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CHAPTER I 

 

INTRODUCTION 

 

 Single-event effects have become a major challenge in the design and verification 

of microprocessors and application-specific integrated circuits (ASIC). These effects 

stem from particle strikes on sensitive regions of a microelectronic circuit. These highly 

energetic particles are typically protons and neutrons from cosmic rays, alpha particles 

from package decay, or other heavy ions [1]. These particles can strike the drain or 

source of a transistor, which causes the diffusion of electron-hole pairs creating current 

and interfering with the operation of the transistor. This transistor interference could 

invert the state of flip-flops and introduce faults into a circuit’s operation [2]. These faults 

are called soft errors since they do not cause a permanent error in the flip-flop.  

 While this effect was typically thought to be only a concern for space-based 

electronics, it is now becoming a major concern in the terrestrial market. Studies show 

that soft errors are an increasing trend in relation to technology scaling [3-4]. A number 

of companies, including Sun Microsystems and Fujitsu, have done studies and taken 

measures to try and harden their designs against soft errors [5-6]. There are a variety of 

techniques that are available to deal with soft errors. These range from radiation hardened 

by design (RHBD) techniques at the circuit level to redundancy at the architectural level 

[7-8]. No matter what technique is used for radiation hardening, a penalty must be paid in 

one or more areas including die size, power, performance, and design time. Therefore it is 

not economical to harden every transistor in a circuit or add redundancy to every 
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architectural structure in a design. A tool or methodology must be used by the designer to 

decide what structures, or modules, of a design should be hardened given the drawbacks 

mentioned previously. The tool or methodology should determine the possibility that a 

given fault will produce an error at the output pins, also known as the design’s 

architectural vulnerability factor (AVF).  

 This thesis presents a methodology to determine the architectural vulnerability 

factor of a design and its sub-modules along with other metrics including error latency 

and error persistence. The designs used as test beds for this thesis were an ASIC design 

with 1.1 million register elements and an eight-bit microprocessor. These designs are 

written in verilog at the register transfer level. The tools used for fault injection and error 

detection were written in C/C++ and used the verilog procedural interface. It was found 

that by using the methodology laid out in this thesis, that a designer could use the data 

found during simulation to rank the sub-modules of a design by a vulnerability factor. A 

designer could then use this ranking to selectively harden the design. 

 The organization of this thesis is as follows. Chapter II gives a detailed 

background into metrics pertaining to this study as well as the reasoning behind 

simulating at the register transfer level. Chapter III is an overview of previous work on 

the topic of fault injection and computing AVF. Chapter IV gives a brief description of 

the goals of this project as well as a description of the simulation methodology and 

software modules used for this thesis. Chapter V presents a brief description of the 

devices used for testing as well as results and discussion of the simulations carried out 

using this tool. Chapter VI summarizes the work and presents possible future applications 

of the tool. 



  3 

                                                                      CHAPTER II 

 

SINGLE EVENT AND DESIGN LEVEL BACKGROUND 

 

Single-Event Metrics 

 The error budget of a design is typically expressed in terms of Mean Time 

Between Failures (MTBF) [9]. This is a metric that is used to represent the mean time 

between expect failures for a given type of error.  The error metric that we will be using 

in this thesis is the failure-in-time (FIT) rate. This is inversely related to MTBF, and one 

FIT equals one failure in a billion hours. With respect to this study, the FIT rate equation 

that is used is represented by equation 1.  

FIT ∝  ϕ ⋅  σbit ⋅  nbits ⋅  AVF (1) 

The term φ in Equation 1 represents the particle flux in the environment with which the 

device under test will be placed. The term σbit is the cross section per flip-fop and nbits 

represents the number of flip-flops in the design or module. These three parameters are 

either set by the environment or set by the design and technology. The last parameter, 

which is the architectural vulnerability factor(AVF), is a metric that the designer has 

some control over and is the one which the methodology in this thesis will help to 

determine. The AVF represents the probability that a visible error will occur at the output 

given a bit flip in a register or storage cell. In our case, AVF is represented as the number 

of errors detected divided by the number of faults injected into the design.  
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Given the size and function of today’s ASIC and microprocessor designs, not 

every fault results in a detected error. This stems from both logical and temporal 

masking. Logical masking represents the scenario where certain input stimulus will put 

the design in such a state that the fault is benign or not latched at the time of injection. 

Temporal masking represents the scenario where a latch is not accepting data the time of 

fault injection and thus the fault is not latched. This is also referred to as the timing 

vulnerability factor of a latch. 

  

Register-Transfer Level 

 The design used for this study is written at the register-transfer level (RTL) as are 

many used in previous fault injection studies (eg. [10-11]). A register-transfer level 

description of a circuit uses the flow of signals between registers and the operations 

performed on those signals to represent the operation of the design. This level of 

abstraction is used in hardware description languages such as verilog and VHDL. Figure 

1 shows the conversion of going from a gate/block level description to an RTL based one.  

 

Figure 1: Gate level description compared to RTL description 
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The benefits of using this level of abstraction for fault injection studies are faster 

simulation time, smaller simulation space, and the fact that an RTL model is independent 

of technology, cell libraries, and physical circuit descriptions. The speed-up in simulation 

time comes from the lack of having to simulate every gate of a design. The registers are 

the only true structures in an RTL description. Also, many verilog and VHDL simulators 

are optimized for RTL descriptions. The simulation space is smaller because you simply 

have less possible fault injection points as compared to the nodes in a gate level 

description. The only existing fault injection points are register bits instead of every 

single input and output node of a gate description. Also the RTL description is available 

earlier in the design cycle when compared to a gate level description. Problems related to 

AVF are much easier to fix when detected earlier in the design cycle.  
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CHAPTER III 

 

AVF METHODOLOGY BACKGROUND 

 

Computing AVF 

 There are three main techniques for computing the AVF of a design: analytical 

models, performance models and statistical fault injection [12]. The latter will be 

presented first as statistical fault injection was used in this study and can be broken down 

much further. All of the techniques essentially do the same thing; they try to determine 

the effect of faults on a design. However they all use different methodologies to calculate 

this effect.  

 

Analytical Model 

 Using an analytical model requires the use of architecturally correct execution 

(ACE) bits. These bits will alter the final outcome of the program if they are changed 

[9][12]. This model uses a formula known as Little’s Law which can be translated as N = 

B×L [13]. N represents the average number of bits in the structure, B is the average 

bandwidth per cycle into the structure, and L is the average latency of an individual bit 

through the structure. Using ACE bits, you can then compute the AVF by the formula 

(Bace×Lace)/Nace. This technique has an advantage in that it can be used in the early stages 

of a design when an RTL description may not be available. The downsides to using this 

technique are the need for a significant amount of knowledge about the design as well as 

the fact that all of the bits used in this technique must flow unmodified and without 
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duplication through the design under test [12]. Given these drawbacks, this technique can 

only be used in select cases. 

  

Performance Model 

 The use of a performance model to compute AVF also uses the ACE bits 

mentioned in the analytical model section. This model is described in detail in the 

Mukherjee paper [9].  The key to this analysis is the determination of the fraction of time 

a bit is an ACE bit. The analysis assumes a bit is ACE unless it can be proven to be un-

ACE. They determine if a bit is un-ACE by using a set of rules described in [9]. The 

performance model’s main positive point is its speed. AVFs for many structures can be 

computed in parallel as well as the fact that a performance model can realistically be run 

for a larger number of simulations than other models in a given amount of time. The main 

drawback for the performance model technique is the amount of knowledge that must be 

known about the design. To determine whether a bit is ACE or un-ACE, the person 

running the experiment must be an expert in both the design’s architecture and 

microarchitecture.  

 

Statistical Fault Injection 

 Statistical fault injection (SFI) is the most widely used and accepted method for 

measuring AVF. This technique uses a randomized bit flip to introduce a fault typically 

in an RTL or gate level design description.  The simulation is then run either to 

completion or to a determined point. An error check is done by either checking the 

architectural state of the model with the state of an error-free model or checking the 
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output pins against the output pins of an error-free model. This check is done either in 

real time or at the end of simulation.  SFI’s main positive point is that it requires very 

little, if any, knowledge of the design before the simulations. The largest drawback to SFI 

is the simulation time. Since SFI is typically applied to RTL or gate-level descriptions, 

the simulation time is typically much longer than a performance based model. Also 

considering that SFI is just flipping a bit and checking against a golden copy, the 

simulation space is also very large. Thus a large number of simulations are needed. 

 Since this thesis proposes a tool that uses SFI, it can be broken down further into 

three separate versions of SFI. These are physical fault injection, software fault injection 

and simulated fault injection[14]. 

 Initially physical fault injection was the method of choice for SFI. This method 

injects faults directly into the hardware either through modifying the value of pins or 

disturbing the working environment. This technique has one positive in that once the test 

setup is prepared, the simulation time is very fast. Hardware based simulations are 

significantly faster than software. While physical fault injection is very fast, it has many 

drawbacks. The initial time for set up of the test devices and cost are very prohibitive. 

While the use of FPGA’s for this technique has lowered both time and cost, it is still very 

time prohibitive to synthesize the design on the FPGA and modify the design for fault 

injection. A few examples of hardware fault injection are MESSALINE[15], RIFLE[16], 

and FIST[17].  

 Software fault injection or software implemented fault injection (SWIFI) emulates 

a corruption in the software running on the device. This is done through memory or 
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register manipulation. This technique allows control of the injection place and the 

simulations are also easily reproducible. Because this method corrupts the software on 

the device, there are limited injection locations due to the software only accessing 

particular parts of the design. Timing constraints are also a drawback due to command 

execution times. The implementation of SWIFI can be seen in papers on FERRARI[18], 

DOCTOR[19], and Xception[20]. 

 Simulated fault injection models the entire system behavior using simulation. This 

technique makes primary use of hardware description languages such as Verilog or 

VHDL. This technique is widely used because it allows access to all the component 

models. A typical simulation-based technique can be categorized either as a code-

modification technique or a simulator-command technique. Code-modification 

techniques actually modify the design source code for fault injection. This can be done 

through using either saboteurs or mutants. A saboteur technique is based on adding 

components to the design to allow fault injection, while the mutant technique is based on 

replacing components with structures that are created to allow access to nodes for fault 

injection. Since both the saboteur and mutant technique modify the source code they have 

a major drawback. Modification of the source requires recompilation of the design. Given 

the large number of simulations needed for SFI, this recompilation time can be 

detrimental. Code modification techniques can be seen in papers on MEFISTO[21], 

VERIFY[22], and SINJECT[23]. 

 Simulator-command based techniques rely on built in simulator commands to 

modify the register values of a design. This technique is typically VHDL based, though 

some verilog simulators do allow this technique. Since simulator commands are used the 
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source code is not modified and a recompilation is not necessary. However, accessibility 

of injection space is limited and the lack of portability between simulators is a major 

drawback. This technique can be seen as part of the VFIT based approach [24]. 

 Another technique, which is part of the simulation based fault injection family, is 

the use of the verilog procedural interface for use in fault injection and error detection. 

However this technique does not fit in either the code-modification or simulator-

command based approaches. Since this is the technique used in this thesis, it will be 

described in more detail in the next section. This technique is also used by D. Kammler 

for fault injection and error analysis[14]. 
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CHAPTER IV 

 

SIMULATION METHODOLOGY 

 

Main Goals 

Goals were set for the project to determine the path of development of the analysis 

tool. The main goals were: 

1. Non-intrusive to the design code 

2. Portable to any simulation or verification environment 

3. Requires no knowledge of design function to implement the fault injection and 

error detection code 

4. Uses existing verification test benches 

These goals were decided upon and were used to guide the design of the fault injection 

and analysis tool. Goals 1 and 2 led to the use of the verilog procedural interface. 

 

Verilog Procedural Interface (VPI) 

 VPI is an interface for the verilog HDL that uses the C or C++ programming 

language. VPI consists of access and utility routines that you call from standard C 

programming functions. One can then use these routines to interact with instantiated 

verilog design objects. Table 1 from the Kammler paper shows why it would be 

advantageous to use VPI over the other methods described for simulation based fault 

injection[14].  
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Table 1: Comparison of simulation based fault injection techniques 

 

The use of VPI allows this technique to get around the major downfalls of code-

modification and simulator-command techniques. VPI requires no recompilation and is 

not simulator specific as long as the simulator supports VPI. 

   

Simulation Approach and Software Modules 

 

Figure 2: Simulation Approach Flow Chart 
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 Figure 2 represents the simulation approach for this thesis. The blue boxes 

represent what is supplied by the design. This includes both the source RTL description 

and one or more test benches. The white box represents the verilog simulator. In this 

thesis, the Synopsys VCS tool was used. However this methodology is known to be 

compatible with Icarus verilog simulator as well as Cadence’s NCVerilog simulator. The 

yellow boxes represent what this methodology brings to this simulation approach. These 

are the fault injection module, the error detection module, the golden reference file, and 

the analysis module. A verilog implementation example is shown in Appendix C.  

 Brian Sierawski of the Institute for Space and Defense Electronics wrote the fault 

injection module. It is designed to inject faults into storage elements randomly and 

uniformly across all sub-circuits and length of the test bench. It is implemented using 

C++ with VPI and is compiled using gcc. The source code is not openly available for this 

software module, thus it will not be a part of the appendix. This module consists of four 

verilog calls: singleEventMaxMemorySize(“value”), singleEventInit(), 

pseudoRandom(“value”), and singleEventUpset(DUT). The 

singleEventMaxMemorySize(“value”) call allows the user to set the max size of the 

registers that will be targets for fault injection. It was assumed with our simulations that 

any registers over the size of 2048 bits were memory arrays and had some type of error 

correcting codes. The singleEventInit() call initializes the single event software module as 

well as sets the seed for any randomization needed for the fault injection module. It also 

outputs design related data that is needed for analysis such as the number of register bits 

contained in each sub-module of the design. The pseudoRandom(“value”) call is used to 

create a random number between 0 and the number passed to the call. This is used to 
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obtain a random time for fault injection. Lastly and most important, the 

singleEventUpset(DUT) call will randomly choose a register bit in the design and flip its 

value which simulates a soft error. This fault is then logged to standard out with fault 

location, fault time, and how the fault was manifested (e.g., 0→1, 1→0). These are all 

called within an initial block in the test bench or verification wrapper.  

 The error detection module is designed to compare outputs of the faulty circuit 

with a golden reference file. This methodology allows the user to have real time detection 

of errors as well as real time detection of error corrections. This software module also 

produces the golden reference copy by logging the output stream during a simulation 

with no fault injection. The error detection module was written in C with VPI and 

sections of code were used from Sutherland[25]. The source code is available as 

Appendix A. There is only one verilog call associated with the error detection module, 

which is create_output_log(DUT). This call is made within a verilog always block that is 

triggered by the rising and falling edge of a given clock. This call has two possible uses. 

The first is used with no fault injected and set up in such a way that it produces a golden 

reference copy of all the output pins of the given DUT on the rising and falling edge of 

every clock cycle. After that golden reference file is created the error detection 

simulations can begin. The fault injection and error detection modules are now both 

working during each simulation. The error detection module will log the outputs at the 

falling and rising edge of every clock cycle and then compare those against the golden 

copy. If a mismatch is detected, it will log the error pin location and error time. The 

simulation will also keep running whether an error is detected or not. At this point the 

error detection module can also log whether an error is corrected or, if an error is not 
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corrected, it will detect if it persists past a certain number of clock cycles. The error 

detection module logs all of this to standard out. 

 The analysis module is a script written to compile information from the 

simulation runs. This module is used to log: fault locations, fault times, error locations, 

error times, error corrections, error correction times, and test bench failures. Error latency 

between fault injection and error detection is also logged. Test bench failures are logged 

to determine internal state corruption. This raw data can then be compiled and analyzed 

by the user to determine vulnerability and error severity.  

 Both the fault injection and error detection modules are used at simulation time 

and the analysis module is used at the finish of simulation to compile the raw data into 

log files. Each simulation represents a single fault injection. Multiple fault injection is 

possible with this tool; however it was not done for this thesis.  
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CHAPTER V 

 

RESULTS AND DISCUSSION 

 

Designs Used for Test 

 The designs used for test in this thesis are a large, complex, and sequential design 

comprised of over 1.1 million register nodes and a small eight-bit microprocessor design 

comprised of 447 bits. To comply with the goals in chapter IV, not much is known about 

the function of these designs.  

One full simulation of the large ASIC design, which represents one fault injection, 

takes approximately one hour and represents approximately 32000 clock cycles of 

simulation time. A total of 1400 simulations were completed in a reasonable amount of 

time and the data was compiled. In an ideal situation, one would run more simulations. 

However, with limited time and limited computing resources, there was a limit to how 

many simulations could reasonably be finished. Three levels of the design were analyzed. 

Level one is the core sub-modules e.g. Module1, and two more levels below that 

representing the sub-modules of level one modules. 

One full simulation of the eight-bit microprocessor design takes approximately 3 

seconds. A total of 50,000 simulations were completed to provide data for an over 

sampled test case. Only level one of this design was analyzed as it is used to provide data 

to illustrate the results provided by the methodology presented in this thesis. 
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Results 

 The following charts and analysis represent the compilation and analysis of the 

data compiled from the simulations described above. These figures and charts will 

represent all of the level-one analysis as well as one of the level-two and level-three 

analyses for the large ASIC. The data presented for the large ASIC is illustrative of the 

results obtainable using this methodology. Due to time and computing constraints, the 

data is not sufficient for adequate coverage. Figure 3 below represents a graph that proves 

the fault injection module can randomly injected faults among the range of the given test 

bench which in this case was 32000 clock cycles for the large ASIC design.  

 

Figure 3: Distribution of faults along test bench time 

 The next figures are a compilation of a three data sets. These are number of bits 

per module, number of faults injected per module, and number of errors detected per 

module. Figure 4 represents the data for level one of the large ASIC and figure 5 

represents this data for the microprocessor. 
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Figure 4: Level one sub-module data for large ASIC 

The data in Figure 4 shows a number of trends. Firstly it shows that the 

randomization of fault injection is proportional to the size of the module. This is expected 

and is correct operation of the fault injection module. It also shows the number of errors 

that were detected given a fault injected in that module. From the graph one can see that 

both Module1 and Module2 have the largest number of detected errors. Also of note is 

that both Module13 and Module15 received a large number of fault injections, but no 

errors. This could either be because the faults were logically or temporally masked, or the 

given test bench simply did not exercise these modules very often.  
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 Figure 5: Level one sub-module data for eight-bit microprocessor 

The data in Figure 5 shows the same trends as figure 4. However, this design had 

no time or computing constraints. Therefore, it has been oversampled, as evident from the 

number of fault injections for each module being much larger than the number of 

registers in that module. From the graph one can see that both Module1 and Module2 

have the largest number of detected errors. Also of note is that modules 7, 9, 10, 11, and 

12 show an almost 100 percent AVF.  

A designer can use figures 4 and 5 to determine which modules to harden. 

However, it is much easier to see the most critical modules by plotting them as their 

number of errors versus number of injections as seen in figure 6 and figure 7.  
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Figure 6: Error data for large ASIC modules 

The data in Figure 6 is a representation of the AVF of each module in the large 

ASIC design. Each point on the figure represents a single module of the design. Given 

errors on the y-axis and faults on the x-axis, those points towards the upper left of the 

figure represent the most critical modules. In this instance they are being illustrated as an 

example of the most critical modules. A designer can decide on a given AVF budget and 

then determine which modules meet that budget with this chart. The same type of 

analysis is done for the microprocessor and is represented in figure 7 below. 
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Figure 7: Error data for small microprocessor modules 

 One of the main goals of this methodology is to provide data to the designer so 

that they can selectively harden modules in the design. If a designer choose to harden 

Module1 of the large ASIC based on figures 4 and 6, but could not efficiently harden the 

entire thing based on size, they would then have to analyze the sub-modules of Module1. 

The figures below represent an analysis of levels below the core sub-modules. Figure 8 

represents an analysis of one level down from Module1. 
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Figure 8: Module1 sub-module analysis 

 A designer can see from this chart that they should focus on hardening SubA, 

SubB, or both. However, let us assume that these modules are also too large to harden 

efficiently. So the designer decides to focus on SubA and selectively harden sub-modules 

of that module. Figure 9 represents the data analysis for the sub-modules at that level.  
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Figure 9: Level three module1 analysis 

 Now, with the analysis of level three, the designer can decide which sub-module 

to harden assuming they are now within reasonable size to harden. The designer can 

analyze the data as many levels down as they want all the way to the single register bit. 

However, the further down the data is analyzed, the more simulations are needed for 

statistically accurate results.  

 Figure 10 represents the analysis of the data for error latency for the large ASIC 

design. This chart does not represent all of the errors found. A timing bug was found in 

the fault injection software early on during the simulations and fixed. The computing 

resources for re-running the previous simulations were not available once the data set was 

finished.  
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Figure 10: CDF of error latency data 

 This figure is not only useful for the designer in analyzing the error latency of the 

design and test bench but it was also useful for modifications to the simulation 

methodology. A proposed speed-up technique was to wait for 5000 clock cycles after the 

fault was injected and end the simulation if an error was not detected. It was proposed 

that if an error did not propagate to the output within 5000 clock cycles, it was a latent 

error and probably would not manifest itself at the output. However, one can see from 

Figure 10 that assumption was false. While the curve does certainly level out to a certain 

extent past 1000 clock cycles, it is still rising. Thus it was realistically possible to detect 

faults past 5000 clock cycles.  

 The next figures represent the AVF of each design as a factor of fault injection. 

Given the technique of statistical fault injection and the large sample size of complicated 
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designs, it is not efficient to simulate every possible fault. Therefore a subset of the 

simulation space must be used to provide accurate results within an efficient amount of 

time. The size of that subset should be determined by figure 11 and 12 below.  

 

Figure 11: AVF vs. injections for large ASIC 

Figure 11 represents the AVF data for the large ASIC. Since the line in figure 11 

has not saturated and the error bars are still not within an acceptable range, more 

simulations would be needed for this design. From this graph, a designer could conclude 

that there are not a sufficient number of simulations to make accurate decisions for the 

large ASIC. However, to prove that AVF does saturate given enough simulations, the 

same plot was done for the microprocessor and is plotted in figure 12.  
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Figure 12: AVF vs. injections for eight-bit microprocessor 

 The AVF for the microprocessor in figure 12 has saturated and the error bars are 

within an acceptable range. A designer could then take the data obtained from the 

simulation set used to produce this graph and make accurate decisions on the 

susceptibility of this design. It can also be observed in this figure that a subset of the total 

data set for this design would have been sufficient. Had there only been 10,000 

simulations, the AVF would have been saturated and the errors bars within an acceptable 

range. Thus, one-fifth of the data set provided was actually needed to make conclusions 

about the eight-bit microprocessors.  

There are a few notes to take away from these results. First is that these are 

completely dependent upon the test bench. Given another test bench for either design, 
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these results could have been different. It would be advised to use a test bench that 

exercises the design in such a way that it mimics real world operation. The second note is 

that these results are for a limited number of simulation runs for the large ASIC. With 

proper computing resources, one could obtain more data. The more data the designer has, 

the more accurate the results, and increasing number of simulations will give a better 

picture of sub-module ranking at lower levels and would have provided AVF saturation 

for figure 11.  
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CHAPTER VI 

 

CONCLUSIONS AND POSSIBLE FUTURE WORK 

 

This thesis presented a set of software modules and a simulation methodology for 

determining the AVF of a design and its sub-modules using the verilog procedural 

interface. The methodology is non-invasive to design code, portable to many RTL 

simulators, and requires little knowledge of the design. This work is intended to be used 

by designers to selectively harden modules of a design to reduce overall design AVF.  

An expansion of the project could be done to include simulations at the gate level 

including stuck-at-faults and transients. Also doing a gate level and register transfer level 

analysis of the same design in parallel and comparing compute time and results. Also this 

tool could be used to compare AVF data from a design with AVF data of that same 

design using other fault injection methods, like hardware fault injection or analytical 

analysis.  
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APPENDIX A 

 

ERROR DETECTION MODULE SOURCE CODE 

 

/******************************************** 
Print Outputs VPI Module $create_output_log 
 
Usage: $create_output_log(<module_instance>); 
 
Code sections taken from "The Verilog PLI Handbook" by Stuart Sutherland 
 
Version 10b: Fixed vpiPort problem with NCVerilog 
 
Version 9: Added registration function for use with NC-Verilog 
 
Version 8f: Added fix for unrecoverable errors 
 
Version 8e: Added fix to stop SEU ERROR from printing and filling up hard drive space 
 
Version 8d: Fixed output problem and able to check busses 
 
Version 8a: Quick Fix for memory problem 
 
Version 7: Live Error checking. 
 
11/12/09: Added a vpiHandle array to keep store the handles 
          to the outputs & inouts so that we only iterate through  
   all nets and ports in col_compiletf 
 
02/03/10: Set an environment variable COL_FIRST=TRUE to run the first 
   time to avoid recompilation and changing comments 
 
*********************************************/ 
 
#include <stdlib.h>    /* ANSI C standard library */ 
#include <stdio.h>     /* ANSI C standard input/output library */ 
#include <string.h> 
#include <stdarg.h>    /* ANSI C standard arguments library */ 
#include "vpi_user.h"  /* IEEE 1364 PLI VPI routine library  */ 
 
extern  PLI_INT32  col_compiletf(PLI_BYTE8 *user_data); 
extern  PLI_INT32  col_calltf(PLI_BYTE8 *user_data); 
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void      PrintSignalValues(vpiHandle port_handle); 
 
int ARRAY_SIZE = 200000; 
FILE* columnFilePtr = NULL; 
char* columnLocation = "./singleColumn.seq";  
int i = 0; 
int j = 0; 
int valueArray[200000]; 
int HANDLE_ARRAY_SIZE = 5000; 
vpiHandle handleArray[5000]; 
int k = 0; 
int a = 0; 
int build_golden=0; 
int logsize=0; 
int ErrFlags[5000]; 
int ErrIndex=0; 
int ErrCount[5000]; 
int UnErrorCap = 1000; 
 
/********************************************************************** 
 * Registration Function 
 *********************************************************************/ 
/* 
void registration() { 
 s_vpi_systf_data task_data_s; 
 p_vpi_systf_data task_data_p = &task_data_s; 
 task_data_p->type = vpiSysTask; 
 task_data_p->tfname = "$create_output_log"; 
 task_data_p->calltf = col_calltf; 
 task_data_p->compiletf = col_compiletf; 
  
 vpi_register_systf(task_data_p); 
} 
 
void (*vlog_startup_routines[ ] ) () = { 
 registration, 
 0 
}; 
*/ 
/********************************************************************** 
 * Compiletf application 
 *********************************************************************/ 
extern  PLI_INT32 col_compiletf(PLI_BYTE8 *user_data) 
{ 
  vpiHandle systf_h, tfarg_itr, tfarg_h, port_itr, port_chk, port_h,  
 net_itr, net_h, reg_itr, reg_h; 
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    if (!(getenv("GCPATH")==NULL)) 
    { 
 columnLocation=(getenv("GCPATH")); 
    } 
 
    if (!(getenv("COL_FIRST")==NULL)) 
    { 
 if ((strcmp(getenv("COL_FIRST"),"true")==0) || 
(strcmp(getenv("COL_FIRST"),"TRUE")==0)) 
 { 
         vpi_printf ("Building golden copy in %s\n",columnLocation); 
         build_golden=1; 
 } 
    } 
i=0; 
for(;;){ 
  systf_h = vpi_handle(vpiSysTfCall, NULL); 
  if (systf_h == NULL)  
  { 
    i++; 
    vpi_printf("Could not open output_log, retrying....\n"); 
    usleep(1e6); 
    if (i==3) 
    {     
 vpi_printf("SEU ERROR: create_output_log could not obtain handle to systf 
call\n"); 
        vpi_control(vpiFinish, 1);  /* abort simulation */ 
        return(1); 
    } 
  } 
  else{ 
    break; 
  } 
} 
  tfarg_itr = vpi_iterate(vpiArgument, systf_h); 
  if (systf_h == NULL)  
  { 
    vpi_printf("SEU ERROR: create_output_log could not obtain iterator to systf args\n"); 
    vpi_control(vpiFinish, 1);  /* abort simulation */ 
    return(0); 
  } 
  tfarg_h = vpi_scan(tfarg_itr); 
  if (vpi_get(vpiType, tfarg_h) != vpiModule)  
  { 
    vpi_printf("SEU ERROR: $create_output_log arg must be module instance\n"); 
    vpi_control(vpiFinish, 1);  /* abort simulation */ 
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    return(0); 
  } 
  if (vpi_scan(tfarg_itr) != NULL)  
  { 
    vpi_printf("SEU ERROR: $create_output_log requires 1 argument\n"); 
    vpi_free_object(tfarg_itr); /* because not scanning until null */ 
    vpi_control(vpiFinish, 1);  /* abort simulation */ 
    return(0); 
  } 
 
  net_itr = vpi_iterate(vpiNet, tfarg_h); 
  reg_itr = vpi_iterate(vpiReg, tfarg_h); 
  port_chk = vpi_iterate(vpiPort, tfarg_h); 
 
  if (!net_itr && !reg_itr) 
  { 
    vpi_printf("   No nets or registers found\n"); 
    return(0); 
  } 
 
  if (!port_chk) 
   { 
     vpi_printf("  No Ports found\n"); 
     return(0); 
   } 
 
  vpi_free_object(port_chk); 
/* 
if(net_itr){ 
  while(net_h=vpi_scan(net_itr)) 
  { port_itr = vpi_iterate(vpiPort, net_h); 
    while(port_h=vpi_scan(port_itr)) 
    { 
       vpi_printf("PORT NAME 1: %s \n", vpi_get_str(vpiName,port_h)); 
    } 
  } 
  vpi_printf("Finished with NET ITR"); 
} 
else 
 vpi_printf("NO NETS"); 
if(reg_itr){ 
  while(reg_h=vpi_scan(reg_itr)) 
  {  
    port_itr = vpi_iterate(vpiPort, reg_h); 
    while(port_h=vpi_scan(port_itr)) 
    { 



  33 

       vpi_printf("PORT NAME 2: %s \n", vpi_get_str(vpiName,port_h)); 
    } 
  } 
} 
else 
  vpi_printf("NO REGS"); 
*/ 
 //net_itr = vpi_iterate(vpiNet, tfarg_h); 
// reg_itr = vpi_iterate(vpiReg, tfarg_h); 
  while (net_h = vpi_scan(net_itr)) 
  { 
    port_itr = vpi_iterate(vpiPort, net_h); 
 
    // fp = fopen("test.log","a+b"); 
    if (port_itr == NULL) 
       continue; 
 
    while ((port_h = vpi_scan(port_itr)) && (k < HANDLE_ARRAY_SIZE)) 
    { 
      vpi_printf("Port name is %s\n", vpi_get_str(vpiName, port_h)); 
      vpi_printf("Size is %d\n", vpi_get(vpiSize, port_h)); 
      switch (vpi_get(vpiDirection, port_h)) 
      { 
        case vpiInput: 
           vpi_printf("    Direction is input\n"); 
           break; 
        case vpiOutput: 
          vpi_printf("    Direction is output\n"); 
          logsize += vpi_get(vpiSize, port_h); 
    handleArray[k] = net_h; 
          ++k;   
   break; 
        case vpiInout: 
          vpi_printf("    Direction is inout\n"); 
   logsize += vpi_get(vpiSize, port_h); 
    handleArray[k] = net_h; 
    ++k; 
   break; 
      } 
    } 
    if (k == HANDLE_ARRAY_SIZE) 
    { 
       vpi_printf("SEU ERROR: Handle array is not large enough"); 
       vpi_control(vpiFinish, 1); 
       return (0); 
    } 
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    if (port_h) 
    { 
      vpi_free_object(port_itr); 
    } 
  } 
  if (net_h) 
  { 
    vpi_free_object(net_itr); 
  } 
 
 while (reg_h = vpi_scan(reg_itr)) 
  { 
    port_itr = vpi_iterate(vpiPorts, reg_h); 
 
   if (port_itr == NULL) 
       continue; 
 
    while ((port_h = vpi_scan(port_itr)) && (k < HANDLE_ARRAY_SIZE)) 
    { 
      vpi_printf("Port name is %s\n", vpi_get_str(vpiName, port_h)); 
      vpi_printf("Size is %d\n", vpi_get(vpiSize, port_h)); 
      switch (vpi_get(vpiDirection, port_h)) 
      { 
        case vpiInput: 
          vpi_printf("    Direction is input\n"); 
          break; 
        case vpiOutput: 
          vpi_printf("    Direction is output\n"); 
   logsize += vpi_get(vpiSize, port_h); 
          handleArray[k] = reg_h; 
          ++k; 
          break; 
        case vpiInout: 
          vpi_printf("    Direction is inout\n"); 
   logsize += vpi_get(vpiSize, port_h); 
          handleArray[k] = reg_h; 
          ++k;           
   break; 
      } 
    } 
    if (k == HANDLE_ARRAY_SIZE) 
    { 
      vpi_printf("SEU ERROR: Handle array is not large enough"); 
      vpi_control(vpiFinish, 1); 
      return (0); 
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    } 
 
    if (port_h) 
    { 
      vpi_free_object(port_itr); 
    } 
  } 
  if (reg_h) 
  { 
    vpi_free_object(reg_itr); 
  } 
vpi_printf("Number of outputs and in/outs: %i\n",k); 
vpi_printf("Number of bits per log: %i\n",logsize); 
 
ARRAY_SIZE = (ARRAY_SIZE/logsize) * logsize; 
 
vpi_printf("ARRAY_SIZE: %i\n",ARRAY_SIZE); 
 
for(a=0; a < 5000; a++) 
{ 
 ErrFlags[a] = 0; 
 ErrCount[a] = 0; 
} 
 
  return(0); 
} 
 
/********************************************************************** 
 * calltf routine 
 *********************************************************************/ 
extern  PLI_INT32 col_calltf(PLI_BYTE8 *user_data) 
{ 
 
  vpiHandle systf_h, arg_itr; 
 
  /* get module handle from first system task argument.  Assume the  */ 
  /* compiletf routine has already verified correct argument type.   */ 
  systf_h = vpi_handle(vpiSysTfCall, NULL); 
  if (systf_h == NULL)  
  { 
    vpi_printf("SEU ERROR: create_output_log could not obtain handle to systf call\n"); 
    return(0); 
  } 
 
  arg_itr = vpi_iterate(vpiArgument, systf_h); 
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  if (systf_h == NULL)  
  { 
    vpi_printf("SEU ERROR: create_output_log could not obtain iterator to systf args\n"); 
    return(0); 
  } 
 
  vpi_free_object(arg_itr); 
 
// Uncomment the section below when creating original file 
//********************************************************** 
    if (build_golden==1) 
    { 
   if (columnFilePtr == NULL)   
     columnFilePtr = fopen(columnLocation, "w"); 
       
   if (columnFilePtr == NULL) 
   { 
     vpi_printf("Could not open column file for writing"); 
     vpi_control(vpiFinish, 1); 
   } 
 
   } 
/***********************************************************/ 
// Uncomment the section above when creating original file 
 
  // Comment the section below when creating original file 
  // No errors found, it is now safe to open the column file 
/************************************************************/  
  if (build_golden==0) 
  { 
  if (columnFilePtr == NULL){ 
    vpi_printf ("Reading golden copy from %s\n",columnLocation); 
 vpi_printf ("Using COL Version 9\n"); 
    columnFilePtr = fopen(columnLocation, "r"); 
  } 
  if (columnFilePtr == NULL) 
  { 
    vpi_printf("SEU ERROR: Could not open column file for reading"); 
    vpi_control(vpiFinish, 1); 
    return (0); 
  } 
  } 
/*******************************************************/ 
// Comment the section above when creating original file 
 
  k = 0; 
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  int temp; 
  while (handleArray[k] != NULL) 
  { 
 //Comment the section below when creating original file 
    /******************************************************/ 
   if (build_golden==0) 
   { 
   if (j == ARRAY_SIZE) 
  j = 0; 
   
   if (j == 0) 
   { 
//  if (j == ARRAY_SIZE) 
//   vpi_printf("TEMP is: %c", temp); 
    temp = fgetc(columnFilePtr); 
 
    while ((temp != EOF) && (i < ARRAY_SIZE)) 
    { 
    if (temp != 10) 
    { 
         valueArray[i] = temp; 
//    vpi_printf("Index: %i Value: %c Actual Value: 
%i\n",i,valueArray[i],valueArray[i]); 
         ++i; 
       } 
       temp = fgetc(columnFilePtr); 
    } 
 
  i = 0; 
 
    if (ferror(columnFilePtr) != 0) 
    { 
      vpi_printf("SEU ERROR: Error occurred while reading column file"); 
      fclose(columnFilePtr); 
      vpi_control(vpiFinish, 1); 
      return (0); 
    } 
   } 
    } 
 /*********************************************************/ 
 //Comment the section above when creating original file 
  
//  vpi_printf(" %s \n", vpi_get_str(vpiName,handleArray[k])); 
    PrintSignalValues(handleArray[k]); 
    ++k; 
  } 
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  return(0); 
 
} 
 
void PrintSignalValues(vpiHandle port_handle) 
{ 
  PLI_INT32   signal_type; 
  s_vpi_value current_value;  
  int size; 
  int l = 0; 
 
  s_vpi_time now; 
 
  unsigned long long nowtime; 
 
  now.type = vpiSimTime; 
 
  vpi_get_time(0, &now); 
 
  int timeUnit = vpi_get(vpiTimeUnit,NULL); 
 
  nowtime = now.high; 
  nowtime = nowtime << 32; 
  nowtime = nowtime | now.low; 
 
//  vpi_printf("  Port name is %s\n", vpi_get_str(vpiName, port_handle)); 
//  vpi_printf("    Size is %d\n", vpi_get(vpiSize, port_handle));  
  size = vpi_get(vpiSize, port_handle); 
  current_value.format = vpiBinStrVal; 
  vpi_get_value(port_handle, &current_value); 
   
  char* cur_val = current_value.value.str;   
 
// Comment the section below when creating original file 
/*************************************************************/ 
  if (build_golden==0) 
  { 
  for(l=0; l < size; l++){ 
  if (valueArray[j] != cur_val[l]) 
  { 
  // An error has been detected- compute the simulation 
  //  time, print information and abort simulation with '$finish' 
 
   if (ErrFlags[ErrIndex] == 0 && ErrCount[ErrIndex] <= UnErrorCap){ 
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   vpi_printf("\nSEU ERROR: Output difference at time: %llu e %i\n", nowtime, 
timeUnit); 
      
   vpi_printf("SEU ERROR: Original value:   %c", valueArray[j]); 
   vpi_printf("\nSEU ERROR: Error line:  "); 
   vpi_printf("%s", 
               current_value.value.str); 
   vpi_printf(" %s \n", vpi_get_str(vpiName,port_handle)); 
   vpi_printf("SEU ERROR: In Bit Location: %i \n",l); 
   ErrFlags[ErrIndex] = 1; 
   } 
   else if (ErrCount[ErrIndex] == UnErrorCap + 1){ 
 vpi_printf("SEU ERROR: %s in bit location %i has an error past the recovery 
cap!\n", vpi_get_str(vpiName,port_handle), l); 
   } 
   ErrCount[ErrIndex] += 1; 
    
//   vpi_printf("Error Count is: %i", ErrCount[ErrIndex]); 
 
//   vpi_control(vpiFinish, 1); 
  } 
  else if (ErrFlags[ErrIndex] == 1) { 
 ErrFlags[ErrIndex] = 0; 
 vpi_printf("\nSEU CORRECTION: Output difference is corrected at time: %llu e 
%i\n", nowtime, timeUnit); 
 vpi_printf("SEU CORRECTION: At port: %s in bit location: %i 
\n",vpi_get_str(vpiName,port_handle),l); 
  } 
 ++j; 
 ++ErrIndex; 
 if (ErrIndex == logsize){ 
 ErrIndex = 0; 
 } 
 } 
 } 
/*********************************************************/ 
// Comment the section above when creating original file 
 
 
// Uncomment the section below when creating original file 
//******************************************************** 
if (build_golden==1) 
{ 
 for(l=0; l < size; l++){ 
 if (fputc(cur_val[l], columnFilePtr) == EOF) 
 { 
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   printf("Unable to write to output file"); 
   return; 
 } 
 if (fputc(10, columnFilePtr) == EOF) 
 { 
   printf("Unable to write to output file"); 
   return; 
 } 
 } 
} 
/*********************************************************/ 
// Uncomment the section above when creating original file 
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APPENDIX B 

 

SIMULATION ANALYSIS BASH SCRIPTS 

 

Large ASIC Script 

#!/bin/bash 
UPSETS=0 
OUTPUT_PATH=/auto/dcbu_hw/DFR-nbidokht/vanderbilt/vanderbiltvcs 
SIMS=$1 
for ((i=1;i<1+$SIMS;i+=1)); do 
 runhwk -build -tn test_fc_basic -vo "+define+HWK_BEH_MEM" -vo "-P" -vo 
"/auto/dcbu_hw/DFR-nbidokht/vanderbilt/test/cfiles/vpiSingleEvent/vcs_pli.tab" -vo 
"/auto/dcbu_hw/DFR-nbidokht/vanderbilt/test/libsingleEvent.so" -vo 
"/auto/dcbu_hw/DFR-nbidokht/vanderbilt/COLBuild/create_output_log4.c" -dd 
/auto/dcbu_hw/DFR-nbidokht/vanderbilt > $OUTPUT_PATH/run$i.seq; 
 grep -e "Corey" -e "Time is:" $OUTPUT_PATH/run$i.seq > 
$OUTPUT_PATH/grun$i.seq 
 if [ `grep 'SEU ERROR' $OUTPUT_PATH/run$i.seq | wc -l` -gt 0 ]; then 
  echo run$i >> $OUTPUT_PATH/errors.log 
  grep 'Generated' $OUTPUT_PATH/run$i.seq >> 
$OUTPUT_PATH/errors.log 
  grep 'Generated' $OUTPUT_PATH/run$i.seq >> 
$OUTPUT_PATH/upset.log 
  grep 'SEU ERROR' $OUTPUT_PATH/run$i.seq >> 
$OUTPUT_PATH/errors.log 
  let UPSETS=$UPSETS+1 
 else 
  grep 'Generated' $OUTPUT_PATH/run$i.seq >> 
$OUTPUT_PATH/noupset.log 
 fi 
 gzip $OUTPUT_PATH/run$i.seq; 
 gzip $OUTPUT_PATH/grun$i.seq; 
done 
 
echo $UPSETS " upsets" >> $OUTPUT_PATH/upset.log 
echo $UPSETS " upsets" >> $OUTPUT_PATH/errors.log 
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Eight-Bit Microprocessor Script 
 
#!/bin/bash 
SIMS=$1 
UPSETS=0 
ERRORS=0 
CORRECTIONS=0 
TOTERRORS=0 
TOTCORRECTIONS=0 
UNERRORS=0 
INJTIME=0 
INJECTIONS=1 
 
for((i=1; i<$SIMS; i+=1)); do 
 ./simv > out/run$i.seq; 
 if [ `grep 'SEU ERROR' out/run$i.seq | wc -l` -gt 0 ]; then 
 echo run$i >> out/errors.seq 
 grep 'Generated' out/run$i.seq >> out/errors.seq 
 grep 'SEU ERROR\|SEU CORRECTION' out/run$i.seq >> out/errors.seq 
 grep 'Generated' out/run$i.seq >> out/upset.seq 
 echo run$i >> out/latency.seq 
 grep 'Generated' out/run$i.seq >> out/latency.seq 
 grep 'SEU ERROR' out/run$i.seq | head -n 4 >> out/latency.seq 
 grep 'SEU CORRECTION' out/run$i.seq | tail -2 >> out/latency.seq 
 let ERRORS=$(echo `grep 'SEU ERROR' out/run$i.seq | wc -l` / 4 | bc) 
 let CORRECTIONS=$(echo `grep 'SEU CORRECTION' out/run$i.seq | wc -l` / 2 
| bc) 
 echo $ERRORS " errors" >> out/errors.seq 
 echo $CORRECTIONS " corrections" >> out/errors.seq 
 let UNERRORS=$ERRORS-$CORRECTIONS 
 echo $UNERRORS " errors not corrected!!!" >> out/errors.seq 
 let TOTERRORS=$TOTERRORS+$ERRORS 
 let TOTCORRECTIONS=$TOTCORRECTIONS+$CORRECTIONS 
 let UPSETS=$UPSETS+1 
 if [ `grep 'corrected' out/run$i.seq | wc -l` -gt 0 ]; then 
  echo run$i >> out/corrections.seq 
  grep 'SEU CORRECTION' out/run$i.seq >> out/corrections.seq 
 fi 
 else 
 grep 'Generated' out/run$i.seq >> out/noupset.seq 
fi 
 
echo $INJECTIONS " injections" " " $UPSETS " upsets" >> out/avf.log 
let INJECTIONS=$INJECTIONS+1 
 
rm out/run$i.seq 
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done 
 
echo "  " >> out/errors.seq 
echo $SIMS " total faults injected" >> out/errors.seq 
echo $UPSETS " total faults causing errors" >> out/errors.seq 
echo $TOTERRORS " total errors" >> out/errors.seq 
echo $TOTCORRECTIONS " total corrections" >> out/errors.seq 
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APPENDIX C 

 

IMPLEMENTATION EXAMPLE 

 

 … 

   initial begin 

        $singleEventMaxMemorySize(2024); 

        $singleEventInit(); 

        #($pseudoRandom(2400000)) 

        $singleEventUpset(hwk_core); 

   end 

 

   always @ (posedge refClk or negedge refClk) begin 

 $create_output_log(hwk_core); 

   end 

 … 
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