to physiological 

levels of GLP-1 exhibits increased glucose uptake and glycogen storage, due to increased 
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glycogen synthase activity and decreased glycogen phosphorylase activity (178; 186; 

192; 193). Other effects of GLP-1 in muscle include increased glucose oxidation and 

increased lactate production (186; 192; 193).  

  In vivo studies suggest that GLP-1 serves as an insulin sensitizer throughout the 

body. GLP-1 has been shown to increase whole body glucose disposal to a greater extent 

than can be attributed to changes in the insulin level (194). The majority of this increase 

in uptake has been attributed to increased adipose and skeletal muscle glucose uptake 

(194).  GLP-1 increased whole body glucose uptake in the presence of a hyperglycemic-

hyperinsulinemic clamp in depancreatized dogs (86). Our lab has also shown that GLP-1 

increases nonhepatic glucose uptake in the presence of GLP-1 under a hyperglycemic-

hyperinsulinemic clamp (48). Others have found no such effect (195). The studies 

referenced here delivered GLP-1 via a peripheral infusion, rather than through an 

intraportal route, which would be a more physiologically relevant route of delivery. The 

significance of route of GLP-1 delivery will be discussed further in a later section. 

 At this point, it is difficult to determine if in vivo actions of GLP-1 are the result 

of direct effects on glucose utilization, or if its role in whole body glucose homeostasis is 

dependent on its enhancement of insulin action. If a direct effect of GLP-1 does exist, it is 

small and hard to isolate from the other effects of GLP-1. The effect of GLP-1 on whole 

body glucose utilization discussed in this section focuses on acute elevation of GLP-1 

levels.  Chronic elevations of GLP-1 have an effect on body weight, which would also 

influence glucose utilization.  Chronic GLP-1 treatment and body weight will be  

discussed in a later section. 
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Cardiovascular Regulation 

 Changes in circulation play an important role in nutrient delivery, and therefore, 

the role of GLP-1 in the cardiovascular system may result in changes in glucose 

utilization.  It has been shown that GLP-1 exerts both direct and indirect effects in the 

cardiovascular system.  Pharmacological concentrations of GLP-1 administered 

intravenously into rats result in significantly increased systolic, diastolic, and mean 

arterial blood pressure (196; 197). The GLP-1R has been identified in heart tissue and, 

when activated, the result is increased cAMP levels (198). In addition, GLP-1 decreases 

pulmonary vascular tone in isolated, perfused lung, indicating a direct effect within the 

lung (199).  Mean arterial blood pressure and heart rate were also increased when GLP-1 

was injected into rats via intracerebroventricular administration (197; 200). These effects 

were most likely initiated at GLP-1R known to exist in the nucleus tractus solitarius, 

which is a controller of cardiovascular function (199; 201).  

 Some have suggested that GLP-1 increases glucose uptake by the heart by 

increasing insulin sensitivity, which in turn improves cardiac function (202; 203). This 

may explain the benefits observed with chronic GLP-1 treatment of those with impaired 

cardiac function (204; 205).  There is potential for GLP-1 to serve as a therapy to 

improved cardiovascular function, but its role as a physiological regulator of the 

cardiovascular system is unresolved.  Few in vivo studies report indicators of blood flow, 

making it difficult to address the effects of GLP-1 on cardiac function; however, our lab 

has reported increases in hepatic and nonhepatic glucose uptake in the presence of 

physiological GLP-1, without changes in blood flow to the liver (48).  This indicates that 
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GLP-1 effects on whole body glucose utilization are unlikely to be due to changes in 

cardiovascular function. 

 

Gastric Emptying and Gut Motility 

 In the presence of a GLP-1 infusion, the primary GLP-1 effect after a meal 

appears to be a reduced rate of gastric emptying in both healthy subjects and those with 

type 2 diabetes (206-209).  This is demonstrated with significantly reduced postprandial 

glucose levels with GLP-1 infusion, when compared to saline infusion, and appropriately 

elevated insulin levels with the increased glycemia (208; 210).  Physiological 

mechanisms that contribute to this effect include: decreased gastric acid secretion, 

decreased antral and duodenal contractions, as well as increased pyloric tone (211; 212).  

In addition, it has been shown that GLP-1 slows nutrient transit through the gut (213).  It 

appears as though the effect of GLP-1 on gastric emptying and gut motility is important 

for physiological regulation of nutrient utilization, because endogenous plasma GLP-1 

levels have a strong negative correlation with gastric emptying after a meal (214). 

 Slowed gastric emptying induced by elevated GLP-1 levels increases the 

sensation of fullness, along with decreasing the desire to eat (215). This is most likely 

attributable to increased stomach distention (216); however, this may not be the direct 

result of increased stomach content. Injection of GLP-1 and its analogues are known to 

induce nausea, especially during the first several treatments; therefore, decreased food 

intake may actually be due to nausea associated with acute treatment of GLP-1 and its 

mimetics.  
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Chronic Effects on Weight 

 Chronic GLP-1 administration in obese humans results in a significant decrease in 

body weight (217).  Decreases in body weight occur with decreased energy intake, 

increased energy expenditure, or both. GLP-1 injection or infusion directly results in 

decreased food intake (218).  As mentioned earlier, GLP-1 slows gastric emptying, which 

results in an increased sense of fullness, which could contribute to a decrease in food 

intake (215). In addition, those chronically treated with GLP-1 or its mimetics often 

experience nausea, decreasing the desire to eat, thus resulting in decreased food intake.  

Although these factors may contribute, it has been shown that intracerebroventricular, but 

not peripheral, administration of GLP-1 results in decreased food and water intake in rats, 

suggesting a centrally mediated effect (219; 220). This effect has been shown to be a 

direct effect on the regulation of energy homeostasis, and separate from the centrally 

mediated effect of gastric emptying and decreased satiety due to distention (221). 

 As previously mentioned, GLP-1R have been found throughout the brain (91), 

with the greatest density in the hypothalamus (222), specifically within the 

paraventricular and arcuate nucleus (219; 223).  The hypothalamus, and in particular the 

arcuate nucleus, is a key site in the regulation of energy balance (224).  GLP-1 stimulates 

proopiomelanocortin (POMC) neurons in a dose dependent manner (225).  POMC 

neurons are located in the arcuate nucleus, and stimulation results in a significant 

decrease in food intake and body weight (226; 227).  In addition, within the 

hypothalamus, GLP-1R are found co-localized with both GLUT2 and glucokinase, two 

proteins which serve the brain as glucose sensors (219; 228). This indicates that GLP-1 
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activity in the hypothalamus is responsible for the decrease in food intake, and possibly 

takes part in glucose sensing in the brain.    

 The other side of the energy balance equation is energy expenditure.  There is 

some evidence that GLP-1 also alters energy expenditure. GLP-1, infused either 

peripherally or i.c.v., increases basal metabolic rate via a mechanism initiated in the 

hindbrain, associated with increased heart rate and temperature (229).  This is in 

concordance with increased basal metabolism in mice with elevated circulating GLP-1 

levels due to ablation of DPP-IV (230).  It has been shown that i.c.v. administration of 

GLP-1 does not alter rat locomotor activity (220).  

 Weight loss also been associated with chronic treatment of subcutaneous 

injections of exenatide, despite the peripheral route of delivery (231); however, this drug 

is administered at much higher and longer lasting levels than endogenous GLP-1 levels or 

even pharmacological levels of the peptide.  This may result in exenatide actions that are 

not physiologically relevant; however, using what is known about GLP-1 and chronic 

weight loss, there could be several explanations for the weight loss.  First, this may be the 

result of decreased food intake due to increased fullness as a result of gastric emptying, or 

nausea induced by treatment. Second, exenatide may be crossing the blood brain barrier 

to stimulate the POMC neurons. Third, exenatide may be initiating a central effect by 

interaction at the area postrema of the brain, which is known to increase neural activation 

with peripheral GLP-1 infusion (232).   Fourth, it may be increasing basal energy 

expenditure, which has also been shown to be the result of peripheral GLP-1 

administration (229).   



 39 

 The effect of GLP-1 on weight loss has been determined with the use of 

pharmacological doses of the peptide. At this point it is unclear if GLP-1 that is either 

endogenously produced in the CNS (233) or that which is released from the L cells in the 

gut contribute to the physiological regulation of energy balance.  

 

Glucose Utilization Mediated by Intraportal Sensors 

 When GLP-1 is secreted from the L cell, it enters the circulation that empties into 

the portal vein. Due to its proximity to the site of secretion, and the rapid degradation of 

GLP-1, postprandial hepatic portal vein GLP-1 levels are significantly greater than those 

in the periphery (47).  Immunohistochemistry has been used to show that GLP-1R are 

expressed on vagal afferent neurons that innervate the hepatoportal region (87).   

Intraportal injection of  a physiological concentration of GLP-1 significantly increased 

afferent discharges from the hepatic branch of the vagus nerve in anesthetized rats (96; 

234).  This effect was not observed with intraportal injection of GIP (234).  These studies 

indicate that the hepatic portal vein is a potential site of initiation of some of the indirect 

effects of GLP-1.  

 As mentioned earlier, the increase in afferent discharges from the hepatic branch 

of the vagus nerves is accompanied by increases in the efferent impulses in the pancreatic 

branch of the vagus nerves, an effect which is lost with hepatic vagotomy (96). This 

indicates that the neural signals, initiated at the hepatic portal vein, could increase 

signaling the pancreas and thereby participate in the incretin effect. Studies done in rats 

in the presence of an intraportal glucose infusion showed that GLP-1 delivered either 

intraportally or peripherally increases insulin secretion; however, this effect was 
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abolished in those that received GLP-1 intraportally with peripheral administration of a 

pharmaceutical ganglionic blocker (235). This ablation was not observed with the 

peripheral administration of GLP-1 (235). This suggests that the incretin effect may be 

the combination of two effects: 1) a neural reflex, initiated by intraportally delivered 

GLP-1, 2) direct interaction of GLP-1 at the β-cell. 

 Others have suggested that intraportal GLP-1 delivery initiates other effects of the 

peptide. GLP-1
-/-

 mice are unable to increase whole body glucose uptake as a result of 

intraportal glucose infusion in contrast to control animals (236).  It has also been shown 

that intraportal GLP-1 decreases glucose levels, without changing insulin levels in dogs 

(49; 237).  Our lab has shown that when GLP-1 was infused peripherally at a 

superphysiological GLP-1 level, the peptide increased glucose utilization (48; 177).  The  

super-physiological levels of GLP-1 may have overridden the sensing of an arterial-portal 

venous GLP-1 gradient or have allowed sufficient GLP-1 to contact the hepato-portal 

GLP-1 receptors.  We have also infused a physiological level of GLP-1 into either a 

peripheral vein, the hepatic portal vein, or the hepatic artery, with similar increased 

hepatic glucose uptake in the latter two groups (47).   However, these studies were not 

done in the presence of intraportal glucose delivery (47; 48; 177).  It has been suggested 

that intraportal glucose delivery is necessary to observe the effect of intraportal GLP-1 on 

whole body glucose utilization (49; 236). Therefore, the physiological importance of 

intraportal GLP-1 delivery in glucose homeostasis has yet to be fully determined. 
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Specific Aims 

 Endogenous secretion of GLP-1 results in physiological elevations of the peptide 

at varying concentrations throughout the body.  After a meal GLP-1 levels in the blood 

surrounding the L cell are double those in the hepatic portal vein (58), and levels in the 

hepatic portal vein twice those in the periphery (47).  The overlying hypothesis of this 

thesis is that these specific elevations in GLP-1 level have a role in glucose regulation. 

 Specific Aim I was to determine if the effects of GLP-1 in the dog are mediated 

by delivery of the peptide into the hepatic portal vein. Changes in neural firing that occur 

upon GLP-1 entrance in the hepatic portal vein (96) may initiate portions of the incretin 

effect, or other glucoregulatory effects that are summarized in Figure 1.4. We evaluated 

changes in carbohydrate metabolism, due to both direct and indirect effects of GLP-1, in 

vivo.  This was done in healthy dogs under conditions of hyperglycemia, with no 

pancreatic clamp, so hormones could freely respond. Intraportal glucose delivery was 

administered to mimic postprandial hepatic portal vein glucose levels and peripheral 

glycemia was maintained by peripheral infusion. We evaluated animals that experienced 

an elevation in GLP-1 levels that mimicked a postprandial state, induced by an intraportal 

GLP-1 infusion. This included a two-fold greater GLP-1 level in the hepatic portal vein 

than in the periphery. Comparisons were then made to animals that experienced an 

elevation of GLP-1 to match levels observed at the liver and periphery due to 

administration of the peptide via the hepatic artery. The glucoregulatory response in  
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Figure 1.4 The effects of GLP-1 on glucose homeostasis.  Solid arrows represent known 

direct effects and solid neurons represent known neural signaling. Dashed lines represent 

possible indirect effects resulting from neural signaling. 
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animals that had elevated GLP-1 levels, due to either intraportal or peripheral infusion, 

was then compared to animals that only experienced a matched hyperglycemia. 

 It is well understood that the majority of the acute effects of GLP-1 are glucose 

dependent. Specific Aim II was designed to determine if the route of glucose delivery, by 

which glycemia is increased, alters GLP-1 action. GLP-1 is only endogenously released 

after meals, with no secretion when hyperglycemia is achieved via infusion into a 

peripheral vein; therefore, under physiological conditions, GLP-1 secretion is always 

accompanied by glucose elevation in the hepatic portal vein.  To determine if a glucose 

gradient between the hepatic portal vein and arterial blood must exist for GLP-1 to exert 

the effects that were observed in Specific Aim I, we replicated the conditions of the 

earlier aim with the exception of the intraportal glucose infusion.  Hyperglycemia was 

maintained only by peripheral glucose infusion alone, and dogs received either intraportal 

GLP-1 or saline. Once again, this intraportal GLP-1 infusion resulted in levels that 

mimicked those observed postprandially.    

 GLP-1 possibly exerts its effects on whole body glucose utilization by increasing 

insulin sensitivity. It had yet to be determined how differences in β-cell glucose 

sensitivity or whole body insulin sensitivity could affect the actions of a physiological 

increase in GLP-1 levels. Specific Aim III was to determine if the state of whole body 

insulin responsiveness or β-cell glucose sensitivity alters the effectiveness of portally 

delivered GLP-1. To address this issue, we compared the results of Specific Aim I to 

results obtained in healthy animals that had been fasted for a shorter duration than those 

used earlier. It is well documented that duration of fast is negatively correlated with 

insulin sensitivity; therefore, in this aim we used a model of greater insulin sensitivity to 
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evaluate the effects of GLP-1.  Glycemic levels were elevated by a combination of 

intraportal and peripheral glucose infusions and accompanied by an intraportal infusion 

of either GLP-1 or saline.  

 Specific Aim IV was to determine if endogenously released GLP-1 has any 

impact on postprandial glucose disposal in the dog. Although intraportal GLP-1 infusion 

does mimic the entrance of GLP-1 into the circulation, it does not replicate its secretion 

from the gut where it may enter the lymph or interact with nerve endings close to the site 

of secretion. As previously mentioned, upon release by the L cell, GLP-1 enters both the 

intestinal lymph system and portal circulation, with total levels of GLP-1 being 

approximately 5-6 times greater in the former than the latter (52).  This presents the 

possibility that GLP-1 may be initiating indirect effects upstream of the portal circulation 

via neural activation.  To execute this aim we studied healthy dogs and an additional 

subset of insulin resistant dogs, twice each. The animals received either a peripheral 

saline or exendin (9-39) infusion in random order. During both studies they received an 

orally delivered meal consisting of carbohydrate, fat, and protein. This allowed for the 

observation of any GLP-1 effects that may be mediated throughout the body, including 

close to the site of secretion. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Animal Care and Surgical Procedures 

 Studies were carried out in conscious mongrel dogs of either sex.  Sixty-three 

animals (18-27 kg) were maintained on a diet of meat (Kal Kan, Vernon, CA) and chow 

(Purina Lab Canine Diet No. 5006; Purina Mills, St. Louis, MO) composed of 34% 

protein, 14.5% fat, 46% carbohydrate, and 5.5% fiber based on dry weight. Three 

additional animals (29-35 kg) were maintained on a high-fat/high-fructose chow diet 

composed of 22% protein, 52% fat, 26% carbohydrate (over half of which is fructose). 

Water was available for all animals ad libitum. The animals were housed in a facility 

which met American Association for Accreditation of Laboratory Animal Care 

guidelines, and the protocol was approved by the Vanderbilt University Medical Center 

Animal Care Committee. 

 Approximately 16 days before experimentation, surgery was performed on the 

sixty-three animals (that received normal meat and chow) while under general anesthesia. 

Anesthesia was induced with propofol (given until induction) preceded by buprenorphine 

HCl (0.02 mg/kg, presurgery) 30 min earlier. Anesthesia was maintained by isoflurane 

(1.5-2.0% with oxygen) inhalation.  The dog was placed in a supine position on a surgical 

table with an 8.5 mm inner diameter (ID) endotracheal tube (Concord/Protex, Kenee, 

NH), and ventilated with a tidal volume of 400 ml at 14 breaths per minute.  



 46 

 A laparotomy was performed by making a midline incision 1.5 cm caudal to the 

xyphoid process through the skin, subcutaneous layers and linea alba, and extending 

caudally 15-20 cm.  For intraportal infusion of GLP-1, saline, and glucose (Specific Aims 

I, II, III), silastic infusion catheters (0.03 in ID; HelixMedical, Carpintera, CA) were 

placed in the following manner: A portion of the jejunum was exposed and a branch of a 

jejunal vein was selected for cannulation. A small section of the vessel was exposed by 

blunt dissection and ligated with 4-0 silk (Ethicon, Inc, Sommerville, NJ). A silastic 

infusion catheter was inserted into the vessel through a small incision and passed 

antegrade until the tip of the catheter lay approximately 1 cm proximal to the coalescence 

of two jejunal veins. Another silastic catheter was inserted into a distal branch of the 

splenic vein and advanced until the tip of the catheter lay 1 cm beyond the bifurcation of 

the main splenic vein. Catheters were secured in place with 4-0 silk.  For GLP-1 infusion 

into the hepatic artery (Specific Aim I), a silastic infusion catheter (0.03 in ID; 

HelixMedical, Carpintera, CA) was inserted antegrade 3-4 cm into a hole created by an 

18 gauge needle in the common hepatic artery.  The catheter was secured with a purse 

string suture with using 5-0 polyester. 

 For blood sampling, silastic catheters (0.04 in ID) were placed into the left hepatic 

vein, the hepatic portal vein, left femoral artery, and the common iliac vein. The central 

and left lateral lobes of the liver were retracted cephalically and caudally, respectively. 

The left common hepatic vein and the left branch of the portal vein were exposed. A 14-

gauge angiocath (Benton Dickinson Vascular Access, Sandy, UT) was inserted in the left 

branch of the portal vein 2 cm from the central liver lobe. A silastic catheter (0.04 in ID) 

for blood sampling was inserted into the hole created by the angiocath, advanced 
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retrograde about 4 cm into the portal vein so that the tip of the catheter lay 1 cm beyond 

the bifurcation of the main portal vein, and secured with three ties of 4-0 silk through the 

adventitia of the vessel and around the catheter. An angiocath was inserted into the left 

common hepatic vein 2 cm from its exit from the left lateral lobe. A silastic sampling 

catheter was inserted into the hole and passed antegrade 2 cm and secured into place with 

three ties of 4-0 silk suture.  

 Arterial blood was sampled from the left femoral artery, while venous blood for 

hindlimb balance in (Specific Aim IV) was sampled from the right iliac vein of three 

animals. The arterial sampling catheter was inserted into the left femoral artery following 

a cut-down in the left inguinal region.  A 2 cm incision was made parallel to the vessel.  

The femoral artery was isolated and ligated distally.  A silastic sampling catheter (0.04 in 

ID) was inserted and advanced 16 cm in order to place the tip of the catheter in the 

abdominal aorta.  Exposure of the right proximal caudal femoral vein was achieved by 

blunt dissection, and the vessel was ligated distally.  A silastic sampling catheter (0.03 in 

ID) was inserted and advanced into the common iliac vein and secured to the proximal 

caudal vein with 4-0 silk suture. 

 All catheters were filled with saline (Baxter Healthcare Corp, Deerfield, IL) 

containing 200 U/ml heparin (Abbott Laboratories, North Chicago, IL) and knotted. 

Abdominal catheters were secured to the abdominal wall and placed in a subcutaneous 

pocket prior to closure of the skin.  The arterial and iliac venous sampling catheters were 

also placed in a subcutaneous pocket prior to closure of the skin. 

 Ultrasonic flow probes (Transonic System Inc, Ithaca, NY) were positioned 

around the hepatic artery and portal vein, to determine liver blood flow, and the external 
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iliac artery, to determine hindlimb blood flow. The duodenum was laterally retracted to 

expose a section of the hepatic artery and portal vein. A small section of the portal vein 

was exposed by blunt dissection taking care not to disturb the nerve bundle located on the 

vessel.  A 6 or 8 mm ID ultrasonic flow probe (Transonic Systems Inc, Ithaca, NY) was 

placed around the vessel.  A small portion of the common hepatic artery was also 

carefully exposed and a 3 mm ID ultrasonic flow probe was secured around the vessel.  

The gastroduodenal vein was isolated and ligated to prevent blood from entering the 

portal vein beyond the site of the flow probe.  Blood that would normally flow through 

the gastroduodenal vein was shunted through the caudal pancreatoduodenal vein draining 

the tail of the pancreas.  A 4 mm ID flow probe was positioned on the external iliac 

artery. The ultrasonic flow probe leads were positioned in the abdominal cavity and 

secured with the ends of the catheters to the abdominal wall.  

 Two of the three animals that had been maintained on a high-fat/high-fructose diet 

received a partial pancreatectomy under general anesthesia, as described above.  

Following a midline incision and exposure to the abdominal viscera, the duodenum was 

retracted upwards and the pancreatico-duodenal vein and artery was isolated.  The right 

lobe of the pancreas was isolated from the mesentery and transected using a surgical 

stapling device at the union of the right lobe caudal extremity and the distal duodenum.  

The previously isolated pancreatico-duodenal artery and vein were ligated and transected 

and the right lobe removed.  Attention was directed to the left (splenic) lobe.  The 

pancreatico-splenic veins and arteries were isolated and the left lobe was transected at the 

union with the pylorus.  The mesenteric connections were transected. The arteries and 

veins were then cut and the left lobe removed. This resulted in removal of approximately 



 49 

two-thirds of total pancreatic tissue. Hemostasis was controlled by electrocautery and/or 

vessel ligation with 4-0 silk suture. 

After all abdominal surgeries, the subcutaneous layer was closed with a 

continuous suture of 2-0 chromic gut (Ethicon, Inc.).  The skin was closed with 

horizontal mattress sutures of 3-0 Dermalon (Ethicon, Inc.).  Immediately following 

surgery, the dogs received an intramuscular injection of penicillin G (10
6
 U, Procaine; 

Anthony Products, Irwindale, CA) to minimize the possibility of infection.  In addition, 

Flunixin (Meglumine 50mg/ml; Phoenix Scientific, Inc., St. Joseph, MO) was injected 

intramuscularly (1 mg/kg body weight) after wound closure for acute pain relief.  

Animals awoke from surgery within 2 h, were active, and ate normally approximately 8 h 

after surgery.  Post-operatively, each dog also received 500 mg ampicillin (Principen; 

Bristol-Myers Squibb, Princeton, NJ) orally twice a day for 3 days.  

All dogs studied had: 1) leukocyte count <18,000/mm
3
, 2) a hematocrit >35%, 3) 

a good appetite, and 4) normal stools at the time of study.  On the day of the experiment, 

the free ends of the catheters and ultrasonic leads were removed from their subcutaneous 

pockets under local anesthesia (2% lidocaine; Abbott Laboratories, North Chicago, IL). 

The contents of each catheter were aspirated, and they were flushed with saline. Blunt 

needles (18 gauge; Monoject, St. Louis, MO) were inserted into the catheter ends and 

stopcocks (Medex, Inc, Hilliard, OH) were attached to prevent the backflow of blood 

between sampling times.  

Twenty gauge Angiocaths (Beckton Dickson) were inserted percutaneously into 

the left and right cephalic veins and into a saphenous vein for the infusion of tracers 

(Specific Aim I), dye (Specific Aim I, II, III), glucose (Specific Aims I, II, III) or exendin 
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9-39 (Specific Aim IV).  Blood samples from animals maintained on a high-fat/high-

fructose diet were conducted by deep venous sampling catheters placed in cephalic and/or 

saphenous veins.  A continuous infusion of heparinized saline was started via the femoral 

artery, iliac vein, and deep venous sampling catheters.  Animals were allowed to rest 

quietly in a Pavlov harness for at least 40 min before the start of the experiment. 

In normal animals that were to be re-studied (Specific Aim IV): at the end of the 

experiment, anesthesia was induced with propofol and maintained with isoflurane (1.5-

2.0% with oxygen), as described above.  Catheters and ultrasonic flow probe leads, along 

with incisions, were washed and aseptically cleansed (3 times) with betadine/alcohol 

solution.  Catheters were filled with a sterile mixture of heparin and glycerin (1000 U/ml 

in a 1:1 ratio).  Their free ends were knotted, and along with the probe leads, were 

replaced in the subcutaneous pocket. Wound closure was performed as described above. 

 

Experimental Design 

Specific Aim I 

 Specific Aim I was to determine what actions of GLP-1 in the dog are mediated 

by delivery of the peptide into the hepatic portal vein.  

 Dogs were fasted for 42 h. This length of fast produces a metabolic state more 

closely resembling that in the overnight-fasted human (the dog takes much longer to 

absorb a meal) and results in liver glycogen levels that are at a stable minimum in the dog 

(238).  The protocol consisted of a 100-min equilibration period (-140 to -40 min), 40-

min basal sampling period (-40 to 0 min) and a 240-min experimental period (0 to 240 

min).  At t= -140, a continuous infusion of indocyanine green dye (0.076 mg/min; Sigma 
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Chemical, St. Louis, MO) used as a back-up method for hepatic blood flow measurement, 

along with a primed (30 µCi) continuous infusion of [3-
3
H] glucose was started.  At t=0, 

an intraportal glucose infusion (4 mg/kg/min) was started to activate the portal signal 

(239), in addition a peripheral glucose infusion (variable rate) was started to maintain the 

arterial plasma glucose level at 160 mg/dl. Also at t=0, an intraportal saline infusion was 

started in the CON group (n=8), an intraportal GLP-1 (7-36) infusion (1 pmol/kg/min; 

Bachem Biosciences, King of Prussia, PA) was started in the POR group (n=11) and a 

hepatic artery infusion of GLP-1 (7-36) (1 pmol/kg/min; Bachem Biosciences) was 

started in the HAT group (n=8).  Pancreatic hormones were not clamped. This GLP-1 

infusion rate creates plasma GLP-1 levels observed in the portal vein and arterial plasma 

after an oral glucose tolerance test (OGTT) in the dog (47). They are similar to a human’s 

GLP-1 levels in response to an OGTT (43).  

 

Specific Aim II 

 Specific Aim II was designed to determine if the route of glucose delivery alters 

GLP-1 action during hypgerglycemia. 

 Dogs were fasted for 42 h.  The protocol consisted of a 100-min equilibration 

period (-140 to -40 min), a 40-min basal sampling period (-40 to 0 min) and a 240-min 

experimental period (0 to 240 min).  At t= -140 min, a continuous infusion of 

indocyanine green dye (0.076 mg/min) was started.  At t=0, a peripheral glucose infusion 

through a leg vein was started to achieve and maintain an arterial plasma glucose clamp 

at 160 mg/dl during in the experimental period (0 to 240 min). Also starting at t=0, 

animals received an intraportal infusion of either saline (SAL, n=6) or GLP-1(1 
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pmol/kg/min; GLP-1, n=6).  Pancreatic hormones were not clamped. Analysis of this 

group includes comparison to the intraportal saline and GLP-1 infusion groups from Aim 

I, in which an intraportal glucose infusion was present. 

 

Specific Aim III 

 Specific Aim III was to determine if the state of whole body insulin 

responsiveness or β-cell glucose sensitivity alters the effectiveness of portally delivered 

GLP-1. 

 Dogs were fasted for 18 h, a shorter duration than in the previous protocols in 

order to improve whole body insulin responsiveness and β-cell glucose sensitivity. The 

protocol consisted of a 100-min equilibration period (-140 to -40 min), and 40-min basal 

sampling period (-40 to 0 min) and a 240-min experimental period (0 to 240 min).  At t= 

-140, a continuous infusion of indocyanine green dye (0.076 mg/min) was started. At t=0, 

an intraportal glucose infusion (4 mg/kg/min), in addition to a peripheral glucose infusion 

(variable rate) to maintain a peripheral arterial plasma glucose clamp at 160 mg/dl, were 

started. Also starting at t=0, animals received an intraportal infusion of either saline 

(SAL, n=8) or GLP-1(1 pmol/kg/min; GLP-1, n=8).  Pancreatic hormones were not 

clamped. Analysis of this group includes comparison to the intraportal saline and GLP-1 

infusion groups from Aim I, which were fasted for 42 h. 
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Specific Aim IV 

 Specific Aim IV was to determine if endogenously released GLP-1 has any 

impact on postprandial glucose disposal in the dog. 

 Normal dogs (n=8) and insulin resistant dogs (n=3) were each studied twice, with 

a minimum of a one week interval separating experiments. After an 18-hour fast, the dogs 

underwent a 40-min acclimation period (-60 to -20 min), a 20 minute basal sampling 

period (-20 to 0 min), followed by a 320-min experimental period (0 to 320 min).  At t=0, 

a peripheral infusion of saline or the GLP-1R antagonist exenatide (9-39) (500 

pmol/kg/min) was started.  Treatment and control studies were conducted in a random 

order.  At t=30, all dogs received an orally administered liquid mixed meal consisting of 

480 calories [63% carbohydrate (glucose polymer), 17% protein (whey), 20% fat 

(microlipid)], spiked with acetaminophen (500 mg), to quantify gastric empting. 

 

Collection and Processing of Samples 

Blood samples were drawn from the femoral artery and portal, hepatic, and iliac 

veins in normal dogs, and deep venous samples were drawn from the insulin resistant 

dogs (Specific Aim IV), at the predetermined time points.   Additionally, whenever the 

experimental design required a glucose clamp (Specific Aims I, II, III), small (~0.5 ml) 

arterial samples were drawn every 5 min to facilitate maintenance of the plasma glucose 

concentration.  Before samples were taken, the sampling catheter was cleared by 

withdrawing 5 ml of blood into a syringe.  After sampling, this blood was re-infused and 

the catheter was flushed with heparinized saline (1 U/ml; Abbott Laboratories, North 

Chicago, Il).  The total volume of blood withdrawn did not exceed 20% of the animal’s 
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blood volume, and two volumes of normal saline (0.9% sodium chloride; Baxter 

Healthcare Co., Deerfield, Il) were given for each volume of blood withdrawn. No 

significant decrease in hematocrit occurred throughout duration of study. 

Before the experiment started, an arterial blood sample was drawn and 

centrifuged (3000 rpm for 7 min). The plasma from this blood sample was used to 

prepare a 3% plasma/saline solution in which the GLP-1 (Specific Aims I, II, III) or 

exendin (9-39) (Specific Aim IV) were diluted. In addition, this plasma was used for the 

indocyanine green standard curve. When samples were taken from all vessels, the arterial 

and portal blood samples were collected simultaneously ~30 s before the collection of the 

hepatic and iliac venous samples in an attempt to compensate for the transit time through 

the liver and muscle, and thus allow for the most accurate estimates of net substrate 

balance.   

After the final sampling point, anesthesia was induced with propofol (given until 

induction) in animals that awaited a repeat study (Specific Aim IV), and catheters were 

re-tucked as described above. Otherwise, normal animals were euthanized with 

pentobarbital (125 mg/kg).  Insulin resistant animals had the deep venous sampling 

catheter removed, and were returned to the housing facility. 

Immediately following each sample collection, the blood was processed.  A 20 µl 

aliquot of arterial whole blood was used for the immediate duplicate measurement of 

hematocrit using capillary tubes (0.4 mm ID; Drummond Scientific Co., Broomall, PA). 

The remaining blood was placed into tubes containing potassium 

ethylenediaminetetraacetate (EDTA, 1.6 mg/ml; Sarsdedt, Newton, NC), inverted and 

gently mixed.  One ml of whole blood was removed from the above tube and lysed with 3 
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ml of 4% perchloric acid (PCA; Fisher Scientific, Fair Lawn, New Jersey). The solution 

was vortexed, centrifuged, and the supernatant was stored for later determination of 

whole-blood metabolites (alanine, β-hydroxybutyrate, glycerol, and lactate). Another 1 

ml aliquot was taken placed in a tube with 10 µl of DPP-IV inhibitor (Linco Research, St. 

Charles, MO) to ensure the integrity of the GLP-1. This aliquot was then centrifuged, and 

the supernatant was stored on dry ice for later determination of plasma GLP-1 levels. The 

remainder of the blood was centrifuged at 3000 rpm at 4º C to obtain plasma. 

Four 10 µl aliquots of plasma were immediately analyzed for glucose using the 

glucose oxidase method with a Beckman glucose analyzer (Beckman Instruments, 

Fullerton, CA).  A 1 ml aliquot of plasma received 50 µl of 10,000 KIU/ml Trasylol 

(FBA Pharmaceuticals, New York, NY) and was stored for analysis of glucagon and C-

peptide.  A 500 µl aliquot of plasma received 10 µl of tetrahydrolipostatin (3g/L) and was 

stored for analysis of non-esterified free fatty acids (FFA). The remainder of the plasma 

was used for analysis of [3-
3
H] glucose (Specific Aim I), insulin, indocyanine green 

(Specific Aims I, II, III), and acetaminophen (Specific Aim IV).  After each sample was 

processed, it remained on wet ice for the remainder of the experiment and was then stored 

at -70º C until analysis was performed. 

 

Sample Analysis 

Plasma Glucose 

 Plasma glucose concentrations were determined by the glucose oxidase method 

(240) using a Beckman glucose analyzer (Beckman Instruments, Fullerton, CA).  The 

reaction sequence was as follows: 
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                                       glucose oxidase 

ß-D-glucose + O2 ----------------------------------> gluconic acid and H2O2 (1) 

 

                                         catalase 

H2O2 + ethanol -------------------------------------> acetaldehyde + H2O  (2) 

 

                                        molybdate 

H2O2 + 2H
+
 +2I

-
 ------------------------------------> I2 + H2O  (3) 

 

The glucose concentration is proportional to the rate of oxygen consumption.  The 

plasma glucose concentration in a sample (10 µl) is determined by comparison of the 

oxygen consumption in the samples with the rate of oxygen consumption by a standard 

solution (150 mg/dl).  There is no end-product inhibition of the process, as reactions 2 & 

3 remove all of the hydrogen peroxide.  Thus virtually all of the glucose in the sample is 

consumed.  Plasma glucose was measured 4 times at each sampling time point for each 

vessel and a minimum of 2 times for samples drawn to clamp glucose.  The glucose 

analyzer is accurate to 450 mg/dl.  In glucose balance calculations, plasma glucose levels 

were converted to whole blood values using a previously determined correction factor, 

which assumes blood glucose to be 73% of the plasma glucose values (241). 

 

Plasma [3-
3
H] glucose 

 For assessment of plasma [3-
3
H] glucose (Specific Aim I), samples were 

deproteinized according to the method of Somogyi-Nelson (242-244).  Immediately 

following each experiment 1 ml aliquots of plasma were mixed with 5 ml of 0.067 N 

Ba(OH)2 and 5 ml of 0.067 N ZnSO2 (Sigma Chemical).  For 1-3 days, these samples 

were kept at 4°C, after which they were centrifuged at 3000 rpm for 20 min.  A 5 ml 

aliquot of the supernatant was pipetted into a glass scintillation vial and placed in a 

heated vacuum oven to evaporate 
3
H2O.  The residue was reconstituted in 1 ml of 
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deionized water and 10 ml liquid scintillation fluid (EcoLite (+); Research Product 

Division, Costa Mesa, CA), and placed in Beckman LS 9000 Liquid Scintillation Counter 

(Beckman Instruments Inc, Irvine, CA) for counting.  The scintillation counter was 

programmed so that the processor corrected the counts per minute (cpm) for quenching of 

the radioactivity in the sample and presented the results as disintegrations per minute 

(dpm).   

 To assess the loss of radioactive glucose during the deproteinization process, a 

recovery standard was prepared.  The [3-
3
H]glucose infusate was diluted 1:250 (vol:vol) 

with saturated benzoic acid containing 1 mg/ml cold glucose.  Six 1 ml aliquots of this 

diluted 
3
H infusate were placed into 2 sets of glass scintillation vials labeled as chemical 

standard evaporated (CSE) or chemical standard (CS); therefore CSE and CS were 

measured in triplicate. The diluted infusate aliquots in the CSE vials were evaporated to 

dryness (with plasma samples) in a heated vacuum oven and reconstituted with 1 ml 

deionized water.  The diluted infusate aliquots in the CS were not evaporated.  

Scintillation fluid (10 ml) was added to all standard vials and the standards were counted.  

Three additional 1 ml aliquots of diluted 
3
H infusate were treated identical to the plasma 

samples and labeled chemical recovery standard (CRS).  Comparison of the CS and CSE 

provided an evaluation of the loss of 
3
H counts in the evaporation process. The final 

amount of radioactivity per sample was determined by generating a recovery factor (ratio 

of radioactivity in the CSE compared to CRS) which accounted for the radioactivity lost 

during sample processing.  
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Metabolites 

Whole blood concentrations of alanine, b-hydroxybutyrate, glycerol, and lactate 

were determined using the methods developed by Lloyd et al. (245) for the Technicon 

Autoanalyzer (Tarrytown, NY) and were modified for the Packard Multi Probe Robotic 

Liquid Handling System (Perkin Elmer; Shelton, CT).  Enzymes and coenzymes for 

metabolic analyses were obtained from Boehringer-Mannheim Biochemicals (Germany) 

and Sigma Chemicals. The reduced form (NADH) has a native fluorescence, which is not 

exhibited in the oxidized form.  Excess amounts of NAD and enzyme/coenzyme are 

added to the metabolite samples.  NAD is reduced to NADH upon oxidation of the 

metabolite.  A fluorometer incorporated in the system detects changes in fluorescence 

resulting from changes in NADH concentration; therefore, the concentration of the 

metabolite present is proportional to the NADH produced. 

Metabolites were measured in the PCA-treated blood samples as described above. 

A standard curve was constructed for each metabolite using known concentrations of the 

analyte prepared in 3% PCA. The Packard Multi Probe Robotic Liquid Handling System 

pipettes the sample into one well of the 96-well plate.  After an initial absorbance is read, 

the Packard Multi Probe Robotic Liquid Handling System pipettes enzyme solution into 

each well and shakes the plate to mix sample and enzyme.  The reaction proceeds and 

after an allotted time, the change in absorbance is determined.  All assay reactions are 

reversible, with the exception of glycerol kinase. The NAD and enzyme are in excess 

compared to the substrate, thus the reactions are essentially taken to completion and the 

rate-limiting component is the substrate; therefore, all reactions below are written with a 

single direction arrow.  All reactions are carried out at 23°C. 
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Alanine 

The alanine assay involved the reaction: 

 

       alanine dehydrogenase  

L-alanine + NAD
+
 + H2O -------------------------------> Pyruvate + NADH + NH4

+
  (4) 

 

 

The enzyme buffer used was 0.05 M trizma base, 2 mM EDTA and 1 mM hydrazine 

hydrate, pH 10. To 10 ml of enzyme buffer, 4.6 mg of NAD and 3.4 Units (U) of alanine 

dehydrogenase were added. 

 

ß-hydroxybutyrate 

The ß-hydroxybutyrate analysis involved the following reaction: 

 

                3-hydroxybutyrate dehydrogenase  

ß-hydroxybutyrate + NAD
+
 -----------------------------------> acetoacteate + NADH + H

+
 (5) 

 

 

The enzyme buffer was 0.2 M monopotassium phosphate, 3 mM EDTA and 1 mM 

hydrazine hydrate, pH 8.5. To 10 ml of enzyme buffer, 12 mg NAD and 2.1 U ß-

hydroxybutyrate dehydrogenase were added. 

 

Glycerol 

The glycerol assay involved the following reactions: 
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glycerokinase 

glycerol + ATP --------------------------------> glycerol-l-phosphate + ADP (6) 

 

    glycerol-3-phosphate dehydrogenase 

L-glycerol-l-phosphate + NAD
+
 -----> dihydroxyacetone phosphate + NADH + H

+
 (7) 

 

 

The enzyme buffer was 0.09 M glycine, 1 mM hydrazine, and 0.01 M MgC12, pH 9.5. To 

10 ml of the enzyme buffer, 15.4 g NAD, 15.4 mg ATP, 0.3 U glycerokinase, and 0.6 U 

glycerol-3-phosphate dehydrogenase were added. 

 

Lactate 

The lactate assay involved the following reaction: 

 

                                 lactate dehydrogenase 

lactate + NAD
+
 ----------------------------------------> pyruvate + NADH + H

+
 (8) 

 

 

The enzyme buffer used was 0.24 M glycine and 0.25 M of hydrazine dihydrochloride 

and 7 mM disodium EDTA, pH 9.6. To 10 ml of enzyme buffer, 4.6 mg NAD and 0.1 U 

lactate dehydrogenase were added.  

 

Plasma Free Fatty Acids (FFAs) 

Plasma FFA levels were determined spectrophotometrically using the Packard Multi 

Probe Robotic Liquid Handling System and a kit obtained from Wako Chemicals 

(Richmond, VA). This assay was performed at 37°C. The following reactions were used 

in the analysis: 
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 acyl-CoA synthetase 

FFA + ATP + CoA ----------------------------> acyl-CoA + AMP + PPi  (9) 

 

               acyl-CoA oxidase 

acyl-CoA + 02 -----------------------------> 2,3-trans-enoyl-CoA + H202 (10) 

 

                                                                                  peroxidase  

2H202 + 3 methyl-N-ethyl-N-(ß-hydroxyethyl)-aniline + 4-aminoantipyrine ----------> 

 

purple color adduct (11) 

 

The purple colored adduct is measured at an optical density of 550 nm and is proportional 

to the FFA concentration in the sample. The FFA values are then obtained from a 

calibration curve with known amounts of oleic acid.  

 

Plasma Hormones 

 The plasma hormone levels of insulin, glucagon, and C-peptide were measured 

using radioimmunoassay (RIA) techniques (246). In general, a sample containing an 

unknown amount of hormone was incubated with an antibody specific for that hormone.  

A known amount of radiolabeled hormone was added to the mixture to compete with the 

antibody binding sites.  A double antibody procedure which caused precipitation of the 

bound complex was used to separate unbound hormone from the antibody-hormone 

complexes.  The radioactivity of the precipitate was measured via a Cobra II Gamma 

Counter (Packard Instrument Co., Meriden, CT).  Binding of the radiolabeled hormone is 

inversely proportional to the amount of unlabeled hormone present, and a standard curve 

was constructed using known concentrations of unlabelled hormone. 
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Insulin 

Immunoreactive plasma insulin was measured using a double-antibody RIA 

procedure (7).  A 100 µl aliquot of the plasma sample, 200 µl of  
125

I-labled insulin, and 

100 ml of guinea pig specific antibody to insulin (both from Linco Research, Inc., St. 

Charles, MO.) were mixed and incubated for 18 h at 4°C.  The sample was then treated 

with 100 µl goat anti-guinea pig IgG (2
nd

 antibody) and 100 µl IgG carrier and incubated 

for 30 min at 4°C.  One ml of a wash buffer was added and the tubes were centrifuged at 

3000 rpm. The samples were decanted and the portion of total radioactivity bound to the 

antibody (pellet) was counted in a Cobra II Gamma Counter (Packard Instrument Co, 

Meriden, CT).  

The log of the amount of hormone in the sample was inversely proportional to the 

log (bound label/free label). The insulin concentration in each sample was determined by 

comparison to a standard curve constructed using known amounts of unlabeled hormone. 

The samples were corrected for non-specific binding.  The sample detection range was 1-

150 µU/ml.  The specificity of the antibody is 100% to porcine, canine, and human 

insulin, but also cross reacts with bovine insulin (90%), human proinsulin (38%), and the 

split proinsulin products Des 31,32 (47%) and Des 64,65 (72%).  In general, less than 

15% of the basal insulin level is due to non-insulin cross reactivity (mainly the split 

proinsulin products Des 31,32 and Des 64,65). There is no cross reactivity to glucagon, 

pancreatic polypeptide, C-peptide, or somatostatin. The recovery for the assay was 

between 90-100% based on spiking the sample with known amounts of insulin, and the 

interassay CV was approximately 7-8% for the entire range of the dose response curve. 
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Glucagon 

Immunoreactive plasma glucagon was also measured using a double antibody 

RIA (Linco Research, Inc., St. Charles, MO) (247).  The protocol utilized primary and 

secondary antibodies specific for glucagon (kit with glucagon antibodies and 
125

I tracers 

from Linco).  A 100 µl aliquot of the plasma sample and 100 µl of guinea pig specific 

antibody to glucagon were mixed and incubated for 24 hours at 4
o
C.  Next, 100 µl of 

125
I-

labeled glucagon was added and the solution was incubated for an additional 24 h at 4°C. 

The samples were then treated with 100 µl goat anti-guinea pig IgG (2nd antibody) and 

100 µl IgG carrier and incubated for 2 hours at 4°C. One ml of a wash buffer was added 

and the tubes were centrifuged at 3000 rpm. The samples were decanted and the portion 

of total radioactivity bound to the antibody (pellet) was counted in a Cobra II Gamma 

Counter.  

The log of the amount of hormone in the sample was inversely proportional to the 

log (bound label/free label). The glucagon concentration in each sample was determined 

by comparison to a standard curve constructed using known amounts of unlabeled 

hormone. The samples were corrected for non-specific binding, and the sample detection 

range was 20-400 pg/ml. The antibody is 100% specific to glucagon with only slight 

(0.01 %) cross reactivity to oxyntomodulin, and no cross reactivity with human insulin, 

human proinsulin, human C-peptide, glucagon-like petide-1, somatostatin, or pancreatic 

polypeptide.  A cross-reacting protein reads in this assay and results in a glucagon free 

sample reading of 15-20 pg/ml above the actual glucagon level. This represents a stable, 

constant background in all samples. The recovery for the assay was between 80-109% 
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based on spiking the sample with known amounts of glucagon, and the interassay CV 

was approximately 6-10% for the entire dose response curve.  

 

C-peptide 

 Canine C-peptide was also measured using a double antibody disequilibrium 

procedure similar to that used for glucagon (248).  Kits containing canine C-peptide 

antibody and 
125

I tracer were obtained from Linco Research. A 100 µl aliquot of the 

plasma sample and 100 µl of guinea pig-specific antibody to canine C-peptide were 

mixed and incubated for 24 h at 4°C.  Then 100 µl of 
125

I-labled canine C-peptide was 

added and incubated for an additional 24 h at 4°C.  The sample was then incubated with 1 

ml of precipitating agent containing guinea pig IgG antibody and carrier for 30 min at 

4°C. Tubes were centrifuged, decanted, and the portion of total radioactivity bound to the 

antibody (pellet) was counted in a Cobra II Gamma Counter.  

 The log of the amount of hormone in the sample was inversely proportional to the 

log (bound label/free label).  The C-peptide concentration in each sample was determined 

by comparison to standards dissolved in plasma using known amounts of unlabeled 

hormone.  Dog plasma was treated with charcoal (1% w:v) to remove immunoreactive 

contaminants. Samples were corrected for non-specific binding. The sample detection 

range was 0.1-10 ng/ml. The antibody is 100% specific for canine C-peptide with no 

cross-reactivity to rat C-peptide, human C-peptide, human proinsulin, bovine proinsulin, 

porcine proinsulin, or glucagon. The recovery of the assay was approximately 90%. 
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Glucagon-Like Peptide-1 (GLP-1) 

 Plasma GLP-1 levels were determined using an enzyme-linked immunosorbent 

assay (ELISA) kit (Linco Research, Inc.).  A 100 µl aliquot of plasma (pretreated as 

described in Collection and Processing of Samples) and 100 µl of assay buffer were 

manually pipetted into a well, of a 96-well plate, bound with monoclonal antibodies 

specific to the N-terminal region of active GLP-1 molecules, and incubated at 4°C, 

overnight.  After a series of washes, 200 µl of anti-GLP-1 alkaline phosphatase detection 

conjugate was added to the well and incubated for 2 h at room temperature.  After a 

second series of washes, 200 ml of methyl umbelliferyl phosphate (MUP) was added and 

incubated in the dark for 25 min at room temperature.  MUP, in the presence of alkaline 

phosphatase, forms the fluorescent product umbelliferone. This reaction was stopped with 

50 µl of stop buffer.  Immediately after stop solution was added, excitation/emission 

wavelength was read at 365/450 nm on a fluorescence plate reader (Packard Fusion, 

PerkinElmer, Waltham, MA). 

 All samples are pipetted in duplicate, and read by the plate reader three times.  

The amount of fluorescence generated is directly proportional to the concentration of 

active GLP-1 in the sample.  Quantification of the GLP-1 level in the plasma sample is 

derived from a standard curve run on the same plate as the samples.  This assay is highly 

specific for active forms of GLP-1 [GLP-1 (7-36) amide and GLP-1 (7-37)], with no 

cross-reactivity to other forms of GLP-1 (e.g., 1-36 amide, 1-37, 9-36 amide, 9-37). This 

assay is reliable in a range of 2-100 pM. 
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Acetaminophen 

 Arterial plasma acetaminophen levels were determined using a modified protocol 

designed for high performance liquid chromatography (HPLC) (249).  A 500 ml aliquot 

of plasma was spiked with 20 µl of 2-acetaminophenol (40 µg/ml) to serve as an internal 

standard (250).  Equal volumes of spiked plasma, 0.3 N barium hydroxide, and 0.3 N zinc 

sulfate were mixed and incubated on ice for 5 min. The sample was then spun at 4°C at 

3000 rpm for 10 min.  The decanted supernatant was dried using vacuum centrifugation 

(Speedvac Concentrator, Savant SVC 200H, Thermo Scientific, Waltham, MA).  The 

sample was then reconstituted with 200 µl of a 10% methanol/water solution (v:v).   

 A 50 µl aliquot was injected for delivery into the HPLC column (uBondapak C18 

3.9X30 w/guard), at a temperature of 45°C. The mobile phase A (5% methanol/water, 

v:v) and B (15% methanol/water, v:v) were set at a combined flow rate of 0.4 ml/min for 

the entire duration of assay. With the profile curve indicating the type of transition from 

one setting to the next, the gradient for the mobile phase was set as follows: initial setting 

at 100% A, 0 profile curve; t=4 min at 100% A, 11 profile curve; t=20 min at 75% A, 

25% B, 6 profile curve; t=30 min at 100% B, 7 profile curve; t=40 min at 100% A, 11 

profile curve. Total run time of 64 min, with an 18 min acquisition delay. Fluorescence 

was measured with variable wavelength UV detector (Waters 481, Millipore, Billerica, 

MA) set at 240 nm at 0.5 AUFS. 

 Peak area as identified by the ESA 500 Chromatograph and data station are 

representative of acetaminophen concentration.  Peak area increases in a linear fashion, 

proportional to acetaminophen concentration; therefore, sample concentration is 

determined as a ratio of acetaminophen peak area in the sample to internal standard peak 
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area.  This assay has been confirmed to be accurate up to concentrations of 40 µg/ml.  CV 

for assay was 4%. 

 

Blood Flow 

Blood flow in the hepatic artery, hepatic portal vein blood, and common iliac vein 

were determined using ultrasonic flow probes implanted during surgery (as described in 

Animal Care and Surgical Procedures).  Total hepatic blood flow (the sum of blood flow 

in the hepatic artery and the hepatic portal vein) was also assessed using the indocyanine 

green (ICG) dye method (Specific Aims I, II, III), according to Leevy et al. (251).  The 

results presented in this document were calculated using ultrasonic determined flow, as 

this method allows for the direct measurement of blood flow in the hepatic artery and 

hepatic portal vein, whereas the ICG dye method requires an assumption of the percent 

contribution of each vessel to total hepatic blood flow.  ICG-determined flow was used as 

a backup measurement in the case of ultrasonic flow probe failure; however, the same 

conclusions were drawn regardless of method used to calculate the data.  

Ultrasonic flow measurements represented instantaneous variations in velocity 

and, therefore, provided blood flow in individual vessels of interest.  Each probe 

determined the mean transit time of an ultrasonic signal passed back and forth between 

two transducers within a probe which were located upstream and downstream of the 

direction of blood flow in the vessel. The transducers are made of piezoelectric material 

which is capable of both receiving and transmitting the ultrasonic signal. The 

downstream transducer first emits an ultrasonic pulse into the blood vessel that is 

received upstream by a second transducer. After the upstream transducer receives the 
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ultrasonic signal, it reemits the ultrasonic pulse signal back to the downstream transducer. 

The transit time of each ultrasonic beam, as measured by the upstream and downstream 

transducers (∆Tup and ∆Tdown, respectively), is defined by the following relationships: 

 

∆Tup = D / (vo - vx ) (12) 

∆Tdown = D / (vo + vx ) (13) 

 

where D is the distance traveled by the ultrasonic beam within the acoustic window of the 

probe, vo is the phase velocity, or the speed of sound, in blood, and vx is the component 

of fluid velocity that is parallel or antiparallel to the phase velocity.  The parallel 

component augments the phase velocity when the signal is traveling in the same direction 

of blood flow, while the antiparallel component subtracts from phase velocity if the 

ultrasonic signal is moving against the flow of blood in the vessel. Combining the two 

expressions for transit time yields the following equation: 

 

∆Tup - ∆Tdown = [D / (vo - vx )] – [D / (vo + vx )] (14) 

 

The transit times measured by both transducers, the distance traveled by the beam, and 

the speed of sound in blood are all known quantities; therefore, this equation can be used 

to calculate vx.  Once vx is attained, the transit velocity (V) of blood traveling through the 

vessel can be determined according to the following equation:  

 

V cos θ = vx (15) 
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where θ is the angle between the centerline of the vessel and the ultrasonic beam axis. 

Finally, blood flow is the product of the transit velocity and the cross-sectional area of the 

vessel. The cross-sectional area of the vessel is pre-determined by the size of the acoustic 

window according the probe model.  Since transit time is sampled at all points across the 

diameter of the vessel, volume flow is independent of the flow velocity profile. 

The ICG method is based on the Fick principle, according to which the net 

balance of a substrate across an organ equals the concentration difference of the substrate 

across the organ multiplied by the blood flow through the organ.  The equation can be 

rearranged to calculate hepatic blood flow by dividing hepatic ICG balance by the 

arteriovenous difference of ICG across the liver.  Because the liver is assumed to be the 

only site of ICG clearance, hepatic ICG uptake is equal to ICG infusion rate under steady 

state conditions.  The extraction of ICG across the liver remains constant for brief 

infusions; however, if ICG is infused for a longer time (> 4 h), the dye level in plasma 

gradually increases, resulting in a 5-10 % overestimation of hepatic blood flow. 

Arterial and corresponding hepatic vein plasma samples were centrifuged at 3000 

rpm for 30 min, using no brake, to pellet the residue.  Absorbance was then measured on 

a Spectronic spectrophotometer at 810 nm.  This process was then repeated, and the 

values obtained for each sample were averaged.  A standard curve was constructed by 

adding successive 5 µl aliquots of diluted dye (1:10 dilution) to 1 ml of plasma drawn 

from the animal before the dye infusion was started.  The mean of the incremental 

changes in absorbance was then used to calculate hepatic plasma flow (HPF) as follows: 
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HPF = [IR x 10 x SCMD] / [dog weight in kg x (0.005) x (A-H)] (16) 

 

where IR is ICG infusion rate (ml/min), SCMD is the standard curve mean difference per 

5 µl increments, and A-H is the difference in absorbance between the arterial and the 

hepatic venous sample.  The value of 10 was used to correct for the dilution of the ICG 

used in the standard curve, and 0.005 was the volume in ml used as increments in the 

standard curve.  Hepatic blood flow (HBF) was derived from HPF: 

 

HBF=HPF/(1-hematocrit)             (17) 

 

Hematocrit was measured at every time point of each in which samples were taken from 

the artery and portal and hepatic veins.  This technique only determines total blood flow; 

therefore, an assumption was made regarding the contribution of blood flow in the 

vessels supplying the liver.  The normal distribution of flow was assumed to be 20% 

artery and 80% hepatic portal vein at baseline, based on extensive historical data. 

 

Calculations 

Glucose Infusion Rate 

 The total glucose infusion rate (GIR) was determined by the following 

calculation: 

 

GIR = GIRportal + GIRperipheral (18) 
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where GIRportal is the rate of glucose infused into the portal vein and GIRperipheral is the rate 

of glucose infused peripherally. 

 

Net Substrate Balance 

 The net balance of a substrate across an organ, otherwise known as the 

arteriovenous (A-V) difference technique, utilized the Fick principle as described for the 

ICG-determination of blood flow (as described in Sample Analysis under Blood Flow) 

The net balance of a substrate (NSB) was calculated as: 

 

NSB = Loadout - Loadin  (19) 

 

or the difference between the substrate load leaving the region/organ (Loadout) and the 

substrate load reaching the region/organ (Loadin). This equation was applied to net 

hepatic substrate balance (NHSB), net splanchnic substrate balance (NSSB), net gut 

substrate balance (NGSB), and hindlimb substrate balance (HindSB).  

For NHSB, the Loadin was calculated according to the equation: 

 

Loadinhepatic = ([S]A x HABF) + ([S]PV x PVBF)  (20) 

 

where [S]A and [S]PV are arterial and portal venous substrate concentrations, respectively, 

and HABF, PVBF are hepatic artery and the portal vein blood flows, respectively. 

For NHSB, Loadout was calculated according to the equation: 
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Loadouthepatic = [S]HV x HBF  (21) 

 

where [S]HV is the substrate concentration in the hepatic vein, and HBF is the total 

hepatic blood flow.  

For NSSB, the Loadin and Loadout were calculated as follows: 

 

Loadinsplanchnic = [S]A x HBF (22) 

Loadoutsplanchnic = [S]HV x HBF (23) 

 

For NGSB, the Loadin and Loadout were calculated as follows: 

 

Loadingut = [S]A x PVBF (24) 

Loadoutgut = [S]PV x PVBF (25) 

 

For HindSB, the Loadin and Loadout were calculated as follows: 

 

Loadinhindlimb = [S]A x IBF (26) 

Loadouthindlimb = [S]FV x IBF (27) 

 

where IBF is iliac blood flow and [S]FV is the concentration of the substrate sampled from 

the femoral vein. Blood flows were used for all substrate balance calculations except 

GLP-1 across the liver, for which plasma flows were used. 
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Net Substrate Clearance 

 Net substrate clearance (NSC) across an organ/region is calculated as follows: 

 

NSC = NSU / [S] (28) 

 

where NSU is net substrate uptake across an organ/region and [S] is the substrate 

concentration entering that organ/region. 

 

Net Hepatic Substrate Fractional Extraction 

 Net substrate fractional extraction across the liver (NHSFE) was calculated as: 

 

NHSFE = NHSU / Loadinhepatic  (29) 

 

where NHSU is the net hepatic substrate uptake. 

 

Hepatic Sinusoidal Substrate Level 

 Hepatic sinusoidal substrate level (HSSL) was calculated as: 

 

HSSL = ([S]A x HABF/HBF) + ([H]PV x PVBF/HBF)  (30) 

 

where [S]A and [S]PV are arterial and portal venous substrate concentrations, respectively, 

and HABF, PVBF and HBF are hepatic artery, portal vein and total hepatic blood flows, 

respectively.  
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Glucose Turnover 

 Glucose turnover is the rate at which old glucose is replaced with new glucose.  

Glucose production (Ra) and glucose utilization (Rd) were determined using an isotope 

dilution method described by Wall (252), as simplified by DeBodo (253) and using a 

two-compartmental model (254) with canine parameters (255). The glucose pool was 

initially primed with an injection of [3-
3
H]glucose followed by a constant infusion of the 

tracer.  By the beginning of the control period, the tracer ([3-
3
H]glucose) and tracee (cold 

glucose) were in equilibrium so that the specific activity of glucose (SA = dpm 

glucose/mg glucose) was in a steady state.  Ra and Rd were calculated according to the 

following equations:  

 

Ra = [I - N (dSA/dt)]/SA, and   (31) 

Rd = Ra – (dN/dt) (32) 

 

where I is infusion rate of tracer (dpm/min), N is the pool size of glucose (mg) and t is 

time (min) (256).  In a steady state, when dSA/dt = 0, the Ra equation is simplified to: 

 

Ra = I/SA (33) 

 

This method utilizes a one-compartment model of glucose kinetics as described 

by Steele (257).  Assumptions of the model are that one compartment of glucose consists 

of both rapidly mixing and slowly mixing glucose pools; therefore, when a rapid change 
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in the cold glucose concentration is induced in the system, the consequent changes in 

glucose specific activity would be unevenly distributed throughout the entire glucose 

compartment.  To compensate for this problem, the pool size is calculated as: 

 

N = pVC  (34) 

 

where p is the pool fraction, V is the volume of distribution of glucose (ml) and C is 

concentration of cold glucose (mg/dl).  The pool fraction (the rapidly mixing component 

of the glucose compartment) was estimated to be 0.65, or 65 % of the total system (258), 

while V was assumed to be the extracellular volume, which is approximately 22% of the 

dog weight (259). 

The major limitation of the one-compartment model is that a rapid change in SA 

invalidates the method, so that a fall in SA, which occurs either by endogenous glucose 

production or exogenous glucose infusion in the presence of a constant [3-
3
H] glucose 

infusion, the change in SA would cause an error in the estimation of Ra (underestimation 

if SA drops, overestimation if SA increases) (260).  Two approaches have been applied to 

solve this problem. One strategy is to reduce the change in glucose SA by 

correspondingly changing the tracer infusion rate.  Another strategy, which was used in 

the present study, is a two-compartment model described by Mari (254). This model 

describes the glucose system more accurately (than the one-compartment model) under 

non-steady-state conditions.  Ra was calculated as the sum of three terms: a steady-state 

term, a term for the first compartment, and the term for the second compartment.  The 
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principle equations are as follows, where the expression of Ra, calculated at the equally 

spaced time instants t0, t1,…, tk, tk+1, is determined from the following formulas: 

 

Ra(tk) = (R
*
inf)(tk)/SA(tk) – V1[C(tk)dSA(tk)/dt] / SA(tk) – V2k22[SA(tk)G(tk) –   

                         G
*
(tk)]/SA(tk) (35) 

G(tk+1) = b1G(tk) + b2C(tk) + b3C(tk+l) (36) 

G
*
(tk+l) = blG

*
(tk) + b2C

*
(tk) + b3C

*
(tk+l) (37) 

V2= V1k12k21/k
2
22 (38) 

 

where tk and tk+l are time parameters, respectively; Ra(tk) and R
*
inf(tk) are the rate of 

appearance calculated with a two-compartment model (mg/kg/min) and tracer infusion 

rate (dpm/kg/min), respectively; SA(tk) and dSA(tk) are specific activity (dpm/mg) and 

derivative of specific activity (dpm/mg/min), respectively.  V1 and V2 (ml/kg) are the 

volumes of the first and second compartments, respectively; C
*
(tk) and C(tk) are tracer 

and tracee concentrations, respectively; k12, k21, and k22 are constant rate parameters of 

the first and second compartments, respectively; G(tk) and G
*
(tk) are variables calculated 

recursively from tracee and tracer concentrations, respectively; bl, b2, and b3 are 

coefficients of recursive equations for calculating G(tk) and G*(tk).  Canine parameters 

used for Vl, V2, and k22 in the present studies were those determined by Dobbins et al. 

(255). It has been reported (255) that under non-steady state conditions where specific 

activity changes dramatically, glucose appearance determined using the two-

compartment model is more accurate than the Steele equation (one-compartment model.) 
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When glucose was infused, endogenous glucose production (endo Ra) was 

determined by subtracting the glucose infusion rate (GIR), from total glucose production 

(Ra). 

Of note, there are two major assumptions that are made when using the particular 

isotope dilution method to determine glucose kinetics. First, the labeled and unlabeled 

glucose molecules are assumed to be metabolized in the same manner.  Secondly, the 

label is assumed to be irreversibly lost (261). 

 It should also be noted, however, that since both the liver and the kidneys produce 

glucose, whole body tracer-determined glucose production is slightly higher than the rate 

of hepatic glucose production. Although net kidney glucose balance in the postabsorptive 

state is near zero, the kidney has been estimated to contribute 5-15% to whole body 

glucose production (262). 

 

Nonhepatic Glucose Uptake 

 Nonhepatic glucose uptake (non-HGU) was calculated over time intervals using 

the following formula: 

 

Non-HGU = average total glucose infusion between T1 and T2 + ((T1NHGB + T2NHGB)/2)  

  – glucose mass change in the pool       (39) 

 

where T1 and T2 indicates the time points for which glucose is being measured. The 

((T1NHGB + T2NHGB)/2) term will be a negative number in the presence of net hepatic 
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glucose uptake.  The glucose mass change in the pool is calculated using the following 

equation: 

 

Glucose mass change in the pool = ((([GA]T2 – [GA]T1) / 100) * ((0.22 * body wt in kg *  

  1000 * 0.65) / body wt in kg)) / (T2-T1)     (40) 

 

where [GA] is the plasma glucose concentration, T1 and T2 are the time points of the 

interval, 0.22 represents the volume of extracellular fluid (the volume of distribution) or 

22% of the dog’s weight (259), and 0.65 represents the fraction of the pool (258). 

 

Ratio Calculations 

 Whole body insulin sensitivity (Specific Aim III) was calculated as a ratio of GIR 

to arterial plasma insulin, with the value of GIR divided by the arterial plasma insulin 

level for every time point. Nonhepatic insulin sensitivity (Specific Aim III) was 

calculated as a ratio of Non-HGU to arterial plasma insulin, with the value of Non-HGU 

divided by the arterial plasma insulin level for every time point.  Hepatic insulin 

sensitivity (Specific Aim III) was calculated as a ratio of net hepatic glucose uptake to 

hepatic sinusoidal plasma insulin levels, with the value of net hepatic glucose uptake 

divided by the hepatic sinusoidal plasma insulin level for every time point.  Peripheral 

plasma insulin to peripheral plasma glucose ratio (Specific Aim IV) was calculated by the 

respective peripheral plasma insulin level divided by the peripheral plasma glucose level 
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at each time point.  Hindlimb glucose clearance and nonhepatic glucose clearance to 

arterial plasma insulin ratios (Specific Aim IV) were calculated with the respective 

clearance levels divided by arterial plasma insulin levels at each time point, or average 

insulin level over the time duration, in the case of the nonhepatic ratio.   

 

Statistical Analysis 

Data are expressed as means ± standard error (SE).  Statistical comparisons for 

time course data were made by two-way ANOVA with repeated measures design run on 

SigmaStat (SPSS Science, Chicago, IL).  Post hoc analysis was performed with Student-

Newman-Kuels Method. When only two values were compared, an independent t-test 

was used (SigmaStat, SPSS Science, Chicago, IL). For Specific Aim IV, paired t-tests 

were used to compare single value measurements.  Statistical significance was accepted 

at P < 0.05. 
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CHAPTER III 

 

INTRAPORTAL GLP-1 INFUSION INCREASES NONHEPATIC 

 GLUCOSE UTILIZATION  

WITHOUT CHANGING PANCREATIC HORMONE LEVELS 

 

(Adapted from Johnson et al., Am J Physiol Endocrinol Metab 293:E1085-E1091, 2007) 

 

Specific Aim I-Introduction 

 When GLP-1 is secreted, it enters capillary blood in the gut where it is rapidly 

degraded by DPP-IV.  It then enters the hepatic portal vein blood thereby exposing the 

liver to a high level of the hormone. The short half-life of injected GLP-1 (1-2 min) 

reflects its rapid degradation by DPP-IV in plasma and throughout the vascular system 

(263).  Nevertheless, after an orally delivered nutrient load, active GLP-1 levels in blood 

increase 5-10 fold, with levels in the portal vein being approximately twice those in 

peripheral blood (47). This creates a situation in which GLP-1Rs in the portal vein are 

exposed to high levels of GLP-1 postprandially, thus making the portal vein region a 

likely candidate for a site at which GLP-1 could initiate some of its effects.  

 The neural circuitry is in place to allow GLP-1 interaction with its receptors in the 

portal vein wall to trigger a physiologic response (87). In the rat, there was an increase in 

afferent discharges from the hepatic branch of the vagus nerve when GLP-1 was infused 

into the hepatic portal vein (96). This same intraportal bolus of GLP-1 also increased 

efferent discharges from the pancreatic branch of the vagus nerve, an effect that was lost 

with hepatic vagotomy (96). These data raise the possibility that GLP-1R activation 

within the portal vein may contribute to the incretin and perhaps other effects of GLP-1. 
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Interestingly, the afferent neural firing from the hepatoportal region continued to increase 

for 90 min even when exposure to GLP-1 was brief (96). It is unknown if this increase in 

firing triggers efferent effects at sites other than the pancreas.  

 We have previously shown that under clamped hyperglycemic-hyperinsulinemic 

conditions (two-fold basal, four-times basal, respectively) an intraportal infusion of 

pharmacological amounts of GLP-1 increases net hepatic and non-hepatic glucose uptake 

in dogs (48).  We have also shown under these same pancreatic and hyperglycemic clamp 

conditions, that a physiological infusion of GLP-1 into the hepatic portal vein or the  

hepatic artery for 90 min results in an increase in net hepatic glucose uptake, without a 

change in non-hepatic glucose uptake (47). Since these studies were conducted in the 

presence of a pancreatic clamp, it is still not known if intraportal delivery of GLP-1 is of 

significance to the known incretin effects of GLP-1. Previous studies carried out by 

others (49; 235; 236) in an attempt to address this question have not incorporated a GLP-

1 infusion into the hepatic artery; thus it is not possible to distinguish between effects 

initiated within the liver, per se, versus the hepatic portal vein. In addition, these studies 

used a bolus, (235) stepwise infusion, (49) or constant infusion (236) to increase 

hyperglycemia, unlike the clamp conditions which are used in the current study. 

Therefore the aim of the present study was to determine whether or not the hepatic portal 

vein is the initiation site for any of the acute effects of GLP-1. 

 

Results 

Plasma glucose levels.  In response to glucose infusion, there was an increase in plasma 

glucose levels in the artery (to 158 ± 1, 156 ± 1, 156 ± 1 mg/dl) and portal vein (to 177 ± 
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2, 174 ± 1, 176 ± 2 mg/dl) in CON, POR, and HAT, respectively (Figure 3.1A).  There 

were no differences among groups. 

Plasma GLP-1 levels.  Basal plasma GLP-1 levels were similar regardless of group in the 

artery (2.5 ± 1.7, 2.8 ± 0.4, 3.7 ± 0.8 pM in CON, POR, and HAT), the hepatic portal 

vein (2.4 ± 1.7, 2.9 ± 0.4, 3.5 ± 0.7 pM), and hepatic vein (2.3 ± 1.8, 3.2 ± 0.4, 3.9 ± 0.8 

pM) (Figure 3.1B).  GLP-1 levels in the artery, hepatic portal vein, and hepatic vein (3.5 

± 1.6, 3.7 ± 1.4, 3.5 ± 1.3 pM) did not change in response to the saline infusion. On the 

other hand, they rose in the artery (27.1 ± 2.4, 23.4 ± 2.5 pM; POR, HAT, respectively), 

the hepatic portal vein (50.0 ± 4.2, 22.8 ± 3.1 pM), and the hepatic vein (41.9 ± 3.0, 41.6 

± 5.8 pM) in response to infusion of GLP-1 into the hepatic portal vein or hepatic artery, 

respectively (Figure 3.1B).  It should be noted that, regardless of the site of GLP-1 

infusion, the GLP-1 levels in peripheral (arterial) and liver sinusoidal (hepatic vein) 

blood were matched in the two GLP-1 infusion groups. Conversely, hepatic portal vein 

levels were markedly higher during portal vein GLP-1 infusion (Figure 3.1B). 

Hepatic GLP-1 fractional extraction. Due to extremely low levels of GLP-1 at baseline, 

hepatic fractional extraction of active GLP-1 was only calculated for the portal GLP-1 

infusion group.  The average hepatic GLP-1 fractional extraction for the POR group was 

approximately 0.08. 

Glucose infusion rates.  There was no significant difference in the glucose infusion rate 

required to maintain the clamp in the saline and hepatic artery GLP-1 infusion groups 

(6.0 ± 0.5, 6.7 ± 1.0 mg/kg/min, average over final 2 hours) (Figure 3.2).  When GLP-1 

was given intraportally, on the other hand, significantly more glucose was required (8.5 ±  
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Figure 3.1 A: Plasma glucose levels in 42-h fasted conscious dogs were basal initially (-

40 to 0 min), but both arterial and portal levels increased significantly (p < 0.05) during 

the experimental period (0 to 240 min) in response to the glucose clamp. There were no 

significant differences among groups in either the basal or experimental period. Data are 

expressed as mean ± SE for each time point. B: Femoral artery, portal vein, and hepatic 

vein plasma GLP-1 levels during the basal period (left) and experimental period (right). 

Data are expressed as mean ± SE.  * = p < 0.05 versus CON.  # = p < 0.05 versus POR. 
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Figure 3.2 Total glucose infusion rate (GIR) during the infusion of saline intraportally, or 

GLP-1 into the hepatic portal vein or hepatic artery (0 to 240 min).  POR required 

significantly greater GIR than either CON or HAT. Data are expressed as mean ± SE for 

each time point.  * = p < 0.05 versus CON.  + = p < 0.05 versus HAT. 
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0.7 mg/kg/min, average over the final 2 hours) than with either saline or hepatic artery 

GLP-1 infusion (Figure 3.2).  

Plasma insulin and glucagon levels. The arterial plasma insulin levels in the basal period 

were similar (7 ± 1, 5 ± 1, 9 ± 1 µU/ml in CON, POR, and HAT) in the three groups. 

Likewise, they rose similarly in response to the hyperglycemia brought about during the 

experimental period (to 24 ± 2, 23 ± 3, 23 ± 3 µU/ml) (Figure 3.3A).  Portal plasma 

insulin levels increased from baseline (26 ± 5, 16 ± 5, 31 ± 9 µU/ml to 82 ± 4, 75 ± 6, 69 

± 8 µU/ml) in response to hyperglycemia (Figure 3.4A). There was no statistical 

difference in the total AUC in either arterial or portal plasma insulin among groups 

during the experimental (0 to 240 min) period (Figure 3.3A, 4A insets).  The arterial 

plasma glucagon levels decreased significantly in CON, POR, and HAT during the 

experimental period (to 23 ± 2, 30 ± 3, 25 ± 2 pg/ml, respectively) from their respective 

basal values (36 ± 3, 43 ± 4, 36 ± 3 pg/ml) (Figure 3.3B). Portal plasma glucagon levels 

also decreased from basal (50 ± 6, 51 ± 4, 46 ± 3 pg/ml) during the experimental period 

(to 27 ± 1, 32 ± 3, 28 ± 2 pg/ml) (Figure 3.4B). There was no statistical difference in the 

total AUC for either the arterial or portal plasma glucagon during the experimental period 

(Figure 3.3B, 3.4B insets). 

Hepatic blood flow, NHGB and non-HGU.  Hepatic artery blood flows during the basal 

period (7.2 ± 1.0, 5.4 ± 0.4, 4.9 ± 0.7 ml/kg/min in CON, POR, and HAT) and the 

experimental period (7.9 ± 0.7, 6.8 ± 0.4, 6.4 ± 1.0 ml/kg/min) were not different among 

the groups.  There was also no difference in hepatic portal vein blood flow in either the 

basal (22.7 ± 2.0, 28.9 ± 2.1, 24.3 ± 1.8 ml/kg/min) or experimental periods (22.7 ± 1.8, 

27.9 ± 1.9, 25.1 ± 1.7 ml/kg/min).  In the basal state, net hepatic glucose output was 
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Figure 3.3 A: Arterial plasma insulin levels during the basal period (-40 to 0 min) and 

during the infusion of saline, or GLP-1 into the hepatic portal vein or hepatic artery (0 to 

240 min).  There was a significant increase in insulin levels in each group during the 

experimental period when compared to respective basal period values (p < 0.05); inset: 

AUC for experimental period. There were no differences among groups upon analysis of 

the time-course or experimental period AUC. Data are expressed as mean ± SE. B: 

Arterial plasma glucagon levels during the basal period (-40 to 0 min) and during the 

infusion of saline intraportally, or GLP-1 into the hepatic portal vein or hepatic artery (0 

to 240 min); inset: AUC during the experimental period. There was a significant decrease 

in glucagon levels in each group during the experimental period when compared to 

respective basal period values (p < 0.05), but there were no differences among groups 

upon analysis of the time-course or experimental period AUC. Data are expressed as 

mean ± SE. 
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Figure 3.4 A: Portal plasma insulin levels during the basal period (-40 to 0 min) and 

during the infusion of saline, or GLP-1 into the hepatic portal vein or hepatic artery (0 to 

240 min).  There was a significant increase in insulin levels in each group during the 

experimental period when compared to respective basal period values (p < 0.05); inset: 

AUC for experimental period. There were no differences among groups upon analysis of 

the time-course or experimental period AUC. Data are expressed as mean ± SE. B: Portal 

plasma glucagon levels during the basal period (-40 to 0 min) and during the infusion of 

saline intraportally, or GLP-1 into the hepatic portal vein or hepatic artery (0 to 240 min); 

inset: AUC during the experimental period. There was a significant decrease in glucagon 

levels in each group during the experimental period when compared to respective basal 

period values (p < 0.05), but there were no differences among groups upon analysis of the 

time-course or experimental period AUC.  Data are expressed as mean ± SE. 
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similar in all groups (1.6 ± 0.3, 2.0 ± 0.2, 1.6 ± 0.1 mg/kg/min).  In response to the 

hyperglycemic clamp the liver switched to net glucose uptake, with statistically greater 

net hepatic glucose uptake when GLP-1 was given into the hepatic artery (NHGB = -2.4 

± 0.4, -3.0 ± 0.4, -3.9 ± 0.4 mg/kg/min in CON, POR, and HAT, respectively, during 

final 2 hours) (Figure 3.5A).  Non-HGU was not different during saline or hepatic artery 

GLP-1 infusion (3.8 ± 0.7, 3.0 ± 0.8 mg/kg/min, respectively, final 2 hours); but it was 

significantly greater (5.5 ± 0.8 mg/kg/min, final 2 hours) when GLP-1 was given into the 

hepatic portal vein (Figure 3.5B). 

Endogenous Glucose Production and Glucose Disposal. Endogenous glucose 

production (Ra) was similar among groups during the basal period (2.3 ± 0.2, 2.3 ± 0.2, 

2.5 ± 0.1 mg/kg/min in CON, POR, and HAT), and decreased in response to 

hyperglycemia during the experimental period (1.0 ± 0.4, 0.5 ± 0.6, 1.0 ± 0.4 mg/kg/min, 

average final 2 hours in CON, POR, and HAT) (Figure 3.6A). Glucose disposal (Rd) was 

the same among groups during the basal period (2.4 ± 0.2, 2.3 ± 0.1, 2.4 ± 0.1 mg/kg/min 

in CON, POR, and HAT) and increased in response to the hyperglycemia (6.7 ± 0.8, 7.8 

± 1.1, 7.3 ± 1.0 mg/kg/min, average final 2 hours in CON, POR, and HAT) (Figure 

3.6B). 

Arterial plasma free-fatty acid.  Arterial plasma free-fatty acid levels decreased similarly 

in response to glucose infusion (from 994 ± 127, 883 ± 80, 1073 ± 84 µmol/L to 362 ± 

111, 168 ± 14, 274 ± 45 µmol/L in CON, POR, and HAT, respectively) in all three 

groups.  
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Figure 3.5 A: Net hepatic glucose balance (NHGB) during the basal period (-40 to 0 min) 

and during the infusion of saline, or GLP-1 into the hepatic portal vein or hepatic artery 

(0 to 240 min).  Rates in each group were significantly decreased (p < 0.05) during the 

infusion of saline, or GLP-1 into the hepatic portal vein or hepatic artery (0 to 240 min), 

when compared to their respective basal period values. Data are expressed as mean ± SE. 

* = p < 0.05 versus CON.  # = p < 0.05 versus POR. B: Non-hepatic glucose uptake 

(Non-HGU) during the infusion of saline, or GLP-1 into the hepatic portal vein or hepatic 

artery (30 to 240 min).  Data are the average of values over 30 min segments and are 

expressed as mean ± SE. * = p < 0.05 versus CON.  + = p < 0.05 versus HAT. 
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Figure 3.6 A: Glucose disposal (Rd) during the basal period (-40 to 0 min) and during the 

infusion of saline, or GLP-1 into the hepatic portal vein or hepatic artery (0 to 240 min).  

Data are expressed as mean ± SE. B: Endogenous glucose production (Ra) during the 

basal period (-40 to 0 min) and during the infusion of saline intraportally, or GLP-1 into 

the hepatic portal vein or hepatic artery (0 to 240 min). Data are expressed as mean ± SE. 
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Discussion 

 After a meal, intraportal GLP-1 levels are approximately twice those in peripheral 

blood (47).  Therefore, GLP-1R in the hepatic portal vein are exposed to higher GLP-1 

concentrations than receptors in other sites of the body. This makes the hepatic portal 

vein a potential site for initiation of some of GLP-1’s effects.  Studies in rats showed that 

an intraportal injection of GLP-1 resulted in increased afferent impulses from the hepatic 

branch of the vagus nerves (96). This suggests that GLP-1 can initiate a neural signal 

within the hepatic portal vein which could result in actions at other sites in the body.  In 

the present study our goal was to determine which, if any, of GLP-1’s effects are initiated 

at hepatic portal vein. The experimental design was such that the action of GLP-1 on 

gastric emptying and β-cell proliferation were of no consequence.  In addition, by 

including groups in which GLP-1 was infused into either the hepatic artery or the hepatic 

portal vein, we were able to differentiate between effects resulting from elevations of 

GLP-1 within the liver versus those within the portal vein.  Therefore, we were able to 

assess the effects of portal vein GLP-1 per se on pancreatic hormone secretion and on the 

rate of glucose uptake by the liver and nonhepatic tissues.  

 A significantly greater glucose infusion rate (8.5 ± 0.7 vs. 6.7 ± 1.0 mg/kg/min, 

average over the final 2 hours) was required to maintain the glucose clamp when GLP-1 

was given intraportally than when it was given at the same rate into the hepatic artery 

(Figure 3.2), despite there being no difference in pancreatic hormone levels (Figures 3.3 

& 3.4).  This trend was also apparent upon evaluation of glucose disposal (Figure 3.6A). 

Increased glucose utilization occurred with intraportal infusion of GLP-1, even though 

the arterial and hepatic vein GLP-1 levels were identical in the two groups (Figure 3.1B); 
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therefore, the difference in the glucose infusion rate must be attributed to the difference 

in the hepatic portal vein GLP-1 levels (48.7 ± 4.7 vs. 22.8 ± 3.1 pM). The hepatic portal 

vein GLP-1 concentrations increased 10-fold when GLP-1 was given into the hepatic 

artery, versus 20-fold when it was given into the portal vein (Figure 3.1B). The increase 

(over saline) in the peripheral glucose infusion rate required in the portal GLP-1 infusion 

group was 3-times greater than the increase in the glucose infusion rate which was 

required in the hepatic artery infusion group. This difference in glucose infusion rate was 

slow to develop, reaching a maximum approximately 120 min after the start of GLP-1 

infusion.  Thereafter the difference between groups was maintained (Figure 3.2).  

 The delay in the onset of the effect of portally delivered GLP-1 occurred despite 

the fact that GLP-1 levels were elevated in a square wave fashion. An increase (over 

saline) in the glucose infusion rate actually occurred as early as 40 min after the start of 

portal GLP-1 infusion, but it did not reach significance until 120 min (Figure 3.2). The 

delay in the rise in the glucose infusion rate indicates that the pharmacokinetic time 

course of GLP-1 differs from the time course of the pharmacodynamic response to its 

infusion. This was also evident in an earlier study in which a bolus of GLP-1 given into 

hepatic portal vein of the rat caused an ever increasing rise in afferent neural discharges 

over time (96). These findings suggest that certain effects of GLP-1 may last for a longer 

period of time than the increment during which GLP-1 blood level is increased. It has 

been shown that postprandial GLP-1 levels remain elevated for as long as 3 hours in the 

human (35) and 6 hours in the dog (unpublished data). The present data suggest that the 

impact of the rise in GLP-1 might go on for an even longer period of time. The 
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mechanistic explanation for this slow onset of action may relate to persistent changes in 

neural firing or the time required for the synthesis of regulatory proteins. 

 Given that intraportal infusion of GLP-1 increased whole body glucose disposal 

in the absence of a change in plasma insulin, the question thus arises as to which tissues 

were responsible for the increase. By placing catheters across the liver, one can separate 

whole body glucose uptake into its hepatic and nonhepatic components. There was only a 

small increase (3.0 ± 0.4 vs. 2.4 ± 0.4 mg/kg/min, not significant) in net hepatic glucose 

uptake (Figure 3.5A), and small decrease in endogenous glucose production (1.0 ± 0.4 vs. 

0.5 ± 0.6 mg/kg/min, not significant) (Figure 3.6B), in the animals that received 

intraportal GLP-1 versus saline. As a result it can be concluded that the increase in whole 

body glucose uptake seen in those animals was primarily due to an increase in nonhepatic 

glucose uptake.  This is confirmed by our observation that the calculated rate of 

nonhepatic glucose uptake was significantly increased in the presence of intraportal as 

opposed to hepatic artery GLP-1 infusion (Figure 3.5B) (3.0 ± 0.8 versus 5.5 ± 0.8 

mg/kg/min, respectively during the final 2 hours of the study). The combined effects of 

hepatic and nonhepatic glucose uptake are in agreement with the rate of glucose 

utilization (Figure 3.6). It is also in agreement with previously reported studies which 

indicated that portal vein GLP-1 receptors regulate nonhepatic glucose uptake in the 

mouse in the presence of an intraportal glucose infusion (236; 264). A previous study 

conducted in our lab showed that a physiological increase in GLP-1 resulting from 

intraportal infusion of the peptide at the same rate as that used here, when brought about 

with the pancreatic hormones clamped at levels similar to those observed in the current 

study, caused a small increase in net hepatic glucose uptake (approximately 0.8 
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mg/kg/min) much like in the present study, but, contrary to the present results GLP-1 

infusion in the clamp studies had no effect on non-hepatic glucose uptake (47).  However, 

the duration of the intraportal GLP-1 infusion in the previous study was only 90 min (47), 

perhaps explaining the fact that we did not see a significant increase in nonhepatic 

glucose uptake (i.e. in the present study the effect did not become significant until 120 

min).  In addition, in our previous study, glucose was clamped using only a peripheral 

infusion (i.e. no portal glucose delivery). It has been clearly shown that when glucose is 

delivered intraportally, it decreases afferent vagal firing (265), and causes an increase in 

net hepatic glucose uptake and a decrease in nonhepatic glucose uptake (176). Portal 

delivery of GLP-1 increases vagal afferent firing (96); thus it is possible that in the 

presence of portal glucose delivery GLP-1 can bring about effects which would not be 

observed in the absence of portal glucose delivery.  

 Taking the results from our previous study (47) and the current study together it 

would appear that a physiological increase in GLP-1 secretion can bring about two 

effects, each independent of the actions of GLP-1 on the endocrine pancreas.  First, GLP-

1 can have a direct, but modest, effect on the liver per se to increase net hepatic glucose 

uptake. This is seen independently of whether the rise in liver sinusoidal GLP-1 results 

from input via the hepatic artery or the hepatic portal vein (47). It can best be seen by 

examining the hepatic artery GLP-1 infusion data (i.e. those without the added action of 

portal vein GLP-1 signaling). In our earlier study, net hepatic glucose uptake increased 

by approximately 1.0 mg/kg/min (47) in response to hepatic artery GLP-1 infusion, while 

in the present study it increased by 1.5 mg/kg/min (2.4 ± 0.4 vs. 3.9 ± 0.4 mg/kg/min).  

This was despite the fact that there were no differences in plasma insulin or glucagon 
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level in the presence of GLP-1, compared to the control, in either study. The second 

effect of GLP-1 relates to its delivery into the portal vein. There it tends to decrease net 

hepatic glucose uptake (from 3.9 ± 0.4 to 3.0 ± 0.4 mg/kg/min), and to increase 

nonhepatic glucose uptake (from 3.0 ± 0.8 to 5.5 ± 0.8 mg/kg/min). The question then 

arises as to why a 20-fold rise in portal vein GLP-1 would bring about this effect and a 10 

fold increase would not. This could have resulted from a threshold effect such that a 10 

fold increase simply did not bring about a big enough change for us to detect. 

Alternatively, the portal vein concentration difference in GLP-1 may be detected and 

bring about a unique response. 

 It has been well established that exogenously infused GLP-1 acts as an incretin in  

both healthy humans and those with type 2 diabetes (40).  As noted above, however, in 

the current studies there was no difference in arterial or portal plasma insulin levels in the 

presence or absence of GLP-1 infusion regardless of whether the peptide was given 

intraportally or via the hepatic artery (Figure 3.3A).  This agrees with earlier data 

indicating that dogs which received a systemic infusion of glucose to simulate 

postprandial peripheral glucose levels showed no change in insulin levels when a 

peripheral GLP-1 infusion was added to create a physiological increase in GLP-1 levels 

(49).  

 Postprandial increases in peripheral plasma GLP-1 levels in the human and dog 

are very similar (both reaching levels of approximately 10-15 pM); however, we did not 

observe greater insulin levels in the presence versus the absence of GLP-1 in the current 

study, despite the fact that our GLP-1 levels were designed to match postprandial levels. 

There are several possible explanations for our failure to observe an incretin effect of 
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GLP-1. There is some evidence that the GLP-1 clearance in the human and the dog may 

be different. It has been shown that an infusion rate of approximately 0.3 pmol/kg/min 

(266) is required to create a postprandial rise in total peripheral GLP-1 levels in the 

human, while the dog requires 3 to 4 times that rate to simulate post meal levels of active 

GLP-1 (47). This suggests greater clearance of GLP-1 in the dog, such that for a given 

infusion rate, the plasma levels would be lower in the dog; therefore, the 1 pmol/kg/min 

infusion rate used here might result in significantly higher GLP-1 levels in humans, 

which could induce significantly greater effects at the β-cell.  

 On the other hand, there may be a species difference in β-cell sensitivity to GLP-

1, because it has been shown that in humans an infusion of 0.15 pmol/kg/min, in the 

presence of ~180 mg/dl plasma glucose levels, can augment glucose stimulated insulin 

secretion (266), while in the current study an infusion rate of 1 pmol/kg/min in the 

presence of ~160 mg/dl plasma glucose did not change plasma insulin levels. This raises 

the question of whether endogenously released GLP-1 acts as an incretin hormone in the 

dog.  It could still do so if endogenously released GLP-1 initiates an incretin signal 

upstream from our infusion site, in closer proximity to the L-cells from which it is 

released.  It is known that a large portion of GLP-1 is degraded in the gut by DPP-IV in 

the brush-border membrane (267), prior to its reaching the hepatic portal vein; therefore, 

we may not have observed an increase in insulin in the presence of GLP-1 due to the fact 

that active GLP-1 levels at the gut were not high enough to induce an incretin effect. 

 The data presented here also indicate that GLP-1 produced no additional 

suppression of the plasma glucagon level in response to hyperglycemia (Figures 3.3B and 

3.4B).  Our data thus support the concept that  GLP-1 infusion decreases plasma 
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glucagon only in the presence of inappropriately elevated levels of the hormone, as 

previously observed in patients with diabetes (40; 209).    

  As previously mentioned, an advantage to our model is the ability to determine 

substrate balance across the liver. We were able to determine that approximately 8% of 

active GLP-1 is degraded as it traverses the liver in the healthy dog. This degradation 

represents a combination of GLP-1 that is degraded by the liver, per se, and the amount 

that is exposed to and degraded by DPP-IV in plasma during hepatic transit. The 

measured levels of GLP-1 in the hepatic portal vein were slightly below the value 

predicted given portal vein plasma flow and the GLP-1 infusion rate.  This is 

undoubtedly the result of imperfect mixing of the infusate in the portal blood. Were 

recovery of GLP-1 to have been perfect, the portal vein GLP-1 levels would have been 

modestly higher and the amount of GLP-1 lost on transit through the liver could have 

been 18%. Thus, it would appear that less than 20% of active GLP-1 is removed from the 

blood as it traverses the liver.    

 In conclusion, the current study shows that delivery of a physiological amount of 

GLP-1 into the hepatic portal vein (but not the hepatic artery) increased whole body 

glucose uptake in the absence of an effect on plasma insulin or glucagon levels.  This 

increase was primarily due to an augmentation of nonhepatic glucose uptake.  

At this point, the mechanism by which this effect comes about is unclear. Nevertheless, 

the current results further support the concept that the non-incretin effects of GLP-1 are 

also important in its regulation of glucose metabolism in vivo.  
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CHAPTER IV 

 

INTRAPORTALLY DELIVERED GLUCOSE IS REQUIRED FOR 

INTRAPORTAL GLP-1 INFUSION TO INCREASE NONHEPATIC GLUCOSE 

UTILIZATION 

 

(Adapted from Johnson et al., Am J Physiol Endocrinol Metab 294:E380-E384, 2008) 

 

Specific Aim II-Introduction 

 After a meal, glucagon-like peptide-1 (GLP-1) is secreted from the L cell in the 

gut such that its level in the hepatic portal vein is approximately twice that in peripheral 

blood (47). Likewise, at the same time postprandial glucose levels are higher in hepatic 

portal vein blood than in the artery, due to absorption of the meal. In Specific Aim I, in 

the presence of intraportal glucose delivery, a physiological increase of GLP-1 in the 

hepatic portal vein increased nonhepatic glucose uptake via a mechanism independent of 

changes in pancreatic hormone secretion (268). This increase in nonhepatic glucose 

uptake did not occur when GLP-1 was infused at the same rate through the hepatic artery, 

even though infusion at this site elevated GLP-1 concentrations in the liver and peripheral 

blood to the same levels as those seen in the presence of intraportal GLP-1 infusion 

(268). It can be concluded, therefore, that the elevation of GLP-1 in the hepatic portal 

vein was itself responsible for the increase in nonhepatic glucose uptake. 

 In addition to showing that GLP-1 delivery into the hepatic portal vein results in 

changes in glucose utilization, our lab (239; 269-272) and others (264; 273; 274) have 

assembled evidence that intraportal delivery of glucose per se alters the distribution of a 

glucose load in the body. When compared to peripheral glucose delivery, intraportal 
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delivery of glucose results in greater net hepatic glucose uptake even when the liver is 

presented with equal hepatic glucose loads and sinusoidal insulin levels (269).  In 

addition, we have shown that intraportal delivery of glucose decreases nonhepatic 

glucose uptake.  Thus, portal glucose delivery results in a preferential deposition of 

glucose in the liver (239; 271; 272). It is believed that these unique effects of portal 

glucose delivery are mediated by neural signals initiating within the hepato-portal region 

(275; 276). 

 Firing of afferent vagal nerve fibers originating in the hepatic portal region 

decreases upon initiation of an intraportal glucose infusion, thus suggesting that the portal 

glucose signal is neurally mediated (265; 277). In contrast to glucose, intraportal GLP-1 

delivery increases neural firing from the region (96; 278); therefore, both glucose and 

GLP-1 have the ability to initiate effects via neural changes within the hepatic portal 

vein. It has been suggested that a negative arterial-hepatoportal gradient for both GLP-1 

and glucose levels must be present for GLP-1 to exert its effect on glucose utilization (49; 

236; 268).  The aim of the present study was to test this hypothesis.  

 

Results 

For ease of comparison, results from Specific Aim I, in which hyperglycemia was 

induced by a combination of intraportal (4 mg/kg/min) and peripheral glucose (variable 

as needed) infusions have been presented here at PoGlu-SAL and PoGlu-GLP-1.  Results 

from the current study, in which only peripheral glucose infusion was used, are referred 

to as PeGlu-SAL and PeGlu-GLP-1 in the text. 
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Plasma glucose levels.  In response to a combination of portal and peripheral glucose 

infusions, there was an increase in plasma glucose levels in the artery (to 158 ± 1 and 156 

± 1 mg/dl) and portal vein (to 177 ± 2 and 174 ± 1 mg/dl) in both PoGlu-SAL and PoGlu-

GLP-1, respectively (Figure 4.1A). The animals that received only peripheral glucose 

infusion experienced increases in plasma glucose levels in the artery (to 159 ± 1 and 162 

± 1 mg/dl) and hepatic portal vein (to 159 ± 1 and 162 ± 1 mg/dl in PeGlu-SAL and 

PeGlu-GLP-1, respectively) that were of similar magnitude (Figure 4.1B). 

Plasma GLP-1 levels.  Basal plasma GLP-1 levels were similar regardless of group in 

both arterial and hepatic portal vein plasma (Figure 4.2).  GLP-1 levels in the artery and 

hepatic portal vein did not change in response to the saline infusion.  On the other hand, 

in response to intraportal GLP-1 infusion they rose in the artery (27.1 ± 2.4 and 29.4 ± 

1.5 pM; PoGlu-GLP-1 and PeGlu-GLP-1, respectively) and in the hepatic portal vein 

(50.0 ± 4.2 and 57.7 ± 4.5 pM) (Figure 4.2), with no difference between groups in either 

vessel. 

Glucose infusion rates.  Intraportal GLP-1 infusion caused a significantly greater 

increase (p < 0.05) in the glucose infusion rate in the presence of an intraportal glucose 

infusion (8.5 ± 0.7 vs. 6.0 ± 0.5 mg/kg/min, average over final 2 hours; PoGlu-GLP-1 vs. 

PoGlu-SAL) (Figure 4.3A) than in its absence (6.4 ± 1.2 vs. 6.1 ± 1.0 mg/kg/min, 

average over final 2 hours; PeGlu-GLP-1 vs. PeGlu-SAL) (Figure 4.3B).   

Plasma insulin and glucagon levels. In the basal period, arterial and hepatic portal vein 

plasma insulin levels were similar among all groups (Figure 4.4). Likewise, they rose 

similarly in response to the hyperglycemia brought about during the experimental period 

(to 24 ± 2, 23 ± 3, 24 ± 1, 28 ± 5 µU/ml of arterial plasma, and to 82 ± 4, 75 ± 6, 81 ± 12,  



 101 

Time (min)

-40 -20 0 30 60 90 120 150 180 210 240

P
la

s
m

a
 G

lu
c

o
s

e
 (

m
g

/d
l)

100

120

140

160

180

200A B
(+) Portal Glucose (-) Portal Glucose

SAL-arterial 

GLP-1-arterial 

SAL-portal 

GLP-1-portal

Time (min)

-40 -20 0 30 60 90 120 150 180 210 240

P
la

s
m

a
 G

lu
c

o
s
e

 (
m

g
/d

l)

100

120

140

160

180

200

SAL-arterial 

GLP-1-arterial 

SAL-portal 

GLP-1-portal

 

Figure 4.1 Plasma glucose levels in 42-h fasted conscious dogs. A: Arterial and portal plasma glucose levels for dogs that received a 

combination of intraportal and peripheral glucose, in addition to either intraportal GLP-1 or saline (SAL) from Specific Aim I. Levels 

were basal initially (-40 to 0 min), but both arterial and portal levels increased significantly (p < 0.05) during the experimental period 

(0 to 240 min) in response to the glucose clamp. There were no significant differences among groups in either the basal or 

experimental period. B: Arterial and portal plasma glucose levels for dogs that received a peripheral glucose infusion, in addition to 

intraportal GLP-1 or saline (SAL).  Levels were basal initially (-40 to 0 min), but both arterial and portal levels increased significantly 

(p < 0.05) during the experimental period (0 to 240 min) in response to the glucose clamp. There were no significant differences 

among groups in either the basal or experimental period. Data are expressed as mean ± SE. 
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Figure 4.2 Plasma GLP-1 levels. A: Arterial and portal plasma GLP-1 levels for animals that received a combination of intraportal and 

peripheral glucose, in addition to either intraportal GLP-1 or saline (SAL) from Specific Aim I. B: Arterial and portal plasma GLP-1 

levels for dogs that received a peripheral glucose infusion, in addition to either intraportal GLP-1 or saline. In the animals that 

received the GLP-1 infusion, GLP-1 levels were basal initially (-40 to 0 min), but both arterial and portal levels increased significantly 

(p < 0.05) during the experimental period (0 to 240 min). Levels remained unchanged in SAL. Data are expressed as mean ± SE. 
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Figure 4.3 Total glucose infusion rate (GIR) during the infusion of intraportal saline (SAL) or GLP-1 into the hepatic portal vein (0 to 

240 min).  A: GIR for animals that received a combination of intraportal and peripheral glucose from Specific Aim I. Data are 

expressed as mean ± SE for each time point.  Animals that received GLP-1 intraportally had a significantly greater GIR than SAL. * = 

p < 0.05 versus SAL. B: GIR for animals that received peripheral glucose alone. There was no statistical difference between groups. 

Data are expressed as mean ± SE for each time point.   
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Figure 4.4 Plasma insulin levels. A: Arterial and portal plasma insulin levels for animals that received a combination of intraportal and 

peripheral glucose, in addition to either intraportal GLP-1 or saline (SAL) from Specific Aim I. Levels were basal initially (-40 to 0 

min), but both arterial and portal levels increased significantly (p < 0.05) during the experimental period (0 to 240 min) in response to 

the glucose clamp. B: Arterial and portal plasma insulin levels for dogs that received a peripheral glucose infusion, in addition to 

either intraportal GLP-1 or saline. Levels were basal initially (-40 to 0 min), but both arterial and portal levels increased significantly 

(p < 0.05) during the experimental period (0 to 240 min) in response to the glucose clamp. Data are expressed as mean ± SE. 
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86 ± 10 µU/ml of hepatic portal vein plasma in PoGlu-SAL, PoGlu-GLP-1, PeGlu-SAL, 

and PeGlu-GLP-1, respectively) (Figure 4.4).  In the basal period, sinusoidal plasma 

glucagon levels were similar among all groups (Figure 4.5). Likewise, they declined 

during the experimental period in a similar manner in all groups (to 25 ± 2, 32 ± 3, 22 ± 

5, 22 ± 5 pg/ml in PoGlu-SAL, PoGlu-GLP-1, PeGlu-SAL, and PeGlu-GLP-1, 

respectively).  

Hepatic blood flow, HGL, NHGB and non-HGU.  Hepatic arterial blood flow during the 

basal period and the experimental period were similar among the groups, as were the 

hepatic portal vein blood flows.  The hepatic glucose load was approximately 30% 

greater in those groups that received intraportal glucose delivery (38.6 ± 2.5 and 41.7 ± 

2.3 mg/kg/min, average over experimental period; PoGlu-SAL and PoGlu-GLP-1, 

respectively) than in those that did not (30.1 ± 2.4 and 31.8 ± 2.1 mg/kg/min, average 

over experimental period; PeGlu-SAL and PeGlu-GLP-1, respectively). In the basal state, 

net hepatic glucose output was similar in all groups (1.6 ± 0.3, 2.0 ± 0.2, 1.5 ± 0.2, 1.3 ± 

0.1 mg/kg/min; PoGlu-SAL, PoGlu-GLP-1, PeGlu-SAL, and PeGlu-GLP-1, 

respectively).  In response to the hyperglycemic clamp the liver switched to net glucose 

uptake in all groups; however, hepatic portal vein glucose infusion was associated with 

greater net hepatic glucose uptake than saline infusion (NHGB = -2.4 ± 0.4 and -3.0 ± 0.4 

mg/kg/min; PoGlu-SAL and PoGlu-GLP-1, respectively, during final 2 hours vs. -1.2 ± 

0.1 and -1.6 ± 0.2 mg/kg/min; PeGlu-SAL and PeGlu-GLP-1, respectively, during final 2 

hours) (Figure 4.6A, 4.6B).  In the presence of portal and peripheral glucose infusions, 

non-HGU was significantly greater in the presence of intraportal GLP-1 (5.5 ± 0.8 

mg/kg/min, final 2 hours) when compared to saline infusion (3.8 ± 0.7 mg/kg/min, final 2  
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Figure 4.5 Sinusoidal plasma glucagon levels. A: Sinusoidal plasma glucagon levels for animals that received a combination of 

intraportal and peripheral glucose, in addition to either intraportal GLP-1 or saline (SAL) from Specific Aim I. B: Sinusoidal plasma 

glucagon levels for animals that received peripheral glucose infusion, in addition to either intraportal GLP-1 or saline. There was a 

significant decrease sinusoidal glucagon levels in all groups during the experimental period when compared to respective basal period 

values (p < 0.05). Data are expressed as mean ± SE.
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Figure 4.6 Glucose production and utilization. A: Net hepatic glucose balance (NHGB) during the basal period (-40 to 0 min) and 

experimental period (0 to 240 min) in animals that received intraportal and peripheral glucose, in addition to either intraportal GLP-1 

or saline (SAL) from Specific Aim I. There was no significant difference between groups. B: NHGB in animals that received a 

peripheral glucose infusion, in addition to either intraportal GLP-1 or saline (SAL).  There was no significant difference between 

groups. C: Non-hepatic glucose uptake (Non-HGU) during the infusion of intraportal saline (SAL) or GLP-1 during the experimental 

period (30 to 240 min) in animals that received both intraportal and peripheral glucose infusions from Specific Aim I. Animals that 

received GLP-1 had significantly greater (p < 0.05) Non-HGU.  * = p < 0.05 versus SAL. D: Non-HGU during the infusion of 

intraportal saline or GLP-1 during the experimental period (30 to 240 min) in animals that received only a peripheral glucose infusion. 

There was no significant difference between groups. Data are expressed as mean ± SE. 
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hours) (Figure 4.6C). There was no effect of GLP-1 on non-HGU (4.9 ± 1.2 and 4.9 ± 1.0 

mg/kg/min, final 2 hours; PeGlu-GLP-1 and PeGlu-SAL) when glucose was supplied 

solely by peripheral glucose infusion (Figure 4.6D). 

 

Discussion 

 After a meal, the increases in both GLP-1 (47) and glucose levels in the hepatic 

portal vein are significantly greater than in the peripheral blood. It has been suggested 

that this elevation of both GLP-1 and glucose must exist for a physiological increase of 

GLP-1 to exert its effect on glucose utilization (49; 236; 268). In Specific Aim I, in the 

presence of hepatic portal vein glucose infusion, a physiological increase of GLP-1 in the 

hepatic portal vein stimulated nonhepatic glucose uptake via a mechanism independent of 

changes in pancreatic hormone secretion (268). The results from the present study 

indicate that, in the absence of a hepatic portal vein glucose infusion, portal vein GLP-1 

infusion does not bring about such an effect. In the presence of a portal glucose infusion, 

the glucose infusion rate required to clamp the glucose at 160 mg/dl was significantly 

greater when GLP-1 was given than when it was not (8.5 ± 0.7 mg/kg/min vs. 6.0 ± 0.5 

mg/kg/min, average over the final 2 hours; PoGlu-GLP-1 vs. PoGlu-SAL).  In the 

absence of portal glucose infusion there was no effect of GLP-1 (6.4 ± 1.2 mg/kg/min vs. 

6.1 ± 1.0 mg/kg/min, average over final 2 hours; PeGlu-GLP-1 and PeGlu-SAL) on the 

glucose infusion rate (Figure 4.3). The failure of the glucose infusion rate to rise is 

explained by the absence of an increase in nonhepatic glucose uptake (4.9 ± 1.2 and 4.9 ± 

1.0 mg/kg/min, final 2 hours; PeGlu-GLP-1 and PeGlu-SAL).  In the presence of a portal 

glucose infusion, nonhepatic glucose uptake was significantly greater when GLP-1 was 
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given intraportally than when it was not (5.5 ± 0.8 vs. 3.8 ± 0.7 mg/kg/min, final 2 hours; 

PoGlu-GLP-1 vs. PoGlu-SAL) (Figure 4.6C, 4.6D). 

 The question thus arises as to the mechanism by which a physiological increase in 

hepatic portal vein GLP-1 levels might bring about increased whole body glucose uptake 

only in the presence of intraportal glucose delivery. Intraportal glucose delivery decreases 

vagal neural firing by afferent fibers originating in the hepatic portal vein (265; 277), and 

it has been shown that these nerves must be intact for the portal glucose signal to initiate 

its effects (275; 276). Portally delivered GLP-1 on the other hand, increases neural firing 

in afferents originating in the hepato-portal region (96; 278).  It has been clearly shown 

that the portal glucose signal decreases nonhepatic glucose uptake (271; 272). Thus if 

GLP-1 were to override the impact of portally delivered glucose on vagal afferent firing 

to nonhepatic tissue, one would predict an increase in nonhepatic glucose uptake. Since 

our earlier work has suggested that the effect of the portal signal occurs in muscle, it 

seems likely that this is the site of the GLP-1 induced effect (272).  

 Our earlier data by Dardevet et. al (47) showed that intraportal infusion of GLP-1 

(1 pmol/kg/min) in the presence of hyperglycemia induced by peripheral glucose infusion 

and a pancreatic hormone clamp, resulted in a small increase in net hepatic glucose 

uptake (approximately 0.8 mg/kg/min), but no change in nonhepatic glucose uptake.  

This agrees with data from the current study, in which animals that received glucose only 

via the peripheral route tended to have slightly greater net hepatic glucose uptake when 

GLP-1 was given intraportally than when it was not (NHGB= -1.6 ± 0.2 vs. -1.2 ± 0.1 

mg/kg/min, during final 2 hours, not significant, p=0.16; PeGlu-GLP-1 vs. PeGlu-SAL) 

(Figure 4.6B).  As noted in Specific Aim I, and as recapitulated here, in the presence of 
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intraportal glucose infusion, GLP-1 delivery also tended to have a small direct effect on 

the liver (NHGB= -3.0 ± 0.4 vs. -2.4 ± 0.4 mg/kg/min, during final 2 hours, not 

significant, p=0.30; PoGlu-GLP-1 and PoGlu-SAL) (Figure 4.6A). Collectively, 

therefore, our data suggest that physiological increases in GLP-1 can have a modest 

direct stimulatory effect on the liver. 

 In the present study, the groups that received an intraportal glucose infusion 

exhibited greater net hepatic glucose uptake (2.4 ± 0.4 and 3.0 ± 0.4 mg/kg/min, final 2 

hours; PoGlu-SAL and PoGlu-GLP-1, respectively), than the groups that received only  

peripheral infusion of glucose (1.2 ± 0.1 and 1.6 ± 0.2 mg/kg/min; PeGlu-SAL and 

PeGlu-GLP-1, respectively, during final 2 hours). This increase in net hepatic glucose 

uptake in the presence of intraportal glucose delivery was probably attributable to both 

the greater (~30%) hepatic glucose load (239) and the portal signal per se (269).    

 In contrast to the results of our earlier studies, portal glucose infusion in the 

current study did not significantly decrease nonhepatic glucose uptake or increase insulin 

secretion (271; 272; 279). There was however, a trend toward a decrease in nonhepatic 

glucose uptake (3.8 ± 0.7 vs. 4.9 ± 1.0 mg/kg/min, final 2 hours; PoGlu-SAL and PeGlu-

SAL) (Figure 4.6C, 4.6D) and higher hepatic portal vein insulin levels in the animals that 

received intraportal glucose compared to those that did not. There are two possible 

explanations for the lack of significant change in these parameters. First, the effect of 

intraportal glucose infusion on nonhepatic glucose uptake and plasma insulin levels may 

have been too small to detect given the limited power of this study. Second, in our earlier 

studies that demonstrated decreased nonhepatic glucose uptake and increased insulin 

secretion there were greater intraportal glucose infusion rates (5 and 10 mg/kg/min) (271; 
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272; 279) and greater peripheral glycemia (220 mg/dl) (272) than in the current study. 

Therefore, given the smaller portal glucose signal and the lower glucose level, it is not 

surprising that the changes in nonhepatic glucose uptake and insulin secretion did not 

reach statistical significance.   

 It has been well established that exogenously infused GLP-1 acts as an incretin in  

both healthy humans and those with Type 2 diabetes (40).  As noted above, however, in 

Specific Aim I, as well as in the current study, there was no difference in arterial or portal 

plasma insulin levels in the presence or absence of GLP-1 infusion. This agrees with 

earlier data which showed that dogs which received a systemic infusion of glucose to 

simulate postprandial peripheral glucose levels showed no change in insulin levels when 

GLP-1 was infused peripherally to create a physiological increase in its level (49). The 

fact that a physiological elevation in GLP-1 did not result in changes in pancreatic 

hormone levels in the dog was discussed at length in Specific Aim I.  

 In conclusion, we have shown that a physiological elevation of plasma GLP-1 in 

the hepatic portal vein increases nonhepatic glucose uptake only when intraportal glucose 

delivery is also present. Furthermore, this effect is not related to differences in plasma 

insulin or glucagon levels. The data thus suggest that the GLP-1 secretion that occurs 

following feeding plays a role in limiting postprandial hyperglycemia by increasing liver 

and muscle glucose uptake even when the peptide does not augment the elevation in 

insulin or the decrease in plasma glucagon levels. 
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CHAPTER V 

 

DURATION OF FAST INFLUENCES THE ACTIONS OF INTRAPORTALLY 

DELIVERED GLP-1 

 

Specific Aim III-Introduction 

 As an incretin hormone, GLP-1 is most strongly associated with an insulin 

secretory effect; however, it has also been shown that the peptide has other gluco-

regulatory actions, including increasing insulin mediated glucose uptake (48).  These 

characteristics have made GLP-1 analogs and molecules which alter GLP-1 degradation 

promising therapies for type 2 diabetes, in that they target two contributing factors to the 

disease: inadequate insulin secretion and decreased insulin sensitivity.  

 In Specific Aim I, increased glucose and insulin, in combination with intraportal 

delivery of GLP-1 at rate which created a physiological increase in GLP-1 levels 

increased whole body glucose uptake in the 42 h fasted dog (268). This occurred without 

GLP-1 induced changes in the secretion of the pancreatic hormones (268).  As shown in 

Specific Aim II, this effect on whole body glucose utilization only occurred under 

simulated feeding conditions when the plasma glucose level in the hepatic portal vein 

was elevated to levels greater than those in arterial blood (268; 280).  

 It has been shown in the human (281-283) that duration of fast is inversely 

correlated with whole body insulin sensitivity.  In addition, it has been shown that a fast 

of shorter duration is associated with increased sensitivity of the β-cell to glucose, 

resulting in significantly increased glucose-dependent insulin secretion (283; 284). In the 

current study, we explored the possibility that, in a state of augmented β-cell and insulin 
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sensitivity, the magnitude of the effects of GLP-1 on glucose homeostasis would be 

increased. 

 Specifically, our aim was to determine if a physiologic increase in GLP-1 (47), 

caused by intraportal GLP-1 infusion, would result in a greater increase in whole body 

glucose uptake and/or greater insulin secretion, in dogs that were fasted for 18 h rather 

than for 42 h, by which time insulin sensitivity and β-cell responsiveness are markedly 

reduced.  

 

Results 

Plasma glucose levels.  Plasma glucose levels in the artery (161 ± 3 and 162 ± 2 mg/dl) 

and hepatic portal vein (181 ± 2 and 184 ± 3 mg/dl) increased similarly in response to the 

combination of portal and peripheral glucose infusion in the SAL and GLP-1 groups, 

respectively (Figure 5.1A). 

Plasma GLP-1 levels.  There was no difference between groups in basal GLP-1 levels in 

either arterial or hepatic portal vein blood (Figure 5.1B), nor did the levels change in 

response to saline infusion. On the other hand, they rose in both the artery (to 30.3 ± 2.2 

pM) and hepatic portal vein (to 50.3 ± 5.3 pM) in response to intraportal GLP-1 infusion 

(Figure 5.1B). 

Glucose infusion rate.  There was no difference in the total glucose infusion rates 

required to maintain the glucose clamp between the two groups (10.6 ± 1.3 vs. 9.7 ± 1.5 

mg/kg/min, average over final 2 hours; SAL vs. GLP-1) (Figure 5.2).   

Plasma insulin and glucagon levels. The arterial and hepatic portal vein plasma insulin 

levels were similar between groups during the basal period (Figure 5.3A).  Both groups  



 114 

Time (min)

-40 -20 0 30 60 90 120 150 180 210 240

P
la

s
m

a
 G

lu
c

o
s

e
 (

m
g

/d
l)

100

120

140

160

180

200

Time (min)

-40 0 30 60 90 120 150 180 210 240

P
la

s
m

a
 G

L
P

-1
 (

p
M

)

0

20

40

60

80B

A

SAL-portal

GLP-1-portal

SAL-arterial

GLP-1-arterial

 

Figure 5.1 Plasma glucose and GLP-1 levels in 18-h fasted conscious dogs. A: Arterial 

and portal plasma glucose levels for dogs that received either intraportal GLP-1 or saline 

(SAL).  Levels were basal initially (-40 to 0 min), but both arterial and portal levels 

increased significantly (p < 0.05) during the experimental period (0 to 240 min) in 

response to the glucose clamp. There were no significant differences between groups in 

either the basal or experimental period. B: Arterial and portal plasma GLP-1 levels for 

dogs that received either intraportal GLP-1 or saline. In the animals that received the 

GLP-1 infusion, GLP-1 levels were basal initially (-40 to 0 min), but both arterial and 

portal levels increased significantly (p < 0.05) during the experimental period (0 to 240 

min). Levels remained unchanged in SAL. Data are expressed as mean ± SE. 
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Figure 5.2 Total glucose infusion rate (GIR) during the infusion of intraportal GLP-1 or 

saline (SAL) into the hepatic portal vein (0 to 240 min).  There was no statistical 

difference between groups. Data are expressed as mean ± SE for each time point. 
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Figure 5.3  Plasma insulin and glucagon levels. A: Arterial and portal plasma insulin 

levels for dogs that received either intraportal GLP-1 or saline (SAL). Levels were basal 

initially (-40 to 0 min), but both arterial and portal levels increased significantly (p < 

0.05) during the experimental period (0 to 240 min) in response to the glucose clamp. B: 

Sinusoidal plasma glucagon levels for animals that received either intraportal GLP-1 or 

saline. There was a significant decrease sinusoidal glucagon levels in both groups during 

the experimental period when compared to respective basal period values (p < 0.05). Data 

are expressed as mean ± SE. 
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exhibited similar increases in response to hyperglycemia (to 33 ± 4 and 31 ± 3 µU/ml in 

arterial plasma, and to 86 ± 8 and 81 ± 11 µU/ml in hepatic portal vein plasma in the SAL 

and GLP-1 groups, respectively, averaged over the entire experimental period) (Figure 

5.3A).  The sinusoidal plasma glucagon levels were not different between the two groups 

during the basal period (Figure 5.3B) and decreased in a similar manner (to 28 ± 4 and 29 

± 4 pg/ml in SAL and GLP-1, respectively, when averaged over the entire experimental 

period). 

Hepatic blood flow, HGL, NHGB and non-HGU.  Hepatic arterial blood flows during 

the basal period and the experimental period were similar between groups, as were the 

hepatic portal vein blood flows.  In the basal state, net hepatic glucose output (Figure 5.4) 

was similar between groups (2.2 ± 0.2 and 1.6 ± 0.3 mg/kg/min; SAL and GLP-1, 

respectively). In response to the hyperglycemic clamp, the liver switched to net glucose 

uptake, with no significant difference between groups (NHGB = -3.6 ± 0.5 and -3.6 ± 0.5 

mg/kg/min; SAL and GLP-1, respectively, during final 2 hours) (Figure 5.4A). There was 

no effect of GLP-1 on non-HGU (7.1 ± 1.5 and 6.2 ± 1.4 mg/kg/min, final 2 hours; SAL 

and GLP-1) (Figure 5.4B). 

Arterial plasma free fatty acids. Arterial plasma FFA decreased in response to the 

hyperglycemia and hyperinsulinemia (from 817 ± 160 and 794 ± 114 to 147 ± 26 and 178 

± 31 µmol/l; SAL and GLP-1, respectively). 
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Figure 5.4 Glucose production and utilization. A: NHGB in animals that received either 

intraportal GLP-1 or saline (SAL).  Rates in each group were significantly decreased (p < 

0.05) during the experimental period when compared to their respective basal period 

values. There was no significant difference between groups. Data are expressed as mean 

± SE. B: Non-HGU during the infusion of intraportal saline or GLP-1 during the 

experimental period (30 to 240 min). There was no significant difference between groups. 

Data are the average of values over 30 min segments and are expressed as mean ± SE.  

 



 119 

Discussion 

 In the current study, conscious dogs were fasted for 18 hours, and then underwent 

a hyperglycemic clamp in the presence of either GLP-1 or saline given intraportally. The 

glucose and GLP-1 infusion rates were such that they brought about increases in plasma 

glucose and GLP-1 that resemble those seen after an oral glucose tolerance test (47).   

Glucose was infused through both the hepatic portal vein (4.0 mg/kg/min) and a 

peripheral vein (as needed) to clamp the arterial plasma glucose level at 160 mg/dl; 

however, pancreatic hormones were not clamped.  In Specific Aim I, when this protocol 

was used in 42 hour fasted animals there was a significant increase in nonhepatic glucose 

uptake (Table 6.1) in response to GLP-1 infusion (268). This response occurred without 

any effect of GLP-1 on the pancreatic hormone levels (268). The question thus arises as 

to whether the long fast duration had in some way limited GLP-1’s effects.  The purpose 

of the current study, therefore, was to repeat our earlier experiment in animals that had 

only been fasted briefly and, as a consequence, had increased whole body insulin 

sensitivity and greater β-cell responsiveness (281-284).  We hypothesized that under 

these conditions, GLP-1 infusion into the portal vein would cause greater nonhepatic 

glucose uptake than that seen in the previous study (268), in part at least because of an 

increase in insulin secretion. 

 In contrast to Specific Aim I, however, in the current study there was no 

difference in the glucose infusion rate required to maintain the glucose clamp when GLP-

1 was infused intraportally as opposed to when saline was given via the portal vein (9.7 ± 

1.5 vs. 10.6 ± 1.3 mg/kg/min, average over final 2 hours; GLP-1 vs. SAL) (Figure 6.2). In 

addition, as was the case Specific Aims I & II, there was no effect of GLP-1 on insulin or  
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TABLE 5.1                   

Comparison of glucose utilization parameters in 18 h fasted animals and 42 h fasted animals from            

Specific Aim I.                   

                                      

        18 h fast           42 h fast     

        Saline   GLP-1   Saline   GLP-1 

                    

Experimental Period Arterial Plasma Insulin (µU/ml)    33  ± 4   31  ± 3    *24  ± 2   *22  ± 3  

Last 2 hr Arterial Plasma Insulin  (µU/ml)    35  ± 5   29  ± 3    *23  ± 2   23  ± 3  

Last 2 hr Hepatic Sinusoidal Plasma Insulin  (µU/ml)    81  ± 10   67  ± 12    68  ± 5   60  ± 8  

                    

Last 2 hr Glucose Infusion Rate (mg/kg/min)    10.6  ± 1.3   9.7  ± 1.5    *6.0  ± 0.5   †8.5  ± 0.7  

Last 2 hr Glucose Infusion Rate/                    

          Arterial Plasma Insulin Ratio (mg/kg/min / µU/ml)   0.35  ± 0.08   0.35  ± 0.05    0.27  ± 0.03   †0.43  ± 0.06  

                    

Last 2 hr Non-HGU (mg/kg/min)    7.1  ± 1.5   6.2  ± 1.4    3.8  ± 0.7   †5.5 ± 0.8  

Last 2 hr Non-HGU/                    

          Arterial Plasma Insulin Ratio (mg/kg/min / µU/ml)   0.23  ± 0.08   0.21  ± 0.04    0.17  ± 0.03   0.29  ± 0.07  

                    

Last 2 hr Net Hepatic Glucose Uptake (mg/kg/min)    3.6  ± 0.5   3.6  ± 0.5    *2.4  ± 0.4   3.0  ± 0.4  

Last 2 hr Net Hepatic Glucose Uptake/                    

         Hepatic Sinusoidal Plasma Insulin (mg/kg/min / µU/ml)  0.047  ± 0.009   0.066  ± 0.014    0.037  ± 0.008   0.059  ± 0.014  

                      

 Mean ± SE;  *P<0.05 vs.18 h; †P<0.05 vs. saline.         
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glucagon levels in plasma (268; 280) (Figure 6.3).  Thus intraportal GLP-1 infusion did 

not have a greater effect on nonhepatic glucose uptake in the 18 h fasted dog than it did in 

animals fasted for 42 h (268), in fact, it had no effect whatsoever.   

 The total glucose infusion rate required to maintain arterial plasma glucose at 160 

mg/dl in the 18 h fasted animals that received saline infusion in the current study was 

significantly greater than the infusion rate required to maintain a similar clamp in 42 h 

fasted dogs in Specific Aim I (10.6 ± 1.3 vs. 6.0 ± 0.5 mg/kg/min, average over the final 

2 hours; 18 vs. 42 h fast, p<0.01) (268).  This can mainly be attributed to significantly 

greater arterial plasma insulin levels during the experimental period (33 ± 4 vs. 24 ± 2 

µU/ml; 18 vs. 42-h fast, p=0.02) (268), which probably resulted from increased glucose 

sensitivity at the β-cell (283). Insulin action, when expressed as a ratio of glucose uptake 

to insulin level, tended to be greater in the 18 h fasted animals. Using these parameters, 

insulin sensitivity increased in both hepatic (0.047 ± 0.009 vs. 0.037 ± 0.008 mg/kg/min / 

µU/ml; 18 h saline vs. 42 h saline) and nonhepatic (0.23 ± 0.08 vs. 0.17 ± 0.03 

mg/kg/min / µU/ml; 18-SAL vs. 42-SAL) (Table 6.1) tissues by approximately 30% after 

the shorter fast.  It has previously been shown that when glucose was delivered 

intraduodenally, 42 h fasted dogs had significantly greater circulating plasma glucose 

levels than 18 h fasted animals given the same glucose load; nevertheless, the 18 h fasted 

dogs maintained the same rate of glucose uptake by the liver and hindlimb as 42 h fasted 

dogs, even though the glucose loads (levels) to both of these tissues was significantly 

reduced in the shorter fasted animals (285).  This agrees with the increase in insulin 

sensitivity caused by a decrease in fast duration observed in the current study. In addition, 

despite the increased arterial glucose level in the 42 h fasted animals that received 
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intraduodenal glucose, the 18 h and 42 h fasted groups had statistically similar arterial 

plasma insulin levels (285), confirming increased β-cell glucose sensitivity in the shorter 

fasted dogs. 

 There was no significant difference in the glucose infusion rates required to clamp 

the arterial plasma glucose level at 160 mg/dl in response to the combination of increased 

GLP-1, glucose, and insulin (9.7 ± 1.5 vs. 8.5 ± 0.7 mg/kg/min, average over final 2 

hours) in 18 vs. 42 h fasted dogs (268).  This indicates that intraportal GLP-1 infusion 

ameliorated the impaired insulin sensitivity evident in a 42 h fasted dog, but was without 

effect when insulin sensitivity was normal. 

 The question thus arises as to how a physiological increase in the plasma GLP-1 

level could restore glucose utilization in the 42 h fasted dog, in Specific Aim I, to a rate 

not significantly different from that observed in an 18 h fasted animals.  The decreased 

insulin sensitivity associated with an extended fast or calorie restriction is thought to be 

due to impaired insulin signaling (286) which results from increased circulating FFA 

levels and increased fat oxidation (282; 287; 288).  In addition, increased FFA levels 

have been shown to result in β-cell impairment (289).  Since others have shown that 

GLP-1 infusion can decrease circulating FFA (86), one might postulate that the plasma 

FFA were decreased to a greater extent in the GLP-1 infused 42 h fasted dogs than in the 

saline infused animals.  Indeed, this was the case.  The dogs which received GLP-1 in 

Specific Aim I had a lower level of plasma FFA during the experimental period than the 

saline infused dogs (168 ± 14 vs. 362 ± 111µmol/l, 42 h GLP-1 vs. 42 h saline, 

respectively) (268).   In fact, the arterial plasma FFA levels were decreased by GLP-1 in 

the 42 h fasted dogs to the levels observed during the experimental period in the 18 h 
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fasted dogs that received either GLP-1 (178 ± 31 µmol/l) or saline (147± 26 µmol/l).  

Further analysis of the data, however, does not support this hypothesis.  If one considers 

the four saline infused animals (of a total eight) from Specific Aim I (42 h fasted dogs) 

which had the lowest arterial plasma FFA levels, it becomes obvious that their arterial 

plasma FFA levels fell to the level observed in the 42 h fasted GLP-1 infused animals 

(168 ± 14 vs. 172 ± 32 µmol/l; 42 h GLP-1 vs. 42 h saline-low FFA) (268).  The glucose 

infusion rate in this subgroup (6.6 ± 0.6 mg/kg/min, average over final 2 hours) was still 

very different from that in the GLP-1 group (8.5 ± 0.7 mg/kg/min, average over final 2 

hours) (268).  Thus although glucose infusion was greater by 1.2 mg/kg/min in the 

controls which had lower FFA level, than the four saline infused 42 h fasted dogs with 

higher FFA levels (5.4 ± 0.9 vs. 6.6 ± 0.6 mg/kg/min, average final 2 hr; 42 h saline-high 

FFA vs. 42 h saline-low FFA) (268), this does not provide an explanation for GLP-1’s 

actions.  It remains to be determined what aspect of fasting associated with insulin 

resistance was mitigated by the physiological increase in GLP-1. 

 Differences in the effects of GLP-1 due to difference in fasting are not 

unprecedented. While GLP-1 does inhibit neural signals that trigger small bowl motility 

in fed rats, the amount of GLP-1 required for the same effect is significantly decreased in 

the fasted state (213; 290). It has even been suggested that the effect of GLP-1 on gut 

motility in the fasted and fed states actually are the result of two separate mechanisms, 

either dependent or independent, respectively, of nitric oxide signaling (213).  In 

addition, it appears as though leptin, the circulating level of which decreases with fasting, 

augments the effect of GLP-1 on food intake only in the fed state when leptin levels are 

increased (291).  
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 Absence of a change in pancreatic hormone levels in response to a physiological 

increase in GLP-1 levels in the dog is in agreement with Specific Aims I & II (268; 280) 

and that of others (237).  This issue has been addressed in previous aims (268; 280); 

however, in brief, it appears as though in the dog a physiological increase of GLP-1 

delivered via the hepatic portal vein does not have an incretin effect.  Despite this 

finding, one cannot conclude that endogenously released GLP-1 does not have an incretin 

effect in the dog. Such an action could be initiated by a neural signal closer to the L cell, 

possibly via an interaction of GLP-1 at the local level with the afferent vagal nerve 

endings in the basolateral membrane of the entero-endocrine cells, much in the same 

manner as cholecystokinin (CCK) interacts at these nerve endings to initiate its gastric 

effects (292).  

 In the dog, glucose responsiveness of the β-cell is greater in 18 h than 42 h fasted 

animals, and there tends to be an increase in insulin sensitivity at liver and muscle.  

Together, these actions result in more efficient whole body glucose utilization. The 

results of the current study indicate that, in 18 h fasted dogs, a physiological increase in 

GLP-1 levels does not alter insulin secretion.  Additionally, unlike the case with 42 h 

fasted dogs in Specific Aim I, GLP-1 did not increase nonhepatic glucose utilization in 

18 h fasted dogs.  This suggests that GLP-1 can improve nonhepatic glucose uptake 

without altering pancreatic hormone secretion, but only when the former is impaired, as 

in the long-fasted state. 
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CHAPTER VI 

 

THE ROLE OF ENDONGENOUSLY RELEASED GLP-1 IN GLUCOSE 

REGULATION IN NORMAL AND INSULIN RESISTANT DOGS 

 

Specific Aim IV-Introduction 

 Approximately half of all secreted GLP-1 is degraded between the site of 

secretion and the portal vasculature (58).  It is possible that, upon secretion, GLP-1 acts 

in a paracrine manner by activating receptors in the vasculature close to the site of 

secretion, upstream from the hepatic portal vein.  In the gut, vagal afferents terminate in 

the region of the basolateral membrane of entero-endocrine cells, an established 

mechanism by which cholecystokinin (CCK) regulates gastric emptying and food intake 

(292). It is therefore possible that GLP-1 acts in a similar manner. 

 In the previous aims, GLP-1 was infused into the hepatic portal vein to create a 

physiological increase in the levels of the peptide, so that levels in the hepatic portal vein 

were approximately twice those observed in the periphery, mimicking levels observed 

after an OGTT (47); however, intraportal infusion does not elevate GLP-1 in the 

vasculature surrounding the L cell, as would occur in response to endogenous GLP-1 

secretion.  Although GLP-1 is best known for its action at the β-cell, intraportal GLP-1 

infusion did not alter pancreatic hormone levels in any of the previous protocols. It is 

possible that the contribution of GLP-1 to the incretin effect is mediated through its 

elevation in direct proximity to its site of secretion. Endogenously secreted GLP-1 may 

also have other effects on postprandial glucose disposition which were not observed in 

the previous protocols. 



 126 

 It has been established in the human that one effect of a physiological rise in 

GLP-1 after a meal is slowed gastric emptying (293).  In agreement with that, circulating 

postprandial GLP-1 levels are inversely correlated to the rate of gastric emptying (214). 

In humans, when GLP-1 is infused during a meal, postprandial glycemia is decreased, 

and insulin levels are below those seen in the absence of GLP-1 (210).  This indicates 

that increased insulin is not the cause of the decreased blood glucose level.  When GLP-1 

action is blocked in humans after an OGTT, peripheral plasma glucose levels are 

elevated, and this is accompanied by an appropriately elevated insulin level (294). 

Combined, these results indicate that a primary role of endogenously secreted GLP-1 in 

glucose regulation may be to slow gastric emptying (210), which inturn would limit the 

elevation of glycemia. 

 Specific Aim I established that intraportal GLP-1 delivery increased nonhepatic 

glucose uptake (268). In Specific Aim II, it was determined that this action was 

dependent on intraportal glucose delivery (280), essentially recreating arterial-

hepatoportal gradients of  both GLP-1 and glucose observed after a meal.  Results from 

Specific Aim I and II (268; 280), from previous work done in our lab (47), and from the 

work of others (98), indicate that GLP-1 can have a direct effect on hepatic glucose 

uptake. Therefore, glucose uptake could be another way in which endogenously secreted 

GLP-1 decreases postprandial glucose levels. 

 Specific Aim IV was to determine if endogenously released GLP-1 has any 

impact on postprandial glucose disposal in the dog through its effects on the pancreas, 

gastric emptying, and/or glucose utilization.  To execute this aim we studied healthy dogs 

and an additional subset of insulin resistant dogs, twice each. The animals received either 
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a peripheral saline or exendin (9-39) (Ex-9) infusion in random order. Ex-9 is an 

antagonist of the GLP-1R.  During both studies the dogs received an orally delivered 

liquid meal consisting of carbohydrate, fat, and protein, to induce endogenous GLP-1 

secretion. The meal was spiked with acetaminophen to quantify gastric emptying.  Effects 

of endogenous GLP-1 secretion on pancreatic hormone secretion, glucose utilization, and 

gastric emptying were assessed. 

 

Results 

Plasma GLP-1 Levels. In the normal dogs, arterial plasma GLP-1 levels were at a 

minimum during the basal period (3.6 ± 1.8 and 5.6 ± 2.9 pM, saline and Ex-9, 

respectively) and during the infusion of saline or Ex-9 (3.5 ± 1.8 and 5.0 ± 2.8 pM, t=30 

min) prior to the meal (Table 6.1).  GLP-1 levels increased in response to the meal to 9.7 

± 2.6 pM (45 to 200 min) with saline infusion and 16.7 ± 4.4 pM with Ex-9 infusion 

(Table 6.1). In the insulin resistant dogs, deep venous plasma GLP-1 levels were minimal 

during the basal period (0.3 ± 0.3 and 0.1 ± 0.1 pM, saline and Ex-9, respectively) and 

during the infusion of saline or Ex-9 (0.2 ± 0.3 and 0.2± 0.2 pM, t=30 min) prior to the 

meal (Table 6.1).  After meal administration (45 to 200 min) levels reached 1.5 ± 1.5 pM 

with saline infusion and 2.3 ± 2.0 pM with Ex-9 infusion (Table 6.1). 

Plasma Acetaminophen Levels. To assess gastric emptying circulating plasma 

acetaminophen levels were measured.  After administration of the meal to normal dogs, 

arterial plasma acetaminophen levels were significantly lower (p=0.04) when saline was 

infused (6.7 ± 1.1 µg/ml from 45 to 200 min) than when Ex-9 was infused (8.2 ± 0.9 

µg/ml (Figure 6.1A). The area under the curve for the increase from baseline (∆ AUC) 
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Figure 6.1 Plasma acetaminophen levels and ∆ AUC. A:  Arterial plasma acetaminophen levels for normal dogs after meal and ∆ 

AUC from 45 to 200 min (inset). Data are mean ± SE. *: P < 0.05 compared to saline infusion. B: Deep venous plasma acetaminophen 

levels for insulin resistant dogs after meal and ∆ AUC from 45 to 200 min (inset).  Data are mean ± SE. *: P < 0.05 compared to saline 

infusion. C: Individual arterial plasma acetaminophen ∆ AUC from 45 to 200 min for normal dogs. *: P < 0.05 compared to saline 

infusion. D: Individual deep venous plasma acetaminophen ∆ AUC from 45 to 200 min for insulin resistant dogs.



 130 

from 45 to 200 min was also significantly lower (p=0.04) with saline infusion (1041 ± 

177 µg/ml*155 min) versus Ex-9 infusion (1268 ± 140 µg/ml*155 min) (Figure 6.1A, 

inset, Figure 6.1C).  This represents an 18 ± 10% decrease in the ∆ AUC when GLP-1 

was able to interact with its receptor.  After administration of the meal to insulin resistant 

dogs, deep venous plasma acetaminophen levels averaged 3.7 ± 1.1 µg/ml with saline 

infusion (45 to 200 min; Figure 6.1B). With Ex-9 infusion, deep venous plasma 

acetaminophen levels averaged 5.6 ± 1.4 µg/ml (45 to 200 min; Figure 6.3B).  ∆ AUC 

from 45 to 200 min was 574 ± 171 µg/ml*155 min with saline infusion, which was 32 ± 

20% lower than when Ex-9 was infused (866 ± 217*155 min) (Figure 6.1B, inset, Figure 

6.1D). 

Net Gut and Splanchnic Glucose Balance. We next determined the effect of gastric 

emptying on net gut glucose absorption and net splanchnic glucose balance. Total hepatic 

blood flow was nearly identical between the two protocols in normal dogs prior to meal 

administration (Table 6.2). After administration of the meal, hepatic portal vein blood 

flow increased by ~ 30% , regardless of treatment (Table 6.2).  Net gut glucose output 

after the meal (45 to 200 min) was 7.6 ± 1.1 mg/kg/min with saline infusion and 11.2 ± 

2.2 mg/kg/min with Ex-9 infusion (Figure 6.2A). Net splanchnic glucose output after the 

meal (45 to 200 min) was 4.5 ± 1.0 mg/kg/min with saline infusion and 7.8 ± 2.0 

mg/kg/min with Ex-9 infusion (Figure 6.2B). These parameters were not measured in the 

insulin resistant dogs.   

Plasma Glucose. In the normal dogs, the basal arterial plasma glucose levels were 119 ± 

2 and 118 ± 2 mg/dl prior to saline or Ex-9 infusion, respectively (Figure 6.3A).  Saline 

or Ex-9 were started at t=0 min and arterial plasma levels did not change from basal (118  
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Figure 6.2 Net gut and splanchnic glucose balance during the basal period (-20 to 0 min), 

experimental period prior to meal (0 to 30 min), and experimental period post meal (30 to 

320 min). A: Net gut glucose balance in normal dogs. B: Net splanchnic glucose balance 

in normal dogs.  Data are mean ± SE. *: P < 0.05 compared to saline infusion. 
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Figure 6.3 Plasma glucose levels during the basal period (-20 to 0 min), experimental 

period prior to meal (0 to 30 min), and experimental period post meal (30 to 320 min).  A: 

Arterial plasma glucose levels for normal dogs and ∆ AUC from 45 to 200 min (inset). B: 

Deep venous plasma glucose levels for insulin resistant dogs and ∆ AUC from 45 to 200 

min (inset).  Data are mean ± SE.  
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± 3 and 117 ± 2 mg/dl, t=30 min). After administration of the meal, the arterial plasma 

glucose levels averaged 156 ± 8 mg/dl during saline infusion, and 163 ± 7 mg/dl during 

Ex-9 infusion (Figure 6.3A, 45 to 200 min).  ∆ AUC from 45 to 200 min was 5725 ± 

1347 mg/dl*155 min and 7085 ± 1176 mg/dl*155 min, in the presence of saline and Ex-

9, respectively (Figure 6.3A, inset). This represents a 19 ± 12% decrease in the ∆ AUC 

when GLP-1 was able to interact with its receptor. In the insulin resistant dogs, deep 

venous plasma glucose levels during the basal period (-20 to 0 min) were 110 ± 2 and 

108 ± 3 mg/dl prior to saline or Ex-9 infusion, respectively.  Plasma glucose did not 

change in response to saline or Ex-9 infusion (112 ± 1 and 107 ± 3 mg/dl, t=30 min).  

After the meal was administered the deep venous plasma glucose levels averaged 173 ± 

33 mg/dl (45 to 200 min) during saline infusion and 203 ± 39 mg/dl with Ex-9 infusion 

(Figure 6.3B).  ∆ AUC from 45 to 200 min was 9741 ± 4880 mg/dl*155 min with saline 

and 14827 ± 5654 mg/dl*155 with Ex-9 infusion (p=0.06).  This represents a 37 ± 12% 

decrease when GLP-1 interacted with its receptor (Figure 6.1B, inset). 

Plasma Insulin Levels. In the normal dogs, arterial plasma insulin levels during the basal 

period (9 ± 2 and 8 ± 2 µU/ml, saline and Ex-9, respectively) were similar between the 

two groups, and did not change during the infusion of saline or Ex-9 (9 ± 1 and 8 ± 2 

µU/ml, t=30 min) prior to the meal (Figure 6.4A).  After the meal was administered (45 

to 200 min), the circulating insulin levels increased in response to hyperglycemia with 

both saline (49 ± 9 µU/ml) and Ex-9 infusion (55 ± 7 µU/ml) (Figure 6.4A).  The ratio of 

arterial plasma insulin to arterial plasma glucose, prior to the meal, averaged 0.07 ± 0.01 

and 0.07 ± 0.01 µU/mg (Figure 6.4C). After the meal (45 to 200 min), the average ratio 

was 0.31 ± 0.07 and 0.34 ± 0.05 µU/mg with saline and Ex-9 infusion, respectively  
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Figure 6.4 Plasma insulin levels and ratio of insulin levels to plasma glucose levels during the basal period (-20 to 0 min), 

experimental period prior to meal (0 to 30 min), and experimental period post meal (30 to 320 min).  A: Arterial plasma insulin levels 

from normal dogs. B: Deep venous plasma insulin levels from insulin resistant dogs. C: Ratio of arterial plasma insulin to arterial 

plasma glucose levels from normal dogs. D: Ratio of deep venous insulin to deep venous plasma glucose levels from insulin resistant 

dogs. Data are mean ± SE. *: P < 0.05 compared to saline infusion. 
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(Figure 6.4C).  In the insulin resistant dogs, deep venous plasma insulin levels during the 

basal period (12 ± 1 and 12 ± 3 µU/ml, saline and Ex-9, respectively) were identical 

between the two studies, and the levels did not change significantly during the infusion of 

saline or Ex-9 (16 ± 6 and 11 ± 2 µU/ml, t=30 min) prior to the meal (Figure 6.4B).  

After the meal was administered (45 to 200 min) the circulating insulin levels increased 

in response to hyperglycemia during saline (69 ± 14 µU/ml) and Ex-9 infusion 

(89 ± 6 µU/ml, p=0.05) infusion (Figure 6.4B).  The ratio of arterial plasma insulin to 

arterial plasma glucose prior to the meal averaged 0.11 ± 0.04 and 0.11 ± 0.01 µU/mg, 

while the ratios after administration of the meal (45 to 200 min) were 0.39 ± 0.01 and 

0.44 ± 0.06 µU/mg with saline and Ex-9 infusion, respectively (Figure 6.4D).   

Plasma C-peptide Levels. In the normal dogs, arterial plasma C-peptide levels were 

similar between treatments during the basal period (0.37 ± 0.07 and 0.33 ± 0.10 ng/ml, 

saline and Ex-9, respectively), with no change during the infusion of saline or Ex-9 (0.31 

± 0.07 and 0.36 ± 0.07 ng/ml, t=30 min) prior to the meal (Table 6.1).  After the meal (45 

to 200 min), C-peptide levels were 1.35 ± 0.26 ng/ml with saline infusion and 1.66 ± 0.15 

ng/ml with Ex-9 infusion (Table 6.1). In the insulin resistant dogs, deep venous plasma 

C-peptide levels were similar between treatments during the basal period (0.34 ± 0.08 

and 0.40 ± 0.08 ng/ml, saline and Ex-9, respectively) and during the infusion of saline or 

Ex-9 (0.50 ± 0.11 and 0.39 ± 0.12 ng/ml, t=30 min), prior to the meal (Table 6.1).  Deep 

venous plasma C-peptide levels after administration of the meal (45 to 200 min) were 

1.71 ± 0.31 ng/ml with saline infusion but significantly greater with Ex-9 infusion (2.18 ± 

0.36 ng/ml, p=0.01) (Table 6.1). 
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Plasma Glucagon Levels. In the normal dogs, arterial plasma glucagon levels were 

similar between treatments during the basal period (47 ± 5 and 41 ± 7 pg/ml, saline and 

Ex-9, respectively), with no change during the infusion of saline or Ex-9 (44 ± 3 and 40 ± 

6 pg/ml, t=30 min), prior to the meal (Table 6.1).  After administration of the meal (45 to 

200 min), glucagon levels were 44 ± 5 pg/ml with saline infusion and 46 ± 9 pg/ml with 

Ex-9 infusion (Table 6.1).  In the insulin resistant dogs, deep venous plasma glucagon 

levels were similar between treatments during the basal period (-20 to 0 min) (43 ± 6 and 

42 ± 4 pg/ml, saline and Ex-9, respectively) and during the infusion of saline or Ex-9 (43 

± 14 and 41 ± 5 pg/ml, t=30 min) prior to the meal (Table 6.1).  Deep venous plasma 

glucagon levels after administration of the meal (45 to 200 min) were 53 ± 6 pg/ml with 

saline infusion and 52 ± 10 pg/ml with Ex-9 infusion (Table 6.1). 

Plasma FFA Levels. In the normal dogs, arterial plasma FFA levels were similar prior to 

both treatments during the basal period (884 ± 143 and 773 ± 106 µmol/l, saline and Ex-

9, respectively), with no change during the infusion of saline or Ex-9 (912 ± 117 and 770 

± 105 µmol/l, t=30 min) prior to the meal (Table 6.1).  After administration of the meal 

(45 to 200 min), FFA levels were 247 ± 82 µmol/l with saline infusion and 212 ± 76 

µmol/l with Ex-9 infusion (Table 6.1).  In the insulin resistant dogs, deep venous plasma 

FFA levels were similar between studies during the basal period (731 ± 90 and 842 ± 81 

µmol/l, saline and Ex-9, respectively) and during the infusion of saline or Ex-9 (738 ± 36 

and 758 ± 74 pg/ml, t=30 min) prior to the meal (Table 6.1).  Deep venous plasma FFA 

levels after administration of the meal (45 to 200 min) were 228 ± 65 µmol/l with saline 

infusion and 276 ± 66 µmol/l with Ex-9 infusion (Table 6.1). 
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Net Hepatic Glucose Uptake. In normal dogs, the hepatic glucose load was 34.8 ± 3.1 

and 30.0 ± 2.2 mg/kg/min prior to the meal (-20 to 30 min) and 56.9 ± 4.7 and 66.1 ± 4.3 

mg/kg/min after the meal (45 to 200 min) with saline and Ex-9 infusion, respectively 

(Figure 6.5A).  NHGB was in a state of output prior to the meal (2.4 ± 0.2 and 1.6 ± 0.3 

mg/kg/min, average -20 to 30 min, saline and Ex-9, respectively), and switched to uptake 

after meal administration (-3.2 ± 1.3 and -3.4 ± 0.8 mg/kg/min, average 45 to 200 min, 

saline and Ex-9) (Figure 6.5B).  Hepatic fractional extraction was similar with the two 

treatments prior to (-0.07 ± 0.01 and -0.06 ± 0.01, average -20 to 30 min, saline and Ex-9, 

respectively) and after meal administration (0.05 ± 0.02 and 0.05 ± 0.01, average 45 to 

200 min, saline and Ex-9, respectively) (Figure 6.5C). Hepatic fractional extraction as a 

ratio to sinusoidal insulin levels were assessed at limited time points, due to limited portal 

sampling of insulin. There was no difference in this ratio in prior (-0.0036 ± 0.0004 and 

0.0043 ± 0.0012, saline and Ex-9) or after the meal (0.0017 ± 0.0009 and 0.0007 ± 

0.0005, saline and Ex-9) (Figure 6.5D). Net hepatic glucose uptake was not assessed in 

the insulin resistant dogs. 

Nonhepatic Glucose Uptake. In normal dogs, nonhepatic glucose uptake (Non-HGU) 

was similar in both studies during the basal period (2.1 ± 0.4 and 1.2 ± 0.4 mg/kg/min, 

saline and Ex-9, respectively), with no change in response to either saline or Ex-9 

infusion (2.1 ± 0.3 and 1.1 ± 0.3 mg/kg/min); however, after the meal, Ex-9 infusion 

resulted in significantly greater Non-HGU (4.1 ± 1.1 vs. 7.5 ± 2.0 mg/kg/min, saline vs. 

Ex-9, average 45 to 200 min, p=0.049) (Figure 6.6A).  Nonhepatic glucose clearance was 

similar between the two treatments prior to the meal (2.4 ± 0.3 and 1.5 ± 0.3 ml/kg/min, 

average -20 to 30 min, saline and Ex-9, respectively) (Figure 6.6B).  After administration  
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Figure 6.5 Hepatic glucose uptake in normal dogs during the basal period (-20 to 0 min), experimental period prior to meal (0 to 30 

min), and experimental period post meal (30 to 320 min).  A: Hepatic glucose load. B: Net hepatic glucose balance. C: Hepatic 

fractional extraction. D: Ratio of hepatic fractional extraction to sinusoidal insulin.  Data are mean ± SE. *: P < 0.05 compared to 

saline infusion. 
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Figure 6.6 Nonhepatic glucose uptake in normal dogs during the basal period (-20 to 0 

min), experimental period prior to meal (0 to 30 min), and experimental period post meal 

(30 to 320 min).  A: Nonhepatic glucose uptake. B: Nonhepatic glucose clearance. C: 

Ratio of nonhepatic glucose clearance to arterial plasma insulin.  Data are mean over time 

period ± SE. *: P < 0.05 compared to saline infusion. 
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of the meal (45 to 200 min), average nonhepatic glucose clearance was 3.5 ± 1.0 

ml/kg/min with saline infusion and 6.4 ± 1.8 ml/kg/min with Ex-9 infusion (Figure 6.6B). 

The ratio of nonhepatic glucose clearance to arterial plasma insulin was not different in 

the two treatments prior to meal delivery (0.29 ± 0.03 and 0.27 ± 0.08 ml/kg/min / 

µU/ml, -20 to 30 min, saline and Ex-9, respectively), but after meal delivery (45 to 200 

min) the ratio with Ex-9 infusion was significantly greater than with saline infusion (0.14 

± 0.02 vs. 0.09 ± 0.02 ml/kg/min / µU/ml, Ex-9 vs. saline, p=0.03) (Figure 6.6C). 

Nonhepatic glucose uptake was not assessed in the insulin resistant dogs. 

Hindlimb Blood Flow and Glucose Utilization. Hindlimb glucose balance was assessed 

in a subset of 3 normal dogs. There was no difference in average hindlimb blood flow 

prior to or after meal administration (Table 6.2). There was no difference in hindlimb 

glucose uptake between treatments prior to the meal (2.4 ± 0.6 and 3.9 ± 1.7 mg/min, -20 

to 30 min, saline and Ex-9); however, after delivery of the meal (45 to 200 min), when 

animals received Ex-9 (17.2 ± 1.8 mg/min), they had significantly greater hindlimb 

glucose uptake than when they received saline (9.5 ± 0.9 mg/min, p=0.029) (Figure 

6.7A). There was no difference in average hindlimb clearance between studies prior to 

the meal (2.8 ± 0.7 and 4.5 ± 2.0 ml/min, -20 to 30 min, saline and Ex-9) (Figure 6.7B). 

After delivery of the meal (45 to 200 min), when animals received Ex-9 (14.0 ± 2.1 

ml/min), they had significantly greater hindlimb clearance than when they received saline 

(8.2 ± 1.5 ml/min, p=0.015) (Figure 6.7B). The ratio of hindlimb glucose clearance to 

arterial plasma insulin was not different between treatments before (0.39 ± 0.11 and 0.50 

± 0.16 ml/min / µU/ml, -20 to 30 min, saline and Ex-9) or after the meal (0.28 ± 0.19 and  
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Figure 6.7 Hindlimb glucose utilization in a subset (n=3) of normal dogs during the basal 

period (-20 to 0 min), experimental period prior to meal (0 to 30 min), and experimental 

period post meal (30 to 320 min). A: Hindlimb glucose uptake. B: Hindlimb glucose 

clearance. C: Ratio of hindlimb glucose clearance to arterial plasma insulin.  Data are 

mean ± SE. *: P < 0.05 compared to saline infusion. 
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0.32 ± 0.09 ml/min / µU/ml, 45 to 200 min, saline and Ex-9) (Figure 6.7C). Hindlimb 

balance was not assessed in the insulin resistant dogs. 

 

Discussion 

 The purpose of Specific Aim IV was to determine if endogenously secreted GLP-

1 has a role in postprandial glucose regulation in the dog. To induce endogenous GLP-1 

secretion, a liquid mixed meal was administered orally to both normal and insulin 

resistant dogs.  Each dog was given a meal twice, 30 min after the start of either saline or 

a GLP-1R antagonist, exendin (9-39) (Ex-9), infusion.  The rate at which Ex-9 was 

infused (500 pmol/kg/min) has been shown in humans to fully block the insulin secretory 

effect of GLP-1 and does not have agonist effects (294). 

 The circulating GLP-1 levels were increased in response to the meal in both the 

normal and insulin resistant dogs; however, levels tended to be greater with Ex-9 infusion 

than with saline infusion (Table 6.1).  This effect has also been observed with Ex-9 

infusion in humans (295).  Increased GLP-1 level in the presence of Ex-9 could be due 

to: 1) differences in nutrient load to the gut which would result in differences in nutrient 

contact with the L cell, 2) negative feedback with inhibition of GLP-1 signaling, 3) a 

decrease in endocytosis of the peptide with interaction at the GLP-1R, or 4) any 

combinations of these possibilities. Evaluation of postprandial GLP-1 levels also 

indicates that the deep venous plasma GLP-1 levels in the insulin resistant dogs are 

drastically decreased when compared to arterial plasma GLP-1 level in the normal dogs 

(Table 6.1). This may be directly due to differences in sampling site, or it could be a 

consequence of the induction of insulin resistance. 
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 Each meal administered to the dogs was spiked with acetaminophen.  

Acetaminophen is not absorbed by the stomach, but it is absorbed by the gut directly 

upon leaving the stomach; therefore, circulating acetaminophen levels can be used to 

quantify gastric emptying.  When GLP-1 action was blocked, in both the normal and 

insulin resistant dogs, acetaminophen levels were higher for approximately 3-4 h after the 

meal was given (Figure 6.1A, B).  In light of the acetaminophen data, we analyzed the 

response between t=45 min, the first sample taken after meal administration, and t=200, 

the last sample in which the acetaminophen levels were greater with Ex-9 than saline in 

both the normal and insulin resistant dogs.  The acetaminophen ∆ AUC (45 to 200 min) 

was significantly greater in normal dogs and tended to be greater in insulin resistant dogs 

when Ex-9 was infused rather than saline (Figure 6.1C, D).  Blocking GLP-1 action thus 

resulted in a decrease in acetaminophen ∆ AUC by 18 ± 10% in the normal dogs and 32 ± 

20% in the insulin resistant dogs. This indicates that endogenous GLP-1 secretion slows 

gastric emptying for about 2 h and that this mechanism is intact in the insulin resistant 

dogs.   

 The question thus arises as to how the modest increase in GLP-1 levels seen in 

normal dogs, and the dramatically muted augmentation of circulating GLP-1 levels seen 

in the insulin resistant dogs (Table 6.1) could slow gastric emptying.  It is possible that a 

physiological elevation of GLP-1 in a specific region near its site of release may initiate 

its postprandial effects and that dramatic elevations in circulating GLP-1 levels are not 

required.  Consistent with the explanation that GLP-1 initiates its effects in a paracrine 

action close to its site of secretion is the belief that half of GLP-1 secreted is degraded 

prior to reaching the portal vasculature (58).  CCK acts in such a manner to control 
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gastric emptying and feeding behavior. It interacts with its receptor at the vagal afferents 

which terminate in the region of the basolateral membrane in close proximity to entero-

endocrine cells (292). It is known that the effects of GLP-1 on gastric motility and acid 

secretion in humans are dependent on vagal innervation (296), and it has been suggested 

that in pigs GLP-1 initiates this mechanism by decreasing afferent vagal firing from the 

gut (211), opposite of the effect observed in the hepatic portal vein in rats (96).  It is 

likely that after a meal GLP-1 is secreted into the vasculature, interacts with its receptor 

at vagal nerve endings in a paracrine fashion, thereby inhibits parasympathetic flow, and 

results in slowed gastric emptying. 

 The effect of slowed gastric emptying on glycemia on two parameters related to 

glucose absorption were assessed in the normal dogs.  Net gut glucose output (7.6 ± 1.1 

vs. 11.2 ± 2.2 mg/kg/min, 45 to 200 min, saline vs. Ex-9) and net splanchnic glucose 

output (4.5 ± 1.0 vs. 7.8 ± 2.0 mg/kg/min, 45 to 200 min, saline vs. Ex-9), were both 

elevated as a result of an increased rate of gastric emptying when GLP-1 action was 

blocked (Figure 6.2).  It is evident that accelerated gastric emptying contributed to 

increased glucose absorption as a result of increased glucose load to the gut, but at this 

point it is unclear if GLP-1 action had a direct effect on the transit of glucose from the 

gastrointestinal tract into the vasculature of the gut, per se.  Increased glucose absorption, 

due to the accelerated rate of gastric emptying in the early post-meal period, resulted in 

increased peripheral glycemia.  In both the normal and insulin resistant dogs, when GLP-

1 action was blocked, average arterial plasma glucose levels and the ∆ AUC tended to be 

greater (Figure 6.3).  This occurred over the same duration in which gastric emptying was 

increased (45 to 200 min).  The ∆ AUC of plasma glucose levels were increased 19 ± 
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12% in normal dogs and 37 ± 12% in insulin resistant dogs, similar to the changes 

observed in ∆ AUC of acetaminophen levels over the same time period.  This supports 

the concept that the effect of GLP-1 on gastric emptying contributes to its role in 

postprandial glucose regulation.   

 Although GLP-1 is highly touted for its ability to augment insulin secretion, the 

data shown in relation to our previous aims (268; 280), along with work done by others 

(49; 237), have failed to observe this effect in dogs.  When GLP-1 action was blocked in 

normal dogs, elevated glucose levels were accompanied by slightly greater arterial 

plasma insulin levels (Figure 6.4A).  The insulin levels correlated with the changes in the 

plasma C-peptide levels (Table 6.2).  In the insulin resistant dogs, when the GLP-1R was 

blocked the increased glycemia resulted in significantly greater deep venous plasma 

insulin levels (Figure 6.4B).  Again this tended to correlate with increased C-peptide 

levels (Table 6.1).  Antagonism of the GLP-1R might have been expected to limit insulin 

secretion; however, differences in glycemia confound the data interpretation.  In order to 

circumvent this problem, the ratio of the plasma insulin to plasma glucose level was 

calculated.  This ratio was not different between saline and Ex-9 infusion within either 

the normal or insulin resistant cohorts (Figure 6.4C, D).  Therefore, the small differences 

in insulin levels that were evident in both the normal and insulin resistant dogs were due 

to differences in plasma glucose levels and not to a consequence of the inhibition of the 

GLP-1R.  In addition, there was no difference in glucagon levels between treatments in 

either the normal or insulin resistant dogs (Table 6.1)  It can therefore be concluded that 

the primary role of endogenously secreted GLP-1 in postprandial glucose regulation in 
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the dog is not an incretin effect. This is consistent with our earlier data (268; 280), and 

the work of others (237), in which GLP-1 was elevated by a physiologic amount. 

 Next, we evaluated the direct effect of GLP-1 on glucose uptake. Increased 

glucose absorption in the presence of GLP-1R blockade resulted in an increase in hepatic 

glucose load and slightly greater net hepatic glucose uptake. When hepatic fractional 

extraction was calculated, however, there was no difference between treatments (Figure 

6.5C), indicating that GLP-1 did not have a detectable effect at the liver, per se. Likewise, 

there was no difference in the hepatic fractional extraction to sinusoidal insulin ratio 

(Figure 6.5D).  The increased circulating glucose levels which occurred in response to 

Ex-9 treatment resulted in greater nonhepatic glucose uptake and clearance (Figure 6.6A, 

B).  The ratio of nonhepatic glucose clearance to the arterial plasma insulin level was not 

different upon evaluation of the time course (Figure 6.6C), but with Ex-9 treatment the 

average ratio was greater directly after the meal (45 to 200 min), probably an artifact of 

quickly changing insulin and glucose levels, which were both greater with the GLP-1R 

blocked.  Further analysis of nonhepatic glucose utilization was conducted in a subset of 

the normal dogs with evaluation of hindlimb glucose uptake and clearance, both which 

were significantly greater with GLP-1 action blocked.  However, there was no difference 

between treatments when the ratio of hindlimb glucose clearance to arterial plasma 

insulin was calculated (Figure 6.7).  Therefore, as far as we can tell, increased glucose 

utilization at the hindlimb was the direct result of increased glycemia and the 

accompanying increase in insulin secretion.  

 The effect of GLP-1 on postprandial gastric emptying is in agreement with 

findings in humans (293; 294).  In fact, some claim that this is the primary effect by 
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which GLP-1 regulates glycemia after a meal in humans (210; 294). When GLP-1 action 

during an OGTT is blocked using Ex-9 in humans, peripheral plasma glucose levels are 

elevated, and this is accompanied by proportionately elevated insulin secretion (294), 

much like the observations in the current study. However, OGTTs administered to GLP-

1R
-/-

 mice result in elevated glycemic levels due to a deficiency in insulin secretion (107; 

297).  In addition, when Ex-9 is administered to rats or ob/ob mice during an OGTT, the 

result is elevated glucose due to inadequate insulin levels (298; 299). This suggests that it 

is possible that the dog, as opposed to rodents, may be a more accurate model of 

endogenous GLP-1 action in the human. 

 Others have shown that when a dog is given a meal, circulating GLP-1 levels 

reach approximately 10 pM, and  insulin secretion is significantly greater than when the 

glucose profile is matched with a peripheral glucose infusion; however, when GLP-1 was 

infused to match these levels in addition to the isoglycemic glucose infusion, there was 

no enhancement of insulin secretion (237).  This suggests that an incretin effect does 

exist in the dog, but is unlikely the result of increased circulating GLP-1 levels.  Our lab 

has shown that with intraportally infused exendin-4, a potent agonist for the GLP-1R, to 

create circulating levels of ~215 pM, insulin secretion was enhanced (300).  In addition, 

isolated canine pancreata increase insulin secretion in the presence of 1 nM GLP-1 levels 

(93). Taken together, these results indicate that the canine β-cell does respond to GLP-1, 

but only at higher levels. It is interesting to note that isolated rat pancreas had increased 

insulin secretion with exposure to 0.1 nM GLP-1 (93).  

 The question thus arises as to what is causing the incretin effect in the dog.  In 

addition to GLP-1, the canine pancreatic islet also increases insulin secretion in response 
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to the other recognized incretin hormone, GIP (301).  It is also possible that GLP-1 and 

GIP are working in a synergistic manner, which is not replicated with a GLP-1 infusion, 

alone (237). Previous work from our lab shows that intraportal delivery of glucose alone 

may enhance the incretin effect in the dog (279); however, this has not been observed in 

the previous aim in this thesis.  Therefore, the exact mechanism of the incretin effect in 

the dog is unclear. 

 In conclusion, endogenously secreted GLP-1 has a role in postprandial glucose 

regulation in both the normal and insulin resistant dog. GLP-1 released after a meal slows 

gastric emptying, more than likely mediated by afferent vagal signaling. In turn, slowed 

gastric emptying lowers the rate of glucose uptake by the gut and, ultimately, circulating 

glucose levels.  Blocking of GLP-1 contact with its receptor did not result in decreased 

insulin secretion. Differences in glucose uptake were reflective of the co-existing glucose 

and insulin levels, not a direct effect of GLP-1, per se. GLP-1 sensing and its ability to 

slow gastric emptying is apparently intact in our insulin resistant dogs, since their data 

mirrored the results of the normal animals.  
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CHAPTER VII 

 

SUMMARY AND CONCLUSIONS 

 

 It is well-recognized that GLP-1 regulates glucose homeostasis with its 

contribution to the incretin effect.  The aim of the research conducted in this thesis is to 

further the understanding of the physiological role of GLP-1 in glucose regulation.  

 The incretin effect is present in the dog (237), and GLP-1 infusion into canine 

pancreata results in increased insulin secretion (93); however, in the current studies, there 

was no effect of a physiological increase in GLP-1 levels on pancreatic hormone levels.  

Under various conditions, including both portal and peripheral glucose delivery, 

intraportal infusion of GLP-1 to create a physiological rise in its plasma levels did not 

alter either insulin or glucagon levels in plasma.  This indicates that a rise in the peptide 

in the periphery similar to that observed after an OGTT (177) does not induce insulin 

secretion in the dog. Although it is consistent with what others have found in this species 

(49; 237), the question is still raised as to why an elevation of the peptide at the β-cell 

would not enhance insulin secretion.  It is possible that variations exist at the β-cell itself 

which may result in species differences.  Homology of the GLP-1R is not completely 

conserved among species (76; 77); so therefore, it is possible that disparity among species 

in specificity or number of the GLP-1R at the β-cell could result in alterations of effects 

of the peptide.  Such differences may be reflected in the dose response curve of insulin 

secretion to GLP-1 level.  For example, the minimum concentration for increased insulin 

secretion in the canine pancreata was ten-fold that required to observe increased insulin 
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secretion in the perfused rat pancreas (93). In addition, it takes a very high 

pharmacological dose of exendin-4 to induce a small increase in circulating insulin levels 

in the dog (300). 

It is possible that a physiological elevation of GLP-1 at the β-cell is not the 

manner in which GLP-1 induces insulin secretion in the dog.  In the rat, physiological 

elevation of GLP-1 in the hepatic portal vein initiates a neural signal which could trigger 

an indirect effect at the pancreas (96). This indicates that elevation of the peptide closer 

to the site of its secretion might initiate a neural signal to alter pancreatic hormone 

secretion.  However, as noted earlier, when we elevated intraportal GLP-1 levels under 

various conditions in the dog, we did not observe an effect of GLP-1 on pancreatic 

hormone secretion.  Once again, this is consistent with what others have found (49; 237). 

In a further attempt to define the role of GLP-1 on the insulin secretory effect, we 

induced endogenous GLP-1 secretion with a meal.  This increases levels of the peptide in 

the gut and could possibly initiate an insulin secretory effect of GLP-1 via afferent 

signals from the gut; however, when the GLP-1R was blocked, there was no difference in 

insulin secretion, once corrected for the level of glycemia.  Therefore, it appears as 

though a physiological increase in GLP-1 levels is not sufficient to induce the incretin 

effect in the dog through either direct or indirect mechanisms. 

In the current studies, elevations of GLP-1 in the hepatic portal vein (due to 

intraportal GLP-1 infusion) resulted in significantly greater nonhepatic glucose uptake 

under conditions of increased insulin, glucose, and the portal signal, when compared to 

that of a systemic rise in the peptide (due to a hepatic artery infusion).  However, net 

hepatic glucose uptake was significantly greater when GLP-1 was infused into the hepatic 
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artery rather than into the hepatic portal vein.  It is likely that the GLP-1 delivered by 

either route had a direct effect to enhance net hepatic glucose uptake, which would be in 

agreement with earlier studies (47).  However, it is likely that the direct effect at the liver 

with intraportal GLP-1 infusion was muted by a preferential enhancement of increased 

nonhepatic glucose uptake.   

To observe the effect of GLP-1 on nonhepatic glucose uptake, intraportal glucose 

must be present.  It is well established that this route of glucose delivery increases net 

hepatic glucose uptake and decreases nonhepatic glucose uptake (271; 275).  It is possible 

that increased intraportal GLP-1 levels inhibit the signal that is activated by glucose at the 

brain to induce these effects, and therefore the opposite effects occur.  This is consistent 

with the observation that intraportal GLP-1 infusion did not significantly stimulate net 

hepatic glucose uptake as it did with hepatic artery GLP-1 infusion, and intraportal GLP-

1 delivery increased nonhepatic glucose uptake when compared to intraportal glucose 

administration alone (saline infusion).  In the absence of intraportal glucose infusion, 

there is no signal to the brain to inhibit, and therefore, no effect.  In addition, intraportal 

GLP-1 and glucose alter afferent vagal firing in opposite directions, either increasing or 

decreasing impulses, respectively (96; 277), which may account for the opposing effects 

that the intraportally delivered GLP-1 and glucose appear to have on nonhepatic glucose 

utilization (271; 272).  

There are several explanations for the absence of an effect in the shorter fasted 

animals.  It is possible that glucose uptake is increased (due to increased insulin secretion 

and increased insulin sensitivity) to a degree in the shorter fasted animals that such a low 

level of GLP-1 cannot enhance this effect any further.  Another possibility is that the 



 153 

neural signal that is sent by intraportal GLP-1 is not active in the shorter fast, because it 

has been shown that differences in fasting can deactivate GLP-1 activity in the brain, 

specifically in regard to its ability to synergize with leptin to have an effect on food 

intake (291).   

The GLP-1R 
-/-

 mouse has enhanced glycemia during an OGTT, not due to 

quickened gastric emptying, but due to lower insulin levels.  In contrast, in the dog, as in 

the human, the effect of GLP-1 on gastric emptying appears to be more important than its 

effect on insulin secretion (210; 302).  We observed the effect of GLP-1 on the rate of 

gastric emptying in both the normal and insulin resistant dogs.  Low circulating levels of 

GLP-1 in the insulin resistant dogs suggest that GLP-1 may be slowing gastric emptying 

by a mechanism initiated in the vasculature in close proximity to the L cell.  It is possible 

that GLP-1 is interacting with its receptor in the vagal innervation of the gut, possibly in 

a manner similar to CCK.  In humans, when the GLP-1R is blocked after an oral glucose 

load, the rate of gastric emptying is quickened, and the effect is great enough to bring 

about a significant difference in peripheral plasma glucose levels (294). In the dog, we 

observed a difference in peripheral acetaminophen levels, but not a significant difference 

in circulating glucose levels.  Although not as profound in the dog as in the human, the 

predominant effect of endogenously secreted GLP-1 on gastric emptying is maintained 

between these species.  This once again indicates that even though GLP-1 homology is 

maintained among all mammals, the predominant physiological actions may vary 

between species.  Although the species differences do exist, it is impressive that the 

overall effect of enhancing gluco-regulation is maintained.    
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