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CHAPTER I 

 

INTRODUCTION 

 

 Many natural and technological processes involve phenomena dominated by 

interfacial mechanics � occurring within the overlapping region between several 

solid/fluid phases. Interfacial phenomena typically involve interplay of complex 

processes and the exact mechanics involving such processes is still not fully understood. 

As advanced materials and structures are being investigated to better optimize weight, 

cost and strength, it is imperative that material interfaces be better characterized in terms 

of their properties, thereby increasing reliability in usage. 

 Most structural failures are generally caused by either negligence during design, 

construction, operation etc or application of a new design or material. Stress singularity, 

as a mathematical phenomenon, and stress concentration, as a practical impediment, have 

been a major cause for concern in jointed structures encountered in daily life. Interfaces 

have always been the most vulnerable site for failure arising from stress concentrations 

associated with material and/or geometric discontinuity. A novel approach has been 

described and implemented in the second chapter to remove stress singularity and 

produce more reliable material strength data.  

 Reliability can be increased either by building better structures or by 

manufacturing better materials. Of late, carbon nanotubes and fullerenes are being cited 

as materials of the future. The search for new carbon nanostructures, higher mass 

fullerenes has strongly motivated chemists and physicists to utilize carbon nanotubes and 
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fibers to build stronger yet lighter structures.  However, the application of a new design 

or material often produces unexpected and undesirable results and the incorporation of 

graphitic carbon nanofibers in an epoxy matrix did not increase the tensile strength of 

bonded interfaces. An explanation was sought for this behavior whereby interfacial stress 

transfer in nanocomposites was examined in the third chapter. 

 While the traditional strength of materials approach compares applied stress to 

yield/tensile strength, the fracture mechanics approach to design replaces tensile strength 

with fracture toughness and flaw size. The fourth chapter takes a critical look at existing 

methods of fracture toughness measurement and their shortcomings. A new experimental 

method developed at ORNL is proposed and a finite element method of measuring 

interfacial fracture toughness is delineated. 

 Fracture mechanics quantifies the critical combination of three variables namely 

applied stress, flaw size and fracture toughness. At material and structure interfaces, the 

critical size of a flaw also determines ultimate tensile strength. However, the strength 

definition of a material would be different if it were subjected to (a) uniform and (b) non-

uniform stress distributions. This is especially true for brittle materials which are 

susceptible to fracture from initial defects and therefore, unreliable for carrying tensile 

loads. Monte Carlo simulations investigating interfacial failure under non-uniform stress 

fields are detailed in the fifth/final chapter. 
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CHAPTER II 

 

A BIOLOGICALLY INSPIRED DESIGN FOR DISSIMILAR MATERIAL 
JOINTS 

 

2.1. Introduction 

2.1.1. Overview 

Dissimilar material interfaces/joints can be found in numerous modern 

engineering and science fields, for example, adhesive bonded interfaces of two dissimilar 

materials; fiber/matrix interfaces of composite materials; thin film/substrate interfaces in 

micro-electromechanical systems (MEMS), to name a few. One major research effort in 

interface studies has been the interfacial strength evaluation of dissimilar materials 

(Drzal, 1990; Lara-Curzio et al., 1995; Rabin et al., 1998; Lin et al., 2001; Zhou et al., 

2001; Xu and Rosakis, 2002a). Meanwhile, numerous studies have shown that failure 

often occurs along the interface/joint between two materials with high property mismatch 

(e.g., free-edge delamination in composite laminates and debonding between thin 

films/substrates), and that improving the interfacial properties (especially reducing the 

interfacial stress level) can modify overall material/structural behavior (Hutchinson and 

Suo, 1992; Needleman and Rosakis, 1999).  Recent efforts also reveal that the chemical 

and mechanical aspects of interfacial bonding are essential for nano-structured material 

development (Thostenson et al., 2001). Indeed, interfacial bonding between the nano-

scale reinforcement and the matrix is the most important subject in the development of 

nano-composite materials (Xu et al., 2004a).  
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However, macro-scale interfacial strength measurement is still a major challenge 

due to the stress singularity problem (Reedy and Guess, 1993; Tandon et al., 1999; 

Akisanya and Meng, 2003), i.e., the theoretical linear elastic stress will be infinite at the 

free-edge. It is necessary to develop reliable and quantitative measurements in order to 

characterize interfacial properties. As interfacial mechanical properties are intrinsic in 

nature, they are solely determined by the atomic structure and chemistry of the interfacial 

region (Swadener et al., 1999).  However, the interfacial strength based on current 

measurements is not a material constant due to the free-edge stress singularity, according 

to some recent investigations (Reedy and Guess, 1993). Recently, Tandon et al., 1999, 

proposed a novel specimen design to measure the interfacial strength of fiber/matrix 

bonding. The key issue in measuring intrinsic interfacial strengths is the creation of a 

uniform interfacial stress state. So the first important step for intrinsic interfacial strength 

measurement is the elimination of stress singularities. The elimination of stress 

singularities is also required in structural/material joints subjected to fatigue and dynamic 

loading, since failure often occurs at the bi-material interface due to stress singularity 

(Pelegri et al., 1997; Xu and Rosakis, 2002a). 

2.1.2. Objectives 

The objective of this investigation is to propose a novel specimen/material design 

for removing the stress singularity, which yields reasonable interfacial strength 

measurement and delayed edge debonding of dissimilar material interfaces/joints. The 

following sections review the origin of stress singularities first and then propose a general 

solution inspired by tree mechanics. Typical metal/polymer joints will be selected as 
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examples for demonstration of the proposed new design through an integrated numerical 

and experimental investigation. 

 

2.2. Theoretical background 

2.2.1. Free-edge stress singularities in dissimilar material interfaces/joints 

 As illustrated in Fig. 2.1 (a), a butt-joint specimen was used to demonstrate the 

free-edge stress singularity in steel 4340 and Plexiglas (PMMA) joints (Xu et al., 2002b). 

Significant stress concentrations were found at the bi-material corners using the Coherent 

Gradient Sensing (CGS) technique, which was developed by Tippur et al., 1991, for full-

field mechanical-optical measurements. The CGS fringe patterns correspond to the 

gradients of yyxx   . Figure 2.1(b) shows an Iosipescu shear test used to determine the 

interfacial shear strength of the same interface. Here too, a strong stress concentration 

caused by the free-edge stress singularity was observed.  It is indeed this 

concentration/singularity that leads to free-edge debonding, which is often observed 

when the joint is subjected to dynamic and fatigue loading.  

For some specific bi-material corners or edges, researchers (Williams, 1952; 

Bogy, 1971; Hein and Erdogan, 1971; Munz and Yang, 1993; Pageau et al., 1996; 

Akisanya and Meng, 2003; Klingbeil and Beuth, 2000; Labossiere et al., 2002) showed 

that stress singularities exist. The asymptotic stress field of a bi-material corner can be 

expressed by  

)3,2,1,()(),( -

0




jifKrr ijkk

N

k
ij

k    

Here, fijk (è) is an angular function and Kk is also called the �stress intensity factor�. 

 

(2.1) 
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a. Butt-joint tensile tests 

Steel PMMA 

b. Iosipescu shear tests 

x 
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Fig. 2.1. Coherent Gradient Sensing (CGS) photographs showing strong stress 
concentrations (associated with fringe concentrations) at the free edges of bonded metals 
and polymers subjected to tensile and shear load (Xu et al., 2002b). 
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 Although the fracture mechanics terminology �stress intensity factor� is used in 

interfacial mechanics to characterize a similar stress singularity problem, it should be 

noticed that for an interfacial fracture problem (assuming initial debonding), the stress 

singularity at a crack tip is intrinsic and cannot be removed. However, the stress 

singularity in interfacial strength investigation (assuming perfect bonding) can be 

removed through an appropriate material design: a key issue in this investigation. The 

stress singularity order ë  may be a complex number.  Hence the theoretical stress values 

will become infinite as r (defined in Fig. 2.2) approaches zero, if ë  has a positive real 

part. This leads to a problem referred to as the �stress singularity problem�. It is the 

presence of this stress singularity that leads to erroneous results in current interfacial 

strength measurements besides being responsible for free-edge debonding or 

delamination in dissimilar material joints.  

 However, if ë  has a non-positive real part, then, the stress singularity disappears. 

Our major effort is focused on producing a non-positive real part for ë  using a new 

interfacial design approach. There is yet another type of singularity in the form ln (r), 

which is weaker than the ër -  singularity (Chue and Liu, 2002) and this will not be of 

concern in this investigation. Bogy (1971) found that the stress singularity was purely 

determined by the material property mismatch and the two joint angles of the bi-material 

corner 21 , (defined in Fig. 2.2). Generally, the material property mismatch can be 

expressed in terms of the Dundurs� parameters á  and â - two non-dimensional 

parameters computed from four elastic constants of two bonded materials (Dundurs, 

1969):  

 1221

1221 -

mm

mm









1221

1221 2)-(-2)-(

mm

mm







 (2.2) 
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 
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Fig. 2.2. Angular definitions at bi-material corners or edges. 
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Here 1ì  is the shear modulus of material 1, 2ì  is the shear modulus of material 2, í  is 

the Poisson�s ratio, )-1(4= ím for plane strain and 
í

m
+1

4
= for generalized plane stress. 

 The stress singularity order is related to material and geometric parameters, and is 

determined by a characteristic equation of coefficients A (è1, è2, p) � F (è1, è2, p): 

0222),,,,( 22
21  FEDCBApf   

Where p=1- ë .  A, B, C, D, E and F are expressed as following (Bogy, 1971): 

A (è1, è2, p) = 4K (p, è1) K (p, è2), 

B (è1, è2, p) = 2p2sin2 (è1) K (p, è2) + 2p2 sin2 (è2) K (p, è1), 

C (è1, è2, p) = 4p2 (p2 � 1) sin2 (è1) sin2 (è2) + K [p, (è1- è2)], 

D(è1,è2,p)=2p2[sin2(è1)sin2(pè2)�sin2(è2)sin2(pè1)],                          

E (è1, è2, p) = -D (è1, è2, p) + K (p, è2) � K (p, è1), 

F (è1, è2, p) = K [p, (è1+ è2)] 

Where the auxiliary function K (p, x) is defined by 

K (p, x) = sin2 (px) � p2sin2(x) 

 Therefore, our basic idea is to vary these four independent 

parameters  ,,,( 21 ) in order to obtain a negative real value of the stress singularity 

order ë . As such, the stress distribution close to the free edge is not expected to be very 

sharp. 

 

 

 

 

(2.3) 

(2.4) 

(2.5) 
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2.2.2. Convex interfacial joints for uniform interfacial stress distribution 

The first step to establish a uniform stress state at the interface is to reduce or 

eliminate the stress singularity at the bi-material edge. Mattheck (1998) analyzed an 

interesting problem of a tree/steel railing interface as illustrated in Fig. 2.3.  

His finite element analysis showed that for a total joining angle 1è  + 2è  = 270o, 

the Mises stress has a concentrated value at the joint corner. A better design is the 

naturally formed convex shape, which corresponds to the optimized case shown in Fig. 

2.3.  As recently noticed by Mohammed and Liechti, 2001; an appropriate joining angle 

design at the bi-material edge may be a possible approach to reduce stress singularity, 

although they did not propose a general principle.  In this paper, the joint angle design is 

based on the determinant ),,,,( 21 pf  introduced by Bogy, 1971. Since appropriate 

angular combinations can be selected according to different material combinations, a 

negative or zero value for Re[ ë ] is possible to obtain. Interpreted, that means that the 

degree of singularity can be reduced or removed. From this step, two joint angles 1è  and 

2è  can be determined (as shown in Fig. 2.2).  

A special example was examined as shown in Fig. 2.4. For a polycarbonate (PC) - 

aluminum (Al) interface/joint, the stress singularity order ë  of value -0.01 can be 

obtained if the two interfacial joint angles fall within the zones marked by the designated 

curves using equation (2.3). This would mean elimination of stress singularity and the 

existence of a relatively uniform stress distribution at the PC/Al interface.   
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Fig. 2.3. Finite element stress analysis and corner optimization of a tree-steel railing 
interface/joint (Mattheck, 1998). The natural convex joint shows no stress 
concentrations/ singularities.  
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Fig. 2.4.   A contour plot of possible joint angles without stress singularities for an 
aluminum-polycarbonate interface. 
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 Here, a generalized plane stress case was considered in computing the Dundurs� 

parameters, á = -0.935 and â = -0.308. These results posed a more general question: is it 

possible to determine a specific convex joint pair with least stress singularities for a wide 

range of engineering material combinations? According to our numerous case studies, if 

an interfacial design is chosen with two joint angles: 1è  = 45o and 2è  = 65o and it is 

assumed that material 1 is a typical soft material  and material 2 is a hard material then, 

there will be no stress singularity  for a wide  range of current engineering materials.   

 This result is illustrated in Fig. 2.5 for the entire possible range of two Dundurs� 

parameters (Hutchinson and Suo, 1992). It will be noticed that for this specific pair of 

joint angles, the stress singularity is limited to a very small zone near  1. These 

extreme material joint combinations are quite rare in engineering applications since they 

represent extremely high mismatch in Young�s moduli. Recent examples include 

nanotube/nanofiber reinforced polymer composites - the Young�s modulus of carbon 

nanotubes is as high as 1000 GPa. Xu et al. (2004a) have reported a value of  0.99 for 

a new nanofiber/epoxy composite. In recent studies on the stress singularity at an 

axisymmetric bi-material interface subjected to torsion load, Liu et al. (1999) found that 

the stress singularity order ë  could be obtained from a simple characteristic equation. 

They also showed that there are no oscillatory stress singularities for this type of problem 

because all roots of ë  are real.  Also, if 1è  = 2è , as shown in Fig. 2.2, the stress 

singularity will depend on one joining angle only rather than the material property 

mismatch. One striking result from their research is that the stress singularity disappears 

as soon as 1è  (= 2è ) <90o (convex joint). Hence, there is no stress singularity at the bi-

material edge for the axisymmetric specimen subjected to torsion load. This is the exact  
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 Fig. 2.5.   Stress singularity order ë as a function of two Dundurs� parameters for a 

proposed pair of joint angles (45 and 65 degrees for soft and hard materials respectively). A 
very small singular zone implies the given pair of angles is applicable for a wide range of 
engineering material combinations. 
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theoretical foundation for a naturally optimal convex tree shape. The second step is to 

seek a contour design for obtaining a uniform stress distribution along the interface. 

Mattheck (1998) used an example of a buttress root to demonstrate the optimal contour 

design for a uniform stress distribution. A gradual transition in contour has generally 

been observed in tree roots.  This underlying natural principle will be employed and 

simplified in the following example of typical metal/polymer joints.  

 

2.3. Numerical and experimental investigation 

2.3.1. Experimental findings and implications 

Plane joints of polycarbonate-aluminum and PMMA-aluminum interfaces were 

tested using in-situ photoelasticity technique, and experimental results showed that 

failure load values of the same interface with different edge shapes were quite different.  

In order to understand the mechanics insight, a numerical investigation will be very 

necessary since the photoelasticity method mainly provides information of a two-

dimensional stress state.  Indeed, in modern experimental studies, integrated numerical 

simulations not only validate experimental results, but also reduce possible errors 

inherent in experimental setups. In this investigation, a two-dimensional finite element 

analysis will be conducted to verify and compare stress changes in the convex plane-

joints to experimental findings. However, three-dimensional finite element analysis 

shows that the stress singularity along the thickness direction still exists. So, a convex 

axisymmetric joint will be proposed to provide reasonable interfacial strength 

measurements.  
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2.3.2. Finite-element modeling 

 Elastic finite element analysis of the baseline and the proposed convex metal-

polymer (aluminum-polycarbonate) joint specimen was carried out employing the 

commercial software ANSYS.    The dimensions of the baseline specimen (straight-edge, 

Fig. 2.6 (a)) were: length L= 254 mm, half width W= 19.05 mm, thickness 2T = 6.35 mm 

for thin specimens and 9.2 mm for thick specimens. In this investigation, four different 

joint types, with the same bi-material combination and equal bonding area, were 

subjected to the same in-plane tension load as shown in Fig. 2.6. One was the traditional 

butt-joint specimen with straight free-edges (Fig. 2.6(a)). It was expected that severe 

stress singularities would be observed at the free-edge in this baseline specimen. The 

second specimen had convex edges with proposed interfacial joint angles, as seen in Fig. 

2.6(b). It should be mentioned here that our proposed new joint design reduced the 

material volume by at least 15% around the interfacial joint area. Greater reduction in 

total material volume would be attained if the area away from the interface were 

accounted for. The third specimen was a straight cylinder with free edges as shown in 

Fig. 2.6(c). This was used to illustrate the advantage of the convex edges of Fig. 2.6(d) 

over the straight edges of Fig. 2.6(c). The fourth specimen, as illustrated in Fig. 2.6(d), 

was an axisymmetric design with convex edges. Equating the interfacial bonding area of 

Fig. 2.6(d) to that of the three-dimensional non-axisymmetric specimen (Fig. 2.6(b)) 

yielded the radius of the axisymmetric specimen.  

 A detailed illustration of the mesh used for the convex plane-joint is shown in Fig. 

2.7, where the gradual change in element size, from coarsely to finely meshed regions, 

may be noticed. Taking advantage of symmetry, only half of the specimen was modeled.  
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Fig. 2.6. Schematic diagrams of aluminum-polycarbonate joint specimens with (a) straight 
edges (baseline) (b) shaped edges with least stress singularities (c) axisymmetric design of 
straight edge specimen (d) axisymmetric design of shaped edge specimen. 
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Fig. 2.7.  (a) Illustration of a proposed convex joint of metal and polymer interface   (b) 
Finite element mesh and boundary conditions of the new joint subjected to in-plane tensile 
load. Notice that the applied stress at the specimen end is a function of t such that the 
average tensile stress at the interface is always 10 MPa.  W = half-width of the specimen. 
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The transition from the straight edge to the curved edge at the interface corner was 

achieved by means of a circular arc of radius R = {t/ (1 - Sin ())}, where  is the joining 

angle and t is the convex extension distance as illustrated in Fig. 2.7(a). Roller boundary 

conditions were applied along the mid-plane of the specimen, i.e., at x=W. The finite 

element mesh consisted of PLANE 42 elements (2D four-noded element) and finer 

subdivisions were employed in regions where the stress gradient was expected to be high 

such as the interface corner and the entire length of the interface.  

For the straight-edged specimens, the element length ranged from a maximum of 

0.1W to a minimum of 0.000407W.While the maximum element edge length was 

retained in meshing the convex specimens, the smallest element length was changed to 

0.000794W in order to utilize the same meshing pattern for both the shaped and baseline 

(straight-edge) specimens. The FE model was loaded by applying tension to the edge 

parallel to the x-axis at y = -127 mm. The edge at y = 127 mm was specified with zero 

displacement boundary conditions in the y-direction. 

 In assuming that the same total load at the interface area was transferred to both 

baseline and shaped specimens, the stress applied to the shaped specimen was obtained 

by multiplying the stress 0 (stress applied to the baseline specimen) by a factor of W/ 

(W-t). The stiffness properties for aluminum were chosen as E = 71 GPa, í = 0.33 and for 

polycarbonate, E = 2.4 GPa, í = 0.34. 

 A similar approach was taken for the three-dimensional analysis of the same 

convex plane-joint (Fig. 2.6(b)) except that the two-dimensional mesh was extruded in 

the Z-direction to achieve the thickness of the specimen. While 2-D plane stress elements 

(PLANE42) and 2-D axisymmetric elements (PLANE42) were used for modeling the 
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two-dimensional plane stress and axisymmetric models respectively, iso-parametric 

quadrilateral 20-node SOLID95 elements were used to construct the three-dimensional 

model. Taking advantage of symmetry, a quarter of the model was analyzed in 3-D 

analysis. Sub-modeling was utilized in the three-dimensional design to ensure a fine 

mesh in the close vicinity of the bimaterial interface. 

 

2.4. Results and Discussion 

2.4.1. Influence of geometrical shapes and material properties 

 In order to validate our numerical analysis results, we compared the stress 

singularity order, ë, obtained from the finite element analysis and from Bogy�s formula. 

The approach adopted here is similar to that described by Munz and Yang, 1993. An 

aluminum-polycarbonate interface with joining angles of 90o- 90o was considered and the 

results have been illustrated in Fig. 2.8. On applying 10 MPa stress in the Y-direction, the 

interfacial normal stresses and shear stresses were plotted as functions of the ratio r/W. 

Here, r is the distance from the interface corner and W is the half-width of the specimen. 

According to the defining relation between ë and the stresses at the interface (Xu et al., 

2004b), the slopes of these respective plots should yield the value of ë. From Fig. 2.8, it 

is seen that the slope as obtained from the interfacial normal stress plot was equal to 

0.223 and the slope of the interfacial shear stress plot was 0.216. The analytical value of 

ë based on Bogy�s formula is 0.225 for these specific materials and angle joints. These 

three values are quite close and hence we shall use the same tool and procedure to 

analyze the proposed convex joints. 
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Fig. 2.8. Comparison of the stress singularity order ë obtained from the finite element 

analysis and Bogy�s formula for an Al-PC joint with straight edges (a) FEM interfacial 
normal stress distribution close to free edge and fitted ë value (b) FEM interfacial shear 
stress distribution close to free edge and fitted ë value. Theoretical ë= 0.225. 
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The main parameters that have been varied in our finite element analysis are (a) 

convex extension distance t (b) joining angles and (c) elastic constants of the constituent 

materials.  The influence of the geometrical parameters, on the stress distribution at the 

interface, has been illustrated in Figs. 2.9 and 2.10.  Four cases have been examined for t 

= 0 (straight-edge or baseline specimens), 0.5, 1.0 and 3.0 mm. For zero extension 

distance, i.e., straight-edge specimens, a prominent stress singularity is seen at the 

bimaterial corner. 

However, for increasing extension distances, the interfacial normal stress and 

shear stress have finite values at the interface corner and their respective distributions are 

seen to smoothen out over the interface to uniform values. From this analysis, we find 

that the free-edge stress singularity is successfully removed and the convex extension 

distance t mainly affects local stress distributions close to free-edges.  Since stress 

singularity directly contributes to free-edge delamination or debonding, this results in a 

corresponding increase of the load transfer capability of the new joint as long as we use 

the specific convex joint.  

However, convex specimens may not be accurately machined. So a natural 

question arises: whether we should use the exact interfacial joint 45o-65o angle 

combination only? Figure 2.10 is significant in that while only the 45o angle of the 

polycarbonate part was retained and the joint angle of the aluminum part was varied from 

45o to 90o, the stress singularity was still effectively removed. 

This example, along with similar other numerical case studies, essentially pointed 

to the fact that as long as the sum of two joint angles is less than 180o and each joint 

angle is less than 90o, the stress singularities will be reduced.    
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Fig. 2.9. Variations of (a) interfacial normal stress and (b) interfacial shear stress 
with different extension distances (fixed joint angles è1 (for polycarbonate) = 45°, 
è2 (for aluminum) = 65°). If t=0 (straight edge), stresses are singular at the free 
edges.  
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Fig. 2.10. Variation of normalized interfacial normal stress with the joint angle of 
aluminum (fixing the joint angle of PC at 45 degrees, t = 3mm). 
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 In other words, stress singularity is successfully removed for the 45o-65o angle 

combination in theory but in reality, for a slight deviation from this combination, the 

stress singularity would be reduced if not removed absolutely. Our next question 

therefore is: would this statement hold true for most of the material combinations as 

shown in Fig. 2.5?   

 The influence of material properties on the reduction of stress singularity was 

examined by retaining the polycarbonate half of the tensile joint specimen and varying 

the Young�s modulus of the other material. Four cases were chosen for E2= 2.4 GPa, 10 

GPa, 71 GPa, 200 GPa and the results have been illustrated in Figs. 2.11(a) and 2.11(b). 

Results show that while the interfacial normal stress distribution smoothened out over the 

interface, the interfacial shear stress distribution dipped within 15% of the distance from 

the joint tip. However, the normal and shear stresses were very near to zero at the 

interface corner, which has a direct impact on higher load transfer capacity since the 

interface would be less likely to fail at low load as compared to conventional straight-

edged specimens.  These numerical results verified the theoretical results shown in Fig. 

2.5 and so these convex joints are effective in removing stress singularities for most 

engineering material combinations.   

2.4.2. Comparison of numerical analysis with experimental results 

Full-field photoelasticity was employed to make a direct comparison with the finite 

element simulation. Figures 2.12 and 2.13 bear the most conclusive testimony to the 

reduction of stress singularity at the interface of dissimilar materials. The photoelastic  
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Fig. 2.11. (a) Variation of interfacial normal stress and (b) variation of interfacial 
shear stress with different material properties (keeping polycarbonate the same, t = 
3 mm). 
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Fig. 2.12. Development of numerical photoelasticity patterns for load P= (b) 200 
N (c) 500 N (d) 1000 N (e) 1500 N and (f) experimental photoelasticity pattern for 
a typical PC/Al joint with straight edges under P=1000 N. 
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Fig. 2.13. Development of numerical photoelasticity patterns for load P=(b) 200 N 
(c) 500 N (d) 1000 N (e) 1500 N and (f) experimental photoelasticity pattern for a 
typical PC/Al joint with shaped edges under P= 1000 N. 
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fringe patterns are contours of the maximum in-plane shear stress according to the 

classical photoelasticity equation: 

h

Nf

2
2/)-( 21max

   

Where ó1 and ó2 are in-plane principal stresses, N is the fringe order, fó is the stress-

fringe constant (7 kN/m for polycarbonate) and h is the specimen thickness. After the 

fringe order N was computed at every node using Equation (2.6), a corresponding gray-

scale value was calculated by associating a gray-scale value of 255 with full fringe orders 

(e.g., 0, 1, 2 etc) and a value of 0 with half fringe orders (e.g., 0.5, 1.5, 2.5 etc).A plotting 

software Tecplot 9.2 was then used to plot these gray-scale values, and the numerical 

fringe patterns shown in Figs. 2.12 and 2.13 were generated for stress field visualization 

and comparison with experimental results.  

 It is rather interesting to note that a clear fringe concentration originates at the 

interface corner for straight-edged specimens with increasing load, as shown in Fig. 2.12.  

This type of fringe concentration is a result of the free-edge stress singularity and is very 

similar to the fringe concentration caused by a bi-material interfacial crack (Xu and 

Rosakis, 2002a). It is noticed that the stress singularity order for Al/PC joints is around �

0.2 and can be eliminated, but for interfacial cracks, the stress singularity order is �0.5+i 

(Barsoum, 1988; Rice, 1988; Hutchinson and Suo, 1992) and is intrinsic. A direct 

comparison of the numerical fringe pattern (Fig. 2.12(d)) and the experimental pattern 

(Fig. 2.12(f)) of the specimen subjected to the same applied load of 1000 N verifies the 

existence of stress singularity at the free edge.  

 The accumulation of fringes at the bimaterial interfacial corner, seen in the 

straight-edged specimens, completely disappeared in the numerical fringe patterns for the 

(2.6) 
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convex specimen as seen in Fig. 2.13.  The experimental fringe pattern also validates this 

result as shown in Fig. 2.13(f).  The highest fringe order actually went up to 23.5 for the 

straight-edged specimens whereas the highest fringe order in the shaped specimens under 

the same applied load (P=500 N) was only 6.5. This is a clear indication that the stress 

intensity has decreased by several orders in the proposed convex joint. It is noticed that 

the higher fringe orders signifying larger stress intensity move away from the free-edge 

towards the polycarbonate curved edge.   

This stress re-distribution is indeed very important in interfacial joint designs 

since the bonding strength of the interface is generally lower than that of the bulk 

material (adherend).  For example, the tensile strength of bulk polycarbonate is at least 60 

MPa whereas the nominal interfacial tensile strength of PC/Al joints in this investigation 

is around 5-6 MPa. It may be noticed that the number of fringes in Fig. 2.13(d) and 

2.13(f) do not match exactly although the general pattern of stress evolution is distinctly 

similar. This is because a finite element simulation assumes ideal conditions unlike the 

actual in-situ experiments conducted. As a result of reduction of the free-edge stress 

singularity, experiments conducted on PMMA-aluminum and polycarbonate-aluminum 

convex shaped specimens showed a marked increase in nominal tensile strengths 

(ultimate load/interface area) over those of straight-edged specimens (Xu et al., 2004b). 

Another interesting experimental phenomenon is the influence of specimen thickness 

which has also been considered for polycarbonate-aluminum joints. It was also noticed 

that thicker specimens (thickness 9 mm) showed less tensile strength increase than thin 

specimens (thickness 6 mm) (Xu et al., 2004b). This raises an important issue in the 

convex plane-joint since the free-edge stress singularity still exists around the thickness 
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direction although it was removed along specimen width direction. This problem can be 

solved by a simple axisymmetric design.  

2.4.3. An axisymmetric convex joint for intrinsic interfacial strength measurements 

 The convex plane-joint was employed in the first part of this investigation simply 

because it can be used in direct comparison with in-situ stress visualization techniques 

such as photoelasticity. However, careful three-dimensional stress analysis revealed that 

the removal of free-edge stress singularities is not complete.  Figure 2.14 depicts the 

distribution of normal and shear stresses of the polycarbonate-aluminum interface along 

width and thickness directions. The substitution of straight interface ends by convex 

angles has rendered a smooth stress distribution, without any sign of stress singularity 

along the width (X-direction). This same conclusion was reached in the two-dimensional 

finite element analysis of the same specimen (Fig. 2.9). One may conclude that Fig. 

2.14(a) could be smoother (with a finer mesh) although the basic nature of the stress 

distributions would still be the same. The reason a finer mesh could not be employed is 

attributed to the limitation of the finite element analysis tool used for this purpose.   

 It is not surprising that Fig. 2.14(b) shows that the stress singularity in the 

thickness direction still exists.  This is because although the specimen was given a 

convex shape in the X-Y plane, the stress singularity in the Y-Z plane still persisted due 

to the existing straight edges. An obvious solution to this problem would be an 

axisymmetric design where a convex shape is imparted to the entire circumference of the 

bi-material interface. An axisymmetric convex joint, which is naturally similar to a 

tree/bamboo shape, will be employed to measure the intrinsic interfacial strength. 
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Fig. 2.14. (a) Variation of interfacial normal stress and shear stress in 3D finite 
element model along width (b) variation of interfacial normal stress in 3D finite 
element model along thickness (t = 3 mm). 
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 Figures 2.15(a) and (b) compare the interfacial stress states in an axisymmetric 

cylindrical specimen with convex interfacial joints to that in an axisymmetric cylinder 

with straight edges. Singular stresses are normally expected close to the specimen free-

edge as shown in Fig. 2.15(a) for the reference purpose of stress state comparison. This 

impedes us from obtaining an intrinsic interfacial strength. However, Fig. 2.15(b) clearly 

shows that stress singularities are eliminated if the axisymmetric design is used in future 

specimen design. To validate these stress states, more advanced experimental 

investigations should be conducted (Rabin et al., 1998) since traditional experimental 

stress analysis techniques, such as photoelasticity, face difficulty in depicting sharp three-

dimensional stress change in a small zone close to the specimen free-edge. On the other 

hand, final tensile strength increase was predicted for the convex axisymmetric specimen 

over the straight cylindrical joint even before actual experiments were conducted.  
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2.5. CONCLUSIONS 

 

Fig. 2.15. (a) Variation of interfacial normal stress and shear stress in unshaped 
axisymmetric finite element model and (b) variation of interfacial normal and 
shear stress in shaped axisymmetric finite element model (t = 3 mm). 
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2.5. Conclusions 

Finite element analyses on two-dimensional plane-stress, axisymmetric and full 

three-dimensional specimens were conducted in this investigation. The results were 

interesting in that the two-dimensional plane-stress specimens were devoid of stress 

singularities along the specimen width although the free-edge stresses along thickness 

direction were still singular. An axisymmetric design was shown to eliminate stress 

singularities along the periphery of the bi-material interface. This should lead to 

increased load transfer capability of the new joints and hence the convex axisymmetric 

specimen is expected to yield intrinsic interfacial tensile strength measurements.  
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CHAPTER III 

 

INTERFACIAL STRESS TRANSFER IN NANOFIBER COMPOSITE 
MATERIALS 

 

3.1. Introduction 

Carbon nanotubes have extraordinary mechanical properties and tend to be used 

as reinforcements in polymers and other matrices to form so-called �nanocomposite 

materials� (Treacy et al., 1996; Lau and Hui, 2002; Qian et al., 2002; Luo and Daniel, 

2003; Wagner et al., 1998; Qian et al., 2000; Yu et al., 2000; Schadler et al., 1998; 

Odegard et al., 2003; Thostenson et al., 2001). Nanocomposites are a novel class of 

composite materials where one of the constituents has dimensions in the range of 1-100 

nm. It has been reported (Wagner et al., 1998) that load transfer through a shear stress 

mechanism was seen at the molecular level. Nanotubes increase composite strength by as 

much as 25% (Qian et al., 2002; Yu et al., 2000).  Alternative reinforcement materials for 

nanocomposites include nanofibers, nanoplatelets, nanoclays etc. These reinforcements 

are functionalized with additives thereby resulting in a strong interfacial bond with the 

matrix. Generally, the three main mechanisms of interfacial load transfer are 

micromechanical interlocking, chemical bonding and the weak van der Waals force 

between the matrix and the reinforcement (Schadler et al., 1998). In order to form 

nanocomposite materials with excellent mechanical properties, strong chemical bonding 

between the reinforcement and the matrix is a necessary, but not sufficient condition.  

In a previous experimental investigation (Xu et al., 2004a), Graphitic Carbon 

Nano-Fibers (GCNFs) were used as reinforcement in polymeric matrix nanocomposites. 
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Strong and stiff GCNFs (Young�s modulus E > 600 GPa) have average diameters as 

small as 25 nm and demonstrate atomic structures such that edge carbon atom surface 

sites are present along the entire length of the carbon nanofiber. Chemical modification of 

these surface carbon sites and subsequent reaction with bifunctional linker molecules 

provides surface-derivatized GCNFs that can covalently bind to polymer resin molecules. 

By ensuring that a high number of surface sites on each GCNF form covalent bonds with 

polymer resin molecules, a carbon nanofiber/polymer interface of high covalent binding 

integrity can be achieved. This nanofiber/polymer covalent bonding is expected to delay 

interfacial debonding and should enhance the mechanical properties of the resulting 

nanocomposite material. So far, it has been difficult to quantify the improved interfacial 

bonding between the matrix and the nanofibers accurately (i.e., by direct measurement at 

the nano-scale).  However, mechanical properties of the final macro-scale nanocomposite 

materials can be easily measured using various kinds of standard tests for engineering 

materials.  To achieve maximum utilization of nanofiber properties, uniform dispersion 

and good wetting of the nanofibers within the matrix must be ensured (Zhong et al., 

2004). All these local interfacial properties will affect the macro-level material behavior. 

For example, it was reported that there was as much as a 10% decrease in flexural 

strength in nanotube/epoxy composite beams due to weakly bonded interfaces (Lau et al., 

2003). Also, significant reduction in composite stiffness was attributed to local 

nanofiber/nanotube waviness (Fisher et al., 2003; Srivastava et al., 2003).  Xu et al., 

2004a reports that bending, tensile and fracture property characterizations show that there 

was only very little increase in mechanical properties of nanocomposites although 

reactive linkers were used to improve the fiber/matrix interface.  
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It is suspected that the interfacial stress level in nanocomposites would be much 

higher than that of traditional composites because of high property mismatch between the 

nanoscale reinforcement and the matrix. Since high interfacial stress may lead to 

interfacial debonding and subsequent failure of nanocomposites, this may be the major 

reason contributing to the low failure strains in nanocomposites observed in many recent 

experiments (Xu et al., 2004a; Zhong et al., 2004). The small diameter of nanofibers or 

nanotubes affords increased interfacial contact area with the matrix, while its 

shortcoming is the high possibility of initial interfacial defects, which may lead to low 

failure strain of nanocomposites.  Therefore, a theoretical analysis of interfacial stress 

transfer and stiffness and strength mismatch between the nano-scale reinforcement and 

the matrix will be much needed before we design and produce extensive varieties of 

nanocomposite materials.   

 As illustrated in Fig. 3.1, both the final failure strain (3.3%) and Young�s 

modulus (2.9 GPa) of the pure epoxy are low. However, both the final failure strain (up 

to 10.0%) and Young�s modulus (up to 1000 GPa) of the nanotubes or nanofibers are 

extremely high so the properties of the nano-scale reinforcement and the matrix are 

highly mismatched.  A key question of nanocomposite design is that if these two types of 

materials were mixed (even if strong interfacial bonding was ensured); would the final 

composite properties (here we refer to the mechanical properties of discontinuous 

nanofiber/nanotube composites) demonstrate a reasonable increase over those of the  
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matrix? Generally, it has been found that the stiffness properties of nanocomposites are 

always higher than those of the pure matrix.  

Strain (%) 

Stress  

3.3 

Epoxy matrix 

10.0 

Nanotube/nanofiber 

Ideal Nano-composites?? 

Actual failure point  

Fig. 3.1. Nano-composite design based on stress-strain curves 
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However, the strength of the nanocomposites may or may not exceed the strength of the 

pure matrix if discontinuous nanofibers/nanotubes (even if they were aligned) are used in 

nanocomposites. As seen in Fig. 3.1, the stress-strain curve of the nanocomposites is 

always steeper than that of the pure matrix if we only employ linear elasticity principles 

to simplify the explanation. Therefore, the final strength of the nanocomposites is mainly 

determined by the final failure strain of the nanocomposite. Unfortunately, the latter 

value was always lower than that of the pure matrix and significantly decreased with the 

increase of nanofiber/nanotube weight/volume percents as ascertained by numerous 

experimental studies. 

 

3.2. FE Analysis and Stress Singularity Theory 

The main purpose of this investigation is to seek the mechanical reasons for low 

failure strains of the nanocomposites. The major task is to examine the interfacial stress 

transfer which is critical due to high property mismatch of the nano-scale reinforcement 

and the matrix.  Finite element analysis (FEA) was chosen as the primary tool for 

analysis instead of molecular dynamics simulations since the latter can only deal with 

physical phenomena at the level of a few nanometers at the current stage, while the size 

of a representative volume of a nanocomposite material ranges from 10 nanometers 

upwards to several hundreds of nanometers (Chen and Liu, 2004). Besides, the smallest 

dimension of our nanofiber lies in the range of 20-50 nano-meters and continuum 

mechanics assumptions, such as those used in finite element analysis, are still valid at 

such length-scales. Similar finite element analyses have been reported (Fisher et al., 

2003; Chen and Liu, 2004) with a focus on stiffness analysis incorporating micro-
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mechanics theory.  It is noted that these finite element analyses simplified the complex 

interaction amongst the nano-scale reinforcement, matrix and the possible interphase. The 

interphase issue has received considerable attention in nanocomposite systems since 

nano-scale reinforcement affords a greater interphase volume compared to traditional 

composite materials. However, it is very difficult to determine the physical properties, 

such as thickness, of the interphase and they may certainly not be treated as material 

constants. From this viewpoint, the concept of interphase and its modeling is not 

employed in this investigation.   

In this investigation, our objective is to investigate and reduce the singular 

interfacial stresses. Two separate cases were dealt with: (a) baseline nanocomposites 

subjected to tension and shear loading and (b) nanocomposite systems with modified 

nanofiber ends. Similar end modifications were effectively used to remove the interfacial 

stress singularity in macro-scale dissimilar material joints through integrated numerical 

and experimental investigation (Xu et al., 2004b). Since direct nano-scale experimental 

validation is very difficult to conduct at the current stage, numerical investigation is the 

focal point of research.  Although nanofiber-reinforced composite is the main focus, the 

numerical analysis can be easily extended to nanotube-reinforced composite by varying 

the stiffness and dimensions of the nanoscale reinforcement. 

 Figure 3.2 (a) is a Transmission Electron Microscopy (TEM) picture showing 

short nanofibers well dispersed in an epoxy matrix.  Usually, these nanofibers are curved 

and therefore the improvement in composite stiffness is not high (Fisher et al., 2003).   
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Fig. 3.2 (a) Transmission Electron Microscopy (TEM) image of nanofibers as 
dispersed in GCNF/epoxy nanocomposite and (b) Representative Volume Element 
(RVE) used for micromechanical analysis of nanofiber-epoxy nanocomposite under 
tension, óapp = 0.01 nN/nm2, Vf = 4%.  A quarter of the original RVE is shown here 
with symmetric boundary conditions. (c) Same RVE under shear loading. 
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Based on the material analysis, a basic representative volume element for mechanics 

analysis (henceforth referred to as RVE) is shown with typical dimensions and boundary 

conditions in Fig. 3.2(b).  Figure 3.2(c) shows the full RVE for shear loading case, with 

different boundary conditions. The volume fraction of the nanofiber/nanotube in the 

baseline RVE was 4% and this percentage was increased to 11% by retaining the 

dimensions of the nanofiber and decreasing the dimensions of the epoxy matrix.   

A commercial FEA software ANSYS was used for numerical analysis. A 

transition mesh, using PLANE42 elements, was employed for the elements to fan out 

from a dense mesh in and around the nanofiber-epoxy matrix interface to a relatively 

coarser mesh utilized for the rest of the RVE. The material properties used in the baseline 

RVE were:  epoxy matrix: Em = 2.6 GPa, ím = 0.3; nanofibers Ef = 600 GPa, íf = 0.3. 

Similar to other finite element analyses, nanofibers were treated as transversely isotropic 

materials (Fisher et al., 2003; Chen and Liu, 2004). The elastic modulus of the nanofiber 

was varied such that four typical reinforcement cases were considered: Ef = 50 GPa (glass 

fibers), 200 GPa (carbon fibers), 600 GPa (graphite nanofibers) and 1000 GPa (carbon 

nanotubes). Remote tensile stress of 10 MPa (= 0.01 nN/nm2) was applied along the 

shorter edge of the epoxy matrix and a linear elastic analysis was run to determine the 

dependence of interfacial stresses on elastic properties and volume fractions. The 

analyses were varied in terms of (a) applied stress of 10 MPa or (b) applied displacement 

of 0.1 nm to the RVE. 
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If two dissimilar materials are joined, interfacial stress components may be 

singular � hence a special approach will be employed to characterize their distributions 

(Munz and Yang, 1993): 

)(+)(
)/(

=),( 0 èóèf
Lr

K
èró ijijëij  

 Here r and è are polar co-ordinates, L is a characteristic length, K is the stress 

intensity factor and the constant stress term óij0 has been defined such that for mechanical 

loading perpendicular to the interface, ó0 = 0. Also, èf (è) was defined in such a way that 

èf (è = 0) = 1. Taking the logarithm of both sides of Equation (3.1), the stress intensity 

factor K can be obtained from the numerical interfacial stress distribution of 

0=0 |))(-),(lg( èè

FE
è èóèró  versus lg(r/L). In this investigation, the radius of the nanofiber 

rf is taken as the characteristic length L. The calculation of the stress singularity order ë 

was based on the determinant ),,,,( 21 pf  introduced by Bogy, 1971. For any 

particular material combination, the Dundurs� parameters á and â were calculated, which 

represent stiffness mismatch of two joint materials (Hutchinson and Suo, 1992). Besides, 

the joining angles for two kinds of materials were known: 90◦ for the nanofiber and 270◦ 

for the epoxy matrix.  As such, the only unknown parameter p (=1-ë) could be 

determined from the equation cited earlier in Chapter 2 (equation 2.3). 
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3.3. Results and Discussion  

3.3.1. Effect of varying Young�s modulus 

Different loading cases were applied to the RVE, and very different interfacial 

stress distributions along the short interface between the matrix and the nanofiber with 

straight ends were obtained, as illustrated in Figs. 3.3(a) and 3.3(b). While the interfacial 

normal stress in the tensile loading case remains positive in nature along the length of the  

short interface, Fig. 3.3(b) shows that the interfacial normal stress along the short 

interface changes from a positive value (tensile) to a negative value (compressive). This 

means that under shear loading, one end of the fiber is �pulled down� while the other end 

is �pushed out�. Therefore, we may expect that the same nanofiber-reinforced composite 

would yield higher ultimate strengths or strains under shear loading as compared to 

tensile loading. It was also noticed that a higher Young�s modulus of the reinforcement 

led to higher interfacial stresses for both loading cases and would surely induce a 

macroscale crack to cause final composite failure. 

3.3.2. Effect of Young�s moduli mismatch on stress singularity order  
 
Figure 3.4 depicts the variation of the stress singularity order with Young�s moduli 

mismatch between the matrix and the fiber. Since the singular stress values prevent 

accurate comparisons for different material combinations, the stress singularity orders 

were computed to compare different Ef/Em cases. The starting point of the stress 

singularity order curve corresponds to the case where there is no property mismatch or 

zero stress singularity order. This curve shows a smooth transition and reaches a plateau 

gradually as Ef/Em assumes a larger value.  
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Fig. 3.3. Effect of applied loading types on the interfacial stress distributions 
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Fig. 3.4. Effect of Young�s moduli mismatch on stress singularity order  
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3.3.3. Effect of volume fraction for applied stress boundary condition 

  Figure 3.5 depicts the effect of volume fraction on interfacial shear and normal 

stresses along the short and long interfaces, in response to an applied stress of 10 MPa. 

While an increase in volume fraction showed little effect on the stress distributions along 

the short interface, the interfacial shear stress along the long interface seems to be least 

for the baseline volume fraction Vf = 4% and increases slightly with increasing volume 

fraction. This would mean that a high volume/weight fraction of nanofibers has little 

influence on the local interfacial stress state, or on the final failure strain of the 

nanocomposite material. However, this was contradicted in the applied tensile strain case. 

3.3.4. Effect of volume fraction for applied strain boundary condition 

 Figure 3.6 depicts the effect of nanofiber volume fraction on the interfacial shear 

and normal stresses along the short and long interfaces, in response to applied 

displacement of 0.1 nm (which corresponds to an applied tensile strain case). An increase 

in volume weight fractions of nano-scale reinforcements led to lower ultimate failure 

strains of nanocomposite materials. One might suspect that these results are caused by the 

singular interfacial stresses at the rectangular nanofiber ends. 

3.3.5. Effect of geometry of nanofiber end 

 The possible singular interfacial stresses at the rectangular nanofiber ends are not 

the only reasons responsible for low failure strengths or strains - another important issue 

is interfacial stress transfer. Figure 3.7 shows the effect of geometry of the nanofiber end 

on the interfacial stress distributions. Two cases were considered: (a) the baseline case 

with straight edge forming a 90° at the interface corner and (b) round interface corner 

with a radius of 1 nm. 
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Fig. 3.5. Effect of nano-fiber volume/weight percents on interfacial stress (a) short 
interface under applied stress of 10 MPa (b) long interface under same applied 
stress. 
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Fig. 3.6. Effects of the nanofiber volume percents on the interfacial stress distributions 
(a) along the short interface under applied displacement 0.1 nm (b) along the long 
interface under the same applied displacement.  
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As expected, the normal stress over the short interface showed a strong singularity in case 

(a) but not so in case (b). Shear stress variation along the long interface depicted in Fig. 

3.7(b) also shows a significant reduction around the interfacial corners. Hence, nanofibers 

with slightly rounded edges are a better alternative to common nanofibers with straight 

edges. Similar conclusions for traditional fiber-reinforced composites were drawn by 

other researchers (Sun and Wu, 1983; Liou, 1997). However, the normal stress 

distribution of the nanofiber did not change significantly by shaping the nanofibers. 

Besides, from the composite processing viewpoint, rounded ends for each nanofiber 

would prove to be very time-consuming and costly. 

3.3.6. Effect of volume fraction and Young�s modulus on normal stress 

 The effects of both volume fraction and Young�s modulus on the normal stress 

distribution along the mid-plane of the nanofiber, with straight or curved edges, have also 

been examined in Figs. 3.8(a) and (b). The normalized stress is seen to rise towards the 

center of the fiber as a result of interfacial shear transfer, or shear-lag effect (Gibson, 

1994; Baxter, 1998).  However, the maximum normal stress in the nanofiber is only 

around 1.6 times that in the matrix, far below the strength ratio of the 

nanofiber/nanotubes over the polymeric matrix (at least 100). Although some research 

results showed that modified ends/edges of the short fibers could effectively remove the 

stress concentration/ singularity (Sun and Wu, 1983; Liou, 1997; Gibson, 1994), the 

normal stress distribution of the short fiber is not altered significantly. 

Therefore, such composite design will not make full use of the high strength of 

nanofibers/nanotubes. Discontinuous nanotubes/nanofibers with high strength and 

stiffness, when added as reinforcement to matrices, are undermined by the stress  
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Fig. 3.8. Nano-fiber stress distribution under tensile load (mid-fibre stress) (a) 
variation with Young�s modulus and volume fraction and (b) for straight edged and 
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singularity at the fiber-matrix interface, and also by the inefficient interfacial shear stress 

transfer even if all nanofiber ends were rounded through special processing. This 

provides us with an important principle for nanocomposite design. It should be noted that 

the finite end stress singularity is a theoretically elastic phenomenon and will never occur 

in reality.  A significant reduction in singularity has been noticed when more accurate 

models are used to depict the polymeric matrix (e.g. elastoplastic, viscoelastic model) in 

traditional composites with graphite fibers. In addition, for nanotube-reinforced 

composites, since the nanotube has a lattice-type structure at the nanometer level, the 

actual singularities that occur at the interface should be much lower than those predicted 

using the continuum mechanics approach. 

Therefore, these two arguments lead to the conclusion that the singularities 

predicted in this investigation are overestimated.  However, the interfacial shear stress 

concentration (due to the theoretical stress singularity) definitely becomes more severe if 

the stiffness mismatch of the reinforcement and the matrix increases, which in turn will 

lead to interfacial debonding.   

 

3.4. Conclusions 

 Discontinuous nanotubes/ nanofibers with high strength and stiffness, 

when added as reinforcement to matrices, are undermined by the stress singularity at the 

fiber-matrix interface, and also by inefficient interfacial shear stress transfer.  However, 

continuous forms of nanofibers or nanotubes without finite ends, on the other hand, 

preclude the presence of extra matrix material at the ends of fibers and hence eliminate 

stress concentration/ singularity. Thus, for future nanocomposite material designed with 
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an objective of strength or fracture toughness increase (Xu et al., 2004a; Roy et al. 2003), 

discontinuous nanofibers or nanotubes (in spite of being aligned) are not recommended. 
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CHAPTER IV 

 

AN INNOVATIVE TECHNIQUE FOR INTERFACIAL FRACTURE 
TOUGHNESS MEASUREMENT 

 

4.1. Introduction 

4.1.1 Objectives 

 A material configuration of singular importance in micro-electronics is a thin film 

of one material deposited on a substrate of another material. In such cases, residual 

stresses and material discontinuities arise naturally from the deposition or growth 

processes used to produce such films and further stresses might be imposed due to 

mismatch in coefficients of thermal expansion of the film and the underlying substrate, 

chemical reactions or other physical effects. As such, the weakest link of such 

configurations occurs at the interface between the thin film and substrate (Chaudhury et 

al., 1999; Pint et al., 1998; Pindera et al., 2000; Evans et al., 1999). In order to 

manufacture multi-layered electronic devices and composites with long-term reliability, 

fracture behavior of the material interfaces must be well characterized. Since a state-of-

the-art test procedure for evaluating interface fracture toughness that is fully conformed 

to fracture mechanics theory is still lacking, there is a great deal of uncertainty involved 

in the test results for thin coatings. The spiral notch torsion test (SNTT) was developed, 

by researchers in Oak Ridge National Laboratory, to address the problems associated 

with this deficiency in general (Wang et al., 2000; Wang, 2003). The role of this work is 

to model the SNTT and more specifically to determine the interfacial fracture toughness 

applicable to thin coatings. The objective of determining an accurate method of 
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characterization of interfacial fracture toughness is to enable the development of new 

coating materials with predictable performance assessment.  

4.1.2. Advantages of SNTT over existing test methods 

 The current experimental techniques such as double-cantilever beam tests, four-

point bending tests, indentation techniques etc are widely used in bi-material interface 

research (Turner and Evans, 1996; Charalambides et al., 1989; Suo and Hutchinson, 

1989). In the first two methods, a large deal of uncertainty is involved in toughness 

evaluation since the interfacial crack does not generally propagate along the interface. In 

indentation technique, on the other hand, the test result is dependent on indentation load, 

penetration depth, specimen size and geometry. Due to these reasons, it becomes 

necessary to introduce a new method for interfacial toughness evaluation that reduces the 

uncertainty in quantification. To this end, a new method to evaluate fracture toughness of 

thin films on substrates has been developed by combining experimentation and numerical 

analysis. 

 The compact-tension specimens that are traditionally used for fracture toughness 

measurement have an inherent problem which is lack of means to uniformly distribute 

applied load throughout the entire specimen thickness. In contrast, the torque load acting 

on every cross-section along the rod-shaped SNTT specimen is the same and directly 

measurable. A plane-strain condition is achieved on every plane normal to the spiral 

groove.  

 For valid fracture toughness testing, conventional ASTM standards require fatigue 

precrack procedure to develop sharp crack front, which is a difficult task for interfacial 

fracture testing and the fatigue precrack itself causes large uncertainty in the results. For 
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SNTT approach however, no fatigue precrack is needed for brittle material such as 

ceramic or oxide layer and for ductile interface, the fatigue crack growth is expected not 

to change its course along the interface. 

 

4.2. SNTT Approach for Toughness Evaluation 

 It should be mentioned at the onset that the SNTT methodology has been verified 

for homogeneous materials and for relatively large samples. Consequently, a feasibility 

study was conducted to study the applicability of this concept to determine the interfacial 

toughness of thin film-substrate systems � specifically that of thin aluminum oxide scales 

formed on a high-temperature commercial alloy, MA956 (Incoloy). 

 The SNTT methodology is based on applying pure torsion to a cylindrical 

specimen machined with a helical groove at a 45° pitch angle. The pure torsion creates a 

uniform, equi-biaxial tension/compression stress field on each concentric cylinder and the 

groove becomes an effective Mode I crack mouth opening, as shown in Fig. 4.1(a). The 

conceptual design used for testing the thin film is illustrated in Fig. 4.1(b). A circular rod 

of alloy MA956 (composition Fe20-Cr4.5-Al0.5-Y2O3), machined with a shallow groove 

was used as the baseline. At high temperatures and in presence of oxygen, this alloy 

forms a uniformly thick, adherent surface film of alumina. While this thin layer of 

alumina protects the substrate from damage (required in devices operating at high 

temperatures), it also prevents infra-red penetration � this makes it difficult to ascertain 

the exact position of crack initiation. A parameter study of notch geometry e.g. V- or U-  
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Fig 4.1. (a) Original SNTT specimen configuration for single-phase material 
(b) Modified SNTT configuration for thin film specimen 
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notches will be conducted to determine the most suitable configuration for thin film 

testing. The SNTT method used for numerical determination of fracture toughness 

comprises of the following steps:- 

1) Model a slice of the middle-portion of the cylindrical specimen overlaid by thin 

film and having a spiral groove at 45° pitch angle 

2) Calculate KIc using following steps: 

a) Establishing 3D finite element meshes with wedge singular elements around 

crack front. 

b) Simulating spiral crack front and crack propagation orientation along the right 

conoids. 

c) Determining stress intensity factors KI, KII, KIII and J-Integral value. 

d) Determining fracture toughness KIc based on minimum energy criterion. 

 

4.3. Fracture Mechanism of SNTT Thin Film Specimen 

 Experiments conducted on an alumina-MA956 thinfilm-substrate specimen have 

helped in postulating certain assumptions in the finite element model construction. No 

fatigue precrack was modeled since the oxide layer is brittle and a U-groove is sufficient 

for the crack to propagate under torsion loading. The details of the notch root geometry 

and the failure initiation site in a thin film sample are shown in Fig. 4.2 (a). The shaded 

area of alumina scale in Fig. 4.2 (a) indicates the region of thin film capable of 

transmitting resultant force of the principal stress induced by torsion loading. It can be 

surmised that, based on the relatively high hardness of the thin film compared to that of 

the substrate and the high compressive residual stress in the thin film, a crack is more  
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Fig. 4.2. Schematic diagram of notch root geometry and (a) possible associated crack 
initiation sites (b) actual layout near U notch (c) modified layout near U notch 
incorporated in finite element model. 
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likely to initiate from the corner of the notch root and propagate upwards along the 

interface. Moreover, it was ascertained from SEM examination of tested SNTT thin film 

samples that the corners of the thin film, adjacent to the substrate, were spalling under 

compressive stresses induced by thermal cooling. Preliminary calculations also showed 

that the contribution of the thin film to the total torque was only 2% and hence, the finite 

element model near the notch was modeled as shown in Fig. 4.2 (c), as opposed to the 

actual notch layout as seen in Fig. 4.2 (b). 

 

4.4. Analytical Evaluation 

4.4.1. Development of finite element model and analysis 

A three-dimensional finite element study of the spiral notch torsion specimen was 

developed, for evaluating interfacial fracture toughness of a bimaterial system. This 

model, as mentioned before, has a thin film of alumina on the outside and a substrate core 

composed of MA956. PATRAN and ABAQUS were used as preprocessing and post-

processing tools respectively � the former tool being used to generate three-dimensional 

mesh and the latter tool to analyze. Prismatic quadratic isoparametric singular elements 

surrounding the crack tip were modified to incorporate linear elastic and non-linear 

elastic-plastic capabilities. In the former, the nodes at the crack tip were constrained to 

have the same displacement. However, in case of perfect plasticity, the nodes at the crack 

tip were modeled such that they would be free to displace independently from each other. 
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4.4.2. Three dimensional configuration of SNTT finite element model 

The mid-section of the SNTT specimen was used, as depicted in Figs. 4.3 (a) and 

(b) which includes a cylinder of radius 0.15 in, height of 0.1 in with a 45° spiral U-groove 

of depth 0.0166 in. The thin film thickness was set at 15 microns and the initial interfacial 

crack length was set at 5 microns. A void element was incorporated into the model just 

below the flaw in order to simulate the potential flaw site and it was anticipated that the 

initial crack growth would propagate upwards along the interface, instead of downwards 

through the substrate. This is obvious because less energy would be required for crack 

formation if the crack traveled along the interface � a region that is already susceptible to 

failure. Mesh configuration details near the bottom of the U-groove are shown in Fig. 

4.3(c). 

A major issue in constructing the FE thin film model was to incorporate large 

mesh size of the substrate and small mesh dimensions of the thin film in one model. The 

wide range of FE mesh size requires several layers of transition zones to mitigate the 

gradient of adjacent dissimilar mesh sizes. The details of three-dimensional FE models 

for mid-section of an SNTT thin film specimen and a focused view of the same are 

shown in Figs. 4.4 (a) and (b).  
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Fig. 4.3. (a)Elevation and (b) top view of SNTT finite element model  
              (c) detailed configuration of mesh near bottom corner of U-groove 
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Fig. 4.4. (a) Finite element model for middle section of SNTT thin film     
               sample (b) Details of SNTT thin film FEM near U-groove site 
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Boundary conditions and load cases were determined from experimental results which 

yielded a fracture torque of 4.77 N-m. This fracture torque was applied to the top layer of 

the finite element model in the form of displacement while the bottom layer of the model 

was kept fixed in the X-axis and Y-axis directions i.e. along two perpendicular radii of 

the cylinder surface. Displacements were allowed in the Z-axis direction or along the 

cylinder axis, to replicate experimental boundary conditions. An initial end rotation of 

0.002334 radians was assigned to the top of the model; this was estimated from the 

fracture torque applied to a smooth bar with the same dimensions as the SNTT finite 

element model. The alumina film residual stress in terms of hydrostatic pressure was 2.5 

GPa along the U-groove site and 3.7 GPa elsewhere on the film. The initial end rotation 

and the residual stress fields were used as input for the load cases. 

  The material properties of MA956 and alumina scale used in the FE analysis 

were: Alumina: E = 355 GPa, í = 0.26, MA956: E=269 GPa, í = 0.31. 

4.4.3. Fracture toughness and J-Integral evaluation along the bi-material interface 

 The stress intensity factors KI, KII, KIII characterize the influence of load or 

deformation on the magnitude of the crack-tip stress and strain fields and measure the 

propensity for crack propagation or crack driving forces. For plane strain mode I, the 

energy release rate GI can be written as (Irwin, 1957): 

 

 

Where E = Young�s modulus, í = Poisson�s ratio. Similarly, for modes II and III, the 

energy release rates may be written as: 
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For mixed mode fracture, the total energy release rate may be written as: 

 

For a linear elastic material, G can be related to the J-integral as:  

J = G 

For an interfacial crack between two dissimilar isotropic materials with Young�s moduli 

E1 and E2, Poisson�s ratios í1 and í2 and shear moduli                        and 

J can be written as: 
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plane stress (Shih and Asaro, 1988; Shih et al., 1986; Suo, 1990). Here, KI and KII are not 

the pure Mode I and Mode II stress intensity factors for an interfacial crack. They are 

simply the real and imaginary parts of a complex stress intensity factor, whose physical 

meaning can be understood from the interface traction expressions: 

 

 

where r and è are polar co-ordinates centered at the crack tip. The bi-material constant å 

is defined as: 
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FE model were chosen to coincide with the principal stress orientation and since 99% of 

the J value is contributed by JI (Wang et al., 2002), the contribution of KIII to the overall 

energy release rate can be considered to be negligible and equation (4.5) may be rewritten 

as (Shih, 1991): 
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The length parameter L*, although arbitrary, is constant for a chosen material pair. For a 

MA956-alumina scale thin film interface configuration, the bi-material constant å is 

estimated to be 0.0057 � a relatively small quantity. Thus, K*riå can be replaced by K* 

and the associated mode mixity angle written as: 
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Along the crack propagation orientation, the SNTT configuration has a relatively small 

KII/KI ratio and the associated phase angle can be set to zero. For the purpose of 

establishing a connection between the Mode I fracture toughness in homogeneous media, 

at the fracture load, the estimated equivalent Mode I interface fracture toughness can be 

written as: 
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Where Jc = estimated J integral value at fracture. 

 

4.5. Finite Element Analysis Results and Fracture Toughness Evaluation 

4.5.1. Fracture toughness evaluation for oxide MA956 SNTT specimens 

 Throughout most gage lengths, uniform stress and strain fields exist in the test 

sample under pure torsion loading. However, only a portion of the gage length of the test 

sample was used in the FE model. Thus, with simulated boundary conditions, the stress 

and strain distributions under pure torsion are not entirely uniform throughout the model 

sample. However, the middle portion can be assumed to be reasonably uniform. Since a 

zero axial load is maintained during torsion, the specimen is permitted to deform freely 

along the axis. For all practical purposes, this condition can be simulated for the middle 

layer elements of the finite element model and was therefore used as a numerical 

boundary condition. 

 The torque applied to the specimen from the prescribed end displacement was 

calculated according to the following equation: 

                              TorqueEND = Ó (Ry*x � Rx*y)node i 

Where, Rx and Ry are the reaction forces at the fixed end of the FEM in the X-axis and Y-

axis directions, respectively, derived from the linear elastic fracture mechanics for the 

fracture loading condition; here, x and y are the x- and y-components of the distance 

between the node i and the center of the circular bar, respectively. 

 The 3.593×10−4 radian end rotation at the fracture load of 4.63 N-m (41 in.-lb) 

was determined by iterative processes using eq. (4.12). Based on linear elastic fracture 

mechanics, at the fracture load, the J value in the crack propagation orientation at the 

(4.12) 
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mid-layer of the FEM was estimated at 3.7 N-m/m² (0.021 lb-in./in²) for the sharp crack 

front. The E* and â of eq. (4.5) are estimated as 311 GPa (4.52×104 ksi) and −0.008, 

respectively. Substituting E* and â value into eq. (4.11), we obtained the estimated 

equivalent Mode I interface fracture toughness as 1.1 MPa√m (0.97 ksi. in) for a sharp 

crack front model. The estimated equivalent Mode I interface fracture toughness of a 

sharp crack front is 1.1 MPa√m, which is lower than that of the alumina scale.  

 The experimental evaluation and the analytical evaluation seem to support 

that the interface is the weakest link for a non-precracked SNTT thin film sample. The 

extremely high compressive residual stress embedded within the thin film will retard the 

crack initiation but keeps the thin film intact. Therefore, for the SNTT thin film sample, 

the spallation failure of alumina scale involves a two-step process. First; the crack 

initiates at the interface and then propagates along the interface - this releases the 

associated tensile residual stress in the substrate locally just underneath the thin film. 

Second; torque-induced external tensile stress, applied to the substrate and the alumina at 

the interface, has a tendency to cause the delaminated alumina scale to move away from 

the substrate. The section of delaminated alumina scale resembles a non-lateral-support 

column with a compression loading. It eventually buckles at a threshold crack length 

along the interface and results in the spallation of alumina scale. 

The residual stress of a thin film material is largely a direct result of the 

coefficient of thermal expansion mismatch between the scale and the substrate during the 

cooling. Thus, from a material history point of view, the residual stress represents a pre-

loading boundary condition but also a thin film material property. Therefore, the residual 

stress plays an important role in the interface fracture toughness evaluation. Furthermore, 
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it is expected that slightly different compressive residual stresses of alumina scale will be 

experienced (or measured) at the side groove if different shapes of side grooves, such as 

U- or V-shapes are used. However, the associated stress-strain states of the substrate at 

the side groove, both before or during the torque loading, will also be different because of 

different geometry constraints if different side grooves are used. The combined effect of 

the compressive residual stress and the loading stress states of the substrate may offset 

each other for different groove geometries and result in less dependence on side groove 

geometry for a valid interface fracture toughness evaluation. However, this sensitivity 

issue regarding the side groove geometry impact on the interface fracture toughness 

evaluation will need to be evaluated from further study. 

 

4.6. Conclusions 

A unique approach has been developed for utilizing the SNTT method to estimate 

interface fracture toughness of bimaterial interfaces. It gave the estimated interface 

fracture toughness as 3.7 N-m/m² and the estimated equivalent Mode I interface fracture 

toughness as 1.1 MPa√m. This new approach for interface toughness research was 

validated by using MA956 material, but the developed methodology can be extended to 

other coating materials or bi-materials in general. Regarding the analytical evaluation, a 

more detailed parameter study and further refinement of the numerical models are 

needed. This additional analytical investigation would provide more details regarding the 

sensitivity of the varied parameters�such as the void element and the location of the 

crack tip to the accuracy of the evaluated interface fracture toughness. 
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CHAPTER V 

 

MONTE CARLO SIMULATION OF INTERFACIAL FAILURE FOR  
NON-UNIFORM STRESS FIELDS IN BRITTLE MATERIALS 

 

5.1. Introduction 

5.1.1. Overview 

Modern engineering systems are being increasingly manufactured from 

components that combine two or more materials for enhanced performance. The 

increased use of adhesives as a substitute for conventional mechanical fastening devices 

has called considerable attention to stress and strength analyses of various types of 

adhesive joints. Recent investigations show that the interfacial bonding strength has 

profound influence on the failure of dissimilar or composite materials (Hutchinson and 

Suo, 1992; Xu and Rosakis, 2002a; Needleman and Rosakis, 1999; Bogy, 1971). The 

accurate measurement of the interfacial bonding strength is critical for the evaluation of 

strength, durability and performance of such new materials. As two kinds of materials 

(adhesives and adherends) are used in bonding, bonding strength measurements are more 

complicated than the traditional strength measurements for homogeneous materials 

(Reedy and Guess, 1993; Xu et al., 2004c). It is the presence of this stress singularity that 

leads to erroneous results in current interfacial strength measurements. In order to reduce 

the stress singularity effect, Xu et al. (2003) recently designed selected artificial 

interfaces in bulk polymers such as PMMA and Homalite, as depicted in Fig. 5.1, and 

utilized different adhesives to achieve different bond strengths. The adhesive properties  
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b. Iosipescu Shear Test for Bonded Polymer a. Iosipescu Shear Test for Pure Polymer 

135o Polymer 

Adhesive 

Interface 

Fig. 5.1. Illustrations of Iosipescu shear tests for monolithic and bonded polymers 
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were chosen to be close to those of the bulk polymers.  Hence, the stiffness mismatch was 

minimized and the magnitude of interfacial bond strength could be accurately 

characterized. Predictably, the magnitude of the stress singularity was low. 

5.1.2. Objectives 

The objectives of this study are (a) investigation of the shear stress distributions 

along the interface of Iosipescu specimens by means of an integrated experimental and 

numerical approach and (b) the influence of the presence of flaws on the interfacial shear 

strength of bonded interfaces in these two configurations. An illustration of the bonded 

shear specimens with the projected shear stress distributions is depicted in Fig. 5.2. Since 

these polymers have intrinsic optic-mechanical properties, optical methods were 

employed to record in-situ stress development during loading process. The experimental 

stress fields obtained from Xu et al. (2004d) were directly compared to the results from 

finite element analysis for validation purposes. 

While the first part of this study concentrates mainly on idealized perfectly 

bonded interfaces; in reality, such interfaces do not exist. The presence of air bubbles 

and/or flaws in the adhesive contribute to the degradation of the integrity of the interface. 

The second part of the study, therefore, concentrates on using Monte Carlo simulation in 

estimating interfacial failure under non-uniform stress fields (which arise due to the 

presence of flaws) in brittle materials. It is worthwhile to mention here that the 

differences in fracture behavior amongst ductile, brittle and quasi-brittle materials are 

dependent on the development of a large inelastic zone ahead of the crack tip. The 

fracture process zone is characterized by progressive softening and is surrounded by a 

non-softening zone characterized by hardening plasticity. Together, these two zones form  
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Fig. 5.2. Normal stress distributions of typical tensile specimens constituted of (a) same 
material (b) dissimilar materials. Interfacial shear stress distributions of (c) joint beam 
specimen � parabolic distribution and (d) Iosipescu shear specimen � uniform distribution 
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a nonlinear zone. In brittle materials, however, the whole nonlinear zone is small 

compared to the structure size. Then, the entire fracture process takes place almost at one  

point, the crack tip. The whole body is elastic and linear elastic fracture mechanics can be 

used (Zdenek and Planas, 1997). 

The mechanical properties, shear modulus, Young�s modulus and the strength of 

adhesives can be determined by butt and lap shear specimens. Of quite a different nature 

is the design concept that uses fracture mechanics to design adhesively bonded joints. 

The reasons to use fracture mechanics are the permanent existing singular corners 

between the adhesive and the adherend and the permanent existence of flaws (Pang and 

Seetoh, 1997). At this time, there are many specimens in use for the fracture testing of 

adhesive joints e.g. double cantilever beam, end notched flexure beam etc. However, for 

our purpose, we are interested in pure shear loading which is obtained as nearly as 

possible in Iosipescu specimens. A failure criterion is needed to predict the load carrying 

capacity of the bonded joint. The fracture mechanics discipline assumes that flaws are 

inherently present in the adhesive joint as a result of imperfect bonding or manufacturing 

defect. The quantity most often used in fracture mechanics to predict failure is the critical 

stress intensity factor, which determines the onset of rapid fracture (Sih, 1980). Stress 

concentration and non-uniform stress states are generated in the joints, when static loads 

are applied, due to geometric or material discontinuity. In particular, it is well known that 

stress singularity occurs at the edges of the interface between the adherends and the 

adhesive and that fracture will initiate at these positions. If bubbles are created and 
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remain in the adhesive layer during the bonding process, the stress concentrates around 

these hole defects and at the edges of the interface (Nakagawa et al., 1999). 

Failure in an adhesive joint can occur in one of two ways: (i) adhesive failure 

occurring at the interface of adhesive/adherend (ii) cohesive failure occurring either in the 

adhesive or in the adherend (Reddy and Roy, 1988). It should be mentioned here that the 

purpose of this paper is not to model the adhesive and the failure therein but rather to 

model the effect of the interfacial stress fields on the ultimate strength distribution. 

Hence, if the material properties of the adherend and the adhesive are very similar, as 

chosen in the current study, the need for modeling the adhesive is effectively eliminated 

and the weak interface serves as a site for failure. 

 

5.2. Experimental Investigation 

5.2.1. Materials and specimens 

Test materials included Homalite-100 and PMMA bonded with a weak adhesive 

(Xu et al., 2004d). Regular butt-joint and Iosipescu shear specimens were utilized for 

measuring the shear strengths of bonded and bulk (monolithic) polymer specimens. 

The results of the shear tests on bulk polymer specimens were also used for the 

purpose of comparison and validation of finite element analysis. The advantage of the 

Iosipescu shear test is that a uniform shear stress distribution is produced in the gauge 

area of a compact specimen. To provide different interfacial bonding strengths, five kinds 

of adhesives � Weldon10, polyester, Loctite 330, Loctite 384 and Loctite 5083 � were 

used to bond the interfaces. Polyester, Weldon-10 and Loctite 330 are considered to be 

�strong adhesives�. Loctite 384 forms an �intermediate strength bond� while Loctite 
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5083 gives a �weak bond�. The thickness of the final adhesive layer was less than 20 ìm. 

For bonded shear specimens, the interface of the adhesive and polymer may be a source 

of stress singularity since two dissimilar materials are involved.  

Photoelasticity results were obtained for Homalite specimens (Singh and Shukla, 

1996). The isochromatic fringe patterns observed were the contours of the maximum in-

plane shear stress. These experimental results were useful in comparing the development 

of stress patterns, serving as an indirect means of validation of the numerical model. 

More details of the optical technique and experimental setup can be found elsewhere 

(Rosakis et al., 1998).  

 

5.3. Numerical Investigation 

5.3.1. Finite-element modeling 

The stress/strain fields of the bonded butt shear and Iosipescu shear specimens 

were analyzed using the commercial finite element analysis software ANSYS.  The 

dimensions of the Homalite specimen were chosen as: length of 76 mm, height of 20 mm 

and thickness of 6.45 mm. The finite element mesh was constructed using eight-node 

plane-stress elements (with thickness) and six-node triangular elements. The models were 

constructed as linear, elastic materials with Young�s modulus E = 2.4 GPa and Poisson�s 

ratio í = 0.35 for Homalite-100 and for adhesive Loctite-384 E=2.76 GPa, í = 0.35 

(thickness = 20 ìm). The gauge area was meshed finely with triangular elements to 

examine any stress singularity around the sharp or rounded notch, as the case might be, 

while a relatively coarse mesh of quadrilateral elements was used for the remaining area 

of the specimen. Finite element meshes of the bonded and monolithic Homalite-100 
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specimens had different levels of refinement since a possible stress singularity was 

expected in the bonded Homalite specimen. 

Owing to large deformations expected in the specimen response, a linear static 

analysis was adopted incorporating large deformation effects, along the lines described in 

(Ho et al., 1993; Kumosa and Han, 1999). Basically, this means that a realistic simulation 

of load transfer from the fixture to the Iosipescu specimen was attempted in the following 

manner: (a) Since the left portion of the specimen is clamped during the experiment while 

the right hand portion of the specimen is allowed to move, the boundary conditions were 

specified by applying zero displacement constraints along the fixture-to-specimen contact 

region on the stationary left part of the specimen while uniform vertical displacement was 

applied on the top and bottom edges of the movable right part of the specimen.  (b) After 

a single run, the reaction forces developed along the fixture-to-specimen contact region 

were checked to verify that none of the forces were tensile. If tensile reaction forces were 

encountered at nodes where compressive reactions were expected, the restraints at those 

nodes were removed and a new analysis with the revised set of boundary conditions was 

performed. This process was repeated until convergence was achieved. (c) The total load 

applied to the specimen was obtained by summation of reaction forces on the right hand 

portion of the specimen. Consecutive load steps at intervals of 0.5 mm were analyzed 

until applied displacement on the specimen reached 2 mm.   

The numerical photoelasticity fringe patterns in the Homalite specimens were 

obtained by utilizing the same mesh as described above, except that PLANE42 elements 

were used solely to meet requirements of the plotting software Tecplot. After obtaining 

the principal stresses at each node from the finite element analysis, the numerical fringe 
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order N was computed. These fringe orders were then converted to gray-scale values by 

assigning a gray-scale value of 255 to full fringe orders (e.g. 0, 1, 2 etc.) and a gray-scale 

value of 0 to half fringe orders (e.g. 0.5, 1.5, 2.5 etc.). The gray-scale values were then 

plotted using Tecplot to get the numerical fringe patterns.  

5.3.2 Monte Carlo simulation � a probabilistic viewpoint 

 This technique has proved to be a powerful tool for evaluating the risk or 

reliability, in other words the underlying probability of failure, of complicated 

engineering systems (Haldar and Mahadevan, 2000). In the simplest form of the basic 

simulation, each random variable in a problem is sampled several times to represent its 

real distribution according to its probabilistic characteristics. Considering each realization 

of all random variables in the problem produces a set of numbers that indicates one 

realization of the problem itself. Solving the problem deterministically for each 

realization is known as a simulation cycle. 

 The Monte Carlo simulation technique has six essential elements: (1) defining the 

problem in terms of all the random variables (2) quantifying the probabilistic 

characteristics of all the random variables in terms of their probability density functions 

(3) generating values of these random variables (4) evaluating the problem 

deterministically for each set of realizations of all the random variables (5) extracting 

probabilistic information from N such realizations (6) determining the accuracy and 

efficiency of the simulation.  

As mentioned before, contingent on validation of Iosipescu and butt-joint shear 

specimens (numerical and experimental comparison); Monte Carlo simulations were set 

up in order to investigate the influence of non-uniform interfacial stress fields on the 
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ultimate interfacial shear strength distribution. Although it is acknowledged that there 

might be several competing flaw distributions present at the interface, it was assumed that 

only one flaw would cause and lead to ultimate failure of the specimen. The size and 

position of this flaw along the interface were treated as random parameters.  

 Based on the finite element analyses conducted on the Iosipescu and butt-joint 

shear specimens, a probabilistic design procedure was developed. The details of this 

procedure are given below. 

(a) An analysis file containing the complete sequence was created to be used during 

looping. Quantities that would be used as random input variables, physical 

quantities �a� (flaw size) and �l� (flaw location) and output parameter, mode II 

stress intensity factor, were specified within the analysis. Within the analysis file, 

the input variables were initialized for the first run. 

(b) Parameters were established in the ANSYS database to correspond to those used 

in the analysis file.  

(c) The probabilistic design system was invoked and the analysis file was specified. 

A failure criterion was chosen such that a specimen would be assumed to have    

failed completely once the stress intensity factor reached the threshold of fracture 

toughness. 

(d) No correlations were assumed between the random input variables. Direct Monte 

Carlo method was specified. 

(e) Specified number of loops was executed within the probabilistic design cycle and 

for each cycle; a value for KII was obtained.  
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(f) Probabilistic analysis results were reviewed to determine the number of failed 

specimens.  

The two specimens (butt-joint and Iosipescu shear configurations of 

Homalite//Loctite-384//Homalite) were subjected to increasing displacement. To start 

out, three different displacements were applied: 0.2, 0.5 and 1.0 mm. KII was computed 

for all these three cases corresponding to a central flaw location (l = 0.0). If the 

specimens did not fail at a displacement of 1.0 mm, the applied displacement was further 

increased until ultimate failure was reached (the maximum applied displacement did not 

exceed 2.0 mm in any case).  

There is considerable dearth of literature related to the mode II fracture toughness 

value of a Homalite/Adhesive/Homalite interface. Ramsteiner (1993), in attempting to 

investigate mode II failure in polymers, postulated that KIIC values are either very close to 

KIC values or often only slightly higher, probably due to friction effects between the 

shearing planes and the slightly lower dilatational strain in the specimen under shear than 

under tensile stress. In light of this, the Mode I fracture toughness value was chosen as 

the lower limit of the failure criterion: 

KII > KIIC = KIC 

Here, KIC was chosen to be equal to KIIc i.e. 0.38 MPa√m (Xu and Rosakis, 2003). When 

the failure criterion was satisfied, the corresponding load was recorded and the interfacial 

failure shear strength was equal to the failure load divided by the cross-sectional area of 

the interface (=F/A). 

The analysis of failures in inorganic glass and ceramics is far from simple, with 

the flaw shape and different types of crack growth complicating any size assessment. 

(5.1) 
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Much of the use of fracture mechanics has been limited to large cracks. However, brittle 

failures from small inherent flaws do occur even at gross yielding, and from a practical 

design viewpoint it is important to have some knowledge of their nature and also to be 

able to predict how failures progress from them. Hashemi and Williams (1985) 

demonstrated from a series of experiments that surface flaws in polymers varied in length 

from 40 microns to 140 microns. While the lower value is acceptable, the higher limit on 

flaw size was increased, for purposes of the present investigation, to 1000 microns � as 

per observations in our experiments. 

A lognormal distribution was assumed for the interface flaw size distribution 

(Haldar and Mahadevan, 2000). The PDF for lognormal distribution is: 

 

 

It was assumed that 90% of samples were covered in the 40-1000 microns range. 

According to this assumption, a 5% probability was assigned to the lower bound (40 

microns) and a 95% probability was assigned to the upper bound (1000 microns). From 

this assumption, the mean and standard deviation of flaw size were calculated as: 
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The stress intensity factor was checked at every step to determine if it exceeded the 

critical fracture toughness. Once the failure criterion was satisfied, the corresponding 

fracture load was recorded to determine the nominal shear stress at the interface. 

 

5.4. Results 

5.4.1. Comparison of experimental and numerical stress analysis for Iosipescu shear tests 

 The first and most important step was a direct comparison of experimental stress 

analysis and finite element simulation. As long as it could be verified that the stress 

singularity was weak and that the stress field was quite uniform in bonded specimens, 

valid bonding strength measurements were expected. 

 Interesting phenomena were observed during the Iosipescu shear tests. In order to 

understand the possible stress field change between a standard Iosipescu shear specimen 

(same material) and a bonded Iosipescu shear specimen (dissimilar materials because of 

the thin adhesive layer), we made a direct comparison of experimental and numerical 

photoelastic patterns as shown in Fig. 5.3. As the applied load was increased from 150 N 

to 400 N, the fringe patterns became more severe, as expected. No significant fringe 

pattern concentration was observed at the bonded notch. The stress singularity order was 

calculated for the bonded shear specimens using the approach outlined in Bogy (1971). A 

very weak singular order (ë = 0.014) was found and so, it appears logical that there is no 

fringe pattern concentration observed in bonded specimens.  
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Fig. 5.3.  Direct comparison of photoelastic pictures and finite element simulations for a 
bonded Homalite Iosipescu shear specimen.       

Applied load= 400 N 
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Therefore, the shear stress distribution is quite uniform across the gauge area as 

seen in Fig. 5.4(b) for the bonded Homalite-100 specimen, which is very similar to the 

standard shear specimen seen in Figure 5.4(a). It should be mentioned here that the shear 

stress was plotted along the interface for both the bonded and monolithic Homalite-100 

specimens, although in Figs. 5.4(a) and 5.4(b), more than half of the specimen meshes are 

shown. This was done only to emphasize the geometry of the rounded and sharp notched 

specimens. After a relatively uniform stress distribution was verified, the specimens were 

loaded to failure to measure bonding strengths.   

For most bonded shear specimens, failure occurred along the bonding line so we 

could get the shear bonding strengths defined by F (failure load) /A (gauge area) and 

these data are listed in Table-1. However, for all Homalite specimens without adhesive 

bonding and for some specimens with strong Weldon-10 and polyester bonds, the shear 

specimen often failed in a tensile mode at the upper edge rather than an ideal shear mode 

at the gauge area. Similar phenomena were also reported in previous experiments by 

other researchers (Walrath and Adams, 1984; Sullivan, 1988; D�Almeida and Monteiro, 

1999), and this mechanism can be easily explained using finite element stress analysis 

(Xu et al., 2004d).  
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Fig. 5.4. Comparison of shear stress distributions in the gauge section in  
(a) Monolithic Homalite (b) Bonded Homalite 
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Table 1. Measured Bonding Strength Data 
 

 

 
Polymer // adhesive //polymer  

 

 
Tensile Strength 

(MPa) 
 

 
Shear Strength 

(MPa) 

 
Homalite // Polyester // Homalite 
 

 
28 

 
> 23.26 

 
Homalite //Weldon-10 // Homalite   
  

 
7.74  

 
> 21.65  

 
Homalite // 330 // Homalite 
 

 
6.99 

 
12.58 

 
Homalite // 384 // Homalite 
 

 
6.75 

 
7.47 

 
Homalite // 583 // Homalite 
 

 
1.53 

 
0.81 
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5.4.2. Results from Monte Carlo simulations 

The Monte-Carlo simulations that were run on partially bonded Homalite 

specimens assumed weak bonding (Loctite 384) and according to Table 1, the Iosipescu 

shear specimens should have yielded interfacial strengths in the range of 7-8 MPa. 

However, Figs. 5.5(a), (b) yield high interfacial strength results in simulation, as 

compared to experimental observations.  

In all the figures, it is clear that the scatter in Iosipescu shear interfacial strength is 

less than that recorded in butt-joint shear tests. This runs parallel to the prior observations 

where the non-uniform stress in butt-joint shear specimens was significantly higher than 

that in Iosipescu shear specimens. As a result, Iosipescu shear test specimens lend more 

credibility to the shear strength data. However, it is also noted that the mean interfacial 

strength in the baseline study is around 22 MPa for Iosipescu shear specimens, almost 

three times the experimentally observed value (7-8 MPa).  

This discrepancy in strength data is not due to shortcomings of the simulation 

procedure. Accuracy of analysis results is, for the most part, dependent on the accuracy 

of the input. This overestimation in interfacial strength may therefore be attributed to 

several factors. It is the assumption that determines the magnitude of the error. Hence, a 

discussion on simulation assumptions and consequent effect on the results may shed 

some light on the discrepancy between experimental and simulation findings: 

 

1. A mathematically sharp crack was assumed in fracture mechanics modeling. For 

the interface strength analysis, it is implied that fracture indeed occurs  
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Fig. 5.5a. Interfacial strength distribution for butt joint shear; fracture 
toughness = 0.38 MPa√m. Mean = 24.83 MPa, Standard Deviation = 7.63 

MPa, Number of Samples = 2000. 
 

Fig. 5.5b. Interfacial strength distribution for Iosipescu joint shear; fracture 
toughness = 0.38 MPa√m. Mean = 22.37 MPa, Standard Deviation = 6.85 

MPa, Number of samples = 2000. 
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when the highest stress intensity factor anywhere equaled the fracture toughness. 

If the flaw is circular, the stress intensity is the same everywhere and the use of 

this assumption is justified (Broek, 1988). However, in the case of an elongated 

flaw, the stress intensity at the end of the flaw would be less than the toughness at 

the point of satisfaction of this criterion. So, depending on the shape and size of 

the flaw, fracture could be either pre-poned or postponed. It is not possible to 

assess this theoretically � however, a correction factor could be applied to 

compensate for this overestimation. 

2. The size of the flaw in question takes into account all representative flaw sizes 

that might be present at the interface. As such, it is difficult to predict the bounds 

on flaw size. A more realistic scenario would be the presence of multiple flaws at 

the interface. The proximity of these flaws would determine the onset of 

coalescence and possible failure. Further study is needed on this issue and use of a 

correction factor for this is justified. 

3. The simulation model was two-dimensional in contrast to an actual three-

dimensional specimen. Although the specimen thickness was entered as a 

parameter, this precludes the presence of flaws along the width of the specimen 

although admittedly, the width of the specimen is far less than the breadth of the 

specimen.  

4. It was hypothesized that since the Iosipescu specimens exhibit a more uniform 

state of stress (shear stress) at the interface in comparison to butt joints (which 

exhibit both normal and shear stresses and also stress concentrations at the edges), 

the standard deviation of interfacial strength in the latter would be more than that 
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in the former specimen. While this trend is corroborated in the simulation results, 

the values are 3-4 times higher than test results. From the above discussion, it can 

be surmised that application of a correction factor brings the simulation results at 

par with the test results.    

Based on the above conclusions, applying a correction factor of 3, the failure strength 

distributions for the three different cases (a) fracture toughness = 0.38 MPa√m (b) 0.76 

MPa√m and (c) 1.14 MPa√m stand modified as shown in Figs. 5.6-5.8. The mean 

interfacial strength values and standard deviations of the scaled data are presented in 

Table 2.  
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Fig. 5.6b. Scaled Interfacial strength distribution for Iosipescu joint shear; 
fracture toughness = 0.38 MPa√m. Mean = 7.46 MPa, Standard Deviation = 

2.28 MPa, Number of samples = 2000. 
 

Fig. 5.6a. Scaled Interfacial strength distribution for butt joint shear; fracture 
toughness = 0.38 MPa√m. Mean = 8.28 MPa, Standard Deviation = 2.54 MPa, 
Number of samples = 2000. 
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Fig. 5.7a. Scaled Interfacial strength distribution for butt joint shear; 
fracture toughness = 0.76 MPa√m. Mean = 16.22 MPa, Standard deviation 
= 4.89 MPa, Number of samples = 2000. 
 

Fig. 5.7b. Scaled Interfacial strength distribution for Iosipescu joint shear; 
fracture toughness = 0.76 MPa√m. Mean = 14.62 MPa, Standard Deviation = 
4.38 MPa, Number of samples = 2000. 
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Fig. 5.8a. Scaled Interfacial strength distribution for butt joint shear; fracture 
toughness = 1.14 MPa√m. Mean = 23.88 MPa, Standard Deviation = 7.07 MPa, 

Number of samples = 2000. 
 

Fig. 5.8b. Scaled Interfacial strength distribution for Iosipescu joint shear; 
fracture toughness = 1.14 MPa√m. Mean = 21.5 MPa, Standard Deviation = 

6.31 MPa, Number of samples = 2000. 
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Table 2. Interfacial Strength Statistics of Butt Shear and Iosipescu Shear Specimens for      
Varying Fracture Toughnesses 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 Fracture toughness=0.38  
MPa√m 

Fracture toughness=0.76  
MPa√m 

Fracture toughness=1.14  
MPa√m 

Butt Shear Iosipescu 
Shear 

Butt Shear Iosipescu 
Shear 

Butt Shear Iosipescu 
Shear 

 

 

8.28 

 

7.46 

 

16.22 

 

14.62 

 

23.88 

 

21.5 

  

2.54 

 

2.28 

 

4.89 

 

4.38 

 

7.07 

 

6.31 
Standard 
Deviation 

(MPa) 

Mean 
Interfacial 
Strength 
(MPa) 
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5.5. Conclusions  

After we added a correction or fitting factor of 3, the interface shear strength data 

appear to be closer to the experimental range. However, our major focus was not to fit 

parameters � rather, it was to examine the average interface shear strengths and their 

standard deviations from the perspective of two different shear strength measurements. 

The influence of non-uniform stress field on the ultimate interfacial strength 

measurement was studied,  and we concluded that the variation in strength values in 

Iosipescu specimens is less than that in butt-joint shear specimens (10%),  however, the 

mean interface shear strengths are quite close (within 10% of each other).  Since 

Iosipescu test setup is quite complicated, we highly recommend using butt-joint 

specimens to measure shear bonding strengths.  

Meanwhile, our integrated investigation of finite element analysis and 

experimental stress analysis showed that along the polymer/adhesive/polymer interface of 

the Iosipescu shear specimen, a very weak stress singularity was found, so the stress 

distributions were quite uniform. Therefore, as long as the global interface stress is not 

singular (such as in straight butt-joint dissimilar materials (Xu et al., 2004b), the 

measured strength data should be close.  
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORK 

 

With increasing demands on multi-functional needs in civil, aerospace, 

automobile and biomedical applications, the need for accurate characterization of multi-

layer systems has become imperative. The bi-material interface is a subset of multi-layer 

the system. The overall mechanical behavior and response of bi-material interfaces is 

dependent on the mechanical properties and fracture behavior of the system. The 

presence of weak fiber-matrix interfaces, debonding at adhesive-bonded interfaces and at 

thin film-substrate interfaces highlight the role of interfacial mechanics. In this 

dissertation, the aim has been to address this topic by numerical simulations based on 

analytical derivations and subsequent validation by experiments conducted in the 

laboratory.  

Characterization of interfacial tensile strength, examination of stress transfer 

across the nanocomposite fiber-matrix interface, interfacial fracture toughness 

measurement and the influence of non-uniform stress fields on interfacial strength have 

been addressed in the current study. However, for each of these topics, the preliminary 

investigation reveals a need for further scope of work in this field. For example, while 

stress singularity was reduced by designing convex shaped specimens, the need for 

absolute removal of inaccuracies can only be achieved by examining an axisymmetric 

specimen. In fracture toughness measurement, there is a huge potential for work that 

involves the influence of parameters like the shape of the groove, position and shape of 
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the void on interfacial fracture toughness. While butt joints and Iosipescu joints are 

traditionally used for tensile and shear stress measurement at the interface, the presence 

of voids and bubbles at the interface cannot be completely discounted. While the 

influence of the non-uniform stress fields on the interfacial strength has been investigated 

in the penultimate chapter, it was achieved by a rudimentary model based on the flaw 

shape and location. Further work can be conducted, either from a deterministic or a 

probabilistic point of view, to verify results.  
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