

REASONING ABOUT CPS

USING SURROGATE SIMULATION MODELS

By

Shunxing Bao

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

for the degree of

MASTER OF SCIENCE

in

Computer Science

May, 2014

Nashville, Tennessee

Approved:

Aniruddha Gokhale, Ph.D.

Joe Porter, Ph.D.

ii

ACKNOWLEDGMENTS

This work would not have been implemented without support from Dr. Aniruddha

Gokhale and Dr. Joe Porter. I really appreciate it and feel honored to work with my two

advisors. They also encouraged me and made me convince myself to continue to pursue

the research road as a PhD student in Vanderbilt University.

Dr. Aniruddha Gokhale provided the motivation and idea of this research. It was abstract

when I first heard of it, but the blueprint of this research is so attractive and ambitious, I

devoted myself working on this project very quickly. Since the original concept is quite

abstract and hard to imagine, he tried many concrete and useful examples to help me

comprehend the problem first and my studying direction became clearer. Thanks to the

internship in ISIS, I have known Dr. Joe Porter. He is so nice and full of knowledge, and

his crazy ideas and insight on my work made me start to love studying research. He is

very patient and provides me much core idea to overcome a lot of the difficulties in the

whole process, and he instructed and inspired me on how to figure out the problems

independently.

I am grateful to Dana, I feel so happy to be with her in these months, and the relationship

established with her is one of the foremost rewards in my life. Thanks for my other

friends the friends we have made in this two-year master, of course, my first friend

Richard Zigler.

I love my parents, they gave me hope and opportunities to study abroad, and without their

love and help I cannot be a man like I am now. I love you mom and dad.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS __ ii

LIST OF TABLES __ v

LIST OF FIGURES __ vi

CHAPTER

I. INTRODUCTION __ 1

I.1 Motivation __ 2

I.1.1 Cyber-physical systems __ 2

I.1.2 Cyber Physical Systems Laboratory-as-a-Service (CPS-LaaS) __________________________ 3

I.2 Solution Summary __ 5

II. BACKGROUND ___ 6

II.1 Cyber-Physical Systems ___ 6

II.2 Model-Integrated Computing ___ 6

II.3 GME __ 7

II.4 Graph Rewriting and Transformation __ 7

II.5 Robocode __ 9

III. IMPLEMENTATION __ 11

III.1 Basic Sample Model to Simulate___ 11

III.1.1 Overview of the Solution Architecture __ 12

III.2 Reconfigurable Conveyor System Design __ 14

III.2.1 Complex-domain Metamodel ___ 14

III.2.2 Complex Domain-specific Model __ 17

III.3 Global Grid Design __ 18

III.3.1 Simple-domain Metamodel ___ 18

III.3.2 Simple-domain-specific model __ 20

III.4 Graph Rewriting and Transformation __ 20

III.5 GME Interpreter ___ 28

III.5 Robocode __ 28

III.5.1 Tank Design Description __ 28

III.5.2 Safety Path ___ 32

III.5.3 Package Transmission Simulation ___ 37

III.6 Java Animation double-buffering __ 39

IV. EVALUATION __ 40

IV.1 GReAT Transformation Time ___ 40

IV.2 Drawbacks of Robocode ___ 41

IV.2.1 Simulation Limitations __ 42

V. FUTRUE WORK ___ 44

iv

V.1 Design Strategy __ 44

V.2 Simulation Improvement__ 44

V.2.1 Multiple packages ___ 44

V.2.2 Using a Physical Engine __ 45

V.2.3 Refine the animation ___ 46

V.2.4 Failure Tolerance ___ 46

V2.5 Scheduling Multiple Experiments to the Grid ______________________________________ 46

VI. CONCLUSION __ 49

REFERENCES ___ 51

v

LIST OF TABLES

Table Page

III.1 Components participating in the transformation in each step 23

III.2 Robocode Tank Type and Description ... 29

III.3 Tank On-hit event Description.. 38

IV.1 Average Transformation time with deferent System Design 40

IV.2 Battle properties in Robocode .. 41

vi

LIST OF FIGURES

Figure Page

II.1 The approach Used in GReAT .. 8

III.1 A sample Conveyor System Logic Design ... 12

III.2 Overview of the Solution Architecture ... 12

III.3 A sample Scenario of Mapping three experiments to global grid 14

III.4 Reconfigurable Conveyor System Metamodel ... 16

III.5 Domain-specific model – NewSystem According to Basic sample system main

canvas .. 17

III.6 Top hierarchy of the NewSystem ... 18

III.7 Global Grid Meta Model ... 19

III.8 Global-Grid Domain-specific Model .. 20

III.9 GReAT Working Structure ... 21

III.10 The detail of CrossLink .. 22

III.11 The rewriting and transformation flow defined in NewBlock 24

III.11 (a) The detail of RuleCreateGrid .. 24

III.11 (b) The detail of RuleInputNode ... 25

III.11 (c) The detail of RuleInputConn ... 26

III.11 (d) The detail of RuleExperiment ... 27

III.12 Initial Screen for the Robocode Simulation based on the basic example model 30

III.14 An illustration of safety path... 36

III.15 The Shooting Sequence in a Safety Path .. 37

V.1 (a) The safety path illustration from InputOne to OutputTwo 45

 (b) The package transmits across the Intersection11 and frees the first segment ... 45

V.2 Two scenarios of mapping two experiments... 47

V.3 Two experiments overlap and share the grid’s resource ... 48

1

Chapter I

Introduction

Developing an affordable, easily accessible and scalable online CPS laboratory is

significant to promote CPS education [1]. In developing such a system we are focused on

a number of cyber-physical challenges including the model design and simulation

strategies, and concentrate our CPS field on Reconfigurable Conveyor System.

For CPS education, it is hard to have students apply and operate a real Cyber Physical

System, for instance, a real conveyor system. Concern with several challenges in real

CPS industry (maybe: If we use real industrial CPS to conduct student experiments, there

are several potential challenges):

1. Maximum sustainable rate: If the system design is modified can we keep the

transfers going fluently without collision with the maximum rate as established

before?

2. Starvation of certain paths: After reconfiguring the system, will any existing

links be invalidated?

3. Prioritization: How can we set the priority for each path to ensure all packages

can successfully reach the destination or transfer them with the least time?

4. Fault tolerance: If failure occurs, will the system’s overall throughput be

impacted?

2

In order to answer these questions, a model-driven approach is one of the best solutions

[2]. Students can simply design their model on computer, using some basic modeling

operations and complexity model logic and algorithm; the students can easily alter and

modify their design to observe the performance of their system. Simulated experiments

are more cost effective than expensive CPS equipment and reduce the risk of failure. All

modeling and simulation work are hidden within the simulated test bed.

The paper provides a complete process to simulate the behavior of a user-design CPS

conveyor system in the framework of Cyber Physical Systems Laboratory-as-a-Service

(CPS-LaaS). The user-design model is sent to the background and treated offline. The

extracted simulation result is finally feedback to user as an animation.

I.1 Motivation

I.1.1 Cyber-physical systems

Cyber-physical systems (CPS) pervade several application areas of societal importance,

such as advanced manufacturing, transportation, health care, smart grids, and smart

buildings [21]. CPS is often intelligent networks, which combine communication,

computing and controllers, so that they can interact with each other and cooperate to

achieve particular goals. To address the 21st century challenges, we need future scientists

and engineers to be well-trained in the science and engineering of CPS. It has been amply

demonstrated that problem- and project-based learning environments help students apply

learned theories to solve realistic problems. Unfortunately, a vexing problem that makes

3

it hard to support a problem- and project-based CPS learning environment stems from a

general lack of access to fully equipped laboratories that can provide hands-on, practical

CPS education to a large pool of future scientists and engineers.

One of the classic CPS is the conveyor system. The traditional conveyor system can

transmit a bunch of packages in a section successively. The conveyor cost is relatively

low, transport time is predictable, and the freight flow is stable, so they are commonly

used in current logistics systems. To quote from the classic article on reconfigurable

conveyor systems [4]: ‘The key factor in a truly reconfigurable modular conveyor system

is the ability to connect and reconnect a wide variety of modules and accessory modules

that allow engineers the freedom to tweak production lines when necessary without the

cost of a brand new conveyor or the risk of losing the conveyor’s integrity.’ The

reconfigurable conveyor system’s flexibility, scalability, sustainability, and cost

effectiveness can make the logistics system more productive. The performance of the

system is based on the logical layout of the conveyor system. In order to observe the

property more directly; it is a good idea to allow students to design and study this system

to obtain knowledge of how physical and cyber systems work together.

I.1.2 Cyber Physical Systems Laboratory-as-a-Service (CPS-LaaS)

Massive Open Online Courses (MOOC) is popular in current higher education, which

provides not only a high quality and free education resource, but also a complete study

experience [4]. This real-time interaction platform gives us research innovative ideas, that

we can also make our CPS course online and can handle as many students’ system design

as possible from all over the world.

4

To overcome this problem we have previously outlined a vision of a framework called

CPS-LaaS. We surmise that CPS-LaaS will provide easy and affordable access to CPS

laboratory artifacts over the Internet by virtualizing the physical CPS laboratory

resources and offering them as a service in much the same way as contemporary

Software-as-a-Service (SaaS) offerings in cloud computing [5]. Thus, in the CPS-LaaS

vision, students are provided access to a web-based learning environment that is

customized to the CPS domain they are studying. All student-led experiments are

conducted using the web interfaces. The CPS-LaaS capability maps these virtualized

interactions onto concrete cyber-physical resources transparently to the user, which is

where the actual execution of student-led experiments takes place. Results of these

experiments are relayed back to the student via the web.

Central to the success and scalability of the CPS-LaaS vision is the notion of an

Analogous System [6], [7]. This analogous system is essentially a system functionally

equivalent to the domain that the student is interested in studying such that it can

represent the cyber and physical interactions of a class of CPS applications. For example,

consider a student investigating coordination algorithms for a reconfigurable conveyor

system. Since it is hard to access a laboratory with a conveyor system, it is possible to

approximate the conveyor CPS by an analogous system comprising a cluster of robots

whose positions and trajectories can be controlled to mimic belt movement to simulate

the package transmitting flow. Such a laboratory of robots can then be used to illustrate

all the behaviors of the original system. In our prospect, we plan to place the laboratory in

5

the cloud side. So the user’s conveyor system designs are simply sent to the cloud and

their behaviors are simulated by those typical robots. And finally, the performance of the

systems is returned back to the user’s screen from web-based laboratory background.

I.2 Solution Summary

The input is a reconfigurable design from a CPS student, and the output is a behavioral

simulation of this design. The solution approach has two main parts: first, for the

modeling aspect, we have a complex domain-specific conveyor design are defined in the

GME; second, the complex conveyor model can be mapped and transformed to the global

grid, another domain-specific model, which contains only one kind of node and large

dimensions so that all different species of components in the complex model are mapped

to the typical nodes in the grid, and it is easy to operate and simulate the nodes in the

global grid when multiple experiments are being mapped to the grid. In this thesis, we are

only concerned in this scenario with one experiment. The transformation and mapping

process is implemented using the Graph Rewriting and Transformation (GReAT) tool. As

a background simulation, the Robocode’s code is automatically generated by a GME

interpreter from the global grid and is applied to generate the path logic to transmit the

package, according to the package type in each input port. After acquiring the transmit

speed and path, a Robocode simulation outputs the coordinate and time information to

generate the Java animation. The final Java animation will be fed back to the user side to

see the results of the package transmission flow.

6

Chapter II

Background

II.1 Cyber-Physical Systems

Although there is no unified definition for CPS, in conclusion, CPS obtains several

characteristics [8], [9], [10]: 1) deeply embedded computation systems, 2) widely

complex networks, 3) intelligence, 4) perception, and 5) mutual coordination. CPS is a

new generation of intelligent systems, uniting integrated computing, control, and

communication and also cyber and physical processes [11]. CPS provides the interface

between cyber world and physical world. The cyber space can remotely operate a

physical entity in secure and real-time. CPS involves system engineering of ubiquitous

environmental perception, embedded computing, network communication, network

control, and adds to physical systems the functions of computing, communication,

precision control, remote control, and autonomous control. It is highly worth studying

CPS because of its bright future and massive challenges in science and engineering.

II.2 Model-Integrated Computing

Model-Integrated-Computing (MIC) is highly-focused in modeling study; it becomes one

of the most important fields in model-based software development [12]. MIC is a new

approach in software development basing on modeling; it provides a very flexible and

multi-dimension modeling framework. It not only has the characteristics of traditional

software modeling, but also has its own features in embedded software development. The

7

model is located in the center of the complete system life cycle. It effects the whole

development process, and involves modeling analysis, verification, integration and

maintenance. It is very important in modeling transformation; it has different

representation in different levels so that fit for any form of analysis, verification and

simulation tools. In MIC, we use meta-languages to represent the key components of the

system information by modeling. Besides, this language can create a system environment

to simulate physical conditions.

II.3 GME

The Generic Modeling Environment (GME) is a customizable generic modeling

environment, which supports metamodel modeling and Program Synthesis [13]. It applies

UML class diagrams to describe a domain-specific modeling language [15]. The reason

GME is customizable is that it can apply a meta language to describe the concepts,

relationships, and constraints of specific domains. GME also provides an interpreter

mechanism to construct the model, which can be used to automatically map the system

model to executable code.

II.4 Graph Rewriting and Transformation

Graph Rewriting and Transformation (GReAT) is a transformation tool based on graph

models, which can be seen as a domain-specific language in the GME modeling

environment using meta-language defined in GME [14]. GReAT has an engine GReAT-E

(GE) that is used to describe model transfer rules and graph rewriting and transformation

language [16]. GReAT uses Pattern matching input to the appointed input metamodel and

8

output metamodel. So that when there is an operation applied on the input metamodel’s

instance, it can solely effect on the output metamodel’s instance, which in this way a

bonded connection has been established. In the rules of GReAT, the finest unit of model

transformation definition rule is an atomic rule, and each rule specifies the rule input and

rule output. The mapping relationship of the input and output model is defined by the

Attribute Mapping object. It can set the output model’s attributes according to the

definition of transformation semantics and the input model’s attributes. In an atomic rule

we can also define the operations of model creation, deletion, and attribute modification.

Users can define a series of atomic rules to design the transformation process. GE is

GReAT’s executing engine which is a model interpreter built using the Model interpreter

framework provided by GME.

Figure II.1 The approach Used in GReAT

9

II.5 Robocode

Robocode is a tank combat simulator developed by IBM Alphaworks [17]. The tank must

avoid attack by other tanks, whether the tank is in enemy team or the same team, the tank

will lose energy when it is hit. The tank should also avoid running into walls or colliding

with other tanks. The objective of the battle is to shoot and destroy the opponent’s tanks

It is hard to imagine and associate Robocode with a Conveyor System. However, there

are several properties very interesting to be applied to simulate a conveyor system.

1. Each tank robot contains noiseless radar, which can sense the tank collision,

battle frontier, tank hitting event, tank appearance and on-going [18]. So the

tank itself can be treated as a sensor to monitor the event in the battle field, and

the radar can play a role as the conveyor system’s sensor.

2. Within a tank team, each teammate can send and receive messages in a variety

of formats. According to the message content and type, the typical command

can be conveyed to each tank to simulate the actions of the conveyor system.

Hence message requests and responses within a team can play a role as signal

communication.

3. Because of the nature of battle, each tank can set its own bullet power, and then

the bullet power can act as an identifier for the different packages in order to

distinguish the package type. In this way the bullet can simulate the behavior

of the physical feature. The velocity of a flying bullet is defined by the

equation [19]:

10

Bullet Velocity = 20 – 3 * firepower

4. Robocode is a Java-based code, we take advantage of Java’s cross-platform

independence properties so that the Robocode simulation can be used

anywhere. And as it is also a real-time running and on-screen program, we can

easily debug and make the logic simulation visualize. As the background

simulation, the user does not know what is happening in Robocode. However,

due to Robocode’s own file writer function, we can take advantage of those

functions to extract the location and time information when running battles to

generate the final animation.

11

Chapter III

Implementation

III.1 Basic Sample Model to Simulate

In this thesis, our approach is based on the example model logic in Figure III.1. There are

four main components in the Conveyor system. The input ports are the places that receive

the packages, and the packages will be finally sent to the output ports. The packages are

transmitted by conveyor belt, which can move the parcels from belt’s one end to the other

end. In our system design, we name the belt as segment, which is a vivid metaphor. Each

turnaround can connect multiple segments, it act as a transmit station. When a package is

transferred to a turnaround, the turnaround will transmit the package to the segment that

needs to go to. Three Input ports I1, I2, I3 and Three Output ports O1, O2, O3 are in this

design, correspondingly we categorize the package type as Big, Medium and Small can

be transferred from input to output ports. S1, S2… S13 are segments acting as the belt to

move the parcel. T1, T2….T6 are six turnarounds used to switch the package.

12

Figure III.1 A sample Conveyor System Logic Design

III.1.1 Overview of the Solution Architecture

Figure III.2 Overview of the Solution Architecture

Reconfigurable
Conveyor System

Meta-Model

Reconfigurable
Conveyor System
Domain-Specific

Model

Global Grid
 Meta-Model

Global Grid
 Domain-Specific

Model

Global Grid
 Robocode Code

Generator

Robocode
Cyber

Physical
Simulation

Complex Domain

Generic Modeling Environment (GME)

Simple Domain

Instance of

GReAT

Instance of

Interpreter of

Code Generation

Final
Java

Animation

BACKGROUND

13

According to the Figure III.2, in modeling part, there are two domains, the Complex

Domain is used for user to design their own design, and their design can transform to a

form defined in simple-domain, the Global Grid.

The idea for global grid comes up with the prospect of mapping as much conveyor

experiments as possible (In Figure III.3, experiment E1, E2, E3 are mapped from user

side to grid, reserving a corresponding space in the grid to simulate their system design,

as we mentioned before. However, in this paper we only consider the scenario mapping

one experiment to the grid). Because there are multiple component models in the user-

design side, for instance, input port, output port, turnaround, and segment, we can hardly

design a panel with horizontal and vertical path to dynamically generate the

corresponding nodes, and the size required to create such a panel is hard to calculate.

Moreover, in this research the only specific domain we concerned with is the conveyor, if

we design and apply another CPS domain, the dynamic panel with multiple nodes to fit

for mapping a great number of nodes from CPS student is unreasonable. We hence design

a global grid; this is a kind of panel with only one kind of node and necessary

connections.

14

Figure III.3 A sample Scenario of Mapping three experiments to global grid

The Grid can generate the code for the Robocode to simulate in the background, which

the user will not know what happen in the background, what they will get is a final java

animation to see their system performance.

III.2 Reconfigurable Conveyor System Design

III.2.1 Complex-domain Metamodel

The metamodel is presented in Figure III.4. In this metamodel, the highest-level model is

Experiment. It contains testSystem, Input and Output. Model testSystem is a

reference of model System, so we can treat the testSystem is holding the same properties

15

with System, and all operations to the testSystem are actually effected in the

corresponding System.

System contains three different kinds of models, Input, Output and Block, these three

models are the key component to build the Conveyor system. Package is contained in

Input, which is used to represent different kinds of parcels need to be transferred in a

conveyor system. Input and Output models are intuitively used to design the input ports

and output port of a conveyor system; model Block is inheritance by three child-model

SegmentWE, SegmentNS and Turnaround, which the first two of three child indicate

the conveyor’s belt moving from west-east direction, the belt moving from north-south

direction. Turnaround is a transit point, acting as the connection between one belt and

another belt segment to keep or alter the package’s original direction as we disscuesed in

the basic sample model. Three connections are defined in System. BlockToBlock makes

connections among Blocks. InputToBlock creates the connection from Input to Block

since the Input in system does not have inward link. With the similar principle,

BlockToOutput builds the connection from Block to Output because of Output cannot

have outward link.

The Attribute in each model is quite straightforward. NodeType in block is used to

distinguish the Meta type of each node, which will be applied as a directly link to map to

the global grid. PackageType is defined for package type. Speed is the belt transmission

speed, it can be random set with the number greater than zero, however, in this paper, we

16

set three default speed to compatible with three different packages, which the belt’s speed

is decided by the package type.

Figure III.4 Reconfigurable Conveyor System Metamodel

In the higher hierarchy (please see the red region in Figure III.4), System is referenced as

the reference testSystem and embodied in the Experiment. Meanwhile, Input and

Output are also contained in Experiment. InputConnection and OutputConnection

allows that the model Input/Output designed in Expreiment can connect with the

Input/Output designed in testSystem. According to this connectivity, we can activate

any number of input ports and output ports to transfer and receive the package, it will

greatly generate more permutation and combination of experiments using only one

17

conveyor system design, and every experiments can be mapped to the global grid, this

process will be discussed in the future work on scheduling multiple experiments to grid.

III.2.2 Complex Domain-specific Model

A domain-specific model is an instance of its direct metamodel. Figure III.5 is a domain-

specific model which is based on Complex-domain metamodel defined above there are 3

Input models, 3 Output models, 9 SegmentWE models, 4 SegmentNS models, and 6

Turnaround models with related connection. The architecture is based on the initial

model design in Figure III.1. One-end-arrow represents the package interflow of goods

and materials in the conveyor system. Although the connection lines within Segement

and Turnaround have no arrows, we acquiesce the horizontal flow direction is parallel

with arrow way.

Figure III.5 Domain-specific model – NewSystem

According to Basic sample system main canvas

18

In the view of Experiment model (Figure III.6), namely NewExperiment, NewSystem is

presented as a reference in the center, each input ports are connected with one Input

model, and this is the only way to represent that the NewSystem’s input port can be

activated. If there is no connection within the input ports and outside models, the input

ports of NewSystem will still be mapped to the on-going process, however, the node after

mapped is no longer activated, namely it is invalid to use in simulation part, this will be

discussed in the description of the GReAT transformation. In this case, all input ports are

activated and going to be mapped, meanwhile all output ports are all activated with the

same meaning. Eventually, when transforming this conveyor system design to the global

grid, all activated ports, turnarounds and connections will be mapped and valid.

Figure III.6 Top hierarchy of the NewSystem

III.3 Global Grid Design

III.3.1 Simple-domain Metamodel

In Figure III.7, the uppermost level of the meta model is Grid, and it contains only one

single type of model, namely Node. There are two reduction strategies. The first one is

within the attributes of Node, all attributes in the complex domain’s model Input,

Output and Turnaround are wrapper in the simple domain’s model Node. The second

19

one is that we simplify the model SegmentWE and SegmentNS as just a connection,

namely the connection EastToWestConnection and SouthToNorthConnection as well

as adding the related attributes. In this way in the grid, we can simply consider the

behavior of the connection and it is easy to modify to fit for other need of different CPS

domain. Since the Node can play a role with Turnaround, we set 4 models as the ports

of Node, the model East, West, North and South. East can only connect with West, and

Noth can only connect with South, in this case it ensure the direction of the grid fairness

and make the whole grid as a vertical and horizontal panel. Altogether Node can

represent the three key models in the complex domain, and the connection in the grid can

in a role of conveyor belt.

Figure III.7 Global Grid Meta Model

20

III.3.2 Simple-domain-specific model

The global grid instance is quite comprehensible, according to the DSML model of

complex domain, 3 input ports, 3 output ports and 6 turnarounds will be mapped to as the

node in the grid, the segment belts are mapped as the connection within each node. The

result presents in the Figure III.8 In the next part, we will present the detail of how this

mapping transformation works.

Figure III.8 Global-Grid Domain-specific Model

III.4 Graph Rewriting and Transformation

GReAT is software to rewrite and transform the current GME DSML model to a new one,

whether create a new DSML model or refine the current one. In this paper, we map the

current conveyor design to a new grid, because we only need to simulate one experiment

21

indeed. In next step, we will map the multiple current conveyor design experiment to the

huge grid panel; this will be discussed in the future work section.

Figure III.9 GReAT Working Structure

In Figure III.9, we present the structure of our GReAT’s work. We first need to import

two GME meta model, one is the source meta model ConveyorExperiment, the other

one is the destination Grid. Because the transformation definition by GReAT is based on

the meta language to create the basic level association between two models, we do not

need the DSML model as it is one of the instance of the meta model, therefore not

representative. However, the DSML model is applied in the real transformation, the

ultimate goal is making the transformation on a DSML model. Crosslink defines the

inner association by an Association Relationship-type connection to link the source

meta model’s component to the destination one, so that the components lying on the two

sides of the link can completely bound with each other. For instance, after reading a

sample DSML conveyor model and an Input model, create a new Node in the grid, since

we have defined the cross link (please see Figure crosslink in Figure III.10), then all the

operation on the read Input port will also effect and only effect the newly-built Node

22

itself. Otherwise we would have to build a separate table and search for the

corresponding node in each rule.

Figure III.10 Details of the CrossLinks

NewConfiguration defines the concrete source file to be rewritten and transformed as

well as the output destination file, we also need to set the corresponding meta model

prototype define in which level GReAT should start to read and create the files. In our

case, we all start from RootFolder, this is the top level in each DSML model. NewBlock

contains the transformation logic; as follows Table III.1 presents the four main creation

logic strategies’ source components and destination components.

23

Table III.1 Components participating in the transformation in each step

Step Source Destination

1 A system design A new grid panel

2 Input ports;

Output ports;

Turnaround.

Node(East, West,

North, South ports)

3 Input ports,

output ports,

turnaround

Node.East,

Node.West,

Node.North,

Node.South

4 Experiment with

System’s reference

Change the

corresponding

Node’s attribute.

24

Figure III.11 Rewriting and transformation flow defined in NewBlock

Figure III.11(a) Detail of RuleCreateGrid

25

Figure III.11 (b) Detail of RuleInputNode

26

Figure III.11 (c) Detail of RuleInputConn

27

Figure III.11 (d) Detail of RuleExperiment

Figure III.11 presents the overall structure of the four steps, and III.11 (a, b, c, d) present

the sample details in each step. Step 1 creates a new grid panel after reading a system

design based on the complex domain. Step 2 Create Node in the grid and make the src-

dst pattern association which is a representation of the Association in the CrossLink.

So whether the source inputs are model Input, Output or Turnaround, they will only be

mapped to a typical node. In Step 3 we create a Node Connection. Because in step 2 we

have already created the model pattern association, this step will be mapped the segment

(WE or NS) from the source side to act as connection of Nodes’ corresponding ports in

grid. Step4 activate the node in grid represent to the input & output port. After the four

steps above, the DSML model in Figure III.5 will be transformed to the model shown in

Figure III.8.

28

III.5 GME Interpreter

A GME interpreter is used to extract the necessary information, and the extraction logic

can be written in C++ in order to create the required code. This process is automatic

through generative capabilities. This procedure also involves CTemplate. CTemplate is a

simple but powerful template language for C++. It mainly focuses on separating

presentation logic from application logic [20]. The ctemplate script will be embedded

into a “.tpl” file. Once we start the interpreter, the template file can be filed with code,

and the code is created by the information from the grid. For example, the tank location

according to the component’s coordination in grid, the tank type according to the logic

from grid, the battle time needs to be simulated. The detail of the related tank issue will

be discussed in next section. Finally we generate and output our destination file -- the

Robocode’s ‘.battle’ file, which records the tanks’ type, initial location (the tank’s

position of the battle field), initial heading direction (the heading decides the shooting

direction) and initial rador direction (the direction of sensor area. In this paper, we set the

radar direction is the same with heading direction). In the next part we will present the

detail of the tank-design.

III.5 Robocode

III.5.1 Tank Design Description

In order to simulate the behavior of the whole conveyor system, we design multiple tanks

to simulate behavior for the model in the complex domain. In Table III.2 exhibits all tank

29

types we have designed. Figure III.12 shows the initial screen of the Robocode

simulation.

Table III.2 Robocode Tank Type and Description

Tank Name Description

tank-Input Act as the input port.

tank-Output Act as the output port.

tank-Conveyor Act as the conveyor system’s belt (segment).

tank-Intersection Act as the turnaround of the system.

TeamLeader The controller manager and the principal monitor.

tank-FakeInput No exact meaning. The Robocode is a battle game,

we have to define at least two opponent side to

ensure the simulation work. The FakeInput is

treated as a common and only enemy with all the

other tanks. The FakeInput is simply locates in a

default place in the battle field, without any cyber

or physical behavior, its appearance is used to

make the whole simulation procedure keep

working. Meanwhile all the rest of the tanks are set

as a team, and within the team, each tanks can

communicate with each other applying message

sending and receiving.

30

Figure III.12 Initial Screen for the Robocode Simulation

based on the basic example model

Here is the detail of each tank.

1. tank-Input

This tank simulates the behavior for the input port. It can receive any package

with small size, medium, or large. It can directly receive commands only from

the team leader. There are two command types, one is to start calculating the

package delivering safety path, and the other one is starting to transmit the

package. The radar is applied by the tank. The heading of this tank is

unchangeable.

31

2. tank-Output

In our case, three different kinds of packages should be sent: Large, medium

and small. Tank OutputOne receives small packages from the input ports, tank

OuputTwo receives medium packages, and OuputThree receive the large ones.

It can receive the message from its nearest conveyor tank. It also has

communication with the team leader before transmission and complete

transmission each round. The radar is not inactivated for this tank.

3. tank-Conveyor

Tank-conveyor performs the belt movement in the conveyor system. It

represents the direction of the conveyor movement, and it is irrelevant with the

real package transmission. It can communicate the message from the nearest

Input tank or Intersection tank. The radar is activated to monitor the

Intersection it faces. The heading of this tank is either towards the Intersection

or towards the Input/Output Tank.

4. tank-Intersection

Tank-Intersection is acting as the Turnaround to transmit the package. It can

receive the message only from the conveyorNew tank if the tank faces the

turnaround, and sends its message to the conveyor tank it faces. So the package

transition direction is defined by the heading of the Intersection tank. The radar

is activated to capture the conveyor tank. The heading of the tank-Intersection

runs along horizontal or vertical lines, facing the Input/Output ports or another

intersection.

32

5. Teamleader

The teamleader is the commander of the team. In the real conveyor system, the

industry applies Radio Frequency Identification (RFID) [22]. There is a tiny

silicon computer chip and an antenna in each package. Remote radar can scan

and send the information of the package to a database. Then the CPU can

analyze the parcel’s information and schedule the transferring mission. In the

simulation, the teamleader is the commander of the team. The inner logic and

the total number of input & output ports of the conveyor system design select

the type of the teamleader. The definition of package transfer logic design and

decision are embedded in it. Three main functions are contributed by

teamleader. Firstly, teamleader considers which input ports should be activated

to send the package. Secondly, the teamleader sends a direct command

message to the activated input ports to generate the safety path, which will be

explained in next section. Finally, according to the response of the

corresponding tank-output, the teamleader transmits commands to the activated

input ports to begin the package transfer. The teamleader is selected according

to the number of input ports as well as the output ports.

III.5.2 Safety Path

The existence of a safety path makes it unnecessary to consider fault tolerance.

Definition: The safety path is a logical link from one of the input ports to the output ports.

In order to ensure the safety without stopping, two steps are used:

33

III.5.2.1 Activate the Input ports

Within the path, only one package can be transmitted, so no collision is allowed to

happen in it. When transferring the package, no other package from a different input port

can share this path. Until the package is successfully transmitted from the source to the

destination, the path stays in a busy state. This is implemented by a brute force algorithm:

First of all, the tank-teamleader acquires the map of the following package type of each

input ports. The tank-input port is indexed by a natural number, so the lower the number

of the input ports, the higher transmission priority is given. Traverse the input ports from

lowest to highest index -- if the package needing to be transferred will cross several lines,

then the input ports located in the involved lines will not be activated. If the package

transferred from any other input ports will cross the involved lines, then that

corresponding input port will also not be activated. After traversing all the input ports

from the lowest index to the highest the first time, begin to create the safety path for this

round.

Pseudo code:

Start scan from Input_i(i=1,2,...) -> the package will be sent to Output_x(x>=i).

 activate Input_i and start to scan Input_(x+1).

 If Input_(x+1) -> the package will be sent to Output_y (y<=x),

 then skip Input_(x+1) and start to scan Input_(x+2)

 scan traverse

 Else

34

 activate Input_(x+1) and start to scan Input_(y+1).

 scan traverse

III.5.2.2 Create the safety path

After activating the input ports, we divide the logical design into several sections, and in

each section, we apply the shortest path to transfer the package, for instance, as the

Figure III.13 exhibits as follows: for Input_1 to Output_1, there will be only one path,

and no back edge (direction west) to ensure the shortest path. For transferring from

Input_3 to Output_5, the path direction can only be east and south. The Input_8 to

Output_7 path exhibits the same principle.

Figure III.13 A sample Grid Path Activate Status

III.5.2.3 Cyber & Physical Simulation Feature

35

The procedure to create the safety path is this: First, after being activated by teamleader,

the tank-Input scans its nearest tank-conveyor and sends a message to it, so that the tank-

conveyor will stop right next to the tank-Input. In this way, it simulates the scenario that

this section of belt is waiting for the in-coming package. Besides, the tank-Input will send

the package information to the facing tank-intersection. After that, the tank-intersection

who received the package size message will turn its heading according to the value of the

y-coordinate. The pseudo code presents how to compare the coordinate y-value with

current tank-Intersection and the destination output port.

Final_dir = The direction of y value of the destination output port.

current_dir = The current tank-Intersection's y value

if(current_dir == Final_dir)

 keep the heading to the East

if(current_dir < Final_dir)

 if there is no tank-Intersection on East

 turn the heading to the South

 else

 random decide the direction in(South,East)

if(current_dir > Final_dir)

 if there is no tank-Intersection on West

 turn the heading to the South

 else

 random decide the direction in(South,West)

36

After the heading is decided, the tank-Intersection scans its nearest tank-Conveyor,

asking it to stop and wait next to the tank-Intersection itself. The principle here is the

same with tank-Input, namely make sure the conveyor belt is waiting for the package.

Repeat this process until the tank-Intersection has found the final destination tank-Output,

after which a safety path has been built. The tank-Output then sends a message to

teamleader to convey the ready status.

Finally, the teamleader accumulates the numbers of received ready-status messages, till

all safety paths have been established. Altogether, the creation of safety paths for this

round is fully completed. In Figure III.14, there is a safety path from top-left corner’s

tank-Input to bottom-right tank-Output.

Figure III.14 An illustration of safety path

37

III.5.3 Package Transmission Simulation

The transmission order is given by teamleader right after the all safety paths have been

built in each round. In Figure III.15 illustrates the abstract bullet shooting sequence in

one safety path.

Figure III.15 The Shooting Sequence in a Safety Path

III.5.3.1 Bullet shooting

In Robocode, we set different bullet power to represent different package sizes. As one of

the typical battle events in Robocode, we define two on-hit events to treat the situation

when the tank is under attack. Table III.3 shows the detail of those on-hit events for

TeamLeader

Tank-Input

Tank-Conveyor

Tank-Intersection

Tank-Conveyor

Tank-Output

Multiple Tank-Intersections

Tank-Conveyor

38

different tanks. All transmitting happens from the tank-Inputs, when they shoot the bullet

with established power under the order issued by teamleader.

Table III.3 Tank On-hit event Description

Tank Type On-hit event

Tanks-Conveyor The tank is hit by tank-Input or tank-Intersection,

according to the hitting damage, calculating the bullet

power, and shoots the bullet to the tank-Intersection it’s

facing to or tank-Output (the last section for the safety

path). Then the tank-Conveyor will start to move back

and forth to stand for the conveyor belt is moving.

Tank-Intersection The tank is hit by tank-Conveyor from behind, which

represents that it receive the package, and shoot to the

tank-Conveyor its facing to that means the package is

transmitted to the next segment.

Tank-Output As long as it is hit, it expresses that the package in its

safety path has already transmit from source to

destination successfully. This tank then sends the

message to teamleader to convince the fact that the

mission of transmitting is complete.

The teamleader counts the total number of the mission-completion message from each

safety path, when all path transmissions are properly accomplished, the teamleader then

39

starts to decide the safety path logic for next round if there is any package waiting to

transfer. When no packages are left in the conveyor system, the Robocode Simulation

completes.

III.6 Java Animation double-buffering

No matter which tank shoots a bullet, it can save the location and time information to a

text file using RobocodeFileWriter. As a simple but productive Java animation, the

template code has several structures: the conveyor belt border and intersection drawing,

settling down the corresponding threads on typical package size and speed definition. The

Java animation also applies double buffering to eliminate the screen flash problem. The

procedure for double animation manifests below:

1. Create an Image object DbBuffer by createrImage(int width, int height).

2. Create an Graphics object GraImage by DbBuffer.getGraphics() in order to

distribute and save the object needs to be paint in the memory space.

3. Use the repaint function paint(GraImage) to draw the canvas to the memory

space.

4. Use function drawImage(DbBuffer,0,0,null) defined in Graphics to draw all of

the animation window in one-time.

40

Chapter IV

Evaluation

IV.1 GReAT Transformation Time

With the help of GReAT, we transformed a domain-specific model defined in the

conveyor experiment language to the target domain-specific model defined by grid meta-

model. However, the transformation time is slow and in Table IV.1 presents the average

time of transformation.

Table IV.1 Average Transformation time with deferent System Design

Conveyor Experiment Design Average Time(mm:ss)

One Input, One Output, One Turnaround 00:1.21

One Input, One Output, Two Turnaround 00:3.56

Two Input, Two Output, Two Turnaround 00:13.60

Two Input, Two Output, Four Turnaround 02:25.63

Three Input, Three Output, Three Turnaround 01:49.30

Three Input, Three Output, Six Turnaround 12:59.08

According to the dimension of the conveyor system design, the transformation time

increased exponentially. The logic design for creating connections among nodes should

be refined. In current work, the GReAT spends 80% of its time to treat the connection

parts in order to ensure the connection is correct.

41

IV.2 Drawbacks of Robocode

Before we start to evaluate Robocode, several general rules we use need to be explained

(in Table IV.2) [24],

Table IV.2 Battle properties in Robocode

Rule No. Description

1 When you shoot your gun you can select a power range from 0.1 units to 3

units. After firing you must let the gun cool down before firing again.

2 The heat generated by firing a gun is 1 + (energy amount/5).

3 Heat dissipates at the rate of 0.1 units per tick. For example, if you fire a

gun with 2 units of energy the heat is 1 + (2/5) or 1.4 which means you

cannot fire again for 14 ticks.

4 Robots start out with a fixed amount of energy (100 units) which is lost

different ways. When the energy is gone the robot blows up.

5 Firing Gun = losing energy equal to bullet energy setting. If you set a bullet

with 2 units of power the robot energy is reduced by 2.

6 Getting hit by bullet = 4 * bullet power + 2 * ceiling (bullet power – 1) For

example, getting hit by a bullet with power 2 gives = 4 * 2 + 2 * (2-1) = 10

* 1 = 10

7 Shooting another robot gives you back some energy of 3 * bullet power.

Suppose you fire with a bullet power of 2:

Fire bullet = lose 2 units of energy

Hit other robot = 3 * 2 = get back 6 units of energy

42

Altogether increase of 4 units of energy

8 Max rate of rotation of robot: (10 - 0.75 * abs(velocity)) deg / turn. The

faster you're moving, the slower you turn.

9 Max rate of rotation of gun: 20 deg / turn. This is added to the current rate

of rotation of the robot.

10 Max rate of rotation of radar: 45 deg / turn. This is added to the current rate

of rotation of the gun.

IV.2.1 Simulation Limitations

IV.2.1.1 Tank Life

According to the general rule above, we require that each tank’s initial life energy is 100.

There are three ways to affect the tank’s energy that manifests in the Rule 1, 5, 6, 7. If a

tank continuously hits another tank, then the shooting tank’s energy will keep increasing

by 2*bullet power. However, meanwhile if the tank is continuously under attack, the total

energy value will be reduced by 2*bullet + 2 * ceiling *(bullet power - 1). Namely the

tank-Conveyor, tank-Intersection and tank-Output species of tanks will gradually lose

their energy until the life energy is evacuated. So for CPS students’ design, they cannot

set an excessively large number of packages, since if the tank’s life energy is zero, then

the tank will vanish, which will destroy the original logic route.

43

IV.2.1.2 Heating and Cooling

Because of Rules 2 and 3, after the tank shoots, the gun barrel will generate heat to limit

the frequency of tank firing. Once the heat value becomes zero, the tank can shoot again.

In order to allow all bullets to emit and ensure all tanks on the safety path is well-

prepared (no rotation of robot, gun and radar, according to Rule 8, 9, 10), we set a

default waiting time by iteratively executing doNothing() for 40 time units to ensure

sufficient time for the firing tanks and to confirm that the tanks’ heading has been rotated

to the anticipated direction. Hence in the real-time distributed Cyber Physical System

world, this delay can cause errors. We need to consider how to eliminate those delays in

the simulation.

44

Chapter V

Future work

V.1 Design Strategy

In Industry, the conveyor’s transfer behavior is not simply transmitting a package from

one input port to an output port. Rather, the package is usually sent from an input port to

a Transfer server (A transfer server is a kind of transfer station, which is similar to output

ports, but it is not the destination.), and then transfer to another transfer server, and so on.

Finally the package will be transferred from one transfer server to the destination output

port, and we should refine our design to meet this scenario requirement.

V.2 Simulation Improvement

V.2.1 Multiple packages

In our current Robocode, each safety path can only transfer one package. In the real-

world, this kind of situation rarely happens. For instance, in our model design in Figure

V.1, assuming that there is a current safety path transmitting a medium package from

InputOne to OutputTwo, the safety path is InputOne->Intersection11->Intersection21

->Intersection22->OutputTwo. Before transmitting the package, this route is busy, once

the package passes Trunaround11 and turns to the second line, then Turnaround11 will be

free, so if there is a small package needing to be transmitted from InputOne to OutputOne,

45

then we should send the package without having to wait for the previous package to reach

the destination. This can increase the veracity of our simulation.

Figure V.1 (a) the safety path illustration from InputOne to OutputTwo

(b) The package transmits across the Intersection11 and

frees the first segment

One possible solution is better utilization of the tank’s radar in Robocode. Instead of

generating all of the logic using tank-Teamleader in the beginning of each round, the

other kinds of tanks can dynamically report and scan the other tanks to know which part

of the route is free in order to transmit the package without collision. Of course, because

of the simulation limitations we discussed in Evaluation section, we may replace the

Robocode simulation and apply a new approach to overcome those confinements.

V.2.2 Using a Physical Engine

The Robocode’s physical simulation part is mainly defined by the bullet-shooting event;

the different packages transmit with different velocity by the configuration of the bullet

power [23]. In a real-world conveyor system, the physical environment is much more

46

complex. Now in our Robocode we combined the cyber and the physical simulation, in

future work, we would like to try to use some physical engine in order to help to establish

the physical environment and simulate the behavior, for example, real belt speed, gravity,

friction force, belt slop etc. The background simulation should be generating the cyber

logic from Robocode first, and simulate the belt in the physical engine, the cyber and

physical part connect with each other by instrumentation interface.

V.2.3 Refine the animation

Now the conveyor belt animation is simply a mapping result using the coordinate and

time information, it can successfully present the route logic as well as feedback the

transmit speed. In future work we would try to design a code based 3-Dimension

simulation platform, to make the final feedback more like a conveyor belt system, so that

meet the high standard and anticipation from CPS students.

V.2.4 Failure Tolerance

In our current safety path, no collision will happen, however, failure tolerance is one of

the most important issues to be considered, such as if a transfer server shuts down or

crashes, how to treat the situation to keep the whole line flowing.

V2.5 Scheduling Multiple Experiments to the Grid

As an online-based CPS-LaaS, another main area of this study is how to allocate space in

the global grid for students to map their experiments to the grid and simulate in the

47

background. In this case, figuring out the scheduling problem is important especially as

there are limit resources in the grid.

The first approach plan is based on the assumption that the space of the global grid is big

enough to handle all experiments. In order to calculate the efficiency of the scheduling

methods, we first calculate the area utilization of the total nodes of grid in use. For

instance, in Figure V.2, the red region and green region represent two different

experiments, although the total area of those two experiments in two scenarios are same,

the left one has lower space availability than the second graph. The algorithm needs more

consideration to map as many experiments as possible.

Figure V.2 Two scenarios of mapping two experiments

The second approach is focused on the spacing limitations of the global grid, so in some

parts of the grid, the nodes need to be shared with multiple experiments, as Figure V.3

shows. In this case, we plan to use time sequence method to treat this situation. In one

48

time period, the overlap area is conducted by a red experiment, and in next time period,

the green experiment has the priority to use the grid, and then in the following time, the

red region is using again, and so on, until both experiments have been completely

simulated.

Figure V.3 Two experiments overlap and share the grid’s resource

49

Chapter VI

Conclusion

The motivation of this research is to develop a cost effective, easy to use and scalable

online CPS laboratory. Owe to the convenience of the internet, we can handle a large

number of requirements from CPS students to simulate their system design, for instance,

a system design of reconfigurable conveyor system. In order to manage such an

enormous number of experiments, we came up with an idea of the global grid, which is a

large panel to allocate space to simulate the student’s design.

In this thesis work, we focused on only one experiment and completed the whole process

to simulate this experiment. There are two main parts; the first one is map the student-

experiment design to the global grid, within this step, we make a reduction from mapping

a complex system design with multiple components (e.g. Input ports, output ports,

turnaround, segment) to a simple system design (namely the global grid, which only

contains nodes and connections among nodes). Our complex system design and simple

system design are all instances of the corresponding domain meta language defined in

GME, and the transformation is made by GReAT. The second main part is simulation.

We apply surrogate simulation software, Robocode, to simulate the behavior of a

reconfigurable conveyor system. Since it is run in the background, the users cannot see

how this software works. The final animation as the performance of the student’s

experiment design will be presented to the student’s screen, which is generated by the

50

information from Robocode. Now the whole process for one experiment has been

accomplished, and our next urgent work is to treat the scenario of mapping and

simulating multiple experiments on-line.

51

REFERENCES

[1] A. Gokhale, G. Biswas, N. Sarkar, S. Sastry, and M. Branicky, “CPS Laboratory-as-a-

Service: Enabling Technology for Readily Accessible and Scalable CPS Education,” in

Proceedings of the First Workshop on Cyber-Physical Systems Education (CPS-Ed) at

CPSWeek 2013, Philadelphia, PA, USA: IEEE, Apr. 2013, pp. 21–24.

[2] K. An, A. Trewyn, A. Gokhale, and S. Sastry, “Model-driven Performance Analysis

of Reconfigurable Conveyor Systems used in Material Handling Applications,” in

Second IEEE/ACM International Conference on Cyber Physical Systems (ICCPS 2011).

Chicago, IL, USA: IEEE, Apr. 2011, pp. 141–150.

[3] Dynamic Conveyor Corporation, “Reconfigurable Modular Conveyors: Equipment

that Unites Controllers and Engineers,” Online Article in Medical Design Technology

(MDT) Magazine, Jun. 2010.

[4] Yuan，L.，& Powell，S.(2013). MOOCs and open education: Implications for

higher education [DB/OL].http://publications.cetis.ac.uk/2013/667.

[5] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica et al., “A View of Cloud Computing,” Communications of

the ACM, vol. 53, no. 4, pp. 50–58, 2010.

52

[6] K. Ogata, System Dynamics, 4th ed. Prentice Hall, 2003.

[7] R. Rocha, L. Martins-Filho, and R. Machado, “A Methodology for the Teaching of

Dynamical Systems Using Analogous Electronic Circuits,” International journal of

electrical engineering education, vol. 43, no. 4, pp. 334–345, 2006.

[8] Lee, E A. Cyber physical systems: Design challenges [C] // Proc of ISORC.

Piscataway, NJ: IEEE, 2008: 363-369

[9] John H, Marburger I, Floyd Kvamme, et al. Leadership under challenge: Information

technology R&D in a competitive world. An assessment of the federal networking and

information technology R&D program [R/OL]. Washington, DC: President’s Council of

Advisors on Science and Technology, 2007. [2010-06-01]. http://qqq.nires.gov/pubs/

[10] NSF Workshop on Cyber-Physical Systems [EB/OL]. Austin, TX: Carnegie Mellon

University, 2006 [2011-12-10]. http://varma.ece.cmu.edu/CPS/

[11] Kuang Z, Hu L, Zhang C. Research on Human Sensory Architecture for Cyber

Physical Systems[J]. Journal of Networks, 2013, 8(9).

[12] J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, Computer, Apr. 1997,

pp. 110-112

53

[13] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom

G., Sprinkle J., Volgyesi P. The Generic Modeling Environment. Workshop on

Intelligent Signal Processing, Budapest, Hungary, May 17, 2001.

[14] Agrawal, Aditya and Karsai, Gabor and Ledeczi, Akos, "An end-to-end domain-

driven software development framework", OOPSLA '03, 2003, pp8--15, Anaheim, CA,

USA.

[15] H. Su, G. Hemingway, K. Chen, T. Koo. Model-Based Tool- Chain Infrastructure

for Automated Analysis of Embedded Systems. Fourth International Symposium on

Automated Technology for Verification and Analysis (ATVA). LNCS, vol. 4218, pp.

523-537, Springer-Verlag, Beijing, China, Oct. 2006.

[16] Kleppe A,Warmer J,Bast W. MDA explained: The practice and promise of the

model driven architecture [M].River: Addision-Wesley, 2003.

[17] Eisenstein J. Evolving robocode tank fighters[J]. 2003.

[18] Hartness K. Robocode: using games to teach artificial intelligence[J]. Journal of

Computing Sciences in Colleges, 2004, 19(4): 287-291.

[19] Robocode-RoboWiKi http://robowiki.net/wiki/Robocode

http://robowiki.net/wiki/Robocode

54

[20] CTemplate. https://code.google.com/p/ctemplate/

[21] W. Wolf, “Cyber-Physical Systems,” Computer, vol. 42, no. 3, pp. 88–89, 2009.

[22] Roberts C M. Radio frequency identification (RFID)[J]. Computers & Security,

2006, 25(1): 18-26.

[23] Floerkemeier C, Sarma S. RFIDSim—a physical and logical layer simulation engine

for passive RFID[J]. Automation Science and Engineering, IEEE Transactions on, 2009,

6(1): 33-43.

[24] Rules and Features of Robocode Robots.

http://kss2.sd23.bc.ca/chalmers/cs11honors/robocode/roboPrograNotes/features.htm

https://code.google.com/p/ctemplate/

