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Chapter I 

 

Introduction 

 

Developing an affordable, easily accessible and scalable online CPS laboratory is 

significant to promote CPS education [1]. In developing such a system we are focused on 

a number of cyber-physical challenges including the model design and simulation 

strategies, and concentrate our CPS field on Reconfigurable Conveyor System.  

  

For CPS education, it is hard to have students apply and operate a real Cyber Physical 

System, for instance, a real conveyor system. Concern with several challenges in real 

CPS industry (maybe: If we use real industrial CPS to conduct student experiments, there 

are several potential challenges): 

1. Maximum sustainable rate: If the system design is modified can we keep the   

transfers going fluently without collision with the maximum rate as established 

before?  

2. Starvation of certain paths: After reconfiguring the system, will any existing 

links be invalidated? 

3. Prioritization: How can we set the priority for each path to ensure all packages 

can successfully reach the destination or transfer them with the least time? 

4. Fault tolerance: If failure occurs, will the system’s overall throughput be          

impacted? 
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In order to answer these questions, a model-driven approach is one of the best solutions 

[2]. Students can simply design their model on computer, using some basic modeling 

operations and complexity model logic and algorithm; the students can easily alter and 

modify their design to observe the performance of their system. Simulated experiments 

are more cost effective than expensive CPS equipment and reduce the risk of failure. All 

modeling and simulation work are hidden within the simulated test bed. 

 

The paper provides a complete process to simulate the behavior of a user-design CPS 

conveyor system in the framework of Cyber Physical Systems Laboratory-as-a-Service 

(CPS-LaaS). The user-design model is sent to the background and treated offline. The 

extracted simulation result is finally feedback to user as an animation.  

 

I.1 Motivation 

 

I.1.1 Cyber-physical systems 

Cyber-physical systems (CPS) pervade several application areas of societal importance, 

such as advanced manufacturing, transportation, health care, smart grids, and smart 

buildings [21]. CPS is often intelligent networks, which combine communication, 

computing and controllers, so that they can interact with each other and cooperate to 

achieve particular goals. To address the 21st century challenges, we need future scientists 

and engineers to be well-trained in the science and engineering of CPS. It has been amply 

demonstrated that problem- and project-based learning environments help students apply 

learned theories to solve realistic problems. Unfortunately, a vexing problem that makes 
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it hard to support a problem- and project-based CPS learning environment stems from a 

general lack of access to fully equipped laboratories that can provide hands-on, practical 

CPS education to a large pool of future scientists and engineers. 

 

One of the classic CPS is the conveyor system. The traditional conveyor system can 

transmit a bunch of packages in a section successively. The conveyor cost is relatively 

low, transport time is predictable, and the freight flow is stable, so they are commonly 

used in current logistics systems. To quote from the classic article on reconfigurable 

conveyor systems [4]: ‘The key factor in a truly reconfigurable modular conveyor system 

is the ability to connect and reconnect a wide variety of modules and accessory modules 

that allow engineers the freedom to tweak production lines when necessary without the 

cost of a brand new conveyor or the risk of losing the conveyor’s integrity.’ The 

reconfigurable conveyor system’s flexibility, scalability, sustainability, and cost 

effectiveness can make the logistics system more productive. The performance of the 

system is based on the logical layout of the conveyor system. In order to observe the 

property more directly; it is a good idea to allow students to design and study this system 

to obtain knowledge of how physical and cyber systems work together.     

 

I.1.2 Cyber Physical Systems Laboratory-as-a-Service (CPS-LaaS)  

Massive Open Online Courses (MOOC) is popular in current higher education, which 

provides not only a high quality and free education resource, but also a complete study 

experience [4]. This real-time interaction platform gives us research innovative ideas, that 

we can also make our CPS course online and can handle as many students’ system design 

as possible from all over the world.  
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To overcome this problem we have previously outlined a vision of a framework called 

CPS-LaaS. We surmise that CPS-LaaS will provide easy and affordable access to CPS 

laboratory artifacts over the Internet by virtualizing the physical CPS laboratory 

resources and offering them as a service in much the same way as contemporary 

Software-as-a-Service (SaaS) offerings in cloud computing [5]. Thus, in the CPS-LaaS 

vision, students are provided access to a web-based learning environment that is 

customized to the CPS domain they are studying. All student-led experiments are 

conducted using the web interfaces. The CPS-LaaS capability maps these virtualized 

interactions onto concrete cyber-physical resources transparently to the user, which is 

where the actual execution of student-led experiments takes place. Results of these 

experiments are relayed back to the student via the web. 

 

Central to the success and scalability of the CPS-LaaS vision is the notion of an 

Analogous System [6], [7]. This analogous system is essentially a system functionally 

equivalent to the domain that the student is interested in studying such that it can 

represent the cyber and physical interactions of a class of CPS applications. For example, 

consider a student investigating coordination algorithms for a reconfigurable conveyor 

system. Since it is hard to access a laboratory with a conveyor system, it is possible to 

approximate the conveyor CPS by an analogous system comprising a cluster of robots 

whose positions and trajectories can be controlled to mimic belt movement to simulate 

the package transmitting flow. Such a laboratory of robots can then be used to illustrate 

all the behaviors of the original system. In our prospect, we plan to place the laboratory in 
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the cloud side. So the user’s conveyor system designs are simply sent to the cloud and 

their behaviors are simulated by those typical robots. And finally, the performance of the 

systems is returned back to the user’s screen from web-based laboratory background. 

 

I.2 Solution Summary 

The input is a reconfigurable design from a CPS student, and the output is a behavioral 

simulation of this design. The solution approach has two main parts: first, for the 

modeling aspect, we have a complex domain-specific conveyor design are defined in the 

GME; second, the complex conveyor model can be mapped and transformed to the global 

grid, another domain-specific model, which contains only one kind of node and large 

dimensions so that all different species of components in the complex model are mapped 

to the typical nodes in the grid, and it is easy to operate and simulate the nodes in the 

global grid when multiple experiments are being mapped to the grid. In this thesis, we are 

only concerned in this scenario with one experiment. The transformation and mapping 

process is implemented using the Graph Rewriting and Transformation (GReAT) tool. As 

a background simulation, the Robocode’s code is automatically generated by a GME 

interpreter from the global grid and is applied to generate the path logic to transmit the 

package, according to the package type in each input port. After acquiring the transmit 

speed and path, a Robocode simulation outputs the coordinate and time information to 

generate the Java animation. The final Java animation will be fed back to the user side to 

see the results of the package transmission flow. 
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Chapter II 

 

Background 

 

II.1 Cyber-Physical Systems  

Although there is no unified definition for CPS, in conclusion, CPS obtains several 

characteristics [8], [9], [10]: 1) deeply embedded computation systems, 2) widely 

complex networks, 3) intelligence, 4) perception, and 5) mutual coordination. CPS is a 

new generation of intelligent systems, uniting integrated computing, control, and 

communication and also cyber and physical processes [11]. CPS provides the interface 

between cyber world and physical world. The cyber space can remotely operate a 

physical entity in secure and real-time. CPS involves system engineering of ubiquitous 

environmental perception, embedded computing, network communication, network 

control, and adds to physical systems the functions of computing, communication, 

precision control, remote control, and autonomous control. It is highly worth studying 

CPS because of its bright future and massive challenges in science and engineering. 

 

II.2 Model-Integrated Computing  

Model-Integrated-Computing (MIC) is highly-focused in modeling study; it becomes one 

of the most important fields in model-based software development [12]. MIC is a new 

approach in software development basing on modeling; it provides a very flexible and 

multi-dimension modeling framework. It not only has the characteristics of traditional 

software modeling, but also has its own features in embedded software development. The 
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model is located in the center of the complete system life cycle. It effects the whole 

development process, and involves modeling analysis, verification, integration and 

maintenance. It is very important in modeling transformation; it has different 

representation in different levels so that fit for any form of analysis, verification and 

simulation tools. In MIC, we use meta-languages to represent the key components of the 

system information by modeling. Besides, this language can create a system environment 

to simulate physical conditions.       

 

II.3 GME  

The Generic Modeling Environment (GME) is a customizable generic modeling 

environment, which supports metamodel modeling and Program Synthesis [13]. It applies 

UML class diagrams to describe a domain-specific modeling language [15]. The reason  

GME is customizable is that it can apply a meta language to describe the concepts, 

relationships, and constraints of specific domains. GME also provides an interpreter 

mechanism to construct the model, which can be used to automatically map the system 

model to executable code.  

 

II.4 Graph Rewriting and Transformation 

Graph Rewriting and Transformation (GReAT) is a transformation tool based on graph 

models, which can be seen as a domain-specific language in the GME modeling 

environment using meta-language defined in GME [14]. GReAT has an engine GReAT-E 

(GE) that is used to describe model transfer rules and graph rewriting and transformation 

language [16]. GReAT uses Pattern matching input to the appointed input metamodel and 
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output metamodel. So that when there is an operation applied on the input metamodel’s 

instance, it can solely effect on the output metamodel’s instance, which in this way a 

bonded connection has been established.   In the rules of GReAT, the finest unit of model 

transformation definition rule is an atomic rule, and each rule specifies the rule input and 

rule output. The mapping relationship of the input and output model is defined by the 

Attribute Mapping object. It can set the output model’s attributes according to the 

definition of transformation semantics and the input model’s attributes. In an atomic rule 

we can also define the operations of model creation, deletion, and attribute modification. 

Users can define a series of atomic rules to design the transformation process. GE is 

GReAT’s executing engine which is a model interpreter built using the Model interpreter 

framework provided by GME.  

 

 

 

Figure II.1 The approach Used in GReAT 
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II.5 Robocode 

Robocode is a tank combat simulator developed by IBM Alphaworks [17]. The tank must 

avoid attack by other tanks, whether the tank is in enemy team or the same team, the tank 

will lose energy when it is hit. The tank should also avoid running into walls or colliding 

with other tanks. The objective of the battle is to shoot and destroy the opponent’s tanks  

 

It is hard to imagine and associate Robocode with a Conveyor System. However, there 

are several properties very interesting to be applied to simulate a conveyor system.  

1. Each tank robot contains noiseless radar, which can sense the tank collision, 

battle frontier, tank hitting event, tank appearance and on-going [18]. So the 

tank itself can be treated as a sensor to monitor the event in the battle field, and 

the radar can play a role as the conveyor system’s sensor.  

2. Within a tank team, each teammate can send and receive messages in a variety 

of formats. According to the message content and type, the typical command 

can be conveyed to each tank to simulate the actions of the conveyor system. 

Hence message requests and responses within a team can play a role as signal 

communication.  

3. Because of the nature of battle, each tank can set its own bullet power, and then 

the bullet power can act as an identifier for the different packages in order to 

distinguish the package type. In this way the bullet can simulate the behavior 

of the physical feature. The velocity of a flying bullet is defined by the 

equation [19]:   
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Bullet Velocity = 20 – 3 * firepower 

4. Robocode is a Java-based code, we take advantage of Java’s cross-platform 

independence properties so that the Robocode simulation can be used 

anywhere. And as it is also a real-time running and on-screen program, we can 

easily debug and make the logic simulation visualize. As the background 

simulation, the user does not know what is happening in Robocode. However, 

due to Robocode’s own file writer function, we can take advantage of those 

functions to extract the location and time information when running battles to 

generate the final animation.   
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Chapter III 

 

Implementation 

 

III.1 Basic Sample Model to Simulate 

In this thesis, our approach is based on the example model logic in Figure III.1. There are 

four main components in the Conveyor system. The input ports are the places that receive 

the packages, and the packages will be finally sent to the output ports. The packages are 

transmitted by conveyor belt, which can move the parcels from belt’s one end to the other 

end. In our system design, we name the belt as segment, which is a vivid metaphor. Each 

turnaround can connect multiple segments, it act as a transmit station. When a package is 

transferred to a turnaround, the turnaround will transmit the package to the segment that 

needs to go to. Three Input ports I1, I2, I3 and Three Output ports O1, O2, O3 are in this 

design, correspondingly we categorize the package type as Big, Medium and Small can 

be transferred from input to output ports. S1, S2… S13 are segments acting as the belt to 

move the parcel. T1, T2….T6 are six turnarounds used to switch the package.    
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Figure III.1 A sample Conveyor System Logic Design 

 

III.1.1 Overview of the Solution Architecture 

 

 

Figure III.2 Overview of the Solution Architecture 
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According to the Figure III.2, in modeling part, there are two domains, the Complex 

Domain is used for user to design their own design, and their design can transform to a 

form defined in simple-domain, the Global Grid.  

 

The idea for global grid comes up with the prospect of mapping as much conveyor 

experiments as possible (In Figure III.3, experiment E1, E2, E3 are mapped from user 

side to grid, reserving a corresponding space in the grid to simulate their system design, 

as we mentioned before. However, in this paper we only consider the scenario mapping 

one experiment to the grid). Because there are multiple component models in the user-

design side, for instance, input port, output port, turnaround, and segment, we can hardly 

design a panel with horizontal and vertical path to dynamically generate the 

corresponding nodes, and the size required to create such a panel is hard to calculate. 

Moreover, in this research the only specific domain we concerned with is the conveyor, if 

we design and apply another CPS domain, the dynamic panel with multiple nodes to fit 

for mapping a great number of nodes from CPS student is unreasonable. We hence design 

a global grid; this is a kind of panel with only one kind of node and necessary 

connections.  
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Figure III.3 A sample Scenario of Mapping three experiments to global grid 

 

The Grid can generate the code for the Robocode to simulate in the background, which 

the user will not know what happen in the background, what they will get is a final java 

animation to see their system performance.  

 

III.2 Reconfigurable Conveyor System Design 

 

III.2.1 Complex-domain Metamodel 

The metamodel is presented in Figure III.4. In this metamodel, the highest-level model is 

Experiment. It contains testSystem, Input and Output. Model testSystem is a 

reference of model System, so we can treat the testSystem is holding the same properties 
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with System, and all operations to the testSystem are actually effected in the 

corresponding System.  

 

System contains three different kinds of models, Input, Output and Block, these three 

models are the key component to build the Conveyor system. Package is contained in 

Input, which is used to represent different kinds of parcels need to be transferred in a 

conveyor system. Input and Output models are intuitively used to design the input ports 

and output port of a conveyor system; model Block is inheritance by three child-model 

SegmentWE, SegmentNS and Turnaround, which the first two of three child indicate 

the conveyor’s belt moving from west-east direction, the belt moving from north-south 

direction. Turnaround is a transit point, acting as the connection between one belt and 

another belt segment to keep or alter the package’s original direction as we disscuesed in 

the basic sample model. Three connections are defined in System. BlockToBlock makes 

connections among Blocks. InputToBlock creates the connection from Input to Block 

since the Input in system does not have inward link. With the similar principle, 

BlockToOutput builds the connection from Block to Output because of Output cannot 

have outward link. 

 

The Attribute in each model is quite straightforward. NodeType in block is used to 

distinguish the Meta type of each node, which will be applied as a directly link to map to 

the global grid. PackageType is defined for package type. Speed is the belt transmission 

speed, it can be random set with the number greater than zero, however, in this paper, we 
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set three default speed to compatible with three different packages, which the belt’s speed 

is decided by the package type.  

 

 

 

Figure III.4 Reconfigurable Conveyor System Metamodel 

 

In the higher hierarchy (please see the red region in Figure III.4), System is referenced as 

the reference testSystem and embodied in the Experiment. Meanwhile, Input and 

Output are also contained in Experiment. InputConnection and OutputConnection 

allows that the model Input/Output designed in Expreiment can connect with the 

Input/Output designed in testSystem. According to this connectivity, we can activate 

any number of input ports and output ports to transfer and receive the package, it will 

greatly generate more permutation and combination of experiments using only one 
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conveyor system design, and every experiments can be mapped to the global grid, this 

process will be discussed in the future work on scheduling multiple experiments to grid.  

 

III.2.2 Complex Domain-specific Model 

A domain-specific model is an instance of its direct metamodel.  Figure III.5 is a domain-

specific model which is based on Complex-domain metamodel defined above  there are 3 

Input models, 3 Output models, 9 SegmentWE models, 4 SegmentNS models, and 6 

Turnaround models with related connection. The architecture is based on the initial 

model design in Figure III.1. One-end-arrow represents the package interflow of goods 

and materials in the conveyor system. Although the connection lines within Segement 

and Turnaround have no arrows, we acquiesce the horizontal flow direction is parallel 

with arrow way.  

 

 

Figure III.5 Domain-specific model – NewSystem  

According to Basic sample system main canvas 
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In the view of Experiment model (Figure III.6), namely NewExperiment, NewSystem is 

presented as a reference in the center, each input ports are connected with one Input 

model, and this is the only way to represent that the NewSystem’s input port can be 

activated. If there is no connection within the input ports and outside models, the input 

ports of NewSystem will still be mapped to the on-going process, however, the node after 

mapped is no longer activated, namely it is invalid to use in simulation part, this will be 

discussed in the description of the GReAT transformation. In this case, all input ports are 

activated and going to be mapped, meanwhile all output ports are all activated with the 

same meaning. Eventually, when transforming this conveyor system design to the global 

grid, all activated ports, turnarounds and connections will be mapped and valid.   

 

Figure III.6 Top hierarchy of the NewSystem 

 

III.3 Global Grid Design 

 

III.3.1 Simple-domain Metamodel 

In Figure III.7, the uppermost level of the meta model is Grid, and it contains only one 

single type of model, namely Node. There are two reduction strategies. The first one is 

within the attributes of Node, all attributes in the complex domain’s model Input, 

Output and Turnaround are wrapper in the simple domain’s model Node. The second 
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one is that we simplify the model SegmentWE and SegmentNS as just a connection, 

namely the connection EastToWestConnection and SouthToNorthConnection as well 

as adding the related attributes. In this way in the grid, we can simply consider the 

behavior of the connection and it is easy to modify to fit for other need of different CPS 

domain. Since the Node can play a role with Turnaround, we set 4 models as the ports 

of Node, the model East, West, North and South. East can only connect with West, and 

Noth can only connect with South, in this case it ensure the direction of the grid fairness 

and make the whole grid as a vertical and horizontal panel. Altogether Node can 

represent the three key models in the complex domain, and the connection in the grid can 

in a role of conveyor belt.  

 

 

Figure III.7 Global Grid Meta Model 
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III.3.2 Simple-domain-specific model 

The global grid instance is quite comprehensible, according to the DSML model of 

complex domain, 3 input ports, 3 output ports and 6 turnarounds will be mapped to as the 

node in the grid, the segment belts are mapped as the connection within each node. The 

result presents in the Figure III.8 In the next part, we will present the detail of how this 

mapping transformation works. 

 

 

Figure III.8 Global-Grid Domain-specific Model 

 

III.4 Graph Rewriting and Transformation  

GReAT is software to rewrite and transform the current GME DSML model to a new one, 

whether create a new DSML model or refine the current one. In this paper, we map the 

current conveyor design to a new grid, because we only need to simulate one experiment 
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indeed. In next step, we will map the multiple current conveyor design experiment to the 

huge grid panel; this will be discussed in the future work section.  

 

 

Figure III.9 GReAT Working Structure 

 

In Figure III.9, we present the structure of our GReAT’s work. We first need to import 

two GME meta model, one is the source meta model ConveyorExperiment, the other 

one is the destination Grid. Because the transformation definition by GReAT is based on 

the meta language to create the basic level association between two models, we do not 

need the DSML model as it is one of the instance of the meta model, therefore not 

representative. However, the DSML model is applied in the real transformation, the 

ultimate goal is making the transformation on a DSML model.  Crosslink defines the 

inner association by an Association Relationship-type connection to link the source 

meta model’s component to the destination one, so that the components lying on the two 

sides of the link can completely bound with each other. For instance,  after reading a 

sample DSML conveyor model and an Input model, create a new Node in the grid, since 

we have defined the cross link (please see Figure crosslink in Figure III.10), then all the 

operation on the read Input port will also effect and only effect the newly-built Node 
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itself. Otherwise we would have to build a separate table and search for the 

corresponding node in each rule. 

 

 

Figure III.10 Details of the CrossLinks 

 

NewConfiguration defines the concrete source file to be rewritten and transformed as 

well as the output destination file, we also need to set the corresponding meta model 

prototype define in which level GReAT should start to read and create the files. In our 

case, we all start from RootFolder, this is the top level in each DSML model. NewBlock 

contains the transformation logic; as follows  Table III.1 presents the four main creation 

logic strategies’ source components and destination components. 
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Table III.1 Components participating in the transformation in each step  

 

Step Source  Destination 

1 A system design A new grid panel 

2  Input ports; 

Output ports; 

Turnaround. 

Node(East, West, 

North, South ports) 

3 Input ports, 

output ports, 

turnaround 

Node.East, 

Node.West, 

Node.North, 

Node.South 

4 Experiment with 

System’s reference 

Change the 

corresponding 

Node’s attribute. 
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Figure III.11 Rewriting and transformation flow defined in NewBlock 

 

Figure III.11(a) Detail of RuleCreateGrid 
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Figure III.11 (b) Detail of RuleInputNode 
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Figure III.11 (c) Detail of RuleInputConn 

 



 

27 
 

 

Figure III.11 (d) Detail of RuleExperiment 

 

Figure III.11 presents the overall structure of the four steps, and III.11 (a, b, c, d) present 

the sample details in each step. Step 1 creates a new grid panel after reading a system 

design based on the complex domain. Step 2 Create Node in the grid and make the src-

dst pattern association which is a representation of the Association in the CrossLink. 

So whether the source inputs are model Input, Output or Turnaround, they will only be 

mapped to a typical node. In Step 3 we create a Node Connection. Because in step 2 we 

have already created the model pattern association, this step will be mapped the segment 

(WE or NS) from the source side to act as connection of Nodes’ corresponding ports in 

grid. Step4 activate the node in grid represent to the input & output port. After the four 

steps above, the DSML model in Figure III.5 will be transformed to the model shown in 

Figure III.8.  
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III.5 GME Interpreter 

A GME interpreter is used to extract the necessary information, and the extraction logic 

can be written in C++ in order to create the required code. This process is automatic 

through generative capabilities. This procedure also involves CTemplate. CTemplate is a 

simple but powerful template language for C++. It mainly focuses on separating 

presentation logic from application logic [20]. The ctemplate script will be embedded 

into a “.tpl” file.  Once we start the interpreter, the template file can be filed with code, 

and the code is created by the information from the grid. For example, the tank location 

according to the component’s coordination in grid, the tank type according to the logic 

from grid, the battle time needs to be simulated. The detail of the related tank issue will 

be discussed in next section. Finally we generate and output our destination file -- the 

Robocode’s ‘.battle’ file, which records the tanks’ type, initial location ( the tank’s 

position of the battle field), initial heading direction (the heading decides the shooting 

direction) and initial rador direction (the direction of sensor area. In this paper, we set the 

radar direction is the same with heading direction). In the next part we will present the 

detail of the tank-design.  

 

III.5 Robocode 

 

III.5.1 Tank Design Description 

In order to simulate the behavior of the whole conveyor system, we design multiple tanks 

to simulate behavior for the model in the complex domain. In Table III.2 exhibits all tank 
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types we have designed. Figure III.12 shows the initial screen of the Robocode 

simulation.  

 

Table III.2 Robocode Tank Type and Description 

 

Tank Name Description 

tank-Input Act as the input port. 

tank-Output Act as the output port. 

tank-Conveyor Act as the conveyor system’s belt (segment). 

tank-Intersection Act as the turnaround of the system. 

TeamLeader The controller manager and the principal monitor.  

tank-FakeInput No exact meaning. The Robocode is a battle game, 

we have to define at least two opponent side to 

ensure the simulation work. The FakeInput is 

treated as a common and only enemy with all the 

other tanks. The FakeInput is simply locates in a 

default place in the battle field, without any cyber 

or physical behavior, its appearance is used to 

make the whole simulation procedure keep 

working. Meanwhile all the rest of the tanks are set 

as a team, and within the team, each tanks can 

communicate with each other applying message 

sending and receiving.   
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Figure III.12 Initial Screen for the Robocode Simulation  

based on the basic example model 

 

Here is the detail of each tank. 

1. tank-Input 

This tank simulates the behavior for the input port. It can receive any package 

with small size, medium, or large. It can directly receive commands only from 

the team leader. There are two command types, one is to start calculating the 

package delivering safety path, and the other one is starting to transmit the 

package. The radar is applied by the tank. The heading of this tank is 

unchangeable. 
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2. tank-Output 

In our case, three different kinds of packages should be sent: Large, medium 

and small.  Tank OutputOne receives small packages from the input ports, tank 

OuputTwo receives medium packages, and OuputThree receive the large ones. 

It can receive the message from its nearest conveyor tank. It also has 

communication with the team leader before transmission and complete 

transmission each round. The radar is not inactivated for this tank.   

3. tank-Conveyor 

Tank-conveyor performs the belt movement in the conveyor system. It 

represents the direction of the conveyor movement, and it is irrelevant with the 

real package transmission. It can communicate the message from the nearest 

Input tank or Intersection tank. The radar is activated to monitor the 

Intersection it faces. The heading of this tank is either towards the Intersection 

or towards the Input/Output Tank. 

4. tank-Intersection 

Tank-Intersection is acting as the Turnaround to transmit the package. It can 

receive the message only from the conveyorNew tank if the tank faces the 

turnaround, and sends its message to the conveyor tank it faces. So the package 

transition direction is defined by the heading of the Intersection tank. The radar 

is activated to capture the conveyor tank. The heading of the tank-Intersection 

runs along horizontal or vertical lines, facing the Input/Output ports or another 

intersection. 
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5. Teamleader 

The teamleader is the commander of the team. In the real conveyor system, the 

industry applies Radio Frequency Identification (RFID) [22]. There is a tiny 

silicon computer chip and an antenna in each package. Remote radar can scan 

and send the information of the package to a database. Then the CPU can 

analyze the parcel’s information and schedule the transferring mission. In the 

simulation, the teamleader is the commander of the team. The inner logic and 

the total number of input & output ports of the conveyor system design select 

the type of the teamleader. The definition of package transfer logic design and 

decision are embedded in it.  Three main functions are contributed by 

teamleader. Firstly, teamleader considers which input ports should be activated 

to send the package. Secondly, the teamleader sends a direct command 

message to the activated input ports to generate the safety path, which will be 

explained in next section. Finally, according to the response of the 

corresponding tank-output, the teamleader transmits commands to the activated 

input ports to begin the package transfer. The teamleader is selected according 

to the number of input ports as well as the output ports.  

 

III.5.2 Safety Path 

The existence of a safety path makes it unnecessary to consider fault tolerance.   

 

Definition: The safety path is a logical link from one of the input ports to the output ports. 

In order to ensure the safety without stopping, two steps are used:  
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III.5.2.1 Activate the Input ports 

Within the path, only one package can be transmitted, so no collision is allowed to 

happen in it. When transferring the package, no other package from a different input port 

can share this path. Until the package is successfully transmitted from the source to the 

destination, the path stays in a busy state. This is implemented by a brute force algorithm: 

First of all, the tank-teamleader acquires the map of the following package type of each 

input ports. The tank-input port is indexed by a natural number, so the lower the number 

of the input ports, the higher transmission priority is given. Traverse the input ports from 

lowest to highest index -- if the package needing to be transferred will cross several lines, 

then the input ports located in the involved lines will not be activated. If the package 

transferred from any other input ports will cross the involved lines, then that 

corresponding input port will also not be activated. After traversing all the input ports 

from the lowest index to the highest the first time, begin to create the safety path for this 

round.  

 

Pseudo code: 

 

Start scan from Input_i(i=1,2,...) -> the package will be sent to Output_x(x>=i). 

    activate Input_i and start to scan Input_(x+1).  

 If Input_(x+1) -> the package will be sent to Output_y (y<=x),  

  then skip Input_(x+1) and start to scan Input_(x+2) 

   scan traverse 

 Else 
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  activate Input_(x+1) and start to scan Input_(y+1). 

   scan traverse 

 

III.5.2.2 Create the safety path 

After activating the input ports, we divide the logical design into several sections, and in 

each section, we apply the shortest path to transfer the package, for instance, as the 

Figure III.13 exhibits as follows: for Input_1 to Output_1, there will be only one path, 

and no back edge (direction west) to ensure the shortest path. For transferring from 

Input_3 to Output_5, the path direction can only be east and south. The Input_8 to 

Output_7 path exhibits the same principle.  

 

 

Figure III.13 A sample Grid Path Activate Status 

 

III.5.2.3 Cyber & Physical Simulation Feature 
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The procedure to create the safety path is this: First, after being activated by teamleader, 

the tank-Input scans its nearest tank-conveyor and sends a message to it, so that the tank-

conveyor will stop right next to the tank-Input. In this way, it simulates the scenario that 

this section of belt is waiting for the in-coming package. Besides, the tank-Input will send 

the package information to the facing tank-intersection. After that, the tank-intersection 

who received the package size message will turn its heading according to the value of the 

y-coordinate. The pseudo code presents how to compare the coordinate y-value with 

current tank-Intersection and the destination output port. 

 

Final_dir = The direction of y value of the destination output port. 

current_dir = The current tank-Intersection's y value 

if( current_dir == Final_dir ) 

 keep the heading to the East 

if( current_dir < Final_dir ) 

 if there is no tank-Intersection on East 

  turn the heading to the South 

 else 

  random decide the direction in(South,East) 

if( current_dir > Final_dir ) 

 if there is no tank-Intersection on West 

  turn the heading to the South 

 else 

  random decide the direction in(South,West) 
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After the heading is decided, the tank-Intersection scans its nearest tank-Conveyor, 

asking it to stop and wait next to the tank-Intersection itself. The principle here is the 

same with tank-Input, namely make sure the conveyor belt is waiting for the package. 

Repeat this process until the tank-Intersection has found the final destination tank-Output, 

after which a safety path has been built. The tank-Output then sends a message to 

teamleader to convey the ready status. 

 

Finally, the teamleader accumulates the numbers of received ready-status messages, till 

all safety paths have been established. Altogether, the creation of safety paths for this 

round is fully completed. In Figure III.14, there is a safety path from top-left corner’s 

tank-Input to bottom-right tank-Output. 

 

 

Figure III.14 An illustration of safety path 
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III.5.3 Package Transmission Simulation  

The transmission order is given by teamleader right after the all safety paths have been 

built in each round. In Figure III.15 illustrates the abstract bullet shooting sequence in 

one safety path.  

 

  

Figure III.15 The Shooting Sequence in a Safety Path 

 

III.5.3.1 Bullet shooting 

In Robocode, we set different bullet power to represent different package sizes. As one of 

the typical battle events in Robocode, we define two on-hit events to treat the situation 

when the tank is under attack. Table III.3 shows the detail of those on-hit events for 

TeamLeader  

Tank-Input 

Tank-Conveyor 

Tank-Intersection 

Tank-Conveyor 

Tank-Output  

Multiple Tank-Intersections 

Tank-Conveyor 



 

38 
 

different tanks. All transmitting happens from the tank-Inputs, when they shoot the bullet 

with established power under the order issued by teamleader. 

 

Table III.3 Tank On-hit event Description 

Tank Type On-hit event 

Tanks-Conveyor The tank is hit by tank-Input or tank-Intersection, 

according to the hitting damage, calculating the bullet 

power, and shoots the bullet to the tank-Intersection it’s 

facing to or tank-Output (the last section for the safety 

path). Then the tank-Conveyor will start to move back 

and forth to stand for the conveyor belt is moving. 

Tank-Intersection The tank is hit by tank-Conveyor from behind, which 

represents that it receive the package, and shoot to the 

tank-Conveyor its facing to that means the package is 

transmitted to the next segment.  

Tank-Output As long as it is hit, it expresses that the package in its 

safety path has already transmit from source to 

destination successfully. This tank then sends the 

message to teamleader to convince the fact that the 

mission of transmitting is complete. 

 

The teamleader counts the total number of the mission-completion message from each 

safety path, when all path transmissions are properly accomplished, the teamleader then 
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starts to decide the safety path logic for next round if there is any package waiting to 

transfer. When no packages are left in the conveyor system, the Robocode Simulation 

completes.  

 

III.6 Java Animation double-buffering  

No matter which tank shoots a bullet, it can save the location and time information to a 

text file using RobocodeFileWriter. As a simple but productive Java animation, the 

template code has several structures: the conveyor belt border and intersection drawing, 

settling down the corresponding threads on typical package size and speed definition. The 

Java animation also applies double buffering to eliminate the screen flash problem. The 

procedure for double animation manifests below: 

1. Create an Image object DbBuffer by createrImage(int width, int height). 

2. Create an Graphics object GraImage by DbBuffer.getGraphics() in order to 

distribute and save the object needs to be paint in the memory space. 

3. Use the repaint function paint(GraImage) to draw the canvas to the memory 

space.  

4. Use function drawImage(DbBuffer,0,0,null) defined in Graphics to draw all of 

the animation window in one-time.  
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Chapter IV 

 

Evaluation 

 

IV.1 GReAT Transformation Time 

With the help of GReAT, we transformed a domain-specific model defined in the 

conveyor experiment language to the target domain-specific model defined by grid meta-

model. However, the transformation time is slow and in Table IV.1 presents the average 

time of transformation. 

 

Table IV.1 Average Transformation time with deferent System Design 

Conveyor Experiment Design Average Time(mm:ss) 

One Input, One Output, One Turnaround 00:1.21 

One Input, One Output, Two Turnaround 00:3.56 

Two Input, Two Output, Two Turnaround 00:13.60 

Two Input, Two Output, Four Turnaround 02:25.63 

Three Input, Three Output, Three Turnaround 01:49.30 

Three Input, Three Output, Six Turnaround 12:59.08 

 

According to the dimension of the conveyor system design, the transformation time 

increased exponentially. The logic design for creating connections among nodes should 

be refined. In current work, the GReAT spends 80% of its time to treat the connection 

parts in order to ensure the connection is correct.  
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IV.2 Drawbacks of Robocode 

Before we start to evaluate Robocode, several general rules we use need to be explained 

(in Table IV.2) [24],  

 

Table IV.2 Battle properties in Robocode 

Rule No. Description 

1 When you shoot your gun you can select a power range from 0.1 units to 3 

units. After firing you must let the gun cool down before firing again. 

2 The heat generated by firing a gun is 1 + (energy amount/5).  

3 Heat dissipates at the rate of 0.1 units per tick. For example, if you fire a 

gun with 2 units of energy the heat is 1 + (2/5) or 1.4 which means you 

cannot fire again for 14 ticks.  

4 Robots start out with a fixed amount of energy (100 units) which is lost 

different ways. When the energy is gone the robot blows up. 

5 Firing Gun = losing energy equal to bullet energy setting. If you set a bullet 

with 2 units of power the robot energy is reduced by 2.  

6 Getting hit by bullet = 4 * bullet power + 2 * ceiling (bullet power – 1) For 

example, getting hit by a bullet with power 2 gives = 4 * 2 + 2 * (2-1) = 10 

* 1 = 10 

7 Shooting another robot gives you back some energy of 3 * bullet power. 

Suppose you fire with a bullet power of 2:  

Fire bullet = lose 2 units of energy  

Hit other robot = 3 * 2 = get back 6 units of energy  
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Altogether increase of 4 units of energy 

8 Max rate of rotation of robot: (10 - 0.75 * abs(velocity)) deg / turn. The 

faster you're moving, the slower you turn. 

9 Max rate of rotation of gun: 20 deg / turn. This is added to the current rate 

of rotation of the robot. 

10 Max rate of rotation of radar: 45 deg / turn. This is added to the current rate 

of rotation of the gun. 

 

IV.2.1 Simulation Limitations 

 

IV.2.1.1 Tank Life 

According to the general rule above, we require that each tank’s initial life energy is 100. 

There are three ways to affect the tank’s energy that manifests in the Rule 1, 5, 6, 7. If a 

tank continuously hits another tank, then the shooting tank’s energy will keep increasing 

by 2*bullet power. However, meanwhile if the tank is continuously under attack, the total 

energy value will be reduced by 2*bullet + 2 * ceiling *(bullet power - 1). Namely the 

tank-Conveyor, tank-Intersection and tank-Output species of tanks will gradually lose 

their energy until the life energy is evacuated. So for CPS students’ design, they cannot 

set an excessively large number of packages, since if the tank’s life energy is zero, then 

the tank will vanish, which will destroy the original logic route.    
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IV.2.1.2 Heating and Cooling 

Because of Rules 2 and 3, after the tank shoots, the gun barrel will generate heat to limit 

the frequency of tank firing. Once the heat value becomes zero, the tank can shoot again. 

In order to allow all bullets to emit and ensure all tanks on the safety path is well-

prepared (no rotation of robot, gun and radar, according to Rule 8, 9, 10 ), we set a 

default waiting time by iteratively executing doNothing() for 40 time units to ensure 

sufficient time for the firing tanks and to confirm that the tanks’ heading has been rotated 

to the anticipated direction. Hence in the real-time distributed Cyber Physical System 

world, this delay can cause errors. We need to consider how to eliminate those delays in 

the simulation. 
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Chapter V 

 

Future work 

 

V.1 Design Strategy 

In Industry, the conveyor’s transfer behavior is not simply transmitting a package from 

one input port to an output port. Rather, the package is usually sent from an input port to 

a Transfer server (A transfer server is a kind of transfer station, which is similar to output 

ports, but it is not the destination.), and then transfer to another transfer server, and so on. 

Finally the package will be transferred from one transfer server to the destination output 

port, and we should refine our design to meet this scenario requirement.  

 

V.2 Simulation Improvement 

 

V.2.1 Multiple packages 

In our current Robocode, each safety path can only transfer one package. In the real-

world, this kind of situation rarely happens. For instance, in our model design in Figure 

V.1, assuming that there is a current safety path transmitting a medium package from 

InputOne to OutputTwo, the safety path is InputOne->Intersection11->Intersection21 

->Intersection22->OutputTwo. Before transmitting the package, this route is busy, once 

the package passes Trunaround11 and turns to the second line, then Turnaround11 will be 

free, so if there is a small package needing to be transmitted from InputOne to OutputOne, 
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then we should send the package without having to wait for the previous package to reach 

the destination. This can increase the veracity of our simulation.   

 

 

Figure V.1 (a) the safety path illustration from InputOne to OutputTwo  

(b) The package transmits across the Intersection11 and  

frees the first segment 

 

One possible solution is better utilization of the tank’s radar in Robocode. Instead of 

generating all of the logic using tank-Teamleader in the beginning of each round, the 

other kinds of tanks can dynamically report and scan the other tanks to know which part 

of the route is free in order to transmit the package without collision. Of course, because 

of the simulation limitations we discussed in Evaluation section, we may replace the 

Robocode simulation and apply a new approach to overcome those confinements.  

 

V.2.2 Using a Physical Engine 

The Robocode’s physical simulation part is mainly defined by the bullet-shooting event; 

the different packages transmit with different velocity by the configuration of the bullet 

power [23]. In a real-world conveyor system, the physical environment is much more 
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complex. Now in our Robocode we combined the cyber and the physical simulation, in 

future work, we would like to try to use some physical engine in order to help to establish 

the physical environment and simulate the behavior, for example, real belt speed, gravity, 

friction force, belt slop etc. The background simulation should be generating the cyber 

logic from Robocode first, and simulate the belt in the physical engine, the cyber and 

physical part connect with each other by instrumentation interface.  

 

V.2.3 Refine the animation 

Now the conveyor belt animation is simply a mapping result using the coordinate and 

time information, it can successfully present the route logic as well as feedback the 

transmit speed. In future work we would try to design a code based 3-Dimension 

simulation platform, to make the final feedback more like a conveyor belt system, so that 

meet the high standard and anticipation from CPS students. 

 

V.2.4 Failure Tolerance 

In our current safety path, no collision will happen, however, failure tolerance is one of 

the most important issues to be considered, such as if a transfer server shuts down or 

crashes, how to treat the situation to keep the whole line flowing.  

 

V2.5 Scheduling Multiple Experiments to the Grid 

As an online-based CPS-LaaS, another main area of this study is how to allocate space in 

the global grid for students to map their experiments to the grid and simulate in the 
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background. In this case, figuring out the scheduling problem is important especially as 

there are limit resources in the grid. 

 

The first approach plan is based on the assumption that the space of the global grid is big 

enough to handle all experiments. In order to calculate the efficiency of the scheduling 

methods, we first calculate the area utilization of the total nodes of grid in use. For 

instance, in Figure V.2, the red region and green region represent two different 

experiments, although the total area of those two experiments in two scenarios are same, 

the left one has lower space availability than the second graph. The algorithm needs more 

consideration to map as many experiments as possible.  

 

 

Figure V.2 Two scenarios of mapping two experiments 

 

The second approach is focused on the spacing limitations of the global grid, so in some 

parts of the grid, the nodes need to be shared with multiple experiments, as Figure V.3 

shows. In this case, we plan to use time sequence method to treat this situation. In one 
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time period, the overlap area is conducted by a red experiment, and in next time period, 

the green experiment has the priority to use the grid, and then in the following time, the 

red region is using again, and so on, until both experiments have been completely 

simulated.  

 

 

Figure V.3 Two experiments overlap and share the grid’s resource 
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Chapter VI 

 

Conclusion 

 

The motivation of this research is to develop a cost effective, easy to use and scalable 

online CPS laboratory. Owe to the convenience of the internet, we can handle a large 

number of requirements from CPS students to simulate their system design, for instance, 

a system design of reconfigurable conveyor system. In order to manage such an 

enormous number of experiments, we came up with an idea of the global grid, which is a 

large panel to allocate space to simulate the student’s design.  

 

In this thesis work, we focused on only one experiment and completed the whole process 

to simulate this experiment. There are two main parts; the first one is map the student-

experiment design to the global grid, within this step, we make a reduction from mapping 

a complex system design with multiple components (e.g. Input ports, output ports, 

turnaround, segment) to a simple system design (namely the global grid, which only 

contains nodes and connections among nodes). Our complex system design and simple 

system design are all instances of the corresponding domain meta language defined in 

GME, and the transformation is made by GReAT. The second main part is simulation. 

We apply surrogate simulation software, Robocode, to simulate the behavior of a 

reconfigurable conveyor system. Since it is run in the background, the users cannot see 

how this software works. The final animation as the performance of the student’s 

experiment design will be presented to the student’s screen, which is generated by the 
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information from Robocode. Now the whole process for one experiment has been 

accomplished, and our next urgent work is to treat the scenario of mapping and 

simulating multiple experiments on-line.    
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