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Chapter I 

INTRODUCTION 

 

Background of Medical Image Processing 

Images are the main source for people to obtain and exchange information, in recent 

decades, image processing and pattern recognition technology were developed rapidly. Digital 

image processing technology has also been expanded. Medical image processing is one important 

branch. Along with the rapid development of medical imaging technology, computer-aided 

diagnosis becomes more viable. These technologies enable physicians and researchers to better 

understand the anatomy of the human body through virtual interaction, and to make better diagnoses 

and develop appropriate treatments. 

Image processing techniques include image restoration, image reconstruction, image 

enhancement and image segmentation. Medical image processing, involving feature extraction, 

quantitative analysis and identification technology has become a popular research field. As 

electronic technology and image processing theory development, the use of image processing 

technology to achieve automatic identification and analysis of medical images become achievable. 

 

Background of the Study 

According to [1], the glomerular basement membrane (GBM) is the extracellular matrix 

component of the selectively permeable glomerular filtration barrier that separates the vasculature 

from the urinary space. The passage of various endogenous proteins across the GBM was studied 

in normal Munich-Wistar rats. [5] 
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Statement of the Problem 

The exact passage of endogenous albumin in the GBM has not yet been determined. In [5], 

the site of the filtration barrier for various plasma proteins in normal Munich-Wistar rats was 

revealed. However, the method taken in [5] is by removing the kidney from the rats, which doesn’t 

reflect the situation of living animals with renal blood flow.  

 

Content of this paper 

In this paper, a method based on image processing is introduced to estimate the site of 

retention of endogenous albumin and low molecular weight dextran. 

Chapter II introduces the preprocessing applied to the images, including basic concept of 

linear filter and non-linear filter and the differences between these two methods. 

Chapter III introduces the active contour model and its variations, including the comparison 

of different models. 

Chapter IV introduces a method for estimating the site of retention of endogenous albumin 

and low molecular weight dextran based on the active contour model. 
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Chapter II 

IMAGE FILTERING 

 

Background 

Image noise is random variation of brightness or color information in images. Image noise 

may occur in the capturing and the transmission process of the image. Typical types of images noise 

are Gaussian noise, salt-and-pepper noise and Poisson noise. Usually image restoration 

technologies are applied to the images to reduce the effect of noise. 

Filters play a major role in the image restoration process. The basic concept of the filter is 

digital convolution. Let 𝑓(𝑖, 𝑗) is the input image subjected to filtering, and 𝑔(𝑖, 𝑗) is the filtered 

output. The output can be expressed in form as  

 

 𝑔(𝑖, 𝑗) =  ∑ ∑ 𝑓(𝑡, 𝑢)𝑊(𝑖 − 𝑡, 𝑗 − 𝑢)

𝑗+𝑙

𝑢=𝑗−𝑙

𝑗+𝑘

𝑡=𝑖−𝑘

                                       (1) 

 

where 𝑊 is the filter function. The function above represents a digital image convolution process. 

The filter acts like a moving mask replacing the center value in the mask with the result of 

convolution. The total output is created by a series of shift-multiply-sum operations. 

 

Linear Filter 

When 𝑊 is a linear function, the filter becomes a linear filter. In general, a linear filter 

smooths an image by filtering out higher frequency of images, thus reduces the noise. 

https://en.wikipedia.org/wiki/Image
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A typical linear filter is the mean filter. It reduces the intensity variation among adjacent 

pixels. The mean filter is a window spatial filter that acts as a mask. It is implemented on the basis 

of equation (1). The mask is a square. Usually the sum of the coefficients of the mask is set to 1 

so that the average intensity of the image is not altered. Figure 1 is a mask for mean filter, whose 

sum of coefficients equals to 1. 

 

 

Figure 1. A 3 × 3 mean filter mask 

 

The mean filter is effective to the salt-and-pepper noise. A mean filter is a low pass filter 

that allows only the low frequent information to pass the filter and attenuates the high frequency 

information. Larger mask like 5 × 5 or 7 × 7 makes the image less noisy but more blurred. It’s a 

tradeoff between noise reduction and image definition. 

Another typical linear filter is the Gaussian filter. The Gaussian filter is similar to the mean 

filter, but it uses a different mask that represents the Gaussian function. [7] 

In 2-D, an isotropic Gaussian filter has the form: 

 

𝐺(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2                                                         (2) 

 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm
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Its distribution is shown in Figure 2. 

 

 

Figure 2. A Gaussian filter 

 

A Gaussian filter blurs an image, in a similar way to the mean filter. The degree of blurring 

is determined by the standard deviation 𝜎 of the Gaussian.  

In contrast to the uniformly weighted property of the mean filter, a Gaussian filter provide 

a central weighted average of each pixel inside the mask. The closer the pixel is to the center of the 

mask, the more weight it gains. Thus, a Gaussian filter provides a lesser smoothing and preserves 

the edges better than a same sized mean filter. 

 

Non-linear filter 

A non-linear filter is a filter based on a non-linear filter function. One of the popular non-

linear filter is the median filter. 

A standard median filter is a non-linear filter based on statistics. The center pixel of the 

mask is replaced by the median value of all pixels in the mask. A median filtering output can be 

expressed as 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/mean.htm
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𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑{𝑓(𝑥 − 𝑖, 𝑦 − 𝑖), 𝑖 , 𝑗 ∈ 𝑊}                                           (3) 

 

where 𝑓(𝑥, 𝑦), 𝑔(𝑥, 𝑦) are the original image and the filtered image respectively, W is the mask 

function. The mask size is 𝑛 × 𝑛 (n is usually an odd number like 5 or 7 and etc.). The mask shape 

may be linear, square, circular and so on. [9] 

The unweighted median filter treats each neighbor equally, and may lead to morphological 

artifacts like rounding sharp corners and removing thin structures. [3] To address this problem, the 

weighted median filter has been introduced. The weighted median filter output is 

 

𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑{𝑤(𝑖, 𝑗)𝑓(𝑥 − 𝑖, 𝑦 − 𝑗), 𝑖 , 𝑗 ∈ 𝑊}                                    (4) 

 

where the weight 𝑤(𝑖, 𝑗) depends on an image 𝐼 that can be different from 𝑓.  

 

Edge Preservation of Non-Linear Filter 

The linear filter tends to blur the edges, while the non-linear filter like the median filter 

preserves the edge location. Because of this, linear filter are seldom used in practice for noise 

reduction. [2]  

Figure 3 illustrates the edge preservation feature of the median filter. With increase in 

windows size, the mean filter blurs the edge, while the median filter preserves the edge location for 

both window sizes equally.  
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Figure 3. An Illustration of edge preservation feature of median filter. In the first two column, with increase in windows size 

mean filter blurred the edge, while median filter preserved the edge location for both window sizes equally 
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Chapter III 

ACTIVE CONTOUR MODEL 

 

Active contour model 

The active contour model also known as snake, origin from the paper by Kass. et al. [10], is 

a widely used method in computer vision for delineating an object edge from 2D image.  

The main idea of the active contour is defining a continuity spline (surface) close to the 

region of interest (ROI), then deforming the spline under the forces of internal energy and external 

energy (minimizing the total energy) to obtain the ROI boundary. The internal forces, usually 

provided by the spline itself, tend to smooth the spline. The image forces, usually provided by the 

image, push the snake toward the desired image features like lines, edges. The external constraint 

forces, usually provide by user or advanced computer vision algorithm, are responsible for putting 

the snake near the desired local minimum. With  𝑣(𝑥) =  (𝑥(𝑠), 𝑦(𝑠)) representing the active 

contour location, the energy functional can be written as 

𝐸𝑠𝑛𝑎𝑘𝑒 = ∫𝐸𝑠𝑛𝑎𝑘𝑒(𝑣(𝑠))𝑑𝑠

1

0

 

= ∫(𝐸𝑖𝑛𝑡(𝑣(𝑠)) + 𝐸𝑖𝑚𝑔(𝑣(𝑠)) + 𝐸𝑐𝑜𝑛(𝑣(𝑠))) 𝑑𝑠

1

0

 

=∫ (𝐸𝑖𝑛𝑡(𝑣(𝑠)) + 𝐸𝑒𝑥𝑡(𝑣(𝑠))) 𝑑𝑠
1

0
                                                (5) 

 

where 𝐸𝑖𝑛𝑡  represents the internal energy of the spline, 𝐸𝑖𝑚𝑔  represents the image forces, and 

𝐸𝑐𝑜𝑛 represent externals constraint forces. 
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The internal spline energy can be written as 

 

𝐸𝑖𝑛𝑡 = 
1

2
(𝑎(𝑠)|𝑣′(𝑠)|2) +

1

2
(𝛽(𝑠)|𝑣′′(𝑠)|2) =

1

2
(𝛼(𝑠) ‖

𝑑𝑣̅

𝑑𝑠
(𝑠)‖

2

+ 𝛽(𝑠)‖
𝑑2𝑣̅

𝑑𝑠2
(𝑠)‖

2

)      (6) 

 

The spline energy is composed of a first-order term controlled by α(s) and a second-order 

term controlled by β(s). The first-order term controls the continuity of the spline. The second-order 

term controls the curvature of the spline. Setting α(s) to zero makes the spline the first-order 

discontinuous with intermittent. Setting β(s) to zero makes the snake second-order discontinuous 

and developing a corner. 

We define the image force of the active contour as 𝐹 =  ∇𝐸𝑖𝑚𝑔. The image force is the 

driving force of active contour, generally provided by the image itself. When the contour is close 

to the ROI, such as edges, the total energy 𝐸𝑠𝑛𝑎𝑘𝑒 reaches the minimum value.  

The simplest useful image energy function is the image intensity itself. If we set 𝐸𝑖𝑚𝑔 =

𝐼(𝑥, 𝑦) then the active contour will be attracted to lines.  

If we set 𝐸𝑖𝑚𝑔 = −|∇𝐼(𝑥, 𝑦)|2 then the active contour is attracted to contours with large 

image gradients such as edges.  

If we set 𝐸𝑖𝑚𝑔 = −|𝐺𝜎 ∗ ∇2𝐼(𝑥, 𝑦)|2, where 𝐺𝜎 is a Gaussian function of standard deviation 

𝜎, then the active contour is attracted to the zero-crossings of 𝐺𝜎 ∗ ∇2𝐼(𝑥, 𝑦) which defines edges 

as per Marr–Hildreth theory. 

An active contour that minimizes energy 𝐸𝑠𝑛𝑎𝑘𝑒 must satisfy the Euler equation 

 

𝑎(𝑠)𝑣′′(𝑠) − 𝛽(𝑠) 𝑣′′′′(𝑠) − ∇𝐸𝑒𝑥𝑡(𝑣(𝑠)) = 0                                    (7) 

https://en.wikipedia.org/wiki/Zero_crossing
https://en.wikipedia.org/wiki/Marr%E2%80%93Hildreth_algorithm
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This can be viewed as a force balance equation  

 

𝐹𝑖𝑛𝑡 + 𝐹𝑒𝑥𝑡
1 = 0                                                                     (8)  

 

where 𝐹𝑖𝑛𝑡 =  𝑎(𝑠)𝑣′′(𝑠) − 𝛽(𝑠)𝑣′′′′(𝑠) and 𝐹𝑒𝑥𝑡
1 = −∇𝐸𝑒𝑥𝑡(𝑣(𝑠)). 

To find a solution to (7), the snake is made dynamic by treating 𝑣 as function of time 𝑡 as 

well as 𝑠.  

 

𝜕𝑣(𝑠, 𝑡)

𝜕𝑡
=  𝑎(𝑠)𝑣′′(𝑠, 𝑡) − 𝛽(𝑠)𝑣′′′′(𝑠, 𝑡) − ∇𝐸𝑒𝑥𝑡(s, t)                             (9) 

 

Then, the partial derivative of 𝑣 with respect to 𝑡 is then set equal to the left hand side of 

(7) as follows 

 

     

        
1 1 1 1 2 1

1 1 1 1 2

2

2 2 2 , 0

i i i i i i i i i i

i i i i i i i i x y

v v v v v v v

v v v v v v F i F i

  

 

     

    

     

       
                    (10) 

 

where 𝐹𝑥(𝑖) = 𝜕𝐸𝑒𝑥𝑡/𝜕𝑥, 𝐹𝑦(𝑖) = 𝜕𝐸𝑒𝑥𝑡/𝜕𝑦, 𝑖 = 0, 1, 𝐾,… ,𝑁 − 1. 

 The Euler equation can be transform to a matrix form as: 

 

𝐴𝑥 + 𝐹𝑥 = 0                                                                    (11) 

𝐴𝑦 + 𝐹𝑦 = 0                                                                    (12) 
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where A is diagonal matrix as in figure 4 defined by coefficient 𝛼 and 𝛽: 

 

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

c b a a b

b c b a a

a b c b a

a b c b a

A

a b c b a

a b c b a

a a b c b

b a a b c

 
 
 
 
 
 
 
 
 
 
 
 
 
 

L L

L L

L L

L M

M O O O O O O O M

M L

L L

L L

L L

                                        (13) 

 

where 𝑎 =  −𝛽/ℎ4, 𝑏 = (4𝛽 + ℎ2 𝛼)/ℎ4 , 𝑐 = (−6𝛽 − 2ℎ2 𝛼)/ℎ4 , ℎ  is sampling interval in x 

and y direction in image space. 

The equation 10 and 11 can be represented as 

 

𝐴𝑥𝑡+1 + 𝐹𝑥 = −γ(𝑥𝑡+1 − 𝑥𝑡)                                                     (14) 

𝐴𝑦𝑡+1 + 𝐹𝑦 = −γ(𝑦𝑡+1 − 𝑦𝑡)                                                     (15) 

 

where  𝛾 is the damping factor, equation can then be simplified by finite-difference methods into 

the final contour: 

 

𝑥𝑡+1 = (𝐴 + 𝛾𝐼)−1(γ𝑥𝑡 − 𝐹𝑥)                                                     (16) 

𝑦𝑡+1 = (𝐴 + 𝛾𝐼)−1(γ𝑦𝑡 − 𝐹𝑦)                                                     (17) 

 

where I is identity matrix. 
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Figure 5 shows the iteration process of an active contour. The left figure is the initial contour. 

The middle figure is the iteration result every 5 steps. The right figure is the result of 250 iterations. 

 

 

Figure 4.  Iteration process of active contour model. The left figure is the initial contour. The middle figure is the 

iteration result every 5 step. The right figure is the result of 250 iteration. 

 

Comparing to other image edge detection methods, the active contour model has the 

following advantages. 

1) The constraints of image data, initial estimation, target contour and a priori knowledge 

can be unified into one feature extraction process. After properly initialized, it can 

converge to the energy minimum automatically.  

2) Due to the robustness to noise and intermittent border point of active model, a complete, 

closed target contour can be obtained without the target being divided into several small 

areas.  

3) Integration of advanced information that at the beginning of the extraction process will 

focus on the desired target extraction and from coarse to fine to minimizing energy can 

greatly expanded the capture zone and reduce the computational complexity, thus it can 

dramatically reduce the amount of computation. 
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4) The active contour model is unrestricted to target trait and is adaptive to target traits 

change. It can also be used in target tracking and complex target contour extraction. 

Due to its own characteristics, the traditional active contour model has some limitations. 

1) The profile curve can easily to fall into a concave region, thus fails to detect a higher 

curvature concave contours. 

2) Gradient force field is sensitive to the initial contour, thus it requires an initial contour 

provided close to the target contour.  

3) Computational complexity is relatively high.  

4) It cannot handle profile splitting and merging and does not have topology change 

capability.  

 

Balloon Force 

 In the traditional active contour model, without an external force, the counter will eventually 

shrink to a point or a line due to the internal force.  Also the traditional active contour model has a 

relatively small capture range, that is, an active contour which is not close enough to targets is not 

attracted by them. Suppose that an initial contour is placed inside a black rectangle with white 

background. Even though the black rectangle provides perfect edges, the initial active contour will 

still shrink and vanish due to the lack of image force inside the black rectangle. One method to 

overcome the problem of capture range in traditional active contour model is to use the Gaussian 

blur with a larger standard deviation 𝜎, however it blurs and distorts the edges.  Also due to the 

balance of the internal force, only points with large image energy are able to affect the evolving of 

the active contour. 
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Due to these behaviors, a more dynamic active contour model is introduced in [4]. The 

active contour is now considered as a balloon that we inflate. A pressure force pushing outside was 

added to the previous force from an initial oriented contour. The force 𝐹 now becomes 

 

𝐹 =  𝑘1𝑛⃑ (𝑠) − 𝑘
∇𝐸𝑖𝑚𝑔

‖∇𝐸𝑖𝑚𝑔‖
                                                          (18) 

 

where  𝑛⃑⃑⃑  (𝑠) is the normal unitary vector to the curve at point 𝑣(𝑠) and 𝑘1 is the amplitude of the 

balloon force. If 𝑘1 is negative, it will deflate instead of inflating. Parameters 𝑘1 and 𝑘 are choosen 

such that they are of the same order, which is smaller than a pixel size, and 𝑘 is slightly larger than 

𝑘1 so an edge point can stop the inflation force. The active contour is still attracted to the edges as 

before. But since there is a pressure force, the contour now will expand instead of shrinking even if 

there is weak or no image forces. Also with the help of the internal force, the contour will pass 

singular edge points with regard to the rest of the contour is being inflated.  

As described in [11], balloon force model added a pressure force to the traditional potential 

force. The extra force covers the image points where traditional potential force is insufficient, thus 

increases the capture range of active contour model. However, the balloon force can only be set to 

one direction, either shrinking or expanding. Furthermore, the strength of the pressure force is 

difficult to set. For target with non-uniform edges, if the pressure force is too small, it may not 

overcome the weak edges and noises, and if the pressure force is too large, it may overwhelm 

legitimate edge forces. 
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GVF Snake Model 

 One of the problem of the traditional active contour is that, without proper initialization, it 

may fails to capture the concave regions. Figure 6 shows an example where the traditional active 

contour method fails to capture the concave region of the target. The left top figure is the gradient 

field. The right top figure is the initial contour. The left bottom figure is the iteration process. The 

right bottom figure is the final contour.  

 

 

Figure 5. An example of traditional active contour model. The left top figure is the gradient field. The right top figure is the initial 

contour. The left bottom figure is the iteration process. The right bottom figure is the final contour. 

 

An external force field named gradient vector flow (GVF) field is introduced by Chenyang 

et al. [11] to solve the problems stated above. As described in [11], the GVF field points toward the 
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object boundary when very near to the boundary, but varies smoothly over homogeneous image 

regions, extending to the image border. The GVF field improves the capture range of the traditional 

active contour model, and unlike balloon force, the initial contour can be set at either side of or even 

across the object boundary. Also GVF field can lead the contour into concave regions. 

An edge map 𝑓(𝑥, 𝑦)  with larger values near the image edges is derived from the 

image 𝐼(𝑥, 𝑦). Accordingly, we can use 

 

𝑓(𝑥, 𝑦) = −𝐸𝑒𝑥𝑡
𝑖 (𝑥, 𝑦)                                                             (19) 

 

where 𝑖 = 1, 2, 3, 𝑜𝑟 4, 𝐸𝑒𝑥𝑡
𝑖 (𝑥, 𝑦) is one of the external force defined as 

𝐸𝑒𝑥𝑡
(1)(𝑥, 𝑦) = −|∇𝐼(𝑥, 𝑦)|2                                                        (20) 

𝐸𝑒𝑥𝑡
(2)(𝑥, 𝑦) = −|∇[𝐺𝜎(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)]|2                                           (21) 

𝐸𝑒𝑥𝑡
(3)(𝑥, 𝑦) = −𝐼(𝑥, 𝑦)                                                            (22) 

𝐸𝑒𝑥𝑡
(4)(𝑥, 𝑦) = 𝐺𝜎(𝑥, 𝑦) ∗ 𝐼(𝑥, 𝑦)                                                   (23) 

The edge map 𝑓(𝑥, 𝑦) has three basic properties. First, the gradient of the edge map is 

normal vectors pointing to the edge. Second, these normal vectors are larger near the edges. 

Third, in homogeneous regions, 𝐼(𝑥, 𝑦) is constant, thus ∇𝑓 is zero. 

The gradient vector flow (GVF) field is then defined to be the vector field v(𝑥, 𝑦) =

(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) that minimizes the energy functional 

 

𝜀 = ∬𝜇(𝑢𝑥
2 + 𝑢𝑦

2 + 𝑣𝑥
2 + 𝑣𝑦

2) + |∇𝑓|2|v − ∇𝑓|2𝑑𝑥𝑑𝑦                               (24) 
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where 𝑓 is the edge map, ∇𝑓 is the gradient field of 𝑓. When ∇𝑓 is small, a smooth field is generated 

by the first term of the energy function. When ∇𝑓 is large, the second term dominates the energy 

function, and is minimized by setting v = ∇𝑓 . The parameter 𝜇  is a weight adjust parameter 

between the first term and the second term. 𝜇 should be increased when the noise level increases. 

GVF can be found by solving the following Euler equations 

 

𝜇∇2𝑢 − (𝑢 − 𝑓𝑥)(𝑓𝑥
2 + 𝑓𝑦

2) = 0                                                   (25) 

𝜇∇2𝑣 − (𝑣 − 𝑓𝑥)(𝑓𝑥
2 + 𝑓𝑦

2) = 0                                                   (26) 

 

where 𝑓𝑥 = 𝜕𝑓/𝜕𝑥 , 𝑓𝑦 = 𝜕𝑓/𝜕𝑦. In homogeneous regions (where 𝑓(𝑥, 𝑦) is constant), gradient of 

𝑓(𝑥, 𝑦) is zero, which makes the second term zero. Therefore, within these regions, GVF fill in 

from the boundaries of the region. This is the reason that GVF points into the concave regions. 

Equations (25) and (26) can be solved by treating 𝑢 and 𝑣 as functions of time and solving 

 

𝑢𝑡(𝑥, 𝑦, 𝑡) =  𝜇∇2𝑢(𝑥, 𝑦, 𝑡) − (𝑢(𝑥, 𝑦, 𝑡) − 𝑓𝑥(𝑥, 𝑦)) ∙ (𝑓𝑥(𝑥, 𝑦)2 + 𝑓𝑦(𝑥, 𝑦)2)         (27) 

𝑣𝑡(𝑥, 𝑦, 𝑡) =  𝜇∇2𝑣(𝑥, 𝑦, 𝑡) − (𝑣(𝑥, 𝑦, 𝑡) − 𝑓𝑦(𝑥, 𝑦)) ∙ (𝑓𝑥(𝑥, 𝑦)2 + 𝑓𝑦(𝑥, 𝑦)2)         (28) 

 

The steady-state solution (as 𝑡 → ∞) of equation (27) and (28) is the desired solution of the Euler 

equations (25) and (26).  

After we compute  𝐯(𝑥, 𝑦) , potential force −∇𝐸𝑒𝑥𝑡  in equation (9) is then replaced 

by 𝐯(𝑥, 𝑦), yielding 

 

𝑥𝑡(𝑠, 𝑡) = 𝛼𝑥′′(𝑠, 𝑡) − 𝛽𝑥′′′′(𝑠, 𝑡) + 𝐯                                         (29) 
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The following example shows the advantage of the GVF snake module in capturing concave 

regions comparing to traditional active contour model. Figure 7 shows the same object we tried to 

capture using traditional active contour method. The left top figure is the gradient field. The gradient 

force extended to the entire image. The right top figure is the initial contour. The initial contour is 

defined relatively far from the target object. The left bottom figure is the iteration process, it takes 

250 times iteration to capture the object. The right bottom figure is the final contour and it captures 

the recessed area of target object. 

 

 

Figure 6. An example of GVF snake model. The left top figure is the gradient field. The gradient force extended to the 

entire image. The right top figure is the initial contour. The initial contour is defined relatively far from the target object. The left 

bottom figure is the iteration process, it takes 250 times iteration to capture the object. The right bottom figure is the final 

contour and it captures the recessed area of target object. 
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VFC Snake Model 

Although the GVF model solves the problem that the traditional active contour fails to 

converge to concave regions, it requires a large amount of computation and is sensitivity to noise. 

Also the parameters are difficult to set up. 

Vector field convolution (VFC) active contour model introduced in [8] is an active contour 

model using the VFC field as the external force. The VFC field is the convolution result of the edge 

map and the Vector Field Kernel which is similar to the gravity vector field.  The VFC active 

contour model has a larger convergence area than the traditional active contour model and is able 

to converge to the concave areas. Also the VFC active contour model requires less amount of 

computation than GVF model and is robust against noise. 

By replacing the standard external force 𝑓𝑒𝑥𝑡(v) =  −∇𝐸𝑒𝑥𝑡(v) by the VFC field 𝑓𝑣𝑓𝑐(𝐯) , 

the iterative active contour solution becomes 

 

𝜕𝑣(𝑠,𝑡)

𝜕𝑡
=  𝑎(𝑠)𝑣′′(𝑠, 𝑡) − 𝛽(𝑠)𝑣′′′′(𝑠, 𝑡) − 𝑓𝑣𝑓𝑐(v(s, t))                           (30) 

 

To get 𝑓𝑣𝑓𝑐(v(s, t)), we first define a vector field kernel 𝑘(𝑥, 𝑦) = [𝑢𝑘(𝑥, 𝑦), 𝑣𝑘(𝑥, 𝑦)] as 

 

𝑘(𝑥, 𝑦) = 𝑚(𝑥, 𝑦)𝑛(𝑥, 𝑦)                                                        (31) 

 

where 𝑚(𝑥, 𝑦) is the magnitude of the vector at (𝑥, 𝑦) and 𝑛(𝑥, 𝑦) is the unit vector pointing to the 

kernel origin (0,0) 
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𝑛(𝑥, 𝑦) = [−
𝑥

𝑟
 , − 

𝑦

𝑟
]                                                        (32) 

 

except that 𝑛(0,0) = [0,0], where 𝑟 = √𝑥2 + 𝑦2 is the distance from the origin. A free particle 

placed in the kernel field is able to move to the kernel origin. Note that the kernel origin is not the 

origin of the image or the edge map. 

The VFC external force 𝑓𝑣𝑓𝑐(𝑥, 𝑦) = [𝑢𝑣𝑓𝑐(𝑥, 𝑦), 𝑣𝑣𝑓𝑐(𝑥, 𝑦)] is given by calculating the 

convolution of the vector field kernel 𝑘(𝑥, 𝑦) and the edge map 𝑓(𝑥, 𝑦) generated from the image 

𝐼(𝑥, 𝑦) 

 

𝑓𝑣𝑓𝑐(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ 𝑘(𝑥, 𝑦) = [𝑓(𝑥, 𝑦) ∗ 𝑢𝑘(𝑥, 𝑦), 𝑓(𝑥, 𝑦) ∗ 𝑣𝑘(𝑥, 𝑦)]          (33) 

 

Since the edge map 𝑓(𝑥, 𝑦) has larger values near the target edges while is close to zero in 

the homogenous regions, the VFC external force will attract free particles to the edges.  

Usually the effect of VFC field force should decrease as the distance between the particle 

and edges increases, thus 𝑚(𝑥, 𝑦) should be a decreasing positive function of distance from the 

origin. Two types of magnitude functions are given in [8] as 

 

𝑚1(𝑥, 𝑦) = (𝛾 + 𝜀)−𝛾                                                           (34) 

𝑚2(𝑥, 𝑦) = exp(−
𝛾2

𝜉2
)

−𝛾

                                                     (35) 

 

where 𝛾  and 𝜉  are positive parameters controlling the decreasing speed, 𝜀  is a small positive 

constant to prevent division by zero at the origin 𝑚1(𝑥, 𝑦).  
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An example discrete vector field kernel is demonstrated in Figure 8.  

 

 

Figure 7. An example discrete vector field kernel 

 

After we find the VFC external force 𝑓𝑣𝑓𝑐(𝑥, 𝑦), we calculate the equation (30) as in the 

traditional active contour model  

The VFC snake model converges faster than the GVF snake model. In figure 9, the VFC 

snake model is applied to the object we discussed in the traditional active contour and GVF snake 

model. The left top figure is the gradient force of the image. The right top figure is the initial 

contour. The left bottom contour is the iteration process, it takes 125 iterations for the VFC snake 

model to capture the target object compared to 250 for the GVF active snake model. The right 

bottom figure is the final result. The VFC snake model works well with the concave regions as does 

the GVF snake model.  
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Figure 8. An example of VFC snake model. The left top figure is the gradient force of the image. The right top figure is 

the initial contour. The left bottom contour is the iteration process, it takes 125 iterations for the VFC snake model to capture 

the target object compared to 250 for GVF snake model. The right bottom figure is the final result. 

 

The VFC snake model is also robust to noise. In figure 10, a comparison of GVF and VFC 

is made between the GVF and the VFC snake model in a noisy image. In the left figure, the initial 

contour and contour after 60 iterations using the GVF snake model. The mid figure is the intial 

contour (the dashed line) and the contour after a 60 iterations using the GVF snake model. The right 

figure is the initial contour and the contour after 60 iterations using the VFC snake model. We can 

see that the VFC snake model successfully captures the target after 60 iterations while the GVF 

snake model failed to converge under the influence of the noise.  
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Figure 9. A comparison between GVF and VFC under the influence of the noise. The left figure is the initial contour. The 

mid figure is the initial contour (the dashed line) and the contour after a 60 iterations using the GVF snake model. The right 

figure is the initial contour and the contour after 60 iterations using the VFC snake model. 
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Chapter IV 

ESTIMATION OF PROFILES 

 

Background 

The images of Glomerular Capillary Wall (GCW) were obtained by confocal microscopy 

operating on living rats including both proteinuric and non-proteinuric groups. In the scanning 

procedure, two channels of images (low molecule channel and high molecule channel) were 

obtained. Images are in 512 × 512 tif format with gray level from 0 to 4095. We want to estimate 

the intensity profile along the GBM.  

Figure 11 is a pair of sample scanned images. The left image is the low molecule channel 

result and the right is the high molecule channel result. 

 

 

Figure 10. A pair of sample scanned images. The left image is the low molecule channel result and the right is the high molecule 

channel result. 
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Preprocessing 

The scanned GCW images contain significant line artifacts. As in figure 11, the bright 

horizontal line artifacts only appears at the inner boundary of the capillary wall. These artifacts 

occur during the scanning process due to the blood flowing inside the capillary wall.  

The scanned images are degraded by horizontal line artifacts and other noise. These artifacts 

are caused by blood flow in Glomerular Capillary during image acquisition process. A filter needed 

to be applied to reduce the noise and smooth the image. Since we want to estimate the profile along 

the GBM, the edge information is vital to the accuracy of the result. Thus, a non-linear filter with 

its edge preservation advantage will reduce the noise level and preserve the edge information of 

GBM. In our case a median filter was applied to reduce the image noise. 

We applied different sizes of median filter. Figure 12 is the image brightness cross the GBM 

estimated on the original image. Figure 13 is on a 3×3 median filtered image. Figure 14 is on a 5×5 

median filtered image. Where CH2 represents the low molecule channel, and CH3 represent the 

high molecule channel. We can see that with 3×3 median filter, the spikes in Bowman’s space (the 

right part of the curve) are smoothed. To minimize the effect of the median filter on the image while 

reducing the noise, we chose the 3×3 median filter to preprocess scanned images. 
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Figure 11. Profile cross the GCW estimated on original image at a single point 

 

Figure 12. Profile cross the GCW estimated on 3 × 3 median filtered image at a single point 
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Figure 13. Profile cross the GCW estimated on 5 × 5 median filtered image at a single point 

 

Figure 15 is the images of the two channels after applying the 3×3 median filter. The left 

figure is the low molecule channel image, the right figure is the high molecule channel image. 

 

 

Figure 14. Both channels images after applying 3 × 3 median filter. The left is the low molecule image, the right is the high 
molecule image. 
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Estimation of GBM Location  

To estimate the location of the GBM, two methods were proposed. One of them is to extract 

the edge of the Glomerular Capillary interior wall. The other one is to extract the position of the 

darkest point of the GBM which can be done in low molecule channel images, and then apply the 

edge location to high molecule channel images.  

From figure 15 we can see that even after the median filter, the line artifacts in the 

Glomerular Capillary is still affecting the boundary. So the alternative method which is to extract 

the position of the darkest point of the GBM would work well in our case. 

The position of darkest point of the GBM is not considered as an edge, but due to the 

flexibility of active contour model, we can still define the image force as −𝐼(𝑥, 𝑦), so the active 

contour model can converge to the local minimum pixel. First we define an initial active contour. 

This contour is sampled about every 2 pixels. As in figure 16, we manually set the initial contour 

along the GBM. 

We let the active contour iterate 500 times. For the internal force, parameter 𝛼 is set to 0.05, 

𝛽 is set to 0.01. Every iteration we resample the contour to make sure it is evenly distributed. 

A result of estimating the position of darkest point of the GBM is shown in figure 17. The 

left figure is the active contour result after 500 iterations on the low molecule channel image. The 

right figure is the same result displayed on high molecule channel image. 
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Figure 15. Initial contour along the GBM 

 

 

Figure 16. A result of estimating the position of darkest point of the GBM. The left figure is the active contour result after 500 

iterations on the low molecule channel image. The right figure is the same result displayed on high molecule channel image. 
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Estimation of Profile across the GBM 

We sampled around the estimated location of GBM to obtain the density profile on both 

high and low molecule images. The profile is obtained by interpolating normally to the final active 

contour on both direction. The interpolation is 1-pixel-width for a total 100 points. The sampling 

procedure was applied on a certain area of the GBM and the results were averaged. 

Figure 18 shows an example of a good sampling position. 

 

 

Figure 17. An example of sampling position 

 

 Figure 19 shows a sampling map. 
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Figure 18. Sampling map. It was sampled normally to the final active contour on each direction for 50 points. 

 

 The average result in figure 19 is shown in figure 20. The blue curve is the low molecule 

channel (CH2) result and the red curve is high molecule channel (CH3) result. 

 

 

Figure 19. Average of the sampling result 
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A flow chart of the extraction procedure is described in figure 21. 

 

Figure 20. The flow chart of estimating the profile across GBM 

 

Estimation Result 

We measured 5 images from a non-proteinuric set and 5 images from a proteinuric set. The 

average result of each image is shown in figure 22 to figure 32. In each figure the right top figure 

is the final active contour on low molecule channel (CH2), the left top figure is the final active 

contour on high molecule channel (CH3), the right bottom figure is the sampling map, and the left 

bottom figure is the average result.  

Apply 3 by 3 median filter to 

the image 

Set the initial active contour 

around the capillary wall 

Let active contour evolve 

500 times 

Sample the image to the 

normal of the final active 

contour 

Calculate the average of 

sampled data 
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Figure 21 

 

Figure 22 
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Figure 23 

 

Figure 24 
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Figure 25 

 

Figure 26 
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Figure 27 

 

Figure 28 
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Figure 29 

 

Figure 30 
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Chapter V 

SUMMARY 

 

Medical image processing has become a popular research field in the computer vision. This 

paper provides a method based on computer vision to measure the passage of various endogenous 

proteins across the GBM.  

We introduce the basics about the linear filter, including the mean filter and the Gaussian 

filter, and the non-linear filter, including the unweighted median filter and the weighted median 

filter. We also compare the edge preservation capability between the linear-filter and the non-linear 

filter. 

We introduce the basics about the traditional active contour model and some variants 

including the Balloon force model, the GVF snake model and the VFC snake model. We also 

compare the capability of capturing the concave regions, convergence speed and noise resistance 

between these models. 

We select an appropriate sized median filter to preprocess the images obtained by confocal 

microscopy, thus reduces the noise and preserve the edge information. 

We use the active contour model to capture the location of the GBM. By setting the external 

energy to image itself, we are able to capture the darkest point inside the GBM. 

We select desired area after we get location of the GBM, then sample to the normal of the 

GBM in both directions. After averaging the sample result, we successfully obtain the profile of 

both low and high molecule channel for future study. 

More images need be studied to get a reliable result for future study. 
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Appendix I 

Matlab Codes 

Function [x,y]=snake(image,Niter,nsample,alpha,beta,gamma,extcoef) 
[n,m] = size(image); 
fx=zeros(n,m); 
fy=zeros(n,m); 
[dGx,dGy]=gradient(image); % define external forces 

fx=-extcoef*dGx; 
fy=-extcoef*dGy; 
[xi,yi] = getline ('closed'); % Get initial curve 
[N,~]=size(xi); 
t = 1:N; 
ts = (1:(N-1)/nsample:N)'; 
x = interp1(t,xi,ts); 
y = interp1(t,yi,ts); % Interpolate initial curve 
x=x(1:end-1); 
y=y(1:end-1); % Erase the last point cause it is the same point with 

x(1) 
[N,~]=size(x); 
% Compute diagonal matrix A in snake algorithm,  
A=diag((6*beta+2*alpha)*ones(N,1))+... 
    diag((-4*beta-alpha)*ones(N-1,1),1)+... 
    diag((-4*beta-alpha)*ones(N-1,1),-1)+... 
    diag((beta)*ones(N-2,1),2)+... 
    diag((beta)*ones(N-2,1),-2)+... 
    diag((beta)*ones(2,1),N-2)+... 
    diag((beta)*ones(2,1),-N+2)+... 
    diag((-4*beta-alpha)*ones(1,1),N-1)+... 
    diag((-4*beta-alpha)*ones(1,1),-N+1); 
for i=1:Niter 
    j = find(x<=1); 
x(j)=1; 
j = find(x>=m); 
x(j)=m; 
j = find(y<=1); 
y(j)=1; 
j = find(y>=n); 
y(j)=n; 
% Codes above makes set the curve out of the image at the boundary of 

the 
% image 
fxc = interp2(-fx,x,y); 
fyc = interp2(-fy,x,y); % Interpolate the external energy at current  

% curve 
dx=[x(2:end);x(1)]-[x(end);x(1:end-1)]; 
dy=[y(2:end);y(1)]-[y(end);y(1:end-1)]; % Compute the distance in each  

% direction 
x=(gamma*A+diag(ones(1,N)))\(x+gamma*(fxc)+balcoef*(-

dy)./sqrt(dx.*dx+dy.*dy)); 
y=(gamma*A+diag(ones(1,N)))\(y+gamma*(fyc)+balcoef*dx./sqrt(dx.*dx+dy.*

dy));  
% Compute new curve 
x = [x;x(1)]; 
y = [y;y(1)]; % Make the curve close 
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d = sqrt(dx.*dx+dy.*dy);  % Compute the distance between nearby points 
d = [0;d]; 
d = (d'*triu(ones(length(d),length(d))))'; % Compute the distance of 

each point to the first point 
curvelength=max(d); 
p = 0:curvelength/nsample:curvelength; % Define the resolution 
x = interp1(d,x,p); 
y = interp1(d,y,p); % Interpolate the points 
x= x(1:end-1)'; 
y= y(1:end-1)'; 
% the codes above make the points uniformly distributed when the snake 
% involving 

 

 

% Image2 is the low molecule image, image3 is the high molecule image 
Image2=double(image2); 
Image2=image2/4095; % The original image1 is .tif file which means its gray 

% level is from 0 to 4095,  normalized it from 0 to 1 
image2=medfilt2(image2,[3,3]); % Smoothed by 3 × 3 median filter 
image3=double(image3); 
image3=image3/4095; 
image3=medfilt2(image3,[3,3]);     

  

  
[m,n]=size(image2); 

  
% parameters 
Niter=500; % This is the number of iteration 
nsample=1000; % This is how many points you get in snake curve 
alpha=0.05; % Increase alpha will increase the internal energy of the snake  

% as it stretches more and more 
beta=0.01; % Increase beta will increase the internal energy of the snake as  

% it develops more curves 
gamma=10; % This is the step length of snake conmputation. The larger the  

% snake converges faster 

  
extcoef=-1; % This is the external force 
 [x,y]=snake(image2,Niter,nsample,alpha,beta,gamma,extcoef);  

% Above is snake function 

  
theta=pi/2; % this is the angle to perpendicular direction you want to sample  

% with. 
interv=7; % this is how many points of snake curve you wish to use in  

% calculating the sample direction 
dx=[x((interv+1)/2:end);x(1:(interv-1)/2)]-[x(end-(interv-3)/2:end);x(1:end-

(interv-1)/2)]; 
dy=[y((interv+1)/2:end);y(1:(interv-1)/2)]-[y(end-(interv-3)/2:end);y(1:end-

(interv-1)/2)]; 
% dx,dy is the tangents of the curve which will use in computing the sample 
% points 
for i=1:length(x) 
    if dx(i)>0&&dy(i)>0 

xi(i,:)=dx(i)./abs(dx(i)).*(cos(atan(dy(i)./dx(i))+pi-theta))*(-

50:1:50)+x(i)*ones(1,101); 
yi(i,:)=dy(i)./abs(dy(i)).*(sin(atan(dy(i)./dx(i))+pi-theta))*(-

50:1:50)+y(i)*ones(1,101); 



43 

    elseif dx(i)>0&&dy(i)<0 
xi(i,:)=-dx(i)./abs(dx(i)).*(cos(atan(dy(i)./dx(i))-theta))*(-

50:1:50)+x(i)*ones(1,101); 
yi(i,:)=dy(i)./abs(dy(i)).*(sin(atan(dy(i)./dx(i))-theta))*(-

50:1:50)+y(i)*ones(1,101); 
    elseif dx(i)<0&&dy(i)>0 

xi(i,:)=-dx(i)./abs(dx(i)).*(cos(atan(dy(i)./dx(i))-theta))*(-

50:1:50)+x(i)*ones(1,101); 
yi(i,:)=dy(i)./abs(dy(i)).*(sin(atan(dy(i)./dx(i))-theta))*(-

50:1:50)+y(i)*ones(1,101); 
    elseif dx(i)<0&&dy(i)<0 

xi(i,:)=-dx(i)./abs(dx(i)).*(cos(atan(dy(i)./dx(i))-theta))*(-

50:1:50)+x(i)*ones(1,101); 
yi(i,:)=-dy(i)./abs(dy(i)).*(sin(atan(dy(i)./dx(i))-theta))*(-

50:1:50)+y(i)*ones(1,101); 
    elseif dx(i)==0&&dy(i)>0 

xi(i,:)=-(-50:1:50)+x(i)*ones(1,101); 
yi(i,:)=y(i)*ones(1,101); 

    elseif dx(i)==0&&dy(i)<0 
xi(i,:)=(-50:1:50)+x(i)*ones(1,101); 
yi(i,:)=y(i)*ones(1,101); 

    elseif dy(i)==0&&dx(i)>0 
xi(i,:)=x(i)*ones(1,101); 
yi(i,:)=(-50:1:50)+y(i)*ones(1,101); 

    elseif dy(i)==0&&dx(i)<0 
xi(i,:)=x(i)*ones(1,101); 
yi(i,:)=-(-50:1:50)+y(i)*ones(1,101); 

         
    end 
end 
% Above xi, yi is the sample points which are 500 points on each side of 
% snake curve. It is calculated in 4 cases which the curve goes 
% different directions 

  
% Above codes will delete points whose sample points go out of the image2. 

  
[px,py]=ginput(2); % You select two points here and get the sample results 

between these two points 
dpx1=(x-px(1)).^2+(y-py(1)).^2; 
dpx2=(x-px(2)).^2+(y-py(2)).^2; 
pn1=find(dpx1==min(dpx1)); 
pn2=find(dpx2==min(dpx2)); 
% Above codes find the nearest points of your selected points on the snake 
% curve 
if pn2>pn1 

xi=xi(pn1:pn2,:); 
yi=yi(pn1:pn2,:); 

else 
xi=[xi(pn1:end,:);xi(1:pn2,:)]; 
yi=[yi(pn1:end,:);yi(1:pn2,:)]; 

end 
xin=xi; 
yin=yi; 
[i,~]=find(xi>n); 
xin(i,:)=[]; 
yin(i,:)=[]; 
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[i,~]=find(xi<1); 
xin(i,:)=[]; 
yin(i,:)=[]; 
[i,~]=find(yi>m); 
xin(i,:)=[]; 
yin(i,:)=[]; 
[i,~]=find(yi<1); 
xin(i,:)=[]; 
yin(i,:)=[]; 
% Above is the codes solve the problem of the x(1) and y(1) lies between your  

% start and end points 
fgh=length(xin(:,1));  
xp=xin(:); 
yp=yin(:); 

 
% interpolation and average. 
interpimage3=interp2(image3,xin,yin);    
interpimage3=mean(interpimage3); 

 
interpimage2=interp2(image2,xin,yin); 
interpimage2=mean(interpimage2); 
 

% interpimage2 and interpimage3 are the average result 


